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SUMMARY

As a genomic disease cancer is unique in that the entire genome can be highly
unstable, with new mutations accumulating at a rapid rate and massive alterations to the
chromosomal structure. Structural aberrations can be highly significant to a patient’s
disease, resulting in aberrant proteins that can drive a cancer to progress faster or
metastasize. Such aberrations may also have more subtle effects, enabling the cellular
population to more rapidly develop drug resistance or simply generate highly diverse
populations within a tumor making targeted therapies less effective.

In fact it is these diverse or heterogeneous cellular populations, with highly mutated
and frequently structurally aberrant genomes, that make understanding the extent of a
tumor genome’s variation so challenging. Large scale sequencing efforts through the
Cancer Genome Atlas and the International Cancer Genome Consortium have sequenced
thousands of cancer genomes, and while small-scale variants have enabled researchers
to begin to trace the evolutionary history and diversity of tumor genomes, large-scale
structural variations have continued to be difficult to identify.

Current methods and technologies for short-read sequencing generally rely on fitting
genomes to a single reference assembly that is assumed to be representative of all
individuals. Tumor genomes, which consist of heterogeneous cellular populations with
unique aberrations can vary significantly from a ‘normal’ genome. This means that such
single references are poor representations of a cancerous cell population, and so
methods that rely less directly on the reference offer better opportunities to investigate
these aberrations.

In this project, a new method for large-scale structural variant identification, called
MultiSieve, is proposed. This method uses prior knowledge to generate and test multiple
references for each patient genome. Validation using simulated data establishes the utility
of the method, and a comparison with commonly used methods demonstrates that
MultiSieve is capable of finding variations often missed by traditional methods and that
there are likely to be more structural variants in patients than have been identified

previously.






CHAPTER 1 INTRODUCTION & LITERATURE REVIEW

Cancer is one of the leading causes of death worldwide today. In the United States
and Europe it is second only to cardiovascular disease in the number of deaths each year.
It is not a new or modern disease either. Evidence of metastatic disease in mummies and
in writings from 1200 BC in Ancient Egypt, Neanderthal fossils with evidence of bone
cancer, and the many other species that develop tumors show that this disease has
always been with us. In the 18" century doctors made several important observations
about possible causes of the disease linking it to tobacco use, hormonal changes, and
environmental exposures to carcinogens in the workplace. However, for centuries the only
available treatment was surgical removal. By the early 1900’s radiation was being used to
kill (and create) cancerous cells, and the 1950’s saw the introduction of the first
chemotherapies. Researchers have since developed many different therapies to treat the
various cancers.

In recent years the aim of cancer research has focused on the understanding of early
development and progression of the disease for the development of earlier treatments,
avoiding the challenges associated with late stage or metastatic disease. As detection
methods have improved, enabling doctors to recognize cancer in earlier stages, available
therapies have also become more effective. It has also become increasingly clear how
challenging identifying early stage cancer can be both in regards to physical location (e.g.
deep tissues such as ovarian versus breast) and in identifying accurate biomarkers at
early stages. Complicating treatment further is that tumors also display significant
heterogeneity in cellular morphology, genomic stability, and drug responses as well as in
their progression.

Despite this heterogeneity all cancers share a common mechanism of development.
Each disease is the result of an evolutionary process of mutation (random or
environmentally induced) and selection from within the tissues of the organism. Selection
may be simply due to deleterious effects of the mutations on single cells, or driven by
immune targeting of mutated cells. Eventually some set of mutations in a cell will enable it
to proliferate unchecked generating a tumor, and ultimately invading other tissues to
metastasize. This process continues within the tumor, continuously generating cellular
populations with novel mutations. The result is heterogeneity at every scale from the
tissues involved in the disease to the cellular makeup of the tumor itself. Determining
whether, or to what extent, the large genetic profile of mutations contributes to tumor
progression or drug response continues to be a central question in cancer biology.

Finding and identifying mutations that can explain a given phenotype is the primary

goal in the search for genomic causes of diseases. Most often this search has focused on



mutations within single or specific genes and attempting to link these to a disease
phenotype. In some diseases this is relatively simple, enabling single genes to be mapped
to known diseases or disorders as in cystic fibrosis (e.g. CFTR gene) (Hamosh et al.
2005). Many of these genes and mutations have been identified through a process of
sifting through the sequence of patients to identify rare mutations to a gene or functional
alterations to a protein. A number of these types of mutations have been identified as
increasing the risk of developing cancer (e.g. BRCA1, TP53) and the search for other
such ‘driver’ mutations has led to the identification of hundreds of potential genetic drivers
and many thousands of mutations (Pleasance, Cheetham, et al. 2010).

It has become increasingly clear in the process of searching for mutational drivers that
cancer is a highly complex and diverse disease with many overlapping types and
subtypes. There exists large differences even between patients sharing the same disease
(Alexandrov et al. 2013). Signatures of different mutational processes have been found
across cancer types suggesting that similar mechanisms may be driving the underlying
complexities, at least with regards to single nucleotide mutations. Furthermore, these
signatures display mutational similarity between cancers such as esophageal and colon
cancers, or lung and bladder cancers, despite being phenotypically different cancer types
(Lawrence et al. 2013). Complicating the picture is that small base pair alterations are not
the only form of mutation found in the cancer genome. Epigenetic changes, whole
chromosome duplications or deletions, and large-scale rearrangements of chromosomal
regions resulting in massive differences from the normal human genome are common
across cancer types. These are often (though not always) associated with poorer
outcomes, found in later stage disease, or related to drug resistance.

The search for underlying genomic causes has been accomplished through various
approaches ranging from karyotyping tumors to genome-wide association studies
(GWAS) to identify candidate or driver genes. High-throughput sequencing (HTS)
revolutionized cancer genomics research by providing the technological ability to rapidly
generate high quality sequence data. Sequences from normal tissue and the matched
tumor in a single patient have enabled researchers to search for mutations that are unique
to the tumor and identify distinct mutational signatures (Alexandrov et al. 2013). Extremely
high-depth sequences have also helped to unravel some of the evolutionary history of a
tumor. However, there are still significant limitations to the identification of large-scale
structural aberrations common to cancer genomes.

In the following sections these issues will be detailed. Section 1.1 (Genome Instability
& Chromothripsis) describes the types of genomic instability in the cancer genome and
what mechanisms may be responsible. Section 1.2 (Evolutionary Progression) will go on

to discuss the development of tumor heterogeneity and the evolutionary processes



responsible. Section 1.3 (Genome Sequencing) will provide a detailed discussion of
sequencing technology and the issues with structural variation identification. Finally,
section 1.4 (High Performance Computing for Genome Analysis) will discuss the recent
technological advances in computing that are being used to enable analysis of large

sequencing datasets.

1.1 GENOME INSTABILITY & CHROMOTHRIPSIS

Genome replication and division is generally an accurate process with a point-
mutation rate of only 0.77 x 10° per site per cell division (Lynch 2010). Errors in
chromosomal segregation are even more uncommon, occurring at a rate of about 1 in 100
cell divisions, as they are typically detrimental to a cell that is not already neoplastic
(Thompson and Compton 2010; Manning, Benes, and Dyson 2013). In contrast, cancer
genomes often have a high mutation rate (Loeb 2001), dependent on carcinogen
exposure (e.g. tobacco, aflatoxins, radiation), the stage of the cancer, and the tissue type

(Stratton, Campbell, and Futreal 2009; Berger et al. 2011). In neoplastic cells the mutation

Table 1 Common Structural Variations

FEATURE DESCRIPTION

Duplication of entire chromosomal set, often the result of
cytokinesis failure

Whole genome duplication

Chromosomal loss/gain Gains or losses of individual chromosomes

Catastrophic rearrangements involving two or more

Chromothripsis
chromosomes

Chained structural rearrangements that appear to be

Chromoplexy gained sequentially

Karyotype level chromosomal rearrangements between

Translocations
two chromosomes up to whole arms

Duplication/deletion of genomic regions caused by

Copy number gain/loss L
structural rearrangement or replication errors

Common structural variation features of a cancer genome. These features can radically
alter the genomic landscape, result in gene-fusions that alter protein expression, and

influence gene expression that is dosage dependent.

spectrum can be broad as well, including a variety of both small and large (see Table 1)
scale changes from single nucleotide variations (SNV) and small indels, to translocations,
inversions or deletions of large chromosomal segments. In addition to mutational
changes, tumor genomes often exhibit whole-chromosome and whole-genome
aneuploidy. These two types of instability contribute to tumorgenesis, and provide genetic
diversity for drug resistance, though they also potentially compromise the viability of a
cellular population (Janssen and Medema 2012). Understanding how these two

mechanisms contribute to the process of tumorgenesis may be key to halting or reversing



disease progression.

1.1.1 NUMERICAL INSTABILITY

The most common form of genomic instability in tumors is whole-chromosome

instability (CIN), also known as aneuploidy, where cells may contain non paired (for most

animals) chromosomes. At the most basic level this occurs where chromosomes fail to

segregate correctly during mitosis due to microtubule defects, mutations resulting in

dysregulation of mitotic checkpoint genes, or cell fusion. The result can vary in a single

geome with an incorrect number of chromosomes, both too few or too many, to the entire

complement of chromosomes being fully duplicated.

Figure 1 Human & Chimpanzee Karyotypes

Human (H) and chimpanzee (C) karyotype side-by-

side shows the primary difference in human

chromosome 2 where two chromosomes from the

great ape lineage fused. Image from

http://www.nationalmediamuseum.org.uk/.

Evolutionarily aneuploidy may
have driven speciation as seen by
closely related species containing
different numbers of chromosomes.
For instance, chimpanzees and
other great apes have a diploid
complement of 48 chromosomes
have 46. This

difference is due to the formation of

while humans
chromosome 2 in humans from the
fusion of two smaller chromosomes
2A and 2B (see Figure 1) in the
great apes (lJdo et al. 1991). Other
closely related species display
similar ploidy changes: domestic
horses have 64 to the Przewalski's
horse 66 or the donkey's 62;
domestic dogs and wolves have 78
their

maned wolves have 76; or African

while close relatives the

elephants 56 chromosomes to the

wooly mammoth’s 58. In embryonic development of most animals however, aneuploidy is

often lethal or significantly deleterious to the organism (including in the crossbreeding of

close species with different numbers of chromosomes). Evidence from human Trisomy 21

points to altered transcriptional regulation due to gene dosage effects (FitzPatrick et al.

2002), though these effects appear to be subtle, as a possible explanation.

In cancer aneuploidy is common and possibly useful to tumor cell populations.



Aneuploidy in cancer has been correlated with drug resistance and advanced tumor
grades, and has been found in most cancer types (R. A. Burrell et al. 2013). It has been
difficult to identify specific causes in cancers due to the frequent co-occurrence of
numerical CIN and structural instability resulting in massively altered chromosome
structures. One important note however, is that while heritable mutations in the DNA
repair pathway genes involved in chromosome segregation have been associated with
familial cancers (Kim et al. 2012), in most spontaneous tumors these mutations appear to
be mutually exclusive with the appearance of aneuploidy. This has been shown in the few
solid tumors that exhibit no aneuploidy as they display a much higher rate of sequence

level mutation (Cheng et al. 2008).

Figure 2 Osteosarcoma Cell Line Karyotype

U20S (osteosarcoma cells)

Karyotype of osteosarcoma cell line displaying both aneuploidy in all chromosomes as well
as structural rearrangements. Chromosomes 9 and 14 are an especially clear example of

translocation. Image from (Janssen and Medema 2012).

Since mutation in the pathways and genes that control chromosome segregation (e.g.
mitotic checkpoint, microtubule-kinetochore formation, and chromatid cohesion) does not
appear to be directly involved in cancer related CIN, a new concept was introduced:
oncogene-induced mitotic stress (Duijf and Benezra 2013). Here altered expression of
tumor-suppressor genes or common oncogenes may affect chromosomal segregation
either directly or indirectly. For example, in retinoblastoma the combined loss of functional
tumor-suppressors in the p53 and pRB pathways showed a strong correlation with higher
rates of CIN (Manning, Benes, and Dyson 2013), while the loss of just p53 was not
sufficient to increase the rate of CIN. This could help explain why most cancers will
eventually develop aneuploidy as well as the order in which it occurs. As loss of either p53

or pRB is widespread across cancer types, acquisition of a mutation inactivating one



where the other already has defects may tip the balance of segregation errors.

How CIN affects drug resistance and tumorgenesis is not entirely clear. One
proposed mechanism is induced instability at both the sequence and structural levels due
to ongoing mitotic defects, referred to as the ‘mutator phenotype’ (Loeb 2001). One of the
primary effects of CIN may be in altered gene dosage or in the loss of heterozygosity.
Although, since the gain or loss of entire chromosomes means many genes are affected
this seems likely to be detrimental to cellular populations, especially as cancer cells tend

to show multiple chromosomal gains and losses.

1.1.2 STRUCTURAL INSTABILITY

In addition to numerical instability large-scale structural instability is found across
many cancer types. These range from intra-chromosomal inversions or duplications of
several thousand base pairs, to translocations involving two or more chromosomes
resulting in chromosomes that are visibly altered (see Figure 2). These rearrangements
may result in alterations to gene expression due to interruption of transcriptional regions
(Shigesada, van de Sluis, and Liu 2004), or gene fusions that produce an altered protein

product (D. R. Robinson et al. 2011).

Table 2 Known Gene Fusions

FUSION GENES CANCER REGIONS

ETV6 NTRK3 Breast cancer 12p13 1525
TFE3 PRCC Renal-cell carcinoma Xp11 1921
TET1 TP53 Kidney clear cell sarcoma 10922 17p13
PAX3 FKHR Alveolar rhabdomyosarcoma 2935 13914
EWS CHN Myxoid chondrosarcoma 22q12  9g22-31
EWSR1 FEV Ewing’s Sarcoma 22q12 2q36
DEK NUP214 Acute lymphoblastic leukemia 6p22 9q34

A few examples of known gene fusions across cancer types, there are many more listed by

(Nambiar, Kari, and Raghavan 2008).

In 1961 Nowell and Hungerford described the first translocation in multiple chronic
myelogenous leukemia (CML) patients between chromosomes 9 and 22 (Nowell and
Hungerford 1961), later designated the Philadelphia chromosome. While this was the first
structural aberration described in cancers, in 1914 Theodore Boveri had hypothesized that
such abnormalities could be the cause of tumor development long before cytogenetic
techniques enabled researchers to visualize them. In the years since Nowell's description
of the Philadelphia translocation, structural changes visible at the level of the karyotype

have been described in all cancer types.



The result of the Philadelphia translocation is a fusion point between the breakpoint
cluster region (BCR) on chromosome 22 and the Abl oncogene on chromosome 9,
creating the Bcr-Abl gene fusion that encodes for a mutant tyrosine-kinase protein that
both increases the rate of cell division and inhibits DNA repair, inducing genomic
instability (Look 1997). This aberration is not specific to CML either. It has been found in
acute lymphoblastic leukemia (ALL) as well as acute myelogenous leukemia making it a
hallmark of hematopoietic disease. The Bcr-Abl fusion protein also provided a therapeutic

target for the development of tyrosine-inhibitor therapies (Kaelin 2004).

Figure 3 Translocations
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Translocations can either be reciprocal (left side) resulting in two derivative chromosomes
with the same total genetic material, or unbalanced (right side) resulting in the loss of
some portion of one or both chromosomes. Unbalanced translocations can involved 2 or
more chromosomes in more complex rearrangements with frequent losses of some

sequences that do not recombine elsewhere in the genome.

Since then gene-fusions resulting from translocations have been documented across
various cancer types (see Table 2), however translocations that do not result in known
mutated protein products are far more common numbering in the hundreds to thousands
of translocations depending on the cancer (Mitelman, Johansson, and Mertens 2007).
Such translocations may be balanced or reciprocal where two chromosomes swap some
genetic material creating two fusions, but no net sequence loss or gain. These reciprocal

translocations are not uncommon in the general population as they can occur in the



development of gametes and may not cause deleterious effects in fetal development. In
cancer however, translocations are both common and complex with unbalanced
rearrangements that significantly alter chromosomal structure (see Figure 3).

Complex structural rearrangements involving tens or hundreds of chromosomal
regions may be gained in a one time event termed ‘chromothripsis’ (Stephens et al. 2011),
from multiple sequential events occurring in the same regions known as ‘chromoplexy’
(Baca et al. 2013), or in a gradual accumulation over time. The result of any of these
events is massive alterations to the genome itself and has been documented in most
cancers. These are thought to promote tumorgenesis and drug resistance by providing
genetic diversity to the tumor with adaptations that are specifically important in cancer
such as loss of tumor suppressor genes (Baca et al. 2013), acquisition of drug resistance
(R. a. Burrell et al. 2013), apoptosis resistance (Stephens et al. 2011), promotion of
angiogenesis (McBride et al. 2012), or the ability to evade the immune system (Janssen
and Medema 2012). In fact, the complexity and number of large-scale events increases
with tumor grade in most cancers (Mitelman, Johansson, and Mertens 2007; Duijf and
Benezra 2013; Baca et al. 2013) supporting the assumption that these structural events
help to support the tumor or even lead to metastasis.

Gradual accumulation of somatic mutations over an individual’s lifetime has been the
commonly accepted model for the development of a tumor genome (Stratton, Campbell,
and Futreal 2009). This model argues that as the cell acquires small mutations over time
due to damage that was not repaired and therefore becomes fixed in the genome, it
eventually tips the balance into unrestrained growth. The rate of mutation acquisition may
differ over time or in different tissues. Mutagenic exposures such as tobacco or UV
radiation can increase the rate of mutation, while rates may be lower in the slower growing
tissues of colonic crypts. It is clear that point mutations can accumulate in cells over the
lifetime of an individual without resulting in cancer (Holstege et al. 2014), and so
identifying which mutations in a given tissue may be the driver towards cancer continues
to be difficult. However, lifetime acquisition of mutations only applies to small mutations
affecting a few nucleotides at a time, large-scale rearrangements of the genome are
unique to tumor progression.

Sudden changes in the genome of tumors have been documented across various
cancers types in patients (Zack et al. 2013) and is echoed throughout the cancer cell
lines. Unless such changes are immediately lethal to the cell, these rearrangements are
also passed to daughter cells, creating new clonal populations containing structurally
altered genomes. These ‘chromothriptic’ events appear to occur suddenly in a
catastrophic event and result in multiple rearrangements, rather than progressive

accumulations (Stephens et al. 2011; Przybytkowski et al. 2014). Such catastrophic



events result in fewer changes to copy numbers, as chromosome fragments are either lost
resulting in lower copy numbers, or retained in a new derivative chromosome resulting in
little or no change to the copy number. This can make such events, and their derivative
sequences, difficult to identify.

Another genome remodeling process appears to be at work in some tumor genomes
that results in a complex arrangement of balanced translocations. First described in
prostate cancer (Berger et al. 2011), a complex and potentially progressive pattern of
breakage and recombination was shown in tumor samples. This pattern, termed
‘chromoplexy’, resulted in no loss of sequence material as the derivative chromosomes
were all balanced translocations. Interestingly the prostate genomes showed a common
pattern where the breakage and recombination occurred near the same regions across
multiple patients. These suggest that the rearrangements were part of a chain of events,
where each event caused a dysregulation that drove the next event in the chain. Evidence
for this chained event was shown through analysis of the sub-clonal alterations within the
tumor (Baca et al. 2013) and was related to higher grade, clinically aggressive tumors.

While the mechanisms for the development of patterns of chromothripsis/chromoplexy
is still unclear, general structural instability is thought to arise primarily through incorrect
non-homologous end-joining while attempted repairing of double-stranded breaks (DSB)
(Moynahan and Jasin 2010). A number of environmental causes of DSBs have been
shown to result in structural aberrations including UV radiation, chemical mutagens, and
ionizing radiation (potentially the cause of chromothripsis in non-hematopoietic cancers).
DSBs may also be more common in genomes with microsatellite instability (MSI) due to
higher sensitivity in the DNA repair pathway to MSI mediated mutation (Bilbao et al. 2010;
H.-R. Li 2004). It has also been shown that translocations acquired in DNA repair pathway
genes may enable the accumulation of additional translocations in a series of catastrophic
alterations due to deregulation of the repair process. Other processes may also drive the
accumulation of aberrations including the breakage-fusion-bridge (BFB) cycle. BFB can
cause regions with DSBs to fuse, resulting in aberrations such as dicentric chromosomes
(e.g. a derivative chromosome that includes the centromeres from two chromosomes),
driving further breakage events through improper microtubule attachments during mitosis
(Guerrero et al. 2010).

It also appears that some regions of the genome are more prone to DSBs due to
known fragile loci in the chromosomes. This has been seen in hematopoietic cancers
which have a high rate of structural aberration that is likely due to the rapid proliferation of
lymphocytes combined with pre-programmed genome remodeling that is part of the
specific cell lineage, making these cells especially sensitive to errors in the DNA

break/repair process (Barlow et al. 2013). Small-scale structural aberrations, such as



localized deletions, at known fragile sites on the genome (Ried 2000), or clusters of large
homozygous deletions may also contribute to large-scale remodeling or chromothriptic
events (Bignell et al. 2010).

That these structural rearrangement events may happen at various times in a tumor
cell population’s lifetime suggests that structural instability can generate as many driver
mutations in the development of a malignancy (e.g. CML and Bcr-Abl) as neutral or
passenger mutations throughout the replicative lifetime of the clone (Pleasance,
Stephens, et al. 2010). It appears highly likely that even structural variants that occur
close to gene boundaries are neutral in a given sub-clonal population as the proportion of
breakage/recombination events is significantly higher than is the identification of recurrent
fusion genes across patients even within the same tumor type (McBride et al. 2012).

There are a number of underlying causes of structural aberrations in tumors, and
these aberrations occur in all cancer types. It is for this reason that better methods are
needed to identify, characterize, and associate them with disease prognosis. These large-
scale structural variations (SV) are often associated with the progression of malignancy
and even metastasis in cancer. The next section discusses these underlying driving forces

in more detail.

1.2 EVOLUTIONARY PROGRESSION

Complex multicellular life is possible only through the cooperation and tight control of
the billions of cells within an organism. Controls are needed that enable differentiation,
tissue specialization, intra-cellular communication, and some ability to recognize other
cells as ‘self. When these controls fail a single cell can grow and divide unchecked,
resulting in a tumor. From that first transformed cell to metastatic disease cancer develops
through an evolutionary process of mutation, expansion, and population selection.

Cancer evolution takes places within a tissue ecosystem, which is tightly regulated to
optimize the function of the tissue itself. During the early evolution of a tumor that
environment may limit (e.g. colon cancer develops slowly due to the slow process of crypt
cell proliferation) or enable expansion (e.g. small-cell lung cancer is typically fast growing
due to carcinogen exposure). Specific mutations that provide competitive advantage to a
specific cell or population may also enable a more aggressive progression (Stratton,
Campbell, and Futreal 2009). For instance, mutations in the RAS pathway, specifically the
KRAS oncogene, have been identified across a variety of cancers and the order in which
the mutations occur is predictive of cancer progression: in colorectal cancer KRAS2
mutations are unlikely to progress to malignant disease unless APC was inactivated first
(Vogelstein and Kinzler 2004; Attolini et al. 2010); in lung adenocarcinoma tumorigenicity

requires both KRAS and p53 mutations (Meacham and Morrison 2013). These mutations



Killcoyne

provide selective advantage to the clones and are considered the ‘drivers’ of

tumorgenesis.

1.2.1 HALLMARKS OF CANCER

Whether the mutations that are initially acquired by a cell are due to errors in
replication and repair, environmental mutagens, or heritable mutations to tumor
suppressor genes, only begins to matter when those mutations alter the function of
specific pathways. The progression from normal healthy cells to cancer is not
spontaneous, occurring from one cell division to the next. Instead each mutation acquired
may provide the cell with advantages compared to the cells within the local environment.
In order for a single cell to generate a population of cells that will become a tumor the
acquired mutations must alter the function of several pathways that are critical to tissue

maintenance in an organism (see Figure 4):

Figure 4 The Hallmarks of Cancer
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Tumorgenesis is a multi-step process that involves alterations to these six general
pathways: growth inhibition, apoptosis, replication potential, angiogenesis, tissue

invasion, and immune system evasion (and sometimes immune recruitment).
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Growth inhibition insensitivity. In normal tissues cellular proliferation is a rigidly
controlled mechanism. Various signals maintain tissue homeostasis by keeping
cells in a quiescent state or preventing proliferation in cells that have entered the
growth phase of the cell cycle. One of the earliest known tumor suppressor genes,
pRB, inhibits transcriptional activities of the E2F transcription factor leading to cell
cycle arrest (Bracken et al. 2003). Dysregulation of this pathway prevents inhibition
of the E2F family of genes, allowing cells to progress from G1 to S phase. Other
paths to dysregulating the pRB pathway are likely to be involved as well, such as
preventing the expression of cell adhesion molecules that are involved in growth

suppression.

Apoptosis avoidance. Both a high cellular proliferation rate and resistance to
apoptosis signals enables the development of tumors. Disruption of the p53
pathway which induces apoptosis in the presence of DNA damage enables
tumorgenesis and is involved in a high proportion of cancers (Hickman 2002). This
is also one of the drivers of genomic diversity in tumors as cells with DNA damage
continue proliferating. However, resistance to apoptotic signals does not
necessarily result in immortal cells or cellular populations. One example is
necroptosis (Vanden Berghe et al. 2014), a regulated form of necrosis (cellular
injury), which is mediated by inflammatory pathways (TNF signaling) rather than

cell cycle pathways.

Unbounded replication potential. Normal cells have a limited number of replications
- in cell culture 60-70 doublings - once that limit is reached the cellular population
stops growing. While cellular populations with inactivated tumor suppressors (e.g.
pRB and p53) may continue past this limit, the population eventually reaches a so-
called crisis state resulting in cell death throughout the population and the
appearance of a few cells that have acquired the ability to replicate without limits
(Hayflick 2000). As most tumor cells in culture appear to be immortal this may
happen early in tumor progression, suggesting that the limit applies to the tumor

precursor cells.

Angiogenesis. Basic cellular function is supported by the oxygen and nutrients
supplied to all cells in the body by the vascular system. Organs within the body
develop with their own supporting blood vessels to deliver these nutrients directly.
As tumorgenesis progresses the abnormal cells must also access these critical
nutrients. This requires that the cells within the tumor be capable of promoting
angiogenesis, through disruption of angiogenesis pathways such as VEGF

(vascular endothelial growth factor), TGF (transforming growth factor), and TNF



(tumor necrosis factor). While angiogenesis is necessary to the organism for tissue
repair or reproduction, uncontrolled angiogenesis is required for tumor development
(Nishida et al. 2006). Disruption of the regulatory pathways of angiogenesis
supports tumor progression in solid tumors, while inhibition of these pathways

appears to slow tumor growth.

* Immune system evasion. The immune system plays a key role in the identification
and elimination of cells that have transformed. This anti-tumor immune response
controls early development of a tumor and continues to attack tumor cells using
tumor-specific T cells (CD4+, CD8+), though this is complicated as most cancer
cells lack MHC-II and so the response primarily relies on antigen presenting cells
(Corthay et al. 2005). Though the mechanism is currently unclear it is apparent that
in order for proliferation to continue tumor cells must have evaded or resisted the
immune response. Many tumors continue to elicit an immune response through the
presence to T cells within the tumor microenvironment. As there is such continual
anti-tumor activity, tumor cells must also continually to avoid detection in order to

proliferate and eventually invade other tissues (Gajewski, Schreiber, and Fu 2013).

e Tissue invasiveness. In order for a tumor to spawn secondary tumors, or
metastasize, the capability for tumor cells to invade adjacent tissues and travel to
new sites within the organism is necessary. That this capability tends to be
acquired late in tumor stages suggests that, in part, the tumor may occupy an
environment that is too competitive to support the continual development of new
cellular populations or that it is simply too large for the poorly coordinated
vasculature to provide for. It is not entirely clear what specific pathways are altered
to allow a cell to acquire invasive/metastatic capability. Those involved in cell
adherence have been identified in metastatic epithelial cancers, as well as
alterations to expression of integrins, and extracellular proteases (Hanahan and
Weinberg 2011).

The specific mechanisms and acquisition timing of each of these capabilities may
differ between cancer types, patients, or even from one tumor to another. Additionally, it is
not necessary that each cellular population within a tumor have acquired all of these
capabilities. It appears, for instance, that only some cells within a tumor have invasive or
metastatic potential while other populations that may have arisen entirely within the tumor
may not have the ability to evade anti-tumor T cells. However, each of these capabilities
is ultimately critical to enable tumorgenesis and eventual metastasis.

As the path to gaining the ‘hallmarks of cancer’ involves significant disruption to the

genome, it ultimately gives rise to genomic instability. This instability most often results in



the development of many different tumor subpopulations, an evolutionary process of
clonal expansion through relative fithess advantage provided by mutations. Each of these
subpopulations carry both driver mutations (e.g. mutations to cellular process important to
tumorgenesis) and neutral mutations that may have no effect in a given population at that
time, but are carried from within the population during successive clonal expansions.
Individual tumors may contain many thousands of mutations relative to the normal
genome, and most are presumed to be neutral. As many hundreds of genes are found to
be mutated in cancers with no clear causative influence (e.g. olfactory receptor genes),
have high mutation rates across cancer types, and have rates that appear dependent on
the length of gene or timing of replication (Lawrence et al. 2013) this indicates the
acquisition of a large number of neutral mutations alongside adaptive mutations.

Genomic instability and the varying mutation rates across subpopulations results in
dynamic and heterogeneous cellular populations within the tumor. Once the threshold of
malignancy has been crossed the fithess advantage for tumor cells is not relative to
normal tissues, but relative to subpopulations within the tumor. The relative abundance
and mutational profiles of the populations varies both by cancer type as well as disease
stage, though it appears that most cancers have a numerically dominant subpopulation
(Nik-Zainal et al. 2012; Jiao et al. 2014). This dominant population is not predictive of the
populations that will be important to the development of metastasis (Hou et al. 2012),
instead it is often simply the proliferative population responsible for the bulk and
expansion of the tumor.

Understanding this evolutionary progression has become increasingly important in the
ongoing efforts to develop more accurate diagnostics and targeted therapeutics. Tumor
development appears to be highly dynamic, and can arise due to monoclonal or
polyclonal somatic mutations (Stephens et al. 2011; Visvader 2011). This leads to one of
the primary difficulties in understanding the mutations that drive cancer development and
progression: tumor evolution is a dynamic process that varies from one tumor to another,

even within a single patient.

1.2.2 TuMOR HETEROGENEITY

It has been well established at this point that cancer is not a single disease, that each
tumor type has both distinct morphology and progression, and that even the same type
can vary significantly between two patients. Complicating this further is that tumors
themselves are often highly heterogeneous with multiple populations of proliferating,
quiescent, tumorigenic, and non-tumorigenic cells. Understanding this heterogeneity
within individuals is likely to provide the key to targeted or personalized therapies.

At the point where a tumor is clinically recognized the ‘cell of origin’ (Visvader 2011),



or the first normal cell to acquire the minimum necessary hallmarks of cancer has been
long eclipsed by the proliferating populations around it. However, depending on how the
subsequent populations were generated it may still be possible to identify the mutations
that enabled acquisition of these capabilities. Identifying which drivers are important to
each cancer type can help to determine disease progression. For example, mutations in
the RAS pathway (specifically the KRAS oncogene) have been identified as significant in
colorectal, lung, and pancreatic cancers. Simply finding the mutations is not enough to be
predictive of tumor progression, instead the tissue and order in which the mutations occur
must be known. In pancreatic cancer, primary mutations to KRAS2 appears to drive the
development of disease, while in colorectal cancer KRAS2 mutations are unlikely to
progress to a malignant disease unless APC was inactivated first (Vogelstein and Kinzler
2004; Attolini et al. 2010). Finding the order of mutations would provide further
understanding of the development of tumor populations.

One of the hurdles to the development of effective cancer therapies has been in
determining which cells within a tumor need to be targeted. Therapies that attack the large
proliferative population may slow down or even reverse the growth of the tumor, but leave
in place a small population of cells that have acquired greater resistance to drugs or
invasive potential that may result in new tumors. However, the question is greater than
simply asking which population should be targeted. Instead this question relies on
knowing how that heterogeneity may have developed in the initial tumor. Two different
models have been proposed which suggest significantly different outcomes: the ‘cancer

stem cell’ (CSC) versus ‘clonal evolution’ (Shackleton et al. 2009).

CANCER STEM CELL

This model starts with the assumption that all tumors are hierarchically organized with
populations of tumorigenic cells that may have already acquired the necessary hallmarks
(discussed above). These populations consist of cells that drive the development and
progression of the tumor and eventual metastasis as well as non-tumorigenic cells. Under
this assumption the tumorigenic cells are the source for all additional subpopulations
within the tumor and when transplanted can cause disease individually (Ding et al. 2010;
Stewart et al. 2011), while the non-tumorigenic populations have no capability to develop
disease when transplanted.

It is important to recognize that the ‘cancer stem cell’ did not necessarily start as a
normal stem cell, instead it proposes that once a cell has acquired the minimum hallmarks
(e.g. apoptosis resistance, growth inhibition insensitivity, unbounded replication potential)
it becomes the ‘stem cell’ that can differentiate into phenotypically diverse subpopulations,

which are responsible for sustaining tumor growth. The hierarchical organization resulting



from differentiation would display genomically heterogeneous populations with clear
precursors, tumors that reflect the hierarchy similar to organ development, and could be
therapeutically targeted by focusing only on the subpopulations that are tumorigenic.
Certain cancers have been shown to be consistent with this model, including some
leukemia’s (Fearon et al. 1986; Bonnet and Dick 1997), breast cancers (Al-Hajj et al.
2003), glioblastoma (Singh et al. 2004), colon (O’Brien et al. 2007) and ovarian cancer
(Stewart et al. 2011). In each of these, transplantation assays showed that only a small
subpopulation of cells within the tumor had tumorigenic potential and were therefore
capable of generating new tumors, supporting the view that these cancers were
hierarchically organized.

There is one major caveat to both this model and the supporting assays: that
tumorigenic potential may be far greater than presumed due to the environment. It seems
likely that tumor cell differentiation can provide some rudimentary organ supportive
capabilities. This would suggest that unless tissue invasive capabilities have already been
acquired (Ding et al. 2010), such cells are tumorigenic only in a specific environment.
Transplantation assays would not provide that environment and as they require that
human tumor cells be transplanted into mice the xenogeneic immune response (even
immunocompromised mice will still have some response) will result in the destruction of
some potentially tumorigenic cells. This further suggests that the specific
microenvironment has significant influence on the fate of subpopulations and this has
been shown in leukemia where only specific conditions result in the development of
immortal cells and disease (Wei et al. 2008).

The most important consequence of the CSC model has been the assumption that the
differentiation should result in markers (morphological or epigenetic) that could be used to
separate the tumorigenic cells from the rest of the population. Unfortunately this has not
been shown conclusively in part due to heterogeneity between patients making reliable
marker identification difficult (Singh et al. 2004), as well as plasticity in some cancer cells

that enable them to reversibly transition between states (Meacham and Morrison 2013).

CLONAL EVOLUTION

Clonal evolution was first recognized in cancers by Nowell (Nowell 1976) as a
mechanism for tumor heterogeneity. This model recapitulates evolutionary pressures as
each new clone acquires genetic or epigenetic changes (so-called ‘driver’ mutations) that
enable expansion at different times under selective pressure (see Figure 5). In contrast to
the hierarchical organization of the CSC model, clonal expansion will develop a branching
pattern that may be locally hierarchical with different clones uniquely driving metastasis,

relapse, or drug resistance. These branches represent dominance of individual clonal



populations at a given time, and points where selective pressures narrow the number of
clones (Greaves and Maley 2012).

Figure 5 Clonal Evolution in Cancer
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Cancer is an evolutionary process of mutation, selection, and expansion of clonal

populations. Each color indicates clonally unique mutations.

Genetic heterogeneity between the clones is therefore a common feature in cancers
and the primary reservoir for diversity within the tumor. While genomic evidence for clonal
patterns in tumors is difficult to generate, as most analyses occur as a single snapshot in
time of the tumor, both histopathology and high-throughput sequencing have provided a
view of the process. Through tracking SNVs and other small mutations in sequence data it
is possible to show clonal expansion and branching occurring in individual patients with
breast cancer (Nik-Zainal et al. 2012), prostate cancer (Baca et al. 2013), myeloma (Bolli
et al. 2014), and leukemia (Jiao et al. 2014). In each of these a dominant sub-clone is

present representing the primary proliferating population at the time of analysis. Further



evidence has shown significant genomic differences between the dominant clone of the
primary tumor and that of the metastasis, suggesting that only a minority of the population
needs to develop metastatic capability.

The evolutionary progression of cancer means that within any given tumor biopsy
there exists a mixed population of cells. Only a subset of this population will contain the
necessary hallmarks of cancer, and are the possible targets of any clinical intervention
strategy. Therefore it is recognized in this thesis that it is important that any genomic-

based analysis should be able to identify these variants from complex mixed populations.

1.3 GENOME SEQUENCING

The advent of high-throughput sequencing technologies (HTS) enabled a dramatic
increase in available information from genomes. As of 2015 more than 170 eukaryotic
species have been sequenced (http://www.ebi.ac.uk/genomes), as well as thousands of
bacterial and viral species. The explosion in individual genomes has been even greater.

Less than decade after the completion of the first human genome sequence
(International Human Genome Sequencing Consortium 2004) a project that aimed to
sequence a thousand individuals across several populations has been completed (The
1000 Genomes Project Consortium 2010). At the same time the Cancer Genome Atlas
(TCGA) Project was underway. TCGA aimed to sequence the germline (or ‘normal’) and
tumor from 10,000 individuals across 20 different cancer types (The Cancer Genome
Atlas 2008). The result would be 20,000 genome sequences for cancer analysis. Many
other projects across human diseases, livestock, plants, and viruses have resulted in an
explosion in the scale of genomic data available to the community. This has been driven
by the advent of ever more efficient, rapid, and cheaper sequencing technologies. At the
same time the continual improvement in sequencing technologies has meant that the raw
size of genomic information for each individual sequenced has dramatically increased.

All of this has allowed many new investigations in the context of biomedicine,
including: understanding parasitic diseases such as malaria (Gardner et al. 2002);
identifying evolutionary and epidemiological dynamics of influenza that could be
responsible for virulence (Rambaut et al. 2008); characterization of the complex microbial
systems in the human body (Gill et al. 2006); and finding the variations that drive complex
genomic diseases such as cancer (Campbell et al. 2008; Ley et al. 2008).

However, sequencing is not simply reading the output of a machine. The
computational steps that are necessary in order to obtain information about individual
variation and potentially deleterious mutations are both complex and incomplete. This is

especially true in the context of complex rearrangements found in the cancer genome.



1.3.1 TECHNOLOGIES

Since the first HTS sequencing platform developed by 454 Life Sciences in 2006 was
made commercially available many new instruments have been developed. Each iteration
has seen the sequence output increase as the time and cost per individual genome has
decreased. In fact the costs and time to sequence have dropped so dramatically - from
50,000USD and several weeks in 2010 to 1,000USD and a single day in 2012 — that
many thousands of genomes have been sequenced. This means that the largest
difficulties are no longer in obtaining a sequence, but in interpreting it.

The difficulties for interpretation are directly related to the process of sequencing.
Currently sequencing platforms generate millions of short sequences, or ‘reads’, for each
genome. These reads typically range from 35-200bp and, in paired-end sequences, with a
gap or ‘insert size’ of 200-1000bp between each read (see Figure 6). These reads are
generated at varying levels of coverage across the entire genome, allowing the reads to
overlap so that where there is a gap in one pair of reads several other pairs will have

covered it. A human genome
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consistent source of bias. PCR amplification has been shown to bias sequence coverage
in regions that are particularly GC rich/poor (Aird et al. 2011) at a higher rate than multiple
displacement amplification methods (Pinard et al. 2006). These biases are of greater
concern in smaller, low-complexity genomes such as plasmids. In human sequences the
coverage bias appears to be more influenced by the length of the fragments. This in fact

relates directly to the second source of bias in sequencing, which is that coverage across



the genome is directly related to the GC content so that GC rich regions show a decrease
in coverage. However, this effect is also influenced by the library used (e.g. different
libraries for the same sample will display different GC coverage) as well as by the specific
lanes on the instrument (Benjamini and Speed 2012).

The last major limitation in short-read sequencing is related to the mappability of the
reads themselves. Genomes are not random complements of base pairs with exceptions
for identified functional regions. Instead due to duplications throughout the evolutionary
history of a given genome, viral sequence inserts, and structural elements including
centromeres/telomeres, there are large segments of any given genome that are
repetative. In the human genome about 50% is estimated to be repetative, including
portions made up of both long (centromeres) and short (ALU) repeat regions. This means
that reads generated in these regions are likely to map to multiple locations simply due to
their length (Treangen and Salzberg 2012). Shorter reads (36bp or less, typically used in
ChlIPseq rather than HTS) cannot be assigned to a single unique region of the genome
with high confidence, and even doubling their length to 75bp results in 10-20% of the
genome still missing a unique read asignment (Derrien et al. 2012). While those results
are looking at single reads even paired reads, which both increase the single read length
and provide additional uniqueness limitations by requireing that the mate read maps
within a given distance, may not have a unique match in the genome. Even paired 100bp
reads may map to 140 different locations in the human genome (Hach et al. 2010).

Both the amplification issues and the multiple mapping problem may be overcome in
future advances in sequencing technology leading to longer reads. Currently there are
three technologies aiming to generate these long reads: the SMRT sequencing platform
from Pacific Biosciences claims to generate reads that average 14kb in length; Oxford
Nanopore Technologies nanopore technology claims to generate 100kb reads; and
lllumina has a “synthetic” long-read platform to generate fragments from 10kb sequences
that are then computationally stitched together to create one long read (R. Li et al. 2015).
Both Oxford Nanopore and Pacific Biosciences create their long read from a single
molecule, removing the need for amplification and therefore potentially improving the
uniformity of coverage. However, long-reads from single molecules suffer from a higher
read error rate than current short-read platforms (0.1-1%) ranging from 4% as reported by
Oxford Nanopore (not independently tested yet), to 14% for the Pacific Biosciences SMRT
platform (Carneiro et al. 2012). While the raw read error rates make these technologies
less suitable for whole genome sequencing on large genomes (e.g. human, mouse), they
are likely to be a good tool for rapidly sequencing small viral or bacterial genomes, highly
repetitive regions of the genome (e.g. centromeres and telomeres), or for targeted

validation of larger structural variants. Currently this is all speculative as these



technologies are still new and continue to evolve and improve.

The third technology from Illlumina, called TruSeq Synthetic Long-Read, uses existing
instruments for generating the reads and alters the method. A new library preparation
workflow cuts DNA into 6-10kb fragments and sequences these in parallel with the usual
short-read workflow. The synthetic long-reads are then generated by local assembly of the
longer fragments. This workflow has already demonstrated utility in sequencing repeat
regions with significantly lower per-read error rates than single-molecule platforms. It
should be noted that the biases due to amplification are still present in this technology and
affect the local assembly of synthetic long-reads (R. Li et al. 2015).

Long-read sequencing technologies offer significant promise for resolving current
issues in sequencing, including the potential to improve structural variant sequencing in
cancer genomes. However, as has been noted these technologies are new and currently
untested in these areas and in the past several years thousands of cancer genomes have
been sequenced on short-read platforms and made available to the community through

the International Cancer Genome Consortium (ICGC) and TCGA.

1.3.2 READ ALIGNMENT

Completion of the Human Genome Project provided the first assembled reference
sequence. That reference enabled the next leap forward in genomics that came with HTS,
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subsequent individuals can be sequenced and aligned in a fraction of the time depending
on the genome size, coverage, and alignment algorithm used. The general process,
known as reference mapping involves taking the single or pair-end reads output from an
instrument and finding the locations in the assembled reference sequence that most
closely match the read(s). This process is distinct from simply searching for motifs in a
database (e.g. BLAST) or pairwise alignment between two different sequences (e.g.
Clustal) due largely to the scale of the data. A single human genome sequence with 30X
coverage can generate more than 450 million reads at 100bp lengths. Mapping that
volume of data, allowing for mismatches due to SNVs or errors required more efficient
algorithms. Two primary methods have been developed to address this problem (H. Li and
Homer 2010):

* Hash search. The sequence (either the read or the whole genome) is hashed into
kmers of a minimum length that is greater than 1 for efficient search. If the read
was hashed the reference genome is scanned for matches, if it is the genome the
read is compared to the hashed reference. In both cases when a match is found
the kmer is extended until a mismatch occurs. This is also referred to as the seed-
and-extend (see Figure 7) method and is used by MAQ (H. Li, Ruan, and Durbin

2008), and Novoalign (http://www.novocraft.com).

*  Burrows-Wheeler
Figure 8 Burrows-Wheeler Transform Transform. This algorithm uses
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The ultimate goal of sequence read alignment is not simply to report the sequence, it
is to identify the differences between species, variations within a population, or heritable
mutations in a family. This means understanding and accepting the limitations of both

current sequencing technologies and alignment methodologies is necessary.

1.3.3 STRUCTURAL VARIANT IDENTIFICATION

Identifying structural variants (SV) in short-read sequences from tumor samples is not
a simple task. Breakage and recombination of the chromosome appears to happen at
fragile locations, directly altering the sequence by combining fragments from other
chromosomes or from other locations within the same chromosome. Read-pairs
generated from this region of the chromosome could span the breakpoint if it fell within the
gap of the read-pair, or “split” the read so that the beginning and end of a single read
aligns to different chromosomal locations. Computational limitations in the alignment
algorithms make correct or unambiguous alignment of these read-pairs difficult. In fact
many of these read-pairs may not be aligned to the reference at all (Schbath et al. 2012;
Ruffalo, LaFramboise, and Koyutirk 2011). The rate of read-pair alignment failure in
cancer genomes can vary from nearly normal at about 3% of the reads failing to align, up
to as many as 40% of the reads being unmapped.

The identification of structural variants in tumor samples is complicated further as
there is a high degree of genomic heterogeneity (see Section 1.2). Depending on the
specific type and grade of tumor, a sample taken from a solid tumor is likely to include
multiple sub-clonal cellular populations that do not share all of the same variations
(Greaves and Maley 2012). The result in sequencing and alignment from such samples is
a low frequency of read-pairs supporting a single SV position, or those reads failing to
align altogether and thus unavailable in the process of SV identification. Multiple
approaches to identifying SVs from such samples have been developed due to these

ambiguities.

REFERENCE BASED

The most commonly used methods for identifying SVs in short-read data currently rely
on the alignment locations reported by the alignment algorithms. These methods can be
classified as Reference Based, as they entirely rely on the alignment and reporting of
reads to locations relative to the reference genome. Due to the fact that the reference
genome will not be representative of an instable genome that typifies cancer (e.g. due to
one or more chromothriptic events), the resulting alignment will include many more reads

that are either (see Figure 9):



* Discordant This is generally defined as: read-pairs for which the alignment
algorithm mapped each read of a pair to a different chromosome; where the insert
distance between the read-pairs is larger than would be expected (e.g. greater than
4 s.d. from the mean based on the read library); or where the orientation of the

read-pairs is incorrect (relative to the specific read technology).

»  Split-reads Where a proportion of a single read may align to the reference, while
the remainder is “soft clipped” or unaligned, this is indicated in the alignment BAM

file with the CIGAR value. These

Figure 9 Inconsistent Read Alignments reads are often considered to be

spanning a breakpoint location

Reference Genome

directly.

* Partially mapped These

read-pairs are not fully aligned, as
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Split read Discordant  Partially mapped © alocation on the relerence while
the other read does not align at all.
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where neither read was aligned to
the reference. In sequences from non-tumor samples, or “normal’ tissue, these unmapped
reads typically account for 2% or less of all reads. By contrast, in tumor samples up to
40% of reads may be entirely unmapped. These reads are lost to all SV and SNV
detection methods that rely on reference based alignment.

The aligned (discordant, partial, and split) reads can be used to infer the existence
and position of a breakpoint (see Figure 10) through clustering or windowing strategies
(Medvedev, Stanciu, and Brudno 2009). Discordant reads are used by tools including
BreakDancer (Chen et al. 2009) and Pindel (Ye et al. 2009) to identify breakpoints through
clustering the reads by the locations the reads aligned to. While tools such as PRISM
(Jiang, Wang, and Brudno 2012), DELLY (Rausch et al. 2012) and SoftSearch (Hart et al.
2013) cluster split-reads or partially mapped reads, typically to identify smaller variants
(e.g. deletions, insertions). As these methods are usually limited by the size of the variants
they can detect consensus approaches such as SVMerge (Wong et al. 2010) are often

used to increase detection across all variant classes.



The disadvantages with this approach are directly related to the reliance on the
reference genome and algorithmic constraints on the alignment itself. While hashing and
suffix/prefix tries can be used to perform exhaustive searching for read matching, it is
infeasible due to the computational cost of performing an exhaustive search for inexact
matches as is necessary for short reads. In fact, most of the algorithms are not set up to

allow for exhaustive  search,
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measures to identify SVs assuming that the regions will be covered by the

alignment is correctly and uniquely reported. random selection of non-unique
mappings, and reporting of the best

mapped reads including n mismatches will provide high quality mappings for variant
detection (H. Li, Ruan, and Durbin 2008). However, in tumor genomes with high rates of
both small (e.g. SNP, indel) and large (e.g. translocation, inversions, deletions) scale
variations the rate of alignment can drop significantly as the difference between the read
and the reference is too large. The consequence for reference based methods of
structural variant detection is fewer reads that are usable for breakpoint detection and
many breakpoints that are entirely undetectable. Due to these limitations methods that

rely less on a reference genome are being developed.

LOCAL ASSEMBLY

One possible approach that does not rely on a reference would be a complete de novo
alignment of tumor genomes. However, assembly of genomes de novo is complex in
normal human samples (Schatz, Delcher, and Salzberg 2010) due to their size and
repetitive sequences. Aneuploidy, chromothripsis, and sample heterogeneity increase the
difficulty in tumor samples and make de novo assembly of the entire sequence impractical
for general use. Instead de novo methods can be employed in smaller, targeted regions to

perform local assembly in a similar manner to resequencing studies where specific



regions are sequenced and assembled rather than entire genomes.

In general de novo methods use kmers of sequence reads to create various data
structures including De Bruijn graphs or overlapping graphs in order to build longer
contigs of a sequenced region. A new approach using kmers in targeted regions of tumor
genomes called BreaKmer (Abo et al. 2014) employs this general approach in tumor
genomes without first resequencing regions. Instead reads that are split or partially

Figure 11 Local Assembly Methods aligned within a targeted region are
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longer contigs of the putative breakpoint regions have high rates of read misalignment,

followed by realignment against a reference. overcomes one of the most significant
issues in short-read sequencing -
that such short reads are unlikely to be uniquely aligned where the genome is structurally
altered. This approach is not currently appropriate for SV identification in a genome-wide
context as it involves de novo assembly on a local scale, however it is highly useful for

resequencing experiments and identification within targeted regions.

REFERENCE FREE

Another approach that has been taken is to avoid the reference altogether and directly
analyze the sequence reads output by the instrument. In this approach the reads do not
need to first be aligned, as positional information is not taken into account (see Figure 12).
This approach is new and therefore the methods of analyzing the reads vary widely.

The authors of the CommonLaw tool (Hormozdiari et al. 2011) assume that structural
variants can be detected with higher accuracy by simultaneously analyzing multiple
related genomes using the reference genome as an intermediary. The true variants are
assumed to be discoverable by comparing the patient genomes directly and this is shown
with small structural variants (<1kb) in YRI genomes (The 1000 Genomes Project
Consortium 2010) and a family trio. While the authors state that it should work in tumor

genomes, they do not try it and it is unclear how direct comparison will work with the



complexity of tumor samples.

A more recent approach called SMuFin (Moncunill et al. 2014) was developed
specifically for tumor samples and directly compares reads between two whole genome
sequences without alignment. In this case the two samples are the normal and tumor pair
from a single patient. It is expected that reads from both samples will be highly similar,
and that mutations can be identified by grouping the reads into a tree structure (based on
a generalized suffix array) that branches where mutations occur. Breakpoints can be
identified in the branches as well as SNVs, and local assembly performed on the reads
within those branches. Both SMuFin and CommonLaw identified small structural variants
with greater accuracy than the methods that rely on the reference genome. Furthermore,
the analysis performed with
SMuFin showed that there is

Figure 12 Reference Free Methods
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tumor/normal 30x coverage genome pair) making this approach difficult to adopt in high-

throughput settings where many patients are being sequenced and analyzed.

1.4 HIGH PERFORMANCE COMPUTING FOR GENOME ANALYSIS

As the scale of biological data has reached “big data” proportions the difficulty of
handling that data has increased as well. Sequencing technologies have continually
improved over the last 10 years, with constantly increasing coverage at decreasing costs.
Computer performance has not been able to keep up with this explosion of data. This has
led to the development of many pipelines and tools that use parallel frameworks to break
down the computation into discrete chunks that can be recombined later. No matter which
SV detection system is used there is a growing need to ensure that it will scale, due to the

rise in the number of genomes and the growing interest in personalized medicine.



1.4.1 DISTRIBUTED DATA ACCESS

The size of genomics data is an issue for any sort of analysis that makes direct use of
the sequence itself. In generating new references that are mutated in any way (e.g. SNVs
or SVs) direct access to a section of sequence in a specific location requires filtering
through thousands or millions of base pairs in FASTA files. An indexing strategy can
simplify this if the primary sequence is the only one being accessed, however in looking to
generate related trees of sequences to simulate generations of cellular mutations (as in
this thesis) it is clear that a highly distributed database solution is necessary to track and
access mutated sequences.

A similar problem is faced in searching through reads from a sequencing sample. In a
single sample millions or billions of reads are generated. Many of these will also be
closely related due to the depth of coverage at each base pair. This is multiplied when
searching across multiple samples as most “normal” reads are closely related between
individuals. A distributed database solution would enable storage of the reads directly,
compressing highly similar reads, as well as metadata about each read. However, in both
cases the data needs to be flexibly stored as the requirements for analyzing the raw data
or specific metadata are constantly changing. A traditional relational database (RDBMS)
does not provide both the scalability and the flexibility required for storing sequences from
large-scale genomics data.

While a variety of database solutions are available that operate within a distributed
system, including both RDBMS and NoSQL implementations, NoSQL databases are more
commonly used for massive data where the structure may be unclear or frequently
changing. Distributed databases do not aim for transactional consistency (e.g. ensuring
that every step of a process is consistent and isolated from all other operations) at all
times as a RDBMS does; instead they provide fully redundant storage by distributing the
data across the system of nodes (machines). NoSQL databases do not require prior data
structuring or the creation of a data model that is encoded in relational tables, instead
database design is meant to directly model the application use and is highly dependent on
the database category (e.g. graph-based information may not be easily encoded into a
document format). There are four major categories of NoSQL databases based on how

they store data (see Figure 13):



Figure 13 Distributed Databases
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NoSQL databases are encode the relationships between different pieces of data directly.

chrs: 1. XY

* key-value pairs where hash tables containing a unique key are paired with a value
that may be simply strings of text or a data structure such as JSON (example:
MemcacheDB)

e column-oriented where data is stored in sets of columns that are related and can be

retrieved as a group based on a single key (example: HBase, Cassandra)

* document based stores data similar to a key-value pair, but the pairs are stored in a
document encoded using JSON or XML and are ordered hierarchically in a tree

structure (example: MongoDB, CouchDB)

* graph based storage encodes objects as nodes in a graph with the relationship

between them represented in the edges (example: Neo4J)

Many different large-scale scientific applications have used these NoSQL solutions to
provide data storage and access for unstructured or semi-structured data including
particle physics data archives for CERN using Cassandra, and genomic variation data for
the European Variation Archive using MongoDB. Each of these can also be connected to
various distributed computing frameworks for rapid analysis (such as MapReduce based

ones discussed in the next section).



1.4.2 MAPREDUCE FOR GENOMIC ANALYSIS

The most commonly used model for parallelizing biological data analysis has been
MapReduce (Dean and Ghemawat 2008), as it is a simple method for using commodity or
server hardware as clusters for computationally intensive tasks (T. Robinson et al. 2011;
Lewis et al. 2012; Lewis et al. 2010). Each MapReduce job is broken down into three

distributed and parallel steps:

* Map phase performs a user-defined computation on a segment of data; the output

is a key/value pair that relates to the computation or data used.

* Shuffle/Sort phase takes data from the mappers based on the keys they output, the

data is sorted and again emitted with key/value pairs

* Reduce phase processes the output data from the shuffle/sort phase and finally

outputs it to a file system or database.

Each mapper runs on a single node, with a master node orchestrating both data
redundancy and assigning data to each of the mapper nodes. A MapReduce analysis
should then scale linearly to the number of available nodes, though this depends on how
independent each Map or Reduce step is and on the location of the input data. The ideal
usage of the system involves planning the mappers on nodes that are close to the data
being analyzed as the less the data itself moves the faster the overall process will be.

In the context of genomic data this framework has been especially suitable for a
variety of alignment problems. A single whole genome sequence can have billions of
sequence reads. Each of these may be initially aligned independent of any other read pair
and therefore need access to only the reference genome index. In MapReduce this
process is broken down relatively simply: each Mapper runs an instance of the aligner and
aligns a chunk of reads against the index; the aligned reads are Shuffle/Sorted so that all
alignments to the same chromosome are together and sorted by location; and finally a
Reducer can merge the alignments into a single BAM file. This is the basic workflow for
the alignment portion of Crossbow (Langmead, Schatz, et al. 2009) using Bowtie, the
Hadoop-BAM (Niemenmaa et al. 2012) library using BWA, and CloudBurst (Schatz 2009)
a novel seed-and-extend aligner developed specifically within the MapReduce framework.
The resulting aligned BAM file has lost no read information in this process. The alignment
itself is simply sped up by enabling multiple independent read pairs to be aligned
simultaneously.

Subsequent analyses, such as variant calling, have to be designed to consider the
reads in context to surrounding chromosomal regions. Since these regions can still be

broken into chunks the MapReduce paradigm continues to be useful here as well, with



each Mapper taking only a segment of data and calling variants based on the reference
locations and particular model of the variant caller. This process has been highly effective
and the Genome Analysis Toolkit (McKenna et al. 2010), one of the most commonly used
genome informatics applications, was built to wrap the MapReduce process to make using

the framework for developing common genomic analyses even simpler.

1.5 SUMMARY

New methods for variant detection are continually being developed. Many have
focused on the small variants (e.g. SNV, indels, short repeats) that may be common in
diseases that have far less genomic chaos or diversity than cancer. Others have focused
on those structural variants that may be relatively easy to identify in cancer such as
somatic copy number aberrations. All of these variations have been shown to be important
to driving the progression of cancer however, due to the massive chromosomal
rearrangements and breakages during a chromothripsis event variations ranging from
large deletions, duplications, translocations and inversions are also important. Identifying
these large-scale variants, particularly those that are copy-number invariant, in short-read
sequencing data continues to be difficult.

Methods to identify and characterize these large-scale variants, such as the one
discussed in this thesis, must be capable of: handling short-read data with an awareness
for the limitations of the technologies and their impact on the reads themselves; scaling
appropriately to both the size of single genomes (e.g. billions of reads) and ultimately to
populations of genomes; accounting for the heterogeneous nature of cellular populations
within a tumor sample and the resulting issues with low-coverage structural variants. The
solutions to these issues as developed in this thesis are presented in the Methods and

Results chapters.



CHAPTER 2 SCOPE & AIMS OF THESIS

The high complexity and diversity of cancers presents a significant challenge to
researchers in understanding the genomic basis for development and progression of the
disease. Individual genomic variation and instrument sequencing biases complicate data
analysis, but the primary difficulty lies in the sampling and subsequent sequencing
methods. Sample collection typically results in a mixed population of cells that includes
adjacent tissue, normal tissue and discreet subpopulations of tumor cells. Such
subpopulations may have large genomic differences that can drive clonal expansions,
drug resistance response, or metastatic disease. Whole genome sequencing (WGS) of
these tissues is typically done without applying any separation to the tissues and cells.

Thus the major problem for cancer genomics (using short-read sequencing) is that this
heterogeneous tumor sample is treated as a homogenous sample due to the
technological difficulty in sequencing and analyzing such mixed samples. Downstream
analysis of the sequences are then complicated by the limitations of alignment algorithms
that rely on reference that does not reflect the underlying genome structure. Ultimately
these analyses are missing the evidence of large structural variants that may appear at
low frequency in the sample.

Due to these difficulties multiple methods have already been proposed to identify
large-scale structural variants. These have been classified into three different approaches
(e.g. Reference Based, Local Assembly, and Reference Free) and are described in the
first chapter (section 1.3). Each of these approaches has their own advantages and
weaknesses, and it is clear that there are still many variants that are not being identified.

This thesis proposes an approach to identify large-scale structural variants with these
issues in mind by using available information about cancer breakpoints to generate
hundreds of synthetic references for simultaneous alignment and analysis in

heterogeneous samples.

2.1 THEsSIS AIMS

Aim 1: Create in silico references by providing the means to generate a large number of
synthetic sequence references that reflect possible genomic rearrangements. This
involves generating the background information on cancer-related breakpoints by
analyzing karyotypes to determine the distribution and frequency of large-scale structural
aberrations. The resulting background will then be used to generate new references that

model probable structural variations that can be used for subsequent alignment.

Chapter 2 Scope & Aims of Thesis



Aim 2: Multiple reference alignment and structural variant detection by aligning the
references generated in Aim 1 against reads generated from patient samples. The result
will be hundreds of alignments that will then be evaluated for representation of large-scale
structural variation by the aligned patient reads. A scoring metric for alignments to
references that model SVs represented in the patient data will be developed by taking into
account read quality, sequencing limitations, and the selected alignment algorithm.
Additionally, appropriate high-performance computing tools will be used, as multiple-
alignment will be a computationally intensive task.

Aim 3: Validate the method using simulated sequence data, and test in patient datasets
available from the Cancer Genome Atlas project (The Cancer Genome Atlas 2008; The
Cancer Genome Atlas Network 2012). This requires that appropriate simulated data be
generated to model breakpoints in sequences at varying coverage levels. This aim will
use available read simulation tools to generate sequences that include breakpoints,
followed by detection and scoring using the methods developed in Aim 2. Finally, TCGA

patients representing different cancer types will be analysed for probable SVs.

2.2 ORIGINALITY

Multiple-reference alignment (called MultiSieve in this thesis) is a method for
evaluating genomes that may contain large-scale structural rearrangements compared to
a ‘normal’ genome. Previous approaches have used multiple closely related genomes
(e.g. family trios or tumor/normal paired samples) to separate the process of variant
identification from location alignment by directly comparing reads first. These methods
showed that the standard reference-based approaches were missing identifications. As
chromothriptic events and large-scale genomic rearrangement are associated with later
stage cancers they may be important to understanding drug resistance and metastasis,
while identifying these structural changes in early stage cancer may be valuable for
prognosis or drug targeting. That these rearrangements are likely to be found in small
subpopulations of the tumor that have not yet become invasive or been through a positive
selection and clonal expansion event make them both more difficult to identify, and more
valuable to find.

This project aims to develop a method that is more sensitive to the heterogeneity
present in tumor samples through the use of prior knowledge to generate multiple
references and high-performance computing to rapidly align and analyze the sample

sequences.
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CHAPTER 3 MATERIALS & METHODS

Current alignment and variation identification methods require a single whole genome
reference to map sequence reads and subsequently identify variant locations. The
reference used is generally composed of the 22 autosomal chromosomes, both of the sex
chromosomes (regardless of the sample sex), the mitochondrial chromosome sequence,
and often viral genomes that may be expected in the sample (e.g. HPV, EBV). These are
provided as a single large reference regardless of the patient being analyzed. These large
reference alignments have the underlying assumption that the reference used is highly
homologous to the sample being sequenced. In cancer, due to structural variations and
high mutation rates, this assumption does not hold.

To reliably detect cancer structural variations an alternative approach, which does not
rely entirely on reference based alignment, is needed. This thesis proposes one such
method, which uses in silico generated references: the MultiSieve method.

Instead of only aligning against one large reference sequence, in silico reference
alignment uses a set of small references that model likely structural variations. The poorly
aligned or unaligned reads from the cancer sample are then aligned against all of the
small references. If a structural variation occurs in the sample that has been modeled by
one of the small references then the alignment will be highly ranked as compared to non-
representative reference models. Such an approach improves upon existing methods, as
it is able to detect structural variations that single reference based alignment systems
simply do not search for. The reason they do not search for them is due to the non-
exhaustive alignment strategy used by these reference based aligners (and a lack of
analyses to support exhaustive alignment reporting), as an exhaustive search on a human
genome would require years of computational time and is not practical on todays
hardware.

The in silico reference technique depends upon the de novo generation of a large
number of small references. However, a random generation of possible variations for each
sample to be analyzed would be extremely time consuming computationally, and is
unnecessary, as some information about variations is already known. Therefore this
method relies on the development of a knowledgebase to inform reference models of
structural variation that may result from complex chromothriptic events as well as smaller
mutations.

Section 3.1 (Reference Selection) describes the approach used to analyze the
variations required for an informed generation of multiple references. Section 3.2

describes the methods used to align the model references against patient reads and
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score them for structural variation inclusion. In this section the criteria applied to evaluate
patient alignments and the probable structural variations are defined. Section 3.3

describes the HPC methods required for the computational needs of such a method.

3.1 REFERENCE SELECTION

While simulating mutations and structural changes to the genome can be achieved
through random perturbations to the sequence of the standard reference genome (e.g.
GRCh37), this has limited utility with respect to aligning patient reads due to the
computational time required to align and analyze each set of reads. However, clinical data
exists which describes structural alterations at a karyotype level (e.g. observed through
microscopic imaging). Using these data to optimize the generation of simulated references
provides cancer-specific information to guide the simulation, and limits an otherwise “very
large” search problem.

A reference in the context of genome alignment is a FASTA sequence file that is
indexed by the alignment algorithm for rapid search. In the case of the human genome the
indexed FASTA file will most often include all 22 autosomal chromosomes and both sex
chromosomes (also typically mitochondrial genome and putative integrated viral
genomes). The reference itself can therefore be altered to provide a more accurate
comparison to the patient genome.

In the case of structural variations there are no references that provide for the range of
large-scale (involving several kb of sequence) alterations. A reference that includes
structural variation would require that the sequences of two or more chromosomes be
segmented, shuffled, removed, duplicated, and sometimes inverted. The entire sequence
of each FASTA chromosome sequence would include aberrations that result from
breakpoints and fusions with other chromosomes (representing the result of
chromothriptic or translocation events).

To optimize the construction of these references they were generated synthetically
through application of known mutation rates for normal and/or cancer genomes (Killcoyne
and del Sol 2014), and by using available data on cancer structural variations observed in
spectral (SKY) or FISH karyotyping (Schrock et al. 1996; Speicher, Gwyn Ballard, and
Ward 1996). The method for identifying the mutation rates, and putative breakpoints at
the karyotype level is discussed in section 3.1.1.

To ensure that the system could run effectively (in hours rather than days) on patient
samples a selection algorithm was additionally implemented. This selection algorithm
provided the means to optimize the choice of in silico references, and is described in

section 3.1.2.
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3.1.1 KARYOTYPE AND MUTATION ANALYSIS

Two types of mutation analysis and artificial genome generation systems were
implemented to support this work:

1) A karyotype level detection system, used to store information about known

structural variations that occur in cancer

2) An indel level mutation system, used to model small-scale nucleotide level

mutations that occur in cancer.

Both of these systems used public data about known mutations. In the main
MultiSieve alignment system only the first (karyotype level reference) was used, as this
provided the large-scale structural variation information that was used to generate the
required references.

The second (indel level) system was used primarily for benchmarking the
computational needs as it allowed for the rapid generation of a large number of simulated
“cancer like” genomes. These artificial genomes were required as they included known
characteristics and avoided any issues associated with patient anonymity, security, or

non-transfer agreements.

Table 3 Publicly Available Karyotype Data

Date Cell

Source Downloaded # Karyotypes | Patients lines

Mitelman Database (F Mitelman,

Johansson, and Mertens 2015) 2012-11-26 99,764 v

NCBI SKY-FISH Database (“NCI
and NCBI's SKY/M-FISH and CGH | 2012-11-12 325 v v
Database” 2012)

University of Cambridge CGP

(Edwards 2012) 2012-10-22 84 v
NCI Fredrick National Laboratory
(“NCI Fredrick National Laboratory 2013-01-16 67 v

Cell Line Drug Discovery Panel’
2012)

Publicly available karyotypes from cell lines and patients were downloaded from various
sources. The largest source of patient-derived karyotypes is from the Mitelman Database

(Felix Mitelman, Johansson, and Mertens 2007).

KARYOTYPE LEVEL

To model large-scale structural variants that typify cancer, a mixture of both patient-
derived (see Figure 14) and cell-line derived karyotypes was downloaded for analysis.
The majority of these, nearly 100,000, came from the Cancer Genome Anatomy Project

(CGAP) under the Mitelman Database of Chromosome Aberrations and Gene Fusions in
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Cancer (F Mitelman, Johansson, and Mertens 2015), a curated database of chromosomal
aberrations in tumors. The remainder, about 500 karyotypes, came from three other
sources including the NCBI SKY-FISH/CGH Database, the Cancer Genome Program at
Cambridge University, and the NCI Fredrick National Laboratory CellLine NCI60 Drug

Discovery Panel (see Table 3).

Figure 14 Karyotype from Pancreatic Cancer Patient
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Example visual representation of a karyotype from a male patient with metastatic
pancreatic cancer (Barenboim-Stapleton et al. 2005). This karyotype displays multiple
large-scale structural variations as well as aneuploidy. Downloaded from the NCBI
SKY/M-FISH & CGH Database (“NCI and NCBI’'s SKY/M-FISH and CGH Database” 2012)

This background data encompassed 227 cancer types. When dealing with this data,
inconsistencies in annotations, problems with metadata, data format inaccuracies, and
biases in the data had to be addressed.

The cancer types were not always useful descriptions of an ontological type, for
instance “heavy chain disease”, “heart” or simply “leukemia” were not uncommon disease
labels. On the other extreme were descriptions (primarily from the Mitelman Database)
that were overly specific: “Atypical lipomatous tumor/atypical lipoma/well-differentiated
liposarcoma” or “Acute myeloblastic leukemia without maturation (FAB type M1)”. A

closely as possible these descriptions were mapped to the US National Cancer Institute
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(NCI) cancer types.

Based on these descriptions it was determined that 66% of all karyotypes found in the
Mitelman dataset were blood-related cancers, primarily leukemias. This was important to
the breakpoint analysis as leukemia is known to accumulate structural variation at a high
rate, and there are known prognoses associated with various recurrent variants (Welch et
al. 2012). Thus breakpoint information reporting is biased towards variants that are

common in leukemia.

Figure 15 ISCN Karyotype Definitions

46,XX,-X,del(7)(g22),inv(9),der(12)t(7;12)(g22;915),+mar [etc...]

Chromosome
count

Aberration definitions
Sex
chromosomes

Markers, rings, double
minute chromosomes, etc

Aneuploidy,
losses/gains

ISCN karyotype definition contains several scales information from genome-wide (e.g.
chromosome count, sex) to individual aberrations. When karyotypes are submitted to the
various databases, or published in papers, there is no check that these conform to the
ISCN. Each that failed to parse correctly had to be manually curated before breakpoint

information could be determined.

These karyotypes were provided in text form using the International System for
Human Cytogenetic Nomenclature (ISCN) standard format (see Figure 15). This format
required significant cleaning before an analysis of breakpoints was undertaken. Various
parsers have been developed, however as the ISCN standards have been frequently
updated and karyotypes themselves are rarely used in a high-throughput environment an
updated parser had to be developed in order to generate the necessary information.

Most karyotypes failed to follow the ISCN standards in one or more definitions and
required manual cleaning, or interpretation. Small errors could have resulted in losing all
breakpoint information from a chromosomal aberration such as: incorrect notation of a
segmental deletion by using ‘-12‘ (the standard format for chromosome loss) instead of
‘del(12)(q14)’; incomplete information for derivative chromosomes (e.g. ‘der(7;12)" with no
bands); or aberration definitions that included a ‘?’ indicating that the specific aberration
could not be determined. Other errors required simple curation, such as missing semi-
colons or incorrectly used definitions (e.g. ‘add(7;14)(q12;p14)’ probably indicated a

derivative chromosome with a translocation). The parser developed to read these
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karyotypes was intentionally conservative in the interpretation of aberrations due to the
need for well-defined breakpoints.

Breakpoints in a karyotype were defined as any aberration which was expressed in a
format that included both a chromosome and a band (e.g. ‘del(12)(q14) defines a
breakpoint while ‘i(9) does not). Exceptions to this were aberrations that were only
partially defined (e.g. one breakpoint can be determined, but the ‘?’ leaves the second
breakpoint unknown t(1;12)(p32;9?)) and ring chromosomes (e.g. ‘r(11)(p15925)’) due to
inconsistent band definitions. The result was background data on 30,558 aberrations, not
including whole chromosomal gains or losses, in all chromosomes and including all 320
major cytogenetic bands.

The cleaned and parsed karyotypes were subsequently analyzed for aberration
information. Aberrations were classified by ISDN standard types including deletion,
duplication, inversion, and translocation. Across all karyotypes 14 aberration types were
used, with one additional class for aberrations whose classification was unclear and could
not be resolved manually. Aberrations were then further broken down into breakpoints
where appropriate (not all aberrations indicate a breakage as in the case of aneuploidy or
double minute chromosomes). Breakpoint frequency and chromosomal instability was
determined based on this final parsed information, and output was generated as simple
text files or database tables for use by the selection algorithm.

This background data was then stored in a specially designed database, and used for

the basis of generating the in silico references required by the MultiSieve system.

INDEL LEVEL

To enable the generation of in silico cancer genomes (Killcoyne and del Sol 2014),
data about small scale mutations was also collected and collated. Human genomic
variation has been evaluated through various large projects that offer a wealth of public
datasets characterizing population-specific variation. These include data on the normal
range of variation from the 1000Genomes (The 1000 Genomes Project Consortium 2010),
HapMap (The International HapMap Consortium 2003), and allelic frequencies in a
population from dbSNP (Kitts and Sherry 2002) to sources that provide disease specific
variation such as the Catalogue of Somatic Mutations in Cancer (COSMIC) (Bamford et
al. 2004) for variations identified in cancer.

These public datasets primarily identify small variants (e.g. less than 1kb in length)
including single nucleotide polymorphisms (SNP), indels, substitutions, and tandem
repeats. Analyzing variation frequency required first identifying those data sources that
provided the ‘normal’ (or non-cancer) level of variation across the genome as the somatic

mutation rate in tumors (Ding et al. 2010) can be significantly higher than in normal tissue.
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Figure 16 Segment and variant analysis Characterizing the normal mutation
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In each 1kb segment the individual
variants were characterized for the type or class (e.g. SNP, indel, substitution) and size
(e.g. 1bp, 8bp, 234bp) of each. Several profiles for each 1kb segment were based on this
and included the count for each class of variants, the size for each class other than SNPs,
and the specific base-pair mutation in the case of SNPs.

These profiles were analyzed to determine the frequency of each class per fragment
across the genome. For instance in the first segment of chromosome 4 there may be 12
SNPs and no other variants, while in the third segment there may be 4 SNPs, 1 deletion of
8bp, and a substitution of 3bp. Finally, structural elements of the sequence fragment were
analyzed to identify directly observable elements that correlate with the variant
frequencies (see Figure 16). These include:

* Identifying the incidence of coding/non-coding regions contained within the
segment and correlating these to the different classes and total number of each
variant class within a fragment. This included separating out exonic versus intronic
regions as well since previous work has shown a link between active sites and

SNV mutations.
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e Overlaying predicted CpG methylation sites (Das et al. 2006) on each segment
and testing for correlations of each variant class. SNVs in particular have been
linked to methylation regions in CpG islands and in tumor sequences these are
linked to particular mutator phenotypes. It was therefore possible that this
phenotype starts in ‘normal’ somatic mutation.

* Determining the GC content for each segment (simple count of GCs per 1kb
segment) and test for correlations between total, high, or low GC content. GC
content is related to, but not always found with, CpG islands and is also related to
evolutionary mutation rates. This could therefore be related to the overall somatic
mutation rate in normal as well as tumor tissues.

Each of these analyses involved integrating other data types per segment including
the coding regions as defined by Ensembl Genes or Transcrips, CpG methylated and
unmethylated regions as well as CpG islands as predicted by Das et al. 2006. The same
frequency analysis was performed on data from small cancer variations as reported in the
COSMIC and the Database of Genomic Variants Archive (DGVa).

This information about mutation rate frequency was stored in a specially designed
database and was used by a MapReduce genome generation system discussed in

section 4.5 in Results.

3.1.2 REFERENCE SELECTION OPTIMIZATION

There are 320 major cytogenetic bands within the human genome (Kirsch et al. 2000),
and each of these is involved in at least one aberration reported within the karyotypes
described. A pairwise combination of each of the bands to create simulated references
results in 51,040 possible combinations. Ideally each of these could be tested against a

genome, however there are current computational limitations for this approach:

* Limited hard disc space. The index for all simulated references combinations
requires 2.5 TB of hard disc space, and the subsequent alignment BAM files for a
small number of reads (1.9 million) from a single genome would require more than
30 TB. Even keeping these BAM files temporarily would require a large dedicated

storage server to enable the analysis of multiple genomes simultaneously.

* Computational time. Aligning a small number of reads against a bank of smaller
references is an ideal situation for parallelization, however each single alignment
(e.g. bwa mem —a —t 12) plus analysis computation required over an hour on a
single node (with four cores), and there are over 51K possible alignments. If all of
a representative 2100 computing cores cluster (the total size of the Luxembourg

University HPC facility) were used solely for one run on a single patient (under
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optimal conditions) it would require days of compute time and unrealistic amount of

disk space as described above.

Dealing with these limitations required an optimization procedure that selected
breakpoints to be tested. Using the raw probabilities from the karyotype analysis to
generate the most likely combinations would result in identifying reads that belong to well
known breakpoints, while missing those that are less well characterized or unreported in
the literature. This means that in order to optimize the selection of simulated references,
and avoid bias towards the most commonly known breakpoints (e.g. centromeres are the
most reported breakpoints in the microscopic methods, or the Philadelphia chromosome
in leukemia), a selection algorithm was introduced to generate populations of breakpoints.

Where there is a large possible search space for a given problem, computational brute
force methods that attempt to solve the problem by computing all possible solutions first is
rarely appropriate, or practical to achieve. This is particularly true where the
characteristics of the solution are not known. Evolutionary algorithms (EA) were
developed as a class of search heuristics for such optimization problems. EAs use the
concepts of biological evolution (including reproduction, selection, and recombination) to
calculate solutions from a population. These require the definition of fitness constraints
that are approximations used in the evaluation of each solution. While the concepts are
rooted in biological evolution, the algorithms have been successfully used in diverse fields
from mathematics and economics, to robotics, chemistry, and biology.

Genetic algorithms (GA) are a subset of EA that use the canonical structure (after
initially generating a population) of the form: 1. Calculate individual fithess - 2. Select
individuals 2 3. Mutate or Cross individuals and Replace = 4. Repeat from Step 1.
These steps provide a generalized view of what a given GA may look like. One of the
common issues found in the use of GAs is the risk of the solution space converging to a
local minimum due to the requirement that a new solution improve on the fitness of the
parent in order to be included. Differential Evolution (DE) (Storn and Price 1997) was
proposed as an approach to avoid convergences in the search process. Practically this
means that the diversity of the solution space is prioritized in Step 3 of the canonical GA,
and that multiple “best” solutions are possible (or multi objective optimization). It does this
by using both Mutation and Crossover operators to increase diversity before selection.
These steps require some parameter tuning for the probability of a given individual in the

population to undergo mutation or crossover.
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Figure 17 Differential Evolution Selection Algorithm
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-- Initialize Population(P) --
/* Poisson distribution with random seed N\ = 5 */
P = 200 random Candidates

/* Termination conditions have not been met */
while ( generations < 1000 OR breakpoint representation < 98% ) {
-- Perform Crossover F(0.7), CR(0.9) --
foreach (Candidate) {
foreach (Breakpoint) {
/* 3 candidates are randomly selected for each Breakpoint */
if (random num <= CR) {
x1,x2,x3 = candidate[1,2,3] has breakpoint? 1: 0
/* add the differences with weighting factor F */
vl = x3 + F * (x1 - x2)
if (vl >= 0) add Breakpoint to Candidate
else remove Breakpoint from Candidate

}
}
-- Perform Mutation MR(0.3), PP(0.05) --
foreach (Candidate) {
/* Randomly select P*PP Candidates to mutate */
if (random num <= MR) add random 1..n breakpoints to Candidate

}

-- Select Candidates --
foreach (Candidate in P) {
/* Due to the weighting factor of the chr/bp ratio, a low value is higher fitness */
if (Candidate fitness < max fitness) select Candidate
/* NCD determines pairwise similarity, used to ensure population diversity */
if (CandiateNCD >= MaxNCD) select random Candidate from any similar pair

}

-- Add new Candidates to Population --

while (P < 200) add random new Candidate to P
/* Count number of generations */

generations += 1

}

The selection algorithm is an implementation of differential evolution as this variant of
genetic algorithms provides multiple solutions across the search space. The process of DE
can be summarized as: 1) generate initial population 2) cross each breakpoint pair by
exchanging partners given a crossover constant (CR) 3) mutate each breakpoint pair given
a mutation constant (F) 4) evaluate the individual fitness 4) evaluate the population
diversity. When either the population diversity reaches a reasonable optimum or a certain
number of generations have been run the selection algorithm stops. The parameters CR, F,
and maximum generations were all selected to optimize the diversity of the end population.
Each of these constants can also have a large impact on the computational time it takes to

generate a population.
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In the context of the genome simulation for MultiSieve the goal was not to find the
most likely single candidate, there is not enough information on structural variations for
that currently, instead the goal was to find a diverse population of possible candidates.
The information to both create and assess the candidates was provided by the karyotype
analysis. However, it was also important that the solution set was not overly biased to only
the most probable variants as would be likely if a simple search was performed based on
frequencies alone. This means each individual karyotype was assessed in two parts: how
similar is this karyotype to all others in the population; and how probable is the individual
karyotype.

To answer the “how similar is this karyotype to all others in the populations” question,
the similarity of any single individual to any other was assessed through a weighted
graph. Each individual was connected to all other individuals, the edge between each pair
was weighted by the Normalized Compression Distance (Bennett et al. 1998; Cilibrasi and
Vitanyi 2005) or NCD, between each pair of individuals (see Equation 1). The NCD was
calculated based on the compressed string representation of the breakpoints (the strings

are preformatted by ordering and removing extraneous characters “9p24,4928”),

Equation 1 Normalized Compression Distance

C.y — min{C,,C,}

NCD =
max{C,, Cy}

where C, and C,, are the compression scores of the respective individuals and C,,, is the
compression score of both together. The closer to zero the NCD is, the more similar the
two individuals are.

To address the question “how probable is the individual karyotype” the fitness for an

individual karyotype was assessed in three parts:

1. Sum of the probabilities for each breakpoint in the individual karyotype. Here a
sum that was too high indicated the inclusion of multiple breakpoints with high
probabilities (e.g. Philadelphia breakpoints). A high sum for the probabilities is
penalized, and was therefore considered to be “poor” fitness.

2. The pairwise sum of NCD scores between the individual and all others in the
population. Here again a high score indicated significant similarities between this
individual and others and was penalized.

3. The ratio of the total count of chromosomes to breakpoints in the individual, this
measure helped to increase the general diversity of the population overall as
individual karyotypes that had a 1:1 ratio of chromosomes to breakpoints were
penalized (the populations rapidly resolve to every individual having the maximum

possible breakpoints without this).
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These functions were used in the optimization of the population being searched, in the
DE this is the Selection step (see Figure 17) where the population is evaluated and filtered
for individuals to be used in the next iteration. In the Selection step there were two tests
applied to the individual solutions. Each individual karyotype was checked for its similarity
(NCD) against all other individuals. If one was found to have a NCD below a minimum
threshold (0.2 was selected as the threshold that maximized diversity) the pair was run
through a Tournament-like selection. Essentially, one of the two was randomly selected to
stay in the population and the other was removed in the following generation. The second
step was to remove individuals with either “perfect” fithess (e.g. no breakpoints at all) or a
score that was too far above a maximum threshold (e.g. meaning that a very high number
of breakpoints or chromosomes had been represented in this individual or it was too
similar to others in the population).

The algorithm was terminated when the population reached either a maximum number
of unrepresented breakpoints across all possible bands (e.g. 3-10), or 1000 generations
had been run. With a population of 200 the algorithm generally reached an optimal point
with regards to breakpoint representation within 400 generations.

The result is a genetic algorithm with an optimization function provided for the entire
population being iterated over, instead of a single solution. This function combined the
fitness of all individual references, and a measure of the uniqueness or diversity of the DE
population. The diversity score ensured that cytogenetic bands with a smaller probability
of being involved in a recombination event could be represented, enabled the testing of
chromosomal regions that may otherwise have been underrepresented due to a bias in
the frequency data (e.g. missing data for disease-specific aberrations), and avoided over-
testing breakpoints that may have been overrepresented in the knowledgebase (e.g.
centromeres, Philadelphia chromosome, etc.).

The final output of the selection algorithm was a set of pairs of chromosomal locations
that were used to generate a set of miniature references that modeled structural
variations. Each of these represented the sequence of the selected recombination. For
example t(16;8)(q13;924), is defined as starting with 16913 (56700001- 57400000) and
ending with 8g24 (117700001- 46364022) creating a recombination point at 700kb from
the start of the reference sequence.

The DE selection process was used by MultiSieve to select a diverse (representative)
sample of structural variations from an underlying population of known breakpoints. These
known breakpoints were retrieved from the “karyotype level’ database discussed in
section 3.1.1. The next section describes the methods developed to use these mini

references to detect actual structural variations in patient samples.
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3.2 ALIGNMENT, DETECTION & SCORING OF STRUCTURAL
VARIATIONS

This section discusses how the large-scale structural variations were identified using
the data and selection algorithm discussed in 3.1. This process had three steps:

* Alignment: how the bank of small references were used to align the tumor data

* Detection: how SVs were detected from these alignments

* Scoring: how the detected SVs were scored to identify the most likely candidates.

3.2.1 ALIGNMENT

The sequences that were generated, either through random selection or using the DE
algorithm, supplemented the standard whole-genome reference alignment. These now
functioned as both references for alignment, and models of large-scale structural
variation, enabling both an increase in the number of possible alignments and in the
computational speed of alignment for testing multiple regions. This meant that MultiSieve
was able to quickly search for structural variations that other (e.g. Breakdancer) SV
detection tools would be unable to find. This lack is not due to the tools themselves, but
rather due to the fact that the alignment algorithms cannot exhaustively report all possible
alignments for non-unique reads, and therefore the detection tools have fewer aligned
read positions to base identification on.

To align the patient data against the mini references, the reads that were filtered from
the original patient as being ‘unmapped’ (one or both reads in a pair failing to align to a
location in the reference genome) or ‘discordant’ (aligning to two different chromosomes)
were aligned to each of these breakpoint model regions using the BWA (Li and Durbin
2009) alignment tool. It is important to keep in mind that by aligning the same reads to
multiple references BWA can no longer select a single alignment where multiple
alignments are possible. With alignment tools like BWA the reporting of a single alignment
for a read-pair is done by either taking the highest map quality score, presuming that the
best mapping is correct keeping in mind that this is dependent on the number of
mismatches allowed, or by randomly selecting one mapping from the possible alignments.
By using multiple references and previously unmapped reads the alignment criteria for
greater mismatches and multiple alignments was relaxed. This was necessary due to the
potential heterogeneity of tumor samples and low frequency of reads supporting a
breakpoint.
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3.2.2 DETECTION

Once the alignment was completed the resulting information was used to detect SVs.
Detecting large-scale structural variation using the model regions requires data filtering to
remove candidate reads with poor alignments or likely erroneous mappings.

MultiSieve used all discordant and unmapped reads, as there are multiple reasons
that a read may have been unmapped in the original alignment step including: higher
numbers of mismatches to the reference than were allowed in the original alignment;
discordance resulting in one read of a pair failing to align within the time provided by the
algorithm; pairs that result from sequencing of a poorly characterized region (e.g.
centromeres and telomeres) or other highly repetitive regions (Schbath et al. 2012). This
means that when these reads were reported as having aligned to a reference that models
a breakpoint region it had to be evaluated and potentially filtered out. Aligned reads for
each breakpoint reference were filtered to remove reads where: 50% or fewer of the
nucleotides matched based on the CIGAR string (Li et al. 2009); or the summed Phred
score was below the mean identified in the original alignment. The remaining aligned
reads were then analyzed for the distribution of insert lengths between read pairs.

A non-symmetric bimodal distribution was observed in all read alignments to the in
silico references with respect to read-pair insert length. These alignments were
investigated using a distribution-based clustering method, expectation-maximization (EM),
to cluster reads belonging to each distribution, and to identify the means of each (see
Figure 18).

The first distribution was characterized by reads with an insert size near or below 2
s.d. of the mean insert size (as determined from a sampling of aligned reads in the original
BAM). Additionally these had a map quality score of less than 30 (Li, Ruan, and Durbin
2008), indicating a higher rate of mismatches or a poorer quality read. It is also important
to note that these read-pairs were mapping within the normal range based on insert
length. As these read-pairs mapped within the normal insert distance they should have
been aligned by the original alignment to the reference, unless these read-pairs happened
to align to either side of the breakpoint modeled in the mini reference. However, the
synthetic reference models had fusion points at the boundaries of cytogenetic bands.
While it is not impossible for a breakpoint to actually occur at this point, it is unlikely to
have done so in every reference that is tested. Sampling reads in the first distribution
across several of the modeled breakpoint references showed that it was not the case that
these “normal” aligned reads were aligning across the cytogenetic band boundaries at all.
Thus the first distribution is primarily due to read pair alignments with a high likelihood of

error and could not be used for direct identification of structural variation.

Chapter 3 Materials & Methods



Killcoyne

Figure 18 Bimodal Distributions in Model Alignment
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Distribution of logged read-pair insert distances from aligned reads showing a bimodal
distribution with two clear centers. The distribution on the left side is from read-pairs
with a “normal” distance (about 400bp for lllumina), the distribution on the right are
from read-pairs which span both bands. In (a) the reference is sequences from 5q13
and 8924 and the aligned reads show a very clear normal distribution centered around
a mean of 16 with a large number of supporting reads, suggesting that this is a likely
SV. In (b) the second distribution is poorly defined. The reads in this simulated region
are less likely to indicate a SV and instead provide a baseline for erroneous discordant

alignments. Image published in (Killcoyne and del Sol 2015)

Chapter 3 Materials & Methods

48



The second distribution consisted of reads that aligned with an insert size greater
than 4 s.d. from the mean insert size (Ruffalo, LaFramboise, and Koyutirk 2011). This is
a commonly recognized definition for one type of ‘discordance’ resulting from structural
variation. Due to the discordance of the reads in the second distribution there was no
calculated map quality score. This made it necessary to define the quality of the read and
the alignment by using higher (>50%) CIGAR and summed Phred values (> mean Phred).
Therefore this distribution was viewed as representing the possible alignment of read

pairs that resulted from sequencing a breakpoint region.

The composition of these two distributions was used to indicate that a breakpoint had

occurred, and was used as the basis of the scoring function discussed below

3.2.3 SCORING

Using EM to identify the distributions enabled use of the mixture model parameters to
calculate the probability of an aligned read pair belonging to the second distribution (using
the R package ‘mclust’ (Chris Fraley 2002)):

Equation 2: Expectation Maximization Conditional Probability Ratio (EMr)

Yn=1P(n|2)
N

EMr =

where P(n|z) is the conditional probability of the nth read belonging to each of the two
distributions identified. EMr (see Equation 2) reflected the proportion of reads that were
found in the second distribution to have a ‘discordant’ insert distance. It was derived by
finding the probability of the nth read belonging to the second distribution, then iterating
over the set of N where N is the total number of reads aligned to this reference (across
both distributions). The resulting value was a ratio based on the number of distributions
found and the sum of the EMr for each is equal to 1.

As the first distribution described erroneous alignments it was used to find the first
cutoff value for further analysis of the alignments described by the given in silico
references. All models where the second distribution had an EMr below this cutoff were
discarded. It has to be noted however, that as the EMr is a ratio it could not be used
without additional information to indicate a structural variation, as a ratio of 0.6 is of less
significance if only 100 reads aligned in the second distribution than if 10,000 reads
aligned.

Therefore an additional step was included to evaluate the alignments. The second
step was to identify putative breakpoint locations based on alignment positions. A sliding-

window clustering approach was used in each model breakpoint alignment to identify
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regions with an over-representation of reads aligning to a location. The aligned reads from
the second distribution that passed the quality filtering steps were clustered by position if
the read pairs also spanned both chromosomes represented by the simulated reference.
This is an important qualifier. Since the breakpoint references used several kilobases of
sequence on either side of the breakpoint boundary it was possible for a discordant read
pair to align both reads in one chromosome with a discordant insert distance, which is not
what the method was currently trying to identify.

The windowed clustering strategy is a common method for identifying structural
variation as well as for providing an estimation for depth-of-coverage (Medvedev, Stanciu,
and Brudno 2009). Various methods including BreakDancer (K. Chen et al. 2009), MoDIL
(Lee et al. 2009), VariationHunter (Hormozdiari et al. 2010), and Pindel (Ye et al. 2009)
use clustering or window-based strategies to detect signatures for structural variants.
Exactly what signatures they search for and the method used to cluster the reads differs
based on the variants (e.g. Pindel and MoDIL detect small indels, BreakDancer and
VariationHunter may detect multiple variants including inversions, deletions, and
translocations).

In MultiSieve the positional window clustering enabled each location to be assessed
for coverage depth. However, the distribution of this coverage was also important. If the
aligned read locations were uniformly distributed across the breakpoint reference all of the
positions would represent poor alignment sensitivity. This means that it was the outliers
that are likely to be representative of actual alignment across a breakpoint. In order to
adjust the ratio derived from EM, the major outlier in the positional window-clustering was
used to determine the proportion of reads in the second distribution which potentially

indicated large-scale structural variation (see Equation 3):

Equation 3: Combined distribution and positional clustering for translocation scoring (Tx)

w
Tx = Z (EMr, "“‘")
Ny

where W, is the cluster with the highest total count of reads from the second

distribution, and Nthe total number of aligned reads within the second distribution which
passed quality filters. The maximum cluster proportion was used by MultiSieve as the
feature most descriptive of structural variation based on simulations in real patient data.
The main approach taken when researching the methods that went into the MultiSieve
method was to develop a SV detection approach that can quickly search cancer samples
and find structural variations that other tools were not able to find. The methods used to
do this combine modern HPC approaches to scale out the problem, the use of

background information and optimization strategies to limit the search space, and the
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actual implementation of a system to discover and inform about detected SVs. Validation
of the method using synthetic data with known characteristics is discussed, alongside real

world (e.g. patient data) examples, in the Results chapter.

3.3 DISTRIBUTED COMPUTING FOR GENOMICS

Handling genomic sequence information requires that the scale of the data is a major
consideration in any type of analysis. A single BAM file for a human whole-genome
sequence is billions of reads and hundreds of gigabytes. Even the reference genome,
which is simply 3 billion base pairs or characters in a file, is several GB in size. Altering
that reference for both small mutations (SNVs, indels) and structural variations
(inversions, translocations) results in millions of computations along with the necessary
computational work involved in reading and writing the results of these computations to a
new reference file. Doing this efficiently and rapidly requires the use of high performance
computing, typically through the use of distributed frameworks.

The applicability of these highly distributed computing environments was tested to
solve two specific issues: how to generate highly mutated reference sequences (both for
bench marking and for the MultiSieve reference alignment); and how to store and retrieve
large numbers of reads, which is needed to enable scaling of MultiSieve methods to the
level of populations of patients. These scalability issues needed to be addressed if the in
silico reference solution discussed in this thesis was going to be able to be used on
populations of genomes.

The most suitable distributed framework for these specific problems was identified,
and the corresponding analysis system was developed. For the mutation of large numbers
of references MapReduce was used (see Section 3.3.1), and for the population scale
genome read data warehouse (see Section 3.3.2) MongoDB was the most appropriate.
The Amazon Elastic Cloud Compute (EC2) platform and web services provided the

means to test the scalability (scale out) of these systems.

3.3.1 HPC FOR MUTATION USING MAPREDUCE

The method discussed in this thesis required the generation of a large number of
sequences, which are mutated versions of the reference sequence. The MapReduce
framework was used to develop both in silico reference sequences (Killcoyne and del Sol
2015), and also to develop novel mutated references, which were used for benchmarking
and evaluation. When developing the mutated reference sequences, a number of steps
were undertaken for each kilobase of sequence as part of a pipeline called FIGG
(Killcoyne and del Sol 2014): determine the GC content of each segment; apply the pre-

calculated mutation rate for each mutation class (e.g. SNV, indel, substitution); generate a
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new sequence with the synthetically created mutations. If large-scale variations were also
being applied, sequence from other chromosomes may be inserted or large sections of
the sequence may be reversed. Sequentially mutating a genome from chromosome 1to Y
requires 3x10° independent processing steps. In order to perform this task the
computational load was distributed through the use of high performance computing (HPC)
frameworks and compute clusters.

HPC enables the rapid calculations necessary for mutating reference sequences
through the aggregation of computing power as well as the distribution of memory,
storage, and computation. While there are various solutions available for parallelizing
computation MapReduce (Dean and Ghemawat 2008), first developed by Google to
handle large unstructured data, has been adopted in bioinformatics methods more than
any other solution. This is largely due to the simplicity of development as well as its rapid
acceptance as the standard “cloud computing” platform by major cloud vendors like
Amazon, Google, and Microsoft. To generate the in silico references Hadoop MapReduce
on Amazon EC2 was used, as this provided the most practical and scalable infrastructure.

The major advantage of MapReduce is its simplicity, as it enables tools to be
developed quickly and scale-out effectively. Unlike many other parallel frameworks that
require developers to manage communications within the processes, MapReduce (see
Figure 19) breaks down the computation into two major phases, Map and Reduce that are
automatically executed in parallel across the available compute resources (nodes). This
separation between the processes enables the developer to (nearly) exclusively
concentrate on the process or analysis.

The Map phase takes the input data that is pre-partitioned by the framework using a
provided data reader (e.g. tab-delimited text, HBase, per-line text) that is customizable if
required. Each mapper runs the computation provided by the developer over its chunk of
input data. The output is a key-value pair defined by the application that defines some
relationship between the data. For example, if the computation was to count all
occurrences of G and C nucleotides in a sequence string it could output the key-value
(GC, 12). Or it could output more complex information as an object as in the case of a
sequence mutation where the key is the location and the value is an object that includes a
sequence, location, and GC content. After the mappers have completed their tasks there
is an intermediate shuffle/sort phase to sort all of the outputs with the same key into a
single group. Each group of keys is then provided to a reducer that can do further
computation over the grouped values (e.g. summing all of the GC values) and outputting it

to a file or database.
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Figure 19 MapReduce
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Schematic overview of MapReduce. Input data is partitioned into chunks automatically and
sent to mappers. Each mapper performs the computation and outputs a key-value pair that
are sorted and send to reducers. Reducers can apply some final computation and output
the data to a file on HDFS or a NoSQL database.

Apache Hadoop and HDFS (Highly Distributed File System) provides an open-source
version of MapReduce that can be used on internal clusters, or on the Amazon EC2
platform and are widely used within bioinformatics.

Since the Human Genome Project published the draft human genome sequence the
cost for a single genome has continually decreased, while the technologies used have
continued to improve. The result is that the pace of improvement in sequencing as well as
the number of genomes being sequenced has hugely outpaced the ability of a single
computer to align and analyze them. This has led to the use of distributed processing
architectures across a range of genome alignment in analysis applications (Schatz,
Langmead, and Salzberg 2010). Apache Hadoop (The Apache Software Foundation) and
MapReduce has been the most commonly used framework for scaling up genome
analysis via HPC. This is due in large part to its relatively simple workflow. Unlike earlier
parallel computing frameworks the software development required is relative minor. In
many cases scripts that manage the input and output data (e.g. sequence reads and
aligned sequences) may be used via the Hadoop “streaming” utility, which manages all of
the distribution of the data and computing nodes, using the analysis script as a mapper or
reducer as indicated by the developer.

Hadoop MapReduce has been successfully applied to a number of genomics analysis
projects. In 2009 the first projects to make use of these frameworks were released.
Cloudburst (Schatz 2009) provided a read alignment implementation on Hadoop

MapReduce which improved on the sensitivity of alignments by allowing more mismatches
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or reporting every possible match. Crossbow (Langmead et al. 2009) used the framework
in SNP detection, this time on Amazon EC2 which enables the rapidly scaling of hardware
resources. In 2011 SAMQA (Robinson et al. 2011) was released, building again on the
Hadoop MapReduce platform to rapidly assess the quality of high-throughput sequencing
data post-alignment, and in 2012 the Hadoop-bam tool (Niemenmaa et al. 2012) was
released, building the popular Java implementation of SAMtools (Picard) (Li et al. 2009)
into the MapReduce framework. Many other genomics tools have since been developed
or adapted into MapReduce for rapid processing of sequence data.

In the context of the genome mutation simulation software (FIGG) it made sense to
distribute the processing and the computational work involved in mutating the sequence
could be easily mapped into the Map — Shuffle/Sort — Reduce pipeline. In the Map step
the genome is broken into multiple chunks, which are mutated in parallel. In the
Sort/Reduce step the mutated sequences are resorted into chromosome order, including
any large-scale structural alterations such as kilobase size inversions, insertions or
translocations and finally output to a FASTA or the Hadoop distributed database, HBase.
This process scaled nearly linearly with the number of cores made available to Hadoop,

and so provided the many hundreds of mutated references required.

3.3.2 HPC FOR READ WAREHOUSING & SEARCH USING MonGgoDB

One of the issues related to variant identification in large-scale data is the searching
through billions of read pairs with their associated positional information. This search is
neither an easy or quick process. Most of the current variant identification algorithms for
both small and large variations take many hours to analyze a single whole genome
sample. Comparing across multiple samples requires that each sample be integrated
individually into an analysis. This means adding a new genome, a new variant, or finding
a variant that may have been previously identified can involve reanalyzing the entire set of
genomes each time. It also means that data about the read itself is lost as the analysis
must compress the aligned reads and report only the variation from the reference.
Considering the low frequency of reads supporting structural variations in particular, being
able to analyze across many patients simultaneously could help to identify driver events in
the structural changes to the genome. In order to do this all of the reads for every patient
needed to be available and easily searchable.

Searching across hundreds or thousands of patients, each with billions of reads per
genome, also required the use of highly distributed computational solutions. A data
warehousing strategy using a NoSQL document based distributed database (described in
the Introduction chapter, section 1.4.1), MongoDB, was prototyped to enable this. This

data warehouse scaled directly by simply adding more nodes to the system using a
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sharded cluster. Sharding breaks up the data so that each shard stores only a part of it
(e.g. shard-1 may store records from A-C, shard-2 from D-F, etc) and then queries that
match a specific shard only need to be run on that shard, rather than the entire dataset.

Figure 20 MongoDB sequence read document
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The design of this document is specifically aimed at querying reads by disease type,

disease frequency, sequence motifs, or simply chromosome location. As each field can be
indexed it is simple to search across this data without first normalizing across multiple

relational tables.

The initial document design (see Figure 20) was planned to test that the system could
scale effectively to address population scale analysis. In this way the system had to offer
scalability for multiple samples of sequence data. Additionally the system was designed to
ensure that the read data could be de-identified from the specific patient for genomic data
security concerns. Using a document-based solution had a number of distinct technical

advantages:

* |t provided the ability to index and query on any field or subfield in the document,
which is not easily done in key/value systems where the key is the index, or in

graph systems where the fields may become either relationships or nodes.

* Each document could include any number of different fields, which in this case

enabled the addition of new metadata to reads, such as clinical significance.

* |t would be relatively simple to add other types of motif information for transcription
factor binding sites, methylation sites, tissues, or cell types without requiring the
addition of new tables that complicate the queries and increase the size of the

database itself.

To be useful the test system needed to be able to actually search the sequence reads

directly. To achieve this a specialized search algorithm was developed.
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The sequence search database was sharded by the first nucleotide into A, C, T, or G
shards. Each read that was to be loaded was compared to an initial (or “root”) read and
the Levenshtein distance (LD) (Levenshtein 1966; Damerau 1964) between them was
calculated. The read was then added to the correct shard and the distance is included in

the document.

Figure 21 NoSQL vs RDBMS
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The NoSQL solution (MongoDB, blue bars) was faster when compared to a sharded and
clustered version of the relational database MySQL (red bars). This is due to the fact that
each process required multiple joins across relational tables in MySQL while MongoDB only

needs to interact with a single document at a time.

Once the load procedure had been optimized to effectively distribute the data across
the shards, a search algorithm was developed to use this information to enable effective
search. The search algorithm used four steps:
1. Select the appropriate shard based on the first nucleotide of the query read:
ACT,G

2. Calculate the LD between the “root” (e.g. the first sequences loaded) and the
query read
Select the group of reads from the database with the same LD as the query read

4. Compare the query read to the reads with the same LD distance by directly

comparing character-by-character and stopping the instant a mismatch is

detected.
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This search approach was tested against a commonly used string matching algorithm
(Aho and Corasick 1975) and was found to be consistently faster as the data sizes
increased from 600MB to 1GB BAM files.

Using the search approach a sharded MySQL relational database design using three
relational tables was also tested against the MongoDB design in a cluster on Amazon
EC2. The distributed database MongoDB was consistently faster in each test (see Figure
21): initial inserts of 700K reads were 37% faster than MySQL,; record updates were 20%
faster; and a search without altering or adding any records was 17% faster.

It would be expected that the relational database solutions, even with sharding, would
be slower as the scale of data increased, due to the fact that each process required
joining three separate tables. Therefore this supported the need to use distributed data
warehousing solutions in order to enable the types of queries and the addition of new

metadata described above.

3.4 CHAPTER SUMMARY

This chapter described the data, HPC frameworks, and analytical methods that were
used in the development of the MultiSieve method. The primary aim of which was to
enable detection of structurally variant regions in cancer genomes by using multiple
references that model probable SVs to realign the discordant or poorly reads from aligned
cancer sequences. To generate these sequences a knowledgebase of large-scale
breakpoint frequencies in cancer is used to inform a search optimization algorithm that
first selects, then outputs new “mini” references that include a selected breakpoint.

MultiSieve then aligns and scores each reference alignment using a score (Tx) that is
based on the distribution of reads that have aligned to the reference, and a windowed
positional clustering of the aligned reads.

In the Results chapter the analysis of karyotypes to determine breakpoint frequencies
for the optimization algorithm is described. A validation test is performed and the false
positive rate for selection of the best Tx scores (and therefore structurally variant regions)
is selected. This is then applied to the analysis of nine patients across seven cancer types
from TCGA patient data, and compared to a common SV detection algorithm. Finally, the
HPC methods described here were tested for scalability using the Amazon EC2 services

with whole-genome data that simulated actual mutation frequencies.
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CHAPTER 4 RESULTS

This chapter describes the results of each analysis leading up to the identification of
structural variation in patients. This analysis builds upon the previous work described in
the Methods chapter.

The Breakpoint Analysis section (4.1) details the aberrations that are defined in the
publicly available karyotype data. It further describes the analysis of chromosomal
instability that was performed at both a genome-wide and per chromosome scale, as well
as the final output data that is used in the generation of de novo references. In the Tx
Score Validation section (4.2) an analysis of simulated translocations is performed, and
estimated sensitivity is reported. These results provide the basis for the subsequent
section, Selecting Appropriate References (4.3) where the differential evolution algorithm
is used to optimize the search space. Finally, these references were used to analyze
TCGA patient data to find regions containing large-scale structural variation in Patient
Data: Germline/Tumor pairs (4.4) and compared to the most commonly used SV detection
tool.

The final section, Population Scale Analysis (4.5) outlines the analysis performed on
using suitable HPC frameworks to ensure that the system can scale to the level of
populations of genomes. This work includes details of small variant analysis for both
normal and cancer patients, and the corresponding suitability of the MapReduce method

for generating whole-genome simulated samples is shown.

4.1 BREAKPOINT ANALYSIS

An analysis of breakpoints reported in publicly available karyotype data was
undertaken to provide a knowledgebase from which to generate simulated reference
models of structural variations (as described in Methods section 3.1.2). It was presumed
that not all regions of the genome are equally likely to break as fragile regions and
microtubule defects are known to influence chromothripsis. This analysis was approached
in three parts: a general frequency analysis of karyotype aberrations; structural instability;

and the influences of specific regions on general stability.

4.1.1 ABERRATION FREQUENCY ANALYSIS

The karyotypes used in the breakpoint analysis were primarily collected from patients
and curated by the Mitelman Database of Chromosome Aberrations and Gene Fusions in
Cancer (e.g. 99% of the karyotypes). The remaining karyotypes were cell lines and some
patients found in the NCBI SKY/FISH database. Identification of breakpoints was

performed after the parsing and cleaning step described in the Methods chapter, section



3.1.1. The definition of a breakpoint in a karyotype was provided by an aberration that was
described with a chromosome and cytogenetic band (see Table 4). The remaining
aberrations described in a karyotype were amplifications and deletions of chromosomal
material, either through aneuploidy or extrachromosomal DNA from ring or double minute

chromosomes.

Table 4 Example Aberrations

ISCN

DESCRIPTION
ABERRATION

Translocation between chromosomes 9 and 22 at band 9934 and

1(9;22)(a34:911) band 22qg11. Also known as the “Philadelphia chromosome”

inv(12)(p13q15) Inversion of the segment from p13 to g15 in chromosome 12

del(14)(g21q924) Deletion of the segment from q21 to q24 in chromosome 14

Examples of aberrations as described by the ISCN standards and a description of the

defined aberration.

To recap, from the Karyotype and Mutation Analysis (section 3.1.1 in Methods) there
were 30,558 unique aberrations that defined unambiguous breakpoints. Each of these
was classified by the type of aberration it represented (see Table 5), 83% involved a
translocation making it the most commonly identified aberration in the karyotypes.

A frequency analysis of the breakpoints identified in the aberrations described above
found all cytogenetic bands involved in one or more aberrations. The frequency was
normally distributed and every band was found in multiple aberrations ranging from a
minimum of 15, to a maximum of 682. With a frequency range this large from data with a
huge quality variation in regards to both the reporting and the curation it was necessary to
find out what this meant at both a genome-wide and a chromosome specific level. At this
data scale it was possible to identify a measure of chromosome instability based on
general and structural information.

Various measures of instability have been developed based on small variations such
as SNPs which result in loss of heterozygosity (LOH), or in short repeats resulting in MSI.
Chromosomal instability can involve polyploidy through the gain or loss of whole
chromosomes due to a segregation error, or in the duplication, deletion, or translocation of
segments of a chromosome. Each of these will result in a breakpoint at the terminal
regions of the specific aberration, and if an insertion or translocation occurs, at the point
where the sequence is added. Analyzing these regions to identify patterns of whole

chromosome instability based on karyotypes provided a measure of large-scale variability.



Table 5 Aberrations Found in Public Karyotypes

TYPE COUNT BP DESCRIPTION
add 756 v Added chromosomal material to the telomere regions

del 1927 v Deleted chromosomal material

Derivative chromosome, typically a novel chromosome involving

der 12409~ multiple aberrations

dic 973 Dicentric chromosome, e.g. two centromeres

Double minute chromosome, extrachromosomal DNA in a ring

dmin 5 without a centromere

dup 628 , Duplicated section of a single chromosome added to the telomeric

region
gain 24 Aneuploidy, whole chromosomal duplication
. Added chromosomal material, typically between two bands within
ins 38 v
one of the arms
inv 837 v Section of the chromosome that has been inverted
. Isomerization of the chromosome around one centromere of
iso 116 v .
either arm
loss 24 Aneuploidy, whole chromosome loss
ring 149 Chromosome where the arms have fused to create a ring

Inter-chromosomal translocation of material from one

trans 8605 v hromosome to another

Aberrations that are not defined by the ISCDN standards, or are

unk 4113 too incorrect for the parser to determine the aberration

Describes the aberrations discovered in the available karyotypes. The column ‘BP’ indicates

whether the aberration can be analyzed for breakpoints.

4.1.2 CHROMOSOMAL INSTABILITY

Understanding large-scale instability required comparing breakpoint frequencies,
calculated at a cytogenetic band scale (e.g. many kb to Mb in length) with chromosomal
data at a similar scale. Ensembl statistics at the band and chromosome level regarding
base pair length, protein-coding genes, numbers of small variations, and RNA coding
genes (build GRCh37 analyzed August 2013) were used to calculate chromosome level
instability as a function of the information content of the chromosome or band (e.g.
number of genes).

The breakpoint frequency per chromosome is strongly correlated with the base pair
length of the chromosome (r=0.46, p=0.03). This was expected as the breakpoints are
demarcated in karyotypes by the cytogenetic bands and the longer a chromosome is the
more bands it exhibits. There is also a strong correlation with the number of genes

(r=0.59, p=0.002), which is related to the base-pair length in most chromosomes. The



exception to this is chromosome 19, which has the highest gene density in the genome
(30.5 genes per Mb). In order to correct the length bias in the frequencies, the length of
each chromosome is adjusted non-linearly and the frequencies are calculated using the
adjusted length.

Figure 22 Chromosomal Instability Scatterplot
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Shows a scatterplot of instability scores vs length adjusted protein coding genes per
chromosome. Chromosome 19 is an outlier due to its gene density, which is not fully
corrected using the non-linear adjustment. Chromosomes 9 and 22 are at the highest end of

the instability score, driven primarily by the Philadelphia breakpoints 924 and 22q11.

The adjusted frequencies were used to calculate instability relative to the information
content (e.g. protein coding genes) of the chromosome. As these frequencies were
normally distributed an “instability score” was calculated based on the probabilities of the
scores occurring within the distribution (see Equation 4).

Where [ is the instability score defined for each chromosome as the sum of
breakpoints ¥, (cbl?r) per the adjusted chromosome length L%/ ., taken as a probability of

occurrence within the distribution.

Equation 4 Chromosome Instability Score
bp
[ = Zip (chr)
Chr — 0.7
LChr

In this measure chromosome 19 was an outlier, due to the high gene density, without
it the correlation between the instability score and the information content, defined as the

length normalized protein count (L%7.), improved (from r=0.23 with chromosome 19 to
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r=0.35 without). When the same analysis was performed excluding all karyotypes from
leukemia patients (see Figure 22) the most unstable chromosomes were 9 and 22, which
are involved in the Philadelphia chromosome and found most often in leukemia. However,
the chromosomes that showed the largest change between the full dataset and the non-
leukemia dataset were 11, 17, and 21 suggesting that their instability was driven primarily

by leukemia (see Figure 23).

Figure 23 Leukemia vs Non-Leukemia Instability Difference
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This plot shows the comparative contribution to instability between leukemia (green, top
bar) and non-leukemia (blue, bottom bar) samples. In most chromosomes the contribution
of the non-leukemia samples is greater. Those chromosomes with aberrations found
frequently in leukemia (9,11,17,22) show equal or greater contribution by the leukemia
samples. However, sampling the leukemia at rates comparable to the other cancers did not
significantly alter this. This could be that the curation of the karyotype data is poor, or that

these are relatively common in other cancer types.

Clustering the instability scores (see Figure 24) showed the influence of the leukemia
breakpoints on general instability. The first cluster included 9 and 22 (Philadelphia
breakpoints) as well as 11, 17 and 21. When the instability scores were calculated and
clustered by excluding all leukemia’s only two chromosomes were assigned to different
clusters (chromosomes 17 and 21). However, the results for the chromosomes that were
represented in the Philadelphia translocation (9 and 22) were always the same.
Additionally, the Philadelphia breakpoints (22q11 and 9q34) were the most frequently
found breakpoints in both the datasets with and without leukemia. It must be noted that
while this analysis tried to correct for the specific bias due to cancer type, it could not

correct for observational bias that may be part of this data. The Philadelphia chromosome
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is perhaps the best-known and oldest example of a structural variation with observable
effects in a patient. Therefore it is probable that experimentalists and pathologists were
more likely to identify and report it in patients, thus a bias is possible, as the curated data

would include these breakpoints more often.

Figure 24 Clustered Instability Scores

Chromosome Instability

Clustered instability scores using karyotypes from all cancers shows three clusters. Group
1 (red) includes 9,22,11,1,17,14, and 21. All of these are highly represented in leukemia’s.
Group 2 (blue) includes 2,13,4,10,15,16,5, and 20. Group 3 (purple) includes 7,6,18,8,12,3,
and 19. Of the top 10 breakpoints by frequency, 6 were represented in the first group and
included the breakpoints involved in the Philadelphia chromosome. X and Y are left out of

the clustering, but have instability scores calculated.

What this analysis demonstrated is that there were cancer-specific biases in karyotype
level breakpoint identifications. In the dataset available leukemia drove most of the
differences. However, the karyotypes represented in these data were curated from
literature. The observational biases in literature and pathology, due to the ease of
collecting samples from peripheral blood, mean that leukemia’s are the most common
cancers with reported karyotypes. While this bias could not be fully corrected in this
analysis, filtering out karyotypes that were correctly recorded (as described in 4.1.1

Aberration Frequency Analysis) enabled a level of correction.



4.1.3 REGIONAL INFLUENCE ON STABILITY

Various explanations for structural instability have been proposed ranging from
microtubule defects to hypomethylation, microsatellite repeats, and CpG island
methylation (CIMP). These features are useful in the investigation of instability and
structural variation in a specific region of the chromosome. For instance, chromosomal
numerical instability (CIN) and MSI are known to result in distinct phenotypes in cancer
but are rarely found in the same patient (Dunican et al. 2002). A similar situation emerges
when investigating CIMP in cancer (Issa 2004), it appears to be inversely related to highly
structurally variant phenotypes in colorectal cancers (Cheng et al. 2008). However, these
features are found at a different scale from karyotypes (e.g. CIMP is base-pair resolution,
while a cytogenetic band is several kb to Mb in length). Other regional effects are
comparable at karyotype scale, specifically distance from centromeres and the

centromeres themselves.

Figure 25 Karyotype Count Correlations
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Correlations for each dataset. The red bars show correlation of the bands vs the length of
the bands, blue bars show the correlation with the Philadelphia breakpoints removed as
they were outliers in every test, and the green bars show the correlation of the length
adjusted counts vs the information content (genes) of each band. The groups are 1) all
bands, 2) only centromere bands, and 3) all bands except centromeres. Centromeres
clearly influence the instability with regards to the number of genes as most centromeres

are gene poor regions.



Generally centromeres are poorly characterized due to their highly repetitive sequence
(International Human Genome Sequencing Consortium 2004). Their role in mitosis is
central to the correct segregation of chromosomes and they are therefore implicated in
whole chromosome aneuploidy (Duijf and Benezra 2013). As aneuploidy is a feature of
most tumors, one possible result of this instability could involve breaking the chromosome
due to microtubule or centromere defects (Burrack and Berman 2012; Janssen and
Medema 2012). If this is the case then centromeres could drive most of the instability
found in the karyotype data. This was investigated in the datasets that included leukemia
as the primary analysis found little difference in excluding karyotypes.

The correlations described at the whole chromosome level were investigated further,
specifically whether the length and information content (genes) of the bands were similarly
correlated. Again both the length of the bands and the number of genes in each band
were correlated with the number of breakpoints reported in the karyotypes for each band
(see Figure 25, ‘all’). Adjusting the per-band counts by the non-linear length of each band
also removes the correlation with length and still correlates with information content. This
provided sufficient evidence that specific regions of the chromosome may influence
general chromosomal instability.

Across all of the chromosomes the two structures or regions that are shared at a
karyotype level are the centromeres and arms. In a karyotype the centromere is simply
defined as the region where the chromosome constricts. Therefore the bands that define
the cytogenetic region of the centromere are those nearest the constriction and these
have been designated as band ‘11’ on both the q and p arms of the chromosomes. In
some chromosomes these flanking bands are relatively long and contain known genes
(e.g. Xp11 is 23Mb long and has 187 genes) while in others these bands are nearly fully
contained within the constricted region and have few or no genes (e.g. 15p11 is 10Mb and
has no genes). These regions are implicated in numerical CIN due to microtubule
attachment abnormalities resulting in poor segregation. It is possible that more
breakpoints occur in centromeres due to kinetochore/microtubule defects. Comparing the
number of breakpoint events in each centromeric band to the length as was done for the
whole chromosome analysis above, showed a poor correlation. However one of the
Philadelphia breakpoints (22911) appears to be driving the correlation. Removing it
significantly increases the correlation (see Figure 25, ‘centromeres’).

After the centromeres were removed and the remaining bands were tested (e.g. those
exclusively in the p and g arms) for correlations, a significant correlation between the
number of breakpoints found in the karyotypes and the length of each band was still
apparent. Here again, one of the Philadelphia breakpoints (9q34) skewed the correlation

and removing it increased the correlation slightly. However, the information content in the



arms was what drives most of the instability found in the initial CIN analysis (see Figure
25, ‘arms’). This is primarily due to the fact that centromeres are gene poor regions,
despite this they showed a high rate of instability overall. In both the centromeres and the
arms removing the data that is known to be from leukemia patients did not alter the
correlations.

Based on this analysis two sets of probabilities were derived (see Table 6): the
probability for a specific band breaking with respect to the entire genome (from the initial
whole CIN analysis); and the probability of each band breaking with respect to only the

other bands within the chromosome (based on the regional CIN analysis).

Table 6 Example Breakpoint Frequencies

HR BAND P(BP) CHR P(BP)
1 p11 0.0066 0.0895
1 p12 0.0045 0.054
1 p13 0.0054 0.0708
1 p21 0.0027 0.0233
1 p22 0.005 0.0632
1 p31 0.0023 0.0174
1 p32 0.0044 0.0517
1 p33 0.0025 0.0202
1 p34 0.0034 0.0338
1 p35 0.0025 0.0203
1 p36 0.0049 0.0612
1 ql1 0.0065 0.0884
1 ql2 0.0047 0.0561
1 g21 0.0065 0.0881
1 q22 0.0042 0.0478
1 q23 0.0034 0.0339
1 q24 0.0023 0.0171
1 q25 0.0031 0.0296
1 q31 0.0023 0.018
1 q32 0.0036 0.0371
1 q41 0.0021 0.015
1 q42 0.0028 0.025
1 q43 0.0019 0.0136
1 q44 0.0028 0.0248

Example of the result of the instability analysis for a single chromosome. Probabilities that
each band would be involved in a break/recombination event were calculated both cross-
genome (P(BP)) and within the chromosome (CHR P(BP)).

The optimization algorithm described in the Methods chapter (section 3.1.2) used

these probabilities to select regions for use in de novo reference generation.



4.2 TX SCORE VALIDATION

The de novo references generated from the instability analysis described in previous
sections enabled MultiSieve to generate regions that modeled probable SVs. These were
used to re-align the unmapped and discordant reads, and Tx scores were derived from
the resulting alignments. These Tx scores were used as reliability measures of the

likelihood of the SV occurring in the region defined by the de novo reference.

Table 7 Simulated Breakpoints for Validation

PAIRS CHROMOSOMAL LOCATIONS

10-9  10p14(10570829-10571629) 9921(71837749-71838549)
111 11q923(117616704-117617504)  1p32(59598455-59599255)
11-16  11p14(25584895-25585695) 16023(82337644-82338444)
14-4  14q31(88831369-88832169) 4933(171226103-171226903)
14-X  14q13(33913464-33914264) Xp22(24725149-24725949)
15-6  15023(68259567-68260367) 6014(87286282-87287082)
17-2  17q24(70706210-70707010) 2p14(65825885-65826685)
18-10  1821(46083291-46084091) 10021(64596245-64597045)
19-2  19913(53054071-53054871) 2p25(8055945-8056745)

2-3 2333(207285260-207286060)
2-4 2p23(26014296-26015096)

(
3q22(135857871-135858671)
4p16(10575640-10576440)

2-5 2q22(147702888-147703688)

5p15(10424844-10425644)

(

(

(
3-13 3p25(16246125-16246925) 13q21(68227569-68228369)
4-X 4q22(90104120-90104920) Xq21(84389111-84389911)
5-19 5p14(23567847-23568647) 19q13(44423925-44424725)
5-X 5q35(172438308-172439108) Xp21(26879371-26880171)
8-15 8q21(82604665-82605465) 15q15(40553539-40554339)
8-6 8q13(72263564-72264364) 6q25(153682115-153682915)
8-X 8q23(110732717-110733517) Xq24(116772533-116773333)
9-4 9p24(5818205-5819005) 4q28(128137247-128138047)

Randomly selected chromosome pairs, and the breakpoint locations within each. Note that
only 800bp upstream and downstream are used for the breakpoint. This is due to the
limitations of short-read sequencing. As the insert size is 400bp or less reads spanning a
breakpoint, or being split by the breakpoint will not be found outside 1000bp. A total of
1600bp ensures that reads will be generated that span the breakpoint, are split by the

breakpoint, and may not include the breakpoint at all.



In order to validate the scoring method used to calculate the Tx score, simulated data
was generated to model inter-chromosomal translocations. First 20 pairs of chromosomes
were randomly selected. Within these pairs one location from each chromosome was also
randomly chosen as the breakpoint and a FASTA file was generated for the sequence

that would result from a merge point between the two (see Table 7).

There were two limitations placed on the selection of the random breakpoint region:

1. It could not fall within any region that is poorly characterized in the current
reference genome assembly (e.g. if less than 60% of the sequence in the

region was uncharacterized it would not be part of the breakpoint).

2. The breakpoint could not be on or within 1kb of any cytogenetic band boundary
location. This was important as the de novo references used to align reads are
currently generated by merging two cytogenetic bands, and therefore always
have a fusion point at the band boundary. The simulated data needed to avoid

a similar fusion, as this would have biased the alignment test.

The result of these limitations was that none of the breakpoints used for testing were
directly within a centromere or in the Y chromosome, and very few were in telomeric
regions.

Table 8 Read Simulation Parameters

READ INSERT SIZE INSERT
LENGTH MEAN Size SD ezl
100 365 62 3x

Simulated parameters obtained from the TCGA sample TCGA-
A3-3308-11A-01D-2048-08

Using the ART (Huang et al. 2012) lllumina read simulator reads were generated both
for the normal chromosomes (e.g. FASTA files of the chromosome pairs) and then for the
artificial breakpoints.

A sample BAM file was initially evaluated to obtain realistic parameters for the
simulated data (e.g. read length, insert size mean, insert size SD), in this case the
germline sample from a TCGA patient provided the parameters (see Table 8). A low
coverage parameter (3x) was then used to generate sparse reads similar to what would
be obtained from the discordant and unmapped reads post-alignment from a real sample.
Once the artificial reads had been generated for the breakpoint, they were merged to the
normal reads at a consistent ratio to generate a FASTQ file containing a breakpoint with
known properties (the read ratio was 1:100 breakpoint to normal read). To test the

MultiSieve scoring system, 20 FASTQ files containing different breakpoints were



generated.

4.2.1 SENSITIVITY ESTIMATION

Each of the 20 FASTAQ files were in turn aligned against a bank of de novo references
to test whether the correct breakpoint could be identified. The bank of de novo references
consisted of 150 randomly selected breakpoints, and 20 that modeled the breakpoints
introduced into each of the corresponding test FASTQ files.

In each simulated set the alignment against the de novo references was evaluated to
obtain a Tx score (see Methods section 3.2.3). Identifying the high scoring regions for
each simulation set required selecting an appropriate cutoff. This cutoff needed to be
reasonably strict due to the high likelihood of erroneous alignments from lower quality
reads. Specifically it was expected that when aligning the same read-pair to multiple
different references, multiple reported alignments would result. As each reference
alignment was independent of all others this meant that there was not one single “best

mapping” alignment selected for a read-pair.

Figure 26 K-means Cluster of Tx & False Positive Rate Selection
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K-means clustering of the Tx scores from the simulated datasets. In (a) one of the
simulation pairs, 15-6, is shown as an example. The scores are colored according to the
cluster each is a member of. The purple cluster on the far right is the cluster that includes
the correct region. In (b) the false positive rates were calculated for each of the 20 simulated
datasets at multiple centroids. Starting with a centroid of 4 the FPR falls below 10% (the
dotted red line).

In each test the distribution of Tx scores displayed a long tail for the high values. In
order to identify a cutoff that would include the correct region and include the fewest false

positives k-means clustering was applied using different numbers of clusters (see Figure



26). In this test two clusters, as expected, resulted in an expected high FPR (nearly 50%).
With 3 clusters some of the simulation results displayed a FPR around 10%, and at 4
clusters gave a consistent FPR of 5-7%.

Based on these simulations k-means clustering with a minimum of 4 clusters provided
the best sensitivity and was then used in all subsequent analyses. The risk was in
increasing the false negative rate, particularly in data that may include a high rate of
structural variation or significantly heterogeneous tumors (e.g. leukemias frequently
exhibit both high rates of chromothripsis and significant heterogeneity in cellular

populations).

4.2.2 COVERAGE PARAMETERS

While the sensitivity estimation provided a method through which to select the most
likely regions that represented breakpoints in the data, one issue it did not address was
the effect of read coverage for a breakpoint region. In most tumor samples a complex mix
of sub-clonal populations will be present with potentially unique structural variants that will
result in a low frequency of sequence reads. This required that the impact of the low
frequency of reads in a sample be assessed. To understand this effect the simulated data
was used.

It was found that when there was high coverage (e.g. when breakpoint reads made up
1% of the reads in each simulation) the correct region was scored highly and identified in
all 20 simulations. However, when the coverage around the breakpoint was lowered this
resulted in lower identification rates and higher rates of false positives.

This coverage issue was overcome by applying a suitable weight to the positional
clustering ratio parameter in the Tx score. This parameter was based upon clustering the
aligned reads that span the breakpoint. This was tested by decreasing the coverage of
breakpoint reads to 0.4% (1:250 reads) and running the same analysis in 5 simulations. In
these tests only 2 of the 5 simulations were able to identify the correct structural variation,
and while the FPR for these 2 regions was below 8% the other 3 could not identify the
correct variant at all. Weighting the positional clustering ratio parameter proportionally to
the coverage difference between the 1% and 0.4% results in correct identifications for 4 of
the 5 simulations (see Figure 27) and a FPR below 5%. The weighted parameter had an
effect on low coverage samples as it increased the rate of identification without altering
the FPR.

In tumor samples variations will be present at various rates with inconsistent coverage
due to heterogeneity of the tissue samples. With actual patient data weighting the clusters
may improve identification of higher coverage breakpoints without a similar improvement

for low coverage breakpoints simply due to the fact that coverage is inconsistent even



across small regions of the genome. Therefore weighting this parameter should be used
cautiously and conservatively where there is no prior information available on the purity of

the tumor sample or how heterogeneous the cellular populations are.

Figure 27 Weighting for Coverage
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Identification can still be made with decreased coverage if the weighting parameter is
increased accordingly. These plots show the k-means clusters from 4 simulations where the
breakpoint reads are present at a rate of 1:250 normal reads. Weighting the clustering

parameter accordingly preserves the identification and FPR.

4.3 SELECTING APPROPRIATE REFERENCES

The results of the karyotype analysis offer an idea of chromosomal instability in the
development of tumor cell populations. It is clear that some regions of the genome are
more vulnerable to breaks (fragile) than others (e.g. due to open DNA, micro homologies,
chromosome locations). This means that prior information on known fragility based on
cancer-specific instability could be used directly in an analysis. Such a direct approach
would allow testing specific regions for breakpoints. Using such an approach would result
in selecting regions such as 21q22 and 10923 in a prostate cancer sample (Berger et al.
2011), or anywhere in chromosome 17 in a breast cancer sample (Przybytkowski et al.
2014). However, such an approach has the distinct disadvantage of missing previously

unknown, or novel variants in a patient.



An alternative to an “informed” section of putative breakpoints would be to test all
possible pairwise combinations of genomic regions. Computationally this presents major
problems though even if the cytogenetic regions selected are only at the level of the
‘major’ bands (e.g. locations of Giemsa-stained bands within the genome sequence
assembly). As noted in the Methods chapter, there are 320 major bands and a pairwise
combination of these results in C3,0, (51,040) regions to be evaluated. Exhaustively
evaluating all of these is computationally prohibitive (e.g. 96 years for a single sample).

Therefore a combined approach where the search is optimized based upon prior
knowledge and HPC methods are adopted provides the most suitable approach to solving

this problem.

4.3.1 SEARCH OPTIMIZATION

Generating all possible combinations of putative chromosomal fragile sites is
infeasible due to the computational resources necessary even for a single sample. One
solution to this problem is to narrow the search space for regions that have been shown
previously to harbor structural variations. Due to the size of the search space a
knowledge-driven optimization strategy was tested in comparison to randomly selected

regions (as discussed in the Methods chapter).

Table 9 DE vs Random in Cell Line

DE RANDOM
4q13-15q21 4q13-1p12
17G23-4q13 16G24-4q13
4q13-2q31 4p14-4q13
4q13-2q14 5q34-4q13
4q13-1921 17G21-4q13
3p23-9q13 15q15-4q13
HCC1954 10p14-9q13 19912-9q13
21g21-9913 8p21-9q13
4G21-9q13 9q13-9933
4g32-9q913
9q13-12p13
Xg21-9q13
3q12-8p11

Comparing the optimization algorithm to randomly selected

regions finds more results in the top cluster.

As shown in the validation tests using simulated structural variants, the scoring metric
found regions that were likely to contain structural variation with a 10% or less FPR when
using k-means clustering to select the set of high scoring regions. To explore the validity

of using prior knowledge as opposed to randomly selected regions further tests were



performed. The purpose was to demonstrate that regions selected using prior knowledge
would provide more accurate results.

This was shown using samples available from TCGA. The first test involved using a
whole-genome sequence for the breast cancer cell line HCC1954.G31860. The Broad
Institute originally aligned it against reference GRCh37 using BWA. According to
SAMtools (Li et al. 2009) 92% of the 3.1 billion reads were correctly aligned. After
applying a QA procedure, which removed all reads that failed quality control or were
marked as duplicates from the remaining reads, there were 119 million reads left. These
unassigned reads were those where one or both reads were unmapped, or ones where
the pairs had mapped to different chromosomes (discordant). These reads were then
aligned against both the randomly generated regions, and those selected through the
optimization algorithm with BWA.

The de novo references were used to align the filtered reads from the TCGA
sequence data, and scored as described previously. Following this, each set (random and
DE optimized) was evaluated for abundance of high scoring references. In this test the
optimization algorithm (DE) identified 13 regions as being structurally variant, while the
random set identified only 9 (see Table 9). Of particular interest is that in the DE regions
the bands 4913 and 9913 are identified as part of multiple regions, suggesting that these
could be part of complex rearrangements or be particularly fragile in this sample. The
random set was also enriched for both of these regions. Furthermore, 4913 was found to
be enriched in a subsequent analysis of a breast cancer patient (discussed in section

4.4.1 Patient Variation Analysis).
Table 10 DE vs Random in LUAD

DE RANDOM

11p15-12q11 8p21-9q13

6G22-11g21 9g21-Xq12

Xg21-9q13 2p14-5p12

6q15-10p13 5p12-3q22
LUAD 21022-14q22 12p13-9q13

10p14-9q13

9p22-14g21

5G33-9p23

Search optimization selection (DE) vs random selection in patient
samples shows that the optimization results in a higher rate of variant

identification.

A second test was also undertaken using a TCGA patient with both germline and

tumor samples. These sequences were aligned against a set of de novo references



selected by the search optimization algorithm (278) and a randomly selected set (297). In
both the random and DE sets the reported regions were those found only in the top hits
from the tumor sample after filtering out hits that were also in the germline sample. In this
patient the DE optimization method also resulted in identifying more regions (8) as
compared to the random selection (6). Unlike the cell line above, there was no enrichment
for a single region (see Table 10).

These tests showed that the DE method was able to identify more SV regions than
random sampling, as it was able to provide a more diverse/representative set of
breakpoints from the knowledgebase of prior information. For this reason the DE method

was used as the standard method of select fragile sites for subsequent analyses.

4.4 PATIENT DATA: GERMLINE/TUMOR PAIRS

To demonstrate the applicability of MultiSieve, nine matched tumor/germline patient
genomes from TCGA across seven different cancer types (see Table 11) were analyzed
to identify the structurally variant regions. As there was a computational resource
limitation an analysis of a single cancer type across all patients (typically 100+ genomes)
was not feasible. The HPC section in the Methods chapter discusses strategies proposed
for allowing this type of population analysis to be performed, and the corresponding HPC
results section (below) demonstrates the feasibility of using such scale-out systems.
Instead, multiple different cancer types were used to evaluate how robust the method was
in regards to commonly identified regions. Such regions (shared across different samples)
were surmised to be due to issues with alignment artifacts or highly repetitive regions,
rather than being due to common fragile sites across all cancers. With large-scale
structural variation there is little reason to expect many commonly shared variants, as
most of these variants are acquired late in a clonal population’s evolution. Therefore, in
order to limit the introduction of additional bias a new set of de novo references was not
generated for each patient, rather each sample was run against the same set of
sequences representing the same likely fragile sites in the human genome. For this
analysis the optimization algorithm was used to create 276 unique de novo references
(the optimizer starts with a population of 200-400 and generated no fewer than 200
references). Each of the patient samples was filtered using SAMtools for all discordant,
unmapped, or partially unmapped reads. The reads were aligned against each de novo
reference as described previously, and the alignment was evaluated to obtain the Tx
score.

In each patient the top cluster as determined with k-means using 4 clusters, was
obtained. In the final step the regions in the top cluster from the germline (e.g. the

presumed “normal”’) sample were filtered out of the regions from the tumor sample. This



was performed specifically because large-scale structural variations in tumors are somatic
mutations. This was especially important as unbalanced translocations are common in
tumors, but developmentally lethal so will not be found in the germline. Each patient was
also analyzed with the commonly used reference-based (see Introduction) tool,
BreakDancer. Finally, one patient's variants were evaluated for known oncogenes or

pathways. These results were reported in Killcoyne and del Sol, 2015.

Table 11 TCGA Patient Samples

CODE DISEASE TCGA BARCODE SAMPLE TYPE
TCGA-BH-AODK-01A-21D-A060- Primarv Solid Tumor
BRCA Breast invasive 02 y
(1) carcinoma ggGA-BH-AODK-‘IOA-mD—A060— Blood Derived Normal
TCGA-A1-AOSM-01A-11D-A19H- Primarv Solid Tumor
BRCA Breast invasive 09 y
(2) carcinoma ggGA-A1-AOSM-1OA-02D—A099— Blood Derived Normal
TCGA-QG-A5Z1-01A-11D-A28G- . .
COAD Colon & rectal 10 Primary Solid Tumor
(1) adenocarcinoma 1T(C):GA-QG—A5Z1-10A-O‘ID-A28G- Blood Derived Normal
TCGA-AZ-4315-01A-01W-1461- Primarv Solid Tumor
COAD Colon & rectal 10 y
(2) adenocarcinoma 1T(C):GA-AZ-43‘I5-10A-01W-1461- Blood Derived Normal
cgy  Clioblastoma TCGA-02-2483-01A-01D-1494-08  Primary Solid Tumor
multiforme TCGA-02-2483-10A-01D-1494-08  Blood Derived Normal
«irc  Kidney renal clear- TCGA-A3-3308-01A-01D-2094-10  Primary Solid Tumor
cell carcinoma TCGA-A3-3308-11A-01D-2048-08  Solid Tissue Normal
. TCGA-AB-2905-03A-01D-0739- Blood Derived Cancer
LAML Acute myeloid 09
leukemia TCGA-AB-2905-11A-01D-0739- .
09 Blood Derived Normal
LUAD Lung TCGA-05-4384-01A-01D-1751-02  Primary Solid Tumor
adenocarcinoma TCGA-05-4384-10A-01D-1751-02  Blood Derived Normal
oy  Ovarian serous TCGA-04-1331-01A-01D-A324-10 Primary Solid Tumor

cystadenocarcinoma

TCGA-04-1331-10A-01D-A324-10

Blood Derived Normal

This lists the patients downloaded from TCGA for analysis. The shaded cells are the

germline samples belonging to each patient pair. Note that the TCGA combined samples

for colon and rectal cancers in the COAD set.



4.4.1 PATIENT VARIATION ANALYSIS RESULTS

The results can be broken down into three classes: patients with no structural
variations found; patients with low numbers of variations, defined as 5 or fewer; and

patients that are highly variant with more than 5 regions found.

NO STRUCTURAL VARIANTS IDENTIFIED

In two patients the final list of structural variants was empty. The first patient was a
case of glioblastoma multiforme (GBM). Both the germline and tumor analyses resulted in
very few regions being selected in the top clusters, and all were shared between them.
However, this is not surprising as GBM is not a tumor that is known for high rates of
genomic instability the way the leukemias are. Recent RNA-seq analysis on the GBM
cohort in TCGA found that while 53% of the samples exhibited gene fusions the major hot
spots for these were in 7p11 and 12914-15 (Shah et al. 2013). However, they could not
identify genomic breakpoints in these regions and concluded that these were primarily
copy number variants. The cohort analysis of the GBM patient included in the MultiSieve
analysis (see Table 11) found only one intra-chromosomal fusion variant within 10g26.
MultiSieve tested one pair of de novo references that included 10926, but it was scored in
the third cluster due to a very low positional cluster weight, meaning very few reads were
found which could indicate a breakpoint in this region. In addition, none of the region pairs
that included 12914-15 or 7p11 were identified in either the normal or tumor sample in the
top cluster.

The second sample with no variations identified was one of the patients (TCGA-AZ-
4315-01A-01W) with colon rectal adenocarcinoma (COAD (2)). Note that this class of
tumors included two types (or sub-types) and that these were treated as a single cancer
type by TCGA. That there were no structural variants in this patient was consistent with
both the stage (IIA — no metastasis, no lymph node involvement) and with the previous
analysis reported by TCGA (The Cancer Genome Atlas Network 2012). This sample was
not associated with any small-scale structural variation, copy number variation, significant

numbers of small variants, or even any pathway alterations.

Low STRUCTURAL VARIATION
Four patients exhibited low structural variation, with 5 regions or fewer identified as
highly scoring and not found in the high scores of the germline sample. Two of the
patients had a single region, different in each case, identified as being highly scored for

structural variance (see Table 12).



Table 12 Low SV Patients

BRCA (1) BRCA(2) KIRC COAD (1)
Xg21-9913  17q23-4q13  3q12-8p11  3q12-8p11
4q13-2q14 11p15-12q11
10p14-9q13

7p11-13g14

Xg21-9q13

Patients with low rates of structural variation as identified by de

novo references.

The second BRCA patient had two regions identified as being structurally variant, both
of which included 413 suggesting that this band may be driving the scores for both. This
region was also found to be overrepresented in the breast cancer cell line analysis
(HCC1954.G31860) and contains a number of genes implicated in breast cancer including
EREG (epidermal growth factor receptor ligand epiregulin), which is associated with
breast cancer metastasis specifically (Eltarhouny et al. 2008). This belongs to the class of
Erb/HER ligands that are expressed in many breast cancers and are related to tumor
aggressiveness. An additional 10 regions that included 4913 were generated and tested
along with the original 276 regions. All are found in the highest scoring cluster in the
tumor, but not in the normal sample (see Table 13). This pattern could indicate a copy

number mutation in the region instead of a translocation.

Table 13 Additional BRCA Regions

BRCA (2)
4q13-1p12 15q15-4q13
16G24-4q13 17G21-4q13
17q23-4q13 5q34-4q13
4p14-4q13 4913-2q14
4q13-15q21 4q13-2q31
4q13-9p24 4q13-1921

All 12 regions that include 4q13 are highly scored in the tumor but
not the normal sample for this BRCA patient. The two in red were

found in the initial analysis

The fourth patient was from the COAD cohort in TCGA (TCGA-QG-A5Z1-01A-11D),
and had 5 regions highly scored. This patient was sequenced after the original TCGA
paper on colon and rectal cancers and so cannot be referenced directly. However, in
contrast to the COAD patient with no variants, this patient is at a much later disease stage
(B - lymph node involvement and is spread more widely through the colon walls, but has
not yet metastasized). It is clear from the TCGA paper on the earlier COAD cohort that

colon cancers can be split into two genomic sub-types: hypermutated with MSI; and



microsatellite stable, but chromosomally unstable, including whole arm gains and losses.
One of the regions identified as variant by MultiSieve includes 11p15, which was found to
be one of the most common ampilifications in the chromosomally unstable subtype of

tumors in the cohort analyzed originally by TCGA.

HIGH STRUCTURAL VARIATION

The final set of patients exhibited high structural variation. These had more than 5
regions identified and included the lung adenocarcinoma (LUAD), ovarian serous
cystadenocarcinoma (OV), and acute myeloid leukemia (LAML) samples (see Table 14).

Due to the high representation of leukemia in the karyotype data, used to generate the
probabilistic pairs of regions to test, it might have been expected that either of bands
involved in the Philadelphia chromosome be highly scored in LAML. None of the 6 pairs of
regions, which included 9q34 (22911 was not in any of the 276 pairs generated with the
search optimization algorithm), scored highly enough to be found in the top cluster for
either the normal or tumor sample. However, while it is the most common translocation in

chronic myeloid leukemia (CML) it is significantly less common in AML cases.

Table 14 High SV Patients

LUAD ov LAML
11p15-12q11 3q12-8p11 4G23-16q13
6G22-11g21 10p14-9q13 3q12-8p11
Xq21-9q13 17G23-4q13 2q13-14p13
6q15-10p13 22q13-9913 3g27-6q15
21¢22-14q22 5332-9q13 17p11-13p12
10p14-9q13 4q13-2q14 5332-9q13
9p22-14g21

5333-9p23

Patients with high rates of structural variation include lung, ovarian, and

leukemia.

The LUAD patient had the largest number of highly scoring regions found after
removing those found in the germline sample, with 9. The most salient feature of these
regions in comparison to those found in the OV patient, is that there is very little overlap
between the regions in regards to shared bands. This pattern suggests a high level of
instability across the genome in this patient, rather than a single region that breaks and
recombines multiple times. Such a pattern would be consistent with the hypermutation
characteristics in tobacco related lung cancers, and this patient was reported to have

smoked tobacco for 20 years.



4.4.2 CoOMPARISON TO REFERENCE-BASED METHOD: BREAKDANCER

All of the patients were also analyzed with BreakDancer, as this tool continues to be
the most commonly used and most commonly compared to, structural variation tool
particularly with regards to large-scale variations.

BreakDancer reports translocations based on clusters of discordantly aligned reads in
a given chromosomal position. It uses only those reads that aligned and were reported in
the original BAM file and so uses significantly less information than MultiSieve. Due to this
large difference in the quantity and specific type of data being used, it was unlikely that
there would be much overlap between what was found using the MultiSieve method and
BreakDancer, and none was found. However, some very important differences between
the two methods are highlighted by this comparison (see Table 15).

The first difference is that BreakDancer identified and highly scored translocations in
the same chromosomal regions across all the patients and tumor types. Across all 32
regions that were reported, 26 were found in at least two patients. For instance,
translocations in the 1p11-17p11 region pair were identified in 6 of the 9 patients, and
translocations in 1p11-11p11 were found in 4 of the 9. In the COAD patient where the
multiple de novo references method found no difference between tumor and germline,
BreakDancer identified only a single pair (3q27-6q15) that it did not also find in the other
patients. This region pair was tested by the MultiSieve method as well, but was not highly
scored.

Related to the common identification of translocation regions, BreakDancer also
identified centromeres more frequently than the MultiSieve method. Across all of the
samples that were analyzed, centromeres were significantly overrepresented in
BreakDancer’s results with 27 of the 32 chromosomal translocations including at least one
centromere in the regions represented by the aligned reads. However, centromeres are
poorly characterized across most of the chromosomes due to their highly repetitive
sequences (Treangen and Salzberg 2012). The centromere (1p11) that was found in most
of the translocations across samples is an example of this, with 80% of the bases lacking
a known assembly. This results in sequence reads which have multiple correct alignments
throughout the genome, but that have been reported as aligning only once due to the
limitations on alignment algorithms.

Finally, as BreakDancer is limited by the read alignments reported in the original BAM
file it also reports erroneous translocations due to incorrect alignments. The clearest
example of this is that two translocations in the top scored variants for one of the BRCA
patients include Yq11. The clinical data associated with this patient lists them as female,

and while it is not impossible for the patient to carry a Y chromosome, it is unlikely as that



generally results in other diseases that would have been noted in the clinical data or
prevented the patient from being included in the study. The issue is most likely one of
alignment. Generally the Y chromosome is not removed from the reference index prior to
aligning sequence reads, providing a good example of the need for more patient-specific
alignment.

The fact that the chromosomal regions found tended to be shared across patients and
cancer types strongly suggests that only very common structural variations are found by
BreakDancer. However, this is primarily due to the fact that BreakDancer and other similar
tools rely on the original alignment. As alignment algorithms generally report only a single
alignment (due to computational limitations) tools such as BreakDancer that rely on the
primary alignment information are left with extremely limited information to make
identifications with. This issue is compounded by the complexity of tumor samples where
multiple clonal or sub-clonal cellular populations may be present with a mixture of high
and low mutation genomes.

MultiSieve, as it realigns against selected de novo references, does not have these

limitations.

Table 15 BreakDancer Results

BRCA (1) BRCA (2) COAD (1) COAD (2) GBM
1p11-19g11  1q912-Yq11 1912-Yq11 1912-21p11  1p11-17p11
1921-Yq11 1943-10p11  1p34-6p22
1p11-17p11  1g21-Yq11 1921-16p11
1921-4p11 1921-4p11 1p11-17p11
1921-16p11  1g21-21p11  3q27-6q15
1p11-11p11
KIRC LUAD ov LAML
1p11-17p11  1p11-19q11  1p22-17g12  1p11-17p11
1921-4p11 1p11-6p11 1p22-9q22 1p11-11p11
1912-21p11 1p11-11p11
1p11-11p11 1921-16p11
1p11-17p11
1p34-6p22

This table shows the results for the same patients run in BreakDancer, a commonly

used structural variation identification tool and typically the only one used for large-

scale variants. Bolded regions include the centromere 1p11, which is a poorly

assembled region. The two regions highlighted in red are incorrect calls that are due

to alignment errors as they include the Y chromosome in a female patient.



4.5 POPULATION SCALE ANALYSIS

A limitation of the MultiSieve, and all other SV methods, is the significant
computational resources required. Even with the optimization procedures implemented,
MultiSieve analyses were only able to be undertaken on small numbers of genomes. The
methods developed for scale-out, to alleviate this problem, are discussed in the Methods
chapter, and the results the analyses undertaken using these frameworks is discussed for

completeness below.

4.5.1 VARIATION FREQUENCY ANALYSIS

An analysis to determine the variation frequency required that all of the variants be
from a source that was not specifically examining genomic diseases. Therefore, the
Ensembl service was used to access variant information for all small variations that were
tagged as “validated” in either 1000Genomes or HapMap. This information was used to

determine the frequency of mutation as these are from ‘normal’ (not cancer) populations.

Figure 28 SNV Frequency per Chromosome
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end of the distributions are an artifact due to the rarity of fragments with higher numbers
of SNVs.



GVF files were parsed to select variants that included the ‘validation’ or ‘evidence’ tag
in the features. Six classes of variants were identified. All of the class definitions are
alterations as compared to the reference genome: deletions, one or more contiguous
nucleotides have been removed; insertion, one or more contiguous nucleotides as been
added; SNV, single nucleotides where different nucleotides are present; substitutions, the
base pair length of the alteration is the same as the reference but the sequence has
changed; tandem repeat, adjacent regions have been copied more than once; sequence
alterations, an uncharacterized alteration to the genomic sequence (e.g. SNV, indel,
insertion, inversion, etc).

Figure 29 GC/SNV correlations

SNV Frequency chr17

Al
B GC>=60%
W GC<=30%

4000 6000 8000
|

riequency

2000

SNV

There was no correlation between the frequencies of SNV directly with GC content.
However, when comparing to high/low GC content weak correlations appear. Red bars
show high GC (cor = -0.20). Green bars show low GC (cor = -0.18).

The locations, variant class, and reference/variation sequences were preserved on a
per-chromosome basis. Each chromosome was then broken into 1kb segments, the
variations that were defined in each segment were used to create several profiles that
included: the frequency of each variant class in the segment; the specific base pair

polymorphisms; and structural information (e.g. coding region coverage, GC content,



methylation predictions).

A total of 2.5x10’ variants were validated in 1000Genomes and HapMap and 99% of
these were SNVs (25,636,921). Sequence alterations (5,959), deletions (2,614), and
insertions (2,614) were between 0.01% and 0.02% of the variations, while substitutions
were rare with only 29 instances identified, and only a single tandem repeat was found.
Due to the comparative rarity of all other variants most of the analyses for the variant
frequency were focused on SNVs.

The distribution of the SNV frequency was highly similar across all chromosomes with
the mean around 14 for each (see Figure 28). The frequency of fragments having a high
number of SNVs (e.g. more than 40) drops quickly, though there are a few fragments with
as many as 200 SNVs.

However, this does show some difference, particularly as the size of the
chromosomes decreases so each subsequent analysis was performed per-chromosome
rather than on a genome-wide scale.

In order to determine under what conditions these variants might occur three structural
properties of the genome were investigated:

* Coding regions may be related to genome or chromosome-wide variation as
variation occurring near coding sites could be less likely to occur due to protein
function impairment or a more robust DNA repair mechanism in these regions to
preserve function (Lercher and Hurst 2002).

* Predicted methylation of CpG islands (CpGl) was considered as methylated
regions have been shown to be common mutation sites, therefore frequencies
could be increased in regions where CpGl are found.

* GC content, while related to both CpGl and coding regions is a more general
profile, and evolutionarily GC-rich regions have been shown to undergo higher
rates of gene conversion (Kudla, Helwak, and Lipinski 2004; Katzman et al. 2011).

Coding regions were tested first by mapping the 1kb fragments to known coding
regions (defined by locations in Ensembl), however no correlation between the frequency
of the SNVs and the coding/non fragments was identified. The same was true when exons
and introns were mapped to the fragments. Methylation was investigated by using
predicted methylation sites generated by HDMFinder (Das et al. 2006). This was used to
compare the fragments that fell within the highest frequency (e.g. 2-28 SNV per 1kb) with
the predicted methylation regions. A hypergeometric test for methylation applied for both
CpGl and non-CpGIl methylation found no connection between methylation sites and
variation frequency. This is possibly due to a bias in the specific methylation data provided
to the HDMFinder tool in the initial published predictions (derived from brain tissue only).

The methylated sequences were most often found near centromere boundaries and other



repetitive sequence boundaries regardless of CpGls within those regions. In fact, the GC
content of these regions was the highest predictor of both methylation and CpG content.

Independent of CpGls the GC content of the fragments was tested against the
frequency of SNVs. All of the chromosomes had a stable average GC content between
38-48% of the total nucleotides, and the 1kb fragments ranged from 8.5% to 85% GC
content. Due to this wide variation there was no direct correlation between frequency and
GC. Breaking the down the fragments by GC into higher and lower content did find a weak
correlation however. GC content of more than 60% or less than 30% showed a weak
inverse correlation with the frequency of SNVs in those fragments (see Figure 29). Based
on this each chromosome was broken into bins based on GC content and each fragment
assigned to a bin.

The same analysis was performed on cancer variations as validated in the COSMIC
database and from all publicly available TCGA mutation files (as of January 2013).
However, TCGA variants were only reported if they were not found in the matching normal
samples resulting in mutation files that included only cancer mutations. So while the
frequency of variations in COSMIC data was higher than in the 1000Genomes data, as
would be expected, the frequency in TCGA was not. Despite this, the distribution of
variant frequency was the same. The GC, exon, and CpGl analysis was performed on the
COSMIC variants to find any cancer-specific patterns. However, the GC content continued

to be the only structural correlation with variation frequency.

4.5.2 SMALL VARIANT SIMULATION USING MAPREDUCE

Using MapReduce jobs in FIGG (Killcoyne and del Sol 2014) built to simulate
genomes based on the observed variant frequencies, six whole genomes were simulated.
Three of these used the frequency distribution based on the ‘normal’ genomes from
1000Genomes and HapMap, the other three used the frequency distribution based on
variants analyzed from COSMIC and DGVa (in cancer samples), and one of those three
‘cancer’ samples also included a common structural variation. It is of note that the cancer
variation frequencies include significantly more deletions, insertions, and substitutions
than the ‘normal’ data and that these were much larger (several hundred base-pairs).

Both the ‘normal’ and ‘cancer genomes preserved the frequency distribution of their
respective background data, but differed on a per-fragment count and size of variants.
The simulation was not intended to replicate the exact frequency of variants found in
fragment 1017 of chromosome 1 for instance. Instead it determines the GC content of the
fragment, randomly selects a profile matching that GC content, and then generates the
variants at random locations within the fragment itself. Nucleotide specific probabilities for

SNVs and size-dependent probabilities for small structural alterations ensure that the



applied mutations are still within observed boundaries. Further details are in Killcoyne and
del Sol, 2014.

To test that these genomes differed as expected they were used as reference
genomes to align a 1000Genomes sample which is expected to be normal: ERX000272.
Therefore the alignment to the normal reference and the three ‘normal’ simulated
genomes should be highly similar, while the three ‘cancer’ genomes would be expected to
have poorer alignment overall. The simulated genomes aligned as expected, with the
three ‘normal’ genomes mapping between 95-98% of all reads with 1% or fewer orphaned
reads (e.g. “singletons”), and the three ‘cancer’ variant genomes aligning at 90% or less
(down to 88% for the genome containing a single SV) with 2.8% orphaned reads (see
Table 16). This is due to the higher size and frequency of variants applied to the ‘cancer’
genomes. TCGA genomes that are from known cancer samples show similar mapping
statistics with the rates of mapped reads ranging from 65-95% and orphaned reads
ranging from 1-6%.

Table 16 Alignment statistics for each genome

SAMTOOLS FLAGSTAT

Mapped Singletons % Difference from GRCh37

GRCh37 98.22% 0.85% NA

S1 97.89% 1.00% 0.33%

S2 95.46% 1.09% 2.76%

S3 97.89% 0.99% 0.33%

S4H 90.09% 2.89% 8.13%

S5H 90.35% 2.84% 7.87%

S6SV 88.16% 2.88% 10.06%

A comparison of the 1000Genomes reads for ERX000272 mapped against each genome.
GRCh37 is the current reference genome. S1, S2 and S3 are genomes generated based on
normal variation data. S4H, S5H, and S6SV were generated with cancer variation data and
S6SV includes a deletion of 19q. The table columns are statistics provided by SAMtools
flagstat: Mapped provides the total percentage of reads that mapped to the genome on the

left; Singletons provides the percentage of reads that were orphaned in the alignment.

Generating these simulations would be too slow on a single commodity computer.
Breaking the genome down into 1kb fragments still leaves 3x10° sequence fragments to
mutate for each simulated genome. This is where the initial benefits of a highly distributed
computational framework are clear. In order to generate artificial data models of genome
sequences for subsequent analyses the sequence generation had to rapidly output new
sequences, as the computational time required to align and analyze each is already
significant. Using the Apache Hadoop (The Apache Software Foundation) MapReduce

framework on the Amazon EC2 platform the data was generated rapidly and scaled nearly



linearly with the number of cores (nodes) available. Additional performance gains in the
HBase implementation of storage of the new genome fragments are still possible as well
as HBase set up and access was the single most significant time used in each genome

test.

4.6 CHAPTER SUMMARY

This chapter described the results from the analysis of breakpoint frequencies in
karyotype level data, including general chromosomal instability and an investigation of the
high-level regional influence on that instability. The results of the karyotype analysis were
then used to generate the sequence references with breakpoints for two subsequent
sections of the MultiSieve method: the optimized search algorithm that was used to select
references; and the selection and generation of references for analysis of patient
genomes from TCGA.

Before using MultiSieve to analyze patient data from TCGA, validation was performed
using synthetically generated reads from normal chromosomes with reads around a fusion
point added at a known coverage. After aligning these to a set of references that included
the correct SV reference, an estimate of the false positive rate was made for cutoff
selection of the Tx scores.

This cutoff was used to test both the optimization search algorithm versus random
selection of references, and the patient analysis of TCGA genomes. In the patient data
analysis the results were compared to the most commonly used large-scale SV detection
tool to show that MultiSieve is able to identify regions of structural variation that would
otherwise be missed due to the reliance on alignment to a single reference. Finally, the
test of HPC approaches to enable this method to scale-out to the level of populations of
genomes was discussed.

In the Discussion chapter these results are considered in context to the issues of
tumor heterogeneity and chromothriptic events that continue to complicate the
identification of mutations in sequence data. It also outlines several of the directions in
which this work could continue to provide both a method that scales appropriately, and
integrates the many other types of data that may provide information about clinically

relevant structural variations.



CHAPTER 5 DISCUSSION & PERSPECTIVES

Perhaps the most important understanding gained from the massive efforts to
sequence cancer over the past several years have been just how complex the disease is
at the genomic level. While in a broad view the “hallmarks of cancer” are common
between the different cancers, it appears that the different types share general
characteristics and differences much the same any two way related species do. In other
words general characteristics may be highly similar, but the existing differences are highly
significant. The many large-scale sequencing efforts (e.g. TCGA, ICGC) and the smaller
targeted sequencing projects have made those differences even more obvious. For
instance, tumors from the same tissues in different patients do not necessarily start from
the same mutational drivers or even share similar prognoses: a mutated BRCA1 is not so
clearly predictive of tumor progression in ovarian cancer as was assumed; common
mutations to the RAS pathway in colon cancer are predictive only if the mutation occurred
in the correct sequence in an individual tumor; and some glioblastoma tumors carry
specific mutations that are more commonly found in ovarian than other glioblastoma
malignancies (e.g. BRCA1). In short, cancer is heterogeneous at every level from the
primary tissue types, between patients, and within an individual tumor.

Recognition of the diversity of cancer led to significant changes to cancer therapies.
Where just a couple decades ago the only therapies available were extremely toxic and
non-specific, today targeted therapies that interfere with molecules specific to cancer are
more common. Such therapies include drugs targeting protein products that result from
specific gene mutations (e.g. Gleevec), immunotherapies that appear to restore immune
targeting of cancer cells (e.g. anti-PD 1 antibodies), and for cell surface receptors that are
expressed in specific cancers (e.g. HER-2). Despite the focus on finding single genes and
single mutations that could be directly targeted to alter any tumor cell state, all of these
therapies are targeted to patients whose disease presents in a specific way. Their tumors
happen to carry a mutation, or alterations to one of the ‘hallmark’ pathways, that make
their disease sensitive to a specific inhibitor, monoclonal antibody, or primed T-cells.

The success of one of these targeted therapies, Gleevec, prompted a search for
similar protein targets in other cancers. This specific target is the result of a structural
aberration where regions of two different chromosomes fuse together, creating a fusion
gene and protein (BCR-AbI). This translocation was identified several decades ago in
karyotypes rather than in sequencing data and many other such chromosomal aberrations
have since been identified in karyotypes. With the introduction of HTS the search for other

large-scale aberrations and gene fusions moved from image-based methods to



sequences.

Massively parallel short-read HTS revolutionized the search for genomic causes of
various diseases. With it, both population and individual variation has been more clearly
observed and many new links between the genome and diseases have been elucidated.
Understanding the genomic causes of cancer has been one area that has been directly
and radically changed by the availability of whole genome scale data. In the last few years
thousands of mutations and hundreds more genes have been identified as potential
drivers of cancer progression. HTS continued the search for single genes or single
mutations that could explain cancer, or offer new therapeutic targets. It also offered the
potential to better understand what role the massive structural changes found in
karyotypes could play in the development and progression of the disease.

This search has been limited by the structure of the data as well as the heterogeneous
nature of tumor tissue samples. Current HTS technologies rely on sequencing the ends of
a DNA fragment that is, at most, 1000 bp in length (often much shorter, only 400-600bp),
and typically only 100-200 bp of each end of that fragment are sequenced. In large
genomes (e.g. mouse, human) a single sequencing run will produce millions or billions of
reads for a single genome. These reads are then aligned to a reference genome in order
to locate the original fragment in the genome, however, finding a unique alignment against
a reference that is billions of base-pairs in length is a computationally intensive and
complex task.

Evidence for a breakpoint in the genome that results in a SV relies on the few reads
that span either side of the breakpoint. This is complicated as the regions surrounding
breakpoints are highly likely to contain microhomologies that result from DSBs, or
tandems repeats (e.g. mini/microsatellites), and are often indicators of fragile regions.
These repetitive regions are difficult to sequence and are more prone to errors, especially
if they are GC-rich. The reads generated in these regions are more likely to be highly
similar to multiple locations in the genome as well. In tumors the thousands of small
variants and the high potential that large-scale rearrangements and chromosomal
duplications have occurred magnify the problem. The result is that tumor sequences often
have poor alignments, with some highly mutated genomes aligning only 60% of the
generated reads (alignments from a ‘normal’ genome are around 98%). Current methods
for identifying SVs in sequence data rely on reads that have aligned, even if they aligned
poorly. Due to the high concentration of repeats around a breakpoint the reported
alignment is not the only, or even the most likely, correct aligned position.

The poor alignments resulting from these regions have generally been the only
evidence available to breakpoint detection methods. It has only been in the last three

years that researchers have begun to look beyond the standard reference template for



answers. This has led to reexamining the use of computationally intensive methods for de
novo alignment that are appropriate for targeted identification, and the development of
methods that focus on comparing reads between two samples directly. These new
methods use the standard reference at various points in the analysis, but typically not in
the initial analysis. In other words, the use of the reference genome template itself is the
constraint in analyzing SVs.

Heterogeneity in the tumor samples from multiple sub-clonal tumor populations,
adjacent tissue, and normal cells further complicate this process. SVs (and other
mutations) that could be drivers for clonal expansion following drug treatment or
metastasis are likely to be found in small cellular populations within the tumor. When
mixed in a single genomic sample the reads from a sub-clonal SV are likely to be low
coverage due both to the small population and to the high potential that surrounding
sequences are repetitive. Single-cell analysis has been proposed to overcome this issue,
but questions regarding how many cells would be needed and how many regions of the
tumor should be sampled have not been answered. This would also effectively increase
the data scale for each patient geometrically as a single sample from the tumor would no
longer be enough.

With current technology, both computational and short-read sequencing, identifying
SVs using available data (tens of thousands of sequenced patients) is necessary. Altering
the reference genome directly and including the previously unmapped reads enables

identification of multiple regions for SV detection.

5.1 IN SiLico REFERENCES

This project reformulated the problem of SV detection in short-read sequencing by not
assuming that the reference was correct, but instead by using many references that model
SV regions directly. Modeling potential SVs directly in the reference enabled the use of
existing tools in an innovative method to select the models that best represent real SVs.
While this still used a reference, that reference template is no longer treated as the final

answer prior to investigating the question of whether or which SVs may be in the tumor.

5.1.1 ADVANTAGES OF THIS APPROACH

This approach offers a number of important advantages in the identification of large-
scale structural variants. First, by using available biological knowledge about
chromosomal aberrations an appropriate search space can be defined. Karyotype
information has long been used to provide clinicians and researchers with important
prognostic information about a tumor. Using the same information clinicians use defines a

new search space for SV detection while still allowing that space to include aberrations



that may not be frequently identified in the public data sets. Furthermore, the search
space can be targeted if karyotype information is already available about a specific
patient. References can be generated to conform to what is known about the karyotype
and read alignment can be investigated through a tree of related references. For instance,
if a FISH/SKY karyotype has been visualized and a derivative chromosome that includes
sections of chromosomes 4,17, and X is found, a set of references focused on regions in
those three chromosomes can be directly investigated and the most likely alignments
selected.

Secondly, by altering the references provided to the alignment algorithms the inherent
computational limitations of the alignment can be avoided. A read can be reported for
multiple possible locations, which is especially important in regions that are likely to be
repetitive and have a low frequency of supporting reads as is typical of breakpoints.
Utilization of HPC technologies that have become both easier to use, and widespread in
sequence analysis allow the selection and detection to efficiently scale to the available
resources. Scaling the search effectively provides information on genomic locations that
the standard methods cannot.

Finally, while the initial knowledgebase from karyotypes is not cancer-specific due to
the availability of data, as more information regarding breakpoints becomes available this
resource can be improved. Specifically with more information on breakpoints found either
within a single cancer-type, such as gene fusions that are commonly found in colon
cancer or glioblastoma, the knowledgebase can be targeted. Both cancer-specific and
pan-cancer knowledgebases could be used to generate SV reference models that are
closer to the patient sequence while still providing the space to search for less common
SVs. This would also further speed up the analysis process, as the targeted
knowledgebase could cache some of the references directly rather than generating them

each time, cutting down on one part of the computational time required.

5.1.2 LIMITATIONS

Increasing the number of references, even using a knowledgebase to generate more
targeted references, also increases the search space and the incidence of non-unique
alignments. Increasing the search space was a necessary condition to enable
identification in mixed samples, and one of the primary aims of this method. However, it
also directly increases the number of regions reported for a single read since multiple
alignments can be reported for each read. Each read has a greater potential to align to
multiple locations simply due to the independent alignment of each reference, the
alignment algorithms are no longer being tasked with selecting the ‘best’ mapping. While

the result of this is that each read could have multiple alignments, it is not necessarily



incorrect. The low frequency of reads around a breakpoint and the high likelihood that the
surrounding sequence may be repetitive means that these reads will have multiple
mappings with no clear answer as to which is correct. The standard approaches will select
one location alignment at random when multiple alignments are found, while this
approach simply reports all alignments allowing the single read to provide only one piece
of evidence for a breakpoint.

Computationally this approach is resource intensive, requiring at least a general
cluster environment and preferably a framework that allows for the use of MapReduce.
Even using HPC frameworks and cluster environments there are more possible regions
than can be reasonably tested in each genome. This is partially overcome through the use
of the prior knowledge of large-scale aberrations and a search optimization algorithm, as
well as limiting the reads used to only those that are discordant and partially/fully
unmapped. However, these optimizations limit the search space that can be tested in

each genome and as it cannot search all possible regions some SVs will be missed.

5.2 FUTURE WORK/OUTLOOK

While we have a few examples of large-scale structural variation resulting in a fusion
event between two genes that form a mutant protein with direct consequences for a
patient, such examples are relatively rare. As the extent of chromothripsis in tumor
genomes has made clear that significant alterations to genomic structure is survivable at
the cellular level, it has also become clear that their effect is not always directly
observable. In some cancers SVs are linked with poorer outcomes (e.g. IGH
translocations in multiple myeloma) without an obvious biomarker, while some result in a
therapeutic target (e.g. BRC-Abl in CML, PML-RARA in acute promyelocytic leukemia,
EWSR1-FLI1 in Ewing sarcoma). These targets have enabled the development of some
of the most effective therapeutics, sometimes dramatically reducing mortality. In recent
years structural rearrangements that lead to gene fusions have been found across
multiple types of cancers and tissues, but few of these have also been clearly associated
with a clinical outcome or biomarker.

In fact one of difficulties in structural variation analysis in cancer has been that not all
SVs result in a directly gene related product or gene fusion event. The breakage and
recombination of an intra- or inter-chromosomal translocated segment could occur in
intergenic regions, affecting gene regulation or transcriptional enhancement rather than
directly inactivating the gene or increasing overall expression. The heterogeneous cell
populations within a tumor may also be regulating each other, making a SV or a fusion
that occurs in a sub-clonal population undetectable in current expression studies.

Identifying these fusions could provide clues as to the future progression of the tumor, or



eventual metastatic populations. In order to do this, future investigations will need to
integrate multiple levels of data.

Additionally, as the coverage in short-read data increases the need for scalable
analyses becomes more important. Large compute clusters have become standard
equipment for a sequencing project and any new methods must be capable of using them

effectively.

5.2.1 ScALING UP

This method was designed to take advantage of HPC technologies in the generation
and alignment of hundreds of small references. This initial design was intended only for
single genomes by generating hundreds or thousands of small references that model SV
regions and analyzing them simultaneously. However, with thousands of cancer genomes
already available and smaller projects generating tens or hundreds more for a single
analysis it is also becoming necessary to analyze genomes at the population level. In

order to do this efficiently greater use of HPC technologies will be important.

REFERENCE CACHING

In the analysis prepared for this thesis each individual genome was compared against
the same set of nearly 300 small references. This was specifically done to compare the
individual differences in identified SVs, however if the analysis had been for a population
of genomes that were all from the same cancer type (e.g. ovarian patients) or single cell
analysis from the same tumor (e.g. 10 different cell samples) it would be sensible to also
use the same set of references for alignment.

A file cache with a rapidly searchable index of all possible major SV references and
their attendant alignment index would enable all of the generation time to be upfront. In
this case the cache would be generated at one time, when a new genome build is
released, or simply added to with each new set of DE generated references. This would
require that a minimum of 2.5 TB be set aside for this cache, even if the cache were
generated dynamically with each new DE selection. Additionally, as the combinatorial
number of major bands is significant, (e.g. C3,0, or 51,040) the file index and organization
of the reference files themselves would need to be generated such that the references are
rapidly accessible.

Less common SV references would still be generated as needed, but if even half of
the references used were from the cache the generation time would be cut down
proportionally. Thus requiring fewer resources on the least important step in the analysis

pipeline.



READ CACHING

Each individually sequenced genome outputs billions of reads. In a non-tumor
sequence 97% or more of these reads will align to the normal reference. At that point
most analyses focus on the variations from the reference, which provides a far more
compressed view of variations by simply counting the reads where a given variation is
found. However, this is still an individual view of a genome. In order to compare at the
population level analysis tools typically use information from one of the variation
databases (e.g. dbSNP). The original aligned reads in the form of the BAM files are not
discarded, however, they are not easily searchable either as they remain in individual
sample files.

By taking advantage of distributed computing technologies this process could be
reversed. Since a huge percentage of reads already align to the reference genome that
means each BAM file has significant duplication both within the BAM and between
individuals. Additionally, in order to compare two individuals it is necessary to directly
analyze the variations separately before comparing them together. One method around
this is to cache all of the reads in a data warehouse that is both scalable and searchable.

There are a variety of HPC database solutions available now that are specifically
designed to scale up for “big data” (e.g. genomes, climate data, online digital photos, GPS
information). Most of them use a flexible schema that enables the developer to
dynamically modify the structure of stored data as it changes. Critically, all of them are
distributed thus enabling the use of anything from a small cluster up to multiple data
centers and cloud-based resources.

Using one of these distributed databases and cloud-based resources on the Amazon
Elastic Compute Cloud a prototype read-caching system was tested. In this system
sequence kmers (reads) are added to the cache. Each read is evaluated for the
Levenshtein distance (LD) between it and all other reads with the same prefix kmer (1-4
bp), then added to the set of reads with the prefix. Metadata such as the aligned location,
disease, and number of identical reads can be included. When provided with a new read
or kmer sequence the caching system searches by prefix, and then the LD groups. This
search method was found to be efficient regardless of data size: a search for a sequence
kmer that existed in the cache took only 1.1 seconds, while searching for a unique read
took 8.6 seconds to find the set of kmers that were most closely related by LD.
Additionally, it was able to rapidly separate out unique reads from the common reads in
two different individuals.

The primary drawback, and the reason this remains a prototype, is that populating the



cache initially involves a significant investment of time. This is consistent across all of the
distributed databases (e.g. HBase, MongoDB, etc.), the initial set up requires significant
investment. This means the cache should be live consistently requiring a cluster that can

dedicate resources to keeping it available.

5.2.2 DATA INTEGRATION

The focus on genomic information has greatly expanded our understanding of the
complexity in tumor development and evolution. While a very small number of patients
develop cancer due to heritable mutations most cases appear spontaneously with their
own set of mutations. Mutational patterns have emerged that can connect carcinogens
from tobacco and UV exposure to viral infections to tumors in specific tissues. Some
structural mutations provide prognostic or therapeutic information about a patient’s tumor
as well. Genomic information in isolation cannot explain how all of those mutations may
be accumulated, the huge diversity in tumor types, or predict a therapeutic response. This
may be even more true in structural variation where most of the identified variants are of
unknown origin, function, or importance. Answering these questions in genomic structural
variation requires the integration of other types of data and various scales from
epigenetics to help explain the origin of a mutation, to proteins that may explain the
functional impact, and integrating with critical cancer pathways to understand the

importance and possibly develop new therapies in response.

EPIGENETICS

An obvious integration point for chromosomal aberration data is epigenetic changes
that could have specific effects on the genome. In addition to numerical and structural
genomic instability cancer genomes are known to be epigenetically unstable.
Hypermethylation is known to play a role in transcriptional silencing of tumor suppressor
genes. Specific mutator phenotypes are also associated with epigenetic marks. For
instance, the CpG island methylation phenotype (CIMP) is hypothesized to be involved
with microsatellite instability in colorectal cancer, and has also been observed in
glioblastomas, liver cancer, gastric cancer, ovarian cancer, and some leukemias (Issa
2004). However, the data on this is not entirely clear even within colorectal cancers. CIMP
provides one phenotype that may be compared to other mutator phenotypes (e.g. CIN),
but it needs to be connected to specific alterations beyond microsatellites. Methylation
profiles of structurally aberrant genomes might help to support the connection. One area
to target that is important in understanding the structural instability of tumor genomes is
the regulation of DNA repair.

Methylation of specific histones is critical in the stabilization and activation



transcriptional elements involved in DSB repairs. These histones are regulated through
methylation at the breakpoint, as well as phosphorylation of the appropriate transferase
protein, though whether methylation is a dynamic process at the time of the break or a
passive process due to a constant density is unclear. However, this methylation has to
occur at the correct time to enable activation of the repair proteins. Ensuring the correct
sequence of signaling and repair mechanisms occurs in response to DSBs is necessary to
prevent further damage. Defects in the signaling events within the DNA damage
checkpoints that negatively regulate damage response can result in incorrect repairs and
structural instability.

Whether incorrect histone methylation is a cause or consequence of poor repair could
provide further context on structural instability in cancer. It is also possible that this could
provide the mechanism for the complex and sometimes sequential chromothriptic events
seen in cancer genomes, as altered histones could be increasing the fragility of the

individual cellular genome.

PATHWAY & NETWORK ANALYSIS

Recent transcriptional analysis of cancer cell lines suggests that identifying aberrant
pathways is more effective when all of the mutation classes are integrated across all of
the genes involved in the pathway (Klijn et al. 2014). While this analysis was a preliminary
one, it suggested that looking at the mutational load in altered pathways and not the
singular mutations could be of greater benefit. The same paper noted that certain genes,
when involved in fusions, were more sensitive to targeted therapies regardless of their
fusion partner. This suggests that a pathway analysis which weights the incidence of SVs
that result in protein functional fusions could be useful in the search for targeted therapies.

As an example, in the TCGA data analyzed for this project a closer look at one of the
breast cancer patients (see Table 11 in the Results chapter, patient BRCA (2)) shows that
band 4913 was highly represented in the tumor sample, but not in the germline. This was
important for several reasons: 4q13 is known to integrate viral DNA from human
papillomavirus (Kraus et al. 2008), which suggests that there are fragile sites for viral
sequence insertion where structural variation could occur through other mechanisms as
well. Furthermore, genes important to breast cancer development or aggressiveness are
found in this region including EREG (and EPGN), which as a member of the epidermal
growth factor gene family and structurally related to the ERBB tyrosine-kinase receptors,
is involved in ER/HER2 status and tumor aggressiveness. In this thesis 17923 was highly
selected as one of the pairs for 4g13. While it has not been previously reported as having
any fusions, it does harbor known breast cancer genes including BCAS3 (plays a role in

angiogenesis) and BRCA1. It has also shown significant copy number gains in aggressive



breast cancers (Weber-Mangal et al. 2003).

If the region surrounding EREG were involved in the breakage/recombination it should
be noted that the first order protein interactions that are involved are nearly all part of the
protein tyrosine kinase signaling pathways based on gene ontology enrichment. Tyrosine
kinases are critical for signaling pathways as well as frequently used therapeutic targets in
various cancers. Additionally, several genes both up and downstream of EREG (BTC,
AREG, EPGN) are involved in critical cancer pathways including EGFR and PI-3K. Both
pathways are currently targeted using specific drug therapies. BCAS3 could be a more
interesting problem. Multiple transcriptional variants are known for this gene across a 1Mb
region of chromosome 17. The first order interactions with BCAS3 are mostly
transcriptional regulation and known oncogenes (MTA1/2, TP53, BRCA1). Other genes in
the surrounding region are also enriched for transcriptional regulation and DNA binding.
Again, while the break may not directly involve these genes, it is likely that the pathways
would be impacted. Interrogating the function of these pathways may provide evidence for
the influence of a structural variation, or suggest a prognostic approach where sub-clonal
tumor populations may make direct interrogation difficult. Ultimately, integrating genomic
fusion information with pathways may enable the identification of sensitive drug targets, as
well as network interactions that may provide for specific drug resistances within that

pathway.

PROTEOMICS

The result of a structural variation in the genome is not necessarily a direct protein
product as in the BCR-Abl example. While identifying aberrant proteins will continue to be
useful for both their predictive and therapeutic values, there are other levels of proteomic
data that could help to elucidate the consequence of breakpoints in the tumor genome.
Regulation-specific phosphorylation sites have already been linked to altered interactions
in critical signaling pathways. Metabolic interactions mediated by novel enzymes in a
tumor have also been suggested as areas for biomarker discovery.

These novel enzymes could be identified, structurally, or functionally predicted based
on known genomic alterations. Alternately, using qualitative mass spectrometry
techniques novel proteins could be used to help identify the genomic alterations that
produced them. Co-expression or altered gene regulation due to an aberration could also
provide further information on biomarkers, again not directly related to the aberration but
as an indirect consequence, which could provide new diagnostic methods in deep-tissue
tumors (e.g. ovarian, prostate) that are generally difficult diagnose. This may be
particularly relevant if expression alterations could alter post-translational modifications

(e.g. phosphorylation) that are necessary to normal protein function.



It is necessary to keep in mind that proteomic effects are likely to be subtle and thus
not directly predictive from a structural variation. While altered proteins could be translated
from a variation region directly, it is far more likely that transcriptional alterations due to
breakpoints in promoter or enhancer regions, or due to changes to the 3D structure of
chromosomes may result in RNA products that interact with ‘normal’ proteins, or change
the expression of a previously unrelated protein. Thus, while integrating proteomic
information is going to be increasingly useful in identifying biomarkers, especially in critical
pathways for tumorgenesis, it will be necessary to be aware of how complex the

relationship is likely to be.

5.3 CONCLUSION

The holy grail of cancer research has long been a therapy that will eradicate all of the
cancer cells in a patient. This has continued to prove elusive due to the complexity of the
disease, heterogeneity within individual tumors, and the evolutionary processes that
support progression and drug resistance. Large-scale structural variation is only one piece
of this puzzle, but it has already provided crucial drug targets and biomarkers in patients.
As with small-variants such as SNVs and indels, it is likely that many SV mutations will be
neutral, or even deleterious. Knowing the full spectrum of survivable rearrangements that
also promote tumor progression will enable the development of new interventions that are
targeted to a specific patient’s tumor, less toxic to the patient as a normal cell will not carry
such rearrangements, unlikely to result in drug resistance as chromothripsis is such a
chaotic event, and ultimately more effective.

Both experimental and technological issues have complicated elucidation of the extent
and effect of chromosomal aberrations in the available sequencing data. Addressing
some of these issues was the goal of this thesis. In conclusion the significant points of this

thesis are that:

e Structural variations are poorly understood, as there is still a poor appreciation for
the extent of structural variation in either the healthy or cancer genome. The
MultiSieve method along with several new studies provides evidence that the
extent and complexity of genomic rearrangement in the cancer genome is greater
than current sequencing methods are capable of identifying. This also means that
it is unclear just how many of these rearrangements may affect the progression of
disease or may be of therapeutic value. While this thesis offers one method for
unraveling this complexity it is likely that until long-read sequencing is appropriate
for whole-genome usage structural variation will continue to complicate cancer

analysis.



Variation identification is moving away from the reference. In the search for both
small (SNV) and large (SV) scale variations in cancer using one standard
reference genome does not provide the necessary scope. Methods that avoid the
reference entirely by directly comparing reads, or (like MultiSieve) that replace the
single reference with hundreds of smaller references are necessary. This is
because patient tumor samples are complex due to the heterogeneous mixture of
cellular populations as well as the rearrangements from chromothriptic events. The
MultiSieve method used all of the data available in a sequencing run as well,
including reads that are unavailable to standard reference-based methods. This
resulted in findings of greater complexity in tumor samples than were previously

possible.

Scalable analyses are necessary to ask questions across populations. This
requires that current high-performance computing infrastructures are available and
that appropriate software frameworks are adopted. There are now thousands of
cancer genomes available to analyze, integrate, and otherwise include in new
methods to identify biomarkers, driver mutations, or make predictions about
subtypes. Using HPC frameworks and search algorithms developed specifically for
sequence reads it becomes possible to both move away from the reference
genome, and make cross population inferences and predictions regarding specific

variations.

Karyotype to disease subtype mapping aids in the process of variant identification
in sequence read data. Some tumor subtypes and prognoses are already
determined from the karyotype presentation. Using these karyotypes also provides
direction and specificity to searching a space that encompasses 3 billion base
pairs and tens of billions of sequence reads. It enables identification of individual
regions of the genome to focus SV detection within, and evidence that at least one

cellular population contains an aberration.

Using a knowledgebase of biological information directs the analysis of cancer
genomes. This is important due to the heterogeneity of the tumor (e.g. multiple
cellular populations at varying sizes within the tumor) and the complexity of
genomic aberrations that can occur as a result of a chromothriptic event. As the
extent of small and large-scale structural variation in tumor genomes is still unclear
the knowledgebase is incomplete, however using available knowledge (e.g.
karyotype aberrations currently) both pan-cancer and tumor-specific aberration
information can inform the search for novel and known aberrations in a patient’s

tumor. Improving this knowledgebase with identifications of structural variants will



continue to enable a more directed search and will continue to provide information

to direct targeted long-read sequencing to verify or identify SVs.

* Coverage differences within a mixed population sample must be taken into
account. MultiSieve highlighted the complexity of genomic variations, but it also
showed that coverage differences across the different populations within a sample
are important to the identification of SVs in smaller sub-clonal populations. Using
the positional clustering parameter in the score methodology it is possible to select
for regions that are represented by small sub-populations and are therefore

uncommon in the sequence reads.

* Tumor heterogeneity and sub-clonal mutations are detectable when using multiple
references. By adding reads from a breakpoint at known coverage to patient
samples it was shown that sub-clonal cellular populations can be identified using
this method. Combining this information with small-scale variant mutational pattern
identification for sub-clonal populations it may be possible to predict disease
progression, for instance if a SV is an early mutation it may be indicative of later
disease behavior. The MultiSieve method provides a necessary first step to

connecting these two different analyses in cancer variation.

This thesis provided an innovative method to approach these issues through the use
of available knowledge, high performance computing, and changing the assumptions
behind the model of a cancer genome. It will continue to be a viable approach when long-
reads become a standard technique for sequencing, as longer reads still require
localization in the known genomic space. Finally, this approach will improve in
computational efficiency and accuracy as new variants are identified and included in the
background knowledge further enabling targeted and rapid identification for already

known structural variants and supporting the search for new ones.
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ABSTRACT

Identifying large-scale structural variation in cancer
genomes continues to be a challenge to researchers.
Current methods rely on genome alignments based
on a reference that can be a poor fit to highly vari-
ant and complex tumor genomes. To address this
challenge we developed a method that uses avail-
able breakpoint information to generate models of
structural variations. We use these models as refer-
ences to align previously unmapped and discordant
reads from a genome. By using these models to align
unmapped reads, we show that our method can help
to identify large-scale variations that have been pre-
viously missed.

INTRODUCTION

Cancer genomes are diverse, and often differ consider-
ably from their germlines. This means that the standard
reference-based mechanisms used in genome alignment are
not always suitable. These mechanisms rely on the as-
sumption that the reference is highly similar to the sam-
ple genome. As the reference being used is not an accurate
representation of the cancer genome(s), alternative strate-
gies that can use references that represent large-scale struc-
tural variation are needed. This paper introduces one such
method that uses prior information about known character-
istics of cancer genomes to inform a search strategy, which
allows for a more efficient mapping of reads against alter-
native references.

One of the problems with cancer genomes is that they ex-
hibit a high degree of structural variation from the germline.
Genomic structural variation is defined as alterations to the
genome sequence such as duplication, copy number varia-
tion, inversion or translocation (1). While the size of small
structural variants can range from anything over a single
base pair to 1kb, large-scale variations can involve up to
several million base pairs and result in chromosomal aber-
rations that can be seen at the microscopic level.

Prior to the advent of high-throughput sequencing (HTS)
technologies, microscopic methods enabled the identifica-

tion of cancer structural variation at the level of chromo-
somal aberrations. Large insertions, deletions or translo-
cations could be identified in a karyotype using Giemsa
staining, fluorescence-in situ hybridization (FISH), or spec-
tral karyotyping (SKY), and associated with disease pheno-
types. These large-scale chromosomal aberrations are rare
in the population generally (due to developmental lethality
in most cases) and are often associated with severe disease
phenotypes. However, the number and complexity of these
large variants can be high in tumor genomes (2-4).

In a number of cancers these microscopic levels of struc-
tural variation are clinically significant markers of tumor
type and malignancy. Known variants can be used to strat-
ify a patient’s disease as in multiple myeloma with recurrent
translocations between chromosomes 4, 11 and 14 (5), while
others such as the Philadelphia chromosome in leukemia
(chronic myelogenous and acute lymphoblastic) results in a
clinically significant gene fusion BCR/ABLI (6), which is
used in targeted drug therapy (7). Additionally, it has been
shown that mutational complexity, including chromosomal
aberrations, increases over time contributing to an aberrant
activation/repression of multiple genes and therefore po-
tentially contributing to drug resistance or metastasis (8-
10). This means that while many translocations (both intra-
and inter-chromosomal) have been identified, an individual
patient’s tumor genome could display a complex mixture of
structural variations which may not already be character-
ized.

As sequencing has become a common method of identi-
fying individual variants in both clinical and research labs,
identifying large-scale variants from HTS data alone is in-
creasingly important. There are still a number of issues in
identification of large-scale variants in short-read sequence
data. The first issue is due to the small size of reads relative
to the variation. The current generation of HTS technolo-
gies were developed to enable the rapid sequencing of en-
tire genomes through the parallel sequencing of overlapping
short-reads (11). In pair-ended HTS short segments are se-
quenced (e.g. 35-250 bp for Illumina) from two ends of a
fragment of known length (e.g. 200-800 bp for Illumina).
When aligning these reads to a reference the insert size be-
tween each read pair allows the alignment algorithm to in-
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Figure 1. Intra- or Inter-chromosomal translocations result in read pairs
that will not align with the expected insert size between the pair. Some
of these may be aligned, but will lack information regarding the mapping
quality, as that is dependent on the gap and location information. Many
reads resulting from this sort of variant may also be unaligned. These issues
are a direct result of the use of a reference sequence that does not reflect
the structure of the sample sequence.

dicate that a read-pair is correctly aligned to a specific loca-
tion (12). However, these locations are dependent on find-
ing a good alignment to the provided reference, and in the
case of a cancer genome with large-scale structural varia-
tion such a reference will be a poor fit (see Figure 1).

In large-scale variations a breakpoint and recombina-
tion occurs at a potentially fragile location on the chro-
mosome, altering the sequence. A read-pair generated from
this genome can span the breakpoint (if it happened to fall
within the gap of the read-pair), or result in a ‘split’ read
where the beginning and end of the read align to different
locations. However, due to computational limitations inher-
ent in sequence alignment many reads that could identify
these breaks may not be mapped to the reference (13,14).

Complicating the already difficult task of identifying
large-scale structural variants in tumor samples is the high
degree of genomic heterogeneity present. Samples taken
from a solid tumor can include multiple sub-clonal cellular
populations that do not share the same variants (15). The
result in a sequencing sample is a low frequency of reads
supporting a given variation, and in large structural vari-
ants some or all may also be unmapped and therefore un-
available for identification.

These difficulties have resulted in a variety of methods be-
ing developed which use short-read sequencing data to iden-
tify structural variants. The most commonly used methods
are reference based (see Figure 2A) where variant analy-
sis relies on the initial alignment of sequence reads to the
reference genome. When using the aligned reads the exis-
tence and position of a breakpoint, and the resulting struc-
tural variation, is inferred through clustering or windowing
strategies (16). The ‘discordant’ reads (e.g. mapping to dif-
ferent chromosomes or with incorrect orientation) are used
to identify a possible breakpoint through clustering the
reads as in BreakDancer (17) or Pindel (18). While PRISM
(19), DELLY (20) and SoftSearch (21) cluster ‘split-reads’
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Figure 2. Structural variation detection methods have generally used the
reference based (A) approach where reads are first aligned to the reference,
then clustered using a variety of measures to identify SVs. Most of these
methods suffer from the assumption that the alignment of the read that is
reported is the correct one, due to computational limitations of the align-
ment algorithms. Alternative methods proposed include performing a local
realignment (B) of misaligned reads after building longer contigs of the pu-
tative breakpoint regions (e.g. Local Assembly), and directly comparing the
reads of two or more genomes (C), in this case tumor/normal, to identify
mutations ranging from single nucleotide to inter-chromosomal transloca-
tions (e.g. Reference Free). Our method (D) aims to identify breakpoint re-
gions by generating multiple small references which model potential break-
points (e.g. De novo References), complementing the existing methods.

where one of the pair has mapped unambiguously to the ref-
erence genome or the CIGAR value has significant numbers
of soft-clipped bases (e.g. partially aligned reads). As these
methods often limit the size of the variants they can detect
consensus approaches such as SVMerge (22) are often used
to increase detection across all types.

While the reference based approach is widely used, it suf-
fers from a number of limitations inherent to current align-
ment algorithms, and these methods are therefore unable to
identify many structural variants in highly heterogeneous
samples. These limitations include the current short length
of read-pairs along with the highly repetitive sequence of
the human genome. This makes it highly likely for a read
pair to align to multiple locations (23,24) across the genome.
Alignment algorithms most often use the ‘best mapping’ ap-
proach to reporting read alignment, where the alignment re-
sulting in the fewest mismatches is reported or when all are
equally good matches one is randomly selected (25). This is
due both to algorithmic constraints, as allowing mismatches
increases the number of possible alignments, and to sim-
plify downstream computation as the reads with the highest
quality scores are used in variant detection (26). Reference
based alignment algorithms (e.g. BWA (27), Bowtie (28),
SOAP2 (29)) cannot practically do an exhaustive search in
the case of reads which may have multiple alignments (as
can happen with high rates of variation or with too many
mismatches), and where alignments are found will typically
only report one of many possible alignments. This is a fun-
damental limitation to methods that rely on reference align-
ment, especially when considering tumor genomes. Thus al-
ternate methods that rely less on the reference genome are
now being developed.
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In the last two years, two alternative approaches have
been published which do not rely directly on the standard
reference genome alignment. The first approach is best de-
scribed as a Local Assembly (see Figure 2B) method, de-
veloped by Abo et.al. (30). This method reassembles mis-
aligned reads within a target specific region into contigs
using an overlapping kmer seed from the sequence reads
and target region. These contigs are then realigned within
the target regions and classified into specific variant types
(e.g. inversions, indels, translocations). Locally assembling
contigs from regions that have high rates of misalignment
overcomes one of the major issues inherent to short-read
sequencing, namely that the read lengths are too short to
uniquely align when the genome has been structurally al-
tered. While this approach cannot currently scale genome-
wide, as it effectively involves de novo assembly, it is ideal
for resequencing experiments or targeted identification in
whole genome or exome data.

The second alternative is the reference free (see Fig-
ure 2C) method, which takes a completely different ap-
proach and avoids the reference entirely by directly analyz-
ing the reads without first aligning them. In this case there
is no positional information known, and here the meth-
ods vary widely in their implementation. Hormozdiari et.al.
(31) assumes that structural variants can be detected with
higher accuracy by using multiple related genomes. In this
case while a reference genome is used as an intermediary in
the analysis, the authors assume that the true variants are
discoverable by simultaneously comparing patient genomes
directly. They show this clearly with small structural vari-
ants (<1 kb) in several genomes from the YRI population
in the 1000 Genomes data (32) and a family trio, though it
is less clear how well this may work in complex tumor sam-
ples. A more recent reference free approach called SMUFIN
(33) directly compares reads without alignment and was de-
veloped specifically for the tumor/normal pairs of genomes.
Here it is expected that reads will be highly similar and mu-
tations can be found by grouping reads into a tree struc-
ture that branches where mutations are found. Breakpoints
can be identified in the branches of the read tree, and local
alignment performed. Both reference free approaches iden-
tify structural variation with greater accuracy than the pri-
mary reference based approaches.

The analysis for SMUFIN also showed that there might
be significantly more complex large-scale structural varia-
tion in tumor sequences than has been previously reported.
This is due in large part to the fact that tumor genomes can
include highly complex low frequency variations and the
reference genome that alignment algorithms rely on can-
not model these in mixed samples. The methods that rely
on the reference based alignment (e.g. BreakDancer, Soft-
Search, etc.) are limited by the aligners and, as is shown by
both the local assembly and reference free methods, alter-
native approaches are necessary to overcome the alignment
issues.

Here we propose a third alternative for identifying struc-
turally variant regions, which can complement the exist-
ing methods in complex tumor samples: de novo genera-
tion of multiple references. Our de novo method (see Fig-
ure 2D) generates a large number of new references that
model potential structural variations. We use a tuned op-
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timization strategy based on prior information from kary-
otypes across many different cancers to select suitable refer-
ences. Standard alignment tools are then used to align previ-
ously unmapped and discordant read-pairs to the new refer-
ences, and the resulting alignments are scored. Using high-
performance cluster computing this process can be repeated
hundreds of times to select likely breakpoint recombination
regions.

In the Material and Methods section, we describe our
strategy starting with the generation of de novo references
followed by identification of regions that may include struc-
tural variations. In the following Results section, we show
that our identification method can find structural variants
in simulated data and then we apply it in several patients
from The Cancer Genome Atlas (TCGA) (34). Finally the
Discussion section discusses the need for alternative strate-
gies to identify structural variations in tumor samples and
specifically the advantages and limitations of our de novo
method.

MATERIAL AND METHODS

The strategy we have used to enable more accurate align-
ment of cancer genomes from short reads is to limit the
search space in which reads can align by altering the ref-
erence (see Figure 3), and therefore decreasing the read dis-
tance between potential split read-pairs.

In order to limit the search space while using standard
alignment tools, the reference is replaced by a series of
in silico reference sequences that model chromosomal re-
combination regions. The generation of in silico references
requires a pre-populated database of breakpoint frequen-
cies, including chromosomal locations generated from avail-
able breakpoint data, and are used to align only those reads
in a sample that were previously partially or fully unmapped
or discordant.

In silico model generation

Instead of aligning against a single reference, our method
aligns against hundreds of smaller references. These smaller
references model potential structural variations seen in can-
cer originating from fragile regions in the genome. The set
of new references contain sequences from two different ge-
nomic regions thus simulating the result of a recombination
event. These models are generated using prior knowledge of
breakpoint frequencies in cancer based on karyotype data
(e.g. breakpoints at cytogenetic bands). These frequencies
were obtained from analysis of public karyotype data sets
including patient karyotypes and cell lines:

® Patient karyotypes. 99 764 across many different (poorly
curated) cancer types were analyzed from the Mitelman
CGAP database (35) and 325 from NCI and NCBI’s
SKY/M-FISH and CGH Database (http://www.ncbi.
nlm.nih.gov/sky/skyweb.cgi). The majority of these were
blood cancers (e.g. leukemia, lymphoma and myeloma).
e Cell line karyotypes. 84 were analyzed from the Uni-
versity of Cambridge CGP SKY/FISH of Epithelial
Cell Lines (http://www.path.cam.ac.uk/~pawefish/) and
67 from the NCI Fredrick National Laboratory NCI60

G10Z ‘71 Isn3ny uo [0S [op oruojuy Aq /310" s[eunolpioyxo:reu//:dny woiy papeoumoq]


http://www.ncbi.nlm.nih.gov/sky/skyweb.cgi
http://www.path.cam.ac.uk/~pawefish/
http://nar.oxfordjournals.org/

4 Nucleic Acids Research, 2015

Normal Geno _Breakpoint
Reference Frequencies
(e.g9. GRCh37) =

(e

Generate in silico
references

LAY

Align
Discordant and Partially
aligned Reads
. e

Unmapped Reads

*

5q13-8q24

Tx Score

Structrally
Variant
Regions

Figure 3. The general workflow of this method takes prior knowledge of
the likelihood of an aberration at points in the chromosome to generate a
new in silico reference. This is then used to align the discordant and un-
mapped reads from a previously aligned sample, scored and clustered to
identify the best scoring regions.

Cell Line Drug Discovery Panel (http://home.ncifcrf.gov/
CCR/60SKY/new/demol.asp). These were curated sim-
ply based on the tissue involved (e.g. ‘heart’ or ‘thymus’).

There are 320 major cytogenetic bands within the hu-
man genome (36), all of these are found to be involved in
at least one breakpoint reported within the available data
sets. A pairwise combination of each of the bands to cre-
ate simulated references results in Csy2(51 040) possible
combinations. While this would not seem to be too many
combinations to test, and ideally testing against all of them
would offer the most comprehensive view, there are com-
putational limitations. First is disk space: the index for all
simulated reference combinations requires 2.5 TB of hard
disk space, and the subsequent alignment BAM files for a
small set of reads (1.9 million) from a single genome would
require more than 30 TB on disk. The second limitation is
the alignment step itself. Aligning a small number of reads
against many smaller references is an ideal situation for par-
allelization, however each single alignment (e.g. bwa mem
—a —t 12) plus analysis computation still required 65 min on
a single node in our local cluster. All 51 040 pairwise re-
gions would require 840 000 compute hours (or 96 years) in
order to align and analyze. Therefore even with access to a
HPC cluster and a high degree of parallelization, this is a
computationally intensive method.

Instead of using all possible in silico references we use
an informed search strategy. This informed approach is re-
quired to select regions that should be tested for break-
points. As each breakpoint is not equally likely based on the
karyotypes described, and to further decrease our search
space and computational load, the frequencies calculated
from karyotype data are used to generate a set of several
hundred simulated references. This informed approach is
outlined in the Optimisation of Reference Selection section
below.

Structural variant detection

The generated references now act as model regions for pos-
sible large-scale structural variation. Limiting the search
space by creating smaller references also allows us to in-
crease the number of possible alignments by including pre-
viously unmapped reads. A filtered set of reads from a pa-
tient sample that includes only those reads that were already
aligned to different chromosomes (‘discordant’) or where
one or both reads were unmapped are then aligned to these
smaller references in parallel. This enables the method to
rapidly compare multiple possible recombination regions.
As we have limited the search space by using a smaller ref-
erence we are able to relax the search criteria to allow for
more exhaustive searching and greater mismatches.

In each model region the aligned reads are filtered to
limit the inclusion of poor quality data. As these reads
were previously unmapped, we filter out reads from the
alignments that are below the mean summed Phred qual-
ity score identified from the original BAM. Additionally,
any alignments where 50% or less of the read have matched
according to the CIGAR (see SAM format) value are dis-
carded. Each model region is then evaluated by analyz-
ing the distribution of read-pair insert sizes in each new
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Figure 4. These plots show representative distributions of logged read-
pair insert sizes from aligned reads against two different in silico references.
Both aligned references show a bimodal distribution with two clear centers,
however (A) shows an alignment to a reference that may be representative
of a SV in the sample, while (B) is representative of an alignment that shows
only noise based on the EMr values for the second distribution in each plot.
In both (A) and (B) the first distributions (on the left of each plot) are from
read-pairs that align with an insert size <2 s.d. from the mean, while the
second distributions (on the right of each plot) are from read-pairs that
align with an insert size >4 s.d. from the mean. In (A) the aligned reads
in the second distribution show a very clear signal with a large number
of supporting reads, suggesting there is a SV within this region. In (B) the
second distribution is poorly defined. The reads in this region are less likely
to indicate a SV as the second distribution does not exceed the noise from
the first.

alignment. A bimodal distribution of the logged insert size
between aligned read-pairs is observed across the in sil-
ico reference alignments. In all model regions, the distri-
butions are consistently bimodal and non-symmetric, and
each peak is reflective of these two different possible align-
ments (see Figure 4). We find these sub-distributions using
the Expectation-Maximization (EM) algorithm (R pack-
age ‘mclust’ (37)). The first distribution is characterized by
reads with a small insert size (<2 s.d. of the mean insert size)
and which are poorly mapped, having a map quality score
<30. This indicated that the first distribution is basically
noise, and arises due to alignments with a high likelihood
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of error. The second distribution includes reads that con-
sistently align with an insert size that was >4 s.d. from the
mean insert size, as used in (16). Due to insert size there is
no map quality score, but we can overcome this by includ-
ing only those alignments with higher CIGAR and Phred
values.

The individual in silico reference score is calculated in two
parts. The first is based on the mixture model parameters for
the second distribution as calculated by EM:

S, P(n)z)
N

Where P (nlz) is the conditional probability of the nth read
belonging to each of the two distributions identified. The
EMr reflects the proportion of reads that are found to have
a higher mate pair distance, and is derived by finding the
probability of the nth read belonging to the second distri-
bution, then iterating over the set of N where N is the to-
tal number of reads aligned to this reference. The resulting
value is a ratio based on the number of distributions found
and the sum of the EMr for each is 1. As the first distribu-
tion describes ‘noise’ in the alignments we can use it to find a
cutoff value for further analysis of the alignments described
by the given in silico reference. All models where the second
distribution have an EMr below the cutoff can therefore be
discarded.

The second part of the score is based on a sliding-window
clustering approach to identify breakpoint locations based
on alignment positions. Discordantly aligned reads from
the second distribution are clustered by position if the read
pairs also span both chromosomes represented by the sim-
ulated reference. This provides an estimation of windowed
depth-of-coverage as discussed in (16) for a translocation
breakpoint. However, this is not meant to provide a direct
analysis of the breakpoint location, instead this provides a
necessary adjustment for the EM score in the second distri-
bution above.

EMr =

I/Vmar
Tx = EMr + ——
Np
Where W, is the cluster with the highest total count of
reads from the second distribution, and N, is the total num-
ber of reads within the second distribution.

Simulated data sets

In order to estimate sensitivity and specificity for the 7Tx
scores and subsequent structural variant calling, we gener-
ated reads using the ART (38) read simulator for Illumina
in 20 sets of randomly selected pairs of chromosomes and
cytogenetic bands. Each set included a randomly selected
inter-chromosomal translocation based on position and se-
quence information from genome assembly GRCh37 (see
Supplementary Table S1). The only limitation placed on the
simulated breakpoints was that they did not fall directly on
a cytogenetic band boundary and that they were in a re-
gion that could be aligned (e.g. avoiding poorly sequenced
or highly repetitive regions such as most centromeres and
telomeres). The analysis of these data is discussed in the Re-
sults section.
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Optimization of reference selection

As noted above, there are tens of thousands of pairwise
combinations possible for just the major cytogenetic bands.
Using probabilities to generate the most likely combina-
tions will result in identifying reads that belong to well
known breakpoints, while missing those that are less well
characterized or are unreported in the literature. This means
that in order to optimize the selection of simulated refer-
ences, and avoid bias toward the most commonly known
breakpoints (e.g. centromeres are the most reported break-
points in the microscopic methods, or the Philadelphia
chromosome in leukemia), a selection algorithm is intro-
duced to generate populations of breakpoints. These popu-
lations are generated as individuals with full chromosomal
complements and aberrant chromosomes.

This selection uses a type of genetic algorithm known as
differential evolution (DE) (39) with an optimization func-
tion for the entire population being iterated over, instead
of a single solution. This function combines the fitness of
all individual references, and a measure of the diversity (see
Supplementary Methods) of the DE population (see Fig-
ure 5). The diversity score ensures that cytogenetic bands
with a smaller probability of being involved in a recombina-
tion event may be represented, enables the testing of chro-
mosomal regions that may otherwise be underrepresented
due to a bias in the frequency data (e.g. missing data for
disease-specific aberrations), and avoids over-testing break-
points that may be overrepresented in the knowledgebase
(e.g. centromeres, Philadelphia chromosome, etc.).

The output of the selection algorithm is a population of
pairs of chromosomal locations to be used in generating
FASTA files. Each of these represents the sequence of the se-
lected recombination. For example t(16;8)(q13;q24), is de-
fined as starting with 16q13 (56700001- 57400000) and end-
ing with 8q24 (117700001- 46364022) creating a recombina-
tion point at 700 kb.

RESULTS

We performed a test on simulated data to validate the
method and identify suitable parameters for cancer variant
selection. Then we applied the parameters we learned from
the simulated validation tests to tumor/germline data sets
from TCGA directly. For the patient data sets we compare
our method to BreakDancer, as it continues to be the most
commonly used tool for large-scale variant detection in tu-
mors.

Simulated inter-chromosomal breakpoints

To validate that our method could identify inter-
chromosomal breakpoints with a reasonable degree of
accuracy we used the simulated data described in the Meth-
ods section. In the fully simulated set of 20 chromosome
pairs we wanted to validate that the inserted breakpoint
does result in a high Tx score when compared to a set of
randomly selected references representing other potential
breakpoint alignments. We applied k-means clustering to
identify the set of regions with high 7Tx values. In order
to keep the false positive rate (FPR) consistently below
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-- Initialize Population(P) --
P = 200 random Candidates /* Poisson distribution with random seed A = 5 */

while ( generations < 1000 OR /* Termination conditions */
(generations > 40 AND breakpoint representation < 98%) ) {
-- Perform Crossover F(0.7), CR(0.9) --
foreach (Candidate) {
foreach (Breakpoint) {
/* 3 candidates are randomly selected for each Breakpoint */
if (random num <= CR) {
x1,x2,x3 = candidate[1,2,3] has breakpoint? 1: 0
/* add the differences with weighting factor F */
vl =x3 +F * (x1 - x2)
if (vl >= 0) add Breakpoint to Candidate
else remove Breakpoint from Candidate
}
}
}
-- Perform Mutation MR(0.3), PP(0.05) --
foreach (Candidate) { /* Randomly select P*PP Candidates to mutate */
if (random num <= MR) add random 1..n breakpoints to Candidate
}
-- Select Candidates --
foreach (Candidate in P) {
/* Due to the weighting factor of the chr/bp ratio,
a low value is higher fitness */
if (Candidate fitness < max fitness) select Candidate

/* NCD determines pairwise similarity,
used to ensure population diversity */
if (CandiateNCD >= MaxNCD) select random Candidate from any similar pair
}
-~ Add new Candidates to Population --
while (P < 200) {
add random new Candidate to P

}

generations += 1

Figure 5. The selection algorithm is an implementation of differential
evolution as this variant of genetic algorithms provide multiple solutions
across the search space. The process of DE can be summarized as: (i) gener-
ate initial population (ii) cross each breakpoint pair by exchanging partners
given a crossover constant (CR) (iii) mutate each breakpoint pair given a
mutation constant (F) (iv) evaluate the individual fitness (v) evaluate the
population diversity. When either the population diversity reaches a rea-
sonable optimum or a certain number of generations have been run the se-
lection algorithm stops. The parameters CR, F and maximum generations
were all selected to optimize the diversity of the end population. Each of
these constants can also have a large impact on the computational time it
takes to generate a population.

10% in subsequent analyses we perform clustering using 4
centroids (see Figure 6).

As our method does not try to select a single unique align-
ment for each read, we expect to find a higher number of
possible structural variations and therefore select a stricter
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Figure 6. The 7T'x scores reported by our method (A) showed a one-tailed
distribution. Using k-means we can identify the set of regions with the
high T'x scores as shown in the purple cluster. This cluster consistently in-
cluded the simulated breakpoint in all data sets across multiple coverage
tests. From the 20 simulated data sets we determined that a selection based
on 4 clusters (B) (seeding the centroids with quartiles), resulted in a FPR
between 5% and 10%.

cutoff to avoid increasing the likely errors. Additionally, the

Wiax
Ny

becomes more important in lower coverage or poorer qual-
ity simulations. This provides a useful parameter for inves-
tigation of structural variants, which are found in smaller
sub-populations within the tumor.

In each of the 20 simulated data sets clustering the Tx
scores resulted in identification of the known breakpoint in
the top cluster of each set. It also enabled calculation of
FPR values based on the clusters. These values were used
in subsequent analysis of the TCGA patient data.

weighting value of the clusters in the Tx score (e.g

Nucleic Acids Research, 2015 7

Analysis: detection of large-scale variants in TCGA patients
We applied our method to the analysis of nine differ-
ent matched tumor/germline genomes from TCGA across
seven different cancer types (see Supplementary Table S2).
Each set of unmapped and discordant reads from the
genomes was compared against the same set of 278 regions
selected by the optimization algorithm (see Supplementary
Table S3). Based on the FPR rate calculated in the simulated
data set above, we used a result selection from k-means clus-
tering and took only the top cluster for analysis. We then
filtered the germline hits from the tumor list in order to
compare with BreakDancer. In each patient we identified
regions that score highly for breakpoint inclusion. By us-
ing the germline samples to filter the results of the tumor
samples we were able to remove regions that appeared to
have significant unspecific read alignments as they were of-
ten found in both tumor and normal tissue samples.

Two patients had been previously analyzed as part of a
large cohort study for TCGA: the glioblastoma (GBM) pa-
tient (40) and one of the colon/rectal (COAD (2)) patients
(41). In these two patients we found no regions that were
highly scored over their germline, which was consistent with
earlier analyses. Our analysis of the GBM patient found no
somatic structural variation, which was consistent with the
cohort analysis where no structural variants were found in
this patient. Our analysis of the COAD patient also found
no structural variations. This was also consistent with the
original COAD analysis as this patient was not found to
have any structural or copy number variations.

It is also worth noting that in the ovarian patient (OV)
samples our method identified two bands that are found as
part of multiple regions (9q13, 4q13), which may suggest
complex rearrangements. The 9q13 band is a known fragile
site that is commonly involved in pericentric inversions in
the germline linked with ovarian cancer (42), while 4q13 has
been found to have a high rate of copy number variation in
BRCALI associated ovarian cancers (43).

Reference based comparison

We compared these results to the BreakDancer analysis
of tumor/germline pairs (see Table 1). Each translocation
identified by BreakDancer was mapped back to the corre-
sponding chromosomal region. Several findings are impor-
tant here:

e Commonly identified regions. Structural variations that
are found commonly across cancer types are highly likely
to be due to biases in the detection method rather than
a set of rearrangements that are common across cancer
types. Both BreakDancer and our de novo method are go-
ing to find these due to the reporting of aligned reads.
However, within the highest scoring regions, Break-
Dancer tends to find breakpoints in the same regions
across multiple patients and cancers. Across all 32 re-
gions, 26 were identified in more than one patient. For
instance in the top regions with the highest scoring
breakpoints, translocations in the 1pll-17pll region
were found in 6 of the 9 patients, while breakpoints in
Ipl1-11pl1 are found in 4. In fact in the COAD-2 pa-
tient, where our method found no difference between
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Table 1. Shows the regions in which BreakDancer and our de novo reference method detect large scale structural variations

BRCA (1) BRCA (2) COAD (1) COAD (2) GBM KIRC LUAD oV LAML-14
Reference based: Break Dancer
1p11-19q11 1q12-Yqll 1q12-Yqll 1q12-21pl1 1p11-17p11 1p11-17p11 1p11-19q11 1p22-17q12 1p11-17p11
1g21-Yql1l 1gq43-10pl11 1p34-6p22 1g21-4pl1 1p11-6p11 1p22-9q22 1p11-11p11
1p11-17p11 1921-Yqll 1q21-16pl1 1q12-21pl1 1p11-11p11
1q21-4pl1 1g21-4pl1 1p11-17p11 1pl11-11p11 1g21-16p11
1g21-16pl1 1g21-21pl11 3q27-6q15 1p11-17p11
1pl1-11pl1 1p34-6p22
De novo references
Xq21-9q13 17q23-4q13 3q12-8pll 3q12-8pll 11pl5-12q11 3q12-8pll 4q23-16q13
4q13-2q14 11p15-12q11 6q22-11g21 10p14-9q13 3q12-8pll
10p14-9q13 Xq21-9q13 17q23-4q13 2q13-14pl3
Tpll-13ql4 6q15-10p13 22q13-9q13 3q27-6q15
Xq21-9q13 21q22-14q22 5q32-9q13 17p11-13p12
10p14-9q13 4q13-2ql14 5q32-9q13
9p22-14q21
5q33-9p23

The table shows representative results from nine different patient samples, all from TCGA. Regions in bold are those that occur in more than one patient, and regions in red under
the breast cancer sample are those that are potentially erroneous (as they include alignments in the Y chromosome, where the clinical information list this patient as female).
BreakDancer results show an overrepresentation of structural variations in centromeric regions in their top scoring translocations. The bolded regions all include the centromere
1p11, which is poorly sequenced with 80% of the bases missing in the current assembly. The de novo references method also results in a few shared regions and centromeric regions
(e.g. 3q12-9pl1 shared in 2 patients), however, it also finds more regions that include structural variation in the gene rich regions of the genome.

tumor/germline, BreakDancer found only one region
(3q27-6q15) where both bands involved were not iden-
tified in any other patient. Our method will also find re-
gions that are common across cancers if the same set of
regions are tested, however it is less likely with only 7 of
the 29 regions being found in more than 1 patient, and
the most common one (3q12-8p11) found in 4.

e (Centromeres overrepresented. Across all 9 patients and
cancers, centromeric regions are overrepresented in the
top scoring breakpoints found by BreakDancer with 27
of the 32 regions including at least one centromere. Fur-
thermore, in 7 of the patients all of the top 20 iden-
tified regions include at least one centromere. As cen-
tromeres (e.g. ql1 and pll) make up only 15% of the
major cytogenetic bands we would expect to see only 10
regions in 32 include a centromere in an unbiased sam-
pling. As with the commonly identified regions, this is un-
likely to be due to a common cancer event. Centromeres
are poorly characterized across the chromosomes due to
their highly repetitive sequences (25). This makes it more
likely that reads aligning within a centromere will have
correct alignments elsewhere in the genome. In fact the
region shared across most patients (e.g. 1pll, found in
40% of the top regions) is poorly sequenced with 80% of
the bases lacking a known assembly. Comparatively, our
de novo method finds only 8 centromeres in our top 29
regions.

® Jnaccurate alignments. Of the regions identified by Break-
Dancer with the highest scoring translocations in BRCA
(breast cancer) two include alignments to the Y chromo-
some, however associated clinical data lists this patient
as female. While this is not impossible, it would suggest
issues with the alignment. As our method is not relying
on a single reported alignment we did not find a similar
inaccuracy.

The highly duplicative nature of the regions that are the
most commonly found in translocations by BreakDancer
suggests that only very common breakpoints are found, and
that there are issues with alignment. Alignment algorithms
typically report only a single ‘best” alignment leaving Break-
Dancer, and other reference based methods, with limited in-

formation on which to make identifications in complex sam-
ples. This is not to claim that the identifications are neces-
sarily incorrect. Centromeres are likely to be involved in var-
ious types of large-scale structural variations due to micro-
tubule defects (44), and it is not unlikely that certain regions
are ‘hot spots’ for breakage and recombination. However,
as reported by both SMufin and BreaKmer, reference based
methods (and BreakDancer specifically) are missing large
numbers of structural variants due to their reliance on the
alignment algorithm.

As our method uses multiple de novo references to model
potential breakpoints prior to alignment, we find regions
with variation that reference based methods such as Break-
Dancer cannot. Thus while reference based methods provide
a good initial estimate for variations, concurrent use of ref-
erence free or de novo reference based methods can provide
a more complete view of the variation present in the tumor.

One of the difficulties present in the analysis of structural
variation in cancer, is that in the absence of a directly gene
related product (e.g. gene fusion) the effects may be subtle.
For instance, if the break and recombination of a translo-
cated segment occurs at intergenic regions the translocation
may only affect the regulation or transcriptional enhance-
ment of a gene rather than entirely inactivating the gene or
increasing gene expression. Alternatively, as tumor genomes
are often made of up highly heterogeneous cellular popula-
tions it is also likely that the effect of a fusion occurring in
a sub-clonal population is at levels below our ability to de-
tect in gene expression studies. It is therefore worth noting
the regions identified by our de novo method may not result
in fusion genes such as BCR/ABL but in altered regulation,
or no detectable change.

In the second breast cancer patient (BRCA (2)) band
4q13 was represented in both of the top scoring regions, sug-
gesting that alignments in that band were the main driver for
the high scores. We generated an additional 10 regions that
included 4q13 and added them to the pool of regions then
performed the clustering again. All regions that included
4q13 were highly scored in the tumor sample, but not the
germline. This is important to note for a few reasons. First,
4q13 is one of the regions known to integrate viral DNA
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from human papillomavirus (45) suggesting that there may
be fragile sites for other types of structural rearrangement
(and making it an important region for cervical and ovarian
cancers as well). Secondly, several genes important to the
development or aggressiveness of breast cancer including
EREG, which is involved in ER/HER2 status, are located
within this band. Finally, while the top match, 17q23-4q13,
has not been reported as a structural variation previously
both bands have been identified as showing significant copy
number gains in aggressive breast cancers (46).

DISCUSSION

The method introduced in this paper has a number of ad-
vantages and limitations. The main advantage is that our
method is able to find structural variations that most com-
monly used tools would be unable to find. The reason these
methods are unable to find these structural variations is that
they lack the information required to identify them, as an
exhaustive search during alignment is computationally in-
hibitive.

The limitations of our method are due to the fact that
the increase in the number of references increases both the
noise and search space. Aligning to multiple references re-
sults in multiple alignments reported for a single read, in-
creasing the potential for noise. While this is an issue with
the method, it is also a necessary condition for the identi-
fication of structural variations in complex samples from a
tumor. By applying EM and a clustering parameter the re-
gions with the highest likelihood of variation can be selected
with a reasonable FPR. Secondly, this is a computationally
heavy approach in that there are more possible combina-
tions than can be reasonably tested. However, using prior
knowledge and the search optimization algorithm we can
limit the search space for each genome tested. This means
currently we may miss regions that have structural varia-
tion as we do not search all possible regions instead using
HPC tools and optimizations to decrease the overall time
and computational load. By limiting our search both to the
set of unmapped and discordant reads, and using a set of
model references based on prior information, we are able
to evaluate many possible regions. Ultimately this increases
the ability to identify low-frequency aberrations likely to be
present in heterogeneous tumor samples.

The identification of large-scale structural variation in
cancer genomes continues to be difficult. Most of our cur-
rent strategies have relied on alignment to a reference that
is built on a ‘normal’ genome, assuming that the sample
genome will align well enough for analysis. Unfortunately,
due to the potential complexity of large-scale variations, the
heterogeneity of a tumor sample itself, and the limitations
of short-read sequencing, use of the standard reference can
result in poor alignment for large-scale variant regions.

Alternative strategies that rely less on a reference genome,
or skip alignment entirely, have provided evidence that the
current reference-based methods cannot provide a complete
view of the range and complexity of structural variation in
tumor genomes. Thus, it is important to continue to explore
alternative methods for large-scale variant detection in tu-
mor samples. Our method approaches this issue by using
multiple references to model potential breakpoints, decreas-
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ing the search space in which alignment algorithms func-
tion, and overcoming the problem of ‘best’ alignment map-
ping by allowing all alignments for each read and evaluat-
ing each region individually. This is an important step in tu-
mor analysis due to the presence of clinically significant sub-
clonal populations with complex chromosomal rearrange-
ments.

AVAILABILITY

De novo reference generation is implemented in Java
using the Hadoop MapReduce v1.2.1 framework and
HBase 0.94. This can be run on a standard desk-
top machine (without the benefit of parallel computa-
tion) with the standalone installation of Hadoop. It may
also be run on a cluster which uses Hadoop locally
or through Amazon EC2. A compiled version is avail-
able at http://sourceforge.net/projects/insilicogenome/files/
releases/HBase-Genomes-1.2.jar the corresponding HBase
database is available at http://sourceforge.net/projects/
insilicogenome/files/Databases/GRCh37.tgz

Analysis of the resulting BAM files is performed
in R v3.0.1, available at http://sourceforge.net/projects/
insilicogenome/files/releases/denovo_analysis-1.2.tgz

All source code is available on Github (see README
files in each module) at https:/github.com/skillcoyne/
IGCSA

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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Abstract

matching quantities of heterogeneous data.

bioinformatics tools.

Background: High-throughput sequencing has become one of the primary tools for investigation of the molecular
basis of disease. The increasing use of sequencing in investigations that aim to understand both individuals and
populations is challenging our ability to develop analysis tools that scale with the data. This issue is of particular
concern in studies that exhibit a wide degree of heterogeneity or deviation from the standard reference genome.
The advent of population scale sequencing studies requires analysis tools that are developed and tested against

Results: We developed a large-scale whole genome simulation tool, FIGG, which generates large numbers of whole
genomes with known sequence characteristics based on direct sampling of experimentally known or theorized
variations. For normal variations we used publicly available data to determine the frequency of different mutation
classes across the genome. FIGG then uses this information as a background to generate new sequences from a
parent sequence with matching frequencies, but different actual mutations. The background can be normal
variations, known disease variations, or a theoretical frequency distribution of variations.

Conclusion: In order to enable the creation of large numbers of genomes, FIGG generates simulated sequences
from known genomic variation and iteratively mutates each genome separately. The result is multiple whole
genome sequences with unique variations that can primarily be used to provide different reference genomes,
model heterogeneous populations, and can offer a standard test environment for new analysis algorithms or

Keywords: Genome sequence, Simulation, Variation frequency, Population

Background

This paper introduces the FIGG (Frequency-based Insilico
Genome Generator) tool, which is designed to be of use to
computational researchers who require high volumes of
artificially generated genomes that mimic the variation
seen in the natural population. FIGG is designed to use
high performance computing to rapidly generate artificial
genomes, and can be used to generate large numbers of
similar whole genome sequences by iteratively seeding
each run with new parent genomes.

In the last few years high-throughput sequencing (HTS)
has allowed researchers to sequence genomes for species
that range from bacteria and plants, to insects and verte-
brates. In the context of biomedicine HTS is being used
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Luxembourg Centre for Systems Biomedicine (LCSB), University of
Luxembourg, Campus Belval, 7, avenue des Hauts fourneaux, Esch/Alzette
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( BiolMed Central

to: characterize complex ecologies such as the human gut
microbiome [1]; understand parasitic diseases such as
malaria [2]; identify genomic variations that may be re-
sponsible for virulence in diseases such as tuberculosis [3];
and search for the mutations that drive genomic diseases
such as cancer [4-6].

A result of this wide-ranging use of sequence informa-
tion is petabytes worth of genomic data across multiple
species, populations and diseases. New tools are con-
stantly being required to enable the management and
analysis of this information. The FIGG tool is meant to
be of use to different computational researchers working
in the area of large-scale genomics. In particular it is de-
signed to be used by those who are struggling to keep
pace with the scale and diversity of data in large-scale
genomic projects. Using FIGG to generate artificial data
has a number of advantages over downloading and stor-
ing publically available whole genome sequences as it:

© 2014 Killcoyne and del Sol; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly credited.
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has known characteristics, so can be used for consistent
benchmarking; can be used to generate mixed popula-
tions of heterogeneous genomes for algorithm testing;
has no security requirements, so can be shared and used
more easily; and does not place undue load on local re-
sources, as genomes can be generated on the fly.

FIGG is designed to generate large volumes of poten-
tially related sequences that can be used by computational
researchers in testing their models, analysis pipelines and
informatics solutions. Simulating experimental data is a
common step in the development and evaluation of new
analysis tools [7], computational methods, and the support
infrastructure for managing such sequences. Many differ-
ent genomic simulators are available (see Table 1) and
have been described elsewhere [8], however these are not
designed to provide the high volumes of complete genome
sequences which are required for software testing and
algorithm development. They range in application from
instrument-specific sequence read simulation (e.g. ART
[9], MetaSIM [10]), to genotype simulation for case—con-
trol studies based on linkage disequilibrium patterns (e.g.
genomeSIMLA [11], GWASimulator [12]), to evaluating a
population over time to determine how genomic hotspots
or population bottlenecks affect a genome (e.g. FreGene
[13], GENOME [14]) or protein sequence (e.g. ALF [15]).

FIGG generates whole genome sequence files, in FASTA
format, by directly sampling from populations of observed
variations. Each artificial genome includes sequence muta-
tions that range from single nucleotide variations (SNV)
to small and large-scale structural variations (e.g. indels,
tandem duplications, inversions). It has been designed to
use a distributed computing framework to enable rapid

Table 1 Genome simulators
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generation of large numbers of genomes while tracking
the mutations that are applied to each. Below we provide
details of the FIGG methods that enable the creation of di-
verse whole genomes which accurately model experimen-
tally derived real sequence data. The following sections
describe the methods used for analysis of background gen-
omic variation, generation of the sequences, and validation
of the models through the use of standard sequence ana-
lysis tools. Finally we discuss applications for FIGG within
the sequencing community.

Methods

FIGG requires two inputs in order to create a genome:
1) all FASTA files representing the chromosomes to be
simulated (e.g. chromosomes 1-22, X, and Y from hu-
man genome build GRCh37), and 2) a database that is
the result of the frequency analysis as described in the
next section (the full database format can be found at
the link provided in Availability). The resulting output
from FIGG is set of FASTA formatted sequence files
(one per chromosome) that can be used by any tools
which use FASTA as an input, including sequence-read
simulators and genome alignment software.

Variation frequency analysis

The public availability of large datasets that characterize
human genomic variability provide a wealth of data on
population and individual variations. In order to de-
velop an accurate estimate of the range of “normal”
variation we used Ensembl [16]. This data was mined
for all variants validated in the 1000Genomes [17] and
HapMap [18] projects, as these are generally considered

Tool Description Outputs
ART [9] Simulation of sequence reads with error models for multiple platforms Single or pair ended sequence reads.
(454, Solexa, SOLID).
MetaSIM [10] Simulation of sequence reads for metagenomics, particularly for highly  Single or pair ended sequence reads.
variable data (taxonomically distinct but related organisms).
GENOME [14] Population simulation within a set of alleles using genome level events  Alleles identified as mutated (1) or not (0) across the

such as recombination, migration, bottlenecks, and expansions.

GWASimulator [12]
in case—control type studies.

FreGene [13]
hotspot, conversion, and selection parameters.

genomeSIMLA [11]
specific LD patterns for investigations of disease.

ALF [15]
at the sequence and individual level.

Mutation simulation using a theoretical sequence of a given size with
Simulation of disease loci within a family or case—control setting using

Population simulation for a specific gene set using a model for variation

simulated population.

Simulation of loci across a population which follows a given LD structure SNVs per individual for input loci.

Mutation selection across population for a theoretical
sequence.

Affy identified SNPs selected by disease association.

FASTA protein and DNA sequences for specific genes.

Example simulators used in various types of genome investigations. Many use the Wright-Fisher model of population genetics theory [8] in order to generate
populations that vary over time given some set of event frequencies such as LD, hotpots, population bottlenecks (GENOME, genomeSIMLA, FreGene), others
provide a set of sequences that could be generated by a given sequencing technology with an error model (ART and MetaSIM). The specific simulator used is
based on the type of investigation. In planning new GWAS studies for instance, a simulator that uses LD patterns and can provide predicted genomic regions for
disease related mutations would be selected. However, such a simulator would not be of use in the planning of a metagenomic study for an organism which may
not yet be fully sequenced, or is highly variable. None of these simulators provides whole genome FASTA as outputs.
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representative of normal populations. Several other sources
representing disease variations were downloaded for com-
parison, including those from the Catalogue of Somatic
Mutations in Cancer (COSMIC) [19] and small structural
variants in the Database of Genomic Variants Archive
(DGVa) [20].

In order to characterize the variant frequency across the
genome for different classes of mutations each chromo-
some was first fragmented into base-pair lengths that were
manageable for processing. For each fragment a profile of
unique variants was developed. These profiles were then
analyzed to determine the frequency of each variant class:
single point mutations being the most common, followed
by sequence alterations (defined as an uncharacterized
change in the sequence), and then insertions. Based on
these frequencies structural elements in the sequence frag-
ment were identified that can be directly observed and
which could explain the variation frequencies including: a
higher incidence of coding/non-coding regions; predicted
CpG methylation sites; and high/low GC content. A weak
correlation with SNVs was observed in segments with
high/low GC content [21,22], but no other genome-wide
structural correlation was found. When the same analysis
on “disease” variations was run (e.g. COSMIC, DGVa) as a
comparison, GC content continued to be the only clear
structural correlation for variation frequency (see Figure 1
for a description of the final output).

Based on this analysis the observed sequence fragments
were separated into bins by GC content, with variant counts
per segment recorded for each chromosome (see Figure 2
for an example of the variant and GC tables in chromo-
some 4). The result is a set of tables that can be easily sam-
pled for fragments based on a GC profile. Additionally, base
pair size probabilities were calculated for all size-dependent
variants (e.g. deletion sizes from 1-10 have a genome-wide
frequency of 0.96, and from 11-100 a frequency of 0.04),
and nucleotide mutation rates were determined for SNVs
(e.g. C->T 069, C->A 016, C- > G 0.15, etc.).

Implementation

The general architecture of FIGG is shown in Figure 3.
It has been designed to take advantage of distributed
computing by both breaking down the processing of the
data into a distributed model, and by separating the
functionality required into distinct steps, called “jobs”,
that can be added or altered for downstream analysis or
testing needs. FIGG is separated into three distinct jobs.
The Additional file 1 document provided describes how
to set up and run these jobs on an Amazon Web Ser-
vices cluster.

The first job fragments a reference genome and persists
it to a distributed database, which ensures that the back-
ground genomic information is highly accessible, and
only needs to be run once per reference (e.g. GRCh37).
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The second job mutates each of the segments from a
parent genome, using information pulled from a variation
frequency database. This database provides the informa-
tion necessary to determine which variations should be
applied to a given fragment (e.g. SNV, deletion, insertion)
and how often these occur.

The third job assembles the mutated fragments into a
whole genome, and generates the corresponding FASTA
files. The second and third jobs are run in parallel to
each other, allowing for a means to generate large num-
bers of artificial genomes in a highly scalable manner.

Mutation rules

The generation of new, mutated sequences is achieved
through application of a ruleset based on the frequency
analysis described above. Each input chromosome is
split into fragments of the same size as those used for
the frequency analysis (e.g. 1 kb). Each fragment is then
processed stepwise (see Figure 4):

1. Determine the GC content of the fragment then fit
to the identified bins in the frequency database
based on the fragment chromosome. This provides a
set of observed fragments to sample.

2. Randomly sample an observed fragment from the set
of fragments that fit the GC bin. This fragment will
include 0..n counts for each variation type (e.g. SNV,
deletion, substitution, etc.).

3. Apply each variant type to the fragment sequentially
(e.g. deletions first, tandem duplications last). This is
achieved through sampling without replacement
random sites within the fragment for each mutation,
applying size-dependent or SNV probabilities for
that mutation to the site, and repeating until all
variants have been applied to the sequence.

The resulting fragment may vary significantly from, or
be nearly identical to, the original sequence depending
on the selected variant frequencies. Use of random site
selection for applying the mutations ensures that no spe-
cific population bias (e.g. if the population that is used
to generate the frequency data is overrepresented for a
specific variant) is introduced into the bank of resulting
sequences. The final FASTA sequence then provides a
unique variation profile.

MapReduce for multiple genomes

Applying this process to the human genome to create a sin-
gle genome is slow and inefficient on a single machine,
even when each chromosome can be processed in parallel.
In fact, a basic version of parallelization took more than
36 hours to produce a single genome. Producing banks of
such genomes this way is therefore computationally limited.
However, mutating the genome in independent fragments
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Filter VCF/GVF for:

Variation Analysis per Chromosme

+ Unique variants by location and class
+ Validation status (1000Genomes, HapMap)

Segment each chromosome by base pair (1kb)
»  Sum each variant class per segment
+  Calculate GC content per segment

n

n n

L Bin segments by GC content

GC Content Total g
chr4 Fragments
<25% 481
B 25% - 33% T 38,734 n
B 33% - 41% 1 100,773 B
B 41% - 50% T 38,318 n
B 50% - 58% T 6,748 N
B 58% - 66% 1 2,121 n
B 66% - 74% T 438 N
B >74% T 59 N
- — —

Location SNV Del o GC

chr4:1-1000 12 0 0 72%

chr4:1001-2000 1 0 2 81%

chr4:2001-3000 3 1 0 59%
—— ——— —

Variation Analysis Genome-wide
Determine overall SNV mutation
probabilities
— P

A (o3 G T
A 0 0.17 | 0.67 | 0.16
—t ate 41 4 i
(o5 0.16 0 0.15 | 0.69
f— 4 4 4 il
G 0.69 | 0.15 0 0.16
— 4 4 4+ il
r 0.16 | 0.67 | 0.17 0
T ———
Determine variation size
probabilities
Class Size Prob
del 1-10 0.9632
del 11-100 0.0368
ins 1-10 0.9995
ins 11-100 0.0005
—— —

Figure 1 Variation frequency table generation procedure. The variation analysis uses publicly available small scale variation data to generate
a set of database tables for a specific variation frequency. This is done in four separate steps. First, filter GVF or VCF files for unique variations per
chromosome location and validation status. In this analysis variation files from Ensembl were used and “norma
based 1000Genomes or HapMap annotations. To generate a “highly variant” frequency, variations that were identified as being in the COSMIC
and DGVa databases were added. Next, each chromosome is segmented into defined lengths (e.g. 1 kb) and the observed variations per class
within the segment are counted. Additionally, the GC content for each segment is calculated from a corresponding FASTA sequence file. Then
the segments are separated by GC content into 10 bins per chromosome. While these bins can be more granular, the correlation of SNV to GC
content did not improve by increasing the number of bins. Finally, determine the genome-wide SNV mutation and size probabilities for variations
that can be more than a single base pair in length. A database schema describing the final tables is provided in the source for FIGG.

"

validation status was determined

makes this a good use case for highly distributed software
frameworks such as Apache Hadoop MapReduce [23,24]
backed by distributed file systems to create and store tens,
hundreds, or more, of simulated genomes. In addition, use

of HBase [25] allows for highly distributed column-based
storage of generated sequences and mutations. This enables
rapid scale-up for management, ensures that all variations
to a given genome can be identified, and allows for the
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Chromosome 4 - "Normal" Human Population
Fragments Per Bin Variation Counts Per Fragment
Total -1 Fragment n n n
GC Content | 9
Fragments (1.Total) SNV Del sl SodAl
°O = OO ,7 4 T T T B B
| %% | B 2 1 0 2 0
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66% - 74% 438 38734 | 5 2 0 0
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Figure 2 Variation frequency analysis. The result of the variation analysis is a table, indexed by chromosome and GC content, which provides
experimentally observed counts of the different variations for that fragment. This means that a DNA fragment from chromosome 4 with a GC
content of 25-35% has been observed 38,734 times. Each of those observed fragments is recorded with their variant counts. These observed
fragments will be sampled from directly in the generation of an artificial genome.

Job #1
Fragment Reference
FASTA Files

Job #2
’ Mutate Fragments

Job #3
‘ erate Simulated
FASTA files

HBase
Mutated

KEY

VALUES

TCCTCTCGG

GACTGGTATG
GGGACGGTC

Outputs

Outputs

Outputs

P

Job #1
Job Job

Job Job
#2 ‘ #2
V *

Job ‘
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‘ #3 |

b

:

=\

B

Figure 3 FIGG MapReduce jobs. Three discrete MapReduce jobs have been set up to generate unique whole genome sequences. The first job
simply fragments the reference or “parent” genome into the distributed database, HBase. The second job reads all the fragments for the parent
genome from the database, mutates them using the provided frequency information and again saves them to the database to ensure
reproducibility. The final job generates FASTA formatted files, per chromosome, for the mutated genomes.
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Fragment from input FASTA file of Chromosome 4

(18 bp length)
AATCCTAGACGGTATATT

D ————————————
Step 1: Calculate GC

Chromosome 4 GC Bin 25%-33%
Total Fragments 38,734

Step 2: Sample Observed Fragments
Randomly selected observed fragment contains:
- 1 deletion
- 3 SNVs

Step 3: Apply variations from sampled observation
Randomly select positions (without replacement) for mutation.
s

V1) Deletion - position 5, size =

bl AATCCTAGACGGTATATTA
' 1-10bps 0.96 10-100bps 0.04 ~  /\TCAGACGGTATATT
| 1 !
V2) SNV - position 2, A->G AATCAGACGGTATATT
A->C 017 A>G 0.67 A>T 0.16 AGTCAGACGGTATATT

| | |
| 1 !
V3) SNV - position 6, G->T AGTCAGACGGTATATT
G->A 0.69 G->C0.15 G->T0.16  AGTCATACGGTATATT

| ] ]
| 1 !
V4) SNV - position 10, G->A AGTCATACGGTATATT
G->A 069 G->C0.15 G->T0.16  AGTCATACGATATATT

*
New fragment (16 bp length)

AGTCATACGATATATT
T ——————

Figure 4 (See legend on next page.)
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(See figure on previous page.)

of mutations applied.

Figure 4 Fragment mutation rules. As an example of the process each fragment goes through, this fragment from chromosome 4 is mutated
based on information from the tables shown in Figure 2. In step 1 the GC content of the fragment is calculated then fit to the pre-determined
bins, all observed fragments within that bin are then available to sample. Step 2 samples one of these observed fragments to get the counts of
specific variants. In this case the observed fragment had a single deletion and three SNVs. In step 3 these observed variant counts are applied in
stages. Sites for each variation are selected randomly (without replacement), and the mutation applied. For a size-dependent variant such as the
deletion, a size is determined from a probability table, for SNVs the probability of the point mutation is determined based on the nucleotide
present at that site. The resulting fragment will not replicate the sampled fragment (from step 2) in specific mutations, but only in the number

simple regeneration of simulated FASTA files on an as-
needed basis.

MapReduce has been used effectively by us and others
in various large-scale genomics toolsets to decrease com-
putation times, and increase the scale of data that can be
processed [26-28]. FIGG uses this framework in order to
allow the rapid generation of new genomes or regener-
ation of previous mutation models. It is designed to run in
three discrete jobs: 1) breakdown input FASTA files into
fragments and save to a HBase database for use in subse-
quent jobs; 2) mutate all of the fragments from the first
job and persist these to HBase; and 3) reassemble all mu-
tated fragments as new FASTA formatted sequences.

MapReduce accomplishes these tasks by breaking each
job into two separate computational phases (see Figure 5).
The Map phase partitions data into discrete chunks and
sends this to mappers, which process the data in parallel
and emits key-value pairs. In each of the separate jobs for
FIGG the mappers deal with FASTA sequences, either
directly from a FASTA file or from HBase. Each mapper
performs a computation on these sequences, and produces

a sequence (the value) with a key that provides informa-
tion about that sequence (e.g. chromosome location).
These key-value pairs are “shuffle-sorted” and picked up
by the Reduce phase. The framework guarantees that a
single reducer will handle all values for a given key and
that the values will be ordered.

It is worth noting that not all jobs will require the use of
a reducer. In FIGG the first job which breaks down FASTA
files into fragments and saves them to HBase (Job 1) is a
“map-only” job, because we cannot further reduce these
fragments without losing the data they represent. There-
fore, the mappers output directly to HBase rather than to
the reducers. In the mutation job (Job 2) the Map phase
performs multiple tasks including applying variations to a
sequence fragment, and writing new sequences and spe-
cific variation information directly to HBase. Whereas in
Job 3 (FASTA file generation), the Map phase only does a
single task, tagging a sequence with metadata that enables
it to be ordered for the Reduce phase, which actually out-
puts the file. As each mapper is processing a subset of the
data in parallel to all other mappers the compute time

Job Inputs MapReduce Outputs
Fragment Shuffle/Sort
Partition Processing o < Simulated
GRCh37 Sanos —Map Key/Value Pairs FASTA Files
. ( - 2 ¢ 2 — -
FASTA Files : - - ’ . Reduce
Lo | > P \\ !
; L Map J .
: :____________-——V \: .
o Map ;
HBase | HBase
Sequence : 1 s
b P e e
p
e ———— e ——————
Figure 5 MapReduce framework. MapReduce provides a general framework to process partitionable data. The Map phase may either gather
metadata statistics on a sequence fragment and write them to HBase (Job 1) or apply the variation frequencies and rules to a fragment (Job 2).
The Reduce phase, if it is specified, is responsible for assembling the mutated fragments into FASTA formatted chromosome files (Job 3) or it
may simply output additional metadata to HBase for use in other processing tasks.
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required will scale directly with the number of mappers
available to the task, limited in FIGGs case only to the
organization of the data in HBase.

Results and discussion

Our primary interest in developing this tool was to pro-
vide sets of heterogeneous whole genomes in order to
benchmark cancer genome alignments. This is a special
case for alignment, as cancer genomes can vary quite
dramatically between patients and even within a single
tumor. With such a range of variation in patients, it was
important to ensure that the simulated genomes were
representative of the heterogeneity, without introducing
biases for specific mutations.

In order to ensure that FIGG was modeling heteroge-
neous genomes that fit a specific background (e.g. “nor-
mal” or “diseased”) two different frequency backgrounds
were generated (see Methods). The “normal” frequency
background was from data representative of the average
human population: 1000Genomes and HapMap. The sec-
ond, “highly variant” frequency background was based on
data from the DGVa and COSMIC databases of cancer
and other disease variations. This greatly increased the
frequency and size of the small structural variations (e.g.
millions of small deletions and insertions, up to several
hundred bp in length).

Using these two different backgrounds and GRCh37 as
the parent genome, FIGG generated six whole genome
sequences: three “normal”, two “highly variant”, and one
additional genome from the “normal” background that in-
cluded a common cancer structural variation. As expected,
for both the “normal” and the “highly variant” sequences,
the simulated genomes preserved the frequency distribu-
tion of variations observed in the background data, while
differing in the raw counts per fragment.

These simulated whole genomes were then used as
references to align a set of low-coverage paired-end se-
quencing reads from the 1000Genomes project (NCBI
Trace Archive accession ERX000272). The BWA align-
ment tool [29] was used to index the simulated genomes
and align the reads against each reference, including the
current reference genome GRCh37. Statistics regarding
read mapping accuracy (see Table 2) for each genome
were generated using SAMtools [30].

This comparison demonstrates that heterogeneous a
whole genome sequences matching specific variation
characteristics (e.g. normal, disease variant, etc.) can be
generated by this tool. In the first three genomes the
characteristics come from a “normal” population fre-
quency and fairly closely match the mapping rates of
the current public reference (GRCh37). The lower map-
ping rates in the high variation genomes are expected,
as these will have a higher number of variations as well
as longer insertions, deletions, and substitutions. This
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Table 2 Sequence alignment statistics for simulated
genomes

SAMtools flagstat

Mapped Correctly paired Singletons

GRCh37 98.22% 96.34% 0.85%
S1 97.89% 95.52% 1.00%
S2 95.46% 92.95% 1.09%
S3 97.89% 95.54% 0.99%
S4H 90.09% 85.11% 2.89%
S5H 90.35% 85.45% 2.84%
S6SV 88.16% 83.22% 2.88%

A comparison of the 1000Genomes reads for ERX000272 mapped against each
genome. GRCh37 is the current reference genome. S1, S2 and S3 are genomes
generated based on normal variation data. S4H and S5H were generated with high
variation data and S6SV is based on normal variations but with the chromosome
arm 19q deleted. The table columns are statistics provided by SAMtools flagstat:
Mapped provides the total percentage of reads that mapped to the genome on the
left; Correctly Paired provides the percentage of reads that aligned to the genome in
their proper pair; and Singletons provides the percentage of reads that were
orphaned in the alignment. As expected, genomes S1-3 show mapping statistics
that are close to the reference genome, while the others show a significantly lower
statistics due to the higher frequency and larger bp size of variations used to
generate these genomes.

suggests that by using distributions for variations within
distinct genomic populations, such as can be seen in differ-
ent tumor types, highly specific simulated genomes can be
generated. These specific simulated genomes could then
be used as more accurate quality control sets for testing
hypotheses or data. For instance, genome S6SV models a
breakpoint that may be found in specific types of glioma
[31-33]. This simulation could therefore be used to more
accurately align a clinically derived sequence, integrate
with proteomics data to infer a potential effect or bio-
marker, or simply provide a test sequence for breakpoint
analysis methods [34].

Finally, it is important to note the benefits of using a
highly distributed framework to generate these sequences.
Current sequencing projects are generating hundreds or
thousands of sequences from patients. In order to provide
artificial data models to assist computational researchers
working on large-scale projects, the simulation tool must
be able to rapidly generate data of similar complexity and
size. Distributed computing frameworks enable FIGG
to generate this data quickly, allowing the researcher to
simulate the scale of data they will actually be facing.
Using Hadoop MapReduce enables FIGG to scale the
mutation job nearly linearly to the number of cores
available (see Figure 6). However, as with other distrib-
uted environments optimization for large clusters must
be done on an individual basis.

Conclusions

HTS is now a primary tool for molecular biologists and
biomedical investigations. Identifying how an individual
varies from others within a population or how populations
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Figure 6 Scaling FIGG with MapReduce. The mutation process in FIGG is the most computationally intensive job in the pipeline. It was tested

on Amazon Web Services Elastic MapReduce clusters of varying sizes for scalability. MapReduce provides a near linear speed up with the addition
of nodes to this job. These genomes are saved to HBase to provide a persistent store of standard artificial genome data that can scale along with

the cluster size. This is one area where optimization will provide increased performance as defining how the HBase tables are distributed can
increase the speed of computation (e.g. more efficient row key design decreases query time and increases the number of available mappers).
This is due to the fact that region server optimization is highly specific to the data, and improves as the data size increases.

vary from each other is central to understanding the mo-
lecular basis of a range of diseases from viral and parasitic,
to autoimmune and cancer. As our understanding of these
variations increases so too does the complexity of the ana-
lyses we need to undertake to find meaning in this data.
Simulation data is a common measure of the usability
and accuracy of any analysis tools, but in whole genome
studies there continues to be a lack of standard whole gen-
ome sequence data sets. This is especially problematic with
the production of hundreds or thousands sequences from
different populations. Comparing these to a single refer-
ence can lead to loss of important variation information
found in even reasonably homogenous data. Highly hetero-
geneous populations, such as those found in cancer, may
not even be represented at all by the reference. Generating
thousands of whole genome models that vary predictably
can provide highly specific test data for computational bi-
ologists investigating tumor diversity, software engineers
who are tasked with supporting the large scale data that is
being generated, and bioinformaticians who require reli-
able standards for developing new sequence analysis tools.
Central to each of these research needs is the develop-
ment and use of banks of whole genome simulation data
which will allow for the development of quality control
tools, standard experimental design procedures, and dis-
ease specific algorithm research. FIGG provides simulation
data models based on observed population information,
will enable disease sequence modeling, is designed for

large-scale distributed computing, and can rapidly scale
up to generate tens, hundreds, or thousands of genomes.

Availability and requirements
Project name: Fragment-based Insilico Genome Generator
Home page: http://insilicogenome.sourceforge.net
Operating systems: Platform independent
Language: Java
Other requirements: Java version 1.6 or higher, A com-
putational cluster running Hadoop v1.0.3 and HBase 0.92
(Amazon Web Services AMI v2.4.2), pre-computed HBase
tables for the frequency analysis, and FASTA files for a ref-
erence genome.
Open source license: Apache 2.0
Restrictions for use: None

All Hadoop MapReduce jobs for this paper were run
using Amazon Web Services MapReduce clusters. Please
see the Additional file 1 for a walkthrough of the AWS
job creation.

Additional file

[ Additional file 1: Amazon Web Services FIGG Walkthrough. J
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