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Additional text 

FASTCORMICS allows fast context-specific metabolic model reconstruction 

using microarray data 

The prospect of studying cell-type specific metabolism under numerous conditions or 

for example patient-specific metabolism in a diagnostic setting requires the capacity 

for fast creation of high-quality and robust metabolic models based on available data 

such as gene expression data. Recently we proposed an algorithm for the fast 

reconstruction of compact context-specific metabolic networks (FASTCORE) that 

reduces the reconstruction time of context-specific networks to the order of 

seconds[1]. In order to adapt FASTCORE for the integration of transcriptomics data 

from microarrays, we have developed a new workflow named FASTCORMICS 

(Additional Figure S1). As inputs FASTCORMICS requires microarray data and a 

GENRE of the organism of interest. Like FASTCORE, FASTCORMICS is devoid of 

arbitrary parameter settings and has a low computational demand with overall 

building times in the order of a few minutes. FASTCORMICS pre-processes 

microarray data with the discretization tool Barcode [2]. Barcode uses prior 

knowledge on the intensity distribution of each probe set for a given microarray 

platform to segregate between expressed and non-expressed genes. The preprocessing 

step with Barcode allows circumventing setting an arbitrary expression threshold to 

segregate between expressed and non-expressed genes, which is still commonly done 

[3–5]. As such a threshold is arbitrary and critical for the output metabolic models 

since due to this threshold complete branches, alternative pathways, or subsystems 

might be included or excluded, thereby significantly changing the functionalities of 

the model. Furthermore, Barcode shows a better correlation between predicted 



expression and protein expression than competing discretization methods and 

decreases batch and lab-effects that affect measurements [2]. 

To validate FASTCORMICS we performed an essentiality assay on two generic 

cancer models that are based on Recon 1 and Recon 2 (cancer1 and cancer2, 

respectively) and generated by the FASTCORMICS workflow using existing 

microarray expression data from 59 cancer cell lines [6, 7]. The first model (cancer1) 

is composed of 810 reactions and is therefore bigger than the cancer model previously 

derived by Folger et al. (772 reactions) (Additional Table S1) [5]. The second model 

(cancer2) is composed of 1322 reactions. All reconstructed models are available in 

SBML format (Additional File S6). The assays performed on cancer1 and cancer2 

predict 183 and 78 genes essential for cell growth, respectively (Additional Table S1). 

The predicted essential genes were compared to a list of 8000 genes ranked for 

essentiality by Luo et al. using a shRNA knockdown screen in several different 

cancer cell lines [8] to assess the predictive power of the FASTCORMICS models. In 

general, metabolic genes are slightly overrepresented in the top of the list as shown by 

Folger et al [5, 8], suggesting that metabolic genes are more essential than non-

metabolic genes on average. As expected, the Recon 1 and Recon 2 models, even 

when further constrained by the medium composition (Additional Table S2, medium 

composition sheet), allowed identification of only a smaller set of essential genes and 

their distribution along the ranked list of essential genes was not significantly 

different from the distribution of all metabolic genes (Additional Table S1). 

Therefore, the predictive power of the reconstructed context-specific models is much 

better than either of the original GENREs. In contrast, the distribution of essential 

genes in the FASTCORMICS cancer models is different from the remaining 

metabolic genes and shifted towards the top of the ranked list as shown by a one-side 



KS-test (p-value=0.0314 for cancer1 and p-value=0.0502 for cancer2), demonstrating 

that FASTCORMICS predictions are much more coherent with the experimental data. 

Moreover, comparison of the p-values to those obtained previously using the MBA 

algorithm (p-value=0.0284) [5, 9] suggests that FASTCORMICS performs with 

similar accuracy but with significantly lower running time (Additional Table S1) 

Consistently, a permutation test showed that the likelihood of finding a gene set of the 

same size with a better KS-score by chance is low (p-value=0.0063 for cancer1 and p-

value=0.0351 for cancer2). In order to benchmark our workflow we also built cancer 

models using GIMME [3], iMAT [4] and mCADRE [10]. For GIMME and iMAT, 

the implementation of the Cobra toolbox [11] was run using as thresholds respectively 

the 75 and the 25 
 
percentile for high and low expressed genes. For mCADRE the data 

was first discretized using Barcode [12] and then the implementation provided in the 

supplementary files of [10] was run. We also compared our workflow to PRIME[13]. 

PRIME uses microarray data and respective growth rate information to adapt the 

bounds of the input generic reconstruction. Thus it does not extract a context-specific 

sub-network from a general reconstruction and thereby differs from FASTCORMICS 

and the others algorithms discussed in this paper. Building a generic cancer model 

using PRIME was not possible as there is no generic growth rate. Instead the 32 

models built by[14], were used to perform KO assays. 112 genes were essential in at 

least 90% of the 32 models (in fact these 112 genes were essential in all models). Out 

of the 112 genes, 81 were found in the ranked list of essential genes by [8] and used 

for p-value calculation. 

We also tested iMat [4], but the algorithm does not guarantee that the biomass 

function is included in the model and therefore the knockout experiment could not be 

performed here.  



In general, (Additional Table S1), more compact models, i.e. mCADRE cancer 

model, MBA cancer model, and cancer1 generated with FASTCORMICS, tend to 

predict a higher number of essential genes, respectively 169, 178 and 183, compared 

to models with a larger number of reaction, i.e. the GIMME cancer model that 

includes twice as many reactions as cancer1 and only 69 predicted essential genes. 

The aforementioned models also tend to perform better in the KO assay with the 

exception of mCADRE that identifies essential with a lower rank in the ranked 

essentiality list of Luo et al [8].   

 

Context-specific models were built for the 59 cell lines integrating Recon1 and the 

cell line specific expression data with the FASTCORMICS workflow. The medium 

composition was used to constrain the inputs of the models (only input reactions for 

metabolites present in the medium were allowed to carry a flux). To obtain lactate 

secretion rates predictions in fmol/cell/h, the biomass coefficients were multiplied by 

550 as described in[15]. Further, the bounds of the obtained models were multiplied 

with 1.5 to obtain a flux range consistent with the measured lactate rate. In order to 

guarantee lactate, glucose, oxygen and glutamine exchanges, the respective exchange 

reactions were added to the core set. To allow quantitative predictions for each 

context-specific models, the bounds of the inputs reactions of glucose and glutamine 

were fixed to match the experimental data. Additionally, the maximal uptake 

respectively production rate of alanine, serine, leucine, lysine, isoleucine, valine, 

arginine, threonine, tyrosine, phenylalanine, methionine, asparagine, choline, glycine, 

and tryptophan were constrained according to the experimental data. The uptake rates 

of cysteine, histidine, and myo-Inositol, which were not reported in the table, were set 

to zero. Random sampling was performed while optimizing for biomass production.  



A solution could not be found for 7 cancer models, with these settings. For the other 

models a R2 value of 0.7 was obtained, indicating a good correlation of context 

specific predicted and measured lactate secretion rates. 

 

As a second quality control step, a hypergeometric test showed that the neoplasia-

associated genes retrieved from the DisGeNet database [16] are over-represented in 

the essential genes of both FASTCORMICS models (Additional Table S3). This 

indicates that FASTCORMICS can help to identify medically relevant genes. Further, 

among essential genes predicted in cancer1 and cancer 2 130 (71%) and 46 (59%) 

were known to be associated to cancer, respectively (DisGeNET [16], CCGD 

database[17]) or to be already predicted as essential by the generic model from which 

they were extracted. 

Taken together, FASTCORMICS outperforms competing algorithms in speed and 

therefore allows generating robust high-quality models in a high-throughput manner. 

This will enable the use of metabolic modelling as a routine process for the analysis 

of large microarray data sets across different cell types and contexts.  

 

Confidence levels of the reactions of the macrophage model 

We compared the reactions of the macrophage model built with the FASTCORMICS 

workflow to a table (supplementary data 7) established by [18] that assigned 

confidence levels to the reactions of Recon1 in function of the evidence of expression 

in macrophage. 759 reactions of our model were found in the supplementary data 7 of 

[18], with 595 having a confidence level assigned. The remaining 410 reactions of our 

model not being listed in the Bordbar table [18] are due to a different annotation of 

Recon1 and Recon2 that was taken as input for our macrophage model. Of the 595 



reactions with confidence information, 485 (82%) were assigned a high or medium 

confidence level by [18], 16 had a low and 94 are Exchanges/Transports added for 

modeling purposes, disassociations or spontaneous reactions to which no specific 

confidence level was assigned. No reactions were added that were shown not to be 

expressed in macrophages. Overall, this indicates a high confidence level for our 

reconstructed macrophage model. 

 

Additional File S6: Reconstructed models in SBML format. The zipped file with 3 

subfolders (cancer, monocyte and macrophage models, 156 primary cells models) 

contains 2 cancer models (cancer 1, cancer 2), 4 macrophage models (day 2, day 4, 

day 7, day 11), and 156 primary cells models, respectively. 
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Additional Table S1: Essentiality testing of different cancer models. Comparison of the number of essential genes found by an in silico 

essentiality assay to a ranked gene list established by Luo et al. based on the effect of shRNA knock-downs on the proliferation of cancer cells [8]. 

In Folger et al. [5] a gene is considered as essential if its knock-down results in a decrease of the growth rate of at least 1%. To allow for a comparison 

of the different methods the 1% criteria was applied here as well. *The number of essential genes was taken from Additional Table 3 Cancer 

Cytostatic Genes column KO Growth Rate (relative to WT) of [8]. 

Output model 
Generic 

model 

Contextualization 

method 
Computational time Size (reactions) 

Essenti

al genes 

KS test 

p-value 

Permutation p-

value 

Recon 1 Recon 1 None  2471 14 0.7623 0.7212 

Recon2 Recon 2 None  5317 4 0.0231 0.0210 

Medium constrained 

Recon 1 + biomass 
Recon 1 Medium constrained  1922 78 0.1908 0.1444 

Medium constrained 

Recon 2 + biomass 
Recon 2 Medium constrained  4246 32 0.8260 0.7919 

GIMME cancer model Recon 1 GIMME 2497 sec 1749 69 0.0814 0.0465 

PRIME cancer models 

(from [13]) 
Recon 1 PRIME  

3788 (bounds 

are constrained) 
112 0.0286 0.0152 

mCADRE cancer model Recon1 mCADRE 26356 sec 1037 169 0.1248 0.0228 

MBA cancer model 

(from [9])  
Recon 1 MBA 

~2 hours /pruning step 

(1000 pruning steps ) 
772 178* 0.0284 0.0060 

cancer1 Recon 1 FASTCORMICS 
184 (preprocessing) +38 

seconds 
810 183 0.0314 0.0063 

cancer2 Recon 2 FASTCORMICS 
184 (preprocessing) + 288 

seconds 
1322 78 0.0502 0.0351 



Additional Table S2: Medium composition and biomass formulation. The biomass 

equations are given with the metabolites abbreviations IDs as found in the models 

(sheet 2). In the sheet three, the 1st column contains the medium composition used to 

constrain Recon 1 using the metabolites abbreviation as used in the model. In the 

second column are displayed the medium composition for Recon 2. 

 

 

 

Additional Table S3: Hypergeometric test quantifying the enrichment of neoplasia-

related genes retrieved from DisGeNet [16], a database of disease-gene associations, 

in the set of essential genes of the different cancer models. In [5], a gene is considered 

essential if its knock-downs resulted in a decrease of the growth rate of at least 1%. 

To allow, a comparison with [5], the 1% criteria was applied as well. 

 

 

Output model Essential 

genes (EG) 

EG in 

DisGeNet 

Genes in the 

generic models 

(GG) 

GG in 

DisGeNet 

p-value 

Recon1 

(unconstrained) 

14 6 1168 377 0.2792 

Recon 2 

(unconstrained) 

4 1 1599 433 0.7176 

Medium constrained 

Recon 1 + biomass 

78 33 1168 377 0.0350 

Medium constrained 

Recon 2 + biomass 

32 14 1599 433 0.0299 

GIMME cancer 

model  

69 32 1168 377 0.0083 

PRIME cancer 

models ( from [14]) 

124 50 1496 449 4.69 e-4 

mCADRE cancer 

model  

169 73 1168 2635 2.474e-4 

MBA cancer model 

(from [9]) 

178 84 1168 449 4.63e-6 

cancer1 183 86 1168 377 4.28e-6 

cancer2 106 45 1599 433 0.0295 



 Additional Table S4: List of selected 156 arrays ordered in function the Jaccard 

similarity index used for Figure 1 and of the remaining 745 arrays that compose the 

primary cell atlas dataset. The first column contains the Gene Omnibus ID of the 

arrays. The second and third column contains a description of the arrays and the array 

names and the last column the order of the arrays in the cluster plot (Figure 1a) from 

left to right. Arrays stated as not selected were not depicted for the figure 1 but were 

used to produce together with 156 arrays to produce Figure 5 and Figure 7. 

 

 

 

 

Additional Table S5: Lists of the significantly up- (sheet 1) and down-regulated 

genes (sheet 2) (FDR<0.05 and absolute (log fold change >1)) during monocyte to 

macrophage differentiation. Columns represent probe IDs, Gene symbol, log2 ratio 

between day 2 and day 11 of differentiation, fold change between the same time 

points, the p-value obtained after performing Empirical bayesian statistique (limma) 

and the FDR. 

 

 

 

 

 

Additional table S6: Summary of the monocyte-macrophage models 

 

 

 

 

Model reactions metabolites genes Core reactions 

(including core 

transporters) 

Inactive 

reactions 

Day 2 model 978 858 614 462 806 

Day 4 model 1055 918 594 605 759 

Day 7 model 1202 1034 706 671 646 

Day 11 model 1149 993 689 623 656 



Additional Table S7: Confidence level of the included and excluded reactions of the 

monocytes macrophage models determined through the cross-validation step. 

Reactions with a high level of confidence are supported by at least two core reactions. 

Reactions with moderate confidence level are reactions only supported by barcode. 

Reactions with a weak confidence level are not supported by barcode, but needed to 

generate a consistent network model. Excluded reactions with a high confidence score 

were never included in any simulations suggesting the presence of other excluded 

reactions in the branch. Whereas, excluded reactions with a low confidence level were 

excluded only due to their low expression level. 

 

 

 

 

 

 

Additional Table S8: List of cofactor combinations that were not considered in the 

reaction equations for the determination of the entry points in Figure 6. 

Confidence level of 

Model  Model reactions  Excluded reactions 

high moderate weak High Weak 

Day 2 model 306 387 285 721 85 

Day 4 model 391 491 173 667 96 

Day 7 model 490 540 172 563 83 

Day 11 

model 

441 507  201 593 63 



Additional Figures 

 

Additional Figure S1. FASTCORMICS workflow. Microarray data are discretized 

with Barcode in expressed (z-score > 5) and unexpressed genes (z-score < 0) that are 

mapped to the input model according to the Gene-Protein-Reactions rules. The 

FASTCORE core set is composed of reactions under the control of Barcode-

supported genes. Optionally, the model can be constrained in function of the medium 

composition and a biomass function or the requirement to produce given metabolites 

can be added to the model. A modified version of FASTCORE, that allows the 

definition of a set of non-penalized reactions (in this study: Barcode-supported core 

reactions) is run. The modified version of FASTCORE forces the biomass function to 

carry a non-zero flux while penalizing the inclusion of non-core reactions. The output 

of the modified FASTCORE is then added to the core set and the modified 

FASTCORE is run again, now forcing all core reactions to carry a flux while 

penalizing non-core reactions. Transporters are removed from the core set, but are not 

penalized as explained in the main text. Finally a left-out cross-validation experiment 

can optionally be run to assign a confidence score to each reaction of the context-

specific output model.  

 

Additional Figure S2: Correlation plot of the predicted lactate secretion rates by 

context-specific cancer cell models and the lactate secretion rates measured by [19]. 

 

Additional Figure S3: A) Scatterplot of the fraction of active reactions in monocyte-

derived macrophages versus the fraction of active reactions in monocytes. Each dot 

corresponds to a subsystem. 1: Biotin metabolism 2: Blood group synthesis 3:Dietary 

fiber binding 4: Thiamine metabolism 5: Ubiquinone synthesis 6:Vitamin D 

metabolism 7: Cytochrome metabolism 8: N-glycan synthesis 9: Histidine metabolism 

10:Steroid metabolism 11:Transport, extracellular 12: Squalene and cholesterol 

synthesis 13:Vitamin C metabolism 14: Vitamin A metabolism 15: Galactose 

metabolism 16: Glycosphingolipid metabolism 17: Sphingolipid metabolism 18: 

Transport, mitochondrial 19: Transport, golgi apparatus 20: Tetrahydrobiopterin 

metabolism 21: Pyrimidine synthesis 22: Phenylalanine metabolism 23: Tyrosine 

metabolism 24: Bile acid synthesis 25: Keratan sulfate degradation 26: 



Phosphatidylinositol phosphate metabolism 27: Transport, endoplasmic reticular 28: 

Tryptophan metabolism 29: Arginine and Proline Metabolism 30: Miscellaneous 31: 

Eicosanoid metabolism 32: Glycine, serine, alanine and threonine metabolism 33: 

Exchange/demand reaction 34 Lysine metabolism 35: O-glycan synthesis 36: 

Transport, nuclear 37: Keratan sulfate synthesis 38: Oxidative phosphorylation 39 

Taurine and hypotaurine metabolism 40 Transport, peroxisomal 41: Triacylglycerol 

synthesis 42:Urea cycle 43: Vitamin B2 metabolism 44: Starch and sucrose 

metabolism 45: Transport, lysosome 46: Unassigned 47 Pyrimidine catabolism 48 

Cholesterol metabolism 49: Glycerophospholipid metabolism 50: Propanoate 

metabolism 51: Alanine and aspartate metabolism 52: Fatty acid synthesis 

53:Fructose and mannose metabolism 54: CoA catabolism 55: Methionine and 

cysteine metabolism 56: NAD metabolism 57: Pentose phosphate pathway 58: 

Vitamin B6 metabolism 59: Inositol phosphate metabolism 60 Purine catabolism 61 

Valine, leucine, and isoleucine metabolism 62:Pyruvate metabolism 63: CoA 

synthesis 64: Glutathione metabolism 65: Aminosugar metabolism 66: Glyoxylate 

and dicarboxylate metabolism 67 Fatty acid oxidation 68 Nucleotide interconversion 

69: Glutamate metabolism 70: Glycolysis/gluconeogenesis 71: beta-Alanine 

metabolism 72: Citric acid cycle 73: Folate metabolism 74: Purine synthesis 75: ROS 

detoxification 76:N-glycan degradation 77: C5-branched dibasic acid metabolism 78: 

Chondroitin sulfate degradation 79: Heme synthesis 80:Heparan sulfate degradation 

81: Hyaluronan metabolism.  

 

Additional Figure S4: De novo motif analysis tool MEME-ChIP was used to 

discover the enriched sequence motifs within the sequences underlying the 

reproducible identified active enhancer regions associated to upregulated genes in 

macrophages. The sequence logos of the enriched motifs corresponding to known TF 

binding sites in Jolma database and the associated TFs are listed below according to 

e-value. Only motifs with e-value < 0.05 were considered. 
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Additional Figure S2
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