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Overview
• Motivation. 

• Bayesian approach to inversion. 

• Relate classical optimisation techniques to the Bayesian 
inversion approach. 

• Using a domain specific language for variational forms to solve 
the equations. 

• Low-rank updates to deal with high-dimensional posterior 
covariance. 

• Example problem: sparse surface observations of a solid block.
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Motivation.
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Source: Phillips
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Q: What can we infer about the parameters inside the 
domain, just from displacement observations on the 

outside?

Q: Which parameters am I most uncertain about?



Framework
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�posterior(x | y) � �likelihood(y | x)�prior(x)

G
x

Parameter Map

+

E ∼ N (0, Γnoise)

y yobs

X ∼ N (x̄ , Γprior)

πposterior(x |y) ∝ exp
(

−
1

2
||y − G(u)||2

Γ−1noise
−
1

2
||x − x̄ ||

Γ−1prior

)

Inference
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G : X → Y

Inverse Problems: A Bayesian perspective. 
Stuart, Acta Numerica (2010). 

Contribution: Bayesian inverse problems in an infinite-
dimensional setting. When is a Bayesian inverse 
problem well-posed?



11

The displacements y for a given material parameter x are defined by a the minimum point

of the following Lagrangian:

L(y , x) =
�

�
�(y , x) dx �

�

�
t · y ds

where the energy density functional � is defined through the following equations:

�(u, x) =
x

2
(Ic � d)� x ln(J) +

�

2
ln(J)2,

F =
��

�X
= I+�y ,

C = FTF,

IC = tr(C),

J = detF.

B0 Bφ
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Even once discretised (Finite Element Method)

Colin27 brain atlas
20% extension test, 16 Core Xeon, 1.12 million cells, ~29 secs. 

Gh : Rn → Rm

n = 1, 112, 000



Problems

• Evaluating parameter-to-observable map is very expensive. 

• Discretised parameter space can be very large. 

• Outcome: Exploring posterior with ‘traditional sampling’ is not 
going to work.
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Solutions

1. Connect Bayesian approach to ideas from 
classical optimisation. Using derivatives of 
posterior in parameter-space (Girolami). 

2. Exploiting low-rank structure of prior to posterior 
covariance updates (Flath 2012, Spantini 2015).
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�posterior(x | y) � �likelihood(y | x)�prior(x)

xMAP = argmax
x∈Rn

πposterior(x | y)

xMAP

xCM

cov(x | y)
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Linearise
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y = Ax

− lnπposterior(x |y) =
1

2
||y − Ax ||2

Γ−1noise
+
1

2
||x − x0||Γ−1prior



Take the derivative

17

g(xMAP) := �x

�
1

2
�y � Ax�2

��1noise
+

1

2
�x � x0�2��1prior

� �����
x=xmap

= AT��1noise(y � Axmap) + ��1prior(xmap � x0)

= 0

xMAP =
(
Γ−1prior − A

TΓ−1noiseA
)−1
(ATΓnoisey + Γpriorx0)
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MAP estimate. Bound-constrained Quasi-Newton BLMVM 
with More-Thuente line search and ‘correct’ Riesz map.



and the second derivative…
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H := ∇xg = Γ−1prior − A
TΓ−1noiseA

xMAP =
(
Γ−1prior − A

TΓ−1noiseA
)−1
(ATΓnoisey + Γpriorx0)

πposterior ∼ N (xMAP,H−1)

(After a fair bit of manipulation…)



MAP estimate
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xMAP

xCM

cov(x | y)
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xMAP

xCM

cov(x | y)

H−1(xMAP)
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πposterior ∼ N (xMAP,H−1)

πapproxposterior ∼ N (xMAP,H
−1(xMAP))

xMAP

xCM

cov(x | y)

H−1(xMAP)



Tools
• The FEniCS Project is 

collection of free software for 
the automated, efficient 
solution of differential 
equations using the finite 
element method. 

• dolfin-adjoint automatically 
derives the discrete adjoint, 
tangent linear and higher-
order adjoint models from a 
high-level description of the 
forward model.
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http://fenicsproject.org

http://www.dolfin-adjoint.org

Wells, Logg, Rognes, Kirby and many, many others…

Farrell, Funke, Ham and Rognes. 
2015 Wilkinson Prize for Numerical Software.

http://fenicsproject.org
http://www.dolfin-adjoint.org
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The displacements y for a given material parameter x are defined by a the minimum point

of the following Lagrangian:

L(y , x) =
�

�
�(y , x) dx �

�

�
t · y ds

where the energy density functional � is defined through the following equations:

�(u, x) =
x

2
(Ic � d)� x ln(J) +

�

2
ln(J)2,

F =
��

�X
= I+�y ,

C = FTF,

IC = tr(C),

J = detF.

B0 Bφ



from dolfin import * 
mesh = UnitSquareMesh(32, 32) 

U = VectorFunctionSpace(mesh, "CG", 1) 
V = FunctionSpace(mesh, "CG", 1) 
# solution 
u = Function(U) 
# test functions 
v = TestFunction(U) 
# incremental solution  
du = TrialFunction(U) 
x = interpolate(Constant(1.0), V) 
lmbda = interpolate(Constant(100.0), V) 

dims = mesh.type().dim() 
I = Identity(dims) 
F = I + grad(u) 
C = F.T*F 
J = det(F) 
Ic = tr(C)

phi = (x/2.0)*(Ic - dims) - x*ln(J) + (lmbda/
2.0)*(ln(J))**2 
Pi = phi*dx 
# gateux derivative with respect to u in direction v  
F = derivative(Pi, u, v) 
# and with respect to u in direction du 
J = derivative(F, u, du) 

u_h = Function(U) 
F_h = replace(F, {u: u_h}) 
J_h = replace(J, {u: u_h}) 
solve(F_h == 0, u_h, bcs, J=J_h)

The displacements y for a given material parameter x are defined by a the minimum point

of the following Lagrangian:

L(y , x) =
�

�
�(y , x) dx �

�

�
t · y ds

where the energy density functional � is defined through the following equations:

�(u, x) =
x

2
(Ic � d)� x ln(J) +

�

2
ln(J)2,

F =
��

�X
= I+�y ,

C = FTF,

IC = tr(C),

J = detF.
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Q: What can we infer about the parameters inside the 
domain, just from displacement observations on the 

outside?

Q: Which parameters am I most uncertain about?



29

xmap



Optimal low-rank updates
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Γprior Γposterior
y

Critical idea: Observations are only informative on 
a low-dimensional subspace of the parameter 
space, relative to the prior. Spantini et al. (arXiV)

d2F(A,B) =
�

i

ln2(�i)

Awi = B�iwi

Förstner metric
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Matrix-free Krylov-Schur (SLEPc).
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Matches trends from Flath et al. p424 for linear parameter to observable maps.

Γprior

Γpost



Trailing Eigenvector
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Direction in parameter space least constrained by the 
observations
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Leading Eigenvectors
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Direction in parameter space most constrained by the 
observations
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Full Hessian. 
4000+ actions. 

Low-rank update. 
292 actions.

Huge savings in computational cost. 
Scales with model dimension because observations 

stay the same.



Summary
• We are developing methods to assess uncertainty in the 

recovered parameters in soft tissue. 

• This is done within the framework of Bayesian inversion. 

• FEniCS and dolfin-adjoint makes assembling the equations 
relatively easy, solving them is tougher! 

• Next steps: exploring non-Gaussian nature of posterior 
using Hamiltonian MCMC. Requires derivatives. 

• Paper soon on arXiv: infinite-dimensional setting, full 
derivations of equations, 3D problems.
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