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Overview

Motivation.
Bayesian approach to inversion.

Relate classical optimisation techniques to the Bayesian
Inversion approach.

Using a domain specific language for variational forms to solve
the equations.

Low-rank updates to deal with high-dimensional posterior
covariance.

Example problem: sparse surface observations of a solid block.
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Votivation.



PHILIPS
L12-5/SmPrt AdBrst

FR 15Hz
R1

2D
77%
C 60
P Med

Res

ELASTO:
Opt 1
S

P High

D Med

BREAST CYST
ANECHOIC IMAGING

Source: Phillips




f_23
6.000e-01

O
o

O
~

lllllllllllllllllm

3.000e-01







Q: What can we infer about the parameters inside the
domain, just from displacement observations on the
outside”?

Q: Which parameters am | most uncertain about?



Framework



X~ N(;( rprior)

W
i E ~ N0, Ioise) v
Parameter Map
X y % Yobs
—,

Inference

Wposterior(X | y) X Tikelihood (y I X)ﬂ-prior(X)

1 , 1
Tyoseroly) x 0 (=3l = GIEs = 3lx =l )

noise 2 prior
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Gg: X —=Y

Inverse Problems: A Bayesian perspective.
Stuart, Acta Numerica (2010).

Contribution: Bayesian inverse problems in an infinite-
dimensional setting. When is a Bayesian inverse
problem well-posed?
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/Cb\

The displacements y for a given material parameter x are defined by a the minimum point
of the following Lagrangian:

L(y,x) :/qu(y,x) dx—/rt-y ds

where the energy density functional 4 1s defined through the following equations:

(U, x) = g(/c —d) — xIn(J) + g In(J)2,

O¢
F = X = |+ Vy,
C=F'F
IC = tr(C),

J = detF.
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Even once discretised (Finite Element Method)

thRn%Rm

Colin27 brain atlas
20% extension test, 16 Core Xeon, 1.12 million cells, ~29 secs.

n=1,112,000
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Problems

* Evaluating parameter-to-observable map is very expensive.
* Discretised parameter space can be very large.

* Qutcome: Exploring posterior with ‘traditional sampling’ is not
going to work.
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Solutions

1. Connect Bayesian approach to ideas from
classical optimisation. Using derivatives of
posterior in parameter-space (Girolami).

2. Exploiting low-rank structure of prior to posterior
covariance updates (Flath 2012, Spantini 2015).
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71-posterior(X ‘ )/) X Tikelihood (y ‘ X)ﬂ-prior(X)

XMAP = a;gerlggx Wposterior(x V)

XMAP
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L Inearise
y = AX

— In Tposterior (X[Y) = _Hy AXHQ—l T35 HX XOH —1

n0|se D“Or
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lake the derivative

g(xmap) =V ( |y — AXHZ | +2\|X—Xo!!21)

n0|se prior /' | y— =Xmap

— ATr 1 (y AXmap) —+ rprlor(Xmap — XO)

noise

=30

XMAP = (r&mr — ATrnolgeA) (ATrnoisey + rpriorXO)
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MAP estimate. Bound-constrained Quasi-Newton BLMVM
with More-Thuente line search and ‘correct’ Riesz map.
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and the second derivative...

H=Vy,g=r_+ —A'rT1 A

prior nolse

_ _ —1
svap = (Moo, — ATT S A) (AT T gisey + Morioro)

prior noise

(After a fair bit of manipulation...)

—1
Thosterior ™ N (xmap.- H™ )
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MAP estimate

XMAP




XMAP

H™ (xvap)

cov(x




T hosterior ™ N (Xmap. H—l)

approx 1
7Tposterior ™~ N(XMAP' H (XI\/IAP))

XMAP 1
H™*(xmaP)

YN

cov(x | y)

XCM
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1ools

* The FEnICS Project is
collection of free software for

A

the automated, efficient :
solution of differential 3 FENICS
equations using the finite DMrOJelt
element method.
http://fenicsproject.org

* dO|f|n'adJO|nt aUtOmatICa| |y Wells, Logg, Rognes, Kirby and many, many others...
derives the discrete adjoint,
tangent linear and higher- % dolfin-adjoint
order adjoint models from a

high-level description of the
forward model.

http://www.dolfin-adjoint.org

Farrell, Funke, Ham and Rognes.
2015 Wilkinson Prize for Numerical Software.
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/Cb\

The displacements y for a given material parameter x are defined by a the minimum point
of the following Lagrangian:

L(y,x) :/qu(y,x) dx—/rt-y ds

where the energy density functional 4 1s defined through the following equations:

(U, x) = g(/c —d) — xIn(J) + g In(J)2,

O¢
F = X = |+ Vy,
C=F'F
IC :tr(C),
J = detF.
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The displacements y for a given material parameter x are defined by a the minimum point
of the following Lagrangian:

E(y,X)Z/Q'dJ(y,X) dx—/rt-y ds

where the energy density functional v is defined through the following equations:

Y(u, x) = g(/c —d) —xIn(J) + % In(J)?,

F:§§:I+V%
C=F'F,
Ic =tr(C),
J = detF.

from dolfin import =*

mesh = UnitSquareMesh(32, 32) phi = (x/2.0)x(Ic = dims) = x¥in(J) + (Imbda/

2.0)*x(An(J)) **2
Pi = phi*dx

= VectorFunctionSpace(mesh, "CG", 1) ' , . , _ '
# gateux derivative with respect to u in direction v

= FunctionSpace(mesh, "CG", 1) . _ .
F = derivative(Pi, u, v)

# and with respect to u in direction du

solution
test functions J = derivative(F, u, du)

U
v
#
u = Function(U)
#
v = TestFunction(U)
#

. . u_h = Function(U)
incremental solution F o - 1 F. { n})
du = TrialFunction(U) -4 = repracelr, iu: u_
J_h = replace(J, {u: u_h})

x = interpolate(Constant(1.0), V)

lmbda = interpolate(Constant(100.0), V) solve(F_h == 0, uh, bes, J=J h)

dims = mesh.type() .dim()

I = Identity(dims)
F =1+ grad(u)

C = F.T*F

J = det(F)

Ic = tr(C)
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Q: What can we infer about the parameters inside the
domain, just from displacement observations on the
outside”?

Q: Which parameters am | most uncertain about?
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Optimal low-rank updates

Yy
rprior e rposterior

Critical idea: Observations are only informative on
a low-dimensional subspace of the parameter
space, relative to the prior. Spantini et al. (arXiV)

d2(A, B) = Z n%(o;)

Aw; = Bojw;,

FOrstner metric
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Matrix-free Krylov-Schur (SLEPC).
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0 500 1000 1500 2000 2500
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0 500 1000 1500 2000 2500

1

Matches trends from Flath et al. p424 for linear parameter to observable maps.
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Tralling elgenvector

Direction in parameter space least constrained by the
observations
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| eading Eigenvectors

Direction in parameter space most constrained by the
observations
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leading_eigenvector_0
1.250e+01
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leading_eigenvector_1
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Full Hessian.
4000+ actions.

Low-rank update.
292 actions.

Huge savings in computational cost.
Scales with model dimension because observations
stay the same.
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summary

We are developing methods to assess uncertainty in the
recovered parameters in soft tissue.

This is done within the framework of Bayesian inversion.

FENICS and dolfin-adjoint makes assembling the equations
relatively easy, solving them is tougher!

Next steps: exploring non-Gaussian nature of posterior
using Hamiltonian MCMC. Requires derivatives.

Paper soon on arXiv: infinite-dimensional setting, full
derivations of equations, 3D problems.
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