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Abstract. Electronic Toll Pricing (ETP), a location-based vehicular service, al-
lows users to pay tolls without stopping or even slowing down their cars. User
location records are collected so as to calculate their payments. However, users
have privacy concerns as locations are considered as private information. In this
paper, we focus on user traceability in ETP systems where anonymous location
records are stored by the service providers. Based on user toll payment informa-
tion, we propose a post-hoc analysis of user traceability, which aims at computing
a user’s all possible traces. Moreover, we propose several methods to improve the
effectiveness of the analysis by combining other contextual information and pro-
pose a number of optimisations to improve its efficiency as well. We develop a
prototype and evaluate the effectiveness of the analysis by conducting extensive
experiments on a number of simulated datasets.

1 Introduction

Electronic Toll Pricing (ETP) systems, by collecting tolls electronically, aim to reduce
users’ delay at toll gates and thus to increase the throughput of public transportation
networks. Cars are automatically identified when passing check points. The locations of
the check points and the passing time are collected and stored by toll servers in the form
of location records, which are used to calculate users’ payments afterwards. Nowadays,
the free access to civilian Global Navigation Satellite Systems (GNSS) has upgraded
ETP into a more sophisticated service. Compared to location sensing techniques, e.g.,
number plate recognisers, GNSS positioning covers a much wider area. This leads to
smart pricing and “Pay-As-You-Drive” (PAYD), binding a user’s insurance to the roads
he has actually travelled [1]. Meanwhile, this also causes more privacy concerns as more
user records are collected by the system. For instance, by processing location records,
the toll server can learn users’ home addresses or medical information [2]. User mobility
pattens can also be extracted [3], which are useful to construct user profiles.

In the last few years, protecting location privacy in ETP and PAYD systems has been
widely studied [1, 4–9]. The general idea is to anonymise users’ records and hide the
links among them. In other words, ETP systems do not leak either the owner of a loca-
tion record (unlinkability) or the fact that two records belong to the same user (untrace-
ability). In general, privacy-preserving ETP systems can be divided into two categories
based on whether users’ locations are stored on user devices or the toll server. The first
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type of ETP systems, e.g., see [6], where users do not send locations to toll servers, of-
fer better privacy protection. Whereas, the introduction of sophisticated cryptographic
techniques such as zero-knowledge proofs usually imposes heavy computation over-
heads on user devices. By contrast, the second type of ETP systems (e.g., see [5, 7]),
where location records are anonymised, have less computation overheads on user de-
vices and can also support other applications, e.g., traffic monitoring and control. How-
ever, as such ETP systems focus on protecting a user’s privacy and enforcing correct
toll calculation, we notice that they usually tend to ignore the threats after user payment
information has been calculated or collected by the server. Once users’ payment infor-
mation becomes part of the adversary’s knowledge, the claimed user location privacy
can be reduced or even nullified. For example, if in a given user’s collected location
records, there is only one combination of locations which have the same cost as his
tolls, then the user’s privacy is completely broken. In this paper, we focus on a user’s
untraceability, which is considered as a stronger requirement than unlinkability, in this
big type of ETP systems. We describe a user’s traceability by a set of possible traces he
might have travelled, and compute or de-anonymise such sets in a certain period (called
a toll session) based on users’ payments and other available contextual information.

Related work. De-anonymisation has been applied in many areas, e.g., datasets [10]
and social networks [11, 12]. The idea of de-anonymisation is to find the correlation
of two elements by utilising background information. Narayanan and Shmatikov show
that visitors of a website can be identified by combining their group membership infor-
mation in social networks [11]. They also demonstrate that information from different
data sources can be combined to de-anonymise a user in large sparse datasets [10].

With respect to location privacy, Gruteser et al. explore the technique of multi-
target tracking to link location records of a user [13, 14]. After learning one of a user’s
locations, the user’s whole trace can thus be obtained with a high probability. However,
in the context of ETP, to the best of our knowledge, this paper is the first attempt to
investigate threats on privacy by de-anonymising users’ traces based on toll payments.

Our contributions. We study the threats on user traceability in the ETP systems col-
lecting anonymised location records. A post-hoc user traceability analysis using user
toll payment information and such anonymised location records is proposed from the
view of the adversary. We show that its effectiveness can be improved by taking into
account additional information which is easily obtained, e.g., maps. For the sake of
efficiency, we propose several optimisations to make the analysis more practical. We
develop a prototype and evaluate the analysis on a number of simulated datasets.

Structure of the paper. After introducing our framework, the adversary model and the
notion of traceability sets (Sect. 2), we first propose an algorithm calculating users’
traceability sets based on the fact that a user’s trace in a toll session should cost the
same as his toll payment (Sect. 3). Subsequently, we explore two types of contextual
information that can help the adversary to reduce the size of the traceability set. One
is about temporal and spatial constraints between location records (i.e., reachability
and connectivity) while the other concerns users’ repetitive behaviour patterns (i.e., ses-
sion similarity) (Sect. 4). To improve the efficiency of our algorithm, we propose three
optimisations in Sect. 5. The experimental results show that our analysis is effective
(Sect. 6). We conclude the paper in Sect. 7 with some research directions for the future.



2 Preliminaries

2.1 Formal Framework

Let U be the set of users who register an ETP service and L be the set of all locations
that can be passed by users. In practice, time is always discrete with minutes or seconds
as the minimum unit. We use T to denote the totally ordered set of all discrete time
points whose granularities are determined by applications.

Using a location, in the scenario of ETP, we can identify the corresponding road
segment between two intersections. We call this segment a link and denote it by a pair
〈`1, `2〉, where `1 and `2 are the two end locations. When two links shared one end
location, we say they are consecutive. Formally, let `k1 = 〈`1, `2〉 and `k2 = 〈`′1, `′2〉
be two links. If `2 = `′1 or `′2 = `1, then they are consecutive, denoted as `k1 ∼ `k2.
Given a map, we use LK ⊆ L× L to denote the set of all links on it.

A typical anonymised location record collected by toll servers can be abstracted in
the form of 〈`, t〉, indicating that a user passed location ` at time t. As a user’s location
records transmitted on a link can be easily linked to each other, we consider links as
the smallest units in our further analysis. Thus, instead of location records, we have
link records, e.g., 〈`k, te, tx〉 where te denotes the time the user entered `k and tx is
the time the user exited `k. To calculate users’ tolls, toll servers first assign fees to link
records based on a charging policy. The charging policy can be modelled as a function
f : LK × T → R, calculating the fee of a link according to the time a user entered the
link, e.g., te.

Tracking technologies proposed in the last few years (e.g., see [14, 15]) allow us
to make a further abstraction. As the adversary is able to link a user’s link records
together with a relatively high confidence when the user does not stop his car, these
link records construct a trip. A trip is a sequence of link records a user continuously
transmitted from one place to another. The order between links is determined by their
time stamps. Suppose tr is a trip, denoted by (〈`k1, te1 , tx1

〉, . . . , 〈`kn, ten , txn
〉) and

tδ is the minimum stay time of users before travelling on the next link. Then we have
`ki ∼ `ki+1∧0<(tei+1−txi) ≤ tδ for 1≤ i<n. We use tr.startLink and tr.startTime
to denote its starting link, i.e., `k1 and the corresponding entering time te1 of a trip tr.
Similarly, we have tr.endLink = `kn and tr.endTime = txn

. The length of tr , the
number of links in the trip, is denoted as len(tr). Using link fees, we can calculate the
corresponding fee for a given trip tr, i.e., fee(tr) =

∑
0<i≤len(tr) f(`ki, tei). For two

trips tr1 and tr2 with tr1.startTime < tr2.startTime, the distance between them,
i.e., d(tr1, tr2) is computed as the length of the shortest path connecting tr1.endLink
and tr2.startLink . In the following discussion, we fix a toll session and use T R to
represent the set of trips transmitted by all users.

During a toll session, a user’s real trace can thus be represented as a set of his trips
stored in T R. We call this set a trace. Suppose Tru be the real trace of user u in a toll
session. The amount of tolls that u has to pay is costu which equals to

∑
tr∈Tru

fee(tr).

Example 1. Fig. 1 shows a fraction of a map. There are five locations `1, . . . , `5, which
are the positions of five intersections. We also have four links `k1, . . . , `k4 where `ki =
〈`i, `i+1〉 (i = 1, . . . , 4). Suppose a user moves from `1 to `5 with one-hour stay at `3



and t`i is the time the user passes `i. Then he has two trips with tδ being 30 minutes –
(〈`k1, t`1 , t`2〉, 〈`k2, t`2 , t`3〉) and (〈`k3, t`3 , t`4〉, 〈`k4, t`4 , t`5〉).
The notations used in this paper are summarised in Tab. 1

U set of users
L set of locations
T set of time points
LK set of links
T R set of trips

fee(tr) trip tr fee
costu user u’s toll payment
Tru a trace of user u

d(tr1, tr2) distance between trips tr1 and tr2

Table 1: Notations. Fig. 1: An example of a user’s trips.

2.2 Adversary Model

The adversary has the motivation to obtain users’ travel history (i.e., traces), because
extracting traces is an essential preliminary step towards further data inference, e.g.,
trajectory pattern mining [3], location-based recommendation, car pooling and friend
finder [16, 17]. In this paper, we assume that toll servers are malicious and collude with
the adversary, which makes users’ location records and toll payment information part
of the adversary’s knowledge. This assumption is realistic as the servers may sell their
databases to, e.g., advertising companies, to have additional revenues. In the sequel,
we focus on post-hoc analysis, meaning that the adversary analyses users’ traces after
users’ toll payment information has been calculated and agreed by the users.

Besides, we assume the adversary has access to some common knowledge such
as maps, the maximal speeds of cars, etc. Such information is easy to obtain, and the
adversary can extract further information from it. For example, using maps, for any two
links, the adversary can learn their distance. Such information is useful for the adversary
to reduce their uncertainty on users’ traces.

2.3 Traceability Sets

In the last few years, a number of measurements for location privacy have been pro-
posed (e.g., see [14, 18]). As the adversary’s aim is to trace users, inspired by the notion
of anonymity sets by Chaum [19], we propose traceability sets to measure users’ trace-
ability. A traceability set consists of all traces that are possibly linked to a given user
from the adversary’s point of view, including the user’s real trace. We use ASTR(u) to
denote user u’s traceability set.

Without considering extra information such as maps, i.e., the adversary only has
access to users’ anonymous trips T R and users’ toll payments, the initial traceability
set for a user u in the given toll session can be computed as follows:

ASTR(u) = {Tr ⊆ T R |
∑
tr∈Tr

fee(tr) = costu},

based on the fact that a user’s trace should cost the same as his toll payment.



3 An Algorithm for Computing Traceability Sets

In this section, we propose an algorithm to construct users’ initial traceability sets,
which is inspired by a solution to the subset sum problem (SSP). The subset sum
problem can be formulated as follows [20]: Given a finite set A, a weight function,
w : A → N, and a constant s ∈ N, determine whether or not there exists a subset
B ⊆ A such that

∑
a∈B w(a) = s. This ‘yes/no’ decision problem has been proved

to be NP-hard [21] and has no polynomial time solution so far. However, to the SSP
with certain restrictions, polynomial time solutions have been proposed in the last few
decades [22]. An optimal solution is proposed by Pisinger [23], which has linear com-
putation time when each element in A is positive and bounded with the same constant.
Let N be the size of A and W be the upper bound. The elements in A are ordered and
then processed one after another. For each value in [s−W, s+W ], the algorithm main-
tains the corresponding dominating subset the summation of whose elements is equal
to the value. The algorithm returns ‘yes’ if s has such a subset. In this way, the size of
the intermediate set remains 2W and the computation complexity is thus O(NW ).

As we have mentioned before, a user’s initial traceability set is composed of the
traces whose cost equals the user’s toll payment and the adversary’s aim is to further
reduce the size of the set. Thus to compute a user’s traceability set is essential for the
adversary. This computation can be reduced to the SSP, thus it is also NP-hard and
the corresponding computation time is exponential in users’ payments. However, in-
spired by Pisinger’s algorithm, we design an algorithm which has a good efficiency.
The trips are non-increasingly ordered according to their fees and processed one after
another. The algorithm maintains an intermediate set to store the subsets of earlier trips
which are possible to construct a trace using the further trips to be processed. Simi-
lar to Pisinger’s algorithm, the size of this intermediate set determines the number of
operations needed. Therefore, we should keep it as small as possible to accelerate the
computation of traceability sets.

More specifically, we take the following heuristics: (1) if the cost of the trips in
a subset is larger than the user’s payment, then the subset is removed as all fees are
positive and the cost will never be reduced to the user’s payment; (2) if the future trip
with the minimum fee is added into a subset and the total cost of the resulted subset
is larger than the payment, the subset can also be removed; (3) if all future trips are
added into a subset and the new subset’s cost is still less than the payment, then it is
also removed. Alg. 1 shows the algorithm in more details.

The set U is the intermediate set which consists of all plausible subsets up to the
current trip and initially it only consists of the empty set. For any trip in T R, before
adding to a subset S ∈ U , the algorithm checks the plausibility of U first with heuristics
(2) and (3) (line 12). Note that restFee is the cost of the future trips that have not been
processed and minFee is the minimum fee among all trips. After the trip is added, if
the cost of the new subset equals costu, the set is added to the result ASTR(u). It is
added into the set T when the corresponding cost is smaller than costu and removed,
otherwise. At the end of each loop, U is updated by unionising T and restFee is sub-
tracted by the trip’s fee. After obtaining ASTR(u), the adversary starts to reduce it by
using additional contextual knowledge, which is discussed in the following section.



Algorithm 1 An algorithm to build an initial traceability set for a user u.
1: FUNCTION: buildTraceSet
2: INPUT: T R, costu
3: OUTPUT: ASTR(u);
4: sort(T R, non-increasing);
5: minFee = mintr∈TR fee(tr);
6: restFee =

∑
tr∈TR fee(tr);

7: ASTR(u) = ∅;
8: U ← {∅};
9: for all tr ∈ T R do

10: T = ∅;
11: for all S ∈ U do
12: if restFee +

∑
tr′∈S fee(tr′) < costu ∨minFee +

∑
tr′∈S fee(tr′) > costu then

13: U = U/{S};
14: else
15: if fee(tr) +

∑
tr′∈S fee(tr′) = costu then

16: ASTR(u) = ASTR(u) ∪ {S ∪ {tr}};
17: else
18: if fee(tr) +

∑
tr′∈S fee(tr′) < costu then

19: T = T ∪ {S ∪ {tr}};
20: end if
21: end if
22: end if
23: end for
24: U = U ∪ T ; restFee = restFee − fee(tr);
25: end for
26: return ASTR(u);

4 Reducing Traceability Sets

Once the adversary explores more information, he can improve the post-hoc analysis of
a user’s traceability by reducing the traceability sets.

4.1 Reachability and Connectivity

A user’s real trace in a toll session has certain constraints among trips, which can be
used to remove traces in his traceability set. We discuss two of such constraints – reach-
ability and connectivity.

Both of the constraints benefit from maps, which are easy to obtain, especially after
free high-precision maps such as Google maps become accessible to ordinary users.
Given two positions, the adversary can compute the distance between them. Combining
with users’ maximum speed, we have the first constraint – reachability between trips.
Intuitively, given two trips, if along the moving direction, users cannot move to the
starting point of the later trip from the ending point of the earlier trip even with his
maximum speed, then the later trip is considered not reachable from the earlier one. We
use maxSpeedu to denote the maximum speed allowed by user u’s vehicle. Recall that
d(tr1, tr2) is the distance between two trips.



Definition 1 (Reachability). Let tr1 and tr2 be two trips in T R and tr1.endTime <
tr2.startTime. We say tr2 is reachable for user u from tr1 (denoted as tr1 ; tr2) if
and only if

tr2.startTime − tr1.endTime >
d(tr1, tr2)

maxSpeedu
.

This relation is reflexive, transitive but not symmetric because the connection between
two trips may be unidirectional.

The second constraint is connectivity which is defined on two successive trips. Two
trips are successive if in a trace, there are no other trips started between their starting
time. For any two successive trips, they are connected if the earlier trip’s ending point
coincides with the other trip’s starting point. In practice, due to the errors from position-
ing devices, even two positions from a static user may be different. Furthermore, it is
possible that some vacant time exists between two trips before the first location record
of the later trip is sent to the server. Therefore, we introduce a tolerance parameter dδ
to indicate the maximum distance allowed between two connected points.

Definition 2 (Connectivity). Let tr1 and tr2 be successive trips and tr1.endTime <
tr2.startTime. We say tr1 is connected to tr2 (denoted as tr1 → tr2) if and only if

d(tr1, tr2) < dδ.

In practice, we cannot expect any two successive trips are connected because the tolling
road sections are not always connected. Therefore, we define a metric called connection
rate to measure the proportion of connected trips in a user’s trace. Given a trace Tr , its
connection rate cr(Tr) can be calculated as follows:

cr(Tr) =
|{〈tri, trj〉 | tri ∈ Tr , trj ∈ Tr s.t. tri → trj}|

|Tr |−1
.

Let c be the pre-defined minimal connection rate. Making use of the above two
constraints, i.e., trip reachability and connectivity, the adversary can further reduce a
user u’s traceability set ASTR(u) to

{Tr ⊆ T R|(∀{tri,trj}⊆Tr tri ; trj ∨ trj ; trj) ∧ cr(Tr) > c ∧
∑

tr∈Tr

fee(tr) = costu}.

4.2 Session-to-Session Similarity

Users tend to have regular mobility patterns, which has been greatly discussed in the lit-
erature (e.g., see [2, 3]). This implies that a user’s traces in different sessions should also
have some similarity. Our aim is to show how the adversary can explore the similarity
between toll sessions to reduce his uncertainty on users’ traces. As users’ daily activi-
ties are fixed to some extent, the places they linger are also fixed and in fact contained
among the starting links and the ending links of trips. Since users’ real stay places occur
repetitively from session to session, this makes them have higher occurrence frequen-
cies in sessions compared to other places. Our idea is to rank traces in a traceability set
based on links’ similarity degrees determined by their occurrence in sessions.

Given a link `k, we say that `k has appeared in a trace Tr denoted as `k∈Tr if there
exists a trip tr ∈ Tr such that tr.startLink = `k ∨ tr.endLink = `k.



Definition 3 (A Link’s Similarity Degree). Let ASTR1, . . . ,ASTRn be a user u’s
traceability sets in n sessions and `k be a link appearing in at least one trace in any
traceability set. The similarity degree for the link `k (i.e., sim(`k)) is measured as:

sim(`k) =| {ASTRj |∃Tr ∈ ASTRj s.t. `k∈Tr}| .

It is easy to see that 1 ≤ sim(`k) ≤ n. For a traceability set, we can evaluate the sim-
ilarity degree of each trace in it by the average similarity degree of the links appearing
in the trace as follows:

S(Tr) =
∑
`k∈Tr sim(`k)

|Tr |
.

For the traces in a traceability set, the adversary can thus have an approximate dis-
tribution over them based on their similarity degrees. This distribution represents the
probabilities of the user to travel on each trace in the set. Given a user u and ASTRi,
we use pu(Ti = Tr) to denote the probability of trace Tr being u’s real trace in session
i, which is computed as follows:

pu(Ti = Tr) =
S(Tr)∑

Tr ′∈ASTRi
S(Tr ′)

.

This distribution enables the adversary to have a better guess on the user’ real trace.

5 Improving Efficiency of the Post-hoc Analysis

From the above discussion, we can see that the initial traceability set is essential for the
subsequent analysis. Although in Alg. 1, we have used the methodology of dynamic
programming to improve its efficiency, Alg. 1 is still time-consuming as the computa-
tion complexity remains exponential in users’ payments. Recall that we can keep the
intermediate set U in Alg. 1 as small as possible to reduce the calculation time. Along
this direction, we propose three optimisations – on the fly trip non-overlapping detec-
tion (OTF), weak user first (WUF) and parallel traversing (PTR).

OTF. This optimisation explores a relation between trips – non-overlapping. Intuitively,
as users never travel at two trips at the same time, in a trace, any two trips should be
generated one after another and their travel periods should not overlap.

Definition 4 (Non-overlapping). Let tr1 and tr2 be two trips in T R. Trip tr1 and tr2
do not overlap (denoted as tr1 ∗ tr2) if and only if:

tr1.endTime ≤ tr2.startTime ∨ tr2.endTime ≤ tr1.startTime.

This relation is irreflexive and symmetric, but not transitive.
From the definitions of reachability and non-overlapping, we can see for any two

trips tr1 and tr2, if tr1 ; tr2 then tr1 ∗ tr2 as the time interval between two reach-
able trips can never be negative. However, compared with reachability check, non-
overlapping detection is more efficient as only the simple comparison between time
stamps is involved. Whereas, the distance between two trips has to be calculated to



verify reachability, which is time-consuming especially in the case when the number
of trips is large. Therefore, due to its efficiency, we add non-overlapping as another
condition when deciding whether to add a new subset into the intermediate set or the
traceability set (line 15 and 18).

WUF. As mentioned before, the time to compute a user’s traceability set will become
unacceptable when his payment is big.3 However, if users with small fees (called weak
users) are processed first, then users with large payments can be processed based on
the trip set with weak users’ traces removed. A smaller input T R in Alg. 1 thus results
in less computation time and less memory consumption. Moreover, if we calculate a
user’s traceability set starting from the weakest user, a set of partitions of the trip set is
obtained, each of whose blocks corresponds to a user’s trace. A user’s traceability set
can then be constructed by all his traces occurring in those partitions. Alg. 2 gives more
details of this calculation.

Algorithm 2 Weak user first Algorithm.
1: PROCEDURE WUF
2: INITIAL: ∀u ∈ U ,ASTR(u) = ∅;
3: INPUT: T R, P = (u1, . . . , un)
4:
5: AS = buildTraceSet(T R, costu1);
6: for all Tr ∈ AS do
7: ∀i > 1,AS(i)old = ASTR(ui)
8: WUF(T R/Tr , (u2, . . . , un));
9: if ∃i ≤ n,AS(i)old 6= ASTR(ui) then

10: ASTR(u1) = ASTR(u1) ∪ {Tr};
11: end if
12: end for
13: return;

Users are first ordered in a sequence P according to their payments where users
with smaller payments are put in front of the sequence. The algorithm takes T R and
sequence P as input and its termination implies the accomplishment of the calculation
of all users’ traceability sets. Users’ traceability sets are initially set empty. The weak-
est user u1’s traceability set AS is first calculated based on our algorithm discussed in
Sect. 3 (line 5). Then for each trace Tr ∈ AS, we update the rest of the users’ trace-
ability sets by recursively calling the algorithm but with the set of trips not contained in
Tr . The increment of one of the other users’ traceability sets indicates that Tr is a trace
that can be included in a partition of T R. It is also added into ASTR(u1) (line 7-11).
When all traces in AS of the weakest user have been tested, all users’ traceability sets
are computed and the whole algorithm terminates.

PTR. In Alg. 1, for each trip in T R, the set U is traversed sequentially from the begin-
ning to the end (line 11 in Alg. 1) and updated at the end of the loop. So the computation
time grows linearly with the size of U , which increases exponentially in the number of
trips processed. However, we find the order of the subsets in U has no impact on the

3 In some extreme cases, the algorithm may run out of the memory.



update of U at line 24. This observation allows us to process multiple subsets in U at
the same time and leads to a parallel implementation.

Let {c1, . . . , ck} be the set of available processors with shared memory, where k
is the number of processors. At the beginning of each loop (line 9 in Alg. 1), we split
the intermediate set U evenly into sets U1, . . . , Uk. Processor ci is then assigned with
Ui, executes the operations at line 11-24 with Ui as input and returns the updated Ui as
output, denoted as U ′i . Afterwards, we update U as

⋃
i∈{1,...,k} U

′
i , which will be used

in the next loop. Although ideally we can accelerate the algorithm by around k times,
due to communication and task scheduling overhead we cannot achieve this in practice.

6 Experimental Results

We have conducted experiments to evaluate our analysis. First, we evaluate the optimi-
sations and show that their combination has the best performance. Then we evaluate the
methods to reduce users’ traceability sets.

Setting of the experiments. The experiments are performed on synthetic datasets gen-
erated by SUMO, a tool simulating urban mobility [24]. Users travel in Luxembourg
city with an area of 51.46 km2. There exist public real trajectory databases such as
the one in [25, 26], but we cannot perform comprehensive analysis, e.g., similarity and
connectivity due to the lack of user profiles and the incompleteness of location records.
Furthermore, as our purpose is to test the effectiveness of the proposed post-hoc analy-
sis, synthetic mobility databases are sufficient.

For each user, we automatically generate a profile including his places of interest
and whether he has kids. Users’ daily activities are generated based on such profiles by
adding some randomness. SUMO takes such activity sequences as input and produces
users’ real traces according to factors such as real-time traffic and vehicle types. In
general, the datasets used in our experiments consist of the trips of 50 users for 10 days,
with each day as a toll session. On average, a user’s real trace on a specific day has about
five trips. The minimum stay time tδ is set to 30 minutes. We implement a prototype
in Python and run the experiments on a computation cluster of nodes with 12 2.26GHz
Intel Xeon Cores, sharing 24GB memory.

Efficiency of the optimisations. We start with evaluating the optimisations. Fig. 2
shows the computation time used to construct users’ traceability sets based on datasets
belonging to different number of users. We have four settings in terms of whether opti-
misations OTF, WUF and PTR are implemented. If no optimisations are implemented,
in about 12 hours, the algorithm can only handle 10 users while using the optimisation
OTF the algorithm can compute the traceability sets for 14 users. The improvement by
WUF is more obvious. A dataset with 16 users is analysed. In our prototype, we sim-
plify PTR by splitting the intermediate set (i.e., U in Alg. 1) only when its size first
reaches 60,000 instead of in every loop due to the restriction of Python. This does not
give us the best efficiency but still saves more than half of the computation time further.
In the following experiments, we use the algorithm with all optimisations implemented.

Effectiveness of the reducing methods. We proceed to show the performance of the
reducing methods as discussed in Sect. 4. We start with reachability and connectivity.
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Fig. 3: Session-to-session similarity.

Both of these two methods need to calculate the distance between successive trips.
However, reachability is verified for each pair of successive trips while connectivity
check relies on connection rates that can only be obtained after all pairs have been
processed. Thus, we can perform reachability check first to reduce total check time.
This is because the traces violating reachability can be immediately removed and there
is no need to check connectivity on them any more. As in our datasets, users are always
simulated to start the next connected trip from the ending link of the previous trip, thus
the parameter dδ is set to zero.

Tab. 2 summarises the results of running our algorithm on datasets with increasing
sizes. Reachability check and connectivity check with connection rates 0.3 and 0.7 are
executed sequentially. We use reduction rate to measure the number of traces removed
from initial traceability sets by each check in addition to the previous one. We use ‘#init-
Trace’ to denote the number of traces in the initial traceability sets (without performing
any checks), and ‘#Trace’ and ‘#Reduc’ to represent the number of traces left and the
reduction rate after each check. Specifically, using reachability check, the proportion of
removed traces stays around 15% when the number of users is larger than 14. Connec-
tivity check removes most of the redundant traces. When the connection rate is 0.3, an
average of 65% of the traces are removed while the connection rate of 0.7 will further
reduce 13.5% of the traces on average. Although a large proportion of traces can be
removed, we can see that more traces are calculated when the datasets have more users.
This also leads to more remaining traces. Thus, we can conclude that when more users
are involved in an ETP system, it provides better privacy protection to users.

To show the effectiveness of session similarity, we fix a user and put him in groups
with increasing sizes. We compare the size of his traceability set in a session. The sim-
ilarity degree is calculated based on ten toll sessions. Let Tr real be the user’s real trace
in the given session. Tab. 3 shows the size of the user’s traceability set and the cor-
responding posterior probabilities of his real trace. Fig. 3 depicts the changes of the
real trace’s probability before and after session similarity is explored by the adversary.
Session similarity does reduce the adversary’s uncertainty about the real trace. For in-
stance, the real trace has a probability 60% in 4 traces which is much larger than the



Table 2: Effectiveness of reachability and connectivity analysis.

#user #initTrace Reachability Connectivity 0.3 Connectivity 0.7
#Trace %Reduc #Trace %Reduc #Trace %Reduc

4 17 17 0% 8 53% 4 24%
6 48 48 0% 16 67% 5 23%
8 99 97 2% 25 73% 7 18%
10 1501 1387 8% 180 80% 14 11%
12 9801 9043 8% 943 83% 49 9%
14 12757 11726 8% 1175 83% 53 9%
16 234167 195750 16% 13706 78% 246 6%
18 1158788 975397 16% 61753 79% 712 5%
20 3800390 3276691 14% 189302 81% 3378 5%
22 6085206 5269807 13% 282897 82% 4268 5%

uniform probability 25% (see the column where the number of users is 16). It is also
clear that the datasets with more users provide better privacy protection as the size of
the traceability set grows from 1 to 9 when the group size increases from 10 to 20.

Table 3: Effectiveness of toll session similarity.
#User=10 User=12 #User=14 #User=16 #User=18 #User=20

#Trace 1 2 2 4 4 9
pu(T = Tr real) 100% 82% 82% 60% 56% 27%

7 Conclusion & Future Work

In this paper, we presented a post-hoc analysis of users’ traceability based on toll pay-
ment information within ETP systems with central toll servers collecting anonymous
travel records. As far as we know, this has not been addressed in the literature.

We first proposed an algorithm based on Pisinger’s solution to the subset sum prob-
lem to compute traceability sets. Then we presented methods to reduce the sizes of
traceability sets using reachability and connectivity of trips. Subsequently, we specified
how to utilise users’ mobility pattern among toll sessions, i.e., session-to-session simi-
larity, to reduce the adversary’s uncertainty about users’ real traces. To improve the effi-
ciency, we have developed three optimisations. We have also implemented a prototype
to evaluate the effectiveness of our analysis on simulated user traces. The experimental
results have shown that the post-hoc analysis is effective to trace users.

There are still several ways to improve our work. First, the design of mobility
datasets has limitations. For instance, users have a fixed set of places of interest in
different sessions. This simplifies our calculation especially when checking connectiv-
ity. The influence of similarity between user profiles is another future work. The results
can help a user to choose groups which offer him better privacy protection. Other infor-
mation can be used to further improve the effectiveness of our analysis as well, e.g., the
frequency of paths taken to a public place. So far, the prototype is only implemented to
show how effective the analysis is. We plan to further improve its efficiency.
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