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Abstract

We present an extended finite element method (XFEM) for 3D non-planar linear
elastic fracture. The new approach not only provides optimal convergence using geo-
metrical enrichment but also enables to contain the increase in conditioning number
characteristic of enriched finite element formulations: the number of iterations to
convergence of the conjugate gradient solver scales similarly to and converges faster
than the topologically-enriched version of the standard XFEM. This has two ad-
vantages: (1) the residual can be driven to zero to machine precision for at least
50% fewer iterations than the standard version of XFEM; (2) additional enrichment
functions can be added without significant deterioration of the conditioning. Nu-
merical examples also show that our new approach is up to 40% more accurate in
terms of stress intensity factors, than the standard XFEM.
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1 Introduction

Following the introduction of the partition of unity method (PUM) [1] a num-
ber of enriched finite element methods have appeared which allow the infu-
sion of a priori knowledge on the solution within the approximation scheme,
thereby enabling the numerical method to reproduce essential features of the
solution. In the context of non-planar fracture, we propose in this paper a new
approach which addresses, at the same time, two of the major difficulties which
have plagued these enriched finite element methods: uncontrolled increase of
the condition number of the system matrix for large enrichment radii (neces-
sary for optimal convergence) or/and large numbers of enrichment functions ;
and the blending between different partitions of unity at the interface between
the enriched and standard regions of the computational domain.

We place ourselves in the context of the extended finite element method
(XFEM) which appeared in 1999 by Ted Belytschko’s group [2,3] and has
been used since then to simulate, among a number of other phenomena in-
volving free boundaries, crack propagation. Through discontinuous and near-
tip enrichment respectively, the XFEM eliminates the need for the mesh to
conform to the crack faces and reduces the density of the mesh around the
crack front [4,5,6]. The first industrial damage tolerance assessment simula-
tions with XFEM were reported in [7,8] and [9] and the method is today in
use industrially, e.g. within the commercial code Morfeo Crack [10,11].

The academic and industrial success of the XFEM is likely attributable to
a large body of research which has been focusing on addressing some of the
shortcomings associated with the 1999 version of the method. We review here
briefly the work related to lack of optimal convergence, blending and condi-
tioning, mainly in the framework of linear elastic fracture mechanics.

In [12] and [13,14], the lack of optimal convergence was observed when only
one element is enriched and as a remedy the enrichment of elements in a fixed
area (independent of the mesh size) around the crack tip/front (geometrical
enrichment) [13,15] was proposed. This geometrical enrichment approach does
restore optimal convergence which is lost when only one element is enriched
(topological enrichment), where the part played by the enrichment vanishes
with the element size. However, enriching an increasing number of nodes, those
which fall within the enrichment zone, as the mesh is refined also creates more
propensity for the system matrix to be ill-conditioned.

Conditioning issues can be solved using special preconditioners [14] and [16];
the degree of freedom (dof) gathering [13,17] technique, which aims at reducing
the variability of the enriched fields in the enrichment zone. Alternatively, the
so-called “Stable” version of the enrichment method may be used, obtained by
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subtracting the projection of the enrichment functions onto the finite element
basis [18].

Blending problems between the enriched and the standard part of the ap-
proximation can also cause lack of optimal convergence or decreased accuracy
depending on the type of enrichment functions used. Several approaches have
been proposed from 2003 to as recently as 2011 [19,20,21,22,23,24].

Numerical integration is also crucial to achieving optimal convergence and
increased accuracy. In particular, it is important to minimize numerical in-
tegration errors which are mostly associated with the singular nature of the
tip enrichment functions. Several integration schemes can be found in the lit-
erature most of which employ element partitioning either solely [3,24] or in
conjunction to special mappings [13,14,25,26,27] while others attempt to com-
pletely avoid element partitioning [28,23,29,30,31]. Methods have also been
introduced which attempt to minimize the number of Gauss points resulting
from element partitioning and singular mappings [32].

Concerning the particular application of enriched finite elements to fracture
mechanics, several extensions of these methods have been proposed to increase
the accuracy of the quantities of interest, i.e. the stress intensity factors. For
example, the addition of higher order terms in the near tip asymptotic fields
allows the direct evaluation of stress intensity factors (SIFs) [33,34,35]. A
second approach is the use of Irwin’s integral [36,37,38]. Finally, specially
tailored error estimators were proposed in a series of papers starting in 2006 for
the generalized finite element method (GFEM) [39] and in 2007 for XFEM [40].
Error estimators [41,42,43] significantly improve the accuracy of the primal
and dual quantities as well as that of the stress intensity factors, or other
quantities of engineering interest [44,45,46].

The development of such error estimators was motivated by the oscillatory
and inaccurate nature of stress intensity factors obtained from XFE solutions
in industrial applications [7]. Since then, significant work has been devoted
(completely or partially) to the evaluation of stress intensity factors using the
interaction integral method within an XFE framework [3,4,5,47,48].

Two of the most important weaknesses mentioned above, which are often cor-
related, are the lack of optimal convergence and the blending problems. For
the former, an attractive solution is the use geometrical enrichment [13,14,15]
in conjunction to dof gathering [13] which also solves the conditioning prob-
lems and greatly reduces the number of enriched dofs. This method, which
has been recently extended to 3D [17], is typically combined with a blending
correction technique in order to provide improved accuracy.

As far as blending is concerned, one of the most successful solutions within the
2D XFEM framework is the corrected XFEM [20] which has been extended and
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combined to dof gathering in the work of Ventura et al. [23]. One drawback of
the corrected XFEM is the fact that, when combined with the standard branch
enrichment functions, it introduces a singularity. The latter is dealt with by
dropping the appropriate equations from the resulting system. Since in 3D
the selection of those equations is not straightforward, Loehnert et al. [24]
introduced an alternative procedure which consists of employing only three of
the four branch enrichment functions.

In the present work, we investigate the combination of the enrichment scheme
introduced in [17] (an extension of dof gathering to 3D) to the corrected XFEM
approach [20] and its extensions [23]. This combination provides a means of
extending the corrected XFEM to 3D without decreasing the number of en-
richment functions (as in [24]) and, in addition improves the performance of
the global enrichment approach and simplifies its implementation.

As a result of the improved conditioning of the resulting method, the pos-
sibility is given, for the first time in 3D XFEM, to study the effect of the
addition of higher order enrichment functions on the overall accuracy of the
method. With existing approaches, higher order enrichment functions can only
be used with topological enrichment since their combination with geometrical
enrichment leads to uncontrolled condition numbers for the system matrix.
We also present a new simple element partitioning technique, associated with
the new enrichment scheme used and present a novel, accurate and robust SIF
evaluation procedure.

We verify the method on a range of 3D problems also involving non-planar
cracks.

2 Problem Statement

Consider the problem of a cracked domain Ω bounded by the boundary Γ
consisting of the parts Γ0, Γu where displacements ū are imposed as Dirichlet
boundary conditions, Γt where the surface tractions t̄ are applied as Neumann
conditions and the crack surface Γc where Γ = Γ0∪Γu∪Γt∪Γc and Γc = Γt

c∪Γ0
c

as depicted in Figure 1. It should be noted that surface tractions t̄c are also
applied along a part of the crack surface (Γt

c).

The weak form of the equilibrium equations is formulated as:

Find a kinematically admissible displacement field u ∈ U such that ∀v ∈ V0

∫
Ω
ε(u) : D : ε(v) dΩ =

∫
Ω
b · v dΩ +

∫
Γt

t̄ · v dΓ +
∫

Γt
c

t̄c · v dΓt
c (1)
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Fig. 1. Cracked Body and boundary conditions.

where :

U =
{
u|u ∈

(
H1 (Ω)

)3
,u = ū on Γu

}
(2)

and

V =
{
v|v ∈

(
H1 (Ω)

)3
,v = 0 on Γu

}
(3)

Functions of H1 (Ω) are implicitly discontinuous along the crack surface.

In the above, ε is the small strain field, D is the elasticity tensor and b is the
applied body force per unit volume.

3 The proposed method

As mentioned in Section 1, the corrected XFEM approach [20] and its exten-
sions [23] will be employed in this work in order to eliminate blending errors.
In this method, the enrichment functions are weighted by a function which
assumes a value of zero for standard elements, a value of unity for elements
with all of their nodes being enriched and varies continuously for elements con-
sisting of both enriched and standard nodes (blending elements). The above
result is achieved by using as a weight function, for every element, the sum
of the shape functions corresponding to enriched nodes. In addition, all nodes
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of blending elements are enriched so that the partition of unity property is
preserved in those elements as well. Finally, shifted enrichment functions are
typically used in order to retain the Kronecker-δ property in enriched elements.

The work of Ventura et al. [23] extended the above concepts by using more
general weight functions, which spread along several layers of elements. The
method was also applied to cases where all enriched degrees of freedom are
constrained to be equal which, for crack problems, is equivalent to using the
degree of freedom gathering technique [13].

The above methods provide a means of eliminating blending errors as well as
obtaining optimal convergence without conditioning problems. However, the
extension of the corrected XFEM to 3D requires the decrease of the num-
ber of tip enrichment functions [24]. Moreover, the extension of the method
of Ventura et al. to 3D would require the extension of dof gathering which
until recently was not possible. In this work, those problems are solved by
combining the enrichment scheme presented in our previous work [17] with a
three-dimensional extension of the blending and shifting techniques presented
in the work of Ventura et al. [23].

3.1 Crack representation

As in [17] the method introduced herein can be used in conjunction to any
of the available crack representation methods, for instance level sets [5,6,49],
vector level sets [50] or a hybrid explicit implicit representation [51].

In the remainder of this work, a level set representation [5,6,49] will be used
and the level set functions will be denoted as φ and ψ. For an arbitrary point
x in the domain:

• φ is the signed distance from the crack surface defined as:

φ (x) = min
x̄∈Γc

‖x− x̄‖ sign
(
n+ · (x− x̄)

)
(4)

where n+ is the outward normal to the crack surface and sign () is the
sign function.
• ψ is a signed distance function such that ∇φ · ∇ψ = 0 and φ (x) = 0 and
ψ (x) = 0 defines the crack front.

The polar coordinates used for the definition of the enrichment functions are
defined as [5,6,49]:
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Fig. 2. Level set functions and polar coordinate system for a planar crack.

r =
√
φ2 + ψ2, θ = arctan

(
φ

ψ

)
(5)

Both the definition of the level set functions and the polar coordinate system
are illustrated in Figure 2 for a simple planar crack.

3.2 Definition of the front elements

A global tip enrichment strategy [17] is adopted in this work, which introduces
a mesh of superimposed elements whose shape functions provide a basis using
which the tip enrichment functions can be weighted. This basis should sat-
isfy the partition of unity property and, in addition, provide spatial variation
along the direction of the crack front while inhibiting variation in the plane
normal to the crack front. The last requirement is introduced in order to avoid
conditioning problems.

Some concepts similar to the superimposed mesh used in this work, are the
analytical patch used in the work of Langlois et al.[52] and the s-finite ele-
ment method [53]. The difference from both methods however is that in the
present method the superimposed mesh is only used for weighting the singular
enrichment functions.

The superimposed mesh consists of a set of points and linear univariate el-
ements along the crack front, as depicted in Figure 3. Boundaries of those
elements are defined by planes passing through the front nodes. The direction
of those planes is defined according to the crack geometry.

In order to facilitate the interactions of the superimposed mesh, defined by
front elements, with the FE mesh an additional parameter similar to the level
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Fig. 4. a) Iso lines of the front parameter η. b) Local coordinate ξ of the front
elements.

sets is defined which varies along the direction of the crack front. This param-
eter assumes integer values on the front nodes and the planes defined by front
nodes and varies linearly in-between (Figure 4).

The local coordinates of the front elements are then defined in a similar manner
to the front parameter as illustrated in Figure 4.

Linear 1D shape functions will be used for the front elements throughout this
work:

Ng (ξ) =

[
1− ξ

2

1 + ξ

2

]
(6)

where ξ is the local coordinate of the superimposed element.

The shape functions of the superimposed elements build a partition of unity, in
addition their shape functions imply spatial variation only along one direction
which is an approximation of the direction of the crack front. As a result these
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can be employed for suitably weighting the tip enrichment functions.

3.3 Tip enrichment

It was shown in reference [17], and confirmed herein, that the proposed method
results in improved conditioning of the resulting system matrices. This enables
the addition of tip enrichment functions derived from higher order terms of the
Williams expansion. Higher order terms have been used as enrichment func-
tions in the 2D XFEM framework in several cotributions [33,34,13,35,36,37,38]
mostly as a means of improving the accuracy of directly computed SIFs. In
the present work, the effect of the higher order terms in the overall accuracy
as well as in the conditioning of the method is studied.

Tip enrichment functions, including the higher order terms are defined as:

Fij (x) ≡ Fij (r, θ) = [F1j (r, θ) , F2j (r, θ) , . . .]T (7)

where

Fnj (r, θ) =
[
r(n−1/2) sin

(
n− 1

2

)
θ, r(n−1/2) cos

(
n− 1

2

)
θ,

, r(n−1/2) sin
(
n− 3

2

)
θ sin θ, r(n−1/2) cos

(
n− 3

2

)
θ sin θ

]
(8)

Parameters r and θ were defined in Subsection 3.1.

Those enrichment functions are derived from the higher order terms of the
Williams expansion in a way identical to the one with which the standard en-
richment functions are derived from the first term of the expansion [2]. A sim-
ilar approach is adopted in some of the works mentioned above [13,36,37,38],
while the rest [33,34,35] use the displacement expressions of the analytical
solution directly as enrichment functions. This kind of enrichment has also
been used in other works [27,54] which do not employ higher order terms and
where it was found that it results in improved conditioning and a reduced
number of enriched dofs. In Chevaugeon et al. [27] this enrichment type was
referred to as ‘vector enrichment’ as opposed to ‘scalar enrichment’, which is
more commonly used in XFEM implementations.

The reasoning behind the use of ‘scalar enrichment’ in this work is as follows:
The scalar enrichment functions essentially form a basis able to represent the
actual solution, and as a result they should be more general than the first
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terms of the asymptotic expansion of the solution. In other words, by varying
the coefficients of the four scalar tip enrichment functions, a variety of combi-
nations can be achieved which also includes the first term of the asymptotic
expansion. Since in our work the enrichment functions are not given the pos-
sibility to vary spatially, which somehow reduces the method’s flexibility, the
use of more general and thus flexible enrichment functions is desirable. This
becomes more obvious when considering the fact that the method is aimed
towards a wide variety of applications where the adopted underlying analyt-
ical solution is not essentially valid. Moreover, scalar enrichment, in contrast
to vector enrichment, involves the same enrichment functions in each spatial
dimension which simplifies the implementation of the method.

The enriched part of the displacement approximation for tip enriched ele-
ments, evaluated at x ∈ Ω, is written as a combination of the tip enrichment
functions (Equation 7) with the global shape functions N g

K associated with
the superimposed elements (Equation 6):

ut (x) =
∑

K∈N s

N g
K (x)

∑
i

∑
j

Fij (x) cKij (9)

where index K refers to nodes of the superimposed mesh and N s is the set of
superimposed nodes.

3.4 Jump enrichment

Jump enrichment functions are defined as:

H(φ) =

{
1 for φ > 0

− 1 for φ < 0
(10)

The definition of φ was given in Subsection 3.1.

3.5 Weight function blending

In the present work two different definitions for the weight functions are used
depending on the enrichment scheme used (topological or geometrical enrich-
ment). In order to justify the use of those different definitions, some of the
conclusions drawn from our previous work have to be taken into account. More
specifically, it was observed that when spatial variation of the enrichment func-
tions is not allowed and geometrical enrichment is used, jump enrichment is
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also needed in tip enriched elements that contain the crack surface in order to
account for displacement jumps caused by higher order terms of the near tip
solution which can no longer be approximated by the tip enrichment functions
since spatial variability is prohibited. When the enrichment radius contains
only a couple of layers of elements the above situation does not cause any
problems, however for larger enrichment radii the accuracy can deteriorate.
As a result for the case where geometrical enrichment, with a large enrich-
ment radius, a definition for the weight function is required which allows the
enrichment of some nodes with both tip and jump enrichment functions.

Let NT be the FE shape functions of the underlying mesh, the weight function
for topological or geometrical enrichment with a small enrichment radius re
assumes the form (Figure 5 a)):

ϕ (x) =
∑

T∈N t1

NT (x) (11)

where N t1 is a set of nodes including all nodes belonging to elements which
contain the crack front or nodes lying inside the enrichment radius. This def-
inition is identical to the one proposed by Fries [20]. It should be noted that
in this case only one layer of blending elements is employed (Figure 5 a)).

For geometrical enrichment, the weight function definition of Ventura et al. [23]
will be used where the number of layers of blending elements can be controlled
by appropriately defining the parameters involved. In more detail, once the
enrichment radius re is given, an additional distance ri < re has to be specified
so that the nodal values of the weight function ϕI take a value of unity inside
the volume defined by ri, a value of zero outside the volume defined by re and
vary as a ramp function of order n in between:

ϕI =


1, gI < 0
(1− gI)n , 0 < gI ≤ 1
0, gI > 1

(12)

where

gI =
rI − ri
re − ri

(13)

and rI are the nodal values of parameter r defined in Subsection 3.1. Parameter
n will be given a value of unity so that the weight function varies linearly.

Weight function values are obtained from the nodal values through FE inter-
polation:
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Fig. 5. Weight functions for a) topological and b) geometrical enrichment.

ϕ (x) =
∑

T∈N t

NT (x)ϕT (14)

where N t is the set of tip enriched nodes and includes all nodes that belong
to an element with at least one node inside the enrichment radius.

In Figure 5, an illustration of the definition of the weights for both of the cases
mentioned above is given. For the second case, a linear ramp function is used.

Both of the above definitions refer to the weights used for tip enrichment
functions. The weights for the jump enrichment functions are defined as:

ϕ̄ (x) = 1− ϕ (x) (15)

From the above it is clear that the distance ri can be used to determine the
length of the blending area (number of layers of blending elements). Moreover,
in blending elements that contain the crack both jump and tip enrichment is
used which as mentioned above is necessary when geometrical enrichment is
used. By combining the above it can be concluded that a value close to the
mesh parameter h should be chosen for parameter ri. By adopting a sufficiently
small value, it can be ensured that even for large values of the enrichment
radius re all of the tip enriched elements that contain the crack, except from a
small number of elements around the crack front, will also be jump enriched.
It should be noted that if the enrichment radius re is given a smaller value
than the value defined for ri then the first definition for the weight functions
is employed.
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3.6 Enrichment function shifting

In Reference [23] two types of shifting are considered; the first consists in
shifting the product of the weights and the enrichment functions, while the
second consists in shifting only the enrichment functions and then weighting
the shifted enrichment functions. It is demonstrated that only in the latter
case the resulting approximation is different, and provides accuracy that is
improved with respect to the standard XFEM approximation for both of the
weight function definitions presented in the previous subsection. As a result,
the second type of shifting will be used throughout this work. More details
regarding the different types of shifting considered can be found in Refer-
ence [23].

Shifting of the tip enrichment functions is realized by obtaining the nodal
values of the enrichment functions (multiplied by the front element shape
functions), interpolating them using the finite element shape functions and
subtracting them from the enrichment functions. Weighting, is realized by
multiplying the shifted enrichment functions by the weight function:
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ut (x) = ϕ (x)︸ ︷︷ ︸
weight function


∑

K∈N s

N g
K (x)

∑
i

∑
j

Fij (x)

︸ ︷︷ ︸
enrichment function

− (16)

−
∑

T∈N t

NT (x)
∑

K∈N s

N g
K (xT )

∑
i

∑
j

Fij (xT )

︸ ︷︷ ︸
FE interpolant of the nodal values

 cKij

For jump enriched elements, simple nodal shifting is used:

uj (x) = ϕ̄ (x)
∑

J∈N j

NJ (x) (H (x)−HJ)bJ (17)

where N j is the set of jump enriched nodes and includes all nodes whose
support is divided in two by the crack and in addition belong to elements
where the weight function ϕ̄ (x) assumes values greater than zero (Figure 6).

3.7 Displacement approximation

With all the above considerations in place, the displacement approximation
for the proposed method is:

u (x) =
∑
I∈N

NI (x) uI + ϕ̄ (x)
∑

J∈N j

NJ (x) (H (x)−HJ)bJ+

+ ϕ (x)

 ∑
K∈N s

N g
K (x)

∑
i

∑
j

Fij (x)−

−
∑

T∈N t

NT (x)
∑

K∈N s

N g
K (xT )

∑
i

∑
j

Fij (xT )

 cKij (18)

where (see Figure 6):

N is the set of all nodes in the FE mesh.
N j is the set of jump enriched nodes. This nodal set includes all nodes whose

support is split in two by the crack and in addition belong to elements
where the weight function ϕ̄ (x) assumes values greater than zero.
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N t is the set of tip enriched nodes. This nodal set includes all nodes that
belong to an element with at least one node inside the enrichment radius.

N s is the set of nodes in the superimposed mesh defined in Subsection 3.2.

The displacement approximation of the method is quite simple and does not
involve the introduction of special points along element boundaries as in [17].
As a result the extension of the method to higher order finite elements would
be straightforward.

4 Element partitioning

Element partitioning and special coordinate transformations are employed in
order to minimize numerical integration errors for the enriched part of the
approximation. In the present work, an element partitioning algorithm similar
to the one described in Loehnert et al. [24] is introduced which also accounts
for the intersections of the standard with the superimposed mesh (Figure 7).

The algorithm is formulated in order to meet two main requirements. The
first requirement is that it should allow each finite element to be intersected
by several front elements, which is a situation that, depending on the enrich-
ment radius and crack front geometry, could occur in practical applications.
The second requirement demands that elements are divided into sub-elements
according to their position relative to the zero isosurfaces defined by the level
set functions as also performed in [24]. The algorithm is divided in two parts,
each of which fulfills one of the aforementioned requirements:

(1) Division into front elements.

For each element, the number of intersecting front elements is determined
using the minimum and maximum values of the front parameter. For
each intersecting front element a discrete element part is created which
comprising fe + 2 faces, where fe is the number of element faces. The
additional faces are introduced to account for front element boundaries.
Subsequently, element faces and edges are looped over and the intersec-
tions of each element edge with front element boundaries are found and
assigned to the corresponding part and face. During this procedure nodal
points are also assigned to element parts and faces according to their
front parameter value. At the end of this phase, some faces may comprise
the exact same nodes while others may not be assigned any nodes. In
that case, before proceeding to the next phase, duplicate or empty faces
are deleted. In addition, the nodes corresponding to each face are sorted
using the method presented in [24]. This step of the algorithm is illus-
trated in Figure 8 b).
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Tip element Division into front elements

Division into sub elements

crack front element

Division into tetrahedra

a) b)

c) d)

Fig. 7. Procedure used for element partitioning. a) Front element containing the
crack front. b) The element is partitioned according to the front elements that
intersect it. c) Each element part is further sub-divided by the zero isosurfaces of
the level set functions. d) Each sub element is sub-divided into sub-tetrahedra.

(2) Division into sub elements.

Each part of the element defined in the previous step, is divided into
sub-elements as shown in Figure 8 c) using the algorithm of Loehnert et
al. [24]. Finally, each sub element is divided into tetrahedra (Figure 8
d)) using the following procedure:
• If the sub-element comprises exactly four faces, each of which consists

of exactly three nodes, then the sub element is already a tetrahedron
and no subdivision is necessary.
• In every other case, each face is divided into triangles according to

the pattern illustrated in Figure 8, for triangular faces no subdivi-
sion is required. Tetrahedra are formed using three nodes from the
previously defined triangles and the arithmetic mean of the nodal
coordinates of the sub-element.

The motivation behind the use of the pattern described above is that in general
the accuracy provided by Gauss integration depends on the number of points
used in each tetrahedron and not on the number of tetrahedrons used to
subdivide a given volume. As a result, subdividing each sub-element into the
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Fig. 8. Pattern used to subdivide sub-element faces into triangles.

least possible number of tetrahedrons and using a larger number of points for
each tetrahedron should be much more efficient than subdividing each sub-
element into a larger number of tetrahedra and using a smaller number of
points in each tetrahedron. The number of tetrahedra created for each sub-
element face by the proposed method is reduced by two tetrahedra compared
to the method introduced in [24] which, considering the fact that according to
our experience most faces consist of three to five nodes, results in a substantial
reduction in the total number of tetrahedra created.

Similar approaches for partitioning elements are also used in several 2D im-
plementations (e.g. [55,27]).

It should be noted that the proposed algorithm has been implemented both
for hexahedral and tetrahedral elements.

The total computational cost associated with numerical integration is quite
large and probably constitutes one drawback of the proposed approach. The
primary reasons for the increased computational cost are summarized as fol-
lows:

• The use of geometrical enrichment requires the use of more accurate, and
expensive, integration schemes for all the elements lying inside the area
of enrichment. This drawback is associated with geometrical enrichment
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in general.
• The additional element subdivisions required for the proposed method

further increase the computational cost. This is especially true for ele-
ments containing the crack front, where quite a large number of Gauss
points is necessary for each sub-tetrahedron. This additional cost is only
associated with the proposed method.

In order to improve the above situation, special numerical integration tech-
niques could be employed, which decrease the number of Gauss points required
for each sub-tetrahedron, for instance a 3D extension of the method proposed
by Chevaungeon et al. [27]. As an alternative, generalized Gaussian quadra-
ture rules [32] could be used to reduce the total number of points required for
each element.

5 SIF evaluation

In Reference [17] we employed an SIF evaluation method similar to the one
of References [4,5] was employed. That procedure involved the use of a paral-
lelepiped mesh around each point of interest. One problem with that approach
however, is that in order to properly account for the tractions applied at the
crack surfaces, a very large number of elements (8×8×8) and a large number
of Gauss points for each element (6 × 6 × 6) must be used for the additional
mesh.

Since this procedure is computationally impractical and was only used to
provide a fair estimate of the accuracy of the proposed method, compared to
the literature, in the following subsections an alternative approach is described,
which simplifies SIF evaluation even for the case when surface tractions are
applied along the crack surfaces.

5.1 Interaction integral

Stress intensity factors are evaluated here using the interaction integral. For
the case where surface tractions are applied on the crack faces, an additional
term is added as in Walters et al. [56]:

I =−
∫
V
qi,j

(
σklε

aux
kl δij − σaux

kj uk,i − σkjuaux
k,i

)
dV

−
∫
V
qi
(
σaux
kl,i εklδij − σkluaux

k,li − σaux
kl,l uk,i

)
dV −

∫
Γt
c+∪Γt

c−

(
tju

aux
j,i

)
qidΓ (19)
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where εaux, σaux and uaux are the auxiliary stress, strain and displacement fields
respectively which are defined as in Moës et al. [5], qi are the components of the
virtual velocity field and tj are the applied surface tractions. The additional
term is integrated over the crack faces Γt

c+ and Γt
c−.

Tensors in the above equation refer to a basis defined by the level set gradients
as in Moës et al. [5,6]. The base vectors used are modified such that they form
an orthogonal basis as in [47,48].

The interaction integral of Equation 19 is evaluated in an extraction domain
which will be defined in the following subsection. If the integrand of Equa-
tion 19 is assumed to vary very slowly along the crack front, then the point-wise
value of the interaction integral, which is necessary in order to obtain the SIF
values, can be obtained as:

Ip =
I∫

Lc
q1 (s) ds

(20)

where s is a variable that runs along the length of the crack front and Lc is
the length of the extraction domain along the crack front.

5.2 Interaction integral domain and virtual velocity field

The domain in which the integral of Equation 19 is evaluated is essentially
determined by the definition of the virtual velocity field qi. In contrast to [17]
and to several other XFEM implementations [4,5,48], we will use a definition
similar to the one used in 2D implementations ([3,47]). More precisely, given
the set of points xp where the SIFs are to be computed and the distances r1,
r2, r3 used for SIF evaluation, the level set gradients are computed at each
point and the distance from point xp along the direction of vector e3 for a
given point x is defined as:

x3p = (x− xp) · e3p (21)

where e3p denotes vector e3 evaluated at point xp.

Subsequently the nodal values of the first component of the virtual velocity
field can be computed as:

q1 =

{
1 if φ ≤ r1 and ψ ≤ r2 and x3p ≤ r3

0 if φ > r1 or ψ > r2 or x3p > r3
(22)
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Fig. 9. Computation of the projected lengths of the individual line segments forming
segment Lc.

the other two components q2 and q3 assume a value of zero. In the interior of
elements, the virtual velocity field is interpolated using the FE shape functions.

By using the above definition, the extraction domain used for the interaction
integral for a point xp, corresponds to the set of elements having at least one
node inside the volume defined by Equation 22.

The element-wise definition of the extraction domain also implies that the
length of segment Lc along the crack front is no longer fixed and the integral
in the denominator of Equation 20 has to be computed for each evaluation
point. This can be achieved by considering the crack front as a series of line
segments and by computing the integral along each of those segments. The
endpoints of those segments are the points where the crack front intersects
enriched elements and should have already been computed during the element
partitioning algorithm of Section 4.

It has been observed that in order to obtain the correct SIFs, during the
computation of segment Lc instead of the actual length of the line segment
corresponding to each element, the projection of this length in the direction of
vector e3p has to be used. This is because during SIF evaluation, the variation
of the level set gradients is ignored and as a result vector e3 is constant and
coincides with vector e3p for the whole extraction domain corresponding to
point p. The computation of the projected line segment lengths is illustrated
in Figure 9.

The use of the above definition of the virtual velocity field and interaction
integral domain can be justified by a comparison with some alternative defi-
nitions. In Figure 10 a 2D visualization of three different approaches is given
in order to facilitate the comparison.

In the first approach (Figure 10 a)), used in References [4,5,17], an orthogonal
mesh is introduced for the evaluation of the interaction integral and the virtual
velocity field is essentially defined on that mesh. By using this definition, the
virtual velocity field can be integrated exactly, since the Gauss points used are
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Interaction domain

Element cut by the interaction domain

Fig. 10. Three different approaches for the definition of the interaction domain and
the virtual velocity field. a) Definition given in References [4,5,17]. b) Definition
given in Reference [48]. c) Proposed approach, also used in 2D implementations
([3,47]).

the ones corresponding to the additional mesh. The accuracy in the integration
of the stress, strain, and displacement gradient fields however is reduced since
those fields are defined on the FE mesh and the Gauss points used do not
account for their variation properly. One remedy for this would be the use of
a large number of Gauss points which would also increase the computational
cost significantly.

According to the second approach (Figure 10 b)), which is adopted in Refer-
ence [48], the virtual velocity field and interaction integral domain are defined
independently of the FE mesh and numerical integration is carried out at the
element level. In this approach the stress, strain and displacement gradient
fields are integrated properly since the numerical integration schemes used for
the integration of the element matrices can be employed. Nevertheless, the
virtual velocity fields cannot be integrated accurately since the numerical in-
tegration schemes used do not account for the boundaries of the interaction
integral domain.

Finally, the proposed definition (Figure 10 c)), which has been successfully
employed in 2D implementations ([3,47]), uses FE shape functions for the
definition of the virtual velocity field. In addition, the interaction integral
domain boundaries coincide with element boundaries. As a result, both the
virtual velocity and the stress, strain and displacement gradient fields can be
appropriately integrated by the improved integration schemes used for the
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integration of the element stiffness matrices.

5.3 Integration of the surface tractions applied on the crack faces

By using the element partitioning algorithm of Section 4 the points where the
crack intersects elements as well as the corresponding surfaces should already
be available and divided into triangles. As a result, the only necessary action to
proceed with the evaluation of the third integral of Equation 19 is to displace
those surfaces by a negative and a positive increment along the direction of
the level set gradient that is normal to the crack surface in order to obtain
the upper and lower crack faces Γt

c+ and Γt
c−.

In order to improve the accuracy of the computed SIFs and since, as also noted
in Walters et al. [56], the contribution of the surface tractions to the SIFs is
significant, a special procedure is introduced for the integration of surface trac-
tions at the crack faces. This procedure involves a coordinate transformation
similar to the one performed in [56]. Nevertheless, since in the present work
numerical integration has to be carried out for triangles whose sides do not
necessarily coincide with the crack front or with the iso-lines of the level set
functions, the transformation has to be modified accordingly.

Prior to performing the transformation, a coordinate system has to be defined
for each triangle which consists of the two polar coordinates r and θ and a
third coordinate which is approximately parallel to the direction of the crack
front. This third coordinate for a given point x lying on the surface of the
triangle is defined by evaluating vector e3 at the midpoint of the triangle (xt)
and applying the formula:

zc = (x− xt) · e3t (23)

where e3t is vector e3 evaluated at the midpoint of the triangle.

The definition of the coordinate system is illustrated in Figure 11 for a node
of an arbitrary triangle.

Since the triangles lie on the crack surface, angle θ assumes a value of zero
and radius r is equal to the absolute value of the second level set ψ.

Once the coordinate system has been defined, the transformation takes the
form:
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Fig. 11. Coordinates r and zc for a node 1 of the arbitrary triangle 1-2-3 lying on
the crack surface.

r̄ =
√
r

z̄c = zc

}
(24)

The inverse transformation writes:

r = r̄2

zc = z̄c

}
(25)

In order to produce a scheme that achieves exact integration the area of the
triangles and provides increased accuracy for the last integral of Equation 19
the following procedure is followed:

• The coordinates r and zc of the triangle nodes are computed and trans-
formed to the r̄, z̄c system using the transformation of Equation 24 (Fig-
ure 12 b)).
• The sides of the triangle in the transformed system become curves which

can be represented exactly by second order polynomials. As a result the
transformed triangles can be represented exactly by quadratic triangles.
• For the definition of the quadratic triangles corresponding to the trans-

formed triangles, additional points that lie on the sides of the triangles
are required (Figure 12 c)). For a given side of a triangle with nodal co-
ordinates r̄a, z̄ca and r̄b, z̄cb, the coordinates of those points are computed
using the following expression:
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if (r̄a 6= r̄b) (26)

r̄m = r̄a+r̄b
2

z̄cm = z̄ca +
(r̄2

m − r̄2
a) (z̄cb − z̄ca)
r̄2
b − r̄2

a


else

r̄m = r̄a = r̄b

z̄cm =
z̄ca + z̄cb

2


where r̄m, z̄cm are the coordinates of the additional points. In order to
derive the above expressions, the equation of the line segment a-b is
transformed to the r̄, z̄c system, the coordinate r̄ is given the value r̄m
and the equation is solved for variable z̄c. It need be noted that, for the
case where r̄a = r̄b the equation cannot be solved and the alternative
values have to be given to the coordinates r̄m and z̄cm.
• The coordinates of the Gauss points for the quadratic triangles in the
r̄, z̄c system are computed. The Gauss points are first obtained in the local
triangular coordinates of each triangle (as defined for instance in [57]) and
then transformed in the ‘global’ system r̄, z̄c using the quadratic triangle
shape functions (Figure 12 c)).
• The coordinates of the Gauss points are transformed back into the r, zc

system using the inverse transformation of Equation 25 (Figure 12 d)).
• If needed, coordinates r and zc of the Gauss points can be transformed

in the local coordinate system of the triangles.

For a straight crack front and a planar crack the above procedure should in-
tegrate the crack surface and the singular functions exactly. For curved crack
fronts and crack surfaces some errors might be introduced, which should how-
ever decrease as the meshes become finer.

The whole procedure shares some similarities with the integration scheme
proposed in Chevaugeon et al. [27].

6 Numerical examples

The energy and L2 error norms used throughout this subsection are defined as
follows, where it is noted that vectors and tensors are written in matrix form:
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Fig. 12. Integration scheme for an arbitrary triangle lying on the crack surface.

E=

(∫
Ω(ε− εh)TD(ε− εh) dΩ∫

Ω ε
TDε dΩ

)1/2

(27a)

L2 =

(∫
Ω(u− uh)T (u− uh) dΩ∫

Ω u
Tu dΩ

)1/2

(27b)

where ε and u are the strains and displacements obtained from the analytical
solution and εh and uh are the corresponding numerically obtained values.

For the implementation of the proposed method, a C++ code was created
utilizing the Gmm++ library [58] for linear algebra operations. For the so-
lution of the systems of equations, the conjugate gradient (CG) solver of the
Gmm++ package was employed in combination to a diagonal preconditioner.
The convergence tolerance for the solver was set to 10−8. The unstructured
meshes used were generated using the gmsh mesher [59].

The acronyms used for the different methods tested are described in Table 1.
It should be noted that results obtained using the method introduced in our
previous work [17] will also be given, in some of the examples, for reference.
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Acronym Description

XFEM Standard XFEM (with shifted enrichment func-
tions)

GE-XFEM Global Enrichment XFEM

CGE-XFEM Continuous Global Enrichment XFEM

CGE-XFEM-2 terms Continuous Global Enrichment XFEM with 2
terms of the Williams expansion

CGE-XFEM-4 terms Continuous Global Enrichment XFEM with 4
terms of the Williams expansion

Table 1
List of acronyms used for the 3D convergence study.

xL

yL

zL
a

c
tΓ

x
y

z

uΓ

node where boundary conditions are applied

Fig. 13. Penny crack problem geometry and discretization. The boundary conditions
provided by the analytical solution are imposed along the boundaries of the domain.
Uniform normal and shear loads are applied to the crack surfaces. The dimensions
of the problem are Lx = Ly = 2Lz = 0.4 units and a = 0.1 unit. For CGE-XFEM
errors keep decreasing as the enrichment radius is increased,

6.1 3D convergence study

The first benchmark problem studied in this section is identical to the one
introduced in [17]. More specifically, the problem of a penny crack in an infinite
solid subjected to uniform normal and shear loading is considered. Only a
parallelepiped part of the domain around the crack is considered and the
displacement fields obtained by the analytical solution [60] are imposed as
constraints at the boundaries of the domain. Additionally, uniform normal
and shear loads are applied at the crack faces. The problem is illustrated in
Figure 13.

The dimensions of the domain were set to Lx = Ly = 2Lz = 0.4 units and the
radius of the crack is taken as a = 0.1 unit. A uniform normal and a uniform
shear load of magnitude 1 are applied at the crack faces (mixed mode loading).
The material parameters used are E = 100 units and ν = 0.3.

A series of hexahedral meshes was used consisting of nx × ny × nz elements
where nx = ny = 2nz = n and n ∈ {21, 41, 61, 81, 101}. The crack front was
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Fig. 14. Penny crack problem. Influence of the enrichment radius (re) in the en-
ergy (E) and L2 norms for two variations of the proposed method described in
Table 1. The radius of the crack is a = 0.1 units and the size of the domain is
Lx = Ly = 2Lz = 0.4 units. Results refer to a mesh of 31× 61× 61 elements. h de-
notes the mesh parameter. The proposed method (CGE-XFEM) provides increased
accuracy and similar convergence rates to standard XFEM.

discretized using 32 front elements for the 11×21×21 and 21×41×41 meshes
and 64 front elements for the rest of the meshes.

6.1.1 L2 and energy norms

In Figure 14 the influence of the enrichment radius (re) on the energy and L2

norms is examined. It can be seen that the continuous version of the proposed
method solves the problems encountered by the method of Reference [17] since
the errors keep decreasing as the enrichment radius is increased.

Energy and L2 norms are plotted in Figures 15 and 16 for topological (re =
0.00 units) and geometrical (re = 0.02 and re = 0.04 units) enrichment for
all methods considered herein, while the corresponding convergence rates are
given in Table 2. Again it can be noticed that CGE-XFEM solves the problems
encountered in the discontinuous version of the method and provides improved
accuracy and optimal convergence rates for both the energy and the L2 norm.

In Figure 17 the effect of the addition of higher order enrichment functions on
the accuracy of the method is studied. The addition of the higher order terms
provides a reduction of up to 17% in the L2 norm and 15% in the energy
norm. It should be noted however, that for the finer meshes the reduction
of the errors, especially in the L2 norm, is smaller when only two terms of
the Williams expansion are employed. Moreover, a larger number of terms is
required (4 terms in total) in order to achieve a significant error reduction.
This is expected since for finer meshes the standard part of the approximation
is able itself to reproduce the higher order terms (smoother than the first few
terms).
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Fig. 15. Penny crack problem. L2 and energy (E) norms versus the number of
elements along the largest sides (n) for topological enrichment (re = 0.00 units)
for mixed mode loading. The radius of the crack is a = 0.1 units and the size of
the domain is Lx = Ly = 2Lz = 0.4 units. A description of the different methods
mentioned in the figure is given in Table 1, while the corresponding convergence
rates are given in Table 2.
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Fig. 16. Penny crack problem. L2 and energy (E) norms versus the number of
elements along the largest sides (n) for geometrical enrichment with enrichment
radii re = 0.02 units and re = 0.04 units for mixed mode loading. The radius of the
crack is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4 units. A
description of the different methods mentioned in the figure is given in Table 1, while
the corresponding convergence rates are given in Table 2. The proposed method
(CGE-XFEM) provides improved accuracy both in the L2 and the energy error
norm.

6.1.2 Stress intensity factors

Stress intensity factors were computed for the proposed method and standard
XFEM using the procedure described in Section 5. In Figure 18, errors in
the SIFs are illustrated as functions of the angle θ for two different meshes
(21× 41× 41 and 41× 81× 81) for geometrical (re = 0.04) enrichment. Due
to symmetry only the values for 0◦ ≤ θ ≤ 90◦ are presented. The distances
r1, r2, r3 are assigned the values of r1 = 2h, r2 = 2h, r3 = 2h. Results using
higher order enrichment functions were not included in this comparison since
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Fig. 17. Penny crack problem. L2 and energy (E) norms versus the number of
elements along the largest sides (n) for geometrical enrichment with enrichment
radius re = 0.04 units for mixed mode loading. The radius of the crack is a = 0.1
units and the size of the domain is Lx = Ly = 2Lz = 0.4 units. A description
of the different methods mentioned in the figure is given in Table 1, while the
corresponding convergence rates are given in Table 2. The addition of higher order
terms provides some additional improvement in the accuracy of the results.

re = 0.00 re = 0.02 re = 0.04

XFEM E 0.492 0.911 1.015

XFEM L2 1.009 1.824 1.976

GE-XFEM E 0.558 1.057 0.988

GE-XFEM L2 1.535 1.753 1.448

CGE-XFEM E 0.635 0.957 1.014

CGE-XFEM L2 1.265 1.890 1.930

CGE-XFEM-2 terms E - - 1.013

CGE-XFEM-2 terms L2 - - 1.870

CGE-XFEM-4 terms E - - 1.055

CGE-XFEM-4 terms L2 - - 1.953
Table 2
Penny crack problem. Convergence rates for the curves of Figures 15 and 16 for the
energy (E) and L2 norms for topological (re = 0.00) and geometrical (re = 0.02
units and re = 0.04 units) enrichment.

for this specific example they only slightly improve the computed SIFs.

The improved accuracy compared to our previous work [17] may be attributed
to the use of a larger enrichment radius (re = 0.04 units compared to re = 0.00
units and re = 0.02 units in [17]) and the use of the improved SIF evaluation
procedure. A comparison of the two methods, however, is not straightforward
due to the different definitions of the interaction integral domain.

It can be noted that the accuracy of the SIFs provided by the proposed method
is very close to the one achieved by standard XFEM, in fact in some areas
the lines are almost indistinguishable. Nevertheless, the systems of equations
produced by standard XFEM with geometrical enrichment, which is essential
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Fig. 18. Penny crack problem. Mode I, II and III stress intensity factors predicted
by CGE-XFEM for geometrical (re = 0.04 units) enrichment for the 21 × 41 × 41
and 41 × 81 × 81 meshes. The radius of the crack is a = 0.1 units and the size of
the domain is Lx = Ly = 2Lz = 0.4 units.

to obtain the increased accuracy and optimal convergence, are almost unsolv-
able. As a result, the proposed method provides a significant advantage as far
as the extraction of accurate SIFs is concerned.

The convergence behavior has also been improved and, although convergence
is slow and several fluctuations occur, errors tend to decrease with mesh re-
finement. The above behavior is displayed in Figure 19 where the average error
for the Mode I, II and III SIFs is plotted against the number of elements along
the largest sides (n) of the domain.

In Figure 19 an additional mesh was added consisting of 81 × 161 × 161 ele-
ments, to verify that despite the fluctuations observed, the errors in the SIFs
tend to decrease.

6.1.3 Conditioning

In order to assess the conditioning of the resulting system matrices, the num-
ber of iterations required by the solver to reach the predefined tolerance (10−8)
is reported. In Figure 20, a comparison is made between the number of itera-
tions required by the solver for the three methods considered and for different
enrichment radii. It is clear that the continuous version of the method further
improves conditioning for the case of geometrical enrichment since the number
of iterations required is practically independent of the enrichment radius used.
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Fig. 19. Penny crack problem. Average error for the mode I, II and III stress inten-
sity factors versus the number of elements along the largest sides (n) predicted by
CGE-XFEM for geometrical (re = 0.04 units) enrichment. The radius of the crack
is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4 units.
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Fig. 20. Penny crack problem. Number of iterations required to solve the system
of equations produced by XFEM, GE-XFEM and the proposed method versus the
number of elements along the largest sides (n) for three different enrichment radii:
re = 0.00 units (topological enrichment), re = 0.02 units and re = 0.04 units
(geometrical enrichment). The tolerance of the CG solver was set to 10−8. The radius
of the crack is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4
units. The proposed method reduces the required number of iterations in every case.

In Figure 21, the number of iterations required by the proposed method when
higher order enrichment functions are used is compared to two other methods
for the geometrical enrichment case (re = 0.04 units). Although the behavior
is oscillatory, the number of iterations when higher order terms are used is
similar to the one required by the discontinuous version of the method (GE-
XFEM).

In Figure 22 the error achieved by the solver after different iterations is calcu-
lated as in Menk and Bordas [16] for topological and geometrical enrichment
and two different meshes. It is again confirmed that the behavior of the pro-
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Fig. 21. Penny crack problem. Number of iterations required to solve the system
of equations produced by XFEM, GE-XFEM and the proposed method with the
addition of different number of higher order terms versus the number of elements
along the largest sides (n) for an enrichment radius re = 0.04 units (geometrical
enrichment). The tolerance of the CG solver was set to 10−8. The radius of the
crack is a = 0.1 units and the size of the domain is Lx = Ly = 2Lz = 0.4 units. The
proposed method reduces the required number of iterations in every case.
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Fig. 22. Penny crack problem. Comparison of the performance of the PCG solver for
XFEM, GE-XFEM and the proposed method. Results are shown for two different
meshes consisting of 21 × 41 × 41 and 41 × 81 × 81 elements. Both topological
(re = 0.00 units) and geometrical enrichment (re = 0.02 units) are considered. The
behavior of CGE-XFEM is independent of the enrichment radius.

posed method is almost independent of the enrichment radius used.

6.2 Lens shaped crack

The last problem is that of a lens shaped crack in an infinite medium and has
been used as a benchmark in other works as well [61,5]. In order to minimize
boundary effects, a cube of side L = 1 unit is considered with a lens crack of
radius R = 0.2 units and an angle α = π/4. Young’s modulus and Poisson’s
ratio are given values of E = 68.9 units and ν = 0.22. A uniform unit stress
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Fig. 23. Lens crack problem geometry and loading. The dimensions of the problem
are L = 1 units, R = 0.2 units and α = π/4. The uniform stress has a magnitude
σ = 1 unit.

σ is applied in all three directions.

In our computations, an unstructured tetrahedral mesh is adopted with the
mesh parameter h assuming a value h = 0.25 at the boundaries of the domain
and a value of h = 0.01 (R/20) in the vicinity of the crack. The number
of standard degrees of freedom is approximately 150, 000. For the proposed
method 64 front elements were used to discretize the crack front.

The material, geometry and mesh parameter values given above were all chosen
to be as close as possible to the ones used in Moës et al. [5] so that the results
obtained in that work can be used as a reference.

The distances used for SIF evaluation were given the smallest possible values
r1 = h, r2 = h and r3 = 2h in order to minimize errors caused by the fact that
the crack curvature is ignored in the SIF evaluation procedure.

The analytical solution to this problem was obtained by Martynenko and
Ulitko [62]. For the specific values of the parameters used, the SIFs assume
the values ([61]):

KI = 0.877
2

π
σ
√
πa, KII = 0.235

2

π
σ
√
πa (28)

where a = rcos (α).

In Figure 24 the errors in the Mode I and II SIFs are given for standard XFEM
and the proposed method for topological (re = 0.00 units) and geometrical
(re = 0.04 units) enrichment. For the latter case, results are also given for
enrichment functions involving one higher order term (two terms of the ex-
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Fig. 24. Lens crack problem. Mode I and II stress intensity factors predicted by
XFEM and CGE-XFEM for topological (re = 0.00 units) and geometrical (re = 0.04
units) enrichment. The radius of the crack is R = 0.2 units and the angle α = π/4
units, the size of the domain is L = 1 unit.

Method
KI KII

min max mean min max mean

XFEM (re = 0.00) 0.02% 2.80% 1.37% 0.28% 9.81% 3.69%

XFEM (re = 0.04) 0.67% 1.48% 0.97% 0.33% 4.60% 2.20%

CGE-XFEM (re = 0.00) 0.40% 1.77% 1.00% 0.03% 4.12% 1.56%

CGE-XFEM (re = 0.04) 0.16% 1.69% 0.83% 0.03% 2.31% 1.22%

CGE-XFEM-2 terms
(re = 0.04)

0.07% 0.81% 0.47% 0.07% 1.29% 0.61%

Table 3
Lens crack problem. Minimum, maximum and mean values for the errors in the
Mode I and II stress intensity factors predicted by XFEM and CGE-XFEM for
geometrical (re = 0.04 units) and topological (re = 0.00 units) enrichment.

Method Iterations

XFEM (re = 0.00) 631

XFEM (re = 0.04) 16391

CGE-XFEM (re = 0.00) 282

CGE-XFEM (re = 0.04) 324

CGE-XFEM-2 terms
(re = 0.04)

416

Table 4
Lens crack problem. Number of iterations required by the solver to solve the system
of equations produced by XFEM and CGE-XFEM for geometrical (re = 0.04 units)
and topological (re = 0.00 units) enrichment. The tolerance of the CG solver was
set to 10−8.

pansion in total). In Table 3 the minimum, maximum and mean values of the
errors are given while in Table 4 the number of iterations required to solve the
resulting systems of equations is given for all the above cases.
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The accuracy of the results obtained for standard XFEM is comparable to the
one obtained in Moës et al. [5] while the use of geometrical enrichment provides
significant reduction (30%-40% in the mean value of the errors). Moreover,
the proposed method provides improved accuracy for both topological and
geometrical enrichment and can further improve results by employing one
higher order term. It is also important to note that the number of iterations
to convergence of the conjugate gradient algorithm required for the proposed
method for geometrical enrichment is, in every case, smaller even than the
number of iterations required by standard XFEM with topological enrichment.

It should be noted that for different values of the distances r1, r2 and r3 or
for different meshes (with similar values of the mesh parameter), the behavior
of the results can change. In all cases however it is possible to improve the
accuracy by employing the proposed method in conjunction to geometrical
enrichment and higher order enrichment functions. An important fact regard-
ing the behavior of the results is that for the proposed method the addition
of one higher order term provides significant improvement in the results, in
fact it provides greater reduction in the errors than the one associated with
geometrical enrichment, while the addition of more terms leaves the results
almost unaffected.

The above behavior may be explained via the reasoning given in subsection 3.3.
An additional problem that arises for curved cracks is the method’s inability
to account for the change in the orientation of the crack due to lack of spa-
tial variation which might lead to errors. This problem, while being probably
negligible when the crack is almost planar inside the enrichment radius, might
be more acute for larger enrichment radii and crack curvatures. The use of
higher order terms might implicitly help the situation by adding some flexibil-
ity, however a proper solution would involve the use of the level set gradients
in order to account for the crack curvature as is done in vector enrichment
[27].

7 Conclusions

We presented a simple method which shares advantages with both global en-
richment introduced in 1973 by [63] and the more recent local partition of
unity enrichment of [64,1]. We showed the application of the new approach to
three-dimensional linear elastic fracture problems, in particular to non-planar
cracks.

The method relies on enrichment within a domain with mesh-independent
dimensions within which the enrichment coefficients are constant. Additional
variability in the enriched fields is incorporated along the crack front. Novel
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numerical integration and stress intensity factor extraction techniques are pro-
posed with particular emphasis on the case where surface tractions are applied.

We achieve optimal convergence and increased accuracy for a fraction of the
cost of competing approaches, thanks to the improved condition number of
the stiffness matrix.

This containment of the condition number enables the previously difficult or
indeed impossible incorporation of higher order enrichment functions.

The method was tested through a series of benchmark problems involving
non-planar cracks. These numerical tests indicate:

• An improved accuracy over standard partition of unity enriched finite
element methods (up to 50% improvement in the L2 norm and up to
40% in the energy norm) as well as optimal convergence rates both in the
energy and in the L2 norm for all enrichment domains considered;
• A greatly improved conditioning, which is practically independent of the

enrichment radius: the number of iterations to convergence of the con-
jugate gradient algorithms, for all cases tested, was reduced by 40-50%
compared to the variant of the extended finite element method (XFEM)
leading to the smallest conditioning number (topological enrichment);
• A simplified implementation which greatly facilitates the extension of the

method to higher order finite elements.
• The possibility of using higher order enrichment functions for geometrical

enrichment, which had remained impossible due to conditioning issues.
These additional functions do lead to improved accuracy in the stress
intensity factors.
• For non-planar cracks, a significant improvement (30-40%) in the accu-

racy of the stress intensity factors and a reduction of the conditioning
system matrix. For such non-planar cracks, the effect of the higher-order
enrichment functions is much more pronounced.
• The use of geometrical enrichment can substantially improve the accuracy

of the predicted stress intensity factors. Moreover, the use of higher order
enrichment functions can further improve results while causing a mild
deterioration in the conditioning.

One of our long-term goals is the interactive simulation of fracture and cutting
[65] and some relevant directions of future work include:

• Modification of the enrichment functions so that the change in orientation
is taken into account for non-planar cracks.
• The use of enrichment functions specialized for different types of singular-

ities, for instance enrichment functions that account for the discontinuity
occurring when a crack intersects free surfaces. This modification is pos-
sible with the proposed method because of the improved conditioning.
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• The use of improved integration schemes in order to reduce the computa-
tional cost associated with the numerical integration of the enriched part
of the approximation.
• The combination of the method with goal oriented a posteriori error

estimators [40,41,43,44,45] and local front mesh and FE mesh refinement
in order to further improve the accuracy of the method.
• The application of the method to crack propagation problems through

the use of different crack representation methods [5,6,50,49,51].
• The reduction of computational expense through reduced order methods

such as [66,67,68] or[69,70,71].
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[43] JJ Ródenas, OA González-Estrada, JE Tarancón, and FJ Fuenmayor. A
recovery-type error estimator for the extended finite element method based
on singular+ smooth stress field splitting. International Journal for Numerical
Methods in Engineering, 76(March):545–571, 2008.
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