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Abstract 

In this thesis a new chemical deposition process for the fabrication of Cu(In,Ga)Se2 

absorber layers applicable as absorber material in thin film solar cells is described. Within 

this work a power conversion efficiency of up to 13.3% (13.8% on active area) has been 

achieved which is among the highest reported values for non-vacuum based processes. The 

main part of this thesis is divided into 4 chapters describing the synthesis of the base 

materials and the ink (i), the individual process steps coating and drying together with 

the metal film formation (ii) as well as the selenization of the metal layer to chalcopyrites 

(iii). The last chapter investigates the influence of dissolved sodium salts (iv). 

   (i)  Metal formates synthesized from their respective nitrates have been chosen as 

starting salts due to the high reduction potential of the anion and its clean decomposition. 

With the reasonably toxic solvents tetramethylguanidine and methanol an ink can be 

produced which is highly concentrated, chemically stable and cheap. 

   (ii)  The coating and drying steps have been identified as crucial production processes 

to deposit homogeneous layers. In this context the solvent mixture has been shown to be 

responsible for unwanted material agglomerations close to the substrate boundaries. In 

order to minimize this effect a combined coating-drying device has been developed. 

The formation of metallic layers has been studied in detail. It could be shown that the 

respective metal ions are getting reduced consecutively at elevated temperatures between 

130 and 200°C. The morphology of the resulting layers is highly dependent on the process 

conditions and varies from thick and porous structures to incoherent particle 

agglomerations. In order to overcome this issue an ink additive has been identified to 

densify and homogenize the metallic layer. A mechanism is proposed based on the 

formation of an intermediate polynuclear metal organic structure. 

   (iii) The metallic layers could be selenized with elemental selenium in a tube oven to 

form dense chalcopyrites. By simulating the selenium evaporation a strong dependency of 

the final photovoltaic cell properties on the process temperature of the substrate layer 

getting in contact with evaporated selenium could be identified. 

   (iv) Several sodium salts conveniently added to the ink have been proven to be suitable 

as sodium source. Compared to diffusion from the glass substrate the immediate sodium 

availability resulted in significantly improved cell properties. Within the evaluated 

sodium salts large differences have been found for example regarding the layer 

morphology. 
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Chapter 1  

 

 

Introduction 

Photovoltaics describe the direct conversion of (sun) light to electricity. The benefits of this 

technology are obvious allowing power generation without a detour via heat or kinetic 

energy. With an abundant light source like the sun, photovoltaics have the potential to 

replace the prevailing limited fossil fuels like coal or gas in the near future. In this 

introductory chapter the pathway to the development of today’s high efficiency devices is 

described briefly beginning with the discovery of the photoelectric effect. Subsequently, 

the focus is set on the chalcopyrite material system and its use as an absorber material 

for thin film solar cells. Finally, several production processes for these devices are 

introduced ranging from the well developed physical based methods to several upcoming 

alternatives including the chemical deposition. 

1.1 Development in photovoltaics 

Edmund Becquerel discovered the photoelectric effect in 1839. He observed a low potential 

difference when illuminating one of two identical platinum electrodes placed in a weak 

conducting solution. This observation could later be theoretically explained by Albert 

Einstein in 1905. In 1873 Willoughby Smith found photoconductivity in selenium. Based 

on this discovery Charles Fritts presented a working cell in 1883 consisting of a thin gold 

layer on pure selenium yielding an energy conversion efficiency of 1% [1]. Thus, for the 

following decades solar cell research primarily focused on selenium based devices. This 

changed with the introduction of the first silicon based devices developed in the Bell 

Telephone Laboratories in 1954 [2], [3]. The following success of this technology was 
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mostly founded on the further development of the Czochalski method in the 1940s 

enabling the production of high purity silicon [4]. The breakthrough came with the 

satellite “Vanguard 1” launched in 1958 which was equipped with silicon solar cells having 

an energy output of less than one watt and a chemical battery. Contrary to all expectations 

the signals of the satellite could be received up to 1964. The upcoming research activities 

in the field of transistors gave the silicon photovoltaics another push due to the similar 

base materials and physical mechanisms. However, silicon is not the ideal material for a 

light conversion being an indirect semiconductor with a low absorption coefficient. Due to 

the mechanical properties of silicon the devices also require material thicknesses of around 

200 µm with a high purity making the production process highly material and energy 

consuming.  

Since the discovery of selenium as suitable semiconductor several alternative materials 

have been identified most of them having a direct band gap which allows a light absorption 

within a few micrometers. These technologies are therefore often summarized as thin film 

solar cells. One material in particular, the CuInSe2 chalcopyrite was synthesized first by 

Hahn et al. in 1953 [5]. However, it took until 1974 to discover its use as a light absorber 

material with the first devices based on single crystals [6]. Polycrystalline layers exceeded 

10% energy conversion efficiency in the early 80s with a co-evaporation process mostly 

developed at the Boeing Corporation [7]. The first commercially available modules were 

produced in 1998 by the Siemens Solar but did not succeed on the free market at that time. 

Today, the chalcopyrite based thin film technology holds the lab scale efficiency record 

within all thin film technologies with 21.7% [8]. 

1.2 Cu(In,Ga)(Se,S)2 thin film technology 

Cu(In,Ga)(Se,S)2 based solar cells, often abbreviated as CIGSSe, are named after the 

elements forming the light absorbing layer: copper, indium and/or gallium as well as 

selenium and/or sulfur. In this thesis CIGS is used as abbreviation for the sulfur free 

material due to the focus on selenium. In the current section the CIGS technology is 

introduced beginning with the absorber layer material properties. Thereafter, the layer 

stack which is necessary for a working solar cell device is described and the optoelectronic 

properties are explained. 
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1.2.1 Material properties 

The material CIGS including the ternary CuInSe2 (CIS) and CuGaSe2 (CGS) belongs to 

the I-III-VI2 compounds and crystallizes in the typical tetragonal structure of 

chalcopyrites. This structure is derived from the zinc blend unit cell of II-VI materials. In 

chalcopyrites equal amounts of copper and indium/gallium atoms are alternatingly 

replacing the zinc positions leading to an isoelectronic substitution. More information 

about the lattice properties can be found elsewhere [9]. The chalcopyrite material is a 

semiconductor with a band gap that depends on the composition of the elements. Due to 

the full element miscibility of In and Ga, the range varies between 1.0-1.05 eV for CuInSe2 

(depending on the copper content) and 1.7 eV for CuGaSe2 [10]. By including sulfur into 

the lattice, this range can be extended up to 2.4 eV [11]. The possibility to tailor the band 

gap is very useful and allows adjusting the absorber properties to the terrestrial solar 

spectrum. For this spectrum a theoretical conversion efficiency limit can be calculated as 

a function of the semiconductor’s band gap which has been reported first by Shockley and 

Queisser [12], [13]. The limit has two optima for band gap energies of 1.15 eV and 1.35 eV 

corresponding to Ga/(Ga+In) or (Ga/III) ratios of about 0.25 and 0.65 in sulfur free 

absorbers.  

1.2.2 Solar cell layer stack and band alignment 

In the previous section the absorber material consisting of the CIGS chalcopyrites has 

been introduced. The primary function of this layer is the energy absorption of the sun’s 

radiation by transferring electrons from the valence band to the conduction band resulting 

in an electron-hole pair. This absorption is only possible if the energy of the incoming 

photons is larger than the band gap of the semiconductor. The energy of the photons is 

dependent on the light’s frequency and therefore wavelength and can be calculated as 

following: 

𝐸𝑝ℎ𝑜𝑡𝑜𝑛 = ℎ𝑓 = ℎ
𝑐

𝜆
 

 𝑓  frequency in 1/s 

    ℎ  Planck constant (4.14 × 10-15 eV s)  

 𝜆  wavelength in m 

 𝑐  speed of light (in a vacuum) in m/s 

The resulting electron-hole pairs have a finite lifetime and recombine if they are not 

separated. Thus, additional functional layers are necessary to separate the generated 
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charge carriers. Figure 1 shows a typical CIGS solar cell layer stack in the so-called 

substrate configuration which is typically used for high efficiency devices. On top of the 

absorber is an approximately 50 nm thin CdS layer coated by chemical bath deposition. 

This layer is an n-type semiconductor with a band gap of 2.4 eV and therefore transparent 

for most photons emitted from the sun. At the interface between CdS and the p-type CIGS 

a p-n-junction is forming. This junction is responsible for the charge separation which is 

further discussed below. A several hundred nanometer thick molybdenum back contact 

(BC) beneath the absorber is deposited on a soda lime glass (SLG) substrate by sputtering. 

The same deposition method is used for the front contact on top of the CdS layer consisting 

of a 50 nm thick intrinsic ZnO and an approximately 1 µm thick conducting aluminum 

doped ZnO layer (ZnO:Al). The current collection is improved by a grid usually made of 

nickel and aluminum (Ni:Al). 

 

Figure 1:  Schematical representation of a typical layer stack used for CIGS solar cells. 

Mo/CIGS/CdS/ZnO/ZnO:Al. 

The band diagram of the described layer stack is shown in Figure 2. Here, the Fermi level 

is denoted as EF and the valence band and the conduction band are abbreviated as EV and 

EC, respectively. The p-n junction between the p-type CIGS layer and the n-type CdS leads 

to a strong band bending. This band bending divides the absorber layer into a space charge 

region (SCR) and a quasi neutral region (QNR). The SCR is responsible for the separation 

of the photogenerated electron hole pairs due to the built in electric field. The shown band 

diagram also includes a back surface field (BSF) typically found in gallium containing 

chalcopyrites. Depending on the process conditions gallium often accumulates at the BC 

increasing the conduction band offset. This offset acts as a barrier for the electrons in the 

conduction band decreasing the chances of a BC recombination. On top of the absorber 

layer the two window layers ZnO and ZnO:Al are visible with a band gap of 3.3 eV which 
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is transparent for almost all photons emitted from the sun. More information about the 

band alignment can be found in [14]. 

 

Figure 2:  Band diagram of a Mo/CIGS/CdS/ZnO/ZnO:Al solar cell device layer stack. Photons 

arrive at the window layer and are mostly absorbed in the CIGS layer. Here the 

absorbed energy can transfer electrons from the valence band to the conduction band. 

The charge separation of the resulting electron-hole pair is achieved by the gradient in 

the electrochemical potential in the space charge region.  

1.2.3 Electrical characterization 

In this section the basics concerning the electrical characterization of solar cell devices are 

introduced. Without illumination (dark) solar cells show the typical characteristics of a 

diode. If an external voltage is applied the current density-voltage (j-V) characteristics can 

be described by the ideal-diode equation, an analytical solution found by Shockley [15]. 

𝑗𝑑𝑎𝑟𝑘(𝑉) = 𝑗0 (𝑒
𝑞𝑉

𝑘𝐵𝑇 − 1) 

 𝑗𝑑𝑎𝑟𝑘 dark current  

 𝑗0  reverse saturation current  

 𝑞  elementary charge (1.602176565 ×10-19 C) 

 𝑉  voltage in V 

 𝑘𝐵  Boltzmann constant (1.3806488 × 10-23 m2kg/s2K) 

 𝑇  absolute temperature in K 

 

Under illumination excess minority charge carriers are generated which either recombine 

or are separated by the electric field, thus, leading to a photo current 𝑗𝑝ℎ. In this case the 

diode equation is superimposed to the following expression. 
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𝑗𝑙𝑖𝑔ℎ𝑡(𝑉) = 𝑗0 (𝑒
𝑞𝑉

𝑘𝐵𝑇 − 1) − 𝑗𝑝ℎ 

 𝑗𝑝ℎ  photo current 

 

The j-V curves of a solar cell with and without illumination are shown in Figure 3.  

  

Figure 3:  j-V characteristics of a typical solar cell with and without illumination. 

The intersection of the light j-V curve with the y-axis is the short circuit current jsc (at 

V=0) and with the x-axis the open circuit voltage Voc (at j=0). The maximum power Pmax is 

achieved at jmax and Vmax. With these values the power conversion efficiency of the solar 

cell  can be calculated.  

𝜂 =
𝐹𝐹 ∙ 𝑗𝑠𝑐 ∙ 𝑉𝑜𝑐

𝑃𝑖𝑙𝑙
 

 𝜂  energy conversion efficiency 

 𝐹𝐹  fill factor 

 𝑗𝑠𝑐  short circuit current 

 𝑉𝑜𝑐  open circuit voltage 

 

Here, Pill is the power of the incident illumination and FF the fill factor. The fill factor 

describes the deviation between the two rectangular areas (𝑗𝑠𝑐 ∙ 𝑉𝑜𝑐) and (𝑗𝑚𝑎𝑥 ∙ 𝑉𝑚𝑎𝑥).  

𝐹𝐹 =
𝑗𝑚𝑎𝑥 ∙ 𝑉𝑚𝑎𝑥

𝑗𝑠𝑐 ∙ 𝑉𝑜𝑐
 

 𝑗𝑚𝑎𝑥  current density at maximum power 

 𝑉𝑚𝑎𝑥  voltage at maximum power  
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1.3 CIGS absorber layer processing 

The industrial scale processing of CIGS absorbers today is dominated by physical vacuum 

based methods. However, due to the high energy consumption and the low material 

efficiency of these processes several new concepts are currently under investigation and 

various methods have already been published in the literature. Most of these approaches 

are based on deposition methods that don’t require any vacuum and are therefore usually 

summarized as vacuum-free methods. In this section the basics of the standard physical 

deposition methods are introduced as well as the vacuum free liquid film coating processes. 

1.3.1 Vacuum based CIGS deposition methods 

In general the vacuum based methods can be divided into two processes, sputtering and 

co-evaporation. Sputtering is a common physical vapor deposition method used for various 

materials to produce uniform thin films. In the case of CIGS it is possible to deposit all 

elements in one step from a quaternary target [16]. However, to achieve high efficiencies 

a different process is applied where only the metals are deposited by sputtering while the 

chalcogens are incorporated in a second step. Therefore, this process is often called the 

two-step process. The metal precursor is usually deposited in the form of several stacked 

layers of pure indium and a copper-gallium alloy [17]. The alloy is necessary because 

gallium cannot be sputtered separately. Ternary sputter targets are also possible 

containing all three elements [18]; yet, the achieved cell efficiencies with this approach so 

far are below those of the stacked metal layers. The transformation of the precursor to the 

chalcopyrite semiconductor is usually achieved by exposing the sputtered metal layer at 

elevated temperatures to liquid or gaseous chalcogenides. Regarding the gaseous 

chalcogen sources evaporated elemental Se or S as well as H2Se or H2S can be used.  

Co-evaporation is a single step process where all elements are deposited simultaneously 

from separated sources. By heating the substrate during the deposition the chalcopyrite 

formation can be achieved instantaneously. Due to the direct control over the individual 

deposition rates, variable element depth profiles can be prepared. High efficiency cells 

have been processed from a so-called three stage process [19]. In the first stage a copper 

free (In1-xGax)2Se3 layer is deposited at low temperatures followed by a copper selenium 

layer at 540°C. This leads to the formation of a mobile CuSe phase that is believed to 

promote the growth of large grains. In the last stage the now copper rich layer is covered 

with indium and gallium up to the desired Cu/(In+Ga) ratio of 0.92. 
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With both physical deposition methods high efficiency solar cells have been processed. The 

current world record for CIGS solar cells of 21.7% has been achieved by co-evaporation [8] 

while the record for sputtered cells is following closely behind with 20.9% [20]. However, 

the necessary high vacuum conditions and the low material efficiency of these processes 

leave room for optimization. 

1.3.2 Vacuum free liquid film coating 

Vacuum free deposition technologies have inherent advantages over their vacuum based 

competitors [21]. Important factors are the significantly lower capital costs of the 

manufacturing equipment and the lower running costs for example by using roll-to-roll 

processing techniques allowing a higher throughput. Also important is the possibly high 

material utilization that can reach up to 100%. Concerning the ink deposition there are 

various non-vacuum based methods to deposit the absorber layers ranging from spray 

pyrolysis and electrodeposition to the liquid film coating. A comprehensive review has 

been published for example by Ebersbacher et al. [22]. In this section the focus is on the 

liquid film coating processes which can be divided into the particle based methods and the 

solution based methods.  

1.3.2.1 Particle based approaches 

The category “particle based coating” covers a large area of different approaches. More 

detailed information can be found in the numerous reviews [23]–[25]. The main 

characteristic of these approaches is that the inks contain nanoparticles which are 

dispersed in a liquid transfer compound. These nanoparticles have to be synthesized in a 

separate step. For the synthesis numerous methods have been published including hot 

injection [26], several solvothermal routes [25], [27]–[34], melt atomization [35], 

mechanical alloying and milling [36], [37], precipitation of hydroxides [38], salt-assisted 

ultrasonic spray pyrolysis [39] and several others. The synthesis method itself is rather 

unimportant for the cell processing; therefore it is more practical to categorize the 

approaches by the chemical state and composition of the final nanoparticles. The particles 

can vary from metal-oxides [38], [39], binary or ternary metals [30] to ternary or 

quaternary chalcopyrites [31], [32], [34].  

Independently of the composition all nanoparticles have to fulfill several requirements. In 

solar cells dense absorber layers are particularly necessary to minimize the pathway of 

the separated charge carriers. In order to process a dense layer with a thickness in the 

range of several hundred nanometers to a few micrometers, the median diameter of the 
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particles has to be in the sub-micron level. Small particles with similar diameters are 

particularly necessary when using mixtures of singular metal-oxides or (binary) metals. 

The reason for this is that agglomerations and different settling rates can lead to 

stoichiometry deviations between the precursor ink and the deposited layer [40]. This can 

ultimately result in a highly non-uniform elemental distribution.  

Multi-component chalcopyrite nanoparticles containing all elements in the desired 

composition don’t have this disadvantage and therefore give the best control of 

composition. However, in this approach the layer porosity can be a severe problem due to 

the absence of a sintering agent that could promote inter-particle sintering. Without an 

external force, the high melting point of the chalcopyrites, which is far above the working 

limit of standard substrates like glass, hinders a densification. Approaches to lower the 

melting point of a crystalline material by decreasing the median diameter of the 

nanoparticles to below 25 nm did not achieve the desired decrease in the melting point 

temperature [41]. Thus, usually an external fluxing agent is necessary. Guo et al. used a 

chalcogen exchange mechanism by annealing sulfide nanoparticles in a selenium 

atmosphere. This led to a volume expansion of 14.6% [42]. The addition of an excess of 

copper resulting in a mobile copper selenide phase also improved the sintering, but made 

an additional KCN etching step necessary [43]. 

In contrast, the chalcogen free metal precursors have the advantage of a volume expansion 

during the chalcopyrite formation. The incorporation of an equimolar amount of selenium 

and/or sulfur increases the volume of the metal layer by a factor of 2-3. Attempts with 

copper and indium powders struggled with oxidation issues especially with the fine indium 

particles that could afterwards not be selenized to CuInSe2 [44]. Instead, binary CuIn 

nanoparticles are more stable to oxygen and the lower ductility of the alloy compared to 

elemental indium also improves the particle size distribution achieved by mechanical 

milling [45]. This is a significant advantage as Başol et al. could show that smaller 

nanoparticles can have beneficial influence on the solar cell performance [46]. However, 

typical binary metal nanoparticles are composed of copper-rich CuIn-phases due to a 

miscibility gap in the binary phase diagram. Thus, stoichiometric or indium-rich mixtures 

tend to segregate prior to the arrival of the chalcogens. Approaches to overcome this 

problem by mixing metal nanoparticles with elemental selenium in the ink led to the 

formation of chalcopyrites during the milling process [47]. As mentioned before, 

agglomerations of particles forming in the ink or during the coating process can increase 

the precursor porosity or result in material inhomogeneities. These issues raise additional 

challenges during the layer processing. In order to inhibit the formation of agglomerations 

the nanoparticles are usually dispersed in a liquid prior to the coating step. Either a 
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charge or a steric stabilization is necessary to stabilize the particles. This can for example 

be achieved by using capping agents [30], [32] or the addition of dispersants [48].  

Many ink deposition techniques are applicable to produce homogeneous wet films [24]. 

After the drying and/or decomposition of the transfer medium and the additives the 

following treatment depends on the nature of the nanoparticles. Metal oxides for example 

usually have to be reduced to their elemental form which can be achieved by a separate 

high temperature treatment in hydrogen. Another possibility is the use of hydrogen 

selenide or sulfide in the subsequent annealing step to exchange the oxygen with sulfur 

or selenium. High energy conversion efficiencies of 13.6% have been achieved with solar 

cells made from nanoparticles with an oxide route (0.08 cm² cell area) [38]. In contrast, 

pure metal precursors don’t require this reduction step and can be reacted directly to the 

chalcopyrite phase in a chalcogen atmosphere. Precursor layers consisting of ternary or 

quaternary chalcopyrite nanoparticles already contain the chalcogens. Thus, these 

samples theoretically don’t need a further chalcogen treatment for the chalcopyrite 

formation. However, annealing without selenium can lead to a partial loss of selenium [49] 

and/or indium as well as gallium [50] and can also deteriorates the absorber quality [51].  

1.3.2.2 Solution based approaches 

The category “solution based coating” summarizes all methods, where a particle free 

solution containing copper and at least one of the metals indium and gallium is obtained. 

In some particular cases also the chalcogens are present in the liquid phase. Because the 

used precursors for these inks are usually off-the-shelf chemicals, many of these 

approaches have significant advantages concerning the precursor preparation and 

purification compared to the particle based methods discussed in the previous section. The 

dissolution of the precursors also allows a precisely controlled composition. So far various 

approaches have been published that can be further divided into three subcategories. 

Functional layers have been processed either by dissolving metal salts, metal organic 

precursors or metal chalcogenides.  

 

Metal salts 

Metal salts are the most convenient precursors to produce an ink with. Many salts are 

readily available in high purities and can usually be dissolved in several solvents. 

However, in contrast to the particle based approaches where the liquids are mostly used 

as a transfer agent, the solvents in solutions play a key role. Their main purpose is the 
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complexation of the metal salts to form a stable ink. Thus, properties like polarity, pH-

value, solubility, reactivity and cost have to be considered. Additionally, appropriate 

values for the surface tension as well as the viscosity are crucial to prepare a thin and 

uniform liquid film.  

After the deposition, the solvents have to evaporate or decompose completely without 

precipitating precursor salt crystals or cause other non-uniformities. For this reason 

solution based approaches often use binders to preserve the integrity of the layer by 

avoiding cracks and delamination during the solvent removal. Since the early publication 

of Kaelin et al. who used ethylcellulose as binding material yielding 6.7% efficiency solar 

cells [52], several other groups followed his example. The used binders usually consist of 

similar macromolecular structures like polyvinyl-acetate [53], polymethyl-methacrylate 

[54] or polypropylene-carbonate [55]. However, similar to the initial publication of Kaelin 

et al., many of these approaches suffer from a significant residual layer of carbon in the 

final device. One reported possibility to reduce the amount of carbon is to introduce an 

additional air annealing step after the film deposition. The idea behind this step is to 

decompose the binder molecules by an oxidation to gaseous products. However, the air 

annealing can be critical as it also oxidizes the precursor metals as well as the 

molybdenum back contact. Thus, this step usually makes a subsequent heat treatment in 

hydrogen or H2S/H2Se necessary. An example for this approach is the publication of Lee 

et al. who used an ink containing a macromolecular binder mixture [56]. The effect on 

their device performance is rather unsatisfying leading to efficiency values of around 4.5%.  

Other approaches tried to limit the carbon residues by substituting the binder 

macromolecules with compounds that have a lower molar mass like ethylene glycol [57] or 

propylene glycol [58]. With the latter the carbon layer could be significantly reduced 

yielding cells with an efficiency of 8% [58]. Furthermore, this publication comprises 

another important variation regarding the precursor salts away from metal chlorides to 

acetates. Many approaches use metal chlorides due to the good availability, the high purity 

and the comparatively low cost. However, the chloride ion is believed to catalyze increase 

the oxidation of the widely used alcohol solvents, further increasing the carbon residues 

[58]. Chloride ions could also be measured in the layer after the selenization [59] which 

assumingly can negatively influence the properties the absorber layer. Tanaka et al. 

proposed a chloride ion induced reduction of the hole concentration eventually leading to 

an n-type conductivity [60].  

Metal-organic precursors 
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Beside the metal salts, organ metallic structures can be used as precursor materials [61], 

[62]. Wangen et al. reported the synthesis of air stable precursors made of copper oxide 

and indium hydroxide with butyldithiocarbamic acid which are highly soluble in several 

organic solvents [62]. Due to the exclusive use of low molecular carbon containing 

compounds, a good decomposition behavior has been expected. The resulting layer consists 

of ternary CuInS2 nanocrystals and could be densified to larger grains by a subsequent 

selenization similar to the particle based approach reported by Guo et al. [42] (see section 

1.3.2.1). With this method a maximum conversion efficiency of 10.1 % has been achieved. 

However, the necessary precursor synthesis and purification as well as the comparatively 

low solubility which requires up to seven consecutive coating steps are major 

disadvantages. 

Hydrazine route 

The third route of the solution based approaches is named after the used solvent, 

hydrazine. Hydrazine has several unique properties. Firstly, in contrast to all solvents 

presented so far, hydrazine contains only nitrogen and hydrogen. Secondly, the molecules 

are coordinating very weakly and are sufficiently volatile to be removed completely after 

the liquid film deposition. The third and probably most important advantage is the 

dissolubility of metal chalcogenides in hydrazine described as a dimensional reduction 

with additional chalcogens [63]. It is explained by the disruption of the metal 

chalcogenides frameswork by small cationic species. This property allows an inclusion of 

all elements in the same solution and therefore reduces the typical two step process with 

gas phase selenization to a simple annealing.  

With this approach the highest reported efficiencies of all solution based approaches could 

be achieved reaching up to 15.2% [63]. Nevertheless, this method has several severe 

disadvantages. The solvent hydrazine is highly toxic and explosive and therefore requires 

extensive precautions for the liquid film deposition and solvent decomposition. 

Additionally, the dissolution of the metal chalcogenides is very slow taking up to several 

days. The final precursor concentrations in the inks are also rather low making 4-12 

consecutive coating steps necessary [63], [64]. 

1.3.3 Liquid film deposition 

All direct liquid coating approaches described in the literature review require at least one 

coating step to deposit a uniform liquid layer on the chosen substrate. Concerning the 

possible types of substrates, solid (e.g. glass) or flexible (e.g. aluminum or polymer foil) 
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materials are applicable. Due to the strong connection between the layer homogeneity on 

the cell performance, this step can be critical for the solar cell processing. Therefore, this 

section presents a short overview on the most important coating techniques focusing on 

the differences and advantages of the specific methods regarding their application for a 

CIG(S) precursor layer deposition.  

When choosing the right deposition method, several important criteria for the final 

precursor layers have to be fulfilled which can be translated into two macroscopic film 

properties. Firstly, the layer has to fully cover the substrate without dewetting. Secondly, 

a uniform film thickness has to be achieved avoiding aggregations of ink. Regarding these 

properties, liquid film deposited layers for CIGS solar cells share the same requirements 

as films for organic solar cell applications. In contrast to CIGS, however, research in this 

field has advanced greatly due to the cheaper source materials and the easy 

implementation of flexible low temperature substrate materials. Thus, for a general 

overview and current research topics on liquid film coating the reader is also referred to a 

publication by Krebs et al. [65]. Coming back to CIGS, the vast majority of reports on inks 

are limited to lab scale coating techniques also showing the low degree of maturity of these 

processes. The only exception so far has been reported by the company Nanosolar that 

went bankrupt in 2013.  

Several lab scale coating processes are suitable for fulfilling the mentioned requirements 

and have been used to process CIGS as well as the similar CZTS solar cells [66]. Figure 4 

shows schematic illustrations of four applicable methods which are briefly introduced 

below and evaluated in terms of their usability. 

 

Figure 4:  Schematic representations of four widely used coating techniques. From left to right: 

spin coating on a rotating table, blade coating, slot-die coating and spray coating. 

The preferred coating process in the literature is spin coating (SPC). For this process the 

ink is casted on a symmetrical substrate placed in the center of a rotatable table. Due to 

the rotation a homogeneous and reproducible ink distribution on the surface can be 

achieved. However, the fast spin leads to a high material loss of up to 90% [67] resulting 

in the deposition of rather thin layers. For this reason, approaches using SPC usually have 
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to carry out several consecutive coating steps to achieve the required film thickness. Other 

downsides are the required ink properties. SPC is dependent on inks with sufficiently high 

viscosities. A conclusive review on spin coating of polymer films with results that can 

mostly be transferred to CIG(S) inks can be found in the literature [68].  

Blade coating (BLC) offers more process parameters to control the film thickness allowing 

a deposition of inks with a wider range of properties. For the film deposition the fluid is 

placed in front of the blade gap and is moved over the substrate. The material utilization 

of this process usually is very high reaching near unity [67]. Due to the exclusive use of 

this method in this thesis, a detailed evaluation of BLC can be found in section 3.1.1. 

Slot die coating (SDC) is an extended version of BLC. In contrast to the latter, the liquid 

is applied on the surface through a precise slot with a defined volume flow. Thus, by 

moving the device over the surface, a liquid film is deposited with a constant film height 

only dependent on the applied volume flow of liquid and the coating speed which is why 

SDC is widely used in the industry to deposit high quality layers. Due to the comparably 

complex device design and the high volume of unused ink inside of the device, the 

applications for this method on a lab scale are limited.  

Spray coating (SC) describes a method where the ink is pressed through a nozzle to 

nebulizer it to small droplets. In some cases a carrier gas or an electric field is applied to 

enhance the deposition. The advantages of SC lie in the possible coverage of rough surfaces 

or even non-planar substrates [69], [70]. However, the formation of flat layers can be 

challenging with this method [71]. SC can also be applied on heated surfaces with 

temperatures between 100 and 500°C to facilitate the formation of certain phases. In this 

case the process is called spray pyrolysis [72].  
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Guideline to the results 

 

 

 

 

In the introductory part the most important non-vacuum based deposition methods for 

CIGS layers have been introduced. The solution based approach has been further 

investigated in this thesis leading to the development of a new process based on 

preliminary findings of Dr. Markus Widenmeyer. The results have been published in three 

papers [73]–[75].  

In order to achieve the goal of producing working devices, a broad field of subjects had to 

be investigated leading to results in several interdisciplinary topics. To simplify the 

reading and to systematically cover all areas that are necessary to understand this 

process, the content has been divided into the five typical steps which are presented in 

this thesis in their process order. Figure 5 shows a schematic overview.  

Chapter 2 covers the precursor choice and synthesis methodology followed by the ink 

formulation. Chapter 3 begins with a description of the applied liquid film deposition 

method. Subsequently, the formation of metallic layers is explained beginning with the 

solvent evaporation and metal ion reduction. A further section dealing with the 

densification of the metallic nanoparticles is included. Chapter 4 focuses on the 

selenization step necessary to transform the metal layer into a chalcopyrite 

semiconductor. The last chapter number 5 comprises the layer and cell characterizations 

as well as an investigation on the influence of sodium salts dissolved in the ink. 

 

Figure 5:  A schematic representation of the thesis structure based on the five process steps for 

the chemical processing of CIGS layers. Chapter 2: precursor synthesis and ink 

formulation. Chapter 3: liquid film deposition, solvent drying and metal film formation. 

Chapter 4: selenization. Chapter 5: absorber as well as device characterization and the 

effect of different sodium sources. 
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Chapter 2  

 

 

From the metal salt to the ink 

This chapter begins with an introduction justifying the chosen materials for this particular 

process. Following this, the synthesis for the selected metal salts is described. In this 

context, several possible base materials are introduced and their applicability is 

evaluated. The synthesized precursor salts are further characterized with a focus on their 

stability regarding degradation in air. Thereafter, the solvents are introduced as well as 

the ink formulation procedure.  

2.1 Material choice 

In solution based approaches the used compounds as well as the associated chemistry have 

a great influence on the properties of the intermediate layer and therefore determine the 

quality of the final absorber. Inappropriate material choices in this very first step can 

make the processing of efficient cells impossible as has been shown in the literature review 

in section 1.3.2.2. Thus, two types of approaches have been evaluated in detail and have 

been modified in order to develop this process. The first examples are the metal salt based 

approaches usually applying metal chlorides or nitrates dissolved with a binder material 

in an alcohol. After the solvent evaporation the salts precipitate in an organic binder 

matrix. Taken from these approaches is the use of cheap materials that are available in 

large scales. The main difference here is the idea to achieve a direct conversion of the 

metal ions to the respective metals. In this context an important requirement was to 

accomplish this without an energy-intensive additional reduction step (e.g. in hydrogen). 
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Thus, a chemical system has been searched containing a strong reducing agent. Previous 

experiments of Dr. Markus Widenmeyer and new findings during the development of this 

process identified formate salts as a suitable material fulfilling the requirements. It could 

also be shown that the salt anions decompose cleanly. The second type of processes used 

as antetype are the hydrazine approaches [76]. In their case a nitrogen-rich solvent is used 

that doesn’t contain any carbon or oxygen atoms and which decomposes cleanly during the 

layer formation. Thus, when choosing the solvents and additives for this process, a focus 

was set on compounds with an expected clean evaporation and/or decomposition. In order 

to minimize the chances for the formation of a carbon layer, nitrogen rich compounds with 

isolated carbon atoms have been preferred. These nitrogen rich compounds are also often 

advantageous regarding their complex formation properties with metal salts allowing the 

formulation of concentrated inks. Contrary to the hydrazine approach, only non explosive 

materials have been considered which are either commercially available as well as cheap 

or can be easily synthesized. The last point is particularly important to keep the price 

advantage over the vacuum based processes.  

2.2 Synthesis of metal formates 

Due to the poor availability of metal formate salts at common chemical suppliers (only 

copper formate has commercial distributors with purities below 97%) the precursors used 

in this work had to be synthesized in a first step from other sources. As base material 

several different metal salts have been evaluated and the identified possibilities are 

presented in the first part of this section. The focus has been set on the commercial 

availability and applicability for a synthesis. The second part gives an introduction in the 

chosen synthesis routine applied in this thesis. 

2.2.1 Base materials for the formate synthesis 

When choosing the right base material for the formate synthesis several requirements had 

to be fulfilled. Firstly, the anion of the starting material either had to decompose 

completely or had to take part in an ion exchange reaction with formic acid. Secondly, a 

high initial purity was considered as important due to the fact that the precursor salts can 

be a source of unwanted metal impurities incorporated into the final solar cell. Pianezzi et 

al. have shown that several metal contaminations can have detrimental effects on the 

device performance [77]. The third requirement was again a reasonable price to keep the 

competitive advantages of the process compared to the standard vacuum techniques. 

Considering these limitations a variety of possible metal salts have been evaluated 
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including acetates, alkoxides, amines, carbonates and nitrates. In the following section the 

properties of the mentioned metal salts are briefly discussed and their use as precursor 

salt is reviewed. 

Metal acetates  

Acetates are the salts of the acetic acid and are commercially available for copper and 

indium. Because the acetates are slightly less acidic than the formates an ion exchange of 

the anion in solution can be expected. However, the purification of the product mixture 

makes this synthesis complicated. In order to separate the metal formates the forming 

acetic acid has to be removed which can be problematic due to the similar boiling points of 

both acids. Experiments with indium acetate yielded mostly the pristine acetates. 

Metal alkoxides 

Metal alkoxides are a very convenient source to synthesize formates. The alkoxides are 

highly alkaline and readily take the associated base proton from the formic acid forming 

an alcohol. Due to the low boiling points of these alcohols a subsequent separation from 

the product salt by evaporation can be easily achieved. Regarding their availability, 

methoxides are only available for copper while ethoxides can be bought from all three 

metals. On the downside, alcoxides are rather expensive as well as water sensitive. 

Exposed to water containing air, the metal alkoxides readily hydrolyze. 

Metal amides 

An example for an amide is the commercially available but rather expensive Tris-

(dimethylamido)-gallium. Dissolved in formic acid, solid dimethyl-ammonium-formate is 

forming with gallium formate as byproduct. Due to the resulting solid salt mixture a 

subsequent separation is necessary making this route complex and therefore 

uninteresting. 

Metal carbonates 

Carbonates are only available for copper as a base material in large quantities with a 

moderate purity and high amounts of trace elements. However, due to their basicity, 

carbonates are nevertheless very interesting. Mixed with formic acid the basic carbonate 

anion undergoes an acid-base reaction. The resulting carbonic acid is unstable and 

decomposes cleanly to gaseous CO2 and H2O. The water catalytically increases the reaction 

speed. 
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CO3
2- + 2HCOOH ⇌ H2CO3 + 2HCOO-   2HCOO- + CO2↑ + H2O 2-1 

The decomposition leads to a constant loss of carbonic acid and therefore shifts the acid-

base reaction to the right. The resulting metal formates are therefore expected to be highly 

pure as has also been reported by Rosendband et al. [78]. They converted the carbonates 

by mixing them with formic acid followed by a stirring step at 80°C for 30 min. However, 

the absence of commercially available In- and Ga-carbonates is a considerable 

disadvantage of this route for the processing of the necessary salt mixtures. 

Metal nitrates 

In contrast to the carbonates, metal nitrates are available from copper, indium and 

gallium in purities as high as 99.999%. Additionally, the nitrates can also easily be 

prepared from the base metals and nitric acid. Thus, independently of the chemical 

suppliers, the expected price range of metal nitrates should be close to the pure metals.  

Regarding the formate synthesis metal nitrates behave similar to carbonates in the 

presence of formic acid. Mixed with the acid they are decomposing to oxygen and water as 

well as nitrous fumes ranging from N2 to N2O5 including NO, NO2, N2O and N2O4 [79]. 

Which compound actually forms depends among others on the salt, the temperature and 

the conditions.  

From the presented options metal nitrates have been chosen due to the available purities, 

the price ranges as well as the easy formate synthesis and product purification routine. 

Thus, the reactions leading to the formate salts are discussed in detail in section 2.2.2.2. 

2.2.2 Formate synthesis with metal nitrates 

This section begins with an investigation of the metal nitrate composition with a focus on 

the amount of water of crystallization. Thereafter, the reaction paths are discussed and 

the applied synthesis procedure is explained. 

2.2.2.1 Nitrate salt composition 

To process CIGS solar cells the metal ratios have to be very precise in the range of 

Cu:In:Ga = 0.9:0.8:0.2. Thus, the exact composition of the available metal nitrates has to 

be determined in a very first step. Apart from the documented purity and the known 

quantity of trace elements, the amount of water of crystallization had to be measured 

regularly to assert the metal fraction. This can be achieved in several ways. The easiest 
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possibility and mostly used in this thesis is to take a sample of the pristine nitrates with 

a known weight and decompose it in air at elevated temperatures. As product the 

respective most stable oxides are formed. It is important to note that the presence of 

hydroxides has to be excluded which requires sufficiently high temperature and heating 

times. The metal fraction in the resulting oxides is known and can be used to calculate the 

initial metal fraction in the nitrates. From this information the amount of water of 

crystallization can be determined. In order to confirm these measurements, a second 

method has been carried out. Copper nitrate, the salt with the most noble metal in the 

mixture, has been reduced to the pure metallic phase by a heat treatment at 500°C in a 

hydrogen containing environment (forming gas, 5%H2, 95%N2). This allows a direct 

measurement of the metal fraction. 

Regarding the available metal nitrates, copper nitrate can be bought as trihydrate as well 

as x-hydrate with an unknown composition. Both salts have been used in this thesis and 

therefore the amount of water had to be estimated individually. Indium and gallium 

nitrate are only available as x-hydrate. An overview of the measured metal fractions in 

the respective nitrate salt and the calculated molar ratios of water are listed in Table 1. 

Table 1:  Metal fractions and the corresponding amount of water in the metal nitrates determined 

by oxidation in air (all metal salts) and by reduction in hydrogen (copper only). 

Metal nitrate Oxidation in air Reduction in hydrogen 

 
Metal fraction 

in % (calc.) 

Molar amount 

of water (calc.) 

Metal fraction 

in % (calc.) 

Molar amount 

of water (calc.) 

Cu nitrate trihydrate 25.8 (26.3) 3.3 (3) 25.6 (26.3) 3.3 (3) 

Cu nitrate x-hydrate 23.6 4.5 23.5 4.5 

In nitrate x-hydrate 29.1 5.1 - - 

Ga nitrate x-hydrate 16.1 10.0 - - 
 

As can be seen in Table 1, the amount of water in the copper nitrate trihydrate corresponds 

to the expected value of three water molecules per copper ion. The difference can be 

explained by uncertainties in the measurement. Compared to this the measured water in 

the copper nitrate x-hydrate is significantly higher. Experiments have also shown that in 

this compound the water fraction is dependent on the storage conditions. Days with high 

humidity eventually lead to the formation of copper nitrate hexahydrate which can be 

easily identified by its low melting point of 26.4°C (trihydrate: 114.5°C). Thus, a regular 

control of the composition is necessary. In contrast to copper nitrate, In and Ga nitrate 

both showed constant values of hydration water of 5 and 10, respectively. 
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2.2.2.2 Synthesis 

For the synthesis an excess of formic acid has been added to the mixed metal nitrates and 

the suspension was stirred on a hotplate for several minutes at low temperatures. Under 

these conditions formic acid reduces the nitrate anions to gaseous products and the excess 

of formate ions leads to an ion exchange. The possible reaction paths are stated below: 

HCOOH +NO3
-   ⇌         HCOO- + HNO3 2-2 

HCOOH + 2HNO3            2H2O + 2NO2↑ + CO2↑ 2-3 

HCOOH + NO2             H2O + NO↑ + CO2↑ 2-4 

4HCOOH + 2NO3
-           2HCOO- + 3H2O + NO↑ + NO2↑ + 2CO2↑ 2-5 

 

When mixed the formic acid and the nitrate ion first undergo an acid-base reaction with a 

proton transfer to the nitrate ion (2-2). It is important to note that the low basicity of nitric 

acid shifts the equilibrium of this reaction to the far left. However, the formed nitric acid 

gets further reduced by the excess formic acid to gaseous NO2 (2-3) and in a second step to 

NO (2-4). The loss of these gaseous products is the reason why reaction (2-2) is shifted to 

the right. Simultaneously, the highly exothermic reactions quickly increase the 

temperature of the mixture. Both effects lead to a fast conversion. The gaseous products 

contain the mentioned nitrous fumes including NO2 that can be clearly identified by its 

brown color. Thus, it is advisable to carry out this synthesis in a fume hood. For the three 

metal nitrates used in this thesis the overall reactions are shown below. 

Cu(NO3)2·xH2O + 4HCOOH   Cu(HCOO)2 + NO↑ + NO2↑ + 2CO2↑ + 

 (x+3)H2O 

2-6 

2In(NO3)3·xH2O + 12HCOOH    2In(HCOO)3 +3NO↑ + 3NO2↑ + 6CO2↑ + 

 (x+9)H2O 

2-7 

2Ga(NO3)3·xH2O + 12HCOOH    2Ga(HCOO)3 + 3NO↑ + 3NO2↑ + 6CO2↑ + 

 (x+9)H2O 

2-8 

 

The resulting formates have a poor solubility in the excess formic acid. To separate the 

residual formic acid and the residual water from the metal formates, the liquids have to 

be evaporated which can be carried out on a hotplate in air. Due to the relatively high 

boiling point of formic acid (101°C), a complete evaporation in reasonable times requires 

elevated temperatures. To exclude any unintentional formate decomposition during this 

drying step and reduce the evaporation time, the separation of the salt and the acid can 
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also be achieved in a rotary evaporator. By slowly decreasing the pressure to 1 mbar, the 

temperature can be limited below 70°C leading to a reproducible and high purification.  

2.2.3 Characterization and stability issues of metal formates  

Controlling the synthesis regarding product quality and composition of the precursor salts 

plays a key role in terms of reproducibility. Therefore, a characterization of the precursor 

salts and an evaluation of the storage stability have been carried out. In the first part of 

this section, the newly synthesized metal formates are analyzed in terms of composition 

and purity. In the second part the influence of a storage in air on the salt properties are 

examined by X-ray diffraction and infra red spectroscopy. 

With the determined metal fractions in the metal nitrates (see section 2.2.2) and the 

remaining weight of the metal formates after the synthesis, the final metal fraction in the 

product salts can be calculated. Table 2 shows the resulting values revealing a total metal 

fraction in the CIG mixture of 40.5%. The results are close to the expected values derived 

from mass balance considerations. 

Table 2:  Calculated and expected metal fractions of the purified formates salts as well as a CIG 

formate salt mixture with a composition of Cu:In:Ga = 0.9:0.8:0.2 

Metal formate 
Calculated metal fraction from 

experimental results in mass-% 

Expected 

metal fraction in mass-% 

Copper formate 41.0 41.4 

Indium formate 44.8 45.9 

Gallium Formate  28.8 28,8* 

CIG mixture 40.5 40.4 

*calculated with Ga(HCOO)3(CO2)0.75(H2O)0.25 

The metal formates synthesized in this thesis are crystalline powders. Thus, X-ray 

diffraction analyses can be used to identify the crystalline phases. Figure 6 shows the XRD 

pattern of the individual salts. Copper formate is known to crystallize in several 

modifications [80]. The applied synthesis routine yielded two modifications that could be 

easily distinguished by their color ranging from light to dark blue. Two different copper 

samples have been analyzed by XRD that could be identified as almost pure orthorhombic 

(Cu(HCOO)2, JCPDS #00-032-0332) and monoclinic modifications (Cu(HCOO)2, JCPDS 

#00-032-0331). The orthorhombic sample revealed small additional peaks that could not 

be assigned to any phase (e.g. at 37.3°). Indium formate shows the expected hexagonal 

structure (In(HCOO)3, JCPDS #01-077-4470) and the pattern of gallium formate could be 
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assigned to a cubic unit cell containing carbon dioxide and water 

(Ga(HCOO)3(CO2)0.75(H2O)0.25, JCPDS #01-076-4359). Tian et al. explained the unusual 

presence of CO2 in the crystal by caged molecules which are hydrogen bonded to the formic 

acid [81]. Additional crystalline phases have not been found.  

 

Figure 6:  X-ray diffraction pattern of the three metal formates. Copper formate has been 

synthesized in two modifications, monoclinic (Cu A) and orthorhombic (Cu B). The lower 

part of the figure indicates reference data. 

Regarding the salt stability, a decreasing solubility mainly of indium and gallium formate 

in the used solvents has been observed after storage in air. In order to investigate the 

degradation behavior all metal formates have been analyzed after one and three weeks air 

exposure compared to storage in nitrogen. The samples have been evaluated by XRD and 

Fourier transformed infrared spectroscopy (FTIR). Beginning with the former, Figure 7 

shows the XRD pattern of the three metals with a focus on a small 2-theta area containing 

at least two peaks. In the case of copper formate only the monoclinic modification has been 

evaluated. Yet, the resulting XRD patterns reveal a partial phase transition to the 

orthorhombic modification after 3 weeks in air. The diffraction peaks of indium formate 

show a slightly decreased height after one week of air exposure which most likely is in the 

fault range of the measurement. 
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Figure 7:  XRD pattern of copper, indium and gallium formate salts stored in nitrogen and exposed 

to air for 0, 1 and 3 weeks. The measurements have been carried out with the same 

machine setup. 

Regarding gallium formate the changes in the XRD pattern can’t be neglected. In this 

sample the proposed salt degradation leads a significant drop in signal intensity and a 

superposition of the two neighboring Kα1 and Kα2 peaks of the Cu X-ray source to a single 

maximum. In order to gain more information about the degradation mechanism, FTIR 

analyses have been carried out which can be seen in Figure 8. The overview graphs on the 

left show that the IR absorption of all samples occurs mostly between 2000 and 500 cm-1. 

In this range are most of the absorption bands of the expected carboxylate ion with the 

exception of the C-H stretches weakly absorbing the infrared light around 2940 cm-1. The 

detailed graphs on the right show that the formate anion can be observed in all three 

samples with the C=O and the C-O stretching vibrations clearly visible between 1550 and 

1600 cm-1 and around 1350 cm-1, respectively [82]. The related O-C=O bending of the 

carboxylate ions are visible in the range of 800 cm-1 [83]. A similar IR study has already 

been executed on copper formate yielding comparable results [84]. 

The analyzed monoclinic copper formate salt shows two additional peaks around 1730 cm-

1 and 1330 cm-1 which could only be assigned to an ester group. Methyl formate for example 

absorbs IR radiation in these regions [85]. The discrepancy about the unknown origin of 

the methyl group is discussed later. In the case of copper formate the exposure to air does 

not change the pattern. Indium formate does not show any ester peaks in the sample 

stored exclusively in nitrogen and also not within one week of air exposure. After 3 weeks 

in air, however, the mentioned ester peaks are visible as well. Another small peak around 

1650 cm-1 could not be identified.  
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Figure 8:  Fourier transformed infrared spectroscopy on metal formates stored in air for one and 

three weeks compared to a storage in nitrogen.  

The IR results of gallium formate are different to the mentioned copper and indium salts 

showing several additional absorption bands. Around 3350 cm-1 a small peak can be 

observed indicating the presence of an O-H group which would be in agreement with the 

crystal structure measured by XRD that suggested incorporated water of crystallization 

[81]. However, the strong peaks around 1120 and 1730 cm-1 can be attributed to residual 

formic acid, most likely remaining from the synthesis routine due to an incomplete 

evaporation. The C-O and C=O vibrations of the acid molecule absorb the radiation in this 

region, respectively [86]. Thus, the -OH absorption around 3350 cm-1 could also be 

explained by the formic acid. The missing peak around 740 could not be assigned to any 

group. Similar to indium formate, gallium formate stored exclusively in nitrogen does not 

contain any measureable ester groups. Yet, the air exposure leads to the typical ester 

absorption bands already after one week.  
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The formation of the observed esters would require the presence of a molecule with a 

methyl group like an alcohol. Due to the absence of suchlike compounds during the 

synthesis one might speculate about a disproportionation reaction of formic acid or the 

formate ion to methanol. This reaction has been observed on formic acid for example in 

the presence of a catalyst [87], [88]. Due to the fact that the ester peaks don’t occur in an 

inert atmosphere water or oxygen in the air might be necessary for the reaction. This is of 

course highly speculative. Yet, the formation of insoluble precipitates after the storage in 

air emphasizes the instability of the synthesized metal formate salts.  

In summary, the characterization experiments reveal that copper formate does not show 

any air storage dependent changes in the XRD and IR results. The IR analysis of indium 

formate indicates the formation of a possible ester groups under air exposure. In gallium 

formate the same ester peaks can be observed with a significantly higher intensity and 

therefore quantity. Correspondingly, the measured XRD pattern shows broadened peaks 

indicating a decreased crystal coherence length. In combination with the experimental 

observation of a deteriorated solubility of the salts after air exposure these results clearly 

emphasize the necessity to keep the precursor salts under inert atmosphere. 

2.3 Solvent characterization and ink processing 

In this section the two liquids used in the presented process are characterized. Both are 

critical components and have been chosen with regard to their physical and chemical 

properties including the high temperature behavior, boiling point and viscosity. In the first 

section, the solvent is presented followed by the diluting agent. Finally, the ink 

formulation procedure is explained. 

2.3.1 The solvent  

1,1,3,3-tetramethylguanidine (TMG) has been chosen as solvent for this process. 

Guanidines have the basic structure [(R2N)2C=NR] with a center consisting of a trigonal 

CN3 unit. The sp2 hybridization of this central carbon atom leads to a planar core [89]. In 

TMG four methyl groups are attached to the tertiary amine groups. The double bonded 

imine nitrogen is connected to a hydrogen atom (Figure 9). 
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Figure 9:  Chemical structure of 1,1,3,3-tetramethylguanidine. 

Unlike similar nitrogen containing compounds such as urea or amidines/amides, the 

coordination chemistry of guanidines is limited to non-aqueous solutions. In water 

guanidines readily form the guanidinium cation due to their high basicity (pKb=0.4). The 

reason for the high basicity can be explained by a mesomeric delocalization of the positive 

charge. The guanidinium cation itself is a bad complexation ion. This can be explained by 

the lowered energy of the π-system due to the missing lone electron pair [89]. Thus, to 

achieve soluble metal salt complexes the ink has to be water free. 

The physical properties of the solvent are also important for the process. Density, vapor 

pressure and viscosity are examples that have an influence on the process results during 

the coating and drying steps. However, there are only a few publications on the pure 

compound [90]–[92] and the physical properties found for TMG are listed in the appendix 

B. The reported values for the vapor pressure show large deviations. Anderson et al. [91] 

noted a significant difference between their measurements and the values published by 

the American Cyanamid Company which can be found in most data sheets (e.g. [92]). For 

this reason, the vapor pressure values used in this thesis have been calculated from the 

heat of vaporization taken from [90] and the Clausius-Clapeyron relation. 

In water free environments TMG readily dissolves the metal formates. Inks with metal 

concentrations of more than 15 mass-% could be produced. However, the viscosity 

significantly increases with the amount of salt. In order to investigate the qualitative 

influence of the dissolved salts on the viscosity, rheometric measurements on inks have 

been carried out under nitrogen. Yet, the solutions have been shown to be highly sensitive 

to oxygen and/or water in the air during the sample preparation, instantly leading to 

precipitates. An explanation could be the mentioned formation of the guanidinium cation 

with water resulting in the insoluble precipitates. Therefore the viscosity of the ink could 

not be measured accurately. 



Chapter 2 

Solvent characterization and ink processing 

__________________________________________________________________________________ 

29 

 

2.3.2 The diluting agent  

Sufficiently concentrated solutions of metal formates dissolved in tetramethylguanidine 

are highly viscous. Yet, all coating processes have a specific viscosity range for inks to be 

processed which mostly is significantly lower [93]. Thus, an additional diluting agent is 

necessary to adjust the ink properties. Besides the mentioned viscosity requirements the 

surface tension is an important factor influencing the quality and homogeneity of the 

liquid film and the dried precursor layer. Regarding the chemical properties, the liquid 

also must not be oxidizing and have good solubility properties. While adjusting the 

viscosity is necessary for the coating method, changes in the surface tension can be 

disadvantageous for the drying step. Significant differences in this parameter between the 

used solvents can lead to the Marangoni effect which will be discussed in section 3.2.1. In 

order to minimize this effect, one option is to quickly evaporate the diluting agent. This 

can be achieved by choosing a compound with a high vapor pressure and correspondingly 

low boiling point. Table 3 lists the physical properties of suitable organic solvents.  

The shown alcohols cover a large area of vapor pressure and viscosity. High values in the 

latter require larger solvent volumes to reduce the overall viscosity of the ink. Thus, the 

metal concentration decreases making the smaller alcohols more interesting. For this 

reason methanol has been chosen in this thesis, however, experiments have shown that n-

propanol is also suitable for the processing of solar cell. From a production point of view, 

the non toxic ethanol might be a suitable compromise. 

 

Table 3:  Physical properties of selected organic solvents. 

Compound 
Boiling point at 

1 atm in °C 

Vapor pressure 

at 20°C in Pa 

Viscosity at 

20°C in mPas 

Solvent TMG 161 131 (calc.) 
1.4 [91] 

2 [92] 

Diluting 

agent 

Methanol 64.7 12900 0.6 

Ethanol 78.4 5800 1.1  

i-Propanol 82.6 4300 2.0  

n-Propanol 97 1990 1.9  
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2.3.3 Ink formulation 

This section briefly explains the ink formulation. The prepared metal formate salt mixture 

(for the synthesis see section 2.2.2) with metal ratios of Cu/(In+Ga)=0.9 and 

Ga/(Ga+In)=0.2-0.25 is filled in a small vial with a stirring bar. The solvent TMG is added 

with a metal salt:solvent mass-ratio of 1:1.2. Subsequently the mixture is placed on a hot 

plate at 100°C and stirred for a few minutes. The salts slowly dissolve leading to a dark 

almost black solution. Longer stirring leads to a reduction of the Cu(II) ions to Cu(I) which 

can be easily observed by a color change of the ink from black over green to colorless (see 

also section 3.3.2). The reduction can be inhibited by adding the diluting agent methanol 

with a metal salt:methanol mass-ratio of 1:1.5-1.6. The ink color change from green to blue 

indicates a complexation of the Cu(II) ions with methanol. If additional sodium salts are 

required which are introduced in Chapter 5, premixed solutions consisting of methanol 

and the preferred sodium salt with a known composition are added. The amount of 

methanol in this solution substitutes the same amount of pure methanol. Finally, the 

additive 4-amino-1,2,4-triazole (4ATA) is added with a metal salt:4ATA mass-ratio of 

about 1:0.03. The function of this additive is discussed in detail in Chapter 3. 

2.4 Summary of chapter 2 

Chapter 2 evaluates the individual compounds that have been chosen for the described 

ink system. Copper, indium and gallium formate salts as metal source are used due to the 

high reduction potential of the formate anion and its clean decomposition behavior. The 

strong base tetramethylguanidine has been selected as solvent for its good complexation 

properties and its chemical structure consisting of individual carbon atoms separated by 

nitrogen atoms. This property is expected to inhibit the formation of carbon residues 

during the solvent decomposition. Methanol is added to the ink to decrease the viscosity 

and the surface tension of the solution which is necessary for the deposition of 

homogeneous liquid films.  

The used metal formate salts have to be synthesized due to their poor availability at 

commercial suppliers. Thus, several source materials are evaluated regarding price, 

applicability and product purity. Metal nitrates are chosen due to the simple synthesis 

and purification. The thereby produced metal nitrates are characterized in terms of phase 

composition and air stability. XRD and IR analysis after air exposure revealed a 

degradation which is in agreement with the observed decreasing solubility. 
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From the ink to a metallic layer 

In this chapter, the individual steps necessary to produce a thin layer consisting of metallic 

Cu, In and Ga containing nanoparticles are presented. Beginning with the prepared ink, 

section 3.1 investigates the deposition of continuous and homogeneous liquid films on the 

preferred substrate. From these films the organic solvents have to be evaporated carefully 

in a subsequent drying step which is the topic of section 3.2. Due to the presence of a multi-

component ink system consisting of the alcohol methanol and the strong base TMG, one 

focus is set on the changing fluid properties of the film during the consecutive solvent 

evaporation and their impact on the film homogeneity. The redox reactions of the formate 

salts occurring at elevated temperatures which transfer the dissolved metal ions to 

metallic nanoparticles are investigated in section 3.3 and 3.4. In section 3.5 an additive is 

introduced which is necessary to achieve a sufficiently dense and homogeneous precursor 

layer quality. 

3.1 Deposition of uniform liquid films 

In order to deposit homogeneous and flat liquid films on the substrate a suitable coating 

method is necessary. In the introduction, several lab scale coating techniques have been 

introduced and evaluated regarding their applicability. As a result blade coating has been 

selected as method of choice for this process for several reasons. The most important 

advantages are summarized below in random order. 
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 easy and fast liquid film deposition 

 almost unlimited choice of substrate geometries 

 high material utilization  

 application of inks with a wide range of properties  

 easy film thickness tailoring by adjusting the coating parameters 

On a lab scale, however, blade coating also has two major disadvantages. Firstly, the film 

thickness is a function of the length meaning that for long substrate geometries a 

thickness gradient can develop. Secondly, predicting the final film thickness without a 

calibration based on empirical results is very complex and may require very elaborate 

computations. Both issues are briefly discussed in the next section. Regarding the latter a 

possible way to adjust the film height is addressed in an empirical study on the influence 

of the coating velocity.  

3.1.1 Theory of blade coating  

Blade coating is a self metered coating technique, meaning that the resulting film height 

cannot be preset and is dependent solely on the process parameters. The process 

parameters include the geometrical properties of the blade as well as the ink volume and 

device parameters like coating speed and base plate temperature. Apart from these, the 

fluid properties play a large role, especially the temperature dependent viscosity and 

surface tension of the processed ink. Due to the variety of parameters it is obvious that a 

prediction of the resulting layer properties, most importantly a calculation of the resulting 

film height, can get very complex [94], [95]. Therefore this section is intended to give a 

short overview on the most important parameter dependencies with a special focus on the 

reproducibility. For a detailed review of the blade coating process, the reader is referred 

to the literature [96], [97]. 

 

Figure 10:  Schematic representation of the possible flow profiles in the blade gap in a static 

coordinate system around the blade. A: couette flow; B: channel flow; C: superposition 

of A and B. 
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An analytical investigation of the flow pattern in the blade gap reveals for laminar 

conditions a superposition of two flow profiles which are schematically shown in Figure 10 

[98]. The volumetric flow of ink at the exit of the blade gap determines the amount of liquid 

deposited on the surface and is directly dependent on the velocity distribution in the blade 

gap. Profile A belongs to a shear-driven couette flow and has a simple triangular shape 

which is mostly dependent on the coating speed. The second profile B is more complex and 

represents a pressure-driven channel flow. Beside the pressure gradient which is a 

function of the amount of excess liquid in front of the blade and the coating speed, the 

velocity distribution in this profile is also dependent on the fluid parameters like the 

viscosity and the the surface tension of the ink. The share of each profile depends on the 

chosen process parameters and influences the thickness of the final layer. The effects of 

two selected parameters are discussed in the next section. 

3.1.2 Influence of the blade coating parameters 

In the previous section the two prevailing flow profiles in the blade gap have been 

introduced. In this section the influence of two parameters, the ink volume and the coating 

speed are discussed regarding their impact on the flow profiles and consequently the film 

thickness.  

Ink volume 

Beginning with the ink volume the presented lab scale coating process has been optimized 

to minimize the waste. Therefore, the total amount of ink in front of the blade has been 

adjusted to be sufficient for a full surface coverage without leaving high amounts of 

residues on the coating device. The thereby used low ink volumes result in a decreasing 

liquid reservoir in front of the blade during the film deposition leading to a proportionally 

decreasing pressure gradient in the blade gap. This issue has a significant impact on the 

shape of the developing flow profile. As has been discussed before, a decreasing pressure 

gradient eventually diminishes the share of the pressure-driven channel flow which 

necessarily leads to a decreasing film height during the deposition as a function of the 

coating path.  

The effect can be visualized by measuring the thickness at several positions on dried 

precursor layers. Figure 11 shows the dry film thickness distribution of multiple metallic 

layers measured by profilometry. For this experiment several samples have been prepared 

by depositing a constant amount of ink on 8 cm long and 1.7 cm wide substrates followed 

by a drying and alloying step up to 200°C.  
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Figure 11:  Film height deviation as a function of the distance from the starting point of the coating 

process. The values belong to four different samples processed up to 200°C with 

thicknesses around 500 to 1000 nm. The measurement has been done by profilometry. 

The graph shows that the total film height decreases to roughly 50 % of its initial value 

within 7 cm of substrate length. This deviation seems very large especially regarding a 

future up scaling. Thus, at this point it has to be noted that this effect can easily be 

minimized by keeping the amount of ink in front of the gap nearly constant e.g. by using 

a large excess ink volume. However, for the current investigation the film height deviation 

offers the opportunity to evaluate the thickness dependent electrical properties of the final 

solar cells. With the used grid design 10 adjoined solar cells can be processed from one 

substrate after the selenization and the deposition of buffer and window layer. Due to the 

used blade coating deposition method, each of the cells has a different absorber layer 

thickness influencing the optoelectronic properties. In Figure 12 the normalized current 

densities of 9 substrates corresponding to 90 cells are depicted as a function of the cell 

position. The graph clearly shows a trend to lower jsc values towards the end of the 

substrate. It also suggests that the highest values are achieved around the third cell.  

     

Figure 12:  Current densities of 10 adjoined solar cells normalized to the highest value on 7 cm long 

substrates as a function of the cell position. Each data point is based on 9 cells. The 

illustration on the right explains how to read the box chart. 
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To explain the trend in the current densities, external quantum efficiency (EQE) 

measurements have been carried out over a full substrate length on every second cell. The 

results are shown in Figure 13. The graph confirms the presence of an identical ZnO 

window layer (A) and CdS buffer layer (B) on all cells over the substrate length. At short 

wavelength the collection is also similar (C). Photons with a wavelength above 800 nm, 

however, are collected differently in the cells. The graph suggests that the collection is 

best at the cell positions 1 and 3. Thereafter, the collection decreases significantly from 

cell 3 to cell 9 with a drop at cell position 9. Above 1100 nm the EQE of all samples decrease 

quickly to 0% at 1180 nm (D). This last trend can be explained by the used EQE setup 

which has been calibrated only with a silicon solar cell (see also Appendix D).  

These results can be correlated with the short circuit current measured on the same cells 

which are shown on the right. After a maximum of around 38 mA/cm² at cell position 1-3, 

the values decrease almost linearly to 32 mA/cm² at cell position 9. Simultaneously, the 

open circuit voltage stays almost constant while the fill factor also decreases slightly (not 

shown). Considering the measured decrease in the layer thickness (Figure 11) the results 

indicate that the absorber layer above cell position 3 is too thin to achieve a similar 

collection. In thinner layers the absorption of photons with a long wavelength occurs closer 

to the back contact where the collection of generated charge carriers is less likely due to 

recombinations. Lundberg et al. did a similar investigation on co-evaporated CIGS solar 

cells with varying absorber layer thicknesses between 0.15 and 1.8 µm [99]. They observed 

a significant drop in efficiency which could also mostly be correlated with a decreasing 

short circuit current at a constant open circuit voltage. 

 

Figure 13:  Left: EQE curves of five cells on a 7 cm long substrate at the positions 1, 3, 5, 7, and 9. 

Right: Corresponding short circuit currents at all cell positions measured with a solar 

simulator. 
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Coating speed 

To calibrate the ink deposition and to simplify the adjustment of the resulting liquid film 

height, knowledge of the influence of the other coating parameter is necessary. In order to 

keep the deposition simple and to achieve a sufficient reproducibility most parameters 

including the salt concentration, the viscosity (mainly influenced by the methanol 

fraction), the temperature, and the blade gap height have been set as constant. Solely the 

coating velocity has been chosen to be variable. This parameter mostly determines the 

share of the shear-driven couette-flow in the blade gap which is less dependent on the ink-

properties and therefore should have a reliable influence on the film height. Its influence 

has been investigated empirically with several process configurations. Figure 14 shows 

the measured dry film of layers deposited on glass followed by a tempering up to 200°C. 

The results can be fitted with an exponential function showing an average increase of 

about 13 % in film height for each 2.5 mm/s speed step. 

 

Figure 14:  Precursor film height of several layers processed with different coating velocities. The 

values have been measured by profilometry and are plotted on a logarithmic scale. The 

results are normalized to the lowest thickness. In order to keep the results comparable 

the measurement position has been fixed to 1.5 cm after the starting point.  

3.2 Solvent drying 

Drying removes solvents by evaporation from a solid or mixture of liquids. Simultaneously, 

the drying process has to avoid any damage to the product which can be challenging 

especially regarding the drying of thin liquid film. This is further aggravated if the coated 

wet film consists of a multi component system where the individual compounds have 

deviating physical properties. In this case unwanted drying induced separation effects can 

have detrimental influences on the film homogeneity. Therefore this section focuses on the 

practical challenges in the drying of multi component inks. Derived from these findings, a 

new approach for the lab scale processing of homogeneous layers in the form of a combined 

coating/drying device is evaluated. 
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3.2.1 Drying induced film inhomogeneities 

In section 3.1.2 the film thickness deviations over the substrate length induced by the 

blade coating process have been investigated. These deviations can get very large for long 

substrates in the range of 7-10 cm. However, due to the small scale of the individual solar 

cells (edge length is around 7 mm) each cell has an almost constant layer height. Apart 

from the blade coating induced thickness deviations, liquid deposited thin layers often 

show side effects like “fat edges” close to the substrate borders. These material 

agglomerations can form during the coating or afterwards during the drying [100]. In the 

presented process the mentioned “fat edges” also occur but only during the drying step. 

Due to their possible size in the range of several millimeters and the total substrate width 

used for the solar cells of around 16 mm, these material agglomerations can have a 

significant influence on the cells’ layer homogeneity. Therefore, this section investigates 

possible explanations for the formation of the “fat edges”. 

In the present solution based approach drying is necessary to remove the solvent 

tetramethylguanidine (TMG) and the diluting agent methanol from the ink. Comparing 

the pure liquids, methanol has a very low boiling point of 65°C and therefore a high 

evaporation rate already at room temperature. TMG has a significantly higher boiling 

point of 160°C and is therefore expected to stay much longer in the ink. Thus, the 

evaporation of a mixture of both liquids can roughly be divided into two distinct steps. 

This section focuses on the mixture induced drying effects and thereby investigates the 

low temperature drying region where the ink still contains both liquids. In this region the 

properties of the ink are changing constantly due to the non simultaneous solvent 

evaporation. With a decreasing fraction of methanol in the ink, both the viscosity as well 

as the surface tension are increasing. This issue can have a severe influence on the 

homogeneity of the liquid layer and it is therefore crucial for the entire process [101].  

Similar solution based approaches in the literature usually evaporate the solvents by 

simply placing the sample on a hot surface. If this procedure is transferred to the present 

process, a particular effect can be observed. The liquid layer containing both liquids is 

exposed to a convective gas flow ascending from the surface of the hot plate (Thp), also 

denoted as free convection. In order to fill the empty space from the ascended gas, cold 

ambient air with Tsur < Thp is sucked in from the surrounding. The emerging flow field 

above the sample consists of parallel paths perpendicular to the hot plate edges [102]. 

Figure 15 shows a possible flow field around the sample. 
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Figure 15:  Simplified schematic representation of the gas flows around a substrate on a heated 

plate. 

The convective gas flux from the surrounding has a negligible partial pressure of the 

solvents and arrives at the substrate from the sides where the film thickness is the lowest. 

Due to the differences in the flow conditions the mass transport of the solvent molecules 

from the film surface to the gas phase is anisotropic. This can be the reason for a faster 

solvent evaporation close to the edges leading to a depletion of the low-boiler methanol in 

these areas. Together with the slightly lower layer thickness at the edges, the faster 

methanol evaporation can lead locally to a significantly increased surface tension [103]. 

Surface tension gradients throughout the film surface can form which are inducing 

convective liquid fluxes in the film [104] and from the center of the film to the borders 

[101], [105]. This effect is known as the Marangoni effect which is a common problem in 

thin film drying [106], [107]. For small lab scale substrate dimensions, the thereby 

agglomerated ink at the borders can be detrimental due to the inhomogeneous thickness 

distribution which is discussed in the next section. 

3.2.2 Influence on the solar cell quality 

The dimensions of “fat edges” occurring during the drying can overlap with the solar cell 

area (Figure 16). Thus, the material agglomerations can also affect the opto-electronic 

properties of the final solar cell device. In order to show this issue light beam induced 

current (LBIC) measurements have been used. With this method the cell surface is 

scanned with a focused light beam and the respective current response is monitored giving 

a two-dimensional current distribution. The measurement has been carried out under a 

constant negative bias voltage of -300 mV. Figure 16 shows the current response map of a 

cell processed from a precursor layer with significant thickness deviations at the substrate 

borders. The color coded map in the lower part of the cell corresponding to the center of 

the substrate shows a rather homogeneous current distribution. Only small deviations can 

be observed at the bottom of the cell area. In contrast to this, the upper part close to the 

sample edges reveals large, stripe like areas with a significant drop in the current response 

(yellow/green color). The results can be explained by the high absorber layer thickness in 
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this area which has been measured to be in the range of 4.5 µm. An absorber thickness 

that high can result in a decreased current collection due to recombination of the charge 

carriers. 

  

Figure 16:  LBIC measurement on a cell with drying induced thickness deviations in the absorber 

layer towards the substrate edges showing a high current loss in these regions. Left: 

schematic representation of the cell position on the substrate and the thickness 

measurement positions (profilometry). Right: Local current response map. A red laser 

was used with a wavelength of 658 nm 

One possibility to improve the layer homogeneity is to decrease the ink volume by dividing 

the coating/drying process into multiple steps. However, this process fragmentation 

requires several more steps which are complicating the whole process. In order to improve 

the film properties without complicating the process (keeping only a one step film 

application), one option is to adjust the drying conditions which will be evaluated in the 

next section. 

3.2.3 Controlled drying by forced convection 

The key finding in the previous section is that the drying step has to be optimized 

regarding a quick and isotropic methanol removal from the binary solvent mixture to keep 

the uniformity of the film. This can be achieved by adjusting the drying which requires 

the control over two things, the methanol mass transport from the ink to the gas phase as 

well as the local mass transfer distribution over the film surface. Regarding the first, the 

solvent evaporation has been investigated in detail by estimating the diffusive fluxes of 

solvent molecules to the gas phase. The calculation is based on diffusion phenomena that 

can be described by Fick’s law [108] where the diffusive flux is a function of a concentration 

gradient and a diffusion coefficient. 
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𝐽 = −𝐷 
𝜕𝑐

𝜕𝑥
 

 𝐽    diffusion flux in mol/(m² s) 

 𝐷  diffusion coefficient in m²/s 

 𝑐   concentration in mol/m³ 

 𝑥  position in m 

 

For the binary liquid mixtures of the components 1 (methanol) and 2 (TMG) with a steady 

state evaporation from the liquid/gas interface to the surrounding atmosphere and a 

diffusion path length (boundary layer) between position A at the liquid-gas interface and 

B in the surrounding equation (3-1) can be written as: 

𝐽𝑖 = −𝛽𝑖 (𝑐𝑖𝐴 − 𝑐𝑖𝐵)   𝑤𝑖𝑡ℎ   𝛽𝑖 =
𝐷𝑖𝑔𝑎𝑠

𝑙𝐴𝐵
  

 𝛽𝑖     mass transfer coefficient of component i in m/s  

 𝐷𝑖𝑔𝑎𝑠  binary diffusion coefficient of component i in the gas phase in m²/s 

 𝑙𝐴𝐵  diffusion path length in m 

 

Assuming an ideal gas phase and a negligible concentration of the components 1 and 2 in 

the surrounding atmosphere (𝑐𝑖𝐵 = 0) equation 3-2 can be written as: 

𝐽𝑖 = −
𝛽𝑖

𝑅 𝑇
 𝑝𝑖𝐴   

 𝑝𝑖𝐴    partial pressure of component i at position A in Pa 

 R  universal gas constant in J/(mol K) 

 𝑇  absolute temperature in K 

 

Raoult’s law can be used to describe the partial pressure of the two solvents at the liquid 

gas interface (position A) as a function of the compounds’ molar fraction in the liquid 

mixture. The film composition is assumed to be gradient free (completely intermixed) due 

to the small vertical dimensions. 

𝑝𝑖𝐴 = 𝛾𝑖  𝑥𝑖 𝑝𝑖𝐴
∗ (𝑇) 

 

 𝛾i    activity coefficient of component i in the mixture 

 𝑥i  molar fraction of component i in the liquid 

 𝑝𝑖𝐴
∗ (𝑇) vapor pressure of component i in Pa 
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Equation (3-5) can be obtained by extending equation (3-3) with the evaporation surface 

and by using equation (3-4). 

𝐽𝑖𝐴 = 𝑁̇𝑖 = −
𝛽𝑖 

𝑅 𝑇
 𝐴 𝛾𝑖  𝑥𝑖 𝑝𝑖

∗(𝑇) 

 𝑁̇i  absolute diffusion flux in mol/s 

 A    evaporation surface in m² 

 

Equation (3-5) shows that there are two parameters which can be modified to improve the 

diffusion flux, the temperature to increase the vapor pressure and the mass transfer 

coefficient. The temperature of the liquid can be easily adjusted by increasing the hot plate 

temperature. However, with this modification the solvent evaporation is still anisotropic 

and preferably takes place at the substrate edges (see above). The second parameter, the 

mass transfer coefficient is a function of the diffusion coefficient and the boundary layer. 

The latter is directly influenced by the drying conditions such as the flow configuration 

close to the film surface [108]. The drying conditions are incorporated in the dimensionless 

Sherwood number. 

𝛽𝑖 =
𝑆ℎ 𝐷𝑖𝑔𝑎𝑠

 𝐿𝑐
 

 𝑆ℎ    Sherwood number 

 𝐿𝑐   characteristic length of the liquid surface in m 

 

The binary diffusion coefficient 𝐷𝑖𝑔𝑎𝑠 of component i in the gas phase is a function of the 

pressure and the temperature and can be approximated using the Fuller equation [109].  

𝐷𝑖𝑔𝑎𝑠 =

10−3  𝑇1.75√( 
𝑀𝑖 + 𝑀𝑔𝑎𝑠

𝑀𝑖 𝑀𝑔𝑎𝑠
)

𝑝 (√Σ𝜐𝑖
3 + √Σ𝜐𝑔𝑎𝑠

3 )
2  

 

 𝐷𝑖𝑔𝑎𝑠 diffusion coefficient of component i in the gas medium in cm²/s 

       𝑀𝑖 , 𝑀𝑔𝑎𝑠 molar mass of component i and the surrounding gas in kg/kmol 

 𝜐𝑖 , 𝜐𝑔𝑎𝑠 diffusion volume of component i and the surrounding gas  

 𝑝  total pressure in bar 

 

The diffusion volumes in equation (3-7) are tabulated for example in [110]. The Sherwood 

number can be calculated using an empirical correlation. In case of a film drying on a 
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hotplate, the matching correlation is the Sherwood number for free convection 𝑆ℎ𝑓𝑟𝑒𝑒 

which is a function of the Rayleigh number 𝑅𝑎 and Schmidt number 𝑆𝑐 [110].  

𝑆ℎ𝑓𝑟𝑒𝑒 = 0.766 [𝑅𝑎 𝑓(𝑆𝑐)]1/5 
 

𝑅𝑎 =
𝑔

𝑇𝑀 𝜈𝑔𝑎𝑠 𝑎𝑔𝑎𝑠
(𝑇𝐴 − 𝑇𝐵) 𝐿𝑐

3 

 

𝑆𝑐 =
𝜈𝑔𝑎𝑠

𝐷𝑖𝑔𝑎𝑠
 

 

 g  gravitational acceleration in m/s² 

 𝑇𝑀  median temperature in K 

 𝑔𝑎𝑠  kinematic viscosity of the gas in m²/s 

 𝑎𝑔𝑎𝑠   thermal diffusivity in m²/s 

 

In order to adjust the mass transfer coefficient the free convection can be changed to a 

forced convective gas flow of inert gas, a procedure which is widely used in the industry. 

In terms of possible flow configurations, multiple setups are suitable ranging from 

impingement to cross flows. The main advantage of the forced gas flow is the controlled 

transfer of the preferred evaporation areas away from the edges to the center of the 

substrate. Therefore the evaporation rate as well as the isotropy of the evaporation can be 

adjusted. For simplicity reasons, the presented lab scale process has been optimized using 

a laminar transverse flow. The corresponding Sherwood number for this flow configuration 

can be calculated as a superposition of a laminar (𝑆ℎ𝑙𝑎𝑚) and a turbulent component 

(𝑆ℎ𝑡𝑢𝑟𝑏) [110]. 

𝑆ℎ𝑓𝑜𝑟𝑐𝑒𝑑 = √𝑆ℎ𝑙𝑎𝑚
2 + 𝑆ℎ𝑡𝑢𝑟𝑏

2  
 

Both are a function of the Schmidt 𝑆𝑐 and the Reynolds number 𝑅𝑒. 

𝑅𝑒 =
𝑢𝑔𝑎𝑠 𝐿𝑐

𝜈𝑔𝑎𝑠
 

 𝑢𝑔𝑎𝑠  gas velocity in m/s 

 

With equation (3-5) and the two different mass transfer coefficients calculated for free 

convection with equation (3-8) as well as forced convection with equation (3-11) the drying 

of a liquid film can be modeled. Regarding the surrounding atmosphere a glovebox filled 

with pure nitrogen has been assumed. The drying temperature 𝑇𝐴 of the liquid has been 

set to 35°C and the temperature in the surrounding  𝑇𝐵 to room temperature (22°C) for 
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both calculations. In the case of the forced convection a nitrogen gas stream at room 

temperature and a velocity 𝑢𝑔𝑎𝑠 of 7.5 cm/s has been assumed. With these parameters the 

evaporation of TMG (2) having a high boiling point of 160°C can be neglected shifting the 

focus of the calculation to the methanol (1) evaporation. Nevertheless, to implement the 

presence of the strong base TMG into this model, which is forming a non-ideal solution 

with methanol, the composition dependent binary activity coefficient 𝛾1 of methanol in the 

mixture has been estimated using the group contribution method UNIFAC (Universal 

Functional-group Activity Coefficients). In this model the activity coefficient is derived 

from the enthalpy of mixing and calculated from the interactions between the individual 

chemical groups of TMG and methanol. In principle the UNIFAC model can be broken 

down in a combinatorial and a residual component 𝛾1
(𝑐)

 and   𝛾1
(𝑟)

, respectively. These 

components are dependent on the group surface area and volume as well as specific 

interaction parameters. More information about this model can be found elsewhere [110]. 

𝛾1 = ln 𝛾1
(𝑐)

+ ln 𝛾1
(𝑟)

 
 

With the mentioned parameters, the time and composition dependent mass transport of 

methanol from the mixture to the gas phase has been calculated. Methanol mass transfer 

coefficients of 0.012 m/s and 0.006 m/s have been calculated for the forced and the free 

convection, respectively. Figure 17 shows the resulting mass loss as a function of the 

drying time. 

   

Figure 17:  Mass loss curves for a liquid thin film of methanol in the presence of TMG dried at 35°C 

by free convection on a hot plate as well as by heating at 35°C in combination with a 

forced nitrogen gas flow with a gas velocity of 7.5 cm/s at ambient pressure. 

Both curves suggest an almost linear mass loss in the beginning which is slowing down 

with a decreasing methanol fraction due to the increased influence of the solvent TMG. It 

can be seen that by applying the forced convection the time necessary to evaporate the 

alcohol decreases by a factor of two to 20 seconds. Thus, this calculation shows that drying 
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under these conditions is significantly faster due to the improved mass transfer. However, 

this reduction in evaporation time is only an additional benefit. More importantly, the 

forced gas flow leads to a more homogeneous flow profile above the substrate supposedly 

shifting the mass transfer away from the edges to the center of the substrate [111], [112]. 

Drying by forced convection can be implemented into the process by using a flow channel. 

Figure 18 shows schematically the first prototype developed in this thesis. The channel 

consists of a long rectangular tube with a height to width ratio of 1.5:5. On the right side 

the cross section of the channel tapers off uniformly to a small mounted tube attached to 

a nitrogen source. The nitrogen gas entering the device is initially deflected by an 

impingement plate to improve the formation of a laminar flow at the final position of the 

substrate. 

 

Figure 18:  Cross section (side view and top view) of the drying channel. The final position of a 

coated substrate with dimensions of 3.6 x 10 cm is highlighted. The black rectangular 

opposite to the gas inlet shows the position of an impingement plate. Arrows indicate 

the estimated flow field inside of the drying channel.  

In the presented design the device has one significant disadvantage. Due to its low boiling 

point methanol has a high evaporation rate already at room temperature. Thus, the time 

between the deposition of the liquid film and the transfer of the sample in the flow channel 

can be critical. For this reason, the initial drying channel has been revised to a combined 

coating/drying device. Figure 19 shows a schematic cross section of the device including 

the basic procedure for the film deposition and drying. In contrast to the first version, the 

sample is placed on a fixed base plate in front of the channel. The blade coater is positioned 

on top of the sample (A). After the addition of ink the nitrogen flow is started and the blade 

as well as the drying channel are moved with a constant speed over the substrate by a film 

applicator machine (B+C). Following the withdrawal of the blade, the outer part of the 

base plate is moved manually into the channel and the film is dried for several minutes 

(D). In order to improve the drying effect the base plate below the device is heated to a 

slightly elevated temperature of 35°C. 
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Figure 19:  Left: Film deposition with the coating/drying device divided into four steps. A: 

Positioning of the Mo-coated substrate (2) and the blade (Zehntner ZUA 2000) (3) on a 

fixed metal plate (1) in front of the flow channel (4). A glass spacer (6) is used to fix the 

position of the substrate. The ink is added in the blade gap with an Eppendorf pipette. 

B+C: Moving of the blade and the channel over the substrate with an automatic film 

applicator (Zehntner ZAA 2300) (5). D: Final drying position. The liquid film stays inside 

of the channel under a forced gas stream for several minutes. Right: Photography of the 

setup in position A. 

3.2.4 Improved layer quality 

LBIC measurements have been used to visualize the improved homogeneity result 

achieved with the optimized drying conditions. Figure 20 shows the current response map 

of a cell processed from a precursor layer that has been dried in the flow channel. For this 

sample a substrate with double the width (3.3 cm times 7 cm) has been coated and dried 

which limits the drying inhomogeneities to one side after breaking the sample in half. The 

presented current response map shows a very homogeneous current distribution. The dark 

spot in the lower left corner can probably be explained by a microscopic particle 

contamination either from the ink or from the drying. 

 

Figure 20:  Potentiostatic LBIC measurement on a solar cell processed from a precursor layer dried 

in the flow channel with the following parameters. Drying time: 4 min, gas speed: 

7.5 cm/s, hot plate temperature: 35°C, gas temperature: 22°C. For the LBIC a red laser 

has been used with a wavelength of 658 nm.  
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3.2.5 Summary of section 3.2  

Solvent drying is one of the crucial steps in this process. Due to the deliberate 

simplification of the film processing to one single step, a thick liquid film has to be 

deposited and consequently a high amount of solvent has to be evaporated. The physical 

properties of the two individual liquids in the ink are highly diverging with regard to the 

surface tension and the vapor pressure. The latter leads to a stepwise evaporation while 

the former is responsible for a composition dependent surface tension. Due to an 

inhomogeneous evaporation by free convection (increased mass transfer at the substrate 

edges) these differences in the local surface tension can induce the so-called Marangoni 

effect. This effect describes the presence of inhomogeneous liquid mass transport fluxes in 

the film leading to non-uniformities in the material distribution. The resulting material 

agglomerations can be observed in the dried film by visible thickness deviations. In order 

to minimize this effect a drying channel has been introduced which can help to achieve 

isotropic methanol evaporation. This can be achieved already at low temperatures by 

using an additional forced nitrogen gas flow.  
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3.3 Electroless reduction of metal ions 

In the previous section the challenges in the formation of homogeneous liquid films have 

been discussed. In this section the subsequent tempering step at higher temperatures is 

introduced comprising two simultaneously proceeding incidents. Number one is a second 

drying including the evaporation of the solvent TMG as well as the remaining residues of 

methanol. Number two is the reduction of the dissolved metal ions to metallic 

nanoparticles. The latter, the formation of elemental particles from the ink is one of the 

key processes of the presented approach. Therefore this section begins with an 

introduction in electroless plating. Following this, the redox reactions of the used metal 

salts which have already been introduced in section 3.3.2 are evaluated. Thereafter, the 

theoretical considerations are transferred to the present ink system. The solvent 

evaporation during the second drying is discussed in the context of the thermogravimetric 

experiments. 

3.3.1 Introduction to electroless plating 

Electroless plating (EP) usually describes the chemical deposition of a metal from an 

aqueous solution of a salt or complex where the metal is either solvated in the form of a 

single cation or in an anionic complex [113]. For this purpose a mechanism is needed where 

the metal ion is reduced from a higher oxidation state to its elemental form. The simplest 

form of EP is the metal displacement reaction. This reaction can be accomplished for 

example by immersing a solid metal with a low standard redox potential in a solution of a 

dissolved metal with a high standard redox potential. In this setup, the less noble metal 

is acting as the reducing agent and is getting oxidized and dissolved while the solvated 

more noble metal cations are getting reduced on the solid surface. In order to find out if a 

chemical reaction is running spontaneously the thermodynamic aspects of the involved 

chemical species have to be considered. In principle the main condition for any reaction to 

occur at constant temperature and pressure is that the Gibbs free energy of the reaction 

RG is negative. 

△𝑅 𝐺 < 0 
 

In the case of a redox reaction the overall mechanism can be divided into two individual 

processes, usually called the two half cell reactions. For a metal displacement reaction the 

individual paths are stated below. 

Reduction* M1
+ + e-   M1 3-15 
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Oxidation* M2  M2
+ + e- 3-16 

Overall* M1
+ + M2  M1 + M2

+ 3-17 

*With the standard oxidation potentials E0
M1>E0

M2 and RG<0 

Both half cell reactions have a standard cell potential which can be measured against the 

standard hydrogen electrode. The sum of both cell potentials is written 𝐸o  and called 

standard potential.  

𝐸o = 𝐸𝑟𝑒𝑑
o (𝑀1

+/𝑀1) − 𝐸𝑜𝑥
o (𝑀2

+/𝑀2)
 

The connection between the standard potential of a reaction and its Gibbs energy can be 

expressed as: 

△𝑅 𝐺o = −𝑣𝐹𝐸o

 

 𝑣  number of electrons transferred within the half cell reactions 

 𝐹  Faraday constant (96.48 kC/mol) 

Thus, a requirement for a spontaneous redox reaction is a positive value for the standard 

potential which is the sum of both half cell potentials. A typical example for a metal 

displacement reaction is a Zn bar immersed in a solution containing copper ions. In this 

specific case the standard potential is +1.1 V under standard conditions meaning that the 

reaction should run spontaneously. For non standard conditions including different ion 

concentrations the cell potential can be calculated by using the Nernst equation. More 

information can be found elsewhere [114]. 

In the metal displacement reaction, the redox reaction occurs until the surface of the solid 

metal is completely covered with the reduced noble metal. This process is, of course, 

dependent on a suitable metal ion-substrate system and therefore limited to few examples. 

In order to deposit continuously on various substrates, a sustainable redox-reaction in the 

bulk solution is necessary. This means that the driving force for the reduction has to be 

provided by a dissolved chemical reducing agent. An example for a chemical system 

containing a reducing agent in the bulk is the Tollens’ reagent. It is usually used to prove 

the presence of aldehyde groups that are acting as reducing agent. Silver ions having a 

high standard electrode potential are used as an oxidation agent in form of a 

diaminesilver(I) complex. The redox reactions occurring when mixing aldehydes with the 

Tollens’ reagent and a source of hydroxide ions are listed below: 

Reduction 2[Ag(NH3)2]+ + 2e-  2Ag + 4NH3 3-20 
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Oxidation RCHO + 3OH-  RCOO- + 2H2O + 2e- 3-21 

Overall 2[Ag(NH3)2]+ + 3[OH]- + RCHO  2Ag + 4NH3  + 2H2O + RCOO- 3-22 

 

The aldehydes are oxidized to carboxylic groups leading to a reduction of the silver 

complex. Thus, the evidence for the presence of the aldehyde group is the precipitation or 

EP of solid silver nanoparticles on the surface of the vessel (silver mirror). 

3.3.2 Electroless plating of metal formates 

In the previous section the Tollens’ reaction has been presented as an example for an EP 

system with a reducing agent that is dissolved in the bulk. In this particular chemical 

system, the aldehyde group is getting oxidized in order to reduce silver ions. Regarding 

the redox-potential of the aldehydes, the formate anion shows similar reactivity. The 

oxidation of the formate ion can be written as following. 

   Potential in V  

Formate  HCOO-  CO2↑ + ½ H2↑ + e- -0.42 [115] 3-23 
 

To process metallic Cu-In-Ga layers, the solvated silver-amino complex has to be 

substituted by the respective metal cations or cation complexes. The standard potentials 

of the three metal ions are stated below. 

   Potential in V  

Copper Cu2+ + 2e-  Cu +0.34  3-24 

Indium In3+ + 3e-  In -0.34  3-25 

Gallium Ga3+ + 3e-  Ga -0.55 3-26 
 

By looking at the possible half cell reactions it can be easily concluded that the formate 

anion has a sufficiently high standard reduction potential to spontaneously reduce copper 

and indium ions. The potential of the gallium ions, however, is too low. It is important to 

note that this only applies for standard conditions and can’t be transferred to the used ink 

system. The actual reactions in the ink are discussed below and in the next sections. 

In contrast to the Tollens’ reagent containing various compounds the proposed ink system 

can be simplified by choosing metal formate salts that already contain copper, indium and 

gallium. The reduction of copper from its formate salt has already been reported in the 
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literature yielding elemental nanoparticles. Noteworthy, due to the composition of the 

metal formates containing both, reducing agent and the desired metal cation, a metallic 

copper formation can be achieved without any admixtures. Several groups reported 

metallic nanoparticles from the pure salt on a surface or in an aerosol [78], [116]. The 

redox reaction and therefore the metal cation reduction could be easily initiated by 

supplying energy in form of heat to achieve a sufficiently high reaction kinetic. However, 

to process homogeneous layers, the presence of an inert solvent as transfer agent is 

required to facilitate a uniform material deposition.  

The general function of the solvents is to form a stable complex during the ink formulation 

and the liquid film deposition. It is also important that the solvent does not evaporate or 

decompose before the initiation of the redox reaction. Otherwise the precipitation of the 

dissolved salts during the solvent evaporation beginning at the solubility limit would 

consequently lead to a recrystallization and eventually to the formation of crystals on the 

surface. The presence of crystals and therefore unwanted material agglomerations would 

counter a uniform deposition of metal nanoparticles.  

Concerning the solvent-salt interactions it is important that the complex itself is inert and 

does not change the reaction products. However, the presence of the solvent can still have 

a huge impact on the thermodynamic properties of the reaction and on the morphology of 

the reduced metal nanoparticles. Rosenband et al. investigated several solid and liquid 

additives mixed with copper formate salt and evaluated their influence on the morphology 

of the copper particles. By analyzing SEM images of the products they could show a huge 

influence on the particle size and the formation of agglomerates [78]. This issue will be 

evaluated for the current copper inks consisting of different solvent mixtures in section 

3.4.3.1. 

Reaction pathways 

The reaction pathways depend on the individual metal ion and the respective standard 

electrode potential. Metals with a high potential are more likely to get reduced by the 

formate anion. However, it is hard to predict the exact reaction pathway in the presence 

of a distinct solvent. Therefore the following reaction paths are taken from the solid state 

reactions. Metal ions with a sufficiently high electrode standard potential most likely react 

as following [117]. An example for this pathway is copper formate. 

Reduction Mx+ + xe-     M 3-27 

Oxidation xHCOO-   xCO2↑  + x/2H2↑ + xe- 3-28 
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Overall Mx+ + xCOOH-   M + xCO2 ↑ + x/2H2↑ 3-29 
 

In case of metals with a low standard electrode potential, the reduction potential of the 

formate ion can be insufficient. Here, the decomposition of the anion most likely leads to 

metal oxides. An example for this reaction pathway is zinc formate [117]. Zinc has a very 

low standard potential of -0.79 V. 

Overall Zn2+ + 2COOH-   ZnO + CO2↑  + CO↑  + H2↑ 3-30 

 

The reaction pathways and products are highly dependent on the surrounding conditions 

and are prone to catalytic effects. For example at elevated temperatures the presence of 

oxygen will eventually lead to the formation of the most stable metal oxide for almost all 

metals. Additionally Mohamed et al. published a report on the decomposition (in this 

context also the redox-reaction) of copper formate salts in reductive, inert and oxidizing 

atmospheres [118]. They found an increased reactivity under reducing conditions as well 

as a decreased decomposition rate in the presence of oxygen.  

The presented reaction pathways suggest a one step decomposition mechanism. However, 

also multistep reductions are possible which can be found for example in copper salts. 

Galwey et al. reported evidence for a intermediate Cu(I) formate in the solid state reaction 

[80]. Concerning its properties, Edwards et al. and Ogura et al. analyzed it to be volatile 

with a dimeric structure in the gas phase [119], [120]. This stepwise reduction is relatively 

common for copper(II) salts and also occurs in other compounds including copper(II) 

oxalate [121] or malonate [122]. In case of copper formate, the two distinct reduction steps 

leading to the pure metal can be written as following: 

Reduction 1. step Cu2+ + HCOO-   Cu+ + CO2↑  + 1/2H2↑ 3-31 

Reduction 2. step Cu+ + HCOO-   Cu + CO2↑  + 1/2H2↑ 3-32 

 

The presence of two types of copper formate (Cu(I) and Cu(II)) is of great importance for 

the process developed in this thesis and will be further discussed in section 3.4.1 in the 

context of the thermogravimetric results and in section 3.5 due to the importance of Cu(II) 

ions for the layer stabilization. 
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3.4 Investigations on the metal ion reduction 

In the previous section the theory of the metal ion reduction with formate ions has been 

introduced. The application of this theory on the presented process is the content of this 

section. In contrast to the section 3.2 evaluating the drying of methanol, the focus here is 

set on the temperature area between 100°C and 200°C. In this temperature range the 

kinetics of the discussed redox-reactions is sufficiently fast to proceed. The existence of the 

proposed reactions is supported by two independent analyses. Firstly, the signature of 

carbon dioxide as an indicator for the salt decomposition has been traced by 

thermogravimetric (TG) analyses in combination with a mass spectrometer (MS). With 

this measurement the temperature range of the proposed reactions can be localized. 

Secondly, these findings have been compared to the result of an in-situ X-ray diffraction 

(XRD) analysis on a heated liquid layer to prove the reduction of the metal ions and thus 

the formation of pure metals and metal alloys.  

3.4.1 Thermogravimetric and mass-spectrometric analyses 

TG-MS analyses have been carried out to measure the mass loss and the gaseous products 

during the heating of the pure metal formates as well as the dissolved salt inks. For these 

experiments small amounts of each sample have been heated from room temperature to 

350°C in open containers in an oxygen-free environment. The focus of the analyses has 

been set on the formation of carbon dioxide due to its function as a tracer for the anion 

decomposition (see section 3.3.2). With this information the temperature range of each 

reaction has been estimated. In order to evaluate the influence of the solvents on the 

reactions, the first experiment has been carried out on a pure metal formate mixture. 

Following this, inks containing each metal salt separately as well as a stoichiometric 

mixture of all three salts have been analyzed. Thereafter, the ratio between the measured 

CO and CO2 molecules is discussed in detail to extract information about the reaction 

product. 

3.4.1.1 TG-MS of solid metal formate salts 

To evaluate the TG-MS characteristics of the solid metal salts, a formate mixture with a 

molar metal ratio suitable for solar cells (Cu:In:Ga = 0.9:0.8:0.2) has been prepared and 

heated inside of the TG furnace with a constant heating ramp of 10 K/min to 600°C in 

inert atmosphere. The results in the temperature interval between room temperature and 

325°C are shown in Figure 21. 
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Beside some instrument related fluctuations at low temperature that can be attributed to 

the low initial sample mass, the TG curve shows no mass loss up to a temperature of 

180°C. Here, the anion decomposition begins which ends at around 280°C visible by the 

constant mass above this temperature. Within this temperature range the total mass 

decreases to 45 % of the initial value in two steps around 210°C and 270°C. In the first 

step, the total weight decreases by about 20 mass-%. This value corresponds to the weight 

of the decomposed copper formate anions suggesting that the second step can be 

exclusively attributed to indium and gallium formate. The weight of the salt residues 

above 280°C is in good agreement with the calculated mass fraction of the metals in the 

salt suggesting a full decomposition of the anions. 

 

Figure 21:  TG-MS graph of a stoichiometric mixture (Cu0.9In0.8Ga0.2) of solid formate salts with 

10 K/min. Top: Ion current with m/e=44 corresponding to CO2. Bottom: Normalized 

mass loss. 

The analyzed ion current with m/e=44 reveals two distinct areas with peak maxima of 

205/225°C and 275°C. These areas coincide with the measured TG mass-loss steps that 

can therefore be explained by the decomposition of the formate ions to carbon dioxide as 

has been predicted in section 3.3.2. The presence of the steps as well as the separate peaks 

in the ion current can probably be correlated to the diverging behavior of the three 

different metal salts. In order to support this hypothesis, the results have been compared 

to TG investigations of copper formate previously published in the literature [78]. In this 

publication the thermal decomposition of the pure salt has been measured to occur 

between 180°C and 225°C which corresponds to the first step/peak area in the current 

analysis. They also confirmed the formation of residue free metallic copper nanoparticles.  
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An important observation in the present ion current graph is the split-peak shape of the 

first CO2 peak area supposedly belonging to copper formate. The measured data suggests 

the existence of two overlapping peaks with similar heights and maxima of 205 and 225°C. 

As an explanation, the mentioned stepwise reduction of Cu(II) formate with a Cu(I) 

intermediate can be exerted [80]. The second peak is singular with a small shoulder at 

around 250°C suggesting an almost simultaneous reaction of indium and gallium formate 

in this temperature range. 

3.4.1.2 TG-MS of dissolved metals (inks) 

As discussed in section 3.4.1.1, the results of the solid state TG cannot directly be 

transferred to metal formates dissolved in a liquid compound as the solvent is expected to 

have an influence on the reaction pathways as well as the kinetics and therefore the 

temperature range of the decomposition. For this reason separate TG experiments with 

dissolved metal salts have been carried out. In order to approximate the final ink 

conditions, inks consisting of the typical compositions used for the solar cell processing 

have been evaluated. In contrast to the experiments on the solid metal salts and in 

addition to the dissolved CIG mixture, unary samples each containing only one of the 

metal salts have been prepared. The results are shown in Figure 22.  

Due to the complex ink systems containing the salt, the solvent TMG, and the diluting 

agent methanol, two additional ion currents are plotted in Figure 22 with m/e=31 and 

m/e=71 that can be used to clearly identify the alcohol and the solvent, respectively. 

However, in the mixture the carbon dioxide signal (m/e=44) belongs to both, carbon dioxide 

and to the base tetramethylguanidine (probably in form of the molecule fragment 

N(CH3)2). Hence, the measured signal is a superposition of both compounds. The two 

signals can be separated with the help of the rather weak ion signal with m/e=12 

corresponding to an ionized carbon atom. This ion can only be found in carbon dioxide. On 

the other side TMG can be easily identified by the signal with m/e=71. The initial molar 

ratios of the investigated inks are shown in Table 4. Due to different solubilities, the 

compositions are slightly diverging. Copper ions for example can be complexed by two 

TMG molecules while the indium and gallium salts need at least three to get dissolved. 
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Table 4:  Composition of the investigated inks (molar ratios). 

Ink TMG:Metal-ions TMG:Formate-ions TMG:MeOH 

Copper 1.9:1 0.89:1 1:1.24 

Indium 3.4:1 1.05:1 1:1.19 

Gallium 3.1:1 0.83:1 1:1.19 

Cu0.9In0.8Ga0.2 2.5:1 0.87:1 1:1.25 
 

In all experiments the methanol signal (m/e=31) can be measured up to high temperatures 

reaching 150°C. This is significantly different to the behavior that would be expected from 

the pure alcohol. Thus, additional forces are necessary to explain the delayed evaporation. 

This topic is further investigated in appendix A where a simple model is used to quantify 

this effect in the form of a vapor pressure reduction. It is important to note that the 

calculation of the solvent evaporation in section 3.2 is unaffected by this consideration as 

the amount of methanol that is highly bound in the ink is only a very small fraction of the 

total initial methanol mass. 
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         Copper      Indium 

    

         Gallium                    Cu0.9In0.8Ga0.2 
 

  

Figure 22:  TG-MS of inks containing the formate salts of Cu, In, Ga and a CuInGa mixture 

measured with a heating rate of 10K/min in inert atmosphere. The bottom graph shows 

the TG mass loss while the three graphs above represent the measured ions currents of 

TMG (m/e=71), CO2 (m/e=44) and methanol (m/e=31).  
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Copper ink 

Beginning with the copper ink, the TG graph shows a slow mass loss in the temperature 

range between room temperature and 100°C followed by two steps with a residual mass 

of 14% at 250°C (Figure 22). The two steps can be divided into a first small mass loss of 

about 10 abs-% at 100°C and a significantly larger step of 55 abs-% around 130°C. The 

first step can be correlated with the abrupt evaporation of methanol in this temperature 

range visible by the ion current signal with m/e=31. It is obvious that this mass 

spectroscopic methanol peak coincides with the beginning of the CO2 signal (m/e=44). The 

CO2 peak can be measured up to 160°C reaching two maxima at 105 and at 130°C. The 

presence of two separate peaks can again be attributed to the mentioned stepwise copper 

ion reduction. Thus, a possible explanation for the abrupt methanol evaporation might be 

found in the different solvation energies of the alcohol to the two copper cations Cu(II) and 

Cu(I). Cu(II) has a much higher charge density than Cu(I). Thus, the fast evaporation of 

methanol molecules might occur due to the reduction of Cu(II) to Cu(I) and therefore the 

release of the bound methanol molecules.  

The second step in the TG graph, can be assigned to the decomposition of the copper(I) 

formate TMG complex due to the simultaneously appearing signals of TMG and CO2. It is 

important to note that pure TMG evaporates at lower temperatures. Therefore it can be 

concluded that the salt complex is decreasing the vapor pressure significantly similar to 

the effects found in the evaporation of methanol (see appendix A). With the arising salt 

decomposition the TMG molecules are released instantly from the complex explaining the 

occurrence of the sharp TMG peak in the ion currents.  

In summary, the TG reveals that the reduction of copper ions to metallic nanoparticles 

occurs in the temperature range around 130°C. This observation coincides with the visible 

color change of the deposited film on the hot plate at the same temperature. Compared to 

the reaction in the solid state the decomposition of copper formate in the ink is shifted by 

almost 100°C to lower temperatures. Another obvious difference to the decomposition of 

the solid salts can be found in the height ratio between the two CO2 peaks marking the 

two separate copper ion reduction steps. Instead of two similar peak heights the second 

one is significantly more pronounced. This can be explained by a previous partial reduction 

of Cu(II) to Cu(I) during the ink formulation and therefore less Cu(I) ions in the initial 

ink. The metal formate salt is dissolved in TMG at around 110°C which is in the same 

temperature range as the first copper reduction.  
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Indium ink 

The mass fraction of indium formate in the final CuInGa formate salt mixture is around 

50 %. Correspondingly, 55% of the formate anions belong to indium formate. Thus, during 

the reduction of the indium ions most of the carbon dioxide formation will take place. The 

results of the TG-MS measurement of an indium ink are shown in Figure 22. The TG 

graph clearly shows that the metal reduction occurs significantly later compared to the 

previously discussed sample containing the copper formate ink. The end of the reaction 

marked by the constant residual mass of 14.5 % is reached above 190°C. This value 

coincides with the initial amount of indium indicating a complete reduction.  

A closer look at the measured ion currents reveals that the first evaporating methanol 

shows a significantly diverging behavior compared to the copper ink. Instead of an abrupt 

evaporation at around 100°C, methanol can be traced up to 160°C. Again the signal 

disappears with the arising CO2 peak indicating the release of solvate-stabilized methanol 

molecules. However, the amount of methanol measured in this temperature range is 

significantly lower. The TMG signal begins at 50°C and reaches two maxima at around 

130 and 175°C. Compared to this the CO2 formation occurs only in a short temperature 

interval between 150 and 190°C coinciding with the second TMG peak. This can be 

explained by a decomposing salt-TMG complex releasing bound solvent molecules. 

However, in contrast to the copper ink, TMG can also be measured before the 

decomposition indicating a less pronounced binding of these solvent molecules. An 

integration of the areas below the two TMG peaks, the first between room temperature 

and 160°C and the second between 160°C and 200°C, results in a ratio of roughly 70% to 

30%, respectively. By correlating this with the initial amount of TMG, the ratio between 

the TMG molecules and the dissolved indium ions at 175°C can be calculated. The result 

is 1:1 meaning that every indium ion stabilizes one TMG molecule. The other 70% of the 

TMG molecules evaporating at lower temperatures are less strongly bound in the ink. 

Gallium ink 

Gallium formate has the smallest share in the salt mixture with less than 8 mass-%. 

However, in contrast to the other metals the reduction of the ions is hindered due to the 

low standard electrode potential of gallium. This issue can be noticed in the TG graph in 

Figure 22 showing a residual mass fraction of 13.8% above 200°C. This value is 

significantly higher than the initial amount of metal in the ink which was around 9.6%. 

The deviation of 4% can be explained by the formation of Ga2O3. Further evidences for this 

assumption are presented below as well as in section 3.4.3.1. 
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The measured ion currents show almost constant methanol evaporation up to 125°C 

decreasing quickly with the beginning decomposition of the formate salts. Contrary to the 

other salt inks, TMG and CO2 don’t share a congruent peak. TMG evaporates in a broad 

region between 50 and 250°C with no significant maximum. The salt decomposition occurs 

around 180°C. From this information it can be concluded that the gallium formate most 

likely decomposes after precipitating from the ink. 

Further indication for the formation of gallium oxide 

In the paragraph describing the TG-MS of the pure copper solution the result could be 

correlated with the literature suggesting a full metal ion reduction. Regarding the indium 

and gallium salts, no literature on the respective formate decomposition has been found. 

The residual masses of the TG experiments, however, lead to the assumption that indium 

can be reduced while gallium formate is yielding Ga2O3. Further evidence for this 

hypothesis can be extracted from the gaseous products analyzed by the mass spectrometer. 

In section 3.3.2 the discussed reaction pathways suggest the formation of carbon monoxide 

in the case of metal oxides as reaction products. Due to the same mass to charge ratios of 

CO and N2 (m/e=28) making a discrimination impossible, the presented TG-MS 

experiments have been carried out under helium. The measured relative ion currents for 

CO as well as CO2 are depicted in Figure 23. 

    

Figure 23:  Mass spectrometric data for the Cu, In and Ga formate containing inks with a focus on 

the measured ions belonging to CO and CO2 (m/e=28 and 44). 

The measured ion currents of all three experiments start with a high initial value for ions 

with m/e=28 reaching zero at about 50 to 75°C. This can be explained by residual nitrogen 

molecules in the measurement tube due to the preparation procedure in air and are not a 
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product of the ink heating. However, the ion currents above 100°C can be directly 

correlated to forming carbon oxide. By comparing the three graphs it is obvious that the 

peak intensity ratios I(CO2):I(CO) are diverging. While copper and indium show small CO 

signals, the peak for the gallium ink is significantly more pronounced indicating a 

different anion decomposition behavior. Copper and indium formate mostly decompose to 

carbon dioxide while the heating of gallium formate yields a high amount of carbon 

monoxide. Therefore, the measurements suggest a reduction of the former and the 

formation of a metal oxide in the latter with a possible reaction path as following (see also 

section 3.3.2).  

2Ga(HCO2)3            Ga2O3 + 3H2↑ + 3CO↑ + 3 CO2↑ 3-33 

 

 

Ternary CuInGa-ink suitable for solar cells 

Figure 22 shows that the TG as well as the MS results of the CuInGa-ink represent a 

superposition of the discussed unary inks. The total mass decreases to 14% above 200°C 

in three distinct steps. The first step can be attributed to the methanol evaporation ending 

with a peak around 100°C. As has been discussed for the copper ink, this coincides with 

the arising CO2 signal around 115°C indicating the reduction of Cu(II) to Cu(I). Beside 

this, the CO2 signal has two more maxima at 135°C and 175°C increasing in height in the 

same order. The second maximum represents the copper reduction to the metallic state 

while the third, broad peak comprises the decomposition of both, indium and gallium 

formate. Due to the superposition of several peaks and the low amount of gallium salt no 

information about the decomposition product of the gallium salt can be derived from this 

graph. TMG molecules appear at the mass spectrometer above 100°C with two maxima 

around 135°C and 175°C simultaneously to the CO2 peaks revealing the decomposition of 

the salt-TMG complexes. The differences in peak height can be correlated to the discussed 

metal ion to TMG ratios of 1:2 for copper ions and 1:1 for indium ions. 

Table 5:  Residual mass of analyzed inks compared to the expected value of the pristine 

concentration. 

Ink Measured mass at 600°C Initial amount of dissolved metals 

Copper 14.2% 14.0% 

Indium 14.6% 14.6% 

Gallium 13.8% 9.6% 
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3.4.2 In-situ and ex-situ XRD analyses 

In the previous section TG-MS has been used to estimate the decomposition temperatures 

and to confirm the formation of carbon dioxide during the heating of the metal formate 

containing inks. In the introduction of the electroless plating, the formate decomposition 

always came along with the formation of CO2 (oxidation of HCOO-). However, the presence 

of carbon dioxide is not necessarily an indicator for a metal ion reduction. Depending on 

the standard electrode potential of the metal a reduction as well as the formation of oxides 

is possible. The TG analyses suggested the reduction of copper and indium to metallic 

particles. Gallium formate supposedly decomposes to gallium oxide based on the residual 

mass and the ratio between the measured gases CO2 and CO. In order to prove the 

formation of metallic phases, an in-situ XRD analysis has been carried out. The results 

are discussed on the basis of the copper-indium phase diagram shown in Figure 24 

reproduced from a publication by Bahari et al. [123].  

 

Figure 24:  Copper-indium phase diagram reproduced from [123]. The stars A-D mark the most 

important phases occurring during the annealing which are explained in the text. 

For the sample preparation a CuInGa containing ink has been coated on a Mo back contact 

in the glovebox. In order to stabilize the layer a small amount of an organic additive 

(introduced in section 3.5) has been added to the ink. Thereafter the layer has been dried 

at 100°C for several minutes to evaporate most of the methanol. This liquid film was then 

subsequently placed in the center of the XRD furnace followed by an evacuation of the 

chamber. After calibrating the diffractometer to the molybdenum peak (111 reflex, 2-

theta=40.52°) the sample has been heated quickly to 100°C followed by a constant heating 

ramp of 5 K/min up to 325°C while taking 10 XRD scans per minute in Bragg-Brentano 

geometry. The resulting XRD patterns are shown in Figure 25 for 2-theta angles between 

40 and 45° visualizing all important crystalline phase changes.  
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At 2-theta = 40.52° the Mo-(110) peak of the back contact is visible throughout the whole 

temperature range. At the beginning of the measurement no other crystalline phase could 

be observed up to 115°C. Shortly after a broad peak appears around 43.3° with a low 

intensity suggesting an initial reduction of the copper-ions to metallic copper particles 

(point A in Figure 24, JCPDS #04-0836). This observation corresponds to a visual change 

of the transparent film to a dark brownish color on the hotplate (Figure 25 top) and to a 

peak in the MS signal with m/e=44 (CO2) plotted below the i-XRD.  

 

Figure 25:  Top: Photographs (every 5 K) of a liquid layer deposited on glass heated from 100°C to 

200°C on a hotplate with a heating ramp of 5 K/min. Center: In-situ XRD pattern of the 

drying of a ternary ink between 100 and 325°C. The color coded intensities are plotted 
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in a logarithmic scale. Bottom: MS data of a ternary ink heated up to 325°C. Plotted is 

the signal of ions with m/e=44 (CO2). 

The second peak in the CO2 signal belongs to the formation of metallic Cu which occurs in 

the same temperature rage. The copper-(111) peak is broad indicating a short crystal 

coherence length due to an insufficient thermal energy for the crystallization and the small 

sizes of the emerging nanoparticles in the still existing organic matrix.  

The MS data suggests the formation of metallic indium above 150°C with a CO2 signal 

peak maximum at 175°C. However, the presence of pure crystalline indium could not be 

confirmed with the i-XRD. Instead, new peaks starting at 160°C (most prominent at 42.07° 

and 41.4°) signalize the formation of a Cu11In9 alloy (JCPDS #41-0883) corresponding to 

point B in Figure 24. This transition occurs close to the melting point of indium (157°C) 

and the decomposition temperature of the metastable CuIn2 (153°C [124]) resulting in an 

increased mobility of the indium atoms. At the same time, the copper (111) peak 

disappears suggesting the crystalline parts of the final precursor layer consist of a copper 

indium alloy. A possible explanation for the direct conversion of indium to the CuIn-alloy 

could be a catalytically controlled indium reduction on the surface of the present copper 

nanoparticles.   

The TG-MS measurement in section 3.4.1.2 carried out on pure Ga inks showed the 

decomposition of gallium formate above 170°C and the probable formation of the metal 

oxide Ga2O3. A crystalline gallium oxide reflex could not be found the i-XRD pattern. 

However, the absence of any crystalline phases containing Ga in this temperature range 

has also been reported in the literature [125]. A significant difference to the unary gallium 

ink is the presence of metallic copper above 130°C. In fact, by the time of the gallium 

formate decomposition, most of the copper ions have already been reduced. Thus, the 

gallium ions in the mixture can be reduced on the copper surface resulting in a copper 

gallium alloy (probably Cu9Ga4 [126]). The main advantage of this reaction pathway is the 

additional enthalpy of fusion. Li et al. measured this enthalpy for Ga in Cu at a mol 

fraction of about 30% Ga by differential scanning calometry. The result was around 10-12 

kJ/molGa [127]. Unfortunately it is hard to identify this Cu9Ga4 phase in the i-XRD graph 

due to the similar peak positions with the Cu11In9 phases. At higher temperatures Purwins 

et al. observed the incorporation and substitution of gallium atoms in copper-indium alloys 

and the formation of Cu11(In,Ga)9 [128]. Thus, the possible phase formation paths up to 

300°C with the initial stoichiometry Cu0.9In0.8Ga0.2 can be written as following (based 

on [126]). 
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Up to 170°C     9Cu + 8In + 2Ga   0.4Cu11In9 + 0.5Cu9Ga4 + 

4.4In 

3-34 

Up to 306°C 0.4Cu11In9 + 0.5Cu9Ga4 + 5.3In   0.82Cu11(In,Ga)9 + 2.6In 3-35 

The i-XRD results show that the proposed Cu11(In,Ga)9 phase is present for more than 

100 K with a decreasing peak width indicating an increasing crystal coherence length. 

Above 280°C, a phase transition can be observed visible by a peak shift of the strong 

Cu11(In,Ga)9 (511)/(313)/(202) reflex at 42.2° and the disappearing Cu11(In,Ga)9 (112) reflex 

at 41.4°. The transition results in a stable η-phase of Cu16(In,Ga)9 which has also been 

observed by Purwins [128] (Cu16In9 JCPDS #42-1475). This is in agreement with the phase 

diagram predicting a peritectic decomposition of Cu11In9 at 306°C (point C in Figure 24). 

The proposed decomposition reaction is shown below.  

Above  306°C 0.82Cu11(In,Ga)9  + 2.6In   0.56Cu16(In,Ga)9 + 5In 3-36 

The discrepancy in the temperatures being about 25 K lower in our experiment than 

expected by the phase diagram can be attributed to the measurement position of the 

thermocouple. Due to the heating mechanism by infra red irradiation, the temperature of 

the thin layer on the surface of the substrate is rising faster than the temperature 

measured in the oven wall. 

To investigate further phase transitions in the ternary Cu-In-Ga layers above 325°C, wide-

angle ex-situ XRD measurements of samples alloyed at 200–600°C have been performed. 

Therefore several layers have been deposited identically on glass followed by a heating up 

to 200°C. Thereafter the substrates have been alloyed for two additional minutes on a 

hotplate preheated with the intended different temperatures followed by a fast cool down. 

Figure 26 shows the diffraction pattern of the samples. As expected by the i-XRD analysis, 

the only crystalline phase present at 200°C is Cu11(In,Ga)9 decomposing at 300°C and 

above to Cu16(In,Ga)9. However, also small reflexes belonging to Cu11(In,Ga)9 are visible in 

the samples heated above 400°C probably due to an insufficiently fast cool down rate [129]. 

Furthermore, the XRD patterns indicate the presence of a crystalline indium phase above 

300°C that can be observed by the indium reflex. This can be explained by an enrichment 

of copper in the metal alloy after the phase transition leading to a phase separation of 

liquid indium (point D in Figure 24). With higher temperatures this indium reflex 

increases due to a decreasing solubility of indium in the alloy (Figure 24). The formation 

of a separated indium phase is an important observation and its influence on the precursor 

layers is further discussed in section 3.5.3.  
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Figure 26:  Ex-situ XRD of alloyed layers on glass tempered for two additional minutes at 200 to 

600°C. 

3.4.3 Characterization of processed layers  

The TG-MS and the i-XRD measurements presented in the previous section proved that 

copper and indium formate can be reduced directly to their respective metals and that 

heating of a pure gallium formate containing ink likely resulted in gallium oxide. In this 

section the reaction products of the three different unary metal inks as well as a mixture 

suitable for solar cell processing are characterized in terms of morphology and 

composition. Therefore the inks have been processed to uniform liquid films and 

consequently heated to 200°C. As method of choice SEM has been chosen to evaluate the 

layers. 

3.4.3.1 Unary inks 

This section evaluates the morphology and composition of layers processed from inks 

containing only one of the respective metal formates. The results are discussed in detail 

due to their importance for the interpretation of the ternary layer which is the topic of the 

next section. 

 



Chapter 3 

Investigations on the metal ion reduction 

__________________________________________________________________________________ 

66 

 

Copper layer 

Metallic layers processed from copper salts have been investigated intensively in the 

literature due to their application as metallic thin film material for various fields including 

printed circuit boards or nonlinear optical devices. The advantages of copper as material 

are a low bulk resistivity and thermal stability [130], [131]. Layers of nanoparticles have 

been synthesized using various techniques and precursor chemicals [132]–[134]. Thermal 

decomposition is one of the most common methods. In this context, a detailed review on 

the thermal decomposition of ionic solids including organic acids has been published by 

Galwey et al. [117]. In their work the formation of elemental nanoparticles from solid 

copper formate is discussed. Suitable layers for the mentioned applications require small 

particles with a narrow mean diameter distribution that increase the chances of a 

sufficiently low porosity. Rosenband et al. published a report on nanoparticles made from 

copper formate [78]. They described the changes in the morphology and particle size 

distribution depending on the presence of several additives including solvents and 

dispersants. Liquid additives have been found to increase the particle size while the 

presence of salts like NaCl led to the smallest nanoparticles. It has to be noted that the 

mechanisms leading to these results are very complex. Several studies report Ostwald 

ripening as the dominant mechanism of growth while other results are significantly 

diverging [135]. Thus, the following experimental findings are discussed on a 

phenomenological basis.  

In the case of copper the influence of two liquid additives has been evaluated and compared 

to a pure solution of copper formate in TMG (sample A). As first additive 

dimethylformamid (DMF) has been chosen for sample B due to its high boiling point of 

153°C which is in the same temperature region as the solvent TMG (Tb=160°C). The 

solvent mass ratio has been set to 2:1 (TMG:DMF). Because of the high boiling point DMF 

is expected to be present during the particle formation which might have a strong effect 

on the resulting morphology. Methanol with a significantly lower boiling point of 56°C has 

been added to the pure TMG ink in the third sample C in the same mass ratio. As has 

been discussed in section 2.3.2, methanol has the advantage to decrease the film viscosity 

and the surface tension which can be beneficial for the deposition of uniform liquid layers. 

In order to make the results between the three experiments comparable, the drying 

temperature has been set to a high initial value above the reduction temperature of the 

copper ions (200°C). With these settings the copper reduction has been expected to occur 

with all solvents present. SEM images and AFM surface profiles of the resulting layers 

are shown in Figure 27. 
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The images on top depict top view SEM images in two magnifications. It is obvious that 

there are significant differences between the evaluated samples. Beginning with the pure 

TMG ink, the annealing leads to the smallest particles while the addition of DMF results 

in fewer but larger particles. The particle alignment is also different with rather loose 

particles in sample A, a chain-like structure in sample B and a flat and sintered looking 

structure in sample C. The separated particles in A compared to the aggregates in B and 

C might be an indication for a different nucleation mechanism and/or location. The 3D 

visualizations at the bottom depict the surface profiles measured by atomic force 

microscopy (AFM). Overall, the profiles confirm the already discussed observations for 

example the differences in the particle diameters. However, additional information about 

the film height distribution can be derived. While sample A and C have a similar 

roughness of ±350 nm, sample B appears to be significantly more porous with a total film 

height deviation of ±800 nm. This observation is in agreement with the SEM pictures 

clearly showing areas of the uncovered substrate as well as large particle agglomerations. 

 

Figure 27:  SEM top view and AFM surface profiles of copper nanoparticle layers processed with 

different solvent mixtures. A: Reference with pure TMG. B: Mixture of TMG and DMF. 

C: Mixture of TMG and methanol.  
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Additionally to the ink additives, the size and morphology of the nanoparticles is also 

dependent on the process temperature that directly influences the kinetics of the redox-

reaction and therefore the prevailing nucleation mechanisms and the particle growth 

[135], [136]. Rosenband et al. measured an increase in particle size with higher 

temperatures independent of the used additives [78]. In this work copper formate inks 

with TMG as solvent have been processed at 150 and 200°C (below and above the boiling 

point of the solvent). The resulting SEM images are shown in Figure 28. In comparison to 

the already discussed sample processed at 200°C showing small nanoparticles with a 

narrow mean diameter distribution, the layer prepared at 150°C reveals significantly 

larger particles. The image also shows that the diameters are varying from below 50 nm 

to more than 400 nm. An explanation for the differences in the morphology might be the 

slowed down reaction kinetics at 150°C that might have led to less nucleation centers 

growing to larger particles and vice versa the formation of significantly more growth 

centers at 200°C.  

 

Figure 28:  SEM images of copper layers processed from an ink with TMG on glass at 150 and 200°C. 

The right layer at 200°C corresponds to sample A in Figure 27. 

Indium layer 

In indium formate containing inks the anion decomposes at temperatures above 160°C. 

Deposited liquid thin films heated to 200°C result in highly transparent grey layers on the 

surface of the substrate. SEM analyses of these layers reveal the formation of separated 

spherical particles with a broad diameter distribution as can be seen in Figure 29. The 

image shows particles with diameters in the range of several 100 nm which are scattered 

over the substrate next to small nanoparticle agglomerations with a total size below 

50 nm. Experiments with larger ink volumes and correspondingly a higher amount of 

metal as well as longer solvent evaporation times led to the formation of a single pearl 

with a diameter above 100 µm. These results can be explained by the low melting point of 

elemental indium which lies within the temperature range of the drying process 

(Tm,In=156°C). 
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Figure 29:  Left: SEM image of solidified elemental In-droplets on a glass substrate. Right: 

Microscopic picture of a single pearl resulting from the heating of high ink volumes. 

In contrast to the independent formation of solid copper particles stacking up to a porous 

layer, the reduction of indium ions above 160°C instantly results in separated liquid 

droplets dispersed in the bulk of the evaporating wet film. These highly mobile droplets 

tend to minimize their surface energy by coalescing when brought in contact with nearby 

droplets. In sufficiently thin wet films, this phenomenon eventually ends when all 

accessible indium droplets in range have coalesced to separated pearls. Due to the high 

surface tension of liquid indium these pearls keep their spherical shape on the surface of 

the substrate even after the solvent evaporation. Larger volumes of ink and accordingly 

liquid metallic indium decrease the space between the individual droplets leading to the 

observed single pearl after the solidification.  

Gallium layer 

The thermogravimetric analysis of a pure gallium ink discussed in section 3.4.1.2 showed 

a significantly higher residual weight than expected by the initial metal mass and the 

formation of considerable amounts of carbon monoxide during the ink heating. Both points 

suggest the formation of gallium oxide. Another difference to the copper and indium 

containing inks is that the anion decomposition occurs mostly after the solvent 

evaporation and therefore does not take place in the liquid film. Hence, the salt most likely 

precipitates on the surface of the substrate prior to the decomposition. The result is a flat 

and solid glass-like structure at around 160°C that decays to small fragments above 180°C. 

The morphology of the resulting layers is shown in Figure 30.  

The microscopic picture on the left shows large transparent fragments with dimensions of 

several millimeters. The SEM images on the right reveal the fine structure of a thinner 

layer consisting of cracked flakes with diameters of several 100 µm and an approximate 

thickness of around 1.5 µm.  
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Figure 30:  Morphology of layers processed from Ga-inks on glass. Left: Light microscopic image of 

large transparent flakes. Center and right: SEM top view images. 

The composition of the flakes has been further characterized by Fourier transformed infra 

red analysis (FT-IR). The results are shown in Figure 31. The graph reveals a high 

transmission of IR radiation at wave numbers above 1000 cm-1 with negligible absorption 

bands in the range of 1500 cm-1 suggesting that the solvents have evaporated completely. 

At lower wave numbers a strong absorption band suggests the presence of an oxide. The 

gallium oxide thin films reported by Ortiz et al. have a similar IR spectrum [137]. Thus, 

the IR measurement further strengthens the hypothesis that the heating of gallium 

formate containing inks leads to a complete evaporation of the organic solvents and the 

formation of Ga2O3.  

  

Figure 31:  FT-IR spectra of a layer processed from a Ga-formate containing ink. 

Summary of the unary inks 

In this section the residues of a heating of unary inks has been investigated. Pure copper 

inks led to porous layers consisting of small metallic nanoparticles with diameters in the 

range of 50 nm. The morphology of these layers and also the individual particles has been 

shown to be highly dependent on additional solvents as well as the processing 
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temperature. Indium ions could also be reduced to the metallic state. The individual liquid 

metal droplets emerging during the tempering coalesced due to the applied processing 

temperature above the melting point. The resulting large droplets eventually solidified to 

spherical particles after cooling. Gallium as the metal with the lowest standard electrode 

potential could not be reduced to its elemental form. Instead, a cracked layer consisting of 

gallium oxide flakes could be observed. 

3.4.3.2 Ternary mixtures 

The target morphology of ternary precursor layers consists of flat, crack free and dense 

structures with a sufficiently low porosity. This way a transformation to dense 

chalcopyrites can be expected. In section 3.4.3.1 the individual reaction products and layer 

morphologies of the three different unary metal inks have been investigated. Precursor 

layers made from inks containing the ternary salt mixture, however, look significantly 

different. In order to explain the following results two points are particularly important 

that deviate from the unary experiments.  

Firstly, the interactions between the reduced metals have a huge influence on the 

morphology. The i-XRD measurements discussed in section 3.4.2 showed the consecutive 

metal ion reductions at different temperatures and the formation of alloys in agreement 

with the phase diagrams. Secondly, the previous section revealed that gallium ions can’t 

be reduced with formate ions to the metallic state. Instead, heating of pure gallium inks 

led to the formation of Ga2O3. In the ternary ink, however, no gallium oxide could be 

detected. A possible explanation is that gallium cations can get reduced in the presence of 

elemental copper which has a high Ga solubility (see also section 3.4.2).  

Two different process conditions have been chosen for the layer processing. Within these 

experiments all parameters have been kept constant beside the annealing routine.  

A: For experiment A, a low starting temperature around the reduction point of the 

copper ions (~130°C) has been chosen followed by a slow heating ramp up to 200°C 

with 10 K/min. With these parameters the individual metal ions are reduced 

consecutively. This experiment also allows a controlled evaporation of the solvents 

and a separated decomposition of the salt anions.  

B: In experiment B the annealing has been carried out at a constantly high 

temperature above the decomposition point of all three metal salts (~200°C). Thus, 

the reactions of the three metal ions occur simultaneously. A disadvantage of this 

routine is the fast evaporation of the solvents leading to a significant gas evolution. 
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Also the instantaneous formation of large amounts of carbon dioxide might be 

critical for the layer integrity.  

Because an in-situ investigation of the morphological changes is not possible with the 

available methods, the following discussion is based on the SEM images of the resulting 

precursor layers. Separate models explaining the experiments A and B have been 

developed which include a comparison to the investigated unary inks and the previously 

presented crystalline phase formations derived from the i-XRD measurements.  

A: Consecutive ion reduction by slowly increasing temperature 

Figure 32 shows the morphology of the processed precursor layer. Porous structures 

consisting of sponge-like agglomerations of nanoparticles can be seen with a total film 

height in the range of 5 µm. On top of this layer a thin dense skin is visible. In the bulk 

large spherical particles can be observed.  

 

Figure 32:  Experiment A. Cross sectional SEM image of a layer processed from a CuInGa ink by a 

slow consecutive reduction of the different metal ions. 

The mechanism leading to the formation of these structures can be explained by a model 

illustrated schematically in Figure 33. Beginning with the temperature region around 

130°C the previous TG results suggest a fast reduction of copper ions as well as a negligible 

slow reaction kinetic for indium and gallium formate. Due to the high wet film thickness 

in this temperature range consisting mostly of the solvent TMG (~25 µm), the particle 

formation probably occurs independently in the bulk liquid and at the interfaces. With the 

advancing copper ion reduction, a large fraction of the solvent is evaporating as has been 

shown by the TG-MS analysis of the ternary ink. Due to the thereby decreasing film 

height, the highly mobile nanoparticles are approaching each other. In pure copper inks, 

this would eventually lead to an accumulation of particles on the substrate resulting in a 



Chapter 3 

Investigations on the metal ion reduction 

__________________________________________________________________________________ 

73 

 

flat layer. In the ternary system, however, indium ions are getting reduced above 160°C 

in the still existing liquid film. The reduction most likely takes place on the surface of the 

already present copper nanoparticles leading to the observed Cu11In9 phase measured 

above 160°C. Yet, the alloy formation is slow [138] which is why the liquid indium shell 

has time to pin particles together that get in contact. Eventually this leads to 

interconnections over large areas which would explain the observed highly porous sponge 

like structures. At some point the copper rich Cu11(In,Ga)9 alloy is saturated and can’t 

incorporate more group III elements. Due to the initial Cu/(Ga+In) ratio of 0.9, about 25% 

of the group III elements can’t be incorporated. In agreement with the copper-indium 

phase diagram (Figure 24), this effect necessarily leads to the formation of a pure liquid 

indium phase forming highly mobile droplets.  

 

Figure 33:  Schematic model of the metal layer formation at slow heating rates (experiment A). 

Subsequent formation of Cu starting around 130 and In/Ga above 160°C on the copper 

surface leading to a phase transition to CuInGa alloy particles. This results in a limited 

particle mobility and thus a porous structure. The formation of small indium droplets 

due to the saturation of the copper rich alloy occurs above 190°C. 

B: Simultaneous reduction by isothermal heating 

In experiment A the slow consecutive reduction of the three metals led to highly porous 

structures probably due to a pinning of the separately emerging alloy nanoparticles. The 

formation kinetics of the intermetallic Cu11(In,Ga)9 alloy is known to be diffusion 

controlled and rather slow [138]. Therefore an enhanced reaction speed should inhibit the 

pinning due to a faster particle formation and solvent evaporation. This hypothesis has 

been implemented into this experiment by an isothermal annealing of a ternary CIG 

containing liquid film at 200°C. The resulting layer is shown in Figure 34 revealing a 

completely different morphology. Under these conditions the surface of the substrate is 

only partially covered with sintered particle agglomerations. The size of the individual 

structures is in the range of 1-2 µm. Most of them are further interconnected to clusters. 
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Figure 34:  Experiment B. SEM top view images of a CIG layer processed by isothermal heating. 

In Figure 35 a proposed model explaining the result of the isothermal tempering 

experiment is depicted. Due to the elevated hot plate temperature of 200°C the ink quickly 

reaches very high temperatures up to the boiling point of the solvent TMG around 160°C. 

Keeping in mind the high concentration of dissolved salts an additional significant boiling 

point elevation can be assumed. In any case, the reductions of Cu and In/Ga ions are 

initiated almost simultaneously in this temperature range. Thus, in contrast to the 

previous experiment the emerging liquid indium droplets don’t have enough time to alloy 

with copper to the thermodynamically favorable Cu11(In,Ga)9 alloy. Instead the droplets 

coalesce to larger drops at the surface of the substrate. With advancing time the residual 

solvents evaporate resulting in a compaction of the metals which eventually form an alloy 

and solidify to the visible complex structures. 

 

Figure 35:  Schematic model of the film formation at a constant high temperature annealing 

(experiment B, T=200°C). The metals are reduced simultaneously forming small copper 

nanoparticles and liquid indium droplets that coalescent to larger drops. The drops are 

sinking to the surface of the substrate where they eventually alloy with copper and 

solidify to non homogeneous complex structures. 
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Summary of the ternary ink 

In this section the particle and phase formation behavior of ternary CIG inks has been 

evaluated under two annealing conditions. In experiment A, the consecutive ion reduction 

has been investigated by a slow heating ramp. In contrast to this, experiment B focused 

on the simultaneous ion reduction by an isothermal annealing at 200°C. The former led to 

highly porous structures supposedly due to a pinning of the emerging copper particles in 

a Cu11(In,Ga)9 alloy. In B a highly mobile liquid indium phase is present in the ink which 

solidifies with copper on the surface in the same alloy as complex structures. Due to the 

high porosity of layer A and the incoherent metal layer in experiment B, both morphologies 

are inapplicable for solar cell devices.   
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3.5 Homogenization and densification of the layer 

In the previous section 3.4 the metal formation as a result of the reduction of the metal 

ions has been presented. It could be shown that the tempering conditions have a huge 

impact on the layer morphology resulting either in porous layers or large separated 

structures. For an efficient energy conversion CIGS solar cells require dense and 

homogeneous pin-hole free layers of chalcopyrite crystals with a film thickness between 1 

and 3 µm. These requirements can be transferred to the metallic precursor layer. In this 

context the observed morphologies of the experiments A and B discussed in section 3.4 are 

both unsuitable for a further solar cell processing. Therefore this section focuses on the 

homogenization and densification of the precursor layer. The proposed method is based on 

an additional additive that forms a stable organic matrix during the solvent evaporation 

and the metal ion reduction. In section 3.5.3 a model for the influence of this matrix on 

the precursor morphology is discussed. The results have been published in Thin Solid 

Films [74].  

3.5.1 The organic matrix 

Many metal salt based approaches published in the literature use an organic matrix to 

stabilize the intermediate layer after the solvent evaporation. In most cases a high 

molecular organic polymer is used, e.g. ethylcellulose [52], polyvenylacetate [53] or 

polymethyl methacrylate [54] which have poor decomposition properties (see section 

1.3.2.2). In this section a new method is proposed based on an intermediately forming 

polymer consisting of copper formate and a low molecular additive which can complex and 

bridge between metal ions. Thus, the matrix consists of metal-additive chains connected 

by weak Cu-N bindings. These connections can be broken at elevated temperatures 

releasing the small additive molecules which have a good decomposition behavior 

compared to the organic polymer binders. The molecular structure of this polymer is 

investigated in detail beginning with the physical and chemical properties of the additive 

and its abilities to form complexes with transition metals. Finally, several new copper-

additive complexes are described. 

3.5.1.1 Triazoles 

The used additive is a derivative of 1,2,4-triazole (TA). Because of the similar complexation 

behavior, this section begins with a short introduction to the TA chemistry. TAs are 

heterocycles consisting of three N atoms and two C atoms as can be seen in Figure 36. 
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Depending on the atom alignment, three tautomeric hydrogen positions are known. In the 

solid state the hydrogen is bound to N1 giving the molecule an asymmetric arrangement 

[139]. Unless stated otherwise all triazoles and triazole derivatives mentioned in the 

following sections refer to this isomeric core structure.  

 

Figure 36:  Chemical structure of the three tautomers of the 1,2,4-triazole molecule. 

TAs are versatile ligands that can form complexes with several metal cations. They have 

been focus of intense research for many years due to similar metal complexes appearing 

in nature, e.g. in the form of metallo-proteins. Many TAs are also used in fungicides, 

herbicides, for the antibiotics syntheses or as Pt(II) complexes exhibiting anti tumor 

activity [140]. The coordination properties of triazoles can be attributed to the position of 

the donor atoms in the ring allowing a complexation of a single cation as well as a bridging 

between two or more ions. The vast majority of published metal-triazole structures are 

oligo- and polynuclear and only a few mononuclear compounds are known to date. The 

structure of the resulting complex depends mostly on the ligands and the metal. A 

comprehensive study of metal-triazole compounds can be found here [139].  

The possible bridging modes of TA between two or more ions are shown in Figure 37. N2-

N4 bridging usually leads to two-dimensional structures. More common and also mostly 

found in N4-substituted TAs are N1-N2 bridges. In this mode the distance between the 

metal ions gets down to about 400pm. Depending on the substituent at 3 and/or 5 the 

number of TAs bridging between two ions can be one, two or three. Example complex 

structures have been achieved with TA and Cu, Co, Mn, Zn or Fe thiocyanate, Mn sulfate 

and Cu or Fe chloride. 

 

Figure 37:  Coordination modes of 1,2,4-triazole for bridges between two metal ions [139]. 
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3.5.1.2 4-amino-1,2,4-triazole 

4-amino-1,2,4-triazole (4ATA) is a derivative of the 1,2,4-triazole and is used as additive 

in this process. The difference is the amino group at the N4 atom as can be seen in Figure 

38. In this section the physical properties which are important for the ink process are 

discussed.  

 

Figure 38:  Chemical structure of the 4-amino-1,2,4-triazole molecule. 

4ATA is a colorless and odorless compound that is solid at standard conditions having a 

melting point of 85°C. In order to evaluate the high temperature behavior of the pure 

compound TG-MS analyses have been carried out. Figure 39 shows the mass loss of pure 

4ATA measured with a heating ramp of 10 K/min in N2 atmosphere. The results indicate 

an evaporation/decomposition temperature around 250°C and a residual mass fraction of 

2 % at 600°C. The simultaneously measured ion currents show a high number of molecule 

fragments with a pronounced peak at m/e=84 corresponding to the pristine molecule. The 

peak maximum is shifted to higher temperatures than expected by the TG mass loss due 

to the remote position of the mass spectrometer about 15 cm away from the sample.  

 

Figure 39:  Bottom: TG mass loss of pure 4ATA at a heating ramp of 10 K/min in nitrogen. Top: 

corresponding ion current with m/e=84 (4ATA). Due to the high evaporation 

temperature and the local distance between the sample and the mass spectrometer the 

MS-peak is shifted to higher temperatures. 
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A Fourier transformed infra red analysis has been carried out on pure 4ATA and the 

decomposition residues of a 4ATA sample heated at 300°C under N2 for several minutes. 

The results are depicted in Figure 40. The pure material shows various sharp absorption 

bands especially in the region below 1700 cm-1 due to the many possible vibration modes 

in the molecule. The two strong absorptions at 3250 and 3100 cm-1 belong to the amine N-

H stretches, the absorption around 3030 cm-1 to the aromatic C-H stretches. The tempered 

sample has lost most of the sharp bands, especially the mentioned strong absorptions 

between 3000 and 3300 cm-1 which is in agreement with the publication by Li et al. 

proposing a degradation of 4ATA to a triazole ring based on their MS-results [141]. In the 

fingerprint area between 1750 and 1000 cm-1 one broad peak can be observed. This 

indicates the formation of various decomposition products without any long range order. 

The results are further discussed in section 3.5.2.1. 

  

Figure 40:  FTIR spectra of pure 4ATA (solid line) and a 4ATA sample tempered at 300°C for several 

minutes (dashed line). The result of the heated sample suggests a high degree of 

decomposition. The measurements have been carried out in transmission mode. 

3.5.1.3 Transition metal complexes with 4ATA 

The difference in terms of complexation behavior between 4ATA and the amino free core 

structure TA is the substitution of the H atom at N4 with an amino group. Therefore the 

complexing and especially bridging properties are limited to the N1-N2 positions. So far 

several structures have been published in the literature. The transition metal nitrates (of 

Fe, Co, Ni, Cu, Cd and Zn) for example have been reported to form similar structure with 

4ATA with the composition M(4ATA)3(NO3)2·xH2O (M=metal, x=0.5, 1, 1.5) [139]. For 

iron(II) the same structure could be synthesized with iodide and thiocyanate as anion 

[142].  

A literature search for the metal formates with TA or the 4ATA used in this thesis revealed 

no published structures. From the three metals ions so far only copper 4ATA complexes 
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have been published with different anions. Refat et al. could show with IR-spectroscopy 

that in adducts synthesized by a solid state route the Cu2+ ion of CuCl2 is coordinating at 

the N1 atoms in the heterocycle [143]. A mixture of dissolved CuCl2 with 4ATA (1:1) in 

H2O and HCl yielded a polymeric chain which has also been found with TA [144], [145]. 

In this structure one single 4ATA molecule and two chlorine ions bridge between pairs of 

copper ions along polynuclear chains. The same structure has also been isolated from 

solutions containing CuBr2 and TA.  

3.5.1.4 Cu(HCO2)2-4ATA polymers 

In the previous section the general complex formation abilities of 4ATA have been 

introduced and examples with transition metals have been discussed. In this context, the 

two polymers made with CuCl2 and TA / 4ATA are of special interest due to the chemical 

similarities to the investigated ink system. Thus, several experiments have been carried 

out with copper formate to confirm the formation of similar polymers. As a result three 

new compounds have been synthesized, one at room temperature (sample A) and two 

between 50 and 100°C (sample B1 and B2). The synthesis procedure is described in 

appendix B. 

Samples of A and B1 have been analyzed using single crystal XRD to determine the 

molecular structure. The measurements have been executed at the University of Tübingen 

and the original data are presented in appendix C. Figure 41 A shows the first compound 

which is forming at room temperature. The polymer consists of a Cu(II)-formate-Cu(II) 

backbone connected by the oxygen atoms of the formate anion. On the sides of this chain 

one formate and two 4ATA ligands are present at every copper cation. Therefore the molar 

ratio of Cu:4ATA in this molecule is 1:2. The Cu(II) ions are linked to 4ATA at the N1/N2 

position.  

The molecular structure of sample B1 shown in Figure 41 is significantly different. Again 

a polymeric chain has formed, however, the molecule alignment has changed and the 

backbone consists of a double bridge. The first bridge is represented by Cu(II)-4ATA-Cu(II) 

with a connection established through the N1-N2 atoms of 4ATA as has been expected for 

4-substituted triazoles. The second bridge consists of Cu(II)-OH-Cu(II) and is therefore 

established via a hydroxide ion. The presence of the hydroxide ion can be explained by the 

synthesis routine which has been performed with water as solvent for the intermediate 

amorphous compound. The water molecules have probably been deprotonated by the basic 

formate ions. On the sides of this backbone each copper ion is additionally connected to a 

second formate ion. The molar ratio of Cu:4ATA in this structure is 1:1. These findings 
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can’t be transferred directly to the water free inks used for the solar cells. Thus, polymer 

B1 does not represent a possible candidate for the proposed mechanism. Nevertheless the 

measured structure gives valuable insights into how the polymer bridging with 4ATA can 

be established. A similar structure with a 3-5-substituted triazole has been published by 

Acevedo-Chavez et al. [146]. 

 

Figure 41:  The molecular structures of two polymers identified by single crystal XRD. The samples 

have been synthesized with copper formate and 4ATA in methanol at room temperature 

(A) and around 50°C (B1). Additional water was present during the synthesis of B1. 

As second characterization method the nitrogen mass fractions of several crystals made 

with the synthesis routines A and B have been measured by elemental analyses. The 

intermediate amorphous compound of experiment B yielded various intergrown crystals 

beside the well crystallized sample B1. The elemental analyses revealed that a second 

compound has been isolated (B2) having a different elemental composition. The measured 

amounts of nitrogen, which are characteristic for the amount of incorporated additive 

molecules, are shown in Table 6. 

Table 6:  Three molecular structures of polymers separated from copper formate 4ATA solutions 

and identified by single crystal XRD and elemental analyses. 

Sample Crystal color 
Measured  

N-fraction 

Corresponding molecular 

structure 

Calculated  

N-fraction 

A blue 34.3 % [Cu(4ATA)2(HCO2)2]n* 34.8 % 

B1 blue 26.1 % [Cu(4ATA)(HCO2)(OH)]n* 26.5 % 

B2 blue 23.1 % [Cu(4ATA)(HCO2)2]n** 23.6 % 

*based on single crystal XRD;  **based on measured N-fraction and similar literature examples 

O-CH-O Cu

HCOO

O-CH-O Cu

HCOO

O-CH-O

A

B1
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In sample A the calculated nitrogen mass fraction of 34.3 % fits well to the measured 

values. From sample B several crystals have been analyzed with varying nitrogen 

fractions of 26.1 % and 23.1 %. The former corresponds to the discussed crystal structure 

where a hydroxide group bridges together with the 4ATA molecules due to the presence of 

water during the synthesis. The second nitrogen value of B2 can be explained by a water 

free structure with two formate ions at each copper ion. The proposed structure of B2 is 

shown in Figure 42. 

 

Figure 42:  Proposed structure for polymer B2 based on the results of the elemental analysis. 

Due to the fact that solar cells are processed at elevated temperatures from water free ink 

formulations, the proposed polymer B2 is probably the structure occurring during the ink 

processing. This is also in agreement with polymers synthesized from similar starting 

materials that have been published in the literature [144], [145]. 

3.5.2 Influence of the complex on the copper film processing 

In section 3.5.1 the formation of polymeric structures with copper formate and 4ATA has 

been shown. In this section the influence of these compounds on the thermal behavior and 

the morphology of a pure copper ink are investigated. Thus, TG-MS analyses have been 

carried out on two copper formate solutions with and without 4ATA. The results are shown 

in Figure 43. It has to be noted that for clarity issues a higher concentration than normally 

used in the films has been chosen (used molar ratio of Cu:4ATA = 1:2, standard is 8:1). 

Beginning with the mass loss curves at the bottom, a comparison between the two inks 

reveals two distinct areas of interest. In zone A between 140 to 230°C the solution 

containing 4ATA shows a significantly slowed down mass loss. Because the initial mass 

fraction of 4ATA in the ink was about 6 mass-% and the measured decomposition 

temperature of 4ATA starts around 250°C, this observation can’t be explained by the pure 

additive. Thus, the measured slow mass decrease has to be attributed to the presence of a 

polymer (probably B2) that has been shown to form at elevated temperatures below 100°C. 
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Further indications for this hypothesis are also given in section 3.5.2.1. Zone A ends 

around 230°C with a constant residual mass in the range of the additive free ink.  

Regarding the solvent evaporation and the metal ion reduction, several differences in the 

ion currents measured by the MS can be observed. Beginning with carbon dioxide 

(m/e=44), the typical double peak of the two separated copper ion reductions is replaced 

by one single peak. This can be explained by the incorporation of the available Cu2+ ions 

in the polymer chain due to the high amount of additive. Therefore the first reduction step 

diminishes and the measured peak is shifted to higher temperatures corresponding to the 

reduction of Cu+ ions. Following this, the small shoulder between 150 and 200°C indicates 

the reduction of the missing Cu2+ ions from the decomposing polymer. Due to the missing 

free Cu2+ ions in the ink which probably stabilized methanol (m/e=31), the alcohol is less 

bound in the ink and evaporates significantly earlier (see appendix A and section 3.4.1.2). 

Most of the TMG (m/e=71) evaporation occurs in the same temperature range as without 

additive. However, low intensities of the corresponding ions can be measured up to 275°C 

suggesting that the diffusion of the solvent molecules from the 4ATA containing ink is 

hindered. 

 

Figure 43:  TG-MS of two copper inks with (red) and without 4ATA (black). Four ion currents with 

m/e = 31, 44, 71 and 52 are plotted against the temperature corresponding to methanol, 

carbon dioxide, TMG and an unknown compound, respectively. 
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Above 250°C the remaining mass of the additive containing ink stays constant up to 

450…600°C where another decrease of about 3 absolute mass-% follows (zone B). The 

results of the simultaneously logged ion currents give an idea on what happens here. The 

topmost MS-graph in Figure 43 shows the measured ions with m/e=52. A peak can be 

observed at high temperatures above 500°C with a maximum around 575°C exclusively in 

the sample containing 4ATA. Together with the simultaneously measured ions with 

m/e=26 (not shown), a strong indication for the formation of C2N2 (cyanogen) is given. This 

molecule is known to be the decomposition product of nitrogen rich organics, e.g. the 

polymer CnNn (paracyanogen). In the present case the residues of the nitrogen rich copper-

4ATA polymer probably have a similar polymeric structure. This hypothesis will be 

further discussed in the following sections. 

The influence of the additive on the morphology of copper layers has been investigated by 

SEM analyses. Layers processed at 200°C from inks without additive (A) have been 

compared to inks containing 4ATA and solely Cu+ ions (B) as well as inks with 4ATA and 

both Cu2+ and Cu+ ions (C). In order to achieve the Cu2+ ion free ink, the solution has been 

stirred above 100°C for several minutes until the blue color disappeared completely. The 

SEM images of the resulting layers are depicted in Figure 44. 

 

Figure 44:  SEM images of layers processed from inks containing A: Cu2+/Cu+ ions without additive; 

B: only Cu+ ions with additive; C: Cu2+/Cu+ ions with additive. 

Sample A and B show comparable morphologies with a dense layer consisting of spherical 

nanoparticles. Thus, it can be concluded that 4ATA in combination with Cu+ ions has no 

visible effect on the layers. This can be explained by the complexation properties of 4ATA. 

The presented polymers consist of Cu2+ ion chains interlinked by the additive molecules. 

Cu+ ions most likely do not form these complexes. The influence of the polynucelar 

compound on the morphology can be seen in the SEM images of layers processed from an 

ink containing 4ATA and Cu2+ ions. Here, the individual particles are smaller and mostly 

grown together.  
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3.5.2.1 Organic residues in the precursor layer 

In section 3.5.1.2 the physical properties of 4ATA have been discussed. Due to the late 

decomposition of the pure compound above 250°C the material properties of this additive 

are challenging for a residue free processing of solar cells. This can be confirmed by TG 

analysis of 4ATA dissolved in a copper ink which revealed a decomposition of an unknown 

nitrogen rich compound above 450°C to cyanogen. In order to estimate the amount of 

organics in the layer as a function of the temperature, elemental analysis on precursor 

layers have been carried out. For these experiments several layers have been processed 

identically up to 200°C. Contrary to the TG experiment, a low Cu:4ATA ratio of 8:1 has 

been used which has been shown to be sufficient for the processing of dense CIG layers. 

Subsequently, the as prepared samples have been tempered for additional two minutes at 

different temperatures. The short time interval of the tempering has been chosen to make 

the results comparable. 

 

Figure 45:  Mass fractions of the elements C, H and N of layers processed up to 200°C followed by a 

short tempering at 200…600°C for two additional minutes. 

Figure 45 shows the resulting amounts of C, N and H each measured at 200, 300, 400 and 

500°C as well as the amount of N at 600°C. The graph reveals an almost linear decrease 

of all elements with a significant drop in carbon between 200 and 300°C. The molecular 

ratio at 200°C can be explained by residues of the proposed polymer B2 consisting of copper 

formate and 4ATA (C:N:H=1:1:1.5) and remaining solvent molecules of TMG 

(C:N:H=1:0.6:2.6). This is consistent with the TG analysis presented in the previous 

section showing a delayed TMG evaporation up to 275°C. At 300°C the amount of carbon 

has decreased disproportionately to nitrogen resulting in a C:N ratio of 1:1. In agreement 

with the TG result this can be explained by the evaporation of the remaining carbon rich 

TMG. The chemical nature of the residual organics is unknown. However, the high 
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temperatures above the decomposition point of pure 4ATA suggest the formation of 

various decomposition products similar to the residues found by IR for pure 4ATA. With 

increasing temperatures the amount of carbon and hydrogen are further decreasing 

resulting in a slightly nitrogen rich residue. In order to be stable at temperatures this 

high, the residual compounds might be of polymeric nature. The enrichment of nitrogen is 

a difference to the known carbon residues in the precursor layers of similar approaches 

discussed in section 1.3.2.2.  

To investigate the chemical nature of the remaining organics IR analyses have been 

carried out on a copper layer made from an ink containing a high amount of 4ATA 

(Cu:4ATA = 1:2). In order to minimize the IR signals of residual solvents TMG or methanol 

the layer has been heated to 300°C. The resulting graphs are compared to the previously 

discussed transmission IR spectrum of pure 4ATA tempered at the same temperature 

(section 3.5.1.2). The results are depicted in Figure 46. In transmission mode (dashed 

lines) the mostly inorganic metallic layer shows a low transmission at longer wave 

numbers. In the fingerprint region below 1700 cm-1 the previously found absorption bands 

of tempered 4ATA are visible probably due to the high amount of additive. A significant 

difference between the two samples which could be confirmed at several measurement 

positions on the copper layer are the absorption bands between 2160 and 2110 cm-1 which 

are missing in the pure 4ata sample. They could be further enhanced by measuring the IR 

spectra on the same sample in attenuated total reflection (ATR) mode (blue solid line). 

These absorption bands correspond to vibrations found in various carbon and nitrogen 

containing multiple bonds, for example aliphatic isonitriles (-C-N≡C-, 2175-2130 cm-1 

[147]), alkynes (e.g. terminal C≡C, 2140-2100 cm-1), azides (terminal -N3, 2160-2120 cm-1) 

or -N=C=N- groups (2155-2130 cm-1).  

 

Figure 46:  IR spectra taken from a copper layer produced with an ink containing 4ATA (blue). The 

results are compared to tempered 4ATA (red). Two measurement modes have been 

applied: transmission-IR (dashed lines) and ATR-IR (solid lines). 
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These IR analyses do not allow an exact identification of the present chemical groups in 

the residues of the sample made from the 4ATA containing copper ink. However, the 

possible carbon and nitrogen containing multiple bonds are a strong indication for the 

formation of the proposed temperature stable polymeric C-N structure which would 

explain the observed cyanogen molecules as decomposition product above 500°C. 

3.5.3 Model for the film stabilization of ternary layers 

In the last sections the molecular structures of the proposed copper polymers, their high 

temperature behavior and the organic residues in the precursor after a heat treatment 

have been investigated. With these information and additional SEM images a model has 

been developed to explain the formation of the dense metallic precursor layers in presence 

of the polymer.  

As could be shown in section 3.5.1.4 copper-additive polymers are forming in the ink below 

100°C. The presence of these compounds during the heating of the deposited liquid film 

above 100°C changes the properties of the precursor layer significantly compared to the 

additive free samples. With a decreasing amount of the solvents TMG and methanol the 

polymers precipitate and form a highly viscous matrix. Eventually, this matrix solidifies 

above 150°C to a stable film. By adding high amounts of 4ATA to the ink this solid metal-

organic layer can be visualized by SEM imaging. Figure 47 shows a cross sectional SEM 

image of a precursor processed with a Cu:4ATA ratio of 1:2 tempered up to 180°C. A 

homogeneous and flat structure can be observed containing separated nanoparticles with 

diameters below 20 nm. The morphology of this film is highly different to the previously 

described layers. 

 

Figure 47:  Cross sectional SEM image of a layer containing CuInGa and 4ATA (Cu:4ATA=1:2) 

tempered up to 180°C. The solid structure consists mostly of the 4ATA polymer and 

small nanoparticles. 
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Based on these results a model for the formation of homogeneous films with 4ATA has 

been proposed which is depicted in Figure 48. Beginning with the layer tempering at 

around 130°C the precipitating polymers form a highly viscous film eventually resulting 

in a solid matrix. Thus, the reduction of copper ions initiated in this temperature region 

occurs inside of this immobile environment. With increasing temperature the film height 

decreases due to the evaporation of large fractions of the solvent TMG (see TG, section 

3.4.1.2) and a partial decomposition of the copper polymer. Consequently the separated 

copper particles are approaching. Simultaneously, above 160°C the indium cations are 

getting reduced most likely close to or on top of the copper nanoparticles resulting in the 

formation of Cu-In alloy particles. The same considerations apply for the gallium ions 

above 170°C. In contrast to the discussed additive free inks, this alloying does not 

necessarily result in the formation of clusters and finally the observed porous structures 

due to the local separation of the individual particles by the polymer matrix. Instead, with 

decreasing film height the converging particles agglomerate to dense layers. 

 

Figure 48:  Proposed model of the metal film formation with 4ATA: Cu2+ polymerizes with 4ATA in 

the solution below 100°C. This polymer slowly solidifies during the solvent evaporation 

leaving an organic matrix. At 130°C the copper ions get reduced forming nanoparticles, 

followed by In3+ and Ga3+ at T>170°C. The film thickness is decreasing due to sintering 

effects, solvent evaporation and partial polymer decomposition. Above 250°C most of the 

organic matrix has decomposed leaving a stable metal film. 

3.5.4 Layer characterization 

In the previous section a model has been introduced describing the formation of dense flat 

layers. The final morphologies of layers processed with 4ATA at 200°C are depicted in 

Figure 49 in three magnifications showing a dense film with a flat surface over large areas. 

The molar copper:4ATA ratio necessary to achieve this degree of homogeneity is about 8:1.  
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Figure 49:  SEM images of CIG layers processes on glass at temperatures up to 200°C. Left: cross 

section. Middle and right: tilted view (10°). 

The vertical element distribution in a layer tempered up to 200°C has been measured by 

secondary ion mass spectrometry (SIMS). The results are shown in Figure 50. Flat signals 

of the metals as well as carbon and nitrogen can be observed over the whole film thickness. 

The rising Mo signal indicates the end of the precursor layer and the beginning of the back 

contact. The results are in agreement with the layer formation model which proposes a 

separated and independent metal particle formation over the film height. 

 

Figure 50:  SIMS depth profile showing the vertical element distribution of a precursor layer 

processed with temperatures up to 200°C. 

Similar to the additive free experiments the elemental indium is only partially 

incorporated in the copper rich alloy while the rest is most likely homogeneously 

distributed as small indium droplets. At temperatures around 200°C the layer mostly 

consists of Cu11(In,Ga)9. Thus, the total amount of phase separated indium is low and the 

individual particles are widely distributed throughout the layer with a limited mobility. 

However, above 300°C the peritectic phase decomposition to Cu16(In,Ga)9 decreases the 

amount of incorporated group III elements and therefore an increase in the separated 

indium phase is expected. Together with the higher mobility at this temperature the 

individual droplets tend to coalesce forming larger drops due to the thermodynamically 
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driven efforts to decrease the surface energy. Because of the limited space inside of the 

porous layer, the larger drops are escaping the film at the surface where they agglomerate 

similar to the droplets found in the experiments with the pure indium inks (see section 

3.4.3.1). Thus, large spherical particles can be observed after cool down. Figure 51 shows 

examples for this effect found on layers tempered at 350°C for 10 minutes. The indium 

particle diameters in both experiments exceed 1 µm. These findings strongly suggest that 

low temperatures during the metal precursor processing have to be favored to ensure a 

homogeneous element distribution. 

 

Figure 51:  Top view (left) and tilted view (15°, right) SEM images of layers tempered above 300°C 

for several minutes showing large separated indium peals.  

3.5.5 Summary of section 3.5 

In this section the influence of 4ATA as additive is investigated. Its purpose is to support 

the morphological integrity of solution processed Cu-In-Ga layers at temperatures above 

160°C. The stabilization effect is explained by the formation of a polynuclear compound 

consisting of Cu2+ cations, formate anions and 4ATA molecules during the ink preparation 

at temperatures below 100°C. This polymer solidifies prior to the metal ion reduction. 

Thus, an organic matrix is present surrounding the metal salt TMG complexes. During 

the reduction step between 120 and 200°C, separated Cu and binary/ternary Cu-In-Ga 

alloy nanoparticles emerge in this simultaneously decomposing polymer layer. At 200°C 

most of the organic matrix has decomposed which could be confirmed by elemental 

analysis revealing a homogeneous and dense layer of metallic nanoparticles. The 

remaining organic residues above 200°C are nitrogen rich and the absolute amount 

decreases with higher temperatures. Layers tempered above 300°C for several minutes 

showed significant indium segregation resulting in large bubbles on the surface. This has 

to be avoided by keeping the alloying temperature low. 
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Chapter 4  

 

 

From the metallic layer to a 

semiconductor 

For a working solar cell device, the metallic precursor layer described in chapter 3 has to 

be transformed into a semiconductor suitable as absorber layer. This can be achieved by a 

reaction of the metals and metal alloys with selenium and/or sulfur to polycrystalline 

chalcopyrites. The chalcogens are usually incorporated by a high temperature diffusion 

process which is the topic of this chapter. In this work selenium has been exclusively used 

as chalcogen source, therefore, the annealing step is mostly denoted as selenization. The 

chapter begins with an in-situ XRD analysis showing the most important phase changes 

during the selenization of a chemically deposited precursor layer. Thereafter, the focus is 

set on the lab scale process technology. Section 4.2 introduces the developed tube furnace 

including a characterization of the temperature profile inside of the tube. In the following 

section 4.3 the selenium evaporation inside of this tube furnace is modeled and the 

importance of an exact timing during the annealing run is explained. The resulting 

chalcopyrite absorber layers are characterized in chapter 5. 
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4.1 In-situ investigation of the selenization 

Similar to section 3.4.2 where the precursor layer formation during the tempering has 

been monitored by an in-situ XRD measurement, this section evaluates the selenization 

of this chemically deposited precursor to a chalcopyrite layer. Therefore, a metallic 

precursor with the composition Cu:In:Ga = 0.9:0.8:0.2 has been positioned in the center of 

the in-situ XRD furnace. As chalcogen source, elemental selenium has been used which 

was placed in an open graphite container above the sample. Finally, the whole system has 

been heated up to 600°C within 4 minutes and kept at this temperature for an annealing 

time of 6 minutes. During the whole process XRD scans have been taken with a frequency 

of 60 scans/min. The measured patterns are depicted in Figure 52. 

 

Figure 52:  In-situ-XRD pattern of a typical selenization run. The precursor layer processed on a 

Mo coated glass substrate has been tempered up to 200°C. At room temperature the 

sample consists mostly of Cu11(In,Ga)9. Above 300°C a phase transition to Cu16(In,Ga)9 

can be seen. Copper selenides and CuInSe2 chalcopyrites appear above 450°C. Gallium 

is incorporated slowly at 600°C. 

The used precursor layer has been previously prepared at temperatures up to 200°C. Thus, 

only the expected Cu11(In,Ga)9 phase is present at room temperature. Above 300°C a phase 

transition to Cu16(In,Ga)9 is visible. Because of the slow transport of evaporated selenium 

to the metal surface the first selenide reflex of CuSe2 appears not until temperatures of 
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around 450°C. At this temperature the Cu16(In,Ga)9 phase decomposes and a new peak 

appears that can be assigned to copper selenides. The remaining copper poor alloy 

probably forms a Cu9(Ga,In)4 phase (JCPDS 71–0458) which can be observed with low peak 

intensities around 43° 2-theta. Above 500°C the formation of a chalcopyrite phase is visible 

which can be identified as CuInSe2 (JCPDS-40-1487) by its (204/220) reflex around 44° 2-

theta. The kinetics of the formation of the ternary CuGaSe2 (JSCPD-35-1100) is 

significantly slower and no pure CGS peak is visible [148]. Gallium is gradually 

incorporated into the CuInSe2 crystals via the ternary CGS phase which can be observed 

by a weak peak around 45°-46° 2-theta shifting to lower angles. The first formation of the 

quaternary Cu(In,Ga)Se2 (JCPDS 35-1102) can be clearly seen at around 6 minutes 

process time by a peak shift of the CIS peak to higher angles. The reason for this can be 

found in the smaller chalcopyrite lattice constant due to the smaller atom size of gallium 

[149]. 

4.2 Selenization process 

In the in-situ XRD oven the selenium is evaporated from a solid source and diffuses from 

its position above the sample to the precursor. For the absorber layer manufacturing a 

similar process has been developed based on a tube furnace. For this process the samples 

as well as the selenium source are placed inside of a quartz glass tube on a hard carbon 

sample holder as can be seen in Figure 53. The whole system is open and operated at 

ambient pressure conditions with a nitrogen gas inlet on the left side and an outlet on the 

right. Thus, the selenium is positioned in front of the sample in the flow direction. As 

chalcogen source elemental selenium powder has been chosen. 

 

Figure 53:  Graphical visualization of the selenization oven with the precursor layer shown in blue 

placed on the right. The inlet for the inert gas is positioned on the left. The rings 

symbolize the attached heating cords.  

In contrast to the i-XRD oven, the selenium vapor flux to the samples in this setup is 

controlled by a nitrogen gas flow with a purity of 99.9999%. The volume flow can be 

adjusted by a mass flow controller within a range of 0 to 500 standard cubic centimeters 

(sccm) corresponding to a maximum gas velocity of 3.5 cm/s. In order to remove oxygen 

contaminations from the tube atmosphere, the tube is flushed with 500 sccm nitrogen for 
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several minutes prior to each experiment. To limit a possible air indiffusion during the 

annealing, a back pressure of about 15 mbar has been applied by attaching a wash bottle 

to the gas outlet filled with 15 cm of water. Regarding the heating, good initial results 

have been achieved with one heating zone ranging from the selenium source to the end of 

the precursor [73]. However, to gain a better control over the temperature distribution a 

two heating zone concept has been developed. In this setup the oven is divided into two 

separately controlled zones. Figure 54 depicts a schematic illustration of the furnace. In 

order to minimize the heat transfer between the two zones through the highly heat 

conductive carbon, the sample holder has been divided into two pieces. For the sake of 

simplicity the basic temperature control is established by thermocouples placed on the 

inner wall of the glass tube.  

Due to a direct connection between the temperature at the selenium source and the vapor 

pressure of the elemental selenium, this setup gives valuable information on the 

evaporation properties. Furthermore the known nitrogen volume flow allows a calculation 

of the selenium partial pressure at the precursor layer position. This topic is discussed in 

detail in section 4.3.  

 

Figure 54:  Schematic representation of the tube furnace used in this thesis. The metallic precursor 

layer and the selenium source are placed on a carbon holder inside of the tube. Two 

separately controlled electrical heating cords are attached on the outside. 

4.2.1 Furnace characterization 

Knowing the temperature profile inside of the tube oven can be beneficial to interpret and 

optimize annealing results. Therefore, the selenization furnace has been characterized 

with several thermocouples during a typical annealing run. Additional thermocouples to 

the ones shown in Figure 54 have been placed inside of holes drilled 5 mm into the carbon 

holder and the glass substrate. Due to the thin dimensions of the glass substrate, the inner 

temperature of the glass substrate corresponds to the temperature of the precursor layer 

on the surface of the sample and therefore resembles very accurately to the precursor 

temperature.  
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For a typical selenization routine the furnace is quickly heated to 600°C and kept at this 

temperature for 7 minutes. The measured annealing time begins when the target 

temperature has been reached. After the 7 minutes the heating is turned off and the upper 

part of the heat insulation is removed to increase the cool down rate.  

Figure 55 shows the measured temperatures over the processing time. With the current 

setup a maximum heating rate of 220 K/min can be achieved. The temperature at the 

inside of the glass tube reaches 600°C after 4 minutes followed by small overshooting up 

to 614°C which can be observed at around 5 minutes processing time. The temperature of 

the glass substrate and the carbon holder follow with a significant deviation of up to 100 K 

and reach 600°C after 5 minutes. In contrast to the glass wall, the overshooting does not 

occur. The temperature decrease after unplugging the power supply and removing the 

heat insulation can be approximated by a power function with a steep slope in the 

beginning. As expected the glass tube exposed to the ambient surrounding cools down 

faster than the glass substrate and the carbon. 

 

Figure 55:  Temperature trends measured during a typical annealing process at three different 

positions in the furnace. T_tube describes the temperature at the tube wall and 

T_glass/T_carbon inside of the glass substrate as well as the carbon holder, respectively.  

4.3 Selenium evaporation 

The evaporation rate of selenium is directly dependent on the temperature. By using the 

temperature profile measured in the previous section, the evaporation rate during the 

annealing process can be estimated by a mass transfer model which is introduced in 

section 4.3.1. With the help of the known volume flow of nitrogen this evaporation rate can 

subsequently be translated into a partial pressure. Thus, the sections 4.3.2 and 4.3.3 

evaluate the influences of two process parameters on the selenium partial pressure. 

Finally, section 4.3.4 describes the importance of the process timing with regard to the 

0 5 10 15 20 25 30

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7

DetailAnnealing process

T
e
m

p
e
ra

tu
re

 i
n

 °
C

Time in minutes

 T_tube

 T_glass

 T_carbon

7 min annealing

Time in minutes

 T_tube

 T_glass

 T_carbon



Chapter 4 

Selenium evaporation 

__________________________________________________________________________________ 

96 

 

selenium partial pressure at the precursor position. With these results a process 

optimization is proposed. 

4.3.1 Modeling of the selenium partial pressure 

Selenium is a solid that exists in several allotropic modifications. It melts at 221°C and 

boils above 685°C and evaporates in several polynuclear species consisting of two to eight 

atoms [150]. The actual composition of the vapor is mostly dependent on the temperature. 

With increasing temperature the fraction of the short molecules increases. In the 

temperature range of the annealing around 600°C the evaporation products can be 

approximated as Se5 chains [151].   

The evaporation of selenium has been calculated similar to methanol presented in section 

3.2.3. The schematic model used for this calculation is shown in Figure 56. The shape of 

the liquid elemental selenium is assumed to be a flat elliptical cylinder which coincides to 

the observed appearance of the solid powder after melting. As initial weight, a typically 

used mass of 120 mg has been chosen. With this mass, the density of liquid selenium, and 

an approximate diameter of 1 cm, the initial height has been estimated to be around 

200 µm. For the calculation this cylinder is on a heated surface in an open system. The 

evaporation is enhanced by a laminar gas stream of nitrogen from the left side. As 

simplification the Se5 molecules are assumed to behave like an ideal gas justified by the 

ambient pressure conditions and the low partial pressures. 

 

Figure 56:  Schematic model used for the calculation of the selenium evaporation in an open system. 

Liquid selenium in the shape of an elliptical cylinder is positioned on a flat surface. 

Heating is applied through the substrate and the system is overflown with a cold 

nitrogen gas stream. 

With these boundary conditions and the assumption of an open system in the two 

directions of the tube the diffusion flux of selenium from the liquid gas interface A to the 

center of the tube B can be estimated similar to the solvent evaporation discussed in 

chapter 3. For simplicity reasons Se5 molecules are abbreviated as Se. One difference to 

the previous calculation is the not negligible selenium partial pressure in the tube (B). 
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𝑁̇𝑆𝑒 = −
𝛽

𝑅 𝑇
 𝐴 (𝑝𝑆𝑒𝐴

∗ (𝑇𝑆𝑒) − 𝑝𝑆𝑒𝐵) 
 

 𝑁̇Se  absolute diffusion flux of selenium in mol/s 

 𝛽  mass transfer coefficient in m/s  

 R  universal gas constant in J/(mol K) 

 𝑇   absolute temperature in K 

 A  surface of selenium in m² 

 𝑝𝑆𝑒𝐴
∗ (𝑇𝑆𝑒) vapor pressure of selenium in Pa 

 𝑝𝑆𝑒𝐵  partial pressure of selenium in the tube in Pa 

 

The value of 𝑝𝑆𝑒
∗  as a function of the temperature has been taken from [152]. For the 

selenium temperature the profile measured inside of the glass substrate (see section 4.2.1) 

has been used with a target temperature of 600°C. Due to the slow gas flow and the small 

tube diameter, the partial pressure of Se 𝑝𝑆𝑒,∞ above the liquid has been assumed to be 

the saturation pressure of selenium at the N2 gas temperature. The nitrogen gas stream 

enters the tube at room temperature. Further inside the tube at the selenium source 

position this temperature has been measured to be about 80% of the substrate 

temperature in degree Celsius. The surface A of the liquid selenium decreases during the 

annealing due to the mass loss. In order to include this in the equation a constant height 

to width ratio has been assumed. The mass transport coefficient 𝛽 has been approximated 

by a Sherwood correlation for a laminar overflown plate [110] which has already been 

introduced in section 3.2.3.  

𝛽 =
𝑆ℎ ∙ 𝐷𝑆𝑒𝑁2

𝐿𝑐
 

 Sh  Sherwood number 

 𝐷𝑆𝑒𝑁2
 diffusion coefficient of selenium in nitrogen in m²/s 

 Lc  characteristic length of the selenium surface in m 

 

The Sherwood correlation is a function of 𝑇𝑆𝑒  as well as the temperature of the gas 

stream  𝑇𝑁2
 which affects the viscosity 𝜇𝑁2

 and density 𝜌𝑁2
 of the nitrogen. Thus, it is worth 

mentioning that the Sherwood number 𝑆ℎ is a function of various parameters. 

 

𝑆ℎ = 𝑓(𝑇𝑆𝑒 ,  𝑇𝑁2
,  𝜌𝑁2

(𝑇𝑁2
),  𝜇𝑁2

(𝑇𝑁2
) , 𝑢𝑁2

) 
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The gas velocity 𝑢𝑁2
 has been assumed to be constant around 3.5 mm/s corresponding to 

50 sccm, a typical volume flow used for the selenizations. The binary diffusion coefficient 

𝐷𝑆𝑒𝑁2
 for selenium in nitrogen has been calculated following the kinetic gas theory.  

𝐷𝑆𝑒𝑁2
=

1

3
𝑢̅𝑆𝑒 𝜆𝑆𝑒 

𝑢̅𝑆𝑒 =  √
8 𝑅 𝑇𝑆𝑒

𝜋 𝑀𝑆𝑒
 

𝜆𝑆𝑒 =  
𝑘𝐵 𝑇𝑆𝑒

√2 𝜎 𝑝
 

 

 𝑢̅𝑆𝑒  mean velocity of Se5 molecules in m/s 

 𝑀𝑆𝑒  molar mass of the Se5 molecules in kmol/kg 

 𝜆𝑆𝑒  mean free path of Se5 molecules in m 

 𝜎  collision area 

 

Figure 57 left shows the resulting mass loss of selenium over the time during the 

annealing process. The curve indicates a measurable Se evaporation at temperatures 

above 450°C due to the slowly rising vapor pressure of elemental selenium. However, once 

the temperature has reached 550°C the mass loss slope highly increases and the selenium 

evaporates within 6 minutes. This period coincides with the time the liquid selenium can 

be observed in the furnace. As mentioned before, the thereby calculated evaporation rate 

can be combined with the known volume flow of nitrogen to a local selenium partial 

pressure and the determined values are depicted on the right in Figure 57. The graph 

shows that the Se partial pressure reaches 1 mbar at around 450°C and increases to a 

peak pressure of around 100 mbar at 600°C source temperature and 5 minutes process 

time.  

 

Figure 57:  Selenium mass loss (left) and local selenium partial pressure (right) each compared to 

the glass substrate temperature as a function of the process time. 
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The peak shape trend can be explained by the limited amount of selenium and the 

diminishing evaporation surface. After the peak pressure the decreasing surface lowers 

the evaporation rate and the calculated partial pressure decreases quickly.  

In summary both graphs clearly show that the selenium is evaporating quickly under the 

chosen conditions. At 600°C the initial amount of selenium evaporates within 6 to 7 

minutes with an end marked by a remaining partial pressure of below 1 mbar. Transferred 

to the typically applied 7 min long annealing process and the following cool down phase 

this suggests that the selenized layer is most of the time in an atmosphere containing a 

high amount of chalcogen. This is important as Liao et al. could show that low selenium 

partial pressures can be detrimental for the chalcopyrite properties leading to 

segregations and defects [153]. Scragg et al. observed that annealing without selenium 

can also lead to a selenium loss in the layer [49]. Thus, a sufficiently high vapor pressure 

over the process time has to be guaranteed. Regarding this issue, the furnace setup has 

two parameters to adjust the evaporation conditions for longer annealing routines which 

are the selenium source temperature as well as the gas flow velocity. The influences of 

both parameters are calculated and discussed separately in the following sections. 

4.3.2 Influence of the selenium source temperature  

The selenium source temperature directly influences the vapor pressure as well as the 

diffusion coefficient and therefore the evaporation rate. Thus, lowering the source 

temperature is an easy way to slow down the selenium evaporation. For the calculation 

three temperatures between 500 and 600°C have been chosen keeping all other 

parameters constant. Figure 58 depicts the resulting mass losses as well as the trends in 

the vapor pressure.   

 

Figure 58: The graph on the left shows the mass losses of selenium and the graph on the right the 

corresponding partial pressure, both as a function of the process time. 
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The graphs clearly show the strong influence of the temperature. Compared to 600°C, a 

decrease of 50°C leads to a doubling in the evaporation time (beginning at around 3 

minutes process time). This is achieved by a slowed down evaporation which can be 

visualized by the peak height and trend of the selenium partial pressure. Under these 

conditions the maximum partial pressure is 55 mbar slowly decreasing down to 1 mbar at 

20 minutes process time. The same considerations apply for the calculated curves at 

500°C. Here, the partial pressure already decreases after reaching 20 mbar and the Se5 

molecules are present in the furnace with more than 1 mbar for more than 35 minutes at 

600°C. Thus, a lower source temperature can increase the time selenium is present in the 

gas phase, however, it also decreases the vapor pressure. 

4.3.3 Influence of the gas velocity 

The velocity of the gas flow (equivalent to the volume flow) affects two things, the mass 

transport coefficient and the time the evaporated selenium vapor stays above the source 

equivalent to the selenium partial pressure. The former is only marginally influenced due 

to the slow gas velocities applied. The latter, however, is highly affected. In order to find 

a suitable velocity range one has to consider a gas flow free experiment. Without the 

additional forced flow, the movement of the evaporating Se molecules would be controlled 

solely by the gas diffusion of the molecules which have no preferential orientation. Inside 

of the furnace this would eventually lead to a selenium transport in the two open tube 

directions. For this reason a minimum gas flow is necessary to control the diffusion path 

towards the sample. Experiments have shown that a condensation of selenium at the tube 

wall left of the selenium source occurs at gas velocities below 20 sccm. Thus, 25 sccm has 

been set as minimum speed. In Figure 59 the calculated trends in vapor pressure for three 

different gas velocities for a constant maximum temperature of 550°C are presented. The 

graph on the left shows the mentioned constant evaporation rates leading to congruent 

mass loss curves. On the right the partial pressures are depicted. In this graph a clear 

trend can be observed revealing a factor between the curves dependent on the gas 

velocities. With the lowest volume flow of 25 sccm corresponding to a gas speed of 1.8 mm/s 

the nitrogen atmosphere above the evaporation source is more concentrated with selenium 

resulting in a significantly increased partial pressure of up to 95 mbar which is similar to 

the value achieved with a source temperature of 600°C and a volume flow of 50 sccm 

(3.5 mm/s). For the fast gas velocity of 100 sccm (7 mm/s) the opposite happens due to a 

more diluted selenium containing nitrogen gas phase and therefore a decreased maximum 

partial pressure of 20 mbar. 
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Figure 59:  Influence of the gas velocity on the selenium evaporation as a function of the process 

time for a maximum temperature of 550°C. Left: Mass loss of selenium. Right: Partial 

pressure. 

Thus, for longer annealing times a decreased source temperature in combination with a 

lower gas velocity can be applied to achieve similar vapor pressure conditions. 

4.3.4 Importance of timing during the selenization 

In section 4.3 the evaporation at the selenium source has been modeled. Regarding the 

properties of the selenium vapor arriving at the precursor position the geometry of the 

tube has to be considered. As mentioned in section 4.2, the selenium source and the 

precursor layer in the furnace are about 10 cm apart. With a nitrogen volume flow of 

50 sccm the selenium vapor takes about 25 seconds to travel this difference (in the case of 

a pure convective flow). Assuming a simultaneous heat up of both heating zones with the 

same temperature profile, the precursor temperature increases by up to 90 K within this 

time period at a heating rate of 220 K/min (see section 4.2.1). In other words, by the time 

the selenium vapor arrives at the precursor the layer is up to 90 K hotter. 

This furnace related issue has to be taken into account when designing the selenization 

procedure because the timing of the selenium arriving at the heated chemical deposited 

precursor is of great importance. The easiest way to show this is by comparing the j-V 

curves of solar cells processed with different heater timings presented in Figure 60. The 

delay time refers to the difference between the starting time of the selenium source heater 

and the precursor heater. 0 seconds means the instantaneous start of both heaters, 45 sec 

seconds means that the precursor heater is started 45 seconds before the selenium heater.  
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Figure 60:  J-V curves of two solar cells processed with different delay times between the start of 

the selenium and the precursor heating. The flow rate and temperature have been set 

constant to 50 sccm and 600°C, respectively. For this graph a cell in the center of each 

particular sample substrate has been chosen. 

The graph clearly shows the large differences between the samples. The absorber layers 

processed with the 25 and 45 seconds delay time reach significantly higher values in all 

optoelectronic properties. Between the two, the longer delay seems to be beneficial 

especially regarding an improvement in the fill factor. The reason for this can presumably 

be found in the time dependent selenium distribution inside of the tube furnace. Figure 

61 shows in black the temperature profile of the precursor layer which is heated to 600°C.  

 

Figure 61:  Precursor temperature and the selenium partial pressure at the substrate position as a 

function of the process time. The differences between the partial pressures are due to a 

delayed heating of the selenium source by 45 seconds. 

The grey curve belongs to the selenium partial pressure of the incoming nitrogen flow 

arriving at the precursor position in the case of an instantaneous heating of both zones 

(0 s). Included in this calculation are the 25 seconds necessary for the transfer of the 

selenium vapor from the source to the precursor (at 50 sccm). The light grey area marks 

the time when the selenium arrives at the precursor layer with more than 1 mbar of partial 
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pressure. This area intersects with the temperature profile of the precursor at about 

440°C. The green curve belongs to the selenium vapor pressure in case of a selenium source 

heating which is delayed by 45 seconds. In this case the precursor has already reached 

540°C by the time the partial pressure is at 1 mbar. 

To explain the solar cell parameters, the properties of the additive might have to be 

considered. In section 3.5.2.1 it has been shown that small amounts of the 4ATA polymer 

residues are stable up to a temperature of 500°C. Above, the final decomposition could be 

observed by the measured ion currents of cyanogen (C2N2, m/e=26 and 52). Thus, the 

delayed arrival of the selenium vapor might be necessary due to the high temperature 

behavior of the additive residues. Without the delay time, selenium vapor with a partial 

pressure above 1 mbar arrives at the precursor layer significantly below 500°C. The in-

situ XRD measurement in section 4.1 showed the instantaneous conversion of the metals 

to metal selenides in this temperature region. The occurring phase transitions can lead to 

a volume expansion and a layer densification which supposedly hinders the residue 

decomposition. Therefore, the proposed explanation for the beneficial effect of the delay 

time is based on a decomposition of the polymer residues before the arrival of the selenium 

vapor. 

The longest delay time of 120 seconds shows the worst optoelectronic properties with a fill 

factor of around 40. With this parameters, the precursor layer is kept at temperatures 

above 500°C for several minutes without selenium. This time is probably critical due to a 

high sensitivity of the metals to traces of oxygen and possible phase segregations (e.g. of 

indium) in the film which has been shown in section 3.5.4. 

4.4 Summary of chapter 4 

Chapter 4 covered the last process step in the manufacturing of CIGS absorber layers from 

the chemical precursors, the selenization. In the first part the used tube furnace has been 

described and characterized in terms of the temperature profile. The targeted substrate 

temperature of 600°C can be reached in this furnace within 4 minutes. With these 

information and a model for the selenium evaporation, the mass loss of the selenium 

source as well as the partial pressure of Se5 molecules in the tube furnace have been 

calculated. It could be shown that a typical initial selenium amount of 120 mg evaporates 

at 600°C within 6 to 7 minutes which coincides to the experimentally observed times. At 

this temperature a maximum selenium partial pressure of 100 mbar is reached. The 

calculated time frame is close to the chosen annealing time of the precursor layers. Thus, 

the selenization procedure has been optimized by adjusting the model using the available 
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process parameters. With a decreased temperature, the retention time of the selenium 

source could be increased significantly. The thereby lowered partial pressure can be 

adjusted by changing the volume flow of nitrogen gas. In the last part of the chapter, the 

importance of the timing regarding the arrival of the selenium vapor at the precursor layer 

has been discussed. The quality of the processed solar cells from the chemical deposited 

precursor layers has been shown to be highly dependent on a delayed arrival of selenium. 

The introduced hypothesis explaining this issue is based on the necessary decomposition 

of the remaining additive polymer residues before the arrival of selenium vapor leading to 

the formation of dense metal selenides. 
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Chapter 5  

 

 

The influence of sodium salts 

In this chapter the processed absorber layers are further characterized. In this context the 

influence of sodium salts dissolved in the ink is investigated with a focus on the 

chalcopyrite layer and the solar cell properties. In the first part of the chapter the 

motivation for the sodium experiments is given by a short literature review. Thereafter, 

several experiments are discussed that aim to estimate the differences between two 

sodium incorporation approaches. In detail, sodium free samples are compared to a 

diffusion of sodium from the glass substrate as well as the sodium addition to the ink in 

the form of three different salts. Regarding the characterization the differences in the 

layer morphology and phase composition as well as the optoelectronic properties of the 

final solar cell devices are evaluated. Unless stated otherwise, the measured energy 

conversion efficiency values discussed in this thesis are referring to the total area 

efficiency. The results presented in this chapter have been published in Progress in 

Photovoltaics [75]. 

5.1 Motivation and literature review 

In this section the general role of sodium in CIGS is introduced explaining the most 

important effects on the layer as well as the optoelectronic properties. Thereafter, the 

typically applied physical incorporation techniques as well as new chemical approaches 

are introduced. 
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5.1.1 Role of sodium 

In 1993, the beneficial influence of sodium has been discovered by accident when soda lime 

glass had been used instead of the preferred alkaline free borosilicate glass [154]. 

However, it took some time to attribute the positive effects correctly to the presence of Na. 

Intense research led to a significant efficiency gain within a few years, showing the 

importance of this topic for CIGS solar cells. Yet, there are still many unanswered 

questions and the complete role of Na is far from understood. In this section, an 

introduction into the role of sodium is given. For further information the reader is referred 

for example to the thesis of Rudmann [155]. After describing the effects an overview is 

given on the state-of-the art physical incorporation techniques as well as first published 

chemical approaches.  

In general, sodium doping has been reported to lead to changes among others in the 

absorber layer morphology, the grain orientation, the number and type of defect, the 

charge carrier density, the conductivity and the optoelectronic properties of the final 

device. Beginning with the morphology, several groups observed an influence of sodium 

on the grain size. However, there is still a controversy going on about this topic. While 

some groups noticed an increase [156], others did not observe any differences [157]. Some 

studies even reported a decreasing grain size, when sodium was present during the grain 

growth [158]. Yet, it is also believed that the grain size does not play a critical role in terms 

of the cell efficiency [159]. Regarding the grain orientation, Na is observed to enhance the 

(112) texture [160], [161].  

Due to its low solubility in CIGS, sodium is usually found at the grain boundaries where 

it is believed to passivate defects [158], [162], [163]. Erslev et al. also found a passivation 

of defect states near the CdS/CIGS interface [164]. Additionally, they observed an increase 

in the free carrier and deep acceptor densities when exposed to white light. A dramatically 

increased hole concentration has also be found by other groups [165]. This effect usually 

comes with a decrease in resistivity by several orders of magnitudes [166]. The 

improvement in the optoelectronic properties is mostly based on better values for the Voc 

and the fill factor. This has been proposed to originate from the mentioned increased 

density in the effective acceptors [167]. Apart from that, sodium is also believed to 

influence the absorption of selenium during the annealing. Braunger et al. proposed a 

model based on the formation of sodium polyselenides on the surface acting as a selenium 

reservoir [168]. 
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5.1.2 Incorporation techniques 

This section gives a brief overview on typical incorporation techniques. It is divided into 

two parts, the physical and the chemical methods. Physical incorporations have an 

advantage that can be quantified by the significantly higher number of research 

publications in this field. Therefore, the first part gives a short introduction in physical 

sodium incorporation strategies. The reported chemical sodium incorporation techniques 

are presented in the second part. 

5.1.2.1 Sodium incorporation by physical deposition methods 

Sodium can be incorporated in various ways and also at different times during the layer 

processing. Figure 62 shows the possible strategies used in the two stage process. The 

probably simplest and most convenient way to incorporate sodium is by diffusion from a 

Na containing substrate like soda lime glass (A). An important disadvantage of this 

method is the badly adjustable amount of incorporated sodium depending on various 

factors. This can be problematic as both insufficient as well as excessive supplies of Na 

can lead to deteriorated cell results [157]. Several groups reported the ideal amount of 

sodium to be between 0.1…0.5% of the CIGS atoms [169]–[171]. One approach to solve this 

issue has been proposed by Sakurai et al. who used a preheating step of the SLG/Mo 

substrate to  adjust the amount of sodium in the CIGS layer [172].  

 

Figure 62:  Sodium incorporation strategies in the two stage process. A) Diffusion from Na-

containing substrate. B) Sodium containing layer on top of the BC. C) Use of Na 

containing gas phase species during selenization. D) Use of sodium doped metal sputter 

targets. E) Incorporation from MoNa back contact. F) Post deposition of a Na compound 

on top of the CIGS layer. Image has been reproduced and extended from [155]. 
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All other methods B-F usually rely on an additional sodium source which is thought to be 

superior to method A [173]. In order to show the full potential of these approaches, a 

diffusion blocking layer is necessary to exclude any sodium diffusion from the substrate. 

This blocking layer can consist for example of Al2O3 or Si3N4 [174]. In method B a sodium 

containing layer is deposited between the molybdenum back contact and the precursor. 

This way a precise amount of Na can be supplied [175]. As Na source compound several 

materials are applicable. High quality devices could be produced among others with Na2S 

[176], Na2Se [165] and NaF, however, the air stable and less hygroscopic NaF is usually 

favored [175]. The fluorine anion also has been shown to leave no residues in the bulk 

[177]. Method C describes a gas phase incorporation. Wieting et al. reported the transfer 

of Na into the precursor layer via a gaseous Na2Sex species [178]. They observed this effect 

during their selenization run of numerous samples with the sodium coming from an 

adjacent soda lime glass. The methods D and E are based on modified sputter targets. For 

D a doped Cu-Ga target is proposed produced from a mixed powder composed of NaF and 

Cu-Ga [179]. E uses a sodium doped Mo sputter target (also called “MoNa”) with an 

adjusted composition [180]. However, in this approach the back contact/absorber interface 

can suffer from adhesion problems. F is the only post selenization treatment. Here, the Na 

compound is deposited similar to B on the final chalcopyrite layer. Rudmann et al. 

investigated the influence of a NaF post treatment on co-evaporated absorber layers [155]. 

They noticed that this method is mainly successful in the case of low temperature annealed 

absorbers. At standard temperatures, method B showed better results.  

5.1.2.2 Sodium incorporation by chemical deposition methods 

In contrast to the physical incorporation methods, the number of publications dealing with 

a chemical sodium deposition is smaller. Sutter-Fella et al. showed with their solution 

processed kesterites which behave similar to the chalcopyrites a significant improvement 

of the optoelectronic parameters when adding sodium [181]. The novelty about this result 

was that they achieved comparable results from a physically evaporated NaF film as well 

as a spin coated NaCl solution both deposited on top of the precursor layer prior to the 

annealing [182]. Another wet chemical approach in the chalcopyrite system has been 

introduced by Guo et al., who dipped their precursor layer consisting of ink deposited 

sulfide nanocrystals in an aqueous 1 molar NaCl solution for 10 min [183]. This led to a 

significantly improved crystal coherence length and solar cell parameters. However, 

adjusting the incorporated amount of sodium with both methods is complicated and 

dependent on several factors such as the precursor morphology (e.g. porosity) as well as 

the film thickness and the dipping/spin coating time. Thus, the reliability is poor. Very 
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recently, at the same time as the presented work Werner et al. reported a different 

approach. They added the sodium source (NaCl) directly to the ink of their chemically 

deposited kesterite layers [184], [185]. Contrary to the usually observed sodium effects 

these solar cell devices showed a better carrier collection and therefore jsc values. Voc and 

FF remained similar. 

5.2 Sodium diffusion vs. additional Na salts 

This section is based on a manuscript to be submitted. The first question to answer is the 

principal influence of additional sodium salts on solution processed CIGS absorber layers. 

Therefore, this section comprises an evaluation of three experiments where all process 

parameters have been kept constant beside the sodium incorporation method. CIG 

precursor layers have been prepared from inks containing the metal salts with a Cu:In:Ga 

ratio of 0.9:0.8:02. The layers have been tempered up to 200°C and subsequently selenized 

at 600°C for 7 minutes with a delay time of 45 seconds. The differences in the experimental 

conditions are listed in Table 7. As baseline, a precursor layer without additional sodium 

has been processed on a molybdenum back contact without barrier. In this sample, a 

sodium diffusion from the soda lime glass (SLG) during the selenization is expected. In 

order to estimate the influence of the diffusion, a similar precursor layer has also been 

prepared on a back contact with a diffusion barrier where no sodium incorporation is 

expected. Both samples are finally compared to a precursor layer processed from an ink 

containing NaCl. The amount of added salt has been chosen to be 2.5 mol-% of copper 

(corresponding to about 0.55 mol % of CIGS atoms) and kept constant in all further 

experiments. This value is at the upper level of the reported optimum. 

Table 7:  Experimental conditions for the evaluation of different sodium incorporation 

techniques. 

Series Diffusion barrier  Additional Na salt Expected Na incorporation pathway 

1 yes no - 

2 no no Diffusion from SLG 

3 yes 2.5 % NaCl Na salt in precursor 
 

The chalcopyrite layers of the sample series 1-3 have been further processed to solar cell 

devices and the current-voltage properties are shown in Figure 63 (all without 

antireflective coating). From these graphs several trends can be derived. Compared to the 

sodium free device, both sample series with sodium have significantly higher values in Voc 

and FF. This is in agreement with the reported influence of Na. However, the specific 
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values are varying significantly depending on the diffusion pathway. Concerning the Voc, 

Na incorporated by diffusion from the SLG leads to an increase of about 50 mV while the 

presence of NaCl salt enhances the voltage by up to 150 mV. A similar but less pronounced 

trend can be observed in the graph showing the fill factors. In agreement with the 

literature, the average values of the short circuit current (jsc) are almost constant for all 

samples in the range of 36-38 mA/cm² with a larger spread found in the sodium-free 

samples. The overall trends are reflected in the efficiency values with the Na from SLG 

sample having an average increase of 30 rel.-% and the NaCl enhancing the average 

efficiency by more than 70 rel.-%. One possible reason for the lower efficiency of the sodium 

diffusion sample compared to the NaCl sample is that there was insufficient time during 

the selenization for Na to diffuse from the glass substrate into the chalcopyrite layer. This 

result suggests that doping the precursor ink directly with Na salts might allow 

significantly shorter annealing times, thus reducing the energy consumption during 

annealing.  

 

 

Figure 63:  Optoelectronic properties of three samples without any sodium, sodium diffusion from 

the glass and a sodium incorporation via dissolved NaCl. The numbers in brackets 

correspond to the number of measured cells (published in [75]). 

It can be concluded that the addition of NaCl to the ink is a practical way to incorporate 

sodium. The lower opto-electronic values achieved by diffusion from the SLG substrate 

suggest that the chosen annealing conditions are not optimal for this incorporation 

pathway presumably resulting in an insufficient sodium supply. 

In further experiments the relative concentration of NaCl in the precursor ink was varied 

between 1 and 5 at.-% (of Cu content). The resulting precursors were selenized and completed 
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into devices in an identical fashion, and their jV characteristics were determined. Both lower 

and higher NaCl concentrations resulted in lower device efficiencies. Thus, the Na 

concentration of 2.5 at-% has been kept constant in the next part of the study. Here, the sodium 

salt has been varied to determine whether the salt anion has an effect on the absorber 

characteristics and the device properties. 

5.3 Salt variations 

In the previous section a proof of concept for soluble sodium salts added to the ink has 

been presented. It could be shown that the precursor containing NaCl has highly improved 

solar cell parameters compared to the Na diffusion from the SLG. Yet, there are literature 

reports suggesting that the presence of chloride anions might have negative effects on the 

final solar cell. Tanaka et al. found that Cl- ions can act as donor in chalcopyrite layers 

resulting in a n-type conductivity [60]. Thus, the following sections are dealing with the 

differences between NaCl and two halogen free Na salts, NaHCO2 and NaSCN. Regarding 

the precursor processing the same parameters and CIG salt composition have been used 

as in section 5.2. 

5.3.1 Choice of sodium salts 

To be a candidate as sodium source in this chemical approach, the Na salts have to be 

soluble either in methanol or in TMG, preferably in both. NaCl is not soluble in TMG but 

can be dissolved to some extent in methanol. At high salt concentration (>5 mol-% of Cu) 

this issue can lead to a precipitation of large NaCl crystals on the substrate during the 

methanol evaporation. Yet, in experiments carried out with a salt concentration of 2.5 % 

NaCl did not show any crystal precipitates. Regarding sodium salt alternatives, NaF the 

preferred material used in physical deposition methods is not soluble in either solvent. 

Thus, other salts had to be considered that have not yet been evaluated in the literature. 

From the various options, soluble salts with anions having an expected good decomposition 

behavior have been preferred. As a result sodium formate (NaHCO2) and sodium 

thiocyanate (NaSCN) have been chosen, both of which are highly soluble in the two 

solvents. Contrary to the thermally stable NaCl these compounds are decomposing both 

above 300°C [186], [187]. In summary in this section three sodium salts and the sodium 

free samples are evaluated in detail (Table 8).  
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Table 8:  Sample nomenclature depending on the chosen sodium salts with a concentration of 

2.5% compared to a sodium free precursor layer.  

Series Additional Na salt 
Na concentration in mol-% 

of Cu 
Diffusion barrier 

1 no - yes 

3 NaCl (chloride) 2.5  yes 

4 NaHCO2 (formate) 2.5  yes 

5 NaSCN (thiocyanate) 2.5  yes 
 

5.3.2 Characterization of the absorber layers 

The processed layers have been characterized by several analytical methods. Figure 64 

illustrates the measurement positions of the individual techniques including SIMS, SEM 

and grazing incidence X-ray diffraction (GIXRD) on a typical substrate. The image also 

includes the opto electronic analysis (j-V), the photoluminescence maps (PL) and the EQE 

measurement on the final solar cells, which are the topic of the next section. It is important 

to emphasize that the results are not fully comparable due to the different measurement 

positions and areas. While SIMS only measures on a small spot, the range of the GIXRD 

covers a very large area with several cells. This is particularly important for the 

investigated samples due to the observed thickness deviation over the substrate length 

(see also section 3.1.2). This issue will be further discussed below.  

 

Figure 64:  Illustration showing a typical substrate with several consecutive solar cells. The   

applied analysis techniques and their respective measurement range are highlighted.  

For the cross sectional SEM imaging the samples have been broken at the dashed lign 

shown in Figure 64. The results are shown in Figure 65. Significant differences can be 

observed in grain size and structure. Helpful tools to interpret the morphologies are 

grazing incidence X-ray diffraction (GIXRD) where the penetration depth of the x-rays is 

dependent on the incidence angles as well as SIMS depth profiling (only measured on the 

samples with sodium salts). The former can be used to illustrate vertical crystallographic 

phase gradients in the chalcopyrite layer. The presented measurements have been carried 
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out at Bosch CIS tech in Brandenburg. Figure 66 shows the results measured on the 

samples 1, 3, 4 and 5. The latter yields the qualitative gallium distribution over the film 

height. The SIMS results are depicted in Figure 67. 

 

Figure 65:  Cross sectional SEM images of solar cells with CdS buffer and ZnO window layer. The 

absorber layers have been processed from precursors containing no sodium (1), NaCl (3), 

NaHCO2 (4) and NaSCN (5) (published in [75]). 

The SEM image of sample 1 without any sodium source shows a two layer structure with 

a fine grained bottom layer and large crystals on top. With the results of the GIXRD 

analysis a Ga free CIS top layer (112 peak of CuInSe2 is at 26.67° 2-theta [188]) and a Ga 

rich CIGS bottom layer can be clearly identified. This phase separation with a Ga 

accumulation at the back contact is widely found in the literature especially in the two 

stage precursor annealing processes [189]. The reason for this can be found in the different 

formation kinetics of the ternary CIS and CGS chalcopyrites from the metal alloys with 

selenium [188]. CIS forms first and the remaining gallium alloys are accumulating at the 

back contact. Thus, if the annealing time is too short the missing interdiffusion leads to 

the separated phases. Compared to this, sample 3 prepared with 2.5% NaCl looks more 

homogeneous with larger crystals near the back contact. The GIXRD graph explains this 

by a Ga interdiffusion up to the surface with a 2 theta peak shift of around 0.1° at an x-

ray incidence angle of 0.4°. The interdiffusion is also the reason for the less pronounced 

Ga back accumulation resulting in a better vertical gallium distribution. The SIMS 

results, however, indicate only a very low gallium diffusion up to the surface with the rest 

accumulating at the back contact. In order to explain this the measurement positions have 

to be taken into account. While the SIMS measurement has been carried out at the front 

of the sample (in the direction of the previous ink deposition), the GIXRD covers most of 

the back. Here, the lower film thickness might have led to an improved gallium 

interdiffusion which would explain the slightly diverging results. 
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Figure 66:  X-ray diffraction analyses of samples 1 (Na free), 3 (NaCl), 4 (NaHCO2) and 5 (NaSCN). 

Left: total phase composition measured at an incidence angle of 10°. Right: GIXRD 

results measured at incidence angles of 0.2°, 0.4°, 0.6°, 1°, 2°, 3°, 4° and 5° (published in 

[75]). 

 

The SEM image of sample 4 containing 2.5 % Na formate shows a deviating morphology 

with the absorber consisting again of two layers. Beside a high surface roughness, a layer 

of big grains on top of small nanoparticles surrounding smaller crystals is visible. The 

GIXRD pattern at 0.4° incidence angle suggests a Ga-poor CIGS phase near the surface 

due to a very small peak shift. At higher angles the peak shifts slightly further indicating 

an agglomeration of Ga near the back contact. The total amount of incorporated Ga has 

been calculated to Ga/(Ga+In) or Ga/III=0.11 by integrating the Ga fractions from the 

GIXRD results. For these calculations a model developed by Kötschau et al. has been used 

[190]. At this point it is important to note that the integrated Ga amounts in the 

chalcopyrite phase of the samples 1, 3 and 5 have been calculated to the initial value 

(Ga/III=0.2) suggesting a complete gallium incorporation. Thus, this result indicates that 

in sample 4 about half of the gallium has not been incorporated into the chalcopyrite. This 

can clearly be seen by looking at the 112 peak which is near to the pure CIS position while 

no large shoulder is observed at higher angles.   
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Figure 67: Ion count ratio of Ga over (Ga+In) over the layer height measured by SIMS (published 

in [75]). 

An explanation can be found in the high temperature behavior of alkaline formates. In 

contrast for example to the Cu formate, Na formate has been reported to decomposes in 

inert atmosphere above 300°C to the corresponding oxalate reacting further to the 

chemically stable carbonate and oxide [20]. A thermodynamic evaluation indicaties that 

Na2O has the ability to partially oxidize the metallic gallium in the precursor layer to 

gallium oxide. For indium and copper this is highly unlikely [191]. The formed Ga2O3 is 

not further available for the selenization to chalcopyrites since the oxide is significantly 

more stable than the selenide. Dirnstorfer et al. reported similar results. They annealed 

their CIGSe precursor in air and observed a gallium loss in the chalcopyrite phase due to 

the formation of Ga2O3 [192]. Additional high resolution XRD measurements did not show 

a crystalline gallium oxide phase in sample 4 to support this hypothesis which can be 

explained by the expected small size of the oxide particles being X-ray amorphous (not 

shown). The SIMS measurements, however, can be used to prove the presence of an 

increased amount of oxygen near the back contact. Figure 68 shows the oxygen over zink 

count ratio over the layer thickness. The graph clearly shows a constant O:Zn ratio over 

the window, buffer and most of the absorber layer. This can be explained by the constant 

composition of the window layer which should be the only oxygen source. At sputtering 

times above 8000 s the ratios increase in all samples. Yet, in comparison the sample made 

with NaHCOO shows by far the largest increase in accordance with the likely formation 

of Ga2O3.  
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Figure 68: SIMS depth profiles showing the ion count ratios of oxygen over zink in the samples 

with NaHCOO(3), NaCl(4) and NaSCN(5) (published in [75]).  

The GIXRD pattern of sample 5 prepared with 2.5 % NaSCN shows again a significant Ga 

incorporation near the absorber surface. However, the thiocyanate anion seems to lead to 

a slightly different vertical Ga gradient visible at higher incidence angles equivalent to 

deeper film levels. Above incidence angles of 1° the 112 peak of the absorber processed 

from the NaSCN containing precursor broadens significantly to the right due to a 

superposition of two peaks indicating a second gallium rich phase. This observation is in 

agreement with the SEM images showing a decreasing grain size towards the back contact 

which is typical for a gallium accumulation. The gallium profile measured by SIMS again 

confirms the gallium back contact accumulation. Yet, in comparison to the samples with 

NaHCOO and NaCl here the highest amount of surface gallium has been measured. 

In summary, these results suggest that the addition of sodium salts improves the gallium 

interdiffusion. This is contradictory for example to a report by Rodriguez-Alvarez et al. 

who found a lowering of the gallium diffusivity in the presence of sodium [193]. However, 

one of the main differences in their process apart from the precursor deposition method is 

the sodium supply. In their work sodium is incorporated by diffusion from the SLG 

substrate, a method where the diffusion rate and therefore incorporation is temperature 

and time dependent. The present results based on an initial uniform sodium distribution 

in the precursor layer suggest an improved gallium interdiffusion independent on the 

sodium salt source.  

Regarding the impurities carbon and nitrogen, the SIMS depth profiling measures 

identically low counts for both elements in the final chalcopyrite layer as can be seen in 

Figure 69. This is in agreement with the results of an elemental analysis revealing low 
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carbon and nitrogen residues within the detection limit (0.07 ± 0.05 and 0.15 ± 0.1 mass-

%, respectively). Sample 5 processed with NaSCN has also been analyzed regarding the 

incorporation of additional S atoms. Yet, a comparison of the SIMS results with the other 

two samples did not show any notable differences (not shown). 

 

  

Figure 69: SIMS depth profiles with the ion counts of the impurities carbon and nitrogen in the 

samples with NaHCOO(3), NaCl(4) and NaSCN(5) (published in [75]). 

The sodium distribution has also been measured by SIMS and is depicted in Figure 70. 

The y-scale shows the Na cps ratio to the selenium signal where Se has been used as 

reference. In the literature it is well known that in CIGS sodium is mostly found at the 

grain boundaries [162]. This means that a smaller grain size implying a larger grain 

boundary area consequently result in a greater possible sodium concentration. The graph 

shows a high Na/Se signal close to the buffer interface for the NaSCN sample and close to 

the back contact for all samples. This is consistent with the smaller grains seen in the 

cross sectional SEM images presented in Figure 65. A comparison of the Na signal with 

the Ga/III distribution in Figure 67 reveals that the Na distribution seems to be 

proportional to Ga/III ratio. This stands except for the back contact of the NaHCOO 

sample where only a very low Na concentration has been measured. The difference might 

be explained by the discussed formation of Ga2O3 in this sample which could have resulted 

in metallic Na as byproduct. This elemental sodium could then have evaporated [194] or 

formed volatile Na2Sex species during the selenization leading to the overall lower Na 

concentration in the NaHCOO sample shown by the SIMS measurement. 
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Figure 70: SIMS depth profiles showing the ion count ratios of sodium over selenium in the samples 

with NaHCOO(3), NaCl(4) and NaSCN(5) (published in [75]). 

5.3.3 Characterization of the solar cells 

In this section the final solar cell devices are evaluated in terms of external quantum 

efficiency (EQE) as well as current-voltage (j-V) properties. Figure 71 (left) shows the 

current collection of solar cells taken from the samples with NaHCOO(3), NaCl(4) and 

NaSCN(5). All samples discussed have again been processed without anti reflective 

coating (ARC). It can be seen that the photon generated carrier collection in all samples 

shows a squared behavior with a deviations in the long wavelength region. Only marginal 

differences can be observed in the area between 300 and 500 nm where the parasitic effects 

of the supplemental functional layers CdS and ZnO are visible, absorbing all (up to 

360 nm, mostly absorption of the window layer) and more than half (up to 450 nm, 

absorption of the buffer layer) of the incoming radiation. This indicates that the buffer and 

window layers are identical in all samples. Between 500 nm and 1100 nm most of the 

photon harvesting takes place. All measured cells show the best carrier collection for 

photons with wavelengths between 550 and 900 nm resulting in a good broad middle band 

response of around 90%. In the long wavelength region above 1000 nm the current 

collection of sample made with NaSCN is significantly lower compared to the other two. 
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Figure 71:  Left: EQE of the samples 3, 4 and 5. Right: Estimation methodology for the band gap 

from a linear fit and an extrapolation of the plot [h ln(1-EQE)]² over (h) (published in 

[75]). 

The band gaps of the three samples have been estimated by plotting the relation [h ln(1-

EQE)]² over (h) and using a linear fit, a method which has been proposed by Zoppi et al. 

[195], [196] (Figure 71 right). The samples 3 and 4 have a band gap between 1.01 and 

1.02 eV indicating a gallium free CIS layer at the top [10]. Sample 5 has a slightly higher 

band gap of 1.05 eV. The results can be correlated with the previously discussed SIMS 

results measured at the same position showing a very low amount of surface gallium in 

the samples 3 and 4 as well as an improved Ga interdiffusion in sample 5 [197].  

Micron resolved photoluminescence maps have been prepared from the samples containg 

NaCL and NaSCN showing the peak position. The graphs indicate a constant lateral band 

gap for the NaCl sample while the absorber layer in the NaSCN containing sample shows 

significant deviations. An explanation might be that the latter consists of two separate 

phases possibly as a result of an inhomogeneous sodium salt and consequently sulfur 

distribution during the film drying. The presence of two different band gaps in the NaSCN 

sample does also explain the shallower slope of the EQE edge at lower wavelengths 

compared to the steeper slope of the NaCl sample. 

400 600 800 1000 1200
0

20

40

60

80

100

0,95 1,00 1,05 1,10
0,0

0,2

0,4

0,6

0,8

1,0

 3-Cl

 4-HCOO

 5-SCN

 [
h

l

n
(



Q

)]



 3-Cl

 4-HCOO

 5-SCN

E
Q

E
 i

n
 %

wavelength in nm
 

h in eV



Chapter 5 

Salt variations 

__________________________________________________________________________________ 

120 

 

 

Figure 72: Wavelength-PL maps showing the intensity maxima in a 80x80µm² area measured on 

the samples containing NaCl(3, left) and NaSCN(5, right) (published in [75]). 

The optoelectronic properties of the solar cells are depicted in Figure 73. In general, the 

measured values for all samples are very similar. Consequently, high efficiencies above 

11% can be achieved with all three Na salts. Values above 12% have been achieved only 

with NaCl and NaSCN. The best Voc values are found for the samples made with NaSCN 

which can be correlated to the discussed higher band gap as a result of the improved 

gallium interdiffusion. High jsc values can be seen for the sample made with NaHCOO 

most likely due to the observed gallium depletion.  

 

 

Figure 73:  Current-voltage properties of solar cells processed with the different sodium salts NaCl, 

NaHCO2 and NaSCN. The numbers in brackets correspond to the number of measured 

cells (published in [75]). 
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5.4 Optimization of the selenization 

In the chapters 2 and 3 a lot of effort has been invested into the precursor layer 

optimization. Chapter 4 evaluated the process step selenization with the lab scale tube 

furnace and revealed a high dependency of the cell device performance depending on the 

parameter delay time. This gives an idea how delicate this process step is. In this section 

the selenization routine is further evaluated by applying the same annealing procedure 

on sputtered precursor layers. Based on these results an optimization is proposed. 

5.4.1 Comparison to sputtered precursor layers 

In order to estimate the quality of the selenization process the same annealing routine has 

been carried out on a sputtered metal precursor layer. This layer has been deposited on 

the back contact by sputtering from alternating CuGa and In targets. For more 

information about the precursor the reader is referred to a publication by Probst et al. 

[198]. In this publication they showed that modules with efficiencies of up to 15.1% can be 

fabricated from this type of precursor. At this point it has to be noted that these values 

have been achieved with a surface near incorporation of sulfur. The incorporation 

mechanism for sodium is also different as the industrially optimized precursors usually 

have a separate sodium source [199]. Nevertheless, the lab scale selenization process used 

in this thesis with the gas phase chalcogen transport is similar to the one described in the 

publication. They also transfer evaporated selenium to the heated metal layers via the gas 

phase. Thus, a characterization of cells made from a sputtered precursor layer that has 

been selenized in the tube furnace can give valuable information about the quality of the 

annealing routine. 

The achieved current-voltage properties of the best cell denoted as “Sput” are shown in 

Figure 74. In order to compare the results to the solution based samples the champion 

cells (in terms of efficiency) from the experiments 1, 3, 4 and 5 are added to the graph. It 

can be clearly seen that the sputtered sample reaches similar values in all optoelectronic 

properties. Assuming an optimized sodium supply in the vacuum deposited sample, this 

result suggests that one of the bottle necks of the presented chemical approach regarding 

an efficiency improvement is the selenization procedure. This hypothesis is further 

investigated in the next section. 



Chapter 5 

Optimization of the selenization 

__________________________________________________________________________________ 

122 

 

 

Figure 74:  J-V curves of solar cells processed from the chemically processed precursor layers 

compared to a sputtered precursor annealed using the same routine. 

5.4.2 Adjustment of the annealing time 

In the previous section a possibly high optimization potential has been identified in the 

selenization step. With the chosen parameters, similar device results have been achieved 

from sputtered as well as chemically deposited precursors. One of the main differences to 

other approaches regarding the process parameters is the annealing time. In contrast to 

the 7 minutes applied in the lab scale tube furnace industrially processed absorbers are 

usually annealed for longer than one hour. Thus, two experiments have been carried out 

to investigate the influence of an increased annealing time.  

Chemically deposited precursor layers with 2.5% NaCl have been chosen for these 

experiments due to the absence of sulfur atoms in the sodium salt to exclude any possible 

sulfur related effects. Two identical precursor layers have been prepared which have been 

tempered up to 200°C using standard parameters. These samples have subsequently been 

selenized in the tube furnace for 7 and 20 minutes. Figure 75 (top left) shows the j-V curves 

of the two champion cells selected from the respective substrates. The graph indicates that 

the 7 min sample reaches a total an efficiency of 11.8 % whereas the sample annealed for 

20 min is significantly better with 13.3 % (13.8% active area efficiency). This is the highest 

reported efficiency for solution processed CIGS solar cells without sulfur. The differences 

can be attributed to an increase in fill factor and a higher open circuit voltage while the jsc 

value decreases slightly. An explanation for this can be found in the EQE, XRD and PL results 

shown in the same figure. The current collection as well as the absorber band gap both derived 

from EQE measurements are shown in Figure 75 (top right). It can be seen that the 7 minute 

sample has a good collection with a band gap of around 1.02 eV similar to the identically 
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processed sample 3 discussed in the previous sections also containing 2.5% NaCl. In the 

20 minute sample, however, the band gap increases to 1.05 eV. The reason for this is most 

likely the better gallium interdiffusion which could be measured using X-ray diffraction (Figure 

75 bottom left). The 7 minute annealing leads to two separate chalcopyrite phases with a gallium 

segregation while the longer annealing time homogenizes the gallium distribution. The trend in 

the band gap increase is also visible in the PL graph (Figure 75 bottom right). Detrimentally, 

the EQE suggests that the longer annealing reduces the carrier collection length resulting 

in the measured lower jsc value. This result shows that the selenization still has a high 

optimization potential. 

  

 

Figure 75:  Top left: J-V curves and solar cell parameters of precursor layers containing 2.5% NaCl 

annealed in selenium for two different times. Top right: EQE curves including the band 

gap estimation with α=ln(1-EQE). Bottom left: XRD data. Bottom right: PL graphs 

(published in [75]).   
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5.5 Summary of chapter 5 

In this chapter the solar cells are characterized and the influence of additional sodium 

sources is evaluated. In the first part a sodium incorporation by diffusion from the soda 

lime glass substrate is compared to a precursor layer containing NaCl added to the ink 

and a sodium free sample. Annealed with the same parameters, the finished cells reveal 

large differences. Both sodium incorporation strategies reach higher values in open circuit 

voltage and fill factor than the sodium free sample. However, the cells made from the NaCl 

containing precursor yield significantly better values in all optoelectronic properties. 

These results indicate that the sodium salt addition to the ink is a useful technique to 

supply the alkali metal which outperforms the diffusion from the soda lime glass under 

the chosen selenization conditions.  

In the second part of the chapter three different sodium salts (NaCl, NaHCO2, NaSCN) 

and a sodium free sample are compared and are further characterized regarding the 

absorber layer morphology, the vertical element distribution and phase composition as 

well as the external quantum efficiency and the optoelectronic parameters. One particular 

finding are significant differences in the gallium interdiffusion. The results vary from a 

complete gallium back contact accumulation for the sodium free sample to a measureable 

diffusion of gallium up to the surface in the samples containing NaCl and NaSCN. 

NaHCO2 in the precursor presumably leads to an oxidation of a significant gallium fraction 

resulting in gallium poor chalcopyrite crystals after the selenization. The differences in 

the EQE measurement are rather small revealing low semiconductor band gaps for the 

samples made with NaCl and NaHCO2 and a slightly higher value for the sample with 

NaSCN. The optoelectronic properties of the sodium containing samples are very similar 

with slightly lower voltages in the NaHCO2 containing device probably due the least 

gallium incorporation. The highest voltages have been measured on the sample containing 

NaSCN having also the best gallium gradient. Regarding the cell efficiency values between 

11 and 12% have been achieved with all three salts.  

In the last part of the chapter the chemically porcessed solar cells are compared to an 

industrially optimized sputtered precursor layer selenized the lab scale tube furnace using 

the same parameters. The device results are in the range of the cells processed from 

chemically deposited precursors. This finding strongly suggests a process limitation in the 

annealing procedure. Following this hypothesis, additional experiments carried out with 

an increased annealing time resulted in reproducible efficiencies above 13%.  
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Summary and outlook 

In this work vacuum free processed Cu(In,Ga)Se2 absorber layers for solar cells have been 

fabricated which show, despite the low maturity of the process, strikingly promising 

optoelectronic properties. By developing a new ink system based on cheap, reasonable 

toxic and non explosive chemicals the substantial drawbacks of the current efficiency 

record holder of the non-vacuum based processes represented by the hydrazine approach 

could be overcome. Therefore a key message of this thesis is that the solution based CIGS 

deposition with this approach can be highly competitive to the industrially preferred 

vacuum deposition processes. Further indications for this claim and also future challenges 

are presented in the outlook. 

The ink used in this work is based on metal formates dissolved in a mixture of a good 

sequestering agent in the form of a strong base, an alcohol necessary to adjust the coating 

properties and an additive used to improve the final metal layer morphology. The metal 

ions in the ink system are highly concentrated making a one step ink deposition possible. 

Homogeneous liquid films have been fabricated with a blade coating technique followed 

by a solvent drying under a flowing nitrogen gas stream. The high reduction potential of 

the formate anion allows a metal ion reduction in a subsequent tempering step between 

130 and 200°C. A new additive ensures a flat and dense layer morphology. The effect is 

based on the formation of intermediate polymers consisting of the additive as well as 

Cu(II) and formate ions. These polynuclear compounds lead to a stable metal-organic 

matrix during the metal ion reduction. At elevated temperatures the matrix decomposes 

cleanly revealing dense layers of metallic nanoparticles.  

Chalcopyrites have been produced by exposing the metal layers to selenium vapor in a 

tube furnace at temperatures around 600°C. The quality of the absorber has been shown 

to highly depend on the state of the precursor layer by the time the chalcogen vapor 

arrives. Good solar cells have been produced by heating the precursor above 500°C before 

the arrival of the reactive selenium gas. Based on a modeled selenium evaporation the 

reason for this effect is proposed to be the necessary decomposition of small organic 

residues above 450°C.  

In the presented process sodium can be easily incorporated by dissolving appropriate 

amounts of soluble sodium salts in the ink. The thereby achieved homogeneous sodium 

distribution in the precursor layer leads to an instantaneous sodium supply during the 

selenization which drastically improved the solar cell parameters compared to a typical 

sodium diffusion from the glass substrate. Additionally, significant differences in the 
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gallium distribution as well as the layer morphology have been found within three 

investigated sodium salts. Despite the differences, solar cells with efficiencies of 11 to 12% 

could be produced with all three salts. 

In order to evaluate the quality of the applied annealing routine, an industrially optimized 

sputtered precursor layer has been selenized in the same tube furnace. The thereby 

achieved cell results are in the same range as the chemically processed samples and are 

therefore significantly below their potential reported in the literature. An investigation of 

the influence of an increased annealing time from 7 to 20 min revealed a high 

improvement in fill factor and open circuit voltage. Thus, efficiencies of 13.3% (13.8% 

active area efficiency) could be achieved which is the highest reported value for solution 

processed CIGS solar cells without sulfur. 

Outlook 

The results presented in this thesis indicate a high optimization potential in several 

process steps. Thus, various recommendations for future work can be derived particularly 

in view of a scale up. Beginning with the ink chemistry, to further improve the 

applicability of the ink in a future industrial process the toxic solvent methanol can be 

easily substituted by the nonhazardous ethanol. The simple incorporation of sodium 

demonstrated with various salts dissolved in the ink leaves room for further investigations 

for example regarding other alkali dopants like potassium or additional metalloid salts 

(antimony). The influence of the salt anions is also far from understood.  

Regarding the processing the lab scale ink deposition by bade coating chosen for this work 

already is compatible to a one step roll-to-roll processing. Yet, a further scale up most 

likely requires an investigation of the applicability of the ink in industrially well known 

coating techniques like slot die coating. In this case the solvent evaporation so far only 

optimized for the lab scale makes more sophisticated drying concepts necessary. 

The selenization procedure has been shown to be a bottle neck regarding a process 

optimization towards a better absorber quality and higher cell efficiencies. In order to 

further improve the process a better understanding of the interactions between the 

decomposing organic residues and the arriving reactive selenium molecules has to be 

developed. Also other furnace concepts might have to be considered especially regarding a 

scale up. In order to increase the cell voltage an additional surface near incorporation of 

sulfur might have to be considered which can be easily achieved over the gas phase. The 

already good current collection can be further improved by depositing an antireflective 

layer on top of the final solar cell. 
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Appendix 

A. Effects of intermolecular interactions on the 

methanol evaporation 

In section 3.2 the evaporation of methanol is investigated which mostly occurs at low 

temperatures. The TG-MS results in section 3.4.1, however, suggest that a small part of 

the methanol (about a fifth) stays relatively long in the ink mixture and evaporates at 

significantly higher temperatures. The reason for this can most likely be found in several 

non ideal intermolecular interactions between the two liquids and also between methanol 

and the solvated metal salt ions. This section tries to evaluate these non idealities and to 

give a quantitative description in the form of a vapor pressure reduction. 

 

Indications and explanations for the delayed methanol evaporation 

The TG-MS measurements in section 3.4.1 can be used to trace the methanol evaporation 

between room temperature and 120°C. The ion currents measured by the mass 

spectrometer can directly be correlated to the evaporation rates of the solvent. Without 

exceptions, all analyzed inks (single and ternary) reveal significantly lower values than 

expected by pure methanol. This observation cannot solely be explained by the previously 

calculated non idealities between the two solvents based on the UNIFAC model used in 

section 3.2.3 [110]. Additional effects have to be considered. 

One comprises the ternary (TMG)-(methanol)-(formate anion) interactions. Nelson et al. 

investigated the effect of methanol on dissolved copper(II) acetate salt at elevated 

temperatures [200]. They observed the formation of copper(II) methoxide and methyl 

acetate. They strongly suggest that the acetate ion is responsible for the methanol 

deprotonation. However, since the acetate ion is a much weaker base with a pKb value of 

9.25 than the methanolate ion (pKb=-2), this indicates a relatively high enthalpy of the 

formation of the copper-methoxy complex. In the CuInGa ink, additional TMG is present 
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and the acetates are substituted by formates which have a similar basicity (pKb=10.25). 

TMG is a significantly stronger base having a pKb value of 0.4, a value which is higher 

than found in typical amines due to a mesomeric cation stabilization [198] (see also section 

2.3.1).  

Gusakova et al. measured a value for the equilibrium constant K of the reaction of the 

formation of a molecular complex formed between TMG and methanol in the inert, 

nonpolar solvent CCl4 (25 l/mol at 25°C) [201]. It is important to note that this value is 

highly dependent on the used solvent. Yet, a transfer of this K value to a typically used 

ink mixture with a molar ratio of TMG:methanol of 1:4.8, would lead to a complex 

formation affecting almost all TMG molecules. If a similar behavior can be assumed in the 

presented process, the resulting hydrogen bonding between the alcohol group and the 

imino nitrogen could be used as an explanation for the highly reduced vapor pressure.  

Further indications for this hypothesis can be extracted from the TG-MS measurements 

of the individual inks. Table 9 shows that the methanol:TMG ratios in the ink after the 

TG-MS sample preparation in air is constant around 1:1.2 which is significantly lower 

than in the pristine inks where it was around 1:5. This can be explained by the fast 

evaporation of the low boiler methanol at room temperature during the sample 

preparation. The remaining methanol molecules in the ink have to be stabilized for 

example by the effect discussed above which would explain the molar ratio of around 1:1. 

Table 9:  Calculated amount of MeOH in the pristine ink and after the TG preparation 

Sample 
Molar ratios TMG:MeOH 

Pristine ink After TG preparation 

Cu-ink 1:5.4 1:(1.24 ± 0.1) 

In-ink 1:4.9 1:(1.19 ± 0.1) 

Ga-ink 1:4.9 1:(1.19 ± 0.1) 

CIG-ink 1:4.5 1:(1.25 ± 0.1) 
 

A second effect might be attributed to the (methanol)-(salt ion) interactions. It is well 

known that methanol molecules can solvate several transition metal ions. Inada et al. 

determined the solvation structures of methanol in combination with Cu(II) and Ga(III) 

ions by X-ray absorption fine structure spectroscopy [203]. Both metal ions have been 

found to coordinate octahedraly. The presence of a methanol solvation shell surrounding 

the Cu(II) ions in our ink system might also be the reason for the observed color change 

from the greenish Cu(II) TMG ink to the typical blue color of Cu(II) ions after adding the 

alcohol. Also the evaporation rate of methanol increases significantly after the reduction 

of the Cu(II) ions to Cu(I) probably because the solvation of Cu(I) is less stable. 
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Quantitative description 

A quantitative description of the mentioned effects on the ink behavior can be derived from 

the TG mass loss curve. The evaporation rate of methanol as a function of the temperature 

can be extracted by tracing the mass spectroscopic (MS) signals. As long as there is only 

one ion current present with m/e=31 the measured mass loss can be attributed exclusively 

to the alcohol. Figure 76 shows the TG mass loss of a typical CIG ink with a heating ramp 

of 10 K/min. As can be seen from the MS-data below 80°C only methanol is evaporating. 

Above TMG (m/e=71) can also be measured in the gas phase. 

  

Figure 76:  Left: TG mass loss + MS data of a CIG containing ink with the ion currents of methanol 

and TMG. The exclusive methanol evaporation occurs up to 80°C. Right: Illustration of 

the inside of the TG-MS with the sample holder placed in the center of a heated tube. 

From the measured mass loss in the temperature range between 20 and 80°C, the molar 

flux of methanol can be extracted as a function of the temperature. With these values the 

theoretical partial pressure of methanol is accessible using the already introduced formula 

(3-5). In (5-1) 𝛾1
′describes a theoretical activity coefficient containing all the non-idealities 

originating from the other ink ingredients. 

 𝑁̇1 = −
𝛽𝑖 

𝑅 𝑇
 𝐴 𝛾1

′  𝑥1 𝑝1
∗(𝑇) 

 

The missing variable, the mass transfer coefficient 𝛽, is dependent on the nitrogen gas 

flow configuration, the device geometry inside of the TG machine as well as the diffusion 

coefficient of methanol in nitrogen. The latter is again accessible with a group contribution 

method (Fuller equation [109]). Regarding the other two, Figure 76 (right) shows 

schematically the cross section of the TG device with the sample holder positioned in the 

center of a tube that has a forced nitrogen gas flow entering from the bottom. Due to the 

gas supply coming from beneath the sample, a simple approximation of beta using a 

tabulated Sherwood correlation is not possible for this setup. Thus, the mass transfer 

coefficient had to be estimated by a second TG experiment with pure TMG using identical 
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parameters. The resulting TG curve is shown in Figure 77. Due to the known vapor 

pressure of the pure solvent, beta can be calculated as a function of the temperature 

showing an almost linear behavior in the specified temperature range. With this beta and 

the known ratio of the diffusion coefficients of TMG and methanol, a material-independent 

mass transfer coefficient for this TG setup has been generated. Having all variables in the 

equation (5-1), the theoretical vapor pressure 𝑝1,𝑡ℎ
∗ (𝑇) can be calculated. 

𝑝1,𝑡ℎ
∗ (𝑇) = (𝛾1

′ 𝑝1
∗(𝑇)) = −

𝑁̇1 𝑅 𝑇

𝑥𝑖 𝛽 𝐴
 

 

Figure 77 shows the trend of 𝑝1,𝑡ℎ
∗ (𝑇) in the specified temperature range in comparison to 

the vapor pressure of the pure methanol. The difference between both curves increases 

from a factor of 6 to more than 12 with higher temperatures. An extrapolation of this 

theoretical curve leads to a boiling point elevation of +80 K. 

 

Figure 77:  Left: mass loss and calculated mass transfer coefficient of pure TMG heated with 

10K/min. Right: Partial pressures of methanol as a function of the temperature. Black: 

Pure methanol (Antoine-eq.); Red: Calculated partial pressure from the methanol mass 

loss in the ink.  

In summary the discussed non-idealities in the ink mixture can be expressed as a vapor 

pressure lowering. Methanol molecules are probabaly highly bound to the present metal 

salt ions as well as the solvent TMG and are therefore showing a lowered readiness to 

leave the ink. A calculation of this vapor pressure lowering using the evaporation data 

from TG-MS experiments reveals a theoretical value which is around one order of 

magnitude below the vapor pressure of the pure liquid.  
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B. Crystal syntheses 

The syntheses have been performed in inks consisting of copper formate and 4ATA 

dissolved in methanol and stirred at room temperature (A) and above 50°C (B). Single 

crystals from sample A could be separated by filtering the mixture followed by a slow 

evaporation of the alcohol.  

The second reaction B executed at elevated temperatures has been observed by a color 

change of the solution from blue to green. Single crystals could be separated with the 

following procedure. At first the solution has been filtered followed by a fast evaporation 

of the methanol resulting in a green amorphous compound covered with blue copper 

formate crystals. The separation of the two materials has been performed manually. The 

separated pure green compound was then dissolved in a small amount of deionized water 

leading to an almost saturated solution. In order to grow crystals from this solution, a very 

slow indiffusion of isopropanol has been executed taking place in a time period of several 

months. The used diffusion methodology is schematically shown in Figure 78. The aqueous 

solution has been placed in an open vial and topped with a large amount of insoluble 

octanol. Two separated liquid phases formed and the vial was placed in a second closed 

vial filled with a small amount of isopropanol. Due to the insolubility of the product in 

octanol and isopropanol and the full miscibility of water and isopropanol, the slow 

indiffusion of isopropanol through the octanol layer into the solution led to a slow 

precipitation of blue crystals. 

 

Figure 78:  Crystallization methodology for polymer B: Slow indiffusion of isopropanol through an 

octanol barrier leading to a controlled precipitation of crystals from the aqueous ink. 
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C. Crystal structures 

Two new materials have been synthesized during this work. The crystallographic 

structures are attached in the following. 

 

Figure 79: Crystal structure of polymer A. Top: basic unit cell. Bottom: Chain structure.  
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Figure 80: Crystal structure of polymer B1. Top: basic unit cell. Bottom: Chain structure. 
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D. Characterization methods 

This section gives a brief introduction into the characterization techniques that have been 

used in this work. 

Elemental analytics (EA) 

Two element analytic techniques have been used in this thesis to measure the mass 

fractions of carbon, nitrogen, hydrogen and oxygen. They are based on different 

measurement methods which are sensitive to different atom sets.  

To quantify the amount of nitrogen and oxygen, an inert gas fusion infrared and thermal 

conductivity detection has been applied. This method is based on the decomposition of the 

oxygen and nitrogen containing materials in an ultraclean carbon holder at temperatures 

above 2000°C in a helium atmosphere. Under these conditions the oxygen is reacting to 

carbon monoxide which is transported by a helium stream to a chamber filled with heated 

copper oxide where it is transformed to carbon dioxide. The amount of CO2 is subsequently 

quantified by an infrared analysis. The nitrogen containing compounds in the sample are 

reduced at the carbon holder to N2 which is also transported away with the helium stream. 

After the CO2 detection the remaining nitrogen is separated by removing the CO2 in special 

absorbers. Eventually, the amount of nitrogen is quantified in a thermal conductivity cell. 

The whole procedure is carried out automatically by a Leco TC600. 

The mass fractions of the elements H, C and N have been quantified by a vario MICRO 

cube (Elementar). Here, the samples are heated in a furnace to temperatures up to 1200°C. 

Contrary to the previous method this combustion takes place in an oxygen containing 

environment which makes a detection of the incorporated amount of oxygen impossible. 

The gases from the combustion are subsequently transported to a heated copper matrix 

where they are reduced to N2, CO2, H2O and SO2. The gas mixture is then split in the 

individual components by three consecutive adsorption columns. These columns are filled 

with highly selective adsorbents. Nitrogen is not adsorbed and the N2 molecules are 

transported directly to the adjacent conductivity detector where its amount is quantified. 

When the N2 signal vanishes the three columns are heated successively and the individual 

signals are monitored. In the used adsorbents CO2 is released at 60°C, H2O at 100°C and 

finally SO2 at 200°C. A low error within this method is ensured by a calibration of the 

machine with several calibration compounds having a known composition prior to every 

analysis. 
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External quantum efficiency (EQE) 

External quantum efficiency measures the spectrally resolved current density of solar 

cells. In other words the obtained data gives the ratio between the charge carriers collected 

by the solar cell and the incident number of photons arriving at the cell. In order to be 

collected, the photons have to be absorbed in the cell generating an electron hole pair. 

These charge carriers have to be separated and have to travel to the electrodes without 

recombining. A chopped white light source is used to generate the photons which go 

through a monochromator to adjust the output to a specific wavelength.  

The EQE spectra presented in this work have been measured by two different setups 

which have been calibrated with different solar cells. Setup 1 is calibrated by a silicon 

solar cell provided by the Fraunhofer ISE. Due to the silicon band gap of around 1.1 eV 

the measurement range of this setup is limited to wavelengths below 1200 nm. The second 

setup 2 is calibrated by two solar cells made of silicon and an InGaAs alloy, respectively. 

In contrast to setup 1, the lower band gap of the InGaAs cell allows a measurement over 

the full range including the long wavelength region. The graphs in Figure 81 show the 

differences in the output of the two EQE setups. For these graphs two CIGS solar cells 

have been analyzed at the same position on both EQE devices.  

  

Figure 81:  EQE curves of two CIGS solar cells (A and B) with different band gaps measured with 

the two EQE setups (1 and 2). 

It can be seen that the graphs measured with the two different devices are almost identical 

for wavelengths below 1100 nm. Above, the setup calibrated with the silicon cell cuts off 

all information. Setup two shows here a carrier collection for photons with wavelengths of 

up to 1300 nm indicating a band gap below 1.1 eV. Thus, only these results can be used to 

estimate the band gap of the solar cell.  
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Fourier transformed infrared spectroscopy (FT-IR) 

This technique measures the absorption of infrared light by chemical groups in a sample. 

The absorbed wavelengths are resonant frequencies matching a specific vibration mode in 

a chemical structure. The resulting IR spectra which is usually calculated by Fourier 

transformation can be used to identify the prevailing groups. In this thesis infrared 

spectroscopy has been carried out in two modes, transmission and attenuated total 

reflection which are briefly introduced below. 

 Transmission IR 

Transmission IR is the most used IR setup. Here, infrared light directly shines through 

the sample and the not absorbed passing light is recorded and calculated to the typically 

found IR spectra. The transmission IR measurements for this thesis have been performed 

on an Equinox-55-2 (Bruker). 

 Attenuated total reflection IR (ATR) 

ATR uses evanescent waves occurring at total internal reflections to measure the 

absorption. For this measurement the sample is placed on a crystalline compound 

consisting for example of germanium, zinc selenide or a diamond. The infrared light passes 

the crystal and is reflected at the internal surface in contact with the sample. At the 

reflection point evanescent waves are forming penetrating the sample placed on the 

crystal surface. Wavelengths that initiate vibration modes in the sample molecules are 

weakened. Finally, the beam exits the crystal and is collected by a detector. Due to the low 

penetration depth ATR-IR measurements have advantages with highly absorbing 

materials. The attenuated total reflection IR measurements discussed in this work have 

been carried out on a Lumos-1 (Bruker) with a diamond crystal in single reflection mode. 

Light beam induced current (LBIC) 

Light beam induced current is a technique that measures the global response of a solar 

cell to a focused light beam. Thus, by scanning the surface a two dimensional map of the 

cell can be generated. The method can be used to identify defects or film inhomogeneities 

as well as to measure the active area. In this work an advanced LBIC measurement 

technique has been used called CELLO [204]. The analyses have been performed under 

constant voltage without any bias illumination using a red laser (628 nm).  
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Scanning electron microscopy (SEM) 

Scanning electron microscopy is a method to produce high resolution images of a sample. 

The measured signal is the result of the detected interaction between an electron beam 

and the surface near atoms of the sample. The electron beam is usually emitted by a field 

emission gun. This beam then scans the surface in a raster over a rectangular area. At 

contact of this primary electron beam with the sample several interactions are possible. 

High energy electrons are scattered elastically while secondary electrons are the result of 

an inelastic scattering. These electrons are emitted together with an electromagnetic 

radiation. All of these interactions can be detected and transferred to an image by 

synchronizing each pixel with the position of the beam and its intensity. In this work a 

SEM 1530 (Zeiss) has been used with an excitation voltage between 3 and 5 keV. 

 

Secondary ion mass spectrometer (SIMS) 

The secondary ion mass spectrometer is a surface sensitive technique to analyze the 

elemental, isotopic or molecular composition. Primary ions (e.g. Ar+) accelerated from an 

ion gun and subsequently focused on the sample surface ejecting the secondary ions. These 

secondary ions are collected by a mass spectrometer. The ratio between mass and charge 

is used to identify the specific elements. The secondary ion mass spectrometry 

measurements presented in this work have been performed at the Luxembourg Institute 

for Science and Technology using a CAMECA SC Ultra instrument. 

 

Thermogravimetric analysis and mass spectrometry (TG, MS) 

Thermogravimetry is a powerful tool to characterize the temperature dependent behavior 

of materials. In principal every TG setup consists of a highly sensitive balance inside of a 

furnace. The samples are placed in an inert sample holder (usually aluminum oxide) on 

the balance and the TG system is heated with a programmed temperature profile. 

Depending on the sample a specific weight loss as a function of the temperature can be 

monitored. 

In combination with a mass spectrometer, extensive information about the leaving 

chemical species can be generated. In the used setup the MS is positioned directly on top 

of the TG system at the gas outlet. Therefore the measurement signals of both machines 

arrive simultaneously which is important for the data analysis. In the MS, the incoming 

molecules are ionized by bombarding them with electrons. Due to this harsh treatment a 
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fragmentation of the molecules is possible. The resulting ions are eventually separated 

according to their mass to charge ratio (m/e). A detector measures the ion current of the 

specific ions which can be translated into molecules by comparing the results with 

literature spectra. 

The setup used in this thesis was a STA-MS-Skimmer-Kopplungssystem STA 409CD-

QMS422 (Netzsch Gerätebau GmbH). In this thesis linear heating ramps have been 

applied and the measurements have been carried out under the inert atmosphere of pure 

nitrogen or argon. 

 

X-ray diffraction (XRD) 

X-ray diffraction is a method to analyze the composition of crystalline materials. The 

samples are placed within an X-ray beam having a wavelength in the range of the crystal 

lattice distances. The X-rays are scattered elastically on the crystal planes and the 

diffracted beam shows interference effects. Constructive interference can be achieved 

under the following conditions: 

2𝑑ℎ𝑘𝑙𝑠𝑖𝑛𝜃𝐵 = 𝑛𝑖𝜆 
 

This equation is called the Bragg equation with the interplanar spacing 𝑑ℎ𝑘𝑙 where hkl are 

the Miller indices. 𝜃𝐵 is the Bragg angle between the incoming beam and the sample and 

𝜆 the wavelength of the X-rays. Usually the measurement of the scattered X-rays is done 

by a detector positioned at the focal point of the incident and diffracted beams. Therefore 

this setup is also called θ -2θ or Bragg Brentano geometry and the resulting patterns are 

shown in 2θ angles. The used diffractometer is a Bruker D8Advance DaVinci-Cu with a 

Cu-Kα X-ray source and an analyzed surface area of about 6 x 20 mm. 

 Grazing incidence XRD 

Grazing incidence XRD describes a special geometry for XRD measurements where only 

the detector position is changed. Contrary to the θ -2θ setup, very small incidence angles 

(typically below 3°) are used. Thus, the information depth is decreased proportional to the 

angle allowing a highly improved background (e.g. substrate) to film ratio predestining 

this method for thin film technologies. By changing the incidence angle, vertical gradients 

in the crystalline phases can be distinguished.  

The GIXRD measurements have been carried out at Bosch solar CIS tech in Brandenburg 

an der Havel using Cu-Kα radiation. 
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In-situ-XRD 

In-situ XRD is an extended version of a θ -2θ XRD setup where a fast detector and a 

furnace allow the investigation of the crystallographic phase formations during the 

heating as a function of the substrate temperature. A schematic illustration of the used i-

XRD oven is shown in Figure 82. 

 

Figure 82:  Schematic representation of the i-XRD setup. 

In the used setup X-rays are emitted from a Cu-Kα source and focused on the sample 

surface inside of a gas tight oven chamber. The diffracted waves are analyzed by a fast 

detector attached on the opposite side of the XRD furnace. The heating is achieved by 

infrared illumination.  

 

Single crystal X-ray diffraction 

Single crystal XRD is technique to identify and visualize complex crystalline materials 

consisting of atoms or molecules. For this method the sample has to show a high degree of 

homogeneity (preferably the materials are single crystalline) in order to get information 

about the crystal system, space group, atom locations as well as bond 

types/locations/angles. The crystal is positioned on a fine tip where it is in the focus of a 

strong X-ray beam. The measured interference pattern taken at different orientations 

reveal a two dimensional image showing an electron density map. With additional 

information about the prevailing elements, this image can be translated into a three 

dimensional atomic/molecular model by Fourier transformation. The single crystal XRD 

measurements presented in this thesis have been carried out at the University of 

Tübingen with a Bruker APEX DUO using a Mo Kα X-ray source with a wavelength of 

0.71Å.  
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E. Material properties of tetramethylguanidine 

In Table 10 the physical properties of the main solvent tetramethylguanidine are 

summarized. 

Table 10:  Physical properties of 1,1,2,2-tetramethylguanidine. 

 Value Reference 

Enthalpy of formation (l) 7.7 ± 2.8 kJ [90] 

Enthalpy of formation (g)  

 

58.4 ± 4.0 kJ/mol (meas.) 

57.7 ± 4.0 kJ/mol (calc.) 

[90] 

[90] 

Enthalpy of vaporization 
46.89 kJ/mol 

50.0 ± 1.2 kJ/mol 

[91] 

[90] 

Vapor pressure (25°C) 

 

 

Vapor pressure (65°C) 

 

26 Pa 

131 Pa 

~260 Pa 

260 Pa 

1907 Pa 

[92] 

calculated 

[91] 

[92] 

calculated 

Freezing point -78°C [91] 

Boiling point 
159.5°C 

160-162°C 

[91] 

[92] 

Viscosity (25°C) 

 

Viscosity (-25°C) 

1.4 mPas 

2.0 mPas 

5.5 mPas 

[91] 

[92] 

measured 

Density (25°C) 
0.9136 g/cm³ 

0.91249 g/cm³ 

[91] 

[90] 
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Nomenclature 

Abbreviations 

 

4ATA 4-Amino-1,2,4-Triazole (FT)-IR (Fourier transformed) infrared 

spectroscopy 

ARC Anti reflective coating JCPDS Joint Committee on Powder 

Diffraction Standards 

ATR Attenuated total reflection LBIC Light beam induced current 

BC Back contact MS Mass spectrometry 

BLC Blade coating ODC Ordered defect compound 

BSF Back surface field PL Photoluminescence 

CBD  Chemical bath deposition QNR Quasi neutral region 

CIGS  Cu(In,Ga)(S,Se)2 SC Spray coating 

DLC Direct liquid coating SCR  Space charge region 

DMF Dimethylformamide SDC  Slot die coating 

EA Elemental analysis SEM  Scanning electron microscopy 

EP Electroless plating SIMS  Secondary ion mass  

spectrometry 

EQE  External quantum efficiency SLG  Soda lime glass (float glass) 

MeOH  Methanol SPC Spin coating 

EtOH Ethanol TA Triazole 

FF  Fill factor TCO  Transparent conductive oxide 

GB  Grain boundary TMG Tetramethylguanidine 

GIXRD Grazing incidence X-ray 

diffraction 

TG Thermogravimetry 

i-XRD in situ X-ray diffraction UNIFAC Universal Functional-group 

Activity Coefficients 

i-ZnO Intrinsic ZnO   
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Symbols and dimensionless numbers 

 

𝐴 surface area in m² 𝑀𝑖 
molar mass of component i in 

kg/kmol 

𝑎 thermal diffusivity in m²/s 𝑁̇𝑖 absolute diffusion flux in mol/s 

𝑐 speed of light (in a vacuum) in m/s 𝑝 total pressure 

𝐷 diffusion coefficient in m²/s 𝑝𝑖𝐴 
partial pressure of component i at 

position A in Pa 

𝐸𝑜 standard electrode potential in V 𝑝𝑖𝐴
∗ (𝑇) 

vapor pressure of component i in 

Pa 

𝐸𝑐 conduction band energy in eV 𝑞 elementary charge (1.60 ×10−19 C) 

𝐸𝐹 Fermi level energy in eV 𝑅 
universal gas constant in J/(mol 

K) 

𝐸𝐺  band gap energy in eV 𝑅𝑎 Rayleigh number 

𝐸𝑉 valence band energy in eV 𝑅𝑒 Reynolds number 

𝐸𝑝ℎ𝑜𝑡𝑜𝑛 energy of a photon in eV 𝑆𝑐 Schmidt number 

𝑓 frequency in 1/s 𝑆ℎ Sherwood number 

𝐹 Faraday constant (96.48 kC/mol) 𝑆ℎ𝑓𝑜𝑟𝑐𝑒𝑑  
Sherwood number for forced 

convection 

𝑔 gravitational acceleration in m/s² 𝑆ℎ𝑓𝑟𝑒𝑒 
Sherwood number for free 

convection 

ℎ 
Planck constant  

(4.14 × 10-15 eVs) 
𝑆ℎ𝑙𝑎𝑚 laminar Sherwood number 

𝑗 current density in mA/cm² 𝑆ℎ𝑡𝑢𝑟𝑏 turbulent Sherwood number 

𝑗0 
reverse saturation current in 

mA/cm² 
𝑇 absolute temperature in K 

𝑗𝑑𝑎𝑟𝑘 dark current in mA/cm² 𝑇𝑀 median temperature in K 

𝑗𝑚𝑎𝑥 
current density at maximum power 

in mA/cm² 
𝑢 velocity in m/s 

𝑗𝑝ℎ photo current in mA/cm² 𝑢̅𝑖 mean velocity of molecule i in m/s 
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𝑗𝑠𝑐 short circuit current in mA/cm² 𝑣 
number of electrons transferred 

within the half cell reactions 

𝐽 diffusion flux in mol/m²s 𝑉 voltage in V 

𝑘𝐵 
Boltzmann constant 

(1.38×10-23 m2 kg/s2K1) 
𝑉𝑜𝑐 open circuit voltage in V 

𝐾 equilibrium constant 𝑉𝑚𝑎𝑥 voltage at maximum power in V 

𝑙𝐴𝐵 
diffusion path length in m from 

position A to B 
𝑥𝑖 

molar fraction of component i in 

the liquid 

𝐿𝑐 
characteristic length of the liquid 

surface in m 
  

    

    

𝛽𝑖 
mass transfer coefficient of 

component i in m/s 
𝜆𝑖 mean free path of molecule i in m 

𝛾𝑖 
activity coefficient of component i 

in the mixture 
𝑔𝑎𝑠 

kinematic viscosity of the gas in 

m²/s 

𝜂 energy conversion efficiency 𝜎 collision area 

𝜆 wavelength in m 𝜐𝑖 diffusion volume of component i 
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