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ABSTRACT

The isogeometric boundary element method (IGABEM) based on NURBS is adopted to model
fracture problem in 3D. The NURBS basis functions are used in both crack representation
and physical quantity approximation. A stable quadrature scheme for singular integration is
proposed to enhance the robustness of the method in dealing with highly distorted element.
The convergence study in crack opening displacement is performed for penny-shaped crack and
elliptical crack. Two ways to extract stress intensity factors (SIFs), the contour M integral
and virtual crack closure integral, are implemented based on the framework of dual integral
equations. An algorithm is outlined and validated to be stable for fatigue crack growth, thanks

to the smoothness not only in crack geometry but also in stress/SIFs solution brought by

IGABEM.
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1 Introduction

The simulation of the fatigue fracture propagation is not only crucial to perform the damage
tolerance assessment or predict the serving life of a mechanical component, but also to help get
understand of the mechanism of structure’s failure in engineering. Versatile numerical methods
have been attempted for modeling fatigue fracture with the development of computational
mechanics in past decades. Challenges for numerical fracture modeling primarily lie in the
meshing /re-meshing procedure, as the initiation of the cracks are usually two or more orders
smaller in geometry size than the components. The different scale of the cracks and components
requires a local refined mesh for the nucleation of the defects and re-meshing become necessary

for accurate simulation when the cracks propagate.

The finite element method (FEM) can be applied to simulate the crack propagation directly with
certain adaptive re-meshing operation [1][2][3]. Some software packages have been developed
based on this idea [4][5] and a review paper can be referred [6]. Nevertheless, the re-meshing
becomes cumbersome for multi-cracks or for very complicated components as the complexity is

increased due to the presence of cracks as internal boundaries.

The idea of partition of unity (PU) enrichment has been proposed to release the mesh burden
in fracture modeling [7]. Due to the additional enrichment functions, the discontinuities are
introduced into the model and the representation of the crack only aims for initiating the en-
richments, which makes the crack mesh independent from the component’s mesh. The extended
finite element method (XFEM) [8], usually coupled with the level set functions as an implicit
representation of the crack, has been implemented for 3D crack growth problem [9][10][11][12]
as well as for industrial applications [13][14]|15]. The meshfree methods have also been pro-
posed with the aim of further reducing the mesh burden, for instance, the element-free Galerkin
(EFG) [16] and the extended EFG (XEFG) [17][18][19]. For more details, the readers could

refer the review paper by Nguyen et al [20].

The fracture modeling by the boundary element method (BEM) exhibits more advantages than
by FEM in terms of mesh/re-mesh efforts as only the boundary discretization is required in
BEM in order to approximate the quantity of interest. When cracks evolve, only the boundary
surfaces are updated instead of re-generating the volume mesh. In order to circumvent the

singular system caused by the collapsed surfaces in fracture, Hong and Chen [21] proposed



the dual boundary integral representations by introducing the hyper-singular equation derived
from the secondary field [22]. The use of dual boundary integral equation makes the crack
propagation simulation more effective through a single domain. And the corresponding dual
BEM was subsequently implemented for 2D and 3D fracture [23][24][25] and was extended to
material-nonlinear fracture [26][27] and dynamic crack propagation [28]. Commercial packages
based on BEM are BEASY [29] and FRANC3D [30]. Apart from the dual BEM based on the
collocation method, the Galerkin BEM, in particular the symmetric Galerkin BEM (SGBEM)
has also drawn attention in the application for fracture analysis [31][32][33]. The symmetric

matrix system of SGBEM also facilitates the coupling with FEM [34][35].

The isogeometric analysis (IGA) was first introduced by Hughes et al [36]. The basic idea of
IGA is to use the same spline basis functions to represent the CAD geometries and approxi-
mate the physical quantities of interest. And the investigation on the joint of IGA and BEM
(IGABEM) has increasingly drawn attention recently since only the boundary representation of
the geometry is required in IGABEM, which facilitates the integration of design and analysis.
The IGABEM has already been applied in many fields [37][38][39][40][41][42][43][44], and has
been further developed with more numerical aspects such as the PU enrichment [45][46], the
trimmed NURBS [47][48], the fast solution [49], the Galerkin form [50][51] etc. The benefit of

smoothness to boundary integrals (BIEs) brought by IGA is investigated in [52].

The isogeometric analysis has been applied to fracture in corporation with XFEM [53][54][55][56].
Verhoosel et al presented a scheme to model cohesive crack propagation by using T-splines to
generate the local discontinuities [57]. Nguyen et al applied the B-spline based IGA to simulate
the 2D and 3D delamination in composites [58]. The shape sensitivity analysis of stress inten-
sity factors for curved cracks was performed by Choi and Cho [59]. Tambat et al proposed an
enriched IGAFEM based on the CAD-inspired hierachical partition of unity field compositions,
and the method benefits from a robust and non-iterative numerical distance field construction
[60][61]. Jeong et al proposed a geometrical mapping by which push-forwards of B-splines from
the parameter space into the physical space such that the singularity of type r/2 can be cap-
tured in linear elastic cracks [62][63]. Natarajan et al enhanced the isogeometric analysis by
the scaled boundary finite element method which inherits both advantages of FEM and IGA-
BEM, while certain subdivision of the domain needs to be done for complicated geometry in

order to obtain the scaling center [64]. The pivot tips of the application in fracture in the IGA



framework can be concluded as:

(1) The higher-order continuity improves the accuracy of the stress field near the crack tip
which is crucial to fracture analysis and the degrees of freedom is reduced compared to the C°
Lagrange basis;

(2) The curvature, tangential and normal vectors are exactly retained and evolved thanks to
the exact representation of the curved cracks;

(3) The local crack tip (front) system can be constructed directly based on the spline-based
curve or surface-represented cracks, which helps to accurately evaluate the fracture parameters;
(4) The concept of integration through design to analysis facilities the mechanical/structural

design based on the fatigue fracture analysis.

In this work, the application of IGABEM in 3D fracture analysis and fatigue crack growth
will be explored. Besides using the conventional boundary integral equation as for elasticity,
the hyper-singular integral equation is introduced additionally by exploiting the smoothness
of NURBS geometries. An local singularity removing technique proposed by Guiggiani [65]
is applied on the various orders of singular integrals (up to hyper-singular O(1/r3)), and its
improved version tailored to distorted elements (or with high aspect ratio) which commonly arise
in isogeometric based methods is formulated. The crack is explicitly represented by NURBS
surface as internal boundary and an algorithm is outlined to describe the crack propagation
such that the smoothness in geometry brought by IGA and in solution brought by BEM is fully

investigated for extracting the stress intensity factors and crack growth.

The rest of the paper is organized as follows. Section 2 briefs the boundary integral equations
(BIEs) that applied in fracture modeling. Section 3 illustrates the NURBS basis functions on
2D surfaces and the collocation scheme. Section 4 outlines the improved singular integration
based on the singularity subtraction technique [65]. The crack growth related work is detailed
in section 5, including updating the crack surface geometrically, computing the stress intensity
factors and the fatigue fracture rule: the Paris law. Numerical examples for both static fracture
analysis and crack growth are given in section 6. We conclude our work and propose the future

research of interest in the last section.



2 Boundary integral equations for crack modeling

Consider an arbitrary domain {2 which contains a crack as in Figure 1. The boundary of the
domain 92 = S + S.+ + S.-, where S is composed of S,, where Dirichlet boundary conditions
are prescribed (known displacement u), S; where Neumann boundary conditions are prescribed

(known traction t). The displacement BIE is given by finding u and t such that

sl = |

Ui (5. %)t;(x)dS (x) - ][ T;j(s, %)u;(x)dS (x). (1)
oN

o0N

where the U;;, T;; are called fundamental solutions and for linear elasticity,

Usj(s, %) = W (3 = 40)63; + 1), 2)
T;i(s,x) = —M {g:;[(l - 2V>5ij + 37“12‘7“,]'] —(1- 21/)(7’72'7% — r,jni)} , (3)

where u = E/[2(1 + v)], E is Young’s Modulus and v Poisson’s ratio. s is the source point (or
collocation point. This two terms will be used interchangeably in the remainder part of this
paper). f denotes the integral is interpreted in the Cauchy Principal Value sense. The traction
BIE is obtained by differentiation of the displacement BIE with respect to s and multiplication

by the elastic tensor Ejj:
cij(s)tj(s) = - Kij(s, %)t (x)dS(x) — - Hij(s, x)u;(x)dS (x), (4)

0T, (s, x)
0sq

0Up;(s, x)

Hi'(S,X) = Eikpq Js
q

ng(s), Kij(s,x) = Eipq nk(s), (5)

where f denotes the Hadamard Finite Part integral.

The idea of the boundary element method is to discretize the boundary geometry and the
physical fields using sets of basis functions. Subsequently, the source point is placed at the
collocation points and the displacement BIE (1) is transformed into the system of linear algebraic
equations. However, when the domain contains a crack, the collocation points on the overlapping
surfaces S.+ and S.- could be coincided (refer to Figure 1 (b)), and then the system matrix

becomes singular. Two ways to deal with this problem are briefed in the following sections.
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Figure 1: Crack model
2.1 Dual equations

The difficulty caused by the collapsed crack surfaces is circumvented through the use of dual
equations, by prescribing the displacement BIE (Equation (1)) on one crack surface (S.+) and
on the rest of the boundary S. For the collocation point s on the crack surface S.+, Equation

(1) can be rewritten as,

i (5M)us (81 + i (57 / (8%, X)(x)dS () - /S Tiy(s*, %) (x)dS ()
—][S Tl ) ) - ][ Tl S0 ©)
(s xT)t i (S, X7 )t (X X).
+/SC+UU< )t ()8 () + /S Ui (s )15 (x)dS (x)

c

And analogously, the traction BIE (Equation (4)) on the other crack surface (S.- in Figure

1(b)) becomes,

Cz‘j(Si) ( )"‘C” /Kz] , X /HZ] )dS( )
—7[ Hij(s™,x7 )uj(x)dS(x) —i—jé Hij(s;,x‘*')uj(er)dS(x) (7)

+][ Kij(s™,x7)t;(x7)dS(x) —]é Kij(s}h,x7)t;(xT)dS(x).

s,,, denotes the mirror point of s™ on the S,-, which means s;, and s~ share the same physical
and parametric coordinate but the normal vectors at each are opposite. The last two terms of

both equations and left hand side of Equation (7) are omitted due to the fraction-free crack.



Due to the collapse boundary in fracture problem, two jump terms arise in each BIE and each
operator not only exhibits singularity on the crack surface where the collocation points located,

but also on the one where the mirror points of the collocation points located.

2.2 Crack opening displacement (COD) equation

The boundary integral equation for crack problem can also be reformulated by setting the
boundary quantity as crack opening displacement over a couple of crack surfaces. Let the source

point approach to a single crack surface, for example S. = S.+, and note that n =n™ = —n—,

we have:

cii(sTui (st cii(S Jui(s )= (st x)ti(x X)— (s X)) (x X
(s (5) + iy (57)us(57) /SUw( X)t;(x)dS(x) ][STu( X)u; (x)dS(x)

_l’_

/S Usi(s™, ) (5 () + 15(x7))dS (x) (8)

Tyl ) = 0y )0,
Se
The corresponding traction BIE is:

Cij SJr ijL — Cij s jSi = ij S+,X G (X X)— ij S+,XUJ'X X
(sM)1(51) — ey (5T )t5(s7) ng( )1 (x)dS (x) 7§H< Jutj (x)dS (x)
Ryt () £ 1 6)S( )

- 7@ Hij(s*,x)(uy(F) — uy(x7))dS().

Equation (9) can be used alone if only the COD will be presented as the unknown for fatigue
fracture problem. However if the displacement field needs to be known on the crack surfaces,
Equation (8) should be also solved. Let S — oo, and note that traction-free crack surfaces are

assumed, we arrive at:

0= t7(8) ~ . Hiy(s.0) [, (1S, (10)

[u;(x)] = uj(xT)—uj(x7) is the crack opening displacement. All the subscripts ‘+’ are omitted
since the integral is only over a single crack surface. t° is interpreted as the solution in the ‘no

crack’ space.



3 NURBS discretization and collocation

NURBS basis functions are the generalization of B-spline functions that allows a ‘projection’
from square and cubic domains to form complex geometries. So the basic concept of B-spline is
first outlined. B-spline basis functions are defined over a knot vector, which is a non-decreasing
sequence of real numbers given in the parameter space. A knot vector is denoted as = =
{€1,&, ..., Enipi1}, where & € R is the i*® parameter coordinate (knot), p is the order of the
polynomial in B-spline basis functions, n is the number of the basis functions. For a given order

p, the B-spline basis functions N;, with 1 < a < n are defined by the Cox-de Boor recursion:

1 & <E<&im
Nio(§) = (11)

0 otherwise,
then, for p > 0,

§—&

- A S,Nz}p—l(g) + MNH—LZJ—IK) (12)
i+p 7

Sitp+1 — it

Ni,p(g)

The continuity of B-spline basis functions at & can be decreased by repeating the knot several
times. If & has multiplicity k (& = &41 = ... = &4x—1), then the basis functions are CP~*
continuous at &;. Particularly, when k = p, the basis is C° and k = p+1 leads to a discontinuity
at &. If the first and last knot have k = p + 1, the knot vector is called an open knot vector.

More details can be referred in [66].

Given the knot vectors = = {1, &2, ..., §nypt1} and € = {n1,m2, ..., m4q+1}, and the control
points net P; ;. The B-spline surface S(§,7n) is given by the tensor-product of B-spline basis

functions defined in 2D parametric domain [£1, &nqp+1] X 1715 Dmtq+1)s
S m) = ZZNLP(‘S)MJ}(J(U)BJ: (13)
i=1 j=1

where N; ,(§)M;j4(n) are the 2D B-spline basis functions. The NURBS basis functions can be

constructed by rationalizing the tensor-product B-spline basis functions as

hy — Nip(§)Mjq(n)wi,;
Big(n) = s s N (&) My (o 14
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where the scalar variable w; ; is the weight associated with the control point P; ;. For integration
purpose, the 2D NURBS basis functions are usually calculated in the element defined by the

non-zero knot intervals [&;, §+1] X [1j,nj+1] where the Gaussian rule can be applied [36].

The Greville abscissae has been used to generate the collocation points. For a closed domain
composed by trimless and compatible NURBS patches, the number of obtained collocation
points by the Greville abscissae is identical to the number of control points (or basis functions),
which means one collocation point is associated with one control point. For those collocation
points lie in the sharp edges or corners, or when discontinuous basis functions are needed, these

collocation points will be offset from the original place by

€si =&si+a(bsiv1 —&si), or

fs,i = és,i - a(gs,i - gs,ifl)y o c (07 1)

(15)

Note that in this case, the associated control points should be doubled such that the discontin-
uous basis functions are obtained, or the BIEs on the offset collocation points should be merged

into one BIE, such that the number of equations and unknowns keeps consistence.

4 Numerical integration

Due to the singularities in BIEs, there will be singular integration and non-singular integration
after discretization. For the element containing the collocation point, singular integration is
performed and the element belongs to singular elements. Elements which exclude the collocation
point are called non-singular elements. The singular integration needs to be carefully treated in
BEM. Various numerical methods have been proposed in past decades, and one can refer to a
review work in [22]. A robust technique developed in [67] can be applied to regularized all the
singular terms into weakly singular, via the use of simple solution of BIE. The regularization
technique based on simple solutions has been applied or further developed in the framework
of IGABEM [39]|68]|52]. However, this method fails when dealing with open surfaces such as
cracks [69]. In the present work, we use the singularity subtraction technique (SST) proposed
by Guiggiani [69][65] to remove the singularities arise in both BIEs. The SST is a united method
for the treatment of singular integrals regardless of mesh dicretization and proved to be efficient

for fracture via dual BEM [24].



4.1 Singularity subtraction technique (SST) for singular integrals

The SST transforms various orders of singular integration into a weakly singular one based on
the intrinsic coordinate system of the singular element after discretization. Then the weakly
singular integration turns to be regular if the quadrature is performed in the polar coordinates.
By expanding the integrand into a series with respect to the intrinsic coordinate, the singularity
can be represented explicitly. Then the singular terms are subtracted from the integrand, leaving
the remaining to be regular for which regular Gaussian rule is applied. the subtracted terms are
added back semi-analytically. Assume that the coordinate of point of interest is x(z; = z, vy, 2)
in physical space, &£(&; = &,n) in parametric space of NURBS basis functions, £(&; = &,7) in

parent space [—1, 1] x [—1,1]. For the hyper-singular integral of the form

1= Hs.x(@)RETE3s (16)
S

where H (s, x(£)) is the hyper-singular kernel, R(€) is the NURBS basis function and J(£) is the
Jacobi transformation from parent space to physical space (Figure 2). The polar coordinates
p(p,0) centred at the source point are introduced in the parent space. The parent domain is
subdivided into triangles for quadrature naturally. For each field point £ in the sub-triangles,

we have

+

(17)
_|_
After the polar coordinate transformation, Equation (16) becomes

e—0

on p(0) .
=t [ [ H(p.0)R(5.6)T(6.6)pdpc, (18)
0 a(e,0)

where p(0) = h/cosf. h is the shortest distance from the source point to the element edge and
6 is the angle from perpendicular direction to the field point as in Figure 2. If we define 6y is

the angle of the perpendicular line, then the angle to the field point can be computed as

0 =0-+0. (19)

10



(=1,-1) L=D (C1-6,-46) (—1+ 01,05)
physical space parent space conformal space

Figure 2: Transformation between coordinate system for SST
The integrand F(p,0) = H(p,0)R(p,0)J(p,0)p is expanded as:

Fp,0)= & —;2(‘” e —;(9) + Ry (0) + Fi(0)p+ Fa(0)p* +---= S F@)p.  (20)

i=—1

The first two singular terms on the right hand side are subtracted and added back semi-

analytically, resulting in:

I=1+1I,
2n 4l6)
I = /0 /0 [F(p,e) _k ‘;’2(9) _k _;(9)]dpd9, (21)
T B0 [T ()
Iy _/0 Il(e)mﬁ(@)de—/o 1_5(0) [W n ﬁ(a)}de,

where I is regular and I are regular line integrals, Both can be applied with Gaussian quadra-
ture rule. The evaluation of «(e, ), 5(6) and v(#) as well as the limiting process are given in

Appendix A and more details can be referred in [65].

4.2 Conformal mapping for SST

It has been revealed by Rong et al [70] that the expansion coefficients F;(#) in Equation (20)
exhibits various orders of near-singularity in the angular 8 direction, although the singularity
in the radial p direction has been fully canceled. This near-singularity is sensitive to the shape
of the element and becomes severe when the element is highly distorted. The F;(6) can be
represented as:

F(0) Fy(9)

() = Ar(0) - [0.5(|m3 |2 + |m$|2) (wsin(20 + ) + 1)]P/2’ (22)

11



where Fj(0) are the regular trigonometric functions and integer ‘p’ is the order associated with

“’. The curve-linear basis vectors m§ = m;[g_¢,, (i = 1,2) and are calculated as:

m {895 dy 82}
1= |35 25 A |
my = [@ 9y %]
2 = 877, 6777 877 .
Introducing two parameters
A = [mi|/Jm3], (24
costh = mj - mj/|mf||m3],
such that \2
— arctan ————
p = arc an2)\cos1/1’
25
1 4sine) <1 (25)
w = - .
(A+A71)2

Then it can be concluded that when the element aspect ratio is large or angle between two
basis vectors tends to 0 or 7 (sinyy — 0), A(#) will tend to 0, resulting the near-singularity of
F;(0). Both scenarios indicate a distorted shape of the singular element, which are common

phenomenon in isogeometric analysis.

Rong et al [70] constructed the conformal mapping from the parent space (£,7) to a new
parametric space (é ,7) where the two curve linear basis vectors in the new parametric space

are orthogonal and have identical length to each other, i.e.

(26)
[mi| = [m3].

Then A(#) becomes a constant, which makes the integration nonsensitive to the element shape,
if the series is expanded in the new space. The quadrature for the singular integral turns to be

stable regardless the distorted mesh.

The mapping proposed by Rong et al is tailored for triangular element, in this work we extend

it into the quadrilateral element (Figure (2)). In |70], the Jacobian transformation matrix T

12



from (£,7) to a new parametric space (€,7) is

1 & . _
T = , so that & = TE, (27)

0 99

where 01 = costp/A, d3 = sintp/A. Then the new basis vectors

[ mi ] B [ mj  mj; } T = [ mj —(d1/d2)mj + (1/02)m3 (28)

will satisfy the relation in Equations (26). The bilinear interpolation is used from (£,7) to the

new parametric space (é ,7) for a quadrilateral element:

Ni(€)E,

2x%
I
e

~
Il

1

0.25(¢ —1)(7 - 1),

Ny = 0.25(& +1)(7 — 1),

Ny

(29)

N3 =0.25( + 1) (77 + 1),

Ny =025 —1)(7+1).
Combining Equations (27) and (29), the nodal coordinates EI can be obtained as él(l + 01, 62),
éz(—l + d1,02), 53(—1 — 01, —02) and 54(1 — 01, —02). It should be noted that since 0 < 1) < m,
d2 > 0, the quadrilateral element is guaranteed to have positive area (one possible plot is shown
in Figure (2)). This requires the source point should not be located in the degenerated point

in the geometry where |mj| # 0.

It can be referred from Figure 2 that the shape of the element in conformal space is controlled
by the coefficients d; and dp. This means that if A (reflect element aspect ratio) and cosiy
(reflect element distortion) deviate from 1, the conformal element will be skew. This will result
in sub-triangles with § approaches to £ /2 if the field point closed to the edges adjacent to the
source point of the sub-triangles (Figure 2). Thus p(f) = h/cosf is not calculated accurately.
To alleviate this near singularity in (@), the following Sigmoidal transformation is applied in
the angular direction such that the integration points will be clustered to the edges where the

near-singularity is severe adaptively according to the 6 [70],

13



w(f) = %(mg) de( g’gme 0.1)
2= 2(5) = w(l) + (s + D) — wB), s € (~11),2 € (01, 20) < (0.1
f(Z): zm—l—(l—z)m’
o=rf(=) - 5.
J0) = 00 _ mlw(fa) — w(By)]mf(z)™

(30)
where s is the Guass point from interval (—1, 1), the relation of # and 6 can be found in Equation

(19).

4.3 Numerical quadrature

In numerical implementation, Gaussian rule is applied in both radial and angular direction. 6
Gauss points are used in the radial direction. 18 Gauss points are used in angular direction of
each sub-triangle for conformal SST unless specified particularly. For each non-singular element,
an adaptive subdivision scheme is used according to the relative distance between the element

and collocation point. All the rules are used imperially without any error control algorithm.

5 Crack growth

The approaches used to represent and track the crack propagation can be classified into two
manifolds, the implicit method and the explicit method. A typical application of the former
method would be the level set method |71] which is coupled in the XFEM/GFEM to represent
and evolve the discontinuity [10][11]. The level set function is a signed distance function to
the crack surface defined on the underlying mesh, which could be consistent with the mesh
discretization of the problem or be independent structured mesh. Since the cracks are open
surfaces, one more level set function which should be defined perpendicular to the crack surface
is required in order to describe the crack front. The quality to represent the crack surface
depends on the resolution of the underlying mesh. Accurately describing the crack surface

usually introduces additional computational expense [72]. Advection-type equations should

14



be solved so as to update the crack front when the crack evolves [73] which increases the
computational effort. Chopp and Sukumar [74]| proposed the fast marching method to update
the crack front location, thus facilitating the process of updating the crack surface [9]. Fries
and Baydoun [75] proposed an implicit-explicit method, in which the level set represented crack
is explicitly dicretized by triangular facets. Idea shared analogous purpose would be the vector
level set method [17]. These methods take advantage of the level set representation for the PU
enrichment while avoiding to update the crack surface by solving the equations. Additionally,
sharp turns and kinks can be retained by use of explicit crack surfaces rather than pure level

sets.

The latter method uses sets of triangular or quadrilateral facets to discretize the crack surface
directly. For finite element based methods, the crack evolution process is usually companied
with automatic re-meshing operation. For XFEM/GFEM applications, the subdivision of the
3D solid elements needs to be performed for the integration purpose. Both will rely on well-
developed meshing/re-meshing packages [76]|77]. The explicit representation of crack surfaces
by triangulation has been used in meshfree methods as well [16]. It should be noted that this
representation method usually results in CY crack surface and the crack fronts are composed
of line segments. This will lead to at least two shortcomings: (1) the crack front is not cap-
tured exactly in computational aspect and this will give inaccuracy in the extraction of the
fracture parameters (for example the SIFs) from the numerical solution and geometry approx-
imation error will be accumulated with the crack growth; (2) the local crack front coordinate
system is not well defined and the deflection angle is discontinuous, resulting in the non-unique
branch enrichment for some local tip center on the crack front, unless the branch enrichment
is abandoned [18]. As a remedy, the crack fronts need to be smoothed through some numerical
techniques [76][77]. Similar scenario occurs in Lagrange based BEM for fracture modeling. Be-
sides, Paluszny and Zimmerman [78] point out that large numbers of facets are needed in order
to more accurately represent the crack surface and the storage increases rapidly with respect to
the area of the crack surface when crack propagates. Hence they propose the use of paramet-
ric surface, i.e. the NURBS patch, to describe the crack propagation. In their approach, the
crack growth is realized geometrically by deforming the NURBS surface through the mid-range
La-Greca algorithm [79] to move the control points. Due to the parametrization of the NURBS

patch, the crack tip can be sampled anywhere along the crack front, thus the storage for crack
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Figure 3: Crack front updating. C(¢) is the old crack front curve, C'(§) is the new crack front
curve after iteration

discretization increases mildly. Meanwhile the local crack front coordinate system is established
on the smooth geometry. However, this method based on re-meshing the finite elements. The
mesh regeneration needs to be carefully controlled to ensure the mesh quality. Recently Tambat
et al proposed an explicitly represented lower-dimension geometry features by NURBS [60][61]
through the partition of unity approximation. Instead of using level sets, the lower-dimension
features such as cracks are accurately described through the calculation of the distance field in
an efficient non-iterative way, providing a promising alternative to evolve discontinuity in the
IGAFEM framework. However, more suitable numerical quadrature scheme is desired in order

to fully exploit the exact representation in geometry.

In the present work, we use NURBS patches to descretize the crack surfaces. The crack front
is exactly described and the local crack tip system is defined naturally and uniquely based on
the NURBS patch. Meanwhile, the physical quantities are also approximated by the NURBS
basis in the spirit of isogeomtric analysis. Combining with BEM, the smoothness in geometry
and stress solution is fully exploited to calculate the fracture parameters and evolve the crack

in a stable manner.

5.1 Crack surface updating algorithm

Crack propagation is realized geometrically by advancing the crack front so that the new crack
front curve C'(¢) shall pass through the new positions of the sample points on the old crack front
curve C(§) which is parameterized by the knot vector = = {£1, &2, ..., nyp+1}, 1 is the number

of basis functions. We define the sample points on C(¢§) to be M; = M(;),j =0,1,...,N — 1,

16



and the set of corresponding new positions to be MJ’ The N new positions of sample points
are served as the constraints during the deformation process from C(£) to C'(£), and we set
N = n here. We adopt the algorithm described in [79]. In this algorithm, the deformation of
a curve under multiple constraints is a iteration process. For t-th iterating step, we define the

error vector as:

—
€t = Mj7tM]/~. (31)

If |le|| < tol, the iteration ceases and the new crack front curve is obtained (tol = l.e — 4 in

this work).

To update the control points P;,i = 0,1, ...,n — 1, we define a movement vector m such that in
t-th iterating step:

Pi=PFi1+miy (32)

The movement vector m; can be computed as:
1 Nl
m;t = N Z(:) fijej,tfla (33)
j:

where f; = f({;) are the influence functions corresponding to each constraint M;. We choose
the influence functions to be the NURBS basis functions which are used to describe the curve,
i.e. f; = R;. To make sure the influence functions f;; = f;(&;) associated with each constraint
M j’ are linearly independent (so that the constraint is effective to the deformation of the curve),

the parameter coordinate §; of each M; should satisfy §; € [&;, {ip+1)- Thus we use the Greville

Abscisse to generate the sample points.
Finally, the error vector is calculated in a recursive way:

N

—_

| N-
N (R, fr)ext—1 (34)
k=0

€jt = €jt—1 —

The details for updating the crack front is given in Algorithm (1). Once the new crack front
curve is obtained, the new crack surfaces can be generated by lofting along the crack extension
direction from the old curve to the new curve. The generated crack surfaces shall be merged

into the old crack surfaces with C? joint or C! joint. In this work C° merge is adopted.
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Algorithm 1 Crack front updating algorithm

Data: old crack front curve C(¢); sample points Mj; new positions of sample points MJ’
Result: new crack front curve that passes through all M ]’
t=0;
tol = l.e — 4;
—

€50 = Mj,QMJ/»;
while ||e;|| > tol do

t=t+1;

miy = % Zé\/:_ol ij€4t—1;

Pt =Py 1 +my;

1 \~N-1 )
€jt = €jt—1 — N 2 k=0 Ry, fr)ex—1;

end

5.2 Computation of stress intensity factors

The driving force for the evolution of fatigue fracture is characterized by some fracture pa-
rameters such as the stress intensity factors (SIFs), which can be extracted from the numerical
solution. If the fracture parameters are computed based on the point-wise tips on the crack
front independently, it can be regarded as a local approach. The key factor to compute ac-
curately the SIFs in the local approach is to avoid the discretization and path dependence as
much as possible. Various methods have been developed to extract the SIFs in the framework
of FEM and BEM. The displacement correlation method [80], with or without the crack-tip
singular element, is a simple and fast way for this aim. Nevertheless, The path dependence of
this method can not be neglected and an extrapolation technique is performed upon a group of
calculations. The virtual crack extension method (VCE) [81][82], was applied to compute SIFs
based on the calculation of the released strain energy per a virtual crack extension. The original
VCE relies on the construction of structured mesh along the crack front, which increases the
mesh burden. however it should be noted that the variational form of the strain energy which
involves the energy release rate and the crack extension has been applied for automatic crack
growth [83][84] where the crack extension is assigned with physical interpretation. This method
minimize the strain energy in a global sense, thus leading to a significant difference from local

approach and has recently been investigated in the framework of XFEM [85].

The virtual crack closure integral (VCCI) method is proposed based on the virtual crack ex-
tension, is another alternative to extract SIFs in linear elastic fracture. Due to the simplicity

and accuracy, the VCCI has been widely used in FEM and BEM [86]. While it should be noted
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Figure 4: Crack tip coordinate system

that this method requires the element near the crack front aligned in consistence with the nor-
mal direction of the crack front. The path-independent J integral proposed by Rice [87] is an
attractive method due to its robustness regarding the relative independence in discretization
and path of integral. The method soon was extended into many branches and achieve good
results in both FEM and BEM [88][89][90][91][92]. The contour J integral is advised to cast into
the equivalent domain integral form in FEM as the nodal stress is not straightforward solution
and requirement in mesh discretization is relaxed. While in BEM the contour definition can be
adopted directly [93]. In order to extract mixed mode SIFs, different techniques are developed.
The J, integrals (z = 1,2, 3), as the components of J integral, can be directly used to evaluate
the SIFs. However, the evaluation of Jy and Js (or Gyy) exhibits numerical difficulty due to
the singularity [94]. The J; integral (or J integral) can also been used to extract mixed mode
SIFs, with some auxiliary operation. One way is to decompose the displacement and stress
fields into symmetric and antisymmetric portions with structured mesh along the crack front,
then three modes of J integral can be calculated directly [95][96][97][98]. The other method
named M integral (or interaction energy integral), was developed by introducing asymptotic

fields as the auxiliary solution [89] has been extended in (X)FEM [99][11] and BEM [100].

Both the VCCI and contour M integral have been investigated for the calculation of SIFs in
the fracture analysis via 3D isogeometric BEM. The point-wise crack tip coordinate system is
established along the crack front as in Figure 4. The physical quantities are all in the crack tip

local coordinate system thus the superscript ‘o’ is omitted in this section.

5.2.1 Contour M integral

The definition of Ji integral stems from two dimensions as:

Jk = lim (W(SJ]C - aijui,k)njdlj = lim ijnde, k= 1, 2 (35)

FGA)O Fe FEHO T
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where Py; is the Eshelby tensor, W = 1/20;j€;; is the strain energy density. I'c is a small
contour with radius R centred at crack tip ‘o’ in the ‘x, — y,’ plane and n; is the unit outward

normal of I'..

It can be extended to three dimensional point-wise definition by taking a tubular surface around
the crack front. When the contour I'c is small enough, the plane strain condition is approx-
imately satisfied. We could use the contour definition directly on the premise that a small

contour is assumed.

It is known that the J integral (J;) and the SIFs have the relationship

2 2
v 5 1—v

1-— 1
J=Gr+Gr+Gr = TKI + TKIQI + ZK%]D (36)

where G; and K; (i = I,11,1II) are the energy release rates and SIFs for the three modes of
fracture.

By applying the J integral under two states, one the real state (denoted with superscript ‘17),
the other the auxiliary state (superscript ‘2’), then adding them together, the mixed term M

can be obtained:

Oy +u”)

T+ = / 6 050 + o) + ey — (ol + o) TG E S ndr (37)
Rearranging the two state terms gives
J+2) — ) o 5@ 4 pr12) (38)
where )
o0 = [ (W00, G o G
w2 — UZ(;)EZ(]?) - 01(92)62(]1) (39b)

Combined with Equation (36), the following relationship can be obtained for the M integral,

2(1 — 1?2 1
22 (g ORP 4 kOED) + LK) (40)

(1,2) —
M E

Then SIFs can be extracted respectively, for example, let state 2 be the pure mode I'11 asymp-
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totic fields with K}Q) =0, Kﬁ) =0, Kﬁ)l =1 and Ky in real state 1 can be found as
1
K§1)1 _ MM(L mode I11) (41)

Ky and Ky can be given in a similar fashion. Here the first order asymptotic displacement and

stress solutions (see Appendix B) are selected as the auxiliary fields.

5.2.2 Virtual crack closure integral

In the VCCI, the strain energy release rate is equal to the work done by closing the virtual

crack extension. Three modes of the strain energy release rate are given by

1 R
Gr =37 [ o)l (R =)z,
R
G = % ; Oy () [ue (R — x)]dz, (42)

R
Grir = 213/0 oyz(2)[uz(R — 2)]dz,

where OP' = R is the virtual crack advance. For the evaluation of [u;j(R — x)] on PO, the
point inversion algorithm needs to be performed in order to find the parametric coordinate in
the crack modeled by NURBS surface [66]. The domains of these integrals OP’ and PO are
dicretized by single linear element [101|. And the R is identical for all the crack tips. Then K7,

K and Kprr can be computed according to Equation (36).

5.3 Paris law

The Paris-based laws have been used to describe the steady state crack growth in the fatigue

failure process. We use the original Paris law as follows:

da
— =C(AK)™ 43
where N denotes the number of load cycles. C' and m are the material parameters. AK is the

SIF range. For mixed mode crack, the K is taken as the equivalent SIF K., which is given as

[5]:

Keg = \/K% + K+ (1 +v)Kfy, (44)
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At g0 that the number of load cycles can be

We specify the maximum crack advance Aa
obtained according to the law. It should be noted that the crack propagation velocity could be
varied for the crack tips along the front. In a single propagation step, the crack advance for

each crack tip is regularized by the Aa™%",

Aamaz

AKl, \m
C(AKzaw) ) '

Ad' = C(AKL)™ N
eq

— AgMae ( (45)
The maximum hoop stress criterion is used to determine the direction of crack propagation.

We assume that the crack propagates in the direction 6. such that the hoop stress is maximum,

which is given by the following expression [102]

—2(K11/K7)
1+ \/1 +8(K[[/K[)2 '

0. = 2arctan

6 Numerical examples

In this section, numerical examples about the penny-shaped crack and elliptical crack will be
given, modeled in infinite domain with the COD equation (10) and in finite domain with the
dual equations (6) and (7). The convergence in COD is compared and the numerical SIFs are
calculated by both VCCI and M integral. Then the crack growth algorithm is checked. The

Young’s modulus E = 1000 and Poisson’s ratio v = 0.3 for all the cases.

6.1 Penny-shaped crack

Suppose a penny-shaped crack is subjected to the remote tension og, i.e. t>° = (0,0,00). The
radius of circle is a. The inclination angle is ¢ and circular angle 0 is defined in the crack plane

(Ozxy) as in Figure 5. The analytical solution of SIFs reads:

2
K= *O‘O\/CLWCOSQQO,
s

4
K = ————0pvamcosypsinpcost, (47)
(2 —v)
4(1 —
K= Maox/aﬂcosgosingosine.
(2 —v)
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C

Figure 5: Geometry for penny-shaped crack (a = b) and elliptical crack (a # b)

In particular, when the crack plane is horizontal (¢ = 0), the analytical normal displacement

is given as:

uy(r,0,0) = M\/cﬂ—ﬂ, r < a. (48)

Th

6.1.1 Singular integration test

The problem is modeled by COD equation (10), so that only a single NURBS patch is used to
represent the crack, and the numerical COD will be compared with the analytical solution. The
collocation points are moved aside from the pole in order not to locate at the degenerated point.
The NURBS basis functions associated with the pole, however, are enforced to Cy through the
corresponding control points sharing the same degrees of freedom. The BIEs from these moved

collocation points are merged to one equation.

We note that the COD solution only varies in radial direction while keeping the same in angular
direction, thus 4 elements are used in angular direction. This will lead to high aspect ratio of
each element with the refinement in radial direction. Figure 6 compares the Ls norm error
in COD for ¢ = 0. ‘ngp_s’ denotes the number of Gauss points in angular direction in each
sub-triangle. original SST means a direct use of the method and improved SST denotes the

SST with conformal mapping. It can be observed that

e when ngp s= 30, the original SST and improved SST get comparable error. However,
the error from original SST is non-uniformly distributed whilst the improved SST gets a

more uniform error distribution;
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e when ngp s= 18, the error from original SST gets diverged (e, =1.467716e-1), while

improved SST keeps the same accuracy as it from ngp s= 30;

e the error becomes big near the crack front. This is due to the crack tip singularity.

Thus we conclude that original SST need more Gauss points in order to get a reasonable
accuracy. If we move the knot (n = 0.875) next to the crack front in radial direction closer to
the crack front (n = 0.94) and repeat comparison as in Figure 7. We find that even ngp s= 30,
original SST still gives big error. while the improved method shows a higher accuracy than
before. We can refer that, due to the crack tip singularity, a refined mesh near the crack front
should give better accuracy in COD, but the original SST is sensitive to the element distortion
and gives diverged results. The improved SST presents a robust application for this kind of

mesh configuration.

error error
0.2I O.2I
0.16 0.16
012 012
.-0.08 !0.08
I0.04 IO'OA
0.000258 0.0079
(a) original SST, ngp s=30, er, =3.344418e-2 (b) improved SST, ngp_s=30, er, =3.844282¢-2
rror rror
055 055"
0.4 0.4
j0.3 0.3
0.2 '—0.2
IO.] IO.]
0.000225 0.0079
(c) original SST, ngp s=18, ey, =1.467716e-1 (d) improved SST, ngp s=18, er,=3.844282¢-2

Figure 6: Error in crack opening displacement for penny crack. ‘ngp s’ denotes the number
of Gauss points in angular direction in each sub-triangle. Knot vectors: angular direction
£-[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial direction n=[0,0,0,0.5,0.75,0.875,1,1,1]
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05' 0.5irror
04 0.4
03 0.3
02 fo2
> Io.1

0.00607 0.00178

(b) improved SST, ngp s=30, er,=1.755681e-2

Ol5il’r0r Oﬁirror
0.4 0.4
j03 .’0-3
0.2 0.2
I0,1 IO.]
0.0184 0.00178

(c) original SST, ngp s=18, er,=7.110011e-1 (d) improved SST, ngp_s=18, er,=1.755679¢e-002

Figure 7: Error in crack opening displacement for penny crack. Knot vectors: angular direction
£-[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1], radial direction n=[0,0,0,0.5,0.75,0.94,1,1,1|
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mesh 1 mesh 3 mesh 5

Figure 8: NURBS(p = ¢ = 2) represented crack surface meshes with 1, 5, and 9 uniformed
refinement in radial direction, followed by graded refined elements (with black edges) close to
crack front. The blue dots are collocation points

6.1.2 Convergence test

Uniform mesh refinement in the parametric space is performed and we calculate the element
size h as h = /S, where ST denotes the maximum area of the element. The convergence
curve is plotted in Figure 9 where we compared both the quadratic and cubic NURBS basis
functions. It can be concluded that the degree elevation helps to improve the accuracy. But
the order of convergence rate (oc) keeps almost the same value (oc = 1). The deterioated oc is

due to the physical singularity along the crack front.

As stated in the above section, the uniform refinement is not an efficient way to improve the
accuracy for penny crack. Thus five mesh configurations are designed through keeping the ele-
ment number in angular direction while the mesh is uniformly refined with the element number
2,4, 6, 8 and 10 in radial direction, then the element at crack front is further gradely refined
via a consecutive knot insertion in order to reduce the error caused by crack tip singularity
(Figure 8 shows mesh 1, 3 and 5). Figure 10 plots the result for convergence study. It can be
seen that the accuracy is improved almost by one order and the final estimate convergence rate
is two times higher than the uniform refinement. This indicates the efficiency of IGABEM in

the application of fracture simulation.

6.1.3 Stress intensity factor test

In this subsection, the computation of SIFs is checked. Instead of using COD equation to model

the penny-shaped crack in the infinite domain, we put two overlapped crack surfaces in a cube
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Figure 11: Path independence check for VCCI and M integral

with size L = 200a such that we could compare the numerical STFs with the analytical solution

for infinite domain. Dual equations are used for this case.

Figure 11 investigates the path independence of the M integral and VCCI for mode I penny-
shaped crack. Here ‘R’ denotes the virtual crack advance in VCCI and the radius of the contour
in M integral. It can be seen that when R/a is from 0.02 to 0.08, both methods show path
dependent behavior. For M integral, the error varies within 2%. When the radius of contour is
small, K converges to analytical value; while increasing R, since the stress field for the crack
tip is influence by other tips in the crack front, plane strain condition is not satisfied properly,
the method becomes inaccurate. For VCCI, the error varies within 6% and generally a small
virtual crack advance is needed. However, if R is too small, difficulty in numerical evaluation
of stress and COD close to crack front will arise which lead to the inaccuracy of K. From the

figure we can also refer that M integral presents a smaller reduction in error than VCCL

Figure 12 compares the SIFs obtained from M integral with R = 0.02a and VCCI with R =
0.04a for the mixed mode penny-shaped crack with inclination angle ¢ = 7/6. It is seen that
both methods agree well with the analytical solution. Kjr; from M integral shows deviation
near § = w/2 and 37/2. Table 1 presents the error at § = 0, 7/4 and /2. It can be observed
that the error of K and Kjy is within 1% by both methods, while within 7% for Ky by M

integral. we can conclude that the IGABEM can provide accurate SIFs, and the numerical
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Figure 12: Stress intensity factors for penny crack with ¢ = 7/6

SIFs along crack front is quite smooth, although with only 4 elements in angular direction and

without any smoothness operation. This gives the premise for a stable evolution for the crack

growth simulation.

Ky Ky
VCCI | M integral | VCCI | M integral
=0 7.133e-3 2.008e-3 2.898e-8 5.221e-9
0=m/4| 7.167e-3 1.983e-3 1.591e-4 6.243e-2
0 =m/2 | 1.622¢-8 1.228e-8 2.010e-4 1.894e-2

Table 1: Error of SIFs for penny-shaped crack with ¢ = 7 /6.

6.2 Elliptical crack

Suppose an elliptical crack is subjected to the remote tensile loading og in the normal direction,
ie. t2° = (0,0,00). The semi-major axes is a, semi-minor axes b. The inclination angle is ¢

and elliptical angle 6 is defined in the crack plane as in Figure 5. The analytical solution of

29



SIFs reads:
Vb f(6)

00

K[ = 2 (1 + COSQ@)W,
_ 00 . Vbrk?(b/a)cosd
= e B
oo . - Vbrk?(1 —v)sinf
K= 2sin2 ,
TR OB (49)
2 b2
]C — 1 - ﬁ’
(2 f 2/\1/4
f(0) = (sin“0 + Pl 0)"/%,
2
B(k) = (K> = v)E(k) + Vb—zK(k),
a

where K (k) and E(k) are elliptical integrals of the first kind and second kind, respectively:

w/2 1
K(k) :/ —_2d9
0 1 — k2sin=0

, (50)
E(k) = / V1 — k2sin?0d6.
0
In particular, when ¢ = 0, the displacement in the crack normal direction reads:
2(1—=v)og b x?2 y?
(2,7,0) = Y 51

The difference of the elliptical crack and penny crack is that the mode I SIF is not a constant,
due to the variation of curvature along the crack front. The problem is modeled by COD
equation (10) and mesh configuration and collocation is analogous to penny-shaped crack. The
tip in numerical aspect is, for elliptical crack, the elements have high element aspect ratio as
well as non-orthogonal basis vectors. Figure 13 shows that original SST presents erroneous
result with 18 Gauss points in angular direction. While the improved SST gives a reasonable

COD and error distribution.

For the convergence study, we first give the result of uniform refinement in parametric space
in Figure 15. Then the same graded mesh configurations for elliptical crack are generated as
done for penny crack as in Figure 14. Figure 16 compares the result between uniform mesh and
graded mesh. The convergence feature is almost the same as that of penny crack. And we can

conclude that the IGABEM also suits well for modeling elliptical crack.

For the test of SIFs computation, we put two overlapped crack surfaces in a cube with size
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Figure 13: Error in crack opening displacement for elliptical crack. Knot vectors: angular di-
rection £€=[0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1|, radial direction 1=[0,0,0,0.5,0.75,0.875,1,1,1]

mesh 1 mesh 3 mesh 5

Figure 14: NURBS(p = ¢ = 2) represented crack surface meshes with 1, 5, and 9 uniformed
refinement in radial direction, followed by graded refined elements (with black edges) close to
crack front. The blue dots are collocation points
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Figure 15: Ly norm error of COD for elliptical crack
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0

L = 200a such that we could compare the numerical SIFs with the analytical solution for

infinite domain. Dual equations are used. Figure 17 compares the SIFs obtained from M

integral with R = 0.02b and VCCI with R = 0.02b for the mixed mode elliptical crack with

inclination angle ¢ = /6. Table 2 presents the error at § = 0 and /2 for the SIF in three

modes. It can be seen that the error for all the SIFs is within 7%. And the SIFs along the crack

front is smooth. We note that the SIFs accuracy of elliptical crack is a bit worse than penny

crack, which is due to the varied curvature along the crack front. Since the fixed R is used, the

singularity at the sample points near the semi-major and semi-minor axes would be different,

which will lead to inaccuracy in SIFs evaluation. More suitable way to estimate the SIFs for

elliptical crack would be one of the future work.

K Ky Kipp
VCCI | M integral | VCCI | M integral | VCCI | M integral
=0 4.564e-2 1.534e-2 4.138e-2 1.279e-2 1.226e-7 2.174e-7
0 =m/2 | 8.284e-3 2.214e-2 6.936e-8 5.152e-8 6.882e-3 | 5.959e-2

Table 2: error of SIFs for elliptical crack with ¢ = 7/6

6.3 Fatigue crack growth

In this section, the crack surface updating algorithm is tested combined with the Paris law.

We fist check the crack growth of the horizontal penny crack under the uniform tension from
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Figure 17: Stress intensity factors for elliptical crack with ¢ = 7/6

section 6.1.3. The fatigue parameters m = 2.1 and the specified Adaq, = 0.2a. We propagate
10 steps and make a comparison with the exact result and the result from the XFEM-+level
set method [103] as in Figure 18(a) and (b). It can be observed that the crack front for each
step agrees well with exact solution by IGABEM, while the crack front deviates gradually from
the exact solution with the crack growth by XFEM-+level set method, due to the fact that the
level set method is restricted in describing the crack front exactly and this inaccuracy will be
accumulated step by step. We then compute the crack propagation for m = 5, and the result
is presented in Figure 18 (c¢). We find that the numerical crack front still agrees well with the
exact front, although the high index value is supposed to exaggerate the error of velocities of
the sample points. This test shows the proposed crack propagation scheme owns the ability to
evolve the crack in a stable manner, thanks to the smoothness in the numerical stress and SIFs
solution and exact representation in crack evolution. Finally, we simulate the crack growth for
elliptical crack with inclination angle ¢ = 7/6 modeled by the dual equations in finite domain

taken from section 6.2. Figure 19 illustrates the 1, 5 and 10th of the propagation step.

7 Conclusions

The formulation and implementation of isogeometric boundary element methods (IGABEM)
for simulating 3D fatigue fracture problem are outlined in this paper. The same NURBS basis

functions are used for the discretization of geometry/crack and the approximation of displace-
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Figure 18: Fatigue crack growth of the first 10 steps of a penny crack
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Figure 19: Fatigue crack growth simulation of an elliptical crack
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ment /traction in the isogeometric framework. The singularity subtraction technique (SST)
proposed in [65] for the treatment of (hyper-)singular integrals in BEM. The improved SST
[70] has been extended to quadrilateral element such that it can be applied to tensor-product
NURBS basis functions. Both the COD form and dual equations of IGABEM have been real-
ized for the crack modeling. And the two ways to extract SIFs, the contour-based M integral
and VCCI, are compared. An algorithm to propagate the NURBS-represented crack surface is
presented and validated. The highlights of this work include:

(1) The proposed singular integration scheme can preserve the quadrature accuracy for highly
distorted elements which exist commonly in IGA. Thus it enables a robust I[GABEM imple-
mentation;

(2) By selecting the graded mesh refinement in the direction where the crack tip singularity
varies, the convergence rate can be improved by 2 times and accuracy can be improved by one
order, than the uniform refinement. This shows the efficiency of IGABEM in the application
of fracture problem;

(3) The local crack tip system is setup naturally and uniquely thanks to the NURBS repre-
sentation of the crack surface. Combining with the continuity in stress solution in BEM, the
obtained SIFs along the crack front are smooth and accurate;

(4) The proposed algorithm for crack propagation is validated to be stable, even for high index

value in Paris law, due to the smoothness in crack front geometry and numerical SIFs.

The future work will focus on the surface cracks problem, where the crack will have intersection
with the body geometry. Meanwhile, the fast solution as proposed in [49] is also a point of

interest.
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Appendix

A The local expansions in SST

Supposing the parametric coordinate £(&,n) is in the knot interval [£1, &2] X [11, 72, the mapping

between parametric coordinate and parent coordinate is:

1 1
=z —&)E+ (&L + &),
e =
n= 5(772 —n)n + 5(772 +m).
And the Jacobian transformation for this would be:
- o0& 1
J = — = — —
£~ o 2(52 1),
- on 1
— 2 (g — 93
JTY 877] 2(172 ?71)7 ( )
j(&) = jﬁjn

The Taylor expansion of x; — s; with respect to the source point in the parent space would be:

e — axi c__ ¢ % - = 82xi (5_53)2
0*x; o oFve - 0%z (77 — 71s)? o
Fotarlee €~ EA—)+ F | ]
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Note that:

5 " ogac o
Or; (91@-@ B % -
on  omon  on""
621‘i 821‘i (85)2 821‘1' =2

og og\og/ o
82951- _ 82951- (@)2 _ 82561' j2
arf]Q an2 877] 67]2 n’

321'1' _ 621'1' %@ . 825131' - =
ocon  0conoton  ocan "

(55)

Now the polar coordinates p(p, #) centred at the source point are introduced in the parent space

as in Figure 2, The parent domain is subdivided into four triangles for quadrature naturally.

Each triangle is regarded as a degenerated square [—1, 1] x [—1, 1] with two points joint together.

Supposing a point p(p,0) € [0, p(0)] x [01,02] in the triangle, a linear mapping between the polar

coordinates and the square coordinates system é (é ,7) is performed as:

p= 5+ 1)p(6),

1 ~ 1
0= 5(02 — 91)§+ 5(02 + 01).

And the Jacobian transformation for this would be:

o= 5 = 57(0),
Jo = gg = %(92 —01),
j(P) = jp Jo
Equation (54) becomes:
T — 8 = p[ (9? EZESCOSQ + 8;; g:gssme}
+ [%25? =3 COZQQ " gg;% gg, OO+ 8827;? E=ESSH;29} +0(")

i = pAi(0) + p*Bi(0) + O(p°).
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And we define:

(z

v
N|=
—
ot
Ne)
~

k=1
3
C = Z A0
k=1
The derivatives of r = |x — s| are:
T; — Si A Bi C
;= — — —A;
T r A +<A A3)p+0( ) (60)
= dio + dirp + O(p?).
The term 1/73 is:
11 3C (1>
r3 A3p3 A5 p (61)
S 02 S_1 1
+ — 4+ 0O(-).
p3 - p? p
The NURBS basis function is also expanded as:
ON, ON, = .
N, (&) = Ny(&,) + { chosﬁ + 7’_ _ Jnsme} + 0(p?)
on le=g, (62)

= Nao + Na1(0)p + O(p?).

For the surface point £(£,n) in the knot interval [£1,&a] X [n1,72], we define two tangential

vectors along the £ and n directions respectively as:

_ [Ox Oy Oz
=[5 e o .
Ox Oy 0z
m2 =[50 B )

And we can get the normal vectors through:

oy xmg o [W05 0200 0505 050 Dy _y0s g

O£ &’ 06 on OO’ 0§ dn O In

The Jacobian for transformation from parametric space to physical space is the length of the
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normal vector n:

Oy 0z 8z8y>2 (8283@' 8:682)2 (axay 83/89@)2}1/2

7© = |(5eay ~acan) +(Gcan—acan) *(oean acon

3 1/2 (65)
= |k
k=1
The unit normal vector n could be expressed as
n
n¢)=—-—=. 66
© = 7 (66)
The component J;(§) can be expanded at the source point. For instance:
J1(&) = Ji(&,) +p[ o€ ) J5c080+—‘ . 7781119} +0(p?)
= J10+J11(9)p+0(p ), (67)
Oh_ 0 (0y0:_0:0uy
o6 0g\OEOn  OE On
So we can obtain J;(&) as:
Ji(€&) = Jio + Ju(0)p + O(p?). (68)
Combining with Equation (66), we arrive at:
1
(&) = ——=[Jio + T (0)p + O(p?)].
ni(§) J(E)[ o+ Jia(0)p + O(p)] (69)

Now, all the terms are prepared for the expansion of the integrand. Let’s take a simple example:

ini(§)Na
1= 7[ Litis) Tals) (52 s, (70)
S T
After discretization,
2w rP0) g znz a g 7
= / / (€)(€)pdpdo, (71)

where J (&) is from parent to parametric space defined in Equation (53), J(&) from parametric
to physical space defined in Equation (65). p(6) is the upper bound of p and can be seen in

Figure 2.
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And substitute Equations (60)(61)(69)(62) into the discretization:

— /27r /p(9 dio + diip+ O(p )} 706 [ 0+ Jiip+ O(p )} [Nao + Nip+ O(pg)}
22+ 2ol @€
_ /QW /p(a diOJiONaO + (di1JioNao + dio Ji1 Nao + dioJioNa1 ) p + O(ﬁ)} (72)

s O(l)} = J(6)T(€)pdpd

where I_o, I_1 are only functions of 6:

I_9 = S_2dinJioNao,
(73)
I = S_1dioJioNao + S—2(di1 JioNao + dioJi1Nao + dio JioNa1)-

Subtracting the explicit singular part in the original integrand in Equation (71), the regular

integral will be obtained:

2m Tin; a g I I 17 -
Tog = / / i TOp - =2 = =] T, (74)

This double integral can be evaluated using normal Gaussian rule. And the explicit part then
will be added back and treated in a semi-analytical way. For the source point located in the
singular element, a small circle is created to exclude the source point radius € in physical
space. When mapping the circle into the intrinsic polar coordinate, the circle will be distorted

generally. The polar coordinate p is represented with respect to ¢ as:

p=al(e, ) = eB(0) + 2y(0) + O(?). (75)

To evaluate the coefficients 5 and ~, the radius of the circle is given as the Taylor expansion in

intrinsic polar coordinates as:

c = pA®) + pﬁ% o). (76)
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The reversion of this series is:

C
2 3
pza(s,@):az—e ﬂ—&-O(s) (77)
Thus we get:
1
6 = Za
o (78)
Y= _ﬂv

which are only functions of 6. Then let’s first look at the explicit strong singular part given in

the limit form as:

2ar p(6) )
lim / 10 J(&)dpdo
e=0Jo  Jaep) P

T p(0) }
— lim i /p I‘lp(wj(s)ﬂp)dﬁdi

e—=0 Jo (e,0)
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2
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(79)
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where J(p) is from polar to square coordinates defined in Equation (57). Note that the last

term is canceled since:

/ 08 =o. (80)
0

After integrating the singular term with respect to p analytically and with the use of Equations
(75)(80), the explicit strong singular integrand is transferred as a regular one-dimensional in-

tegral and normal Gaussian rule then can be applied. Similar treatment applies to the explicit

41



hyper-singular term. The full evaluation for Equation (71) is obtained:

_ N () PV SR () B U
I—Ireg—i—/o L2(6) ()55 Todé /0 1_5(8)J(€) IBQ(G)JFPA(G)}Jng (81)

B Auxiliary displacement and stress fields in M integral

(2)

j

The auxiliary stress field o, and displacement field u§-2) are given as:

K§2) cose(l si Qs' 39) Kg) sl 9<2+cosecos39)
Opy = —=——c08— (1 —sin—sin— ) — in— —COS—
o 2 2 Vomr 2 2 2
Oyy = I<2)cos(1+singsin?)9> + Kﬁ) sinfcosfcos%
W rr 2 272 Vomr 22 27
K® 9 0 30, K ‘9(1 0. 39>
Toy = Sin—cos—cos— cos— (1 — sin—sin—
Y 2002 2 Vormr 2 22/
(2)
Tuz = Kin cosQ
v e 2
(2)
Tog = — K sing,
Vorr 2

(82)

K 0 0
Uy = et Lcosf Kk — 1+ 2sin®=
2u\ 2 2 2
1 K 0 0
+ H_:?)Hw / %sini <Ii +1+ 2C0822) ,
K 0 0
Uy = et Lsinf K+ 1— 2cos’=
’ 20\ 2 2 2
1 K 0 0
+ (Jr;)”, /%cosi <1 k4 2sin22> :
2KH] ro. 9
Uy, = ——— 4/ —sin—.
o \/ 27 2
E

where (r,0) are the crack tip polar coordinates and p = ) B = 3—4v.

The auxiliary strain field can be obtained by differentiating u; with respect to the physical

coordinate.
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