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According to a celebrated result of Steinitz (see e.g. [13, Chapter 4]), a graph
Γ is the 1–skeleton of a convex polyhedron in R

3 if and only if Γ is planar and 3–
connected. Steinitz [12] also discovered, however, that there exists a 3–connected
planar graph which is not realized as the 1–skeleton of any polyhedron inscribed
in the unit sphere S, answering a question asked by Steiner [11] in 1832. An un-
derstanding of which polyhedral types can or can not be inscribed in the sphere
remained elusive until Hodgson, Rivin, and Smith [7] gave a computable but non-
explict characterization in 1992, see below. Our first result is on realizability by
polyhedra inscribed in other quadric surfaces in R

3. Up to projective transforma-
tions, there are two such surfaces: the hyperboloid H , defined by x2

1
+x2

2
−x2

3
= 1,

and the cylinder C, defined by x2

1
+ x2

2
= 1 (with x3 free).

Definition. A convex polyhedron P is inscribed in the hyperboloid H (resp. in the
cylinder C) if P ∩H (resp. P ∩ C) is exactly the set of vertices of P .

Theorem A [3]. Let Γ be a planar graph. Then the following conditions are equiv-

alent:

(C): Γ is the 1–skeleton of some convex polyhedron inscribed in the cylinder.

(H): Γ is the 1–skeleton of some convex polyhedron inscribed in the hyperboloid.

(S): Γ is the 1–skeleton of some convex polyhedron inscribed in the sphere and

Γ admits a Hamiltonian cycle.

The ball x2

1
+x2

2
+x2

3
< 1 gives the projective model for hyperbolic spaceH3, with

the sphere S describing the ideal boundary ∂∞H
3. In this model, projective lines

and planes intersecting the ball correspond to totally geodesic lines and planes in
H

3. Therefore a convex polyhedron inscribed in the sphere is naturally associated
to a convex ideal polyhedron in the hyperbolic space H

3.
Following the pioneering work of Andreev [1, 2], Rivin [8] gave a parameteriza-

tion of the deformation space of such ideal polyhedra in terms of dihedral angles,
as follows.

Theorem B (Andreev ’70, Rivin ’92). The possible exterior dihedral angles of ideal

hyperbolic polyhedra are the functions w : E(Γ) → (0, π) such that

• for each vertex v, the sum of the values of w on the edges adjacent to v is

equal to 2π,
• for each other closed path c in the dual graph Γ∗,

∑
e∈c

w(e) > 2π.

Each such function gives the angles of a unique ideal polyhedron in H
3.

As a corollary, Hodgson, Rivin and Smith [7] showed that deciding whether a
planar graph Γ may be realized as the 1–skeleton of a polyhedron inscribed in
the sphere amounts to solving a linear programming problem on Γ. To prove
Theorem A, we show that, given a Hamiltonian cycle in Γ, there is a similar linear
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programming problem whose solutions determine polyhedra inscribed in either the
cylinder or the hyperboloid.

The solid hyperboloid x2

1
+ x2

2
− x2

3
< 1 in R

3 gives a picture of the projective
model for anti-de Sitter (AdS) geometry. Therefore a convex polyhedron inscribed
in the hyperboloid is naturally associated to a convex ideal polyhedron in the anti-
de Sitter space AdS3, which is a Lorentzian analogue of hyperbolic space. Similarly,
the solid cylinder x2

1
+ x2

2
< 1 (with x3 free) in an affine chart R

3 of RP3 gives
the projective model for half-pipe (HP) geometry. Therefore a convex polyhedron
inscribed in the cylinder is naturally associated to a convex ideal polyhedron in
the half-pipe space HP

3. Half-pipe geometry, introduced by Danciger [4, 5, 6], is a
transitional geometry which, in a natural sense, is a limit of both hyperbolic and
anti-de Sitter geometry.

Figure 1. A polyhedron inscribed in the hyperboloid (left) and
a combinatorial equivalent polyhedron inscribed in the cylinder
(right). The 1–skeleton of any such polyhedron admits a Hamil-
tonian cycle which we call the equator (red).

Theorem C [3]. The possible exterior dihedral angles of ideal AdS polyhedra are the

functions w : E(Γ) → R 6=0 such that

• w < 0 on a Hamiltonian cycle γ, w > 0 elsewhere,

• for each vertex v, the sum of the values of w on the edges adjacent to v is

equal to 0,
• for each “other” closed path c in Γ∗, crossing γ exactly twice, the sum of

the values of w on the edges of c is strictly positive.

Each such function gives the dihedral angles of a unique ideal polyhedron in AdS3.
The equivalence between conditions (H) and (S) in Theorem A follows from a

direct argument comparing the conditions occuring in Theorem A and in Theorem
C. For condition (C), one has to use instead of Theorem C its analog n half-pipe
geometry.

Related results determine the possible induced metrics on ideal polyhedra. In
the hyperbolic setting the following result is known.
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Theorem D (Rivin ’93). Let h be a hyperbolic metric of finite area on S2 with at

least 3 cusps. There exists a unique ideal polyhedron H
3 with induced metric h on

its boundary.

We have a similar result in the anti-de Sitter setting.

Theorem E [3]. Let h be a hyperbolic metric of finite area on S2 with at least 3
cusps, and let γ be a Hamiltonian cycle through the cusps. There exists a unique

ideal polyhedron in AdS3 with induced metric h on its boundary and and equator

γ.

In spite of the close analogy between the hyperbolic and AdS statements, the
proofs in the AdS case must be done along very different lines. The reason is that
the hyperbolic proofs are largely based on the concavity of the volume of ideal
hyperbolic polyhedra (in particular ideal simplices), while this property doesn’t
hold for ideal AdS polyhedra. Other arguments must therefore be developed.

There are a number of open questions stemming from those results on ideal AdS
polyhedra. For instance, do the description of their dihedral angles and induced
metrics extend to hyperideal AdS polyhedra, that is, polyhedra with all vertices
outside AdS3 but all edges intersecting it? This basically happens in the hyperbolic
setting [9, 10].
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