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Abstract

Derived D-Geometry is considered as a convenient language for a coordinate-free in-
vestigation of nonlinear partial differential equations (up to symmetries). One of the first
issues one meets in the functor of points approach to derived D-Geometry, is the question
of a model structure on the category C of differential non-negatively graded quasi-coherent
commutative algebras over the sheaf D of differential operators of an appropriate under-
lying variety. In [BPP15a], we described a cofibrantly generated model structure on C via
the definition of its weak equivalences and its fibrations. In the present article — the sec-
ond of a series of works on the Batalin-Vilkovisky-formalism — we characterize the class of
cofibrations, give explicit functorial cofibration-fibration factorizations, as well as explicit
functorial fibrant and cofibrant replacement functors. We then use the latter to build a
model categorical Koszul-Tate resolution for D-algebraic ‘on-shell function’ algebras.
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1 Introduction

The study of systems of nonlinear PDE-s and their symmetries, via the functor of points
approach to spaces and varieties, leads to derived D-stacks, i.e., roughly, locally representable
sheaves DG qcCAlg(Dx) — SSet valued in the category SSet of simplicial sets and defined
on the category DG;qcCAlg(Dx) of differential non-negatively graded commutative algebras
— over the sheaf Dx of differential operators of a smooth affine scheme X —, whose terms
are quasi-coherent as modules over the function sheaf Ox of X. The sheaf condition ap-
pears a the fibrant object condition of a model structure on the category of the corresponding
presheaves. This structure depends on the model structure of the source category, which
is equivalent to the category DGDA of differential non-negatively graded commutative alge-
bras over the total sections D := Dx(X) = I'(X,Dx) of Dx. In [BPP15a|, we defined and
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studied a finitely generated model structure on DGDA. In the present paper, we complete its
description: we characterize cofibrations as the retracts of the relative Sullivan D-algebras.
Further, we give explicit functorial ¢ TrivCof — Fib’ and ¢ Cof — TrivFib’ factorizations (as well
as the corresponding functorial fibrant and cofibrant replacement functors). The latter are
specific to the considered setting and are of course different from those provided, for arbitrary
cofibrantly generated model categories, by the small object argument. Eventually, we review
the D-geometric counterpart R of an algebra of on-shell functions and apply our machinery
to find a model categorical Koszul-Tate (KT) resolution of R. This resolution is a cofibrant
replacement of R in an appropriate coslice category of DGDA. In contrast with

- the classical KT resolution constructed in coordinates [Barl0], for any regular on-shell irre-
ducible gauge theory (as the Tate extension of the local Koszul resolution of a regular surface),
and

- the compatibility complex KT resolution built in coordinates |Ver02|, under regularity and
off-shell reducibility conditions (existence of a finite formally exact compatibility complex),

the mentioned D-geometric KT resolution, obtained from the cofibrant replacement functor of
DGDA, is functorial and exists without the preceding restrictive hypotheses.

In this series of papers, our final goal is to combine and generalize aspects of Vinogradov’s
secondary calculus [Vin01], of the homotopical algebraic geometry (HAG) developed by Toén
and Vezzosi [TV04, TV08|, and the D-geometry used by Beilinson and Drinfeld [BD04|. For
Vinogradov, the fundamental category is roughly the homotopy category of the (coslice cat-
egory under a fixed diffiety or D-scheme [in particular, under a fixed affine D-scheme or
D-algebra| of the) category DGDM of differential graded D-modules. In the present paper, we
study the homotopy theory of ‘diffieties’ by describing a model structure on DGDA: we inves-
tigate the D-analog of Rational Homotopy Theory. On the other hand, HAG deals with the
category DGCA of differential graded commutative algebras over a commutative ring. To study
partial differential equations, we have to switch to the category of differential graded commu-
tative algebras over the sheaf of noncommutative rings of differential operators of a scheme
or variety. Eventually, in comparison with the frame considered by Beilinson and Drinfeld,
we aim at dealing not only with D-schemes, but also with (derived) D-stacks. We expect
this context to be the correct setting for a coordinate-free gauge reduction — see [PP16] and
[BPP16]| for first results.

Let us emphasize that the special behavior of the noncommutative ring D turns out to be a
source of possibilities, as well as of problems. For instance, a differential graded commutative
algebra (DGCA) A over a field or a commutative ring k is a differential graded k-module, en-
dowed with a degree zero associative graded-commutative unital k-bilinear multiplication, for
which the differential is a graded derivation. The extension of this concept to noncommutative
rings R is not really considered in the literature. Indeed, the former definition of a DGCA over
k is equivalent to saying that A is a commutative monoid in the category of differential graded
k-modules. However, for noncommutative rings R, the category of differential graded (left)
R-modules is not symmetric monoidal and the notion of commutative monoid is meaning-
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less. In the case R = D, we get differential graded (left) D-modules and these are symmetric
monoidal. But a commutative monoid is not exactly the noncommutative analog of a DGCA
in the preceding sense: the multiplication is only O-bilinear and, in addition, vector fields
act on products as derivations. Further, although we largely avoid sheaves via the confine-
ment to affine schemes — a necessary restriction, without which no projective model structure
would exist on the relevant categories [Har97, Ex. II.6.2] —, sheaves and quasi-coherence
do require a careful approach. Examples of more challenging aspects are the questions of
flatness and projectivity of D = Dx(X) viewed as O = Ox(X)-module, the combination of
‘finite’ and ‘transfinite’ definitions and results, the functorial ‘TrivCof — Fib’ and ‘Cof — TrivFib’

factorizations...

Eventually, we hope that the present text and the one of [BPP15a| will be considered
as self-contained, not only by researchers from different fields, like e.g., homotopical algebra,
geometry, mathematical physics, but also by graduate students.

The paper is organized as follows:

Contents
1 Introduction 1
2 Preliminaries 3
3 Description of DGDA-cofibrations 5
3.1 Relative Sullivan D-algebras . . . . . . . .. . ... Lo 5]
3.2 DGDA-cofibrations . . . . . . . . . L 10
4 Explicit functorial cofibration — fibration decompositions 15
5 First remarks on Koszul-Tate resolutions 20
5.1 Undercategories of model categories. . . . . . . . . . ... oL 21
5.2 Basics of jet bundle formalism . . . . . .. ... o o Lo 22
5.3 Revision of the classical Koszul-Tate resolution . . . . . . ... ... ... ... 23
5.4 D-algebraic version of the Koszul-Tate resolution . . . . . ... ... ... ... 24
6 Appendix 26
6.1 Small object argument . . . . . . ... 26
6.2 Proof of Theorem 5. . . . . . . . . . . . . . . ... 27
6.3 Explicit fibrant and cofibrant functorial replacement functors . . . . . . .. .. 29

2 Preliminaries

In the following, we freely use notation, definitions, and the results of [BPP15a]. For the
convenience of the reader, we nevertheless recall some concepts and propositions in the present
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section. For explanations on D-modules, sheaves versus global sections, model categories, small

objects, cofibrant generation, as well as on relative Sullivan algebras, we refer the reader to
[BPP15a, Appendix].

Theorem 1. For any unital ring R, the category Chy(R) of non-negatively graded chain
complezes of left R-modules is a finitely ((and thus a cofibrantly) generated model category (in
the sense of [GS06] and in the sense of [Hov07]), with

I={ip:S"t 5 Dt k>0}
as its generating set of cofibrations and
J={¢:0— DE k>1}
as its generating set of trivial cofibrations. Here DF is the k-disc chain complex

k (k) iq (k1) (0)
Di:---—0—0—R— R —0—--—0, (1)

Sk is the k-sphere chain complex
& (k) (0)

Sg:++—0—0—R—0—---—0, (2)
and iy, are the canonical chain maps. The weak equivalences of this model structure are the
chain maps that induce an isomorphism in homology, the cofibrations are the injective chain
maps with degree-wise projective cokernel ( projective object in Mod(R) ), and the fibrations are
the chain maps that are surjective in ( strictly) positive degrees. Further, the trivial cofibra-
tions are the injective chain maps i whose cokernel coker(i) is strongly projective as a chain
complex ( strongly projective object coker(i) in Chy(R), in the sense that, for any chain map
¢ : coker(i) — C and any chain map p : D — C, there is a chain map { : coker(i) = D such
that po £ =1, if p is surjective in ( strictly) positive degrees).

Proposition 1. If X is a smooth affine algebraic variety, its global section functor yields an
equivalence of symmetric monoidal categories

F(Xv .) : (DG+qCMOd(DX)> ®(9xv OX) - (DGDMa X0, 0) (3)

between the category of differential non-negatively graded modules over the sheaf Dx of dif-
ferential operators on X, which are quasi-coherent as modules over the function sheaf Ox,
and the category of differential non-negatively graded modules over the ring D = Dx(X) of
global sections of Dx. The tensor product is taken over the sheaf Ox and over the algebra
O = Ox(X), respectively.

Proposition 2. If X is a smooth affine algebraic variety, its global section functor induces an
equivalence of categories
I'(X,e) : DG;qcCAlg(Dx) — DGDA (4)

between the category of differential non-negatively graded Ox-quasi-coherent commutative al-
gebras over Dx and the category of differential non-negatively graded commutative algebras
over D.
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Proposition 3. The graded symmetric tensor algebra functor S and the forgetful functor For
provide an adjoint pair
S : DGDM = DGDA : For

between the category DGDM and the category DGDA.

Theorem 2. The category DGDA of differential non-negatively graded commutative D-algebras
is a finitely ((and thus a cofibrantly) generated model category (in the sense of [GS06] and in
the sense of [Hov07] ), with S(I) = {S(wx) : tx € I} as its generaling set of cofibrations and
S(J) = {S(Ck) : ¢& € J} as ils generating set of trivial cofibrations. The weak equivalences
are the DGDA-morphisms that induce an isomorphism in homology. The fibrations are the
DGDA-morphisms that are surjective in all positive degrees p > 0.

Below, we will describe the cofibrations and functorial fibrant and cofibrant replacement
functors.

The model structure on DGDA is obtained by Quillen transfer of the model structure
on DGDM = Chy (D). However, since D-modules (resp., D-algebras) are actually sheaves of
modules (resp., sheaves of algebras), the category of differential graded D-modules (resp.,
differential graded D-algebras) over X, is rather DG;qcMod(Dyx) (resp., DGy1qcCAlg(Dx)).
In view of Proposition 1 (resp., Proposition 2), the finitely generated model structure on
DGDM (resp., DGDA) induces a finitely generated model structure on DGyqcMod(Dx) (resp.,
DGqcCAlg(Dx)).

3 Description of DGDA-cofibrations

3.1 Relative Sullivan D-algebras

We recall the definition of relative Sullivan D-algebras [BPP15al.

If (A,da) € DGDA and if (M,dys) € DGDM, then (A ® SM,d) € DGDA. The differential dg
of SM is canonically generated by das and the differential d of A ® SM is given by

d=ds®id+id®ds . (5)

If V € GDM, we have (V,0) € DGDM and A ® SV € GDA. In the sequel, we equip this graded
D-algebra with a differential d that coincides with d4 ® id on A® 1p ~ A, but not with some
differential id®dg on 14 ® SV ~ SV. To distinguish such a differential graded D-algebra
from (A ® SV, d) with differential (5), we denote it by (AKX SV, d).

Definition 1. A relative Sullivan D-algebra ( RSDA) is a DGDA-morphism
(4,d4) = (AR SV, d)

that sendsa € Atoa®1 € AKRSV. HereV is a free non-negatively graded D-module, which
admits a homogeneous basis (go)acy that is indexed by a well-ordered set J, and is such that

dge € AR SV.q , (6)
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for all a« € J. In the last requirement, we set Ve, 1= ®ﬁ<a D - gz. We refer to Property (6)
by saying that d is lowering. A RSDA with Property

a < f = degga < deggs , (7)

where deg go, is the degree of go (resp., with Property (5); over (A,da) = (0,0)) is called a
minimal RSDA (resp., a split RSDA; a Sullivan D-algebra (SDA) ).

The next lemma allows to define non-split RSDA-s, as well as DGDA-morphisms from such
an RSDA into another differential graded D-algebra.

Lemma 1. Let (T,dr) € DGDA, let (gj)jes be a family of symbols of degree nj € N, and let
V= @jEJD - g;j be the free non-negatively graded D-module with homogeneous basis (g;) ;e
(i) To endow the graded D-algebra T ® SV with a differential graded D-algebra structure
d, it suffices to define
dg; € Ty—1 N dg* {0} | (®)
to extend d as D-linear map to V, and to equip T ® SV with the differential d given, for any
teTy, vi € Vo ooy v € Vi, by

dt@v1 ©...0v) =

k
dr(t) @1 ©...0 v + (—1)7’2(—1)”4’ 2j<em (¢ d(v)) @v1 ©.. L. Oy, (9)
=1

where x is the multiplication in T. If J is a well-ordered set, the natural map
(T,dr)>t—t®1lp € (TKSV,d)

15 ¢ RSDA.
(1) Moreover, if (B,dp) € DGDA and p € DGDA(T, B), it suffices — to define a morphism
q € DGDA(T X SV, B) (where the differential graded D-algebra (T R SV,d) is constructed as
described in (i)) — to define
a(95) € Bn, Ndg' {pd(g;)} . (10)

to extend q as D-linear map to V, and to define g on T @ SV by

qtRv O©...0v) =p(t) *q(v1) * ... *q(vg) , (11)
where x denotes the multiplication in B.

The reader might consider that the definition of d(t ® f), f € O, is not an edge case
of Definition (9); if so, it suffices to add the definition d(t ® f) = dr(t) ® f. Note also
that Definition (9) is the only possible one. Indeed, denote the multiplication in T' ® SV
(see Equation (13) in [BPP15a]) by ¢ and choose, to simplify, & = 2. Then, if d is any
differential that is compatible with the graded D-algebra structure of T'® SV, and coincides
with dr(t) ® 1o ~ dp(t) on any t ® 1o ~ t € T (since (T,dr) — (T W SV,d) must be a
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DGDA-morphism) and with d(v) ® 1o ~ d(v) on any lr ® v ~ v € V (since d(v) € T'), we have
necessarily

dt @ vy @ vg) =

dt®1p) o (7 ®@v1) o (17 ® v2) +
(1Pt ®lo) od(ly ®v1) o (11 ®@ v2) +
(—1)PtT"(t @ 1p) o (Ir @ v1) o d(lr R vg) =

(dT(t) & 10) <o (1T X U1> <o (1T &® U2)+
(1Pt ®1o) o (d(v1) ® 1o) ¢ (Ir ® v2)+
(—1)PTM(t@10) o (Ir @v1) o (d(v2) @ 1p) =

dr(t) @ v ® vy + (=1)P(t * d(v1)) @ va + (—1)PT™M"2 (¢ % d(v2)) @ vy .

An analogous remark holds for Definition (11).

Proof. 1t is easily checked that the RHS of Equation (9) is graded symmetric in its arguments v;
and O-linear with respect to all arguments. Hence, the map d is a degree —1 O-linear map that
is well-defined on T®SV'. To show that d endows T'® SV with a differential graded D-algebra
structure, it remains to prove that d squares to 0, is D-linear and is a graded derivation for
©. The last requirement follows immediately from the definition, for D-linearity it suffices to
prove linearity with respect to the action of vector fields — what is a straightforward verification
—, whereas 2-nilpotency is a consequence of Condition (8). The proof of (ii) is similar. O

We are now prepared to give an example of a minimal non-split RSDA.

Example 1. Consider the generating cofibrations ¢, : S"~! — D", n > 1, and 19 : 0 — SY of
the model structure of DGDM. The pushouts of the induced generating cofibrations

Y =8(tn) and Yy = S(w)

of the transferred model structure on DGDA are important instances of minimal non-split
RSDA-s — see Figure 2 and Equations (12), (13), (14), (16), and (17).

Proof. We first consider a pushout diagram for ¢ := ,, for n > 1: see Figure 1, where
(T,dr) € DGDA and where ¢ : (S(S™1),0) — (T,dr) is a DGDA-morphism.
In the following, the generator of S"~! (resp., the generators of D") will be denoted by

1,1 (resp., by I, and s~'I,,, where s~! is the desuspension operator).

Note that, since S(S™~!) is the free DGDA over the DGDM S™~ ! the DGDA-morphism
¢ is uniquely defined by the DGDM-morphism ¢|gn-1 : S"~' — For(T,dr), where For is the
forgetful functor. Similarly, since S?~! is, as GDM, free over its generator 1,,_1, the restriction
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S(sn-1y 2

(Ta dT)
P

S(D™)

Figure 1: Pushout diagram

¢|gn—1 is, as GDM-morphism, completely defined by its value ¢(1,,_1) € T,—1. The map ¢|gn-1
is then a DGDM-morphism if and only if we choose

Rp—1 = ¢(1n—1) S kern_l dT . (12)
We now define the pushout of (¢, ¢): see Figure 2. In the latter diagram, the differential

S(S"Y) — (T, dp)

]

S(D") (TR S(S™), d)

Figure 2: Completed pushout diagram

d of the GDA T X S(S™) is defined as described in Lemma 1. Indeed, we deal here with the
free non-negatively graded D-module S™ = S =D - 1,, and set

d(1,) := kp—1 = ¢(1p—1) € kery,_1 dp .
Hence, if 2y ~ 24 -1,, € D - 1,,, we get d(x¢) = x4 - kp—1, and, if ¢ € T, we obtain
dtRz1O...0xK) =

k
dr(t) @21 © .. 0z + (P> ()" D (s (v 1)) @01 0. Oz, (13)
=1
see Equation (9). Eventually the map
i:(T,dp)dt—t®1p € (TRS(S"),d) (14)

is a (minimal and non-split) RSDA.

Just as ¢, the DGDA-morphism j is completely defined if we define it as DGDM-morphism on
D"™. The choices of j(I,) and j(s~'I,) define j as GDM-morphism. The commutation condition
of 7 with the differentials reads

j(s7,) = dj1,) : (15)
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only j(I,) can be chosen freely in (T'® S(S™))n, .

The diagram of Figure 2 is now fully described. To show that it commutes, observe that,
since the involved maps ¢, 7,9, and j are all DGDA-morphisms, it suffices to check commutation
for the arguments 1o and 1,_1. Only the second case is non-obvious; we get the condition

dji(l,) =kn-1® 1o . (16)
It is easily seen that the unique solution is
JI) =1r®1, € (T®S(S"))n - (17)

To prove that the commuting diagram of Figure 2 is the searched pushout, it now suffices
to prove its universality. Therefore, take (B,dp) € DGDA, as well as two DGDA-morphisms
i': (T,dr) — (B,dp) and j' : S(D") — (B, dp), such that j' o1 =i’ 0 ¢, and show that there
is a unique DGDA-morphism x : ("X S§(S™),d) — (B,dp), such that yoi =4 and xoj = j'.

If x exists, we have necessarily
X(t®x1®...®xk) :X((t@10)0(1T®$1)<>...<>(1T®1?k))

:X(’i(t))*x(lT@:El)*...*X(1T®.’L‘k) , (18)

where we used the same notation as above. Since any differential operator z; ~ z; - 1, is
generated by functions and vector fields, we get

X(r @ zi) = x(r @ i - 1) = 2 - X(1r © 1) = 23 - X({ () = 2 ' (In) = j'(xi - 1) . (19)
When combining (18) and (19), we see that, if x exists, it is necessarily defined by
Xt@z1 ... 0xE) =i () x5 (21 - Tp) % ... xj (2 - T, . (20)

This solves the question of uniqueness.

We now convince ourselves that (20) defines a DGDA-morphism x (let us mention explicitly
that we set in particular x(t® f) = f-i'(¢), if f € O). Tt is straightforwardly verified that x is a
well-defined D-linear map of degree 0 from 7T'® S(S™) to B, which respects the multiplications
and the units. The interesting point is the chain map property of x. Indeed, consider, to
simplify, the argument ¢ ® z, what will disclose all relevant insights. Assume again that ¢t € T,
and z € S, and denote the differential of S(D™), just as its restriction to D", by s~!. It
follows that

dp(x(t @ x)) =i'(dp(t)) %5/ (x - T,) + (=)' (t) x j'(z - s7'1,,) .
Since ¥(1,_1) = s~ ', and j' 01 = i’ 0 ¢, we obtain j'(s7'I,,) = V' (¢(1,_1)) = 7’ (kn_1). Hence,
dp(x(t @ x)) = x(dr(t) @ x) + (=1)P i'(t) %' (x - 1) =

X(dr(t) @z + (=1)Pt* (z - kn1)) = x(d(E @ x)) .
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As afore-mentioned, no new feature appears, if we replace ¢t ® x by a general argument.

As the conditions y o¢ = ¢’ and x o j = j' are easily checked, this completes the proof of
the statement that any pushout of any v, n > 1, is a minimal non-split RSDA.

The proof of the similar claim for ¢y is analogous and even simpler, and will not be detailed
here. O

Actually pushouts of ¥y are border cases of pushouts of the ¢,-s, n > 1. In other words,
to obtain a pushout of ¢y, it suffices to set, in Figure 2 and in Equation (13), the degree n
to 0. Since we consider exclusively non-negatively graded complexes, we then get S(S~!) =
S(0) =0, S(D°) = §(59), and k_1 = 0.

3.2 DGDA-cofibrations

The following theorem characterizes the cofibrations of the cofibrantly generated model
structure we constructed on DGDA.

Theorem 3. The DGDA-cofibrations are exactly the retracts of the relative Sullivan D-algebras.
We first prove the following lemma.

Lemma 2. The DGDA-cofibrations are exactly the retracts of the transfinite compositions of
pushouts of generating cofibrations

Yn: S(S™H = S(D™), n>0.

Proof. For concise additional information on model categories, we refer to [BPP15a, Appen-
dices 8.4 and 8.6].

In any cofibrantly generated model category M with generating cofibrations I, every cofi-
bration is a retract of an I-cell [Hov07, Proposition 2.1.18]. Moreover, in view of [Hov07,
Lemma 2.1.10], we have

I-cell c LLP(RLP(I)) = Cof . (21)

Since cofibrations are closed under retracts, it follows that any retract of an I-cell is a cofi-
bration. Hence, cofibrations are exactly the retracts of the I-cells, i.e., the retracts of the
transfinite compositions of pushouts of elements of I. For M = DGDA, we thus find that the
cofibrations are the retracts of the transfinite compositions of pushouts of ¥,-s, n > 0. O

The proof of Theorem 3 thus reduces to the proof of

Theorem 4. The transfinite compositions of pushouts of y,-s, n > 0, are evactly the relative
Sullivan D-algebras.

Lemma 3. For any M, N € DGDM, we have
S(M®N)~SM®SN

in DGDA .
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Proof. 1t suffices to remember that the binary coproduct in the category DGDM = Ch, (D)
(resp., the category DGDA = CMon(DGDM)) of non-negatively graded chain complexes of D-
modules (resp., the category of commutative monoids in DGDM) is the direct sum (resp., the
tensor product). The conclusion then follows from the facts that S is the left adjoint of the
forgetful functor and that any left adjoint commutes with colimits. O

Any ordinal is zero, a successor ordinal, or a limit ordinal. We denote the class of all
successor ordinals (resp., all limit ordinals) by Og (resp., Oy).

Proof of Theorem 4. (i) Consider an ordinal A and a A-sequence in DGDA, i.e., a colimit re-
specting functor X : A — DGDA (here ) is viewed as the category whose objects are the ordinals
a < A and which contains a unique morphism « — ( if and only if o < f3):

Xo—=X1—.. 00X, > X1 — ... Xo 2> Xor1— .. 2 Xo = Xog1 — -0

We assume that, for any « such that a +1 < A, the morphism X, — X,y1 is a pushout
of some 1y, ., (na+1 > 0). Then the morphism Xy — colim,<) X, is exactly what we call
a transfinite composition of pushouts of ¥,-s. Our task is to show that this morphism is a
RSDA.

We first compute the terms X,, a < A, of the A-sequence, then we determine its colimit.
For a@ < A (resp., for o < A\, € O5), we denote the differential graded D-algebra X, (resp.,
the DGDA-morphism X,_1 = Xq) by (Aq,dqa) (resp., by Xoa—1: (Aa=1,da—1) = (Aa,da)).
Since X -1 1s the pushout of some 1), and some DGDA-morphism ¢,, its target algebra is
of the form

(A, do) = (Aq—1 K S{ay), dy) (22)

and X, o—1 is the canonical inclusion
Xa,oz—l : (Aoz—lydoa—l) D dag-1 Ga-1®1lp € (Aa—l X S<CLa>, da) , (23)

see Example 1. Here a, is the generator 1, of S™ and (a,) is the free non-negatively graded
D-module S™ =D - a, concentrated in degree n,; further, the differential

do, is defined by (13) from dy—1 and Kn,—1 = da(ln,—1) - (24)

In particular, 4; = Ag X S<a1> , dl(al) = Kpy—-1 = ¢1(1n1—1> € Ay, and Xq9: Ag — A; is the
inclusion.

Lemma 4. For any o < X\, we have
Ag ~ Ay @ S{as: 0 < a,0 € Oy) (25)
as a graded D-algebra, and

do(as) € Ag @ S{a 1 e < §,e € Og) (26)
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forall 6 < «a, § € Og. Moreover, for any v < < a < X, we have
Ag=A, ®8(as: 7 <6< B,6 € Oy)
and the DGDA-morphism Xg. is the natural inclusion
Xgy 1 (Ay,dy) 20y = a,® 10 € (45,dg) . (27)

Since the latter statement holds in particular for v =0 and 8 = «, the DGDA-inclusion X0 :
(Ao, do) — (Aa,dy) s a RSDA ( for the natural ordering of {as : 6 < a,d € O4}).

Proof of Lemma 4. To prove that this claim (i.e., Equations (25) — (27)) is valid for all ordinals
that are smaller than A\, we use a transfinite induction. Since the assertion obviously holds
for o = 1, it suffices to prove these properties for a < A, assuming that they are true for all
B < a. We distinguish (as usually in transfinite induction) the cases a € O5 and o € Dy.

If a € Oy, it follows from Equation (22), from the induction assumption, and from Lemma
3, that
Ag = Aao1 ®@S{aq) ~ Ay @ S{ag : 0 < a,0 € Oy)

as graded D-algebra. Further, in view of Equation (24) and the induction hypothesis, we get
do(aa) = ¢a(lp,—1) € Ag—1 = Ao R S{as : § < a,d € D) ,
and, for d < a—1, 0 € O,
do(as) = da—1(as) € Ag®@ S(ay 1y < 8,7 € D) .

Finally, as concerns Xg,, the unique case to check is v < a — 1 and § = a. The DGDA-map
Xa—1, is an inclusion
Xa—l,"/ : A’Y S0, 0y ® lp € Apq

(by induction), and so is the DGDA-map
Xa,a—l tAa—1 2 a1 -1 ® 1o € Ay

(in view of (23)). The composite X, is thus a DGDA-inclusion as well.

In the case a € Oy, ie., a = colimg., 3, we obtain (A, dy) = colimp.(Ag,dg) in
DGDA, since X is a colimit respecting functor. The index set « is well-ordered, hence, it is
a directed poset. Moreover, for any § < v < 8 < «, the DGDA-maps Xgs5, X5, and Xpg,
satisfy Xgs = Xgy 0o Xy5. It follows that the family (Ag, dg)g<a, together with the family
Xgy, v < B < a, is a direct system in DGDA, whose morphisms are, in view of the induction
assumption, natural inclusions

Xgy:Ayday a0, @10 € Ag .

The colimit (Aq,d) = colimg,(Ag,dg) is thus a direct limit. We proved in [BPP15a| that
a direct limit in DGDA coincides with the corresponding direct limit in DGDM, or even in Set
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(which is then naturally endowed with a differential graded D-algebra structure). As a set,
the direct limit (Aq,d) = colimg<o(Ag,dg) is given by

Aa:HAﬂ/Nv

B<a

where ~ means that we identify a,, v < 3, with
ay ~ Xpy(ay) =a, ® 10,

i.e., that we identify A, with
A,y ~ AW ® 0 C Aﬁ .

It follows that

A= |JAg=A008(as: 6 <, 0 €D,)=A@S(as: 6 <, 6 €D,) .
B<la

As just mentioned, this set A, can naturally be endowed with a differential graded D-algebra
structure. For instance, since, in view of what has been said, all ~ - classes consist of a single
element, and since any a, € A, belongs to some Ag, 8 < «, the differential d, is defined by
do(aq) = dg(ag). In particular, any generator as, § < a, § € Oy, belongs to As. Hence, by
definition of d, and in view of the induction assumption, we get

do(as) = ds(as) € Ag @ S{as 1 e < d,e € Oy) .

Eventually, since X is colimit respecting, not only A, = colimg<, Ag = |J B<a Apg, but, further-
more, for any v < «, the DGDA-morphism X, : A, — A, is the map X,y : A, — U5<a Ag,
i.e., the canonical inclusion. O

We now come back to the proof of Part (i) of Theorem 4, i.e., we now explain why the
morphism ¢ : (Ap,dp) — C, where C' = colimy<)(Aq,dn) and where i is the first of the
morphisms that are part of the colimit construction, is a RSDA — see above. If A € 9, the
colimit C' coincides with (Ax_1,dy—1) and ¢ = X _; 9. Hence, the morphism i is a RSDA
in view of Lemma 4. If A € Oy, the colimit C' = colim,<)(Aq,dy) is, like above, the direct
limit of the direct DGDA-system (X, = (Aq,da), Xop) indexed by the directed poset A, whose
morphisms X4 are, in view of Lemma 4, canonical inclusions. Hence, C' is again an ordinary
union:

C=|JAv=40Sa;:6<\5€D,), (28)
a<A
where the last equality is due to Lemma 4. We define the differential do on C exactly as we de-
fined the differential d,, on the direct limit in the proof of Lemma 4. It is then straightforwardly
checked that ¢ is a RSDA.

(ii) We still have to show that any RSDA (Ao, do) = (Ao K SV, d) can be constructed as a
transfinite composition of pushouts of generating cofibrations 1, n > 0. Let (a;)jcs be the
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basis of the free non-negatively graded D-module V. Since J is a well-ordered set, it is order-
isomorphic to a unique ordinal g = {0,1,...,n,...,w,w + 1,...}, whose elements can thus
be utilized to label the basis vectors. However, we prefer using the following order-respecting
relabelling of these vectors:

ag ~ a1,a1 ~> A2, ... Gp M Apgly -5 QG 7 Qs Gw+1 7 Qw25 - - -

In other words, the basis vectors of V' can be labelled by the successor ordinals that are strictly
smaller than X\ := p+ 1 (this is true, whether p € Og, or p € Oy ):

V= EB D-as.

O<\, €05

For any o < A, we now set
(An,do) == (Ao R S{as : d <, 0 € Og),dla,,) -

It is clear that A, is a graded D-subalgebra of Ag®@ SV. Since A, is generated, as an algebra,
by the elements of the types ap ® 1p and D - (14, ® as), D € D, § < a, § € Oy, and since

d(ap ® 1lo) = do(ap) ® 1o € A,

and
d(D-(1a,®as)) € Ag®@S(as 1€ <d,e € Og) C Ay,

the derivation d stabilizes A,. Hence, (Aq,dy) = (Aa,d|4,) is actually a differential graded
D-subalgebra of (A9 K SV, d).

If 3 < a < A, the algebra (Ag,d|a,) is a differential graded D-subalgebra of (Aq,d|4,),
so that the canonical inclusion ing : (Ag,dg) — (Aa,dq) is a DGDA-morphism. In view of
the techniques used in (i), it is obvious that the functor X = (A_,d_) : A — DGDA respects
colimits, and that the colimit of the whole A-sequence (remember that A\ = u+ 1 € Oj) is the
algebra (A,,d,) = (Ao XSV, d), i.e., the original algebra.

The RSDA (Ao,dy) — (Ao X SV,d) has thus been built as transfinite composition of
canonical DGDA-inclusions i : (A, do) = (Aa+1,da+1), @+ 1 < A. Recall that

Aat1 = Ao ® S{aa+1) = Aa © S(S")

if we set n := deg(aq+1). It suffices to show that i is a pushout of 1,, see Figure 3. We
will detail the case n > 1. Since all the differentials are restrictions of d, we have k,_1 :=
dot1(aat1) € Ag Nkery,_1 dy, and ¢(1,-1) := kp—1 defines a DGDA-morphism ¢, see Example
1. When using the construction described in Example 1, we get the pushout i : (A, ds) —
(Au®S(S™),0) of the morphisms v, and ¢. Here i is the usual canonical inclusion and 0 is the
differential defined by Equation (13). It thus suffices to check that @ = dn+1. Let a, € A5 and
let 1 >~ 21 - Gag1y---, Tk =2 Tk - Qa1 € D+ a1 = S™. Assume, to simplify, that k& = 2; the
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S(871) — s (An,da)
Pn i
S(D") — s (A0 R S(S™), dus1)

Figure 3: i as pushout of ¢,

general case is similar. When denoting the multiplication in A, (resp., Aq+1 = Aq @ S(S™))
as usual by * (resp., x ), we obtain

0(aq @11 O x9) =

da(as) ® 1 ® 29 + (—1)P(an * (21 - kn—1)) ® 22 + (—1)P T (aq * (v2 - kp_1)) @ 11 =

(da(aq) @ 1) * (14, @ x1) * (14, ® x2)+
(—1)P(aq @ 1o) * (1 - kn—1) ® 1) * (14, ® x2)+
(—1)PT(ap @ 10) * (14, @ 21) * (22 - Fin_1) @ 1p) =

dat1(0a ® 10) * (La, ® 1) * (14, ® x2)+
(=1)P(a0 ® o) x dat1(1a, ® 21) * (14, ® 71)+
(=1)P " (aq © 10) * (14, © 21) * day1(1a, © x2) =

dot1(aq @ 71 © x2) .

4 Explicit functorial cofibration — fibration decompositions

In [BPP15a, Theorem 4|, we proved that any DGDA-morphism ¢ : A — B admits a
functorial factorization

A AeSU -5 B, (29)

where p is a fibration and ¢ is a weak equivalence, as well as a split minimal RSDA. In view
of Theorem 3 of the present paper, the morphism ¢ is thus a cofibration, with the result that
we actually constructed a natural decomposition ¢ = p o i of an arbitrary DGDA-morphism ¢
into ¢ € TrivCof and p € Fib. The description of this factorization is summarized below, in
Theorem 5, which provides essentially an explicit natural ‘Cof — TrivFib’ decomposition

A Aesu s B. (30)
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Since the model category DGDA is cofibrantly generated with generating cofibrations (resp.,
trivial cofibrations) S(I) (resp., S(J)), it admits as well functorial factorizations ‘TrivCof — Fib’
and ‘Cof — TrivFib’ given by the small object argument (SOA). The latter general technique
factors a morphism ¢ : A — B into morphisms

Ao B (31)
that are obtained as the colimit of a sequence
A, B,

in a way such that p € RLP(S(J)) = Fib (resp., p € RLP(S(I)) = TrivFib). The idea is that,
in view of the smallness of the sources in S(J) (resp., S(I)), each commutative square with
right down arrow p : C — B that must admit a lift, factors through a commutative square
with right down arrow p, : ), — B, and that it therefore suffices to construct Cy, 11 in a way
such that ‘it contains the required lift’. More details can be found in Appendix 6.1.

The decompositions (29) and (30) are DGDA-specific and different from the general SOA-
factorizations (31). Further, they implement less abstract, in some sense Koszul-Tate type,
functorial fibrant and cofibrant resolution functors.

Before stating the afore-mentioned Theorem 5, we sketch the construction of the factor-
ization (30). To simplify, we denote algebras of the type A ® SV}, by Ry, , or simply Ry .

We start from the ‘small” ‘Cof — Fib’ decomposition (29) of a DGDA-morphism A N B,

i.e., from the factorization A N Ry 25 B, see [BPP15a, Section 7.7]. To find a substitute ¢
for p, which is a trivial fibration, we mimic an idea used in the construction of the Koszul-Tate
resolution: we add generators to improve homological properties.

Note first that H(p) is surjective if, for any homology class [3,] € H,(B), there is a class
[on] € Hn(Ry), such that [pp,] = [Bn]- Hence, consider all the homology classes [(,], n > 0,
of B, choose in each class a representative 3, ~ [Br], and add generators ]IB” to those of U.
It then suffices to extend the differential d; (resp., the fibration p) defined on Ry = A ® SU,
so that the differential of I; vanishes (resp., so that the projection of I; coincides with Bn)
(>>1 — this triangle is just a mark that allows us to retrieve this place later on). To get a
functorial ‘Cof — TrivFib’ factorization, we do not add a new generator I R for each homology

class B3, ~ [Bn] € Hy(B), n > 0, but we add a new generator I , for each cycle j,, € ker, dp,
n > 0. Let us implement this idea in a rigorous manner. Assign the degree n to I, and set

VO::U@GO = U@<Hﬁn :BnekerndB,nZO):

(s 'y, , Ty, , 15, : by € Byyn > 0,83, € ker,,dg,n > 0) . (32)

Set now

(5\/0(8_1an) = dl(s_lﬂbn) = 0, 5\/0an = dlﬂbn = S_lﬂbn, 6VOH5n =0 s (33)
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thus defining, in view of [BPP15a, Lemma 1|, a differential graded D-module structure on Vj.
It follows that (SVj, dy;,) € DGDA and that

(Ro,00) == (A® SV, ds ® id+id ® dy,) € DGDA . (34)
Similarly, we set

vy (s y,)) = p(s ' y,) = e(s ' y,) = dgbn, qv,lb, = ply, = €ly, = by, qulg, = Bn . (35)

We thus obtain [BPP15a, Lemma 2| a morphism gy, € DGDM(Vp, B) — which uniquely extends
to a morphism ¢y, € DGDA(SVp, B). Finally,

qo = pp ° (¢ ® qv,) € DGDA(Ry, B) , (36)

where pp denotes the multiplication in B. Let us emphasize that Ry = A ® SU is a direct
summand of Ry = A ® SVp, and that §y and ¢ just extend the corresponding morphisms on

RUZ 50|RU = d1 and QO|RU =Dp.

So far we ensured that H(qo) : H(Ro) — H(B) is surjective; however, it must be injective
as well, i.e., for any o, € kerdg, n > 0, such that H(qo)[on] =0, i.e., such that gyo,, € imdp,
there should exist 0,41 € Ry such that

Op — 500n+1 . (37)
We denote by By the set of dp-cycles that are sent to dp-boundaries by ¢o:
By = {0y, € ker by : qooy, € imdp,n > 0} .

In principle it now suffices to add, to the generators of Vy, generators ]Ii.n of degree n + 1,
on € By, and to extend the differential dg on Ry so that the differential of H},n coincides with

n (>2). However, it turns out that to obtain a functorial ‘Cof — TrivFib’ decomposition, we

1
UTlvb’ﬂJrl

and qoo, = dpbyi1: we set

must add a new generator I of degree n+1, for each pair (oy,, by+1) such that o, € ker dy

%0 = {(Jn, bn+1) 1oy € ker5o, bn+1 c dél{qun},n > O} (38)

and
Vii=Vo@®Gr:=Vo® (I} 4., (0n,bni1) € Bo) . (39)

To endow the graded D-algebra
R i =A®SV] ~ Ry ® SG4 (40)
with a differential graded D-algebra structure 01, we apply Lemma 1 (of the present paper),

with
01(I, y..,) = 0n € (Ro)n Nker g, (41)

On,
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exactly as suggested by Equation (37). The differential 7 is then given by Equation (9) and
it extends the differential o on Ry. The extension of the DGDA-morphism ¢qg : Rg — B by a
DGDA-morphism ¢ : Ry — B is built from its definition

(15, 5,,,) = bng1 € Bop1 Ndg' {qo01 (I3, 4, .,)} (42)
on the generators and from Equation (11) in Lemma 1.

Eventually, starting from (Ry,d1) € DGDA and p € DGDA(Ry, B), we end up — when trying
to make H(p) bijective — with (Ry,61) € DGDA and ¢; € DGDA(R;1, B) — so that now H(q1) :
H(R;) — H(B) must be bijective. Since (Rj,01) extends (R, d) and H(qo) : H(Ro) — H(B)
is surjective, it is easily checked that this property holds a fortiori for H(q;). However, when
working with R} D Ry, the ‘critical set” By D By increases, so that we must add new generators
]I?,n, on € B\ By, where

By = {on € kerdy : q1oy, € imdp,n >0} . (>3)
To build a functorial factorization, we consider not only the ‘critical set’
B1 = {(0n, bpt1) : 04 € ker 61, b1 € dg' {qron},n > 0}, (43)
but also the module of new generators

G2 = <H2 : (Un, bn+1) € 531> s (44)

O'n,b'rH—l

indexed, not by B; \ By, but by B;. Hence an iteration of the procedure (38) - (42) and the
definition of a sequence

(Ro,&o) — (R1,51) — (R2,52) — ... (kal,(sk,l) — (Rk,ék) — ...

of canonical inclusions of differential graded D-algebras (Ry, 0x), Ry = AQSVy, Ok|Rr,_, = Ok—1,
together with a sequence of DGDA-morphisms g : Ry — B, such that gx|r,_, = qx—1. The
definitions of the differentials d; and the morphisms g are obtained inductively, and are based
on Lemma 1, as well as on equations of the same type as (41) and (42).

The direct limit of this sequence is a differential graded D-algebra (Ry,ds) = (AR SV, ds),
together with a morphism ¢: A ®@ SV — B.

As a set, the colimit of the considered system of canonically included algebras (R, d), is
just the union of the sets Ry, see Equation (28). We proved above that this set-theoretical
inductive limit can be endowed in the standard manner with a differential graded D-algebra
structure and that the resulting algebra s the direct limit in DGDA. One thus obtains in
particular that da|g, = J% .

Finally, the morphism ¢ : Ry — B comes from the universality property of the colimit and
it allows to factor the morphisms gy : Ry — B through Ry. We have: q|r, = qx -

We will show that this morphism A ® SV 4B really leads to a ‘Cof — TrivFib’ decompo-
sition A 5 A®SV -5 Bof A -2 B.
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Theorem 5. In DGDA, a functorial ‘TrivCof — Fib’ factorization (i,p) and a functorial ‘Cof —
TrivFib’ factorization (j,q) of an arbitrary morphism

o (A’dA) - (BvdB) )
see Figure 4, can be constructed as follows:

~

(A,dya) - (AXSU, dy)
| S )
¢
(AR SV,dy) ——— (B,dp)

Figure 4: Functorial factorizations

(1) The module U is the free non-negatively graded D-module with homogeneous basis

U {Silﬂbn s ]Ibn} s

where the union is over all b, € By, and all n > 0, and where deg(s™ ', ) = n — 1 and
deg(l, ) = n. In other words, the module U is a direct sum of copies of the discs

D'"=D-T, @D s T, ,

n > 0. The differentials
sTh:D" > I, — S_l]lbn e D"

induce a differential dyy in U, which in turn implements a differential dg in SU. The differential
dy is then given by di = d4 ®1id+1id ®dg . The trivial cofibration i : A - AQ SU is a minimal
split RSDA defined by i : a — a ® 1o, and the fibration p : A ® SU — B is defined by p =
ppo(¢p®e), where up is the multiplication of B and where e(I,) = by, and e(s™'1;,,) = dgb,, .

(2) The module V is the free non-negatively graded D-module with homogeneous basis
G R CI 10 0 P N AR AP I
where the union is over all b, € B,, n > 0, all B, € ker,dp, n > 0, and all pairs
(0n,bpt+1), n >0, in By, B1,...,Bg, ...,
respectively. The sequence of sets
Br_1=1{(0n,bpt1) : 0n € kerdg_1,b,41 € dgl{qk_lan},n >0}

is defined inductively, together with an increasing sequence of differential graded D-algebras
(A ® SV, k) and a sequence of morphisms q; : A ®@ SV, — B, by means of formulas of the
type (38) - (42) (see also (32) - (36)). The degrees of the generators of V are

n—1nnn+l,n+1,...,n+1,... (45)
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The differential graded D-algebra (AQSV, dy) is the colimit of the preceding increasing sequence
of algebras:
d2‘A®SVk =0 - (46)

The trivial fibration q: A ® SV — B s induced by the qi-s via universality of the colimit:

qlavsv, = qx - (47)

Eventually, the cofibration j : A — A® SV is a minimal (non-split) RSDA, which is defined
as in (1) as the canonical inclusion; the canonical inclusion ji, : A - AR SVi, k>0, is also
a minimal (non-split) RSDA, whereas jo : A — A ® SVp is a minimal split RSDA.

Proof. See Appendix 6.2. O

Remark 1. o If we are content with a non-functorial ‘Cof — TrivFib’ factorization, we may
consider the colimit A ® SV of the sequence A ® SV that is obtained by adding only
generators (see (>1))

Iz, n=>0, B == [Ba] € Ha(B)

and by adding only generators (see (>>2) and (>>3))

]I}M,Hgn,..., n>0, o, € By, By \Bg,...

e An explicit description of the functorial fibrant and cofibrant replacement functors, in-
duced by the ‘TrivCof — Fib’ and ‘Cof — TrivFib’ decompositions of Theorem 5, can be
found in Appendix 6.3.

5 First remarks on Koszul-Tate resolutions

In this last section, we provide first insight into Koszul-Tate resolutions. Given a poly-
nomial partial differential equation acting on sections of a vector bundle, we obtain, via our
preceding constructions, a Koszul-Tate resolution (KTR) of the corresponding algebra R of
on-shell functions. This resolution is a cofibrant replacement of R in the appropriate under-
category of DGDA.

In a separate paper [PP16], we give a general and precise definition of Koszul-Tate resolu-
tions. We further show in that work that the classical Tate extension of the Koszul resolution
[HT92], the KTR implemented by a compatibility complex [Ver02], as well as our just men-
tioned and below detailed model categorical KTR, are Koszul-Tate resolutions in the sense
of this improved definition. Eventually, we investigate the relationships between these three

resolutions.

Hence, the present section should be viewed as an introduction to topics on which we will
elaborate in [PP16].
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5.1 Undercategories of model categories

Given a category C and an object C' € C, the undercategory or coslice category C | Cis
the category whose objects are the C-morphisms C — D with source C, and whose morphisms
between C' — D; and C' — Ds are the C-morphisms Dy — Ds such that the triangle

C
7N
Dy —— Dy

commutes. Composition and units are defined in the obvious manner.

There is a forgetful functor For : C' | C — C that associates to each (C' | C)-object
its target and to each (C' | C)-morphism its base D; — Dsy. It is customary to write the
objects A and morphisms t of the undercategory simply as For(A) and For(¢) — whenever
no confusion arises (think for instance about smooth vector bundles over a fixed smooth base
manifold and corresponding bundle maps). If Cis cocomplete, the functor For has a left adjoint
Ly : € — C | C, which takes a C-object D to the morphism C' — C[] D and a C-morphism
f D1 — Do to the commutative triangle

C
/ \
ClID1 —— C]I D,

that is induced via universality by the canonical morphisms ip, o f : D; — C[] D2 and
ic: C — C]] Da.

Note also that id : C' — C is the initial object in C' | C, and that, if C has a terminal object
*, the unique morphism C — * is the terminal object of C | C.

The next proposition can be found in [Hir05].

Proposition 4. If C is an object of a model category C, the coslice category C | C is also a
model category: a (C' | C)-morphism t is a cofibration, a fibration, or a weak equivalence, if
For(t) is a cofibration, a fibration, or a weak equivalence in C. Moreover, if C is cofibrantly
generated with generating cofibrations I and generating trivial cofibrations J, the model category
C' | C is cofibrantly generated as well, with generating cofibrations Lyl and generating trivial
cofibrations LiJ.

When recalling that the coproduct in DGDA is the tensor product, we deduce from Theorem
3 in [BPP15a] and from Proposition 4 above that:

Corollary 1. For any differential graded D-algebra A, the coslice category A | DGDA carries
a cofibrantly generated model structure given by the adjoint pair Ly : DGDA = A | DGDA : For,
i the sense that its distinguished morphism classes are defined by For and its generating
cofibrations and generating trivial cofibrations are given by Lg .
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Let us conclude by noting that for A = O the Quillen adjunction
Lg : DGDA = O | DGDA : For

is obviously an isomorphism of categories.

5.2 Basics of jet bundle formalism

The jet bundle formalism allows for a coordinate-free approach to partial differential equa-
tions (PDE-s), i.e., to (not necessarily linear) differential operators (DO-s) acting between
sections of smooth vector bundles (the confinement to vector bundles does not appear in more
advanced approaches). To uncover the main ideas, we implicitly consider in this subsection
trivialized line bundles E over a 1-dimensional manifold X, i.e., we assume that £ ~ R x R.

The key-aspect of the jet bundle approach to PDE-s is the passage to purely algebraic
equations. Consider the order k differential equation (DE)

F(t,¢(t),dis, ..., df¢) = F(t, 6,0, ...,6")|xy =0, (48)

where (¢, ¢,¢,...,¢") are coordinates of the k-th jet space J*E and where j*¢ is the k-jet
of the section ¢(t). Note that the algebraic equation

F(t,¢,¢,...,6") =0 (49)

defines a ‘surface’ £¥ ¢ J*E, and that a solution of the considered DE is nothing but a section
#(t) whose k-jet is located on EF.

A second fundamental feature is that one prefers replacing the original system of PDE-s by
an enlarged system, its infinite prolongation, which also takes into account the consequences
of the original one. More precisely, if ¢(t) satisfies the original PDE, we have also

dE(F(t, (1), diy .., d¥d)) = (O + ¢'0p + ¢" Dy + .. ) F(t, 6,0, ..., 0" |jooy =

DiF(t,¢,¢ ..., ") |jooy = 0, VL €N (50)

Let us stress that the ‘total derivative’ D; or horizontal lift D, of d; is actually an infinite sum.
The two systems of PDE-s, (48) and (50), have clearly the same solutions, so we may focus
just as well on (50). The corresponding algebraic system

DiF(t,¢,¢,...,¢™) =0, ¥t eN (51)

defines a ‘surface’ £%° in the infinite jet bundle 7o : J*FE — X. A solution of the original
system (48) is now a section ¢ € I'(X, E) such that (j°¢)(X) C £°°. The ‘surface’ £ is
often referred to as the ‘stationary surface’ or the ‘shell’.

The just described passage from prolonged PDE-s to prolonged algebraic equations involves
the lift of differential operators df acting on O(X) = I'(X, X x R) (resp., sending — more gen-
erally — sections I'(X, G) of some vector bundle to sections I'(X, K)), to horizontal differential
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operators D acting on O(J®E) (resp., acting from T'(J®E, 1% G) to T'(J®E, 7% K)). As
seen from Equation (50), this lift is defined by

(D{F) 0 j®¢ = dj(F o j~¢)

(note that composites of the type F o j*°¢, where F' is a section of the pullback bundle 7% G,
are sections of G). The interesting observation is that the jet bundle formalism naturally
leads to a systematic base change X ~» J°FE. The remark is fundamental in the sense that
both, the classical Koszul-Tate resolution (i.e., the Tate extension of the Koszul resolution of a
regular surface) and Verbovetsky’s Koszul-Tate resolution (i.e., the resolution induced by the
compatibility complex of the linearization of the equation), use the jet formalism to resolve
on-shell functions O(£%°), and thus enclose the base change ¢ — X ~» e — J*E. This
means, dually, that we pass from DGDA, i.e., from the coslice category O(X) | DGDA to the
coslice category O(J*FE) | DGDA.

5.3 Revision of the classical Koszul-Tate resolution

We first recall the local construction of the Koszul resolution of the function algebra
O(X) of a regular surface ¥ C R™. Such a surface ¥, say of codimension r, can locally always
be described — in appropriate coordinates — by the equations

Y:2°=0,Vae{l,...,r}. (52)
The Koszul resolution of O(X) is then the chain complex made of the free Grassmann algebra
K =0O(R") @ S[¢""]
on 7 odd generators ¢** — associated to the equations (52) — and of the Koszul differential
0K = x“Ogax . (53)

Of course, the claim that this complex is a resolution of O(X¥) means that the homology of
(K, k) is given by
Hy(K)=0(¥) and Hp(K)=0,Vk>0. (54)

The Koszul-Tate resolution of the algebra O(£°°) of on-shell functions is a generalization
of the preceding Koszul resolution. In gauge field theory (our main target), £°° is the stationary
surface given by a system

EX:DIF; =0, Va,i (55)

of prolonged algebraized (see (51)) Euler-Lagrange equations that correspond to some action
functional (here x € RP and a € NP). However, there is a difference between the situations
(52) and (55): in the latter, there exist gauge symmetries that implement Noether identities
and their extensions — i.e., extensions

Dj G, DsFi =0, V8,j (56)
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of O(J*®°E)-linear relations G;a D¢ F; = 0 between the equations DS F; = 0 of £%° —, which do
not have any counterpart in the former. It turns out that, to kill the homology (see (54)), we
must introduce additional generators that take into account these relations. More precisely,
we do not only associate degree 1 generators ¢$* to the equations (55), but assign further
degree 2 generators C’f* to the relations (56). The Koszul-Tate resolution of O(€%) is then
(under appropriate irreducibility and regularity conditions) the chain complex, whose chains
are the elements of the free Grassmann algebra

KT = O(J¥E) ® S[¢f*, "] | (57)
and whose differential is defined in analogy with (53) by

Skt = DSF; Ogox + D G, D37 0 (58)

oo
where we substituted ¢} to F; (and where total derivatives have to be interpreted in the
extended sense that puts the ‘antifields’ ¢; and C7} on an equal footing with the ‘fields’ oF (fiber
coordinates of E)). The homology of this Koszul-Tate chain complex is actually concentrated
in degree 0, where it coincides with O(€*°) (compare with (54)).

5.4 D-algebraic version of the Koszul-Tate resolution

In this subsection, we briefly report on the D-algebraic approach to ‘Koszul-Tate’ (see
[PP16] for additional details).

Proposition 5. The functor
For : DA — OA

has a left adjoint
J>*:OA— DA,

i.e., for B € OA and A € DA, we have
Hompy (T (B), A) ~ Home, (B, For(A)) , (59)
functorially in A, B.

Let now 7 : E — X be a smooth map of smooth affine algebraic varieties (or a smooth
vector bundle). The function algebra B = O(E) (in the vector bundle case, we only consider
those smooth functions on E that are polynomial along the fibers, i.e., O(E) := I'(SE™"))
is canonically an O-algebra, so that the jet algebra J*°(O(FE)) is a D-algebra. The latter
can be thought of as the D-algebraic counterpart of O(J*°FE). Just as we considered above
a scalar PDE with unknown in I'(E) as a function F' € O(J®E) (see (49)), an element
P € J*(O(F)) can be viewed as a polynomial PDE acting on sections of 7 : E — X.
Finally, the D-algebraic version of on-shell functions O(E>°) = O(J>®E)/(F) is the quotient
R(E,P) :=J>(O(F))/(P) of the jet D-algebra by the D-ideal (P).
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A first candidate for a Koszul-Tate resolution of R := R(FE,P) € DA is of course the
cofibrant replacement of R in DGDA given by the functorial ‘Cof — TrivFib’ factorization of
Theorem 5, when applied to the canonical DGDA-morphism O — R. Indeed, this decompo-
sition implements a functorial cofibrant replacement functor @ (see Theorem 6 below) with
value Q(R) = SV described in Theorem 5:

0—SVSR.

Since R is concentrated in degree 0 and has 0 differential, it is clear that Hj(SV') vanishes,
except in degree 0 where it coincides with R.

As already mentioned, we propose a general and precise definition of a Koszul-Tate res-
olution in [PP16]. Although such a definition does not seem to exist in the literature, it is
commonly accepted that a Koszul-Tate resolution of the quotient of a commutative ring k& by
an ideal I is an k-algebra that resolves k/I.

The natural idea — to get a J*°(O(FE))-algebra — is to replace SV by J*(O(E)) @ SV,
and, more precisely, to consider the ‘Cof — TrivFib’ decomposition

T*(O(E)) — T®(O(E) ® SV = T*(O(E))/(P) .

The DGDA
JT*®(O(F)) @SV (60)

isa J*°(O(FE))-algebra that resolves R = J>*°(O(E))/(P), but it is of course not a cofibrant
replacement, since the left algebra is not the initial object O in DGDA (further, the considered
factorization does not canonically induce a cofibrant replacement in DGDA, since it can be
shown that the morphism O — J*°(O(F)) is not a cofibration). However, as emphasized
above, the Koszul-Tate problem requires a passage from DGDA to J*°(O(E)) | DGDA. It is
easily checked that, in the latter undercategory, 7°°(O(E))®SV is a cofibrant replacement
of 7*(O(E))/(P). To further illuminate the D-algebraic approach to Koszul-Tate, let us
mention why the complex (57) is of the same type as (60). Just as the variables ¢(F) (see (48))
are algebraizations of the derivatives df¢ of a section ¢ of a vector bundle E — X (fields), the
generators ¢* and Cjﬁ " (see (55) and (56)) symbolize the total derivatives D¢ and D} Cr
of sections ¢* and C* of some vector bundles 7} F1y — J*E and 7} Fy — J*FE (antifields).
Hence, the ¢ and Cjﬁ* can be thought of as the horizontal jet bundle coordinates of 75 F}
and 73 F5 . These coordinates may of course be denoted by other symbols, e.g., by 9% - ¢; and
a5 . C}‘ , provided we define the D-action as the action DS ¢; and D2 C]’-‘ by the corresponding
horizontal lift, so that we get appropriate interpretations when the ¢;-s and the C;—S are the
components of true sections. This convention allows to write

KT =J®S8[0% 4,05 - C}l=J @0 So(®:;D-¢f @& &;D-C}),

where J = J>°(O(F)), so that the space (57) is really of the type (60). Let us emphasize that
(57) and (60), although of the same type, are of course not equal (for instance, the classical
Koszul-Tate resolution is far from being functorial). For further details, see [PP16].
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6 Appendix

6.1 Small object argument

The ‘TrivCof — Fib’ and ‘Cof — TrivFib’ factorizations of a cofibrantly generated model
category can be constructed in a functorial way. The constructions use an argument that is
based on the fact that the sources of the morphisms in I and J are small objects — the so-
called small object argument (SOA), which goes back to Quillen. Although this argument is
described elsewhere in the literature, we provide a compact description that allows to compare
our DGDA-specific factorizations with the general SOA-factorizations.

In the following, C is just a category with all small colimits, W is a set of C-morphisms,
whose sources are sequentially small, see [BPP15a, Sections 8.5 and 8.6]. Our goal is to
decompose any C-morphism f: A — B as A - C -1 B, where g € RLP(W) (we will not
show that this factorization leads to functorial ‘TrivCof — Fib’ and ‘Cof — TrivFib’ factorizations).

The intermediate object C' and the morphism ¢ will be constructed as the colimit of an
w-sequence:

AL o Ny c, Copp 22 .. ¢
fl w0 a4+ Gnt1 g | (61)

The construction starts with the first commutative square in the preceding diagram, where
(Co,Jo,q0) = (A,id, f). Assume now that the construction is done up to the commutative
square (Cy, jn, ¢n) inclusively, set as usual j,0 = jn © ... 0 jo, and memorize that g, o jno = f.

Before constructing the commutative square (Cp41, jn+1,Gn+1), recall that we wish to get
q € RLP(W), i.e., that any commutative square of C-morphisms

¢
U c
/1
Wl [
: B
V—

with w € W must admit a lift £. In other words, we have to build the colimit C' in such a way
that this lift does exist. Note now that, since U is sequentially small, the morphism ¢ : U —
C = colim,, C), will factor through some stage of the colimit, i.e., that ¢ will be the composite

of a morphism ¢, : U — C,, and the transfinite composite joon = ... 0 Jp42 0 jnt1 : Cp = C:
U o c, Cosn 22 .. ¢
w | an | an+1 \ q 1 (62)

Therefore, we define the commutative square (Cyy1, jn+1,Gn+1) as follows. Let S be the set
of all commutative squares
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Ch
{%
B

with w € W. Due to universality of a coproduct, we then get a commutative square

U——

v

HsU Cn
st‘ In
sV B

We now define Ci,11 to be the pushout of the upper and left arrows of the latter square, and
obtain morphisms j,41 : Cp, = Crqq and £y pq1 0 [[¢ V' — Cpy1, and, in view of universality of
a pushout, a morphism g,11 : Cp41 — B such that, in particular, g,+1 © jp+1 = ¢n, with the
result that ¢p41 0 Jnt+1,0 = qn © Jno = f-

This leads to the commutative diagram (61). We take its colimit, i.e., we set C' = colim,, C),
and get joon : Cn — C and j = joon © jno : A — C, as well as, from the universality of a
colimit, ¢ : C — B such that g o joon = ¢. Hence, the factorization

fZQnojnO:qojoonojnozqoj'

To show that ¢ € RLP(W), consider a commutative square g o ¢ = 1) o w as above. Since
@ = Joon © O and q © Joon, = @n, it induces a commutative square g, o ¢, = ¥ o w as in Figure
(62), which is used to build the pushout C,41. Hence, a morphism £,11 : V — Cj 41 and a
morphism ¢ = joo pt1 0 lny1 : V' — C. The latter is quite easily seen to be the searched lift.

6.2 Proof of Theorem 5

The proof of functoriality of the decompositions will be given in Appendix 6.3. Thus,
only Part (2) requires immediate explanations. We use again the above-introduced notation
Ry = A®SVy; we also set R = A®SV. The multiplication in Ry, (resp., in R) will be denoted
by ¢k (resp., ©).

To show that j is a minimal RSDA, we have to check that A is a differential graded D-
subalgebra of R, that the basis of V is indexed by a well-ordered set, that do is lowering, and
that the minimality condition (7) is satisfied.

The main idea to keep in mind is that R = J,, R — so that any element of R belongs to
some Ry in the increasing sequence Ry C R; C ... — and that the DGDA structure on R is
defined in the standard manner. For instance, the product of a® X,b®Y € RN Ry, is defined
by N

(@@ X)o(b@Y)=(a@X)op (6@Y)=(-1)*axb)®(X0Y),
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where ‘tilde’ (resp., *) denotes as usual the degree (resp., the multiplication in A). It follows
that o restricts on A to . Similarly, da|a = do|a = da, in view of (46) and (34). Finally, we
see that A satisfies actually the mentioned subalgebra condition.

We now order the basis of V. First, we well-order, for any fixed generator degree m € N
(see (45)), the sets

{5_1Hbm+1}> {Hbm}7 {Hﬁm}v {Hzlfm_hbm}v {Hgm_l,bm}’ (63)

of degree m generators of a given type (for m = 0, only the sets {s~'I,, } and {Ig,} are non-
empty). We totally order the set of all degree m generators by totally ordering its partition
(63):

{57 Dppin} < (o} < {I, ) < {5, 0, < {2, 6} <o

A total order on the set of all generators (of all degrees) is now obtained by declaring that
any generator of degree m is smaller than any generator of degree m + 1. This total order is a
well-ordering, since no infinite descending sequence exists in the set of all generators. Observe
that our well-order respects the degree (in the sense of (7)).

Finally, the differential ds sends the first and third types of generators (see (63)) to 0 and
it maps the second type to the first. Hence, so far ds is lowering. Further, we have

dao(IE  6) = Om—1 € (Re-1)m—1 ,

where m — 1 refers to the term of degree m — 1 in Rp_1. Since this term is generated by the
generators

{Silﬂbejq}? {Hbe}v {Hﬁé}ﬂ {]I(lfg,l,bg}v AR Hg;}l,bg} J
where ¢ < m, the differential ds is definitely lowering.

It remains to verify that the described construction yields a morphism ¢ : A® SV — B
that is actually a trivial fibration.

Since fibrations are exactly the morphisms that are surjective in all positive degrees, and
since q|Ry = qo|Ry = p is degree-wise surjective, it is clear that ¢ is a fibration. As for
triviality, let [8,] € H(B,dgp), n > 0. Since Ig, € kerdy C kerds, the homology class
[Ig,] € H(R,d>) makes sense; moreover,

H(q)[1s,] = [qls,] = [q01s,] = [Bn] ,

so that H(q) is surjective. Eventually, let [0,] € H(R,d2) and assume that H(q)[o,] = 0,
i.e., that go, € imdpg. Since there is a lowest k € N such that o, € Ry, we have o, € ker §;,
and gpo, = dpbyy1, for some b,11 € B,y1. Hence, a pair (o, b,4+1) € B and a generator
kil € Ry4+1 C R. Since

Un7hn+1

k+1 — d2]1k+1

On = (5k+1]10'nabn+l U'nybn+1 )

we obtain that [0,] = 0 and that H(q) is injective.
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6.3 Explicit fibrant and cofibrant functorial replacement functors

(1) We proved already [BPP15a, Theorem 4] that the factorization (i,p) = (i(¢), p(¢)) of
the DGDA-morphisms ¢, described in Theorem 5, is functorial, i.e., that, for any commutative
DGDA-square

A—"-pB (64)
e
A/ L B/
there is a commutative DGDA-diagram
A >~ A®SU ——B (65)

i i(¢) l p(®) l
A~ ASU —=DB
i(¢") p(¢")
The DGDA-morphism w is given by w = u ® 0, where ¢ is the DGDA-morphism ¢ : SU — SU’
defined by
5(s 'p,) = s Ly, € SU’ and 0(I,) = Ly, € SU'.

Proposition 6. In DGDA, the functorial fibrant replacement functor R, which is induced by
the functorial ‘TrivCof — Fib’ factorization (i,p) of Theorem &, is the identity functor: R = id.
In particular, all objects are fibrant.

Proof. When applying the decomposition (i, p) to the commutative square

A5 {0} (66)
.
AT 0}
we get
A=—"-400 {0} (67)

J T e

AN @0 {0}

A'QO

It follows that the functorial fibrant replacement functor R maps A (resp., u) to R(A) =
A®p O~ A (resp., R(u) =u®id ~u). O

(2) To finish the proof of Theorem 5, we still have to show that the factorization (j,q) is
functorial, i.e., that for any commutative DGDA-square

A-2.B (68)

A —-=p
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there is a commutative DGDA-diagram

A A =~ > B
l J:=j(¢) ®qu:=q(¢>) i (69)

A— s A SV = B

3'=j(¢") q'=q(¢)

Let us stress that the following proof fails, if we use the non-functorial factorization men-
tioned in Remark 1 (the critical spots are marked by <).

Just as we constructed in Section 4, the RSDPA R = A® SV (resp., R’ = A’ ® SV') as the
colimit of a sequence R, = A® SV}, (resp., R, = A’ ® SV/), we will build w € DGDA(R, R') as
the colimit of a sequence

wi € DGDA(Ry, R},) - (70)

Recall moreover that ¢ is the colimit of a sequence gy € DGDA(Ry, B), and that j is nothing
but j, € DGDA(A, Ry,) viewed as valued in the supalgebra R — and similarly for ¢, q;, ', j;..
Since we look for a morphism w that makes the left and right squares of the diagram (69)
commutative, we will construct wy so that
Wi i = Jpu and v gy = gj Wy - (71)
Since the RSDA A — Ry = A ® SV} is split, we define
wo € DGDA(A ® SVp, Ry)
as
wo = j(,] u g wo , (72)

where we denoted the multiplication in Rf, by the same symbol ¢ as the multiplication in Ry,
where jju € DGDA(A, Ry)), and where wy € DGDA(SVp, R{)). As the differential dy;, see Section
4, has been obtained via [BPP15a, Lemma 1], the morphism wg can be built as described in
[BPP15a, Lemma 2|: we set

’wo(s_l]lbn) = S_I]Iv(bn) € Vb’, wo(an) = Hv(bn) S V(),v and wo(]lﬁn) = Hv(ﬂn) S Vb/ , (73)

and easily check that wg dy, = d( wo on the generators. The first commutation condition (71)
is obviously satisfied. As for the verification of the second condition, let t = a®x1©...Qxy €
A® SV and remember (see (36)) that go = ¢ xqy, and ¢ = qS’*qVO/ , where we denoted again
the multiplications in B and B’ by the same symbol x. Then

vgo(t) = v(a) * vayy (1) % .. % vy (22)

and

qowo (t) = qojou(a) *x qowo(x1) * . .. * gowo () = ¢'u(a) * gowo(z1) * . .. * gywo(ae) -
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It thus suffices to show that v gy, = g wo on the generators s, LT,
from Equations (35) and (73) (<q).
Assume now that the wy have been constructed according to the requirements (70) and

(71), for all £ € {0, ...,k — 1}, and build their extension

Ig, of Vo, what follows

n ) n )

wy € DGDA(Ry, Ry,)

as follows. Since wy_1, viewed as valued in R}, is a morphism wy_; € DGDA(Rj;_1, R}) and
since the differential 0y of Ry ~ Ri_1 ® SG}, where G, is the free D-module

Gy = <H§n,bn+1  (Ons bng1) € Br_1) ,

has been defined by means of Lemma 1, the morphism wy is, in view of the same lemma,
completely defined by degree n 4 1 values

Wk(]lgn,bnﬂ) € 5;;1("‘;16—15:%:(]1(];”,6”“)) .

As the last condition reads
&% wk(ﬂﬁn,bnﬂ) = wr—1(0on) ,
it is natural to set
Wk (TS bnss) = 15 (o) a(onss) o (74)

provided we have
(Wr-1(0n),v(bpt1)) € Bj_y  (<2) .

This requirement means that 6 wi—1(0s) = 0 and that ¢ wr—1(0n) = dp v(bps1). To
see that both conditions hold, it suffices to remember that (o,,b,11) € Br_1, that wr_q
commutes with the differentials, and that it satisfies the second equation (71). Hence the
searched morphism wy, € DGDA(Ry, R}.), such that wy|g, , = wiy—1 (where the RHS is viewed
as valued in Ry}). To finish the construction of wy, we must still verify that wy complies with
(71). The first commutation relation is clearly satisfied. For the second, we consider

Tk =Tk1®g1O...0¢g € Rp—1 @ SGy,

and proceed as above: recalling that wy, and g; have been defined via Equation (11) in Lemma

1, that ¢j, and v are algebra morphisms, and that wy_; satisfies (71), we see that it suffices

k

to check that ¢ wy = vgi on the generators I[Un,bn+1

definitions (<3).
Remember now that ((R, d2),4,) is the direct limit of the direct system ((Ryg, k), tsr), i€,
that

— what follows immediately from the

L10 Lk k—1 Lk4+1,k
Ry .. Ry,
R

(75)
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where all arrows are canonical inclusions, and that the same holds for ((R/,d}),i.) and
((Ry, 0%), v

) sr

). Since the just defined morphisms wy, provide morphisms i) wy € DGDA(Ry, R')
(such that the required commutations hold — as wg|g, = wo), it follows from universality that
there is a unique morphism w € DGDA(R, R'), such that wij = i} wy, i.e., such that

wlR, =Wk - (76)

When using the last result, one easily concludes that wj = j'u and vqg=q¢ w.

This completes the proof of Theorem 5.

Remark 2. The preceding proof of functoriality fails for the factorization of Remark 1. The
latter adds only one new generator ]I/a"n for each homology class B, ~ [Bn], and it adds only
one new generator ]If;n for each o, € Bi_1 \ Bg—2, where

B, = {0, € keré, : ¢.0,, € imdp,n > 0} .

In (<1), we then get that v gy, (Hﬁn) and g, wO(Hﬁ'n) are homologous, but not necessarily equal.
In (<), although o, € Bi_1 \ Bi_2, its image wi_1(0yn) € Bj,_, may also belong to Bj_, .
Eventually, in (<3 ), we find that vgr(I% ) and qjwr (I ) differ by a cycle, but do not necessarily
coincide.

The next result describes cofibrant replacements.

Theorem 6. In DGDA, the functorial cofibrant replacement functor Q, which is induced by
the functorial ‘Cof — TrivFib’ factorization (j,q) described in Theorem 5, is defined on objects
B € DGDA by Q(B) = SV, see Theorem 5 and set A = O, and on morphisms v € DGDA(B, B')
by Q(v) = w, see Equations (76), (74), and (713), and set wy = wy. Moreover, the differential
graded D-algebra SVp, see Proposition 1 and set A = O, is a cofibrant replacement of B.

Proof. Since the initial object in DGDA is (O, 0), it suffices to apply the afore-detailed con-
struction of the commutative diagram (69) to the commutative square

o1, B (77)
\Lid iv ,
O £> B

where Ip is defined by Ip(1p) = 1p, and similarly for I/ . O
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