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Abstract In certified email (CEM) protocols, trusted third
party (TTP) transparency is an important security require-
ment which helps to avoid bad publicity as well as protecting
individual users’ privacy. Cederquist et al. proposed an opti-
mistic certified email protocol, which employs key chains to
reduce the storage requirement of the TTP. We extend their
protocol to satisfy the property of TTP transparency, using
existing verifiably encrypted signature schemes. An imple-
mentation with the scheme based on bilinear pairing makes
our extension one of the most efficient CEM protocols satis-
fying strong fairness, timeliness, and TTP transparency. We
formally verify the security requirements of the extended pro-
tocol. The properties of fairness, timeliness and effectiveness
are checked in the model checker Mocha, and TTP trans-
parency is formalised and analysed using the toolsets uCRL
and CADP.

Keywords fair exchange, CEM protocols, fairness, TTP

transparency, formal verification

1 Introduction

Certified email (CEM) protocols, as an extension of regular
email services, require that both senders and receivers be re-
sponsible for their roles in the email services. That means, as
a protocol successfully runs to the end, neither the sender can
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deny the dispatch of the email, nor can the receiver deny the
receipt. Such requirements are usually implemented by a non-
repudiable evidence of origin (EOQO) that is to be acquired by
the receiver, and a non-repudiable evidence of receipt (EOR)
that is to be acquired by the sender. Both the EOO and the
EOR may serve as evidences in case of a dispute, in order to
prove the participation of the other party.

As a special class of fair exchange protocols [1], a CEM
protocol is supposed to guarantee fairness with respect to
non-repudiable evidences. Informally, at the end of a fair pro-
tocol run, either both parties acquire all the evidences, or no
party gets an evidence. A trusted third party (TTP) might be
introduced to take charge of the whole procedure and to pro-
vide undeniable records of submission (from the sender) and
delivery (to the receiver). However in this way, a TTP may
easily become a bottleneck, if it has to be involved in a large
number of CEM services. A better solution, so called opti-
mistic protocols [2], helps to release this burden from a TTP.
In the optimistic protocols, a TTP is only required to be in-
volved in case of unexpected events, such as a network failure
or one party’s misbehaviour, to restore fairness. In such situ-
ations, a TTP may digitally sign some pieces of information,
which will be used later as evidences to guarantee that the
protocol ends in a fair state. If both the signer and the receiver
behave correctly and there is no presence of significant net-
work delays, a CEM protocol terminates successfully without
intervention of the TTP. A typical structure of an optimistic
CEM protocol consists of an exchange sub-protocol, an abort
sub-protocol and a recovery sub-protocol. The exchange sub-
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protocol is executed by the communicating parties to deliver
an email as well as exchanging undeniable evidences. The
other sub-protocols are launched by a party to contact a TTP
to deal with awry situations.

We assume weaker attackers than the Dolev-Yao adver-
saries [3], in that we do not allow an attacker to block chan-
nels, forge messages or impersonate other users. Instead, we
assume resilient channels between the communicating par-
ties, so that every message is guaranteed to arrive at its re-
ceiver eventually, which is especially critical to satisfaction of
the fairness requirement. In practice, resilient channels can be
guaranteed by physical devices, or be approximated in non-
resilient networks by means of software such as the SSL pro-
tocol for Internet users. Our work is based on a general con-
cept of resilient channel that has abstracted away all detailed
implementations that are mentioned above. Forgeries of mes-
sages are handled by the assumption on the crypto strength
used by the protocols. We also assume appropriate authenti-
cation mechanisms that forbid impersonation of users to hap-
pen in our scenario. More specifically, in our attacker model
we focus on the dishonest (or malicious) behaviours of users
in CEM protocols. A dishonest user may send out a message
if he gets enough information for generating the message. He
can even send messages after he is supposed to stop. He can
send out a wrong message, or withhold a message that he is
required to send out at a certain point. Furthermore, a dis-
honest user may quit at any time, or refuse to stop at a point
where his role in the protocol is required to stop. This type of
attacker model is generally treated in the analysis of fair ex-
change protocols, e.g., see [4—12], which allows us to focus
on the actual protocol design aiming to the properties of fair-
ness, timeliness and TTP transparency, and thus significantly
reduces the complexities in the modelling phase when using
tools Mocha and uCRL/CADP.

TTP transparency states that if a TTP has been contacted to
help in a protocol, the resulting evidences will be the same as
those obtained in the case where the TTP has not participated.
In other words, by simply looking at the evidences, it is im-
possible to detect whether the TTP has been involved or not.
Transparent TTPs are important and useful in practice, for in-
stance, to avoid bad publicity. Besides, in many situations, an
institution does not necessarily keep the up-to-date signatures
or affidavits from all trusted services (especially when a TTP,
who is trusted by the two parties involved in the protocol,
may not be trusted by an external judge who is to verify the
presented evidences). Moreover, this property also ensures
privacy of the participants for asking for help from TTPs. In
the context of CEM protocols, the use of a transparent TTP

was first proposed by Micali [13], followed by a number of
works [14-22], in which different cryptographic schemes are
used to achieve TTP transparency, such as interactive proof
of knowledge on the encrypted signatures, Schnorr-like sig-
nature schemes, and RSA-based encryption schemes.

In this paper, we focus on the development of a CEM pro-
tocol with a transparent TTP. Our starting point is the key
chain based protocol of Cederquist et al. [23]. The use of
key chains is to reduce TTP’s storage requirement. Our study
exposes a weakness in the original protocol, for which we
propose a fix. Later we extend Cederquist et al.’s protocol
to satisfy TTP transparency, adopting a recently introduced
verifiably encrypted signature scheme [24]. We are able to
show, by a detailed comparison, that our protocol is one
of the most efficient CEM protocols satisfying TTP trans-
parency, in addition to the other important properties such
as strong fairness, timeliness, and effectiveness. Furthermore,
we show that our protocol satisfies the desired properties, by
incorporating formal verification techniques. The finite-state
model checker MOCHA [25] is used to verify the properties
of fairness, timeliness and effectiveness, that are naturally
interpreted in alternating-time temporal logic (ATL) formu-
las with game semantics [26]. The verification of properties
expressed in ATL corresponds to the computation of win-
ning strategies. Another toolset uCRL [27, 28] is used for
TTP transparency, which requires a comparison of observ-
able traces in various situations. The uCRL toolset has the
ability of generating state spaces that can be visualised and
manipulated by the toolbox CADP [29] which acts as a back-
end of uCRL. Preliminary results in this paper have been
reported [30,31].

Our contributions are bifold. First we improve the work of
Cederquist et al., by fixing a weakness in that version of the
protocol and extending it to support TTP transparency. We
also measure the complexity of our protocol in terms of tim-
ing consumption comparable to RSA signatures. The other
contribution is the formal verification of the security proper-
ties in MOCHA and pCRL/CADP. In particular, to the best
of our knowledge it is the first formal analysis of TTP trans-
parency in a symbolic way.

We introduce security properties for CEM protocols in
Section 2. The CEM protocol using key chains is briefly de-
scribed in Section 3. Our extension with transparent TTP and
its informal analysis are detailed in Section 4. We compare
our proposed protocol with some state-of-the-art CEM proto-
cols supporting TTP transparency in Section 5. Formal verifi-
cation of our protocol with MOCHA and uCRL is presented
in Section 6. We conclude the paper in Section 7.
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2  Security requirements

A CEM protocol needs to protect a participant who is honest,
i.e., his behaviour strictly follows the protocol specifications.
To this point, for the sake of readability, we write Alice for the
sender and Bob for the receiver of an email. We assume the
communication channels are resilient, in the sense that every
message is guaranteed to reach its destination eventually. The
following properties are typically required for an optimistic
CEM protocol. There are more properties, such as confiden-
tiality, stateless TTP, accountability, and high performance,
which we do not discuss in this work.

o Effectiveness If no error occurs then the protocol suc-
cessfully runs till the end without any intervention from
TTP.

e Timeliness Both Alice and Bob have the ability to
eventually finish the protocol anywhere during the pro-
tocol execution. This is to prevent endless waiting of an

honest party.

e Fairness Honest Alice (Bob) will get her (his) evi-
dences, provided that the other party gets the evidence
from her (him). The evidences can be used to convince
an external judge (who is not TTP) that Bob has re-
ceived the mail, in Alice’s case, or that Alice is the
true sender of the message, in Bob’s case. A protocol
satisfies strong fairness if every judgement on Bob’s
(Alice’s) non-repudiation can be made solely and inde-
pendently from Alice’s (Bob’s) evidences, i.e., it does
not necessarily involve TTP, nor the participation of
Bob (Alice). If besides Alice’s (Bob’s) evidences, ei-
ther TTP or Bob (Alice) needs to be contacted during
the judgement, the protocol only satisfies weak fairness.

o TTP transparency If a protocol runs successfully to
the end, then the evidence that each participant obtains
is of the same format regardless of whether TTP is in-
volved in the protocol execution or not.

3 A CEM protocol using key chains

We describe the certified email protocol proposed by Ced-
erquist et al. [23]. It makes use of key chains to reduce TTP’s
storage requirement. Once a key chain is initialised between
two communication parties, the initiator can use any key
within the chain to encrypt messages. Each exchange that
uses the protocol to deliver an email (which may involve
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a number of message passings) is called a protocol round,
and one initialisation phase followed by a number of proto-
col rounds is called a protocol session. Each protocol session
belongs to a unique pair of communication parties. We focus
on the main idea of the protocol, with its details available in
the original paper [23].

We use {M}; to denote a message m encrypted with a sym-
metric key &, and (M)p to denote party P’s signature on mes-
sage M. In practice a signature is always applied on a hashed
value, usually by a user’s private (or sometimes called, secret)
key.

3.1 Key chain generation

In optimistic CEM protocols, communicating parties will re-
quest TTP for help if the exchange process is disrupted. To
achieve (strong) fairness, the TTP often needs to store suffi-
cient amount of information, to have the ability to decrypt, re-
trieve or send out information for the protocol to finally reach
a fair state. In most existing CEM protocols, the initiator uses
either TTP’s public key [17] or a separate key [19] to en-
crypt the email for each exchange. This first method normally
requires asymmetric key operations, which are more expen-
sive than symmetric key operations. The second method gives
TTP burden of storing information of exchanges, such as se-
cret keys, involved parties, hash values of email content and
so on [32]. The amount of information that TTP needs to store
blows up especially when there are a huge number of proto-
col executions running in parallel, some of which are between
the same pair of sender and receiver.

To reduce the TTP’s burden of storing too much infor-
mation, the protocol [23] uses key chains. A chain of keys
is a sequence of keys K;, K7, ..., K} (see Fig. 1), such that
K = H(G'(Ky)) for each i > 0, where Kj is the seed,
H : k — « is a publicly known one-way collision-resistant
hash function and G : « — « is a publicly known acyclic
function (x is a key domain). H and G functions are non-
commutative, i.e., given an H(K;) for which K; is unknown,
it is infeasible to compute H(G(Kj)).

£ 2% 5 % O
o ]n L
Ko K K

Fig.1 A key chain

3.2 Initialisation

To initialise a session, the initiator Alice (A) sends the key
chain seed Kj and the identity of the potential responder
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Bob (B), together with a nonce nc to the TTP (7). TTP will
check whether there already exists an entry (A, B, Ko, x) in
her database indicating whether the key chain has been estab-
lished. If yes, TTP just ignores this request. Otherwise, TTP
will choose a session identity sid, send a cert := (A, B, sid)r
to Alice, and store (A, B, Ky, sid) in her database.

3.3 Exchange sub-protocol

The ith protocol round in a protocol session sid is described
below. The round number i is initially O and then can arbitrar-
ily grow, and Alice increments i after each round.

1. A = B: A, B, T,i,sid, h(K}), {M}x:, EOOy, cert
2. B— A : EORy

3*.A— B:K]

4% B — A : EORK;

where EOOy, (B, T, 1i,sid, h(K)), {M}k)a, EORy :=
(EOOw)s, EORg := (A, K], {M}k;)p and h is just an ordi-
nary hash function.

At first, Alice sends out message 1* to Bob. After re-
ceiving this, Bob checks the correctness of the signature on
EOO,, and cert. If both are correct, Bob then commits him-
self to receiving the email by sending out message 2°*. When
Alice receives 2%, she checks the signature on EORy,. If cor-
rect, Alice will send out K] to Bob. Upon receiving the key,
Bob checks whether this key matches the hash value of the
key that he received in message 1°*. If yes, Bob decrypts the
email and sends out a confirmation EORg- to indicate that he
has received the key and the email.

3.4 Recovery sub-protocol

Both Alice and Bob have the right to run recovery sub-
protocol by showing EORy;. The recovery sub-protocol is
mainly run with the aim of acquiring key K or evidence
EORg  with the help of TTP. Typically, Alice runs the re-
covery sub-protocol when she sends out key K! while not
receiving message 4%, and Bob runs it when he sends out
EOR}, while not receiving K.

After receiving a recovery request from a party p € {A, B}
of the form:

1" P - T: fi, A, B,i(K)), h({M}x;). i, sid, EORy

where f; is a flag used to identify the recovery request. TTP
checks several things such as correctness of signatures, iden-
tities, entries for the key chain. If all checks succeed, TTP can
retrieve Ko and verify whether h(H(G'(Ky))) matches h(K)).
If yes, TTP looks up the status of round status(i), to check

whether round i has been resolved or aborted. Essentially, if
status(i) has not been set, TTP will set it as h({M }K[) and
send back a recovery token (A, B, h({M }K;), K!,i,sid)r to the
requester. If the round is aborted (status(i) = a), TTP will
send back an abort token (A, B, h({M}K;), 1,i,sid)r. If the
status is different from h({M }K’{) or any of the above tests
fails, TTP will send back an error message in the form of
(error, (error,m")r), where m" is the content of the message
in Step 1'. This error message indicates a misbehaviour and
P can quit the protocol round.

3.5 Abort sub-protocol

Only Alice can abort, if presumably the current protocol
round has not yet been recovered. Typically, Alice may abort
if she does not receive message 2°*. To abort an exchange,
Alice sends TTP the following message:

1% A > T: fi, A, B,i,sid, l({M}x;), abrt

where f;, is a flag used to identify the abort request and abrt
is Alice’s signature on the abort request. After receiving this
request, TTP checks several things such as correctness of sig-
natures, identities, entries for the key chain, and status(i) to
make decisions. If status(i) has not been initialised, TTP will
set it as aborted (status(i) := «) and send back an abort token.
If the round is recovered, TTP checks whether status(i) =
h({M} K[)' If yes, TTP will send back a recovery token. Oth-
erwise, an error message of the form (error, (error, abrt)r) is
sent back.

3.6 Evidences and dispute resolution

When a dispute occurs, two parties can provide evidences to
an external judge. For each protocol round i, EOQ desired by
Bob consists of

A, B, T, M,i,sid, K;,EOOy
and EOR desired by Alice consists of
A,B,T,M,i,sid, K}, cert, EORy, EORg

if it is obtained by running the exchange sub-protocol. If
Alice uses the recovery/abort sub-protocol, then EORj, and
EORg will be replaced by the recovery token. In this case,
EOR has the form of

A, B.T, M,i,sid, K], cert, (A, B, h({M}x,), K., i, sid)r.

As already remarked [23], the protocol is not TTP trans-
parent, due to the fact that an observer can tell whether TTP
was involved by simply checking EOR.
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3.7 A vulnerability of the protocol

We found a vulnerability in the protocol. This vulnerability is
mainly due to the form of EORg. that does not include any
information about the current protocol round i. An EORg- in
such form can be reused in different protocol rounds, which
causes a breach on fairness.

Figure 2 depicts a scenario where dishonest Alice breaks
strong fairness of honest Bob by reusing EORg-. This attack
requires multiple protocol rounds, which is sketched as fol-
lows. Alice first initiates an exchange i by sending out 1%%, in
which she uses K’

i+1
gets the corresponding EOR,, then does nothing for round

instead of K’ to encrypt the message, and
l

i. Alice initiates another round i + 1 with Bob, and behaves
honestly in order to acquire correct EOR,; and EORg. for
round i + 1. The attack from Alice is based on the fact that
EORk- used in both rounds i and i + 1 are of exactly the same
form, (A, Kl’ 1AM }Kf+1)3‘ At this moment, Alice has acquired
all the necessary evidences for round i, leaving Bob in an un-
fair state. If Bob initiates a recovery sub-protocol, TTP will
send back nothing but an error message because of the mis-
match between h(K7) and h(K,,). As a result, for round i,
strong fairness is broken. In order to fix this problem, we de-
cide to revise EORk- to be of the form (A, i, K, {M}k:)5, by
adding the current protocol round number i.

Loe | L« | & |
[ E0O,, = (B, T. . sid, h(K;.y). M3, )4 |

A, B, T, i, sid, h(Kiy),
EQO,, ., (M} . cert

| EQO,,  =(B, T,i+1,sid, h(K}\p), (M}, )4 |
A, B, T,i+1,sid, h(K},),
EQOy,, . {M}‘f(m, cert

EOR,, =(EOQ,,),

EOR,,

Recover

[ EOR, (€00, )s | —
EOR,,,
Kl{‘*l
[ EOR, =K % )5 |
EORy,

I I I

Fig. 2 A vulnerability on the CEM protocol using key chains [23]

4 Protocol design

We present an extension of the protocol in the previous sec-
tion to support transparency of TTP. Our approach requires
the usage of a verifiably encrypted signature scheme to en-
code Bob’s commitment to receive the email in message 2.
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o Notations

We write (M)pr for Bob’s verifiably encrypted (partial) sig-
nature on M, by using the public key of TTP to encrypt Bob’s
signature on M. Everyone can verify that (M)pr is authentic,
but only TTP and Bob are able to ‘extract’ the complete sig-
nature (M)g out of (M)pr.

e Exchange sub-protocol
The modified exchange sub-protocol is as follows:

1. A = B : A, B, T, i,sid, h(K}), (M}x;, EOOy, cert
2% B— A: EOR}M

3*.A—> B:K]

4%, B — A : EORy

where EOR}W := (EOOu)pr- After receiving EOO,,, Bob
sends out his partial signature on EOQ,, to show his commit-
ment to receive the email. If Alice further sends Bob the key
K, Bob will deliver a full signature back to Alice as EOR.

e Abort and recovery sub-protocols

Alice is allowed to abort provided that she has sent out mes-
sage 1%, but has not received message 2°* from Bob. Once
honest Alice and Bob contact TTP, they are not allowed to
continue the exchange sub-protocol.

Alice is allowed to launch the recovery sub-protocol pro-
vided that she has sent out message 3°*, but has not received
message 4. Similarly, Bob can launch the recovery sub-
protocol if he has sent out message 2%*, but has not received
message 3°*. The first message of the recovery sub-protocol
for Alice is

Iy A—>T: fi, A B, h(K)), (M), i, sid, EOR}W EOOy.
The first message of the recovery sub-protocol for Bob is
1. B— T : fi, A, B, i(K)), l{M}x;), i, sid, EORy, EOOyp.

On receipt of a message for recovery, TTP needs to
check (1) the correctness of (verifiably encrypted) signatures
on EOO;, and EORy, (EOR}W); (2) the identity of TTP;
and (3) whether there is an entry in its database matching
(A, B, %, sid). If all the above checks succeed, TTP will re-
trieve Ky and (4) check whether h(H(G'(Ky))) matches h(K 0.
If yes, TTP will look up status(7) for round i.

e If status(i) has not been initialised, TTP will set
status(i) := h({M }K[). Whenever necessary TTP con-

1
verts EOR}, into EOR},. After that, TTP sends out the
following messages:
2T - B: K]
3. T —A:EORy
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o If status(i) = h({M }K;), then TTP performs Step 2" and
Step 3" (again).

e If status(i) = a, TTP sends out the abort token to the
one that launched the protocol.

2'. T — A(B) : abrt, (abrt)s.

If any of the tests (1), (2), (3), and (4) fails, TTP ignores
the recovery request and sends back an error message.

2. T — A(B) : error, (error,m")r

where m" is the whole message received in Step 17 or Step
1.

¢ Evidences and dispute resolution

When a disputation occurs, two parties can provide evidences
to an external judge. For each protocol round i, EOO desired
by Bob consists of

A, B, T, M,i,sid, K;,EQOy
and EOR desired by Alice consists of

A,B,T,M,i,sid, K, cert, EORy,.

4.1 Security analysis

As a special feature, the key chain provides an opportunity
for Alice and TTP to have a predefined infinite list of sym-
metric keys. We assume that Ky, the seed of the chain, is a
secret between Alice and TTP during related protocol exe-
cutions. We restrict our attention to a single protocol round.
For multiple rounds a weakness related to key chains has been
identified and fixed, but the same vulnerability does not apply
in the revised protocol in which EORKI/ is no longer used. In
the following we informally justify that the revised protocol
satisfies the claimed security properties.

¢ Non-repudiation and fairness

If in round i Alice possesses EORy;, we need to show that
Bob must receive {M}x:, K/ and EOOQOy, in the same round i.
There are three cases.

1. Alice receives EORy, from Bob in message 4%, i.e.,
only the exchange sub-protocol is launched and it suc-
cessfully runs to the end, during which Bob obtains
EOOy,, {M}k;, and K.

2. Alice receives EOR), from message 3" by launching
the recovery sub-protocol herself, i.e., sending out 1%,.

1
Then Alice must possess EOR;, from Bob’s message

2% which means Bob must have received 1°* and ob-
tained both EOO,, and {M} k- Then in the recovery sub-
protocol, TTP must have sent message 2" from which
Bob obtains K.

3. Alice receives EORy, from message 3" by Bob launch-
ing the recovery sub-protocol. Then Bob must have re-
ceived 1% and have shown EOQOy, to TTP, i.e., Bob ob-
tains both EOQO,,; and {M}k/, and in message 2" Bob
receives K! from TTP.

Furthermore, in case of a dispute, EOR}, alone from Alice is
sufficient to prove that Bob has received M.

If in round i Bob possesses M, EOO,; and K/, we need to
show that (1) Alice must receive EORy, in the same round i,
and (2) Alice is the true sender of M. We know Bob can only
receive {M}x; and EOO,, from 1%, There are two cases.

1. Bob receives K from Alice, then the exchange sub-
protocol runs at least up to message 3°*. Bob may send
4°* to Alice which contains EOR,,. If Bob does not
send out 4°*, Alice can always get EOR}, from TTP by
launching the recovery sub-protocol.

2. Bobreceives K] from TTP in the recovery sub-protocol.
No matter who lauched the recovery sub-protocol, Alice
gets EOR); in message 3" (from TTP).

As to the authenticity of the message M, Bob is able to
convince every third party that M is indeed from Alice by ver-
ifying Alice’s signature on EOQ,,, after extracting M from
{M} K with K;. Note that K7 is also verified as its hashed value
is contained in EOQ)y too. Since presenting (M, EOOy, K!)
is sufficient for Bob to prove that M is originally from Alice,
together with the above EORy, case for Alice, the protocol
satisfies strong fairness.

o Effectiveness

Suppose both Alice and Bob are honest, so that they faith-
fully follow the protocol in round i, and no error occurs, e.g.,
there is no significant network delays. It is obvious that only
the exchange sub-protocol is launched, and it will stop at a
state in which Alice obtains EOR,;, and Bob obtains both M
and EOQy,.

e Timeliness

In round i Alice can always launch the abort sub-protocol af-
ter she sends out message 1%*, so that TTP will send back
either an abort token or EOR,,; depending on whether a re-
covery message has already arrived at TTP or not. Bob can
launch the resolve sub-protocol any time after he receives
message 1°* and will get either an abort token or K/, depend-
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ing on the communication between Alice and TTP. The re-
silient channels between TTP, Alice and Bob guarantees that
the above procedures terminate in a timely manner.

e Transparency of TTP

If the exchange sub-protocol successfully runs to the end, Al-
ice’s evidence is EOR,;, and Bob’s evidences are M, EOQO,,,
and K.

e Suppose the recovery sub-protocol is launched by Al-
ice, then Alice must have message 2% which contains

EO R@, and Bob must have message 1°* which contains
{M}k, and EOQ,,. If TTP successfully verifies EOQOy,

and EORl%,I, TTP will convert EOR}M into EORj; and
send it back to Alice. Consequently TTP sends K to
Bob. In this case both Alice and Bob have the same ev-
idences as only the exchange sub-protocol is launched.

e Suppose the recovery sub-protocol is launched by Bob,
then Bob must have message 1°*. If TTP successfully
verifies EOOy, and EORy,;, TTP will forward EOR,
to Alice, and send K to Bob, so that they get the same
evidences in this case too.

In the next section, we discuss a particular signature
scheme and our motivation to implement it in our protocol.

4.2 Verifiably encrypted signature schemes

There is a variety of fair exchange protocols with verifiably
encrypted signatures (some of which are also called convert-
ible signatures) existing in the literature. Some of the earliest,
such as Asokan et al. [33], Bao et al. [34], Boyd and Foo [35],
and Camenisch and Damgard [36], apply interactive proof of
knowledge on the encrypted signatures, such that more mes-
sage exchanges are required in the protocols. Several later
approaches use Schnorr-like signature schemes to wrap up
signatures, such as by Ateniese and Nita-Rotaru [16], or
RSA-based encryption schemes, such as by Markowitch and
Kremer [14]. The GPS+RSA scheme used in [14] has been
shown an attack by Cathalo et al. [37]. Another attack on fair-
ness proposed by Bao [38] is applicable on several of the sig-
nature schemes discussed in [39]. More recently, pairing al-
gorithms for solving the decision Diffie-Hellman problem in
gap Diffie-Hellman groups have been introduced to generate
verifiably encrypted signatures [24,40]. We briefly sketch the
scheme of [24] below.

Design and formal verification of a CEM protocol with transparent TTP 285

Let G| be a cyclic additive group generated by P with
prime order g, and G, be a cyclic multiplicative group with
the same order gq. Let e : G; X G| — G, be a pairing op-
eration satisfying bilinearity, i.e., e(aX, bY) = e(X, Y)® for
all X,Y € Gy and a,b € Z,. The signature scheme is as
follows. Suppose G, Ga, P, e, ¢ and H are all publicly
available, where H : {0,1}* — {0,1}! is a cryptographic
hash function and A is the length of the (private) key. A
xP for

the corresponding public key. A signature on message M is

user sets up x € Z, as his secret key, and X =

S = 1/(HM)+ x) - P. To verify the signature, one only
needs to check if e(H(M) - P + X,S) = e(P, P), note that
e(H(M)-P+x-P,1/(H(M) + x)-P) = e(P, P) M+ nones by
bilinearity. To produce a verifiably encrypted signature, sup-
pose TTP has private key y € Z, and publickey ¥ = y-P € Gy,
the new signature on M becomes S’ = 1/(H(M) + x)-Y, with
TTP’s public key replacing G,’s group generator P. To verify
one only needs to check if e(H(M)-P+X,S’) = e(P,Y). TTPis
able to get the true signature S by computing y~! - S”, where
y~! is the inverse of TTP’s private key y (in G,). Note that
when applying this scheme to our extended protocol, both
e(P, P) and e(P, Y) can be precomputed, thus reduces compu-
tation cost for the whole session.

We choose the algorithm in [24] since it requires fewer
pairing operations than the algorithm in [40]. Moreover, there
exist efficient pairing algorithms that implements pairing op-
erations on elliptic curve-based point groups consuming time
comparable to that of the RSA signatures of the same secu-
rity level. It was studied in [41] that one 256-bit (prime field)
pairing operation takes about 15 million clock cycles on a
Core 2 Duo processor, which is the most expensive operation
in the signature scheme?. According to [42], a 3072-bit RSA
encryption (with a small exponent) takes about 620 000 and
a decryption takes about 28.6 million cycles on a Core 2 Duo
processor?). In practice, 3072-bit RSA signatures are of com-
parable security strength to 256-bit pairing-based signatures.

5 Comparison

Our protocol supports TTP transparency, i.e., on the comple-
tion of a protocol run, the final structure and contents of the
evidences possessed by both parties do not reveal whether
TTP has intervened in the protocol or not. There are a num-
ber of CEM protocols in the literature (e.g., [14-22]) that sup-

D One 256-bit (prime field) pairing operation takes roughly 43 times as much as that of one point scalar multiplication [41], therefore, we ignore low cost
operations such as point scalar multiplication and inverse operation in such signature schemes.
2) If we implement the exponentiation algorithm by using Chinese Remainder Theorem, it will take roughly 22 million cycles with the mpz_powm_sec ()

function on a Core 2 Duo processor [42], which is still of comparable speed.



286 Front. Comput. Sci., 2013, 7(2): 279-297

ports the transparency of TTP, as listed in Table 1. The proto-
col presented in this paper is the only one that satisfies strong
fairness, timeliness and TTP transparency with a relatively
low cost, to our knowledge.

Table 1 An overview of CEM protocols satisfying TTP transparency

Protocol Scheme  Fairness Timeliness #Message #Operation
1S02 [15] Generic strong” No 3 4
MicaliO3 [17] Generic strong” Weak 3 4
Wang06 [19] Generic weak Yes 3 2
MKO1 [14] RSA-based strong* Yes 4 7
ANO2 [16] RSA-based strong No 4 7
NZB04 [18] RSA-based strong* No 4 4
MLCLO6 [20] RSA-based strong* No 4 8
HLO0S8 [22] RSA-based strong No 4 6
LCLQOS8 [21] Bilinear pair strong No 4 5
Our protocol  Bilinear pair strong Yes 4 3

In the above table, if the correctness of a protocol does not
depend on any class of signature schemes, we write down
that the protocol is generic. In such cases, the particular sig-
nature scheme is irrelevant, and the usage of verifiably en-
crypted signatures or convertible signatures is not required.

*99

We use “strong™” to indicate that it is claimed in the paper
that the protocol satisfies strong fairness, but there exist at-
tacks in the literature showing that the claim is invalid. All
the protocols in the table satisfy TTP transparency, but they
differ on other security properties such as timeliness and fair-
ness. We also make comparisons on the number of messages
as well as the computational costs as required by the proto-
cols. We write “#message” for the number of messages in the
exchange sub-protocol and “#operation” for the amount of
computation equivalent to the number of RSA signature op-
erations, i.e., we interpret other cryptographic operations as
the number of RSA signatures referring to the best existing
algorithms in the literature.

5.1 Timeliness

Only three protocols support timeliness (those of Wang [19],
Markowitch and Kremer [14] and ours). In most cases the
lack of timeliness is due to the fact that Alice is not allowed
to abort after the first message. This design may trap Alice
in a deadlock state, waiting forever on Bob’s reply, without
any effective ways to escape. Micali’s protocol [17] satisfies
weak timeliness by using a cut-off time, which indicates a
deadline moment to resolve in a protocol run, in order to pre-
vent endless waiting. However, this might cause problems if
Alice and Bob cannot correctly estimate time differences be-

tween their local clocks and TTP’s clock. Furthermore, in a
real situation such a mechanism might enforce Bob to contact
TTP as early as possible instead of replying to Alice if Bob is
keen to proceed the current run.

5.2 Fairness

All the protocols except Wang’s satisfy (or claim to satisfy)
strong fairness. Wang’s protocol [19] is not strongly fair,
since when Alice is presenting Bob’s EOR from the second
message, an external judge has to contact either TTP or Bob
in order to confirm that Alice has not aborted in the current
run. If Alice has successfully aborted before Bob launches
the recovery sub-protocol, and Alice has received the second
message, Bob will not be able to obtain the key if Alice re-
fuses to send out the third message. Micali’s protocol [17]
and Imamoto and Sakurai’s protocol [15] are vulnerable to
replay attack if Bob colludes with an outsider [43]. Both pro-
tocols in the work of Markowitch and Kremer [14] are shown
to be unfair by Giirgens et al. [32], in the way that if Bob col-
ludes with an outsider, he is able to gain access to the mes-
sage M without sending EOR,, back to Alice, by recovering
the other protocol run with the outsider® . Moreover, the GPS
scheme used by the second protocol in [14] has been proved
insecure by Cathalo et al. [37]. Nenadic et al.’s protocol ap-
plies a particular RSA based verifiable encryption scheme,
which has been shown that Bob is able to send an invalid
partial signature which is undetectable by Alice and which
is not recoverable by TTP [20]. Nevertheless, the protocol
presented in [20] is also identified with a similar attack by
Hwang and Lai [22]. So far there exist no attacks on the fair-
ness of Ateniese’s protocol [16], Hwang et al.’s protocol [22]
and Liang et al.’s protocol [21].

5.3 Efficiency

We concentrate on the amount of computation time that is
involved in the exchange sub-protocol. The overloads of the
abort and recovery sub-protocols are not considered, as such
events are supposed to occur rarely. We define one opera-
tion as one 3072-bit RSA signature operation. As to the RSA
scheme, the most time-consuming operation is modular ex-
ponentiation, and the ratio of the time taken for a modular
exponentiation operation to the time taken for a single mod-
ular multiplication is linearly proportional to the exponent’s
bit length [44]. Therefore, we ignore single modular multipli-
cations and the less time consuming algorithms such as sym-

3) This attack does not work on our key-chain based approach, because every key chain is uniquely associated to a pair of sender and receiver. Bob and the

colluding party are unable to recover from TTP unless Alice is involved.
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metric encryption/decryption and hashing in protocols. For
pairing operations, in practice one 256-bit pairing operation
can be faster than generating one 3072-bit RSA signature.
As a conservative estimation we assume that verifying one
pairing-based signature, which is the most time-consuming
operation in pairing-based signature schemes, also takes one
operation. We omit the time used to generate a pairing-based
signature as well as that used to verify an RSA-based signa-
ture in the analysis. For generic protocols we assume the RSA
3072-bit signature is used. In practice, they may choose faster
schemes such as those of 256-bit elliptic curve cryptography
(ECC) signatures.

From Table 1, we conclude that the first three generic
schemes are the most efficient, since they only need three
messages in the exchange sub-protocol and at most four op-
erations in computation. Nevertheless, none of them achieves
TTP transparency, strong fairness and timeliness at the same
time. As to the other four RSA based protocols, the number
of operations varies from 4 to 8. In our protocol, it takes time
equivalent to only three operations, since only three pairings
are required (Bob needs to verify Alice’s signature in mes-
sage 1%, Alice needs to verify Bob’s signature in message
4% and Bob’s encrypted signature in message 2%). A signing
operation in pairing-based scheme takes negligible amount of
time. From Table 1, only our protocol achieves all the three
desirable properties — strong fairness, TTP transparency, and
timeliness — with a relatively low cost.

6 Protocol verification

We have shown that our extension is one of the most efficient
CEM protocols satisfying TTP transparency, in addition to
the other important properties such as strong fairness, effec-
tiveness, and timeliness. The justifications to our claims are
carried out on a rather informal level. In this section, we in-
tend to put our analysis one step further, by incorporating
formal verification techniques.

It has been acknowledged that formal verification is impor-
tant for security protocols, because of the seriousness of se-
curity flaws. In this section, we apply model checking to au-
tomatically verify whether a given model of CEM protocols
satisfy some given specifications. To our knowledge, the lit-
erature of formal verifications of CEM protocols includes the
works of Kremer et al. [4], Cederquist et al. [45] and Abadi
and Blanchet [46].

To formally analyse whether a security protocol achieves
its design goals, first we have to specify the protocol in a for-
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mal language, and then express specifications for the desired
properties. The model checker MOCHA [25] allows specifi-
cation of models as concurrent game structures, and verifi-
cation of properties in ATL [26] formulas with game seman-
tics, which is suitable for checking properties such as fair-
ness, effectiveness and timeliness. For the analysis of TTP
transparency, our main idea is to compare execution traces
containing evidences acquired in different situations. This
methodology needs to put multiple traces together, which is
not supported in most of the existing model checkers, includ-
ing MOCHA. Therefore, a process algebraic language uCRL
and its toolset [27,28] are used.

6.1 MOCHA and £CRL

MOCHA [25] is an interactive verification environment for
the modular and hierarchical verification of heterogeneous
systems. Its model framework is in the form of reactive mod-
ules. The states of a reactive module are determined by vari-
ables and are changed in a sequence of rounds. MOCHA can
check ATL formulas, which express properties naturally as
winning strategies with game semantics. This is the main rea-
son we choose MOCHA as our model checker, since proper-
ties such as fairness and timeliness specify a user’s ability to
enforce certain outcomes. MOCHA provides a guarded com-
mand language to model the protocols, which uses the con-
current game structures as its formal semantics. The syntax
and semantics of this language can be found in [25]. Assum-
ing a finite set IT of propositions, an ATL formula is one of
the following:

e p for propositions p € II.
o —¢por ¢y V ¢y, where ¢, ¢, and ¢, are ATL formulas.

o (A O ¢, A»Og, or {ADd1UP,, where A C X is a set
of players, and ¢, ¢; and ¢, are ATL formulas.

ATL formulas are interpreted over the states of a concur-
rent game structure that has the same propositions and play-
ers [26]. The labeling of the states of a concurrent game struc-
ture with propositions is used to evaluate the atomic formu-
las of ATL. The logical connectives — and Vv have the stan-
dard meaning. Intuitively, the operator {A) acts as a selec-
tive quantification over those paths that the agents in A can
enforce. The path quantifiers O (next), O (globally) and U
(until) carry their usual meanings as in the logic CTL, and
O¢ is defined as true Uep.

UCRL is a language for specifying distributed systems and
protocols in an algebraic style. The uCRL language and its
toolset have been applied to the analysis of distributed sys-
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tems, e.g., see [47-49] and security protocols in particular,
e.g., see [50-52]. A uCRL specification consists of two parts:
one part specifies the data types, the other part specifies the
processes. The data part contains equational specifications;
one can declare sorts and functions working upon these sorts,
and describe the meaning of these functions by equations.
Processes are represented by process terms. Process terms
consist of action names and recursion variables with zero or
more data parameters, combined with process-algebraic op-
erators. Actions and recursion variables carry zero or more
data parameters. Intuitively, an action can execute itself, af-
ter which it terminates successfully. There are two predefined
actions: ¢ represents deadlock, and 7 represents the internal
action. p.q denotes sequential composition, it first executes p
and then g. p + g denotes non-deterministic choice, meaning
that it can behave as p or g. Summation ;.5 p(d) provides
the possibly infinite choice over a data type D. The condi-
tional construct p < b > g, with a boolean data term, behaves
as p if b and as ¢ if not b. Parallel composition p || g inter-
leaves the actions of p and g; moreover, actions from p and
g may synchronise into a communication action, if explic-
itly allowed by a predefined communication function. Two
actions can only synchronise if their data parameters are the
same, which means that communication can be used to cap-
ture data transfer from one process to another. If two actions
are able to synchronise, then in general we only want these
actions to occur in communication with each other, and not
on their own. This can be enforced by the encapsulation op-
erator dy(p), which renames all occurrences in p of actions
from the set H into ¢. Additionally, the hiding operator 7;(p)
turns all occurrences in p of actions from the set / into 7. The
HCRL tool set [27,28] is a collection of tools for analysing
and manipulating uCRL specifications. The uCRL tool set,
together with the CADP tool set [29], which acts as a back-
end for the uCRL tool set, features visualisation, simulation,
LTS generation and minimisation, model checking, theorem
proving and state-bit hashing capabilities.

6.2 Verification in Mocha

We first give a sketch of the modelling techniques in
MOCHA'’s specification language and discuss how it can be
used to describe our extended CEM protocol. MOCHA also
provides a way to express the security properties of interest in

ATL formulas. A more detailed report can be found in [53].
6.2.1 Modelling the protocol in Mocha

Each participant is modelled as a player (in a game), with

the description of its behaviours using the guarded command
language of Mocha. On the top level we build two models for
each participant i, P;, and P;H, to represent the dishonest and
honest behaviours of that participant, respectively. The model
P;H for honest behaviour is strictly in accordance with the
protocol, i.e., it strictly follows what the player is supposed to
do as specified in the protocol. The dishonest model P; allows
the player to cheat, such as sending out a wrong message, or
withholding a message the participant is required to send out
at a certain point. Furthermore, a dishonest model may quit
at any time, or refuse to stop at a point where its role in the
protocol is required to stop. Note that we do not model out-
side intruders, as the environment in which the CEM protocol
runs assumes that potential attacks are only from dishonest
participants.

Communication is modelled by using shared variables, as
an abstract way of representing message passing. This en-
ables us to focus on the main design mechanism of the de-
signed protocol and limit the models of the protocol to a fea-
sible size for the model checker MOCHA. Evidences (EOO
and EOR), key and emails are encoded as boolean variables
which are initialised as false and updated by its sender. We
model the action of sending out an evidence, or a message
by a guarded command in which the sender resets the cor-
responding variables as true at the time the message is sent
out. In the model for honest participant P;H, the guard con-
sists of all the conditions that needs to be satisfied strictly
according to the protocol, and the following action command
represents sending of the messages as specified in the proto-
col. In the dishonest model P;, more messages (in the form of
guarded commands) are allowed at each point of time, how-
ever the guard still needs to contain information that is neces-
sary to make its following message passing possible (That is,
all components of a message need to be available before the
message is constructed and sent). As in each transition step,
the system nondeterministically picks up one guarded com-
mand among all the enabled ones, this way of modelling al-
lows the dishonest model to exhaustively and repeatedly gen-
erate all possible (both “legal” and “illegal”) behaviours.

List 1 gives the MOCHA code describing the behaviours
of honest Alice. (In this language, comment lines are starting
with “—") At first, Alice can do idle actions after she initiates
a protocol round by sending out EOQO,,. For honest Alice,
she mainly performs two kinds of actions in the exchange
sub-protocol, which includes sending evidence of origin and
the key. They are described in step (1) and (2). Step (1) mod-
els the action of sending EOQ,,, in which we use boolean
variables ik and pa_eoo to represent the hashed value of K
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and the message (B,T,i,sid, hi(K)), {M}K; )a signed by Al-
ice, respectively. Setting hk and pa_eoo to true means Alice
has initiated a communication with Bob by sending out her
EOQOy,. Step (2) says that if Alice has received the correct
verifiably encrypted message, namely pb_halfeorm has be-
come true, she can set k as true, which represents the action
of sending out key K. Except for the exchange sub-protocol,
Alice is also able to initiate the abort protocol if she does not
receive the verifiably encrypted signature pb_halfeorm from
Bob. This abort request A_abort_req is described in step (4),
in which the guard represents the requirements for asking for
abort from TTP, and the commands represent the behaviour
of contacting TTP for abort. Besides the abort sub-protocol,
Alice can also initiate the recovery sub-protocol which is
modelled in step (6). Recovery request is modelled as a
boolean variable A_recovery_req, and it will be set to be true
if the guard is satisfied, in which the k£ and pb_halfeorm are

List 1 Extracted honest model of Alice

——idle action while not stopped
[ ] ~pa_stop & pa_eoo —>
—— (1) Alice sends EOO to Bob
[ 1 ~pa_stop & ~A_contacted_T & ~pa_eoo
—> pa_eoo’ :=true; hk’ := true
——(2) Alice sends out key
[ ] ~pa_stop & ~A_contacted_T
& pb_halfeorm & ~k
—> K’ :=true
——(3) Alice stops
[ 1~pb_stop & ~A_contacted_T
& pb_eorm & ~pa_rece_eorm
—> pa_rece_erom’ :=true
——(4) Alice sends abort request
[ ] ~pa_stop & ~A_contacted_T
& pa_eoo & ~pb_halfeorm
—> A_contacted_T’ :=true;
A_abort_req’ := true
——(5) Alice stops after receiving abort token
[ ] ~pa_stop & A_contacted_T
& T_abort_send_A
—> T_abort_token_A’ :=true;
pa_stop’ := true
——(6) Alice sends recovery request
[ 1 ~pa_stop & ~A_contacted_T
& k & pb_halfeorm & ~pb_eorm
—> A_contacted_T’ := true;
A_recovery_req’ := true
——(7) Alice stops
after receiving recovery token
[ ] ~pa_stop & T_recovery_send_A
—> pa_rece_eorm’ := true;

pa_stop’ :=true
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true while pb_eorm is false. Note that once honest Alice ini-
tiates a recovery or abort sub-protocol with TTP, she will not
continue the exchange sub-protocol. This mechanism is re-
alised by modelling a boolean variable A_contacted_T. Fi-
nally, Alice can stop if she receives final EOR}, from Bob
(step (3)) or recovery token from TTP (step (7)). Abort token
(step (5)) can also make Alice stop the protocol round. In a
similar way, we model the honest behaviours of Bob.

List 2 describes the behaviours of dishonest Alice, her ma-
licious behaviours are described as follows. At first Alice is
allowed not only to idle, but also to stop and to quit the proto-
col at any time she wants. The behaviours of sending EOQ,,
and the key are specified in step (1) and step (2). Step (1)
models that Alice can send out her evidence of origin by set-
ting variable pa_eoo to true at any time she wants, even if she
has already contacted TTP and is supposed to stop. Together
with pa_eoo, malicious Alice still has the choice of sending
out correct hashed key hk or incorrect hashed key hke. Simi-
larly, step (2) specifies that Alice can send out her key at any
time she wants. If the variable k is true, it means that the cor-
rect key has been sent out. Otherwise, it represents that Alice
has not sent out any key or the key that has been sent out is
wrong. Moreover, step (3) and step (4) models that Alice can

List 2 Extracted dishonest model of Alice

——idle actoin while not stopped
[ ] ~pa_stop & pa_eoo —>
—— Alice stops
[ ] ~pa_stop & pa_eoo
—> pa_stop’ :=true
—— (1) Alice sends EOO
——sends correct hashed key
[ ] ~pa_stop & ~pa_eoo
& ~hk & ~hke
—> pa_eoo’ :=true; hk’ := true
——sends incorrect hashed key
[ 1 ~pa_stop & ~pa_eoo & ~hk & ~hke
—> pa_eoo’ :=true; hke’ :=true
——(2) Alice sends key
[ ] ~pa_stop & ~k —> k’ :=true
——(3) Alice sends abort request
[ ] ~pa_stop & pa_eoo
—> A_abort_req’ := true
——(4) Alice sends recovery request
[ ] ~pa_stop & pb_halfeorm
—> A_reovery_req’ :=true
——(5) Alice receives abort token
[ ] ~pa_stop & T_abort_send_A
—> T_abort_token_A’ :=true
——(6) Alice receives recov.~token
[ 1 ~pa_stop & T_recovery_send_A
—> pa_rece_eorm’ := true
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contact TTP for abort or recovery as long as she has received
enough messages, but she does not set the A_contact_T as
true. The last two steps describe the situations when Alice
has received EOR}, or an abort token from TTP.

In a similar way, we can model the dishonest behaviours
of Bob.

List 3 models the corresponding behaviours of TTP. TTP
is a special player that has to be modelled in a particular way.
It must be objective, and cannot act in collusion with proto-
col participants. We build the model for TTP that strictly fol-
low the protocol. For each protocol round, we use a variable
T_stateAB to record the status of protocol. T_stateAB has
three possible values, which are abrt, recov and empty rep-
resenting aborted, recovered and empty states, respectively.
After receiving recovery or abort request, TTP will behave
according to the values of T_stateAB. The first part describes
how TTP deals with abort request from initiator Alice. TTP
sends out abort token to both Alice and Bob if the status is
empty or abrt, and the T_stateAB is also needed to be set as
abrt if the original status is empty. However, if T_stateAB
is recov, which means the corresponding round has already
been recovered, then the corresponding EOR,, and key must
be sent to Alice and Bob respectively. Part two and three mod-
els the behaviours of dealing with recovery requests from Al-
ice and Bob. If the TTP receives a recovery request and its
status is empty or recov, then the required evidences or key
must be sent to Alice and Bob respectively. Otherwise, abort
token will be sent out.

Note that we also build a two-round protocol model which
can be used to represent multiple email delivery communica-
tions, and it is based on the one-round protocol model. Details

List 3 Extracted model of TTP
—— (1) If TTP receives abort

can be found in [53].
6.2.2 Expressing properties of the protocol in ATL

Given a CEM protocol with just two participants Alice and
Bob, the following expressions are suitable for honest partic-
ipant even if the other is dishonest. Actually, we only care
about fairness and timeliness for honest participant. As to
effectiveness, it requires that both participants must behave
honestly.

o Effectiveness

If honest participants are willing to exchange emails for re-
ceipts, then the protocol will terminate in a state in which
Alice has obtained EOR and Bob has received EOO and M
without the involvement of TTP.

effectiveness = ({P,H, P,H)»® (EOO A M A EOR)),

where P,H and P,H represent honest participants Alice and
Bob, and EOR represents the evidence of receipt from re-
ceiver Bob. In addition, the EOO and M represents the evi-
dence of origin and the email content from Alice.

e Timeliness

At any time, an honest participant has a strategy to stop the
protocol and thus to prevent endless waiting. Timeliness for
Alice and Bob is formulated as:

timelinessP, = YO ({P,H)O P,_stop),

timeliness P, = VYO ({PpH )< Pp_stop).

where P,H and P,H represent the honest Alice and Bob, and

request from Alice
[ 1 A_abort_req
& (T_stateAB=abrt)
& ~T_response_A
—> T_abort_send_A’ :=true;
T_abort_send_B’ :=true;
T_response_A’ := true
[ 1 A_abort_req
& (T_stateAB=empty)
& ~T_response_A
—> T_abort_send_A’ :=true;
T _abort_send_B’ :=true;
T_response_A’ :=true;
T_stateAB’ := abrt
[ 1 A_abort_req
& (T_stateAB=recov)
& ~T_response_A
—> T_recovery_send_A’ :=true;
T_recovery_send_B’ :=true;
T_response_A’ := true

——(2) If TTP receives recovery

——(3) If TTP receives recovery

request from Alice
[ ] A_recovery_req
& (T_state=empty)
& ~T_response_A —>
—> T_stateAB’ :=recov;
T_recovery_send_A’ :=true;
T_recovery_send_B’ :=true;
T_response_A’ :=true
[ ] A_recovery_req
& (T_state=recov)
& ~T_response_A —>
—> T_recovery_send_A’ :=true;
T_recovery_send_B’ :=true;
T_response_A’ :=true
[ 1 A_recovery_req
& (T_state=abrt)
& ~T_response_A —>
—> T_abort_send_A’ := true;
T_abort_send_B’ :=true;
T_response_A’ :=true

request from Bob
[ 1 B_recovery_req
& (T_state=empty)
& ~T_response_B —>
—> T_stateAB’ :=recov;
T_recovery_send_A’ :=true;
T_recovery_send_B’ :=true;
T_response_B’ :=true
[ ] B_recovery_req
& (T_state=recov)
& ~T_response_B —>
—> T_recovery_send_A’ :=true;
T_recovery_send_B’ :=true;
T_response_B’ :=true
[ ] B_recovery_req
& (T_state=abrt)
& ~T_response_B —>
—> T_abort_send_A :=true;
T_abort_send_B’ :=true;
T_response_B’ := true
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P,_stop (Pp_stop) represents that Alice (Bob) has reached a
termination state of the protocol.

¢ Fairness

A protocol is fair for honest Alice (P,H) if the following is
satisfied: whenever Bob obtains P,H’s non-repudiation ev-
idence of origin (EOO) and email content M, P,H has a
strategy to obtain Bob’s non-repudiable evidence of receipt
(EOR). In ATL, fairness for honest Alice can be formulated
as:

fairnessP,H = Yo ((EOO A M)
= (P.H)© (EOR)).

Similarly, fairness for Bob is formulated as below. If Alice
obtains P,H’s EOR, honest Bob P,H has a strategy to get
Alice’s EOR and email content M.

fairnessP,H = VYo ((EOR)
= (P,HY»O (EOO A M)).

6.2.3 Analysis

We have built three Mocha models, P,H || P,H || TTP,
P, || P,H || TTP, and P,H || P, || TTP, combining the
aforementioned formulas, to verify fairness, timeliness and
effectiveness of our CEM protocol. These properties were
successfully checked in MOCHA.

6.3 Verification in uCRL

In this section, we give sketchs on how we model the proto-
col in uCRL, and discuss how to check TTP transparency of
the protocol in uCRL. The detailed models and analysis can
be found in [53].

6.3.1 Modelling the protocol in uCRL

Each uCRL specification consists of two parts, abstract data
type definitions and behavioural specifications for partici-
pants. Since the execution of protocol mainly depends on the
exchange of messages, the contents of the data are not treated
in details, instead the data type used and corresponding oper-
ations on it are captured. Therefore, we can simplify the com-
plex cryptographic primitives, such as encryption, decryption
and verifiable encryption of messages.

In our model, we abstract some data types from the pro-
tocol, which are Bool, Key, Number, Item, Player, Status
and Message. Sort Bool has the same meaning as the normal
boolean type. ltem is a simple data type with a constructor d,
which represents the email content. As our extended CEM
protocol is a key chain based protocol, sort Key is modelled
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to represent the keys that belong to a key chain. For simplic-
ity, we just set two constructors for it. Correspondingly, sort
Number is also defined to model the protocol round number.
Moreover, to specify the protocol, we assume that there are
three processes which are Alice, Bob and TTP respectively.
Each of them is assigned with a unique identity (A, B or T),
which is described in sort Player. TTP is an important player,
which should be impartial. After receiving abort or recovery
request, TTP will behave honestly according to his record
status(i), for which we define a sort Status.

sort Status
func aborted,recovered,empty — Status

map eq: Status x Status — Bool
var s; : Status
rew eq(si, s1) =T

eq(aborted,recovered) =F

eq(recovered,aborted) =F
eq(empty,aborted) -F
eq(empty,recovered) =F

As the behaviour part of the model is mainly specified by
the exchange of messages, defining an appropriate data type
for message is necessary, and sort Message we defined is
the type that meets our requirements. The constructors for
this sort are boolm, itm, player, keym, pair, hash, sign,
vesign, enc, and num. Since communications between par-
ticipants are modelled by messages, the constructors boolm,
itm, player, num, and keym are defined to change the
corresponding data type into sort Message. For example,
keym(k,) represents the action of transforming k; with type
Key into Message. Many operations in the protocol are also
specified by means of message, such as signing and verifi-
ably signing messages, encryption, etc. The constructor sign
has parameters Player and Message, which is used to model
signing actions. For example, Sign(A, m) means that player A
has signed the message m using his private key. Another im-
portant action is how to partially sign the message that can
be verified by everybody. The verifiably encrypted signature
is formed by using signer’s private key and TTP’s public key.
Therefore, the constructor versign is defined with parameters
Player and Message. An example vesign(A, T, m) shows
out the verifiably encrypted message signed by player A using
player T’s public key. Finally, the constructor pair is defined
to connect messages.

sort Message
func boolm:Bool — Message
itm:ltem  — Message
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player:Player — Message
num:Number — Message
keym:Key — Message
hash:Message — Message
sign:Player x Message — Message

vesign:Player x Player x Message — Message
enc:Key x Message — Message
pair:Message x Message — Message

There exists two functions eq and keq for sort Message,
of which eq is used to compare whether two messages are
the same, and the outcome is a boolean type. For example,
in order to compare whether the two signed messages are the
same, we have the following equation:

eq(sign(p1, m1), sign(pz, my)) =
if(eq(l’l’ PZ)’ eQ(ml» mZ)v F)

First, it will judge whether the two messages are signed by
the same player, and if so, a further comparison of messages
are conducted, or else, it will produce false as an outcome.
Another function keq is used to check whether the given key
is the right key for a particular protocol round. Normally, it
is used by TTP when dealing with recovery request. We omit
the detailed definitions of these two functions in the sort spec-
ification of Message.

TTP transparency states that the final evidences do not re-
veal whether TTP has intervened in the protocol or not. The
main idea of checking TTP transparency is to compare traces
obtained from three different models after hiding all unnec-
essary actions, such as messages between TTP and the users,
as well as minimising the generated state space modulo weak
trace equivalence [54]. The three models are combinations of
(1) honest Alice and honest Bob, (2) honest Alice, malicious
Bob and TTP, and (3) malicious Alice and honest Bob and
TTP.

Participants are linked up by communication channels. Ac-
cording to our assumption, the communications channels are
resilient, in the sense that every message is guaranteed to
reach its destination eventually. Therefore, by using the en-
capsulation and communication operators in uCRL, we are
able enforce the actions of participants Alice, Bob and TTP
to synchronise. Each participant is defined as a process. The
communications between them are composed by actions of
sending and receiving messages. For example, we define an
action for initiator Alice of sending a recovery request to TTP
in the form of sendT(A, recover, T), where A and T are the
identities of Alice and TTP respectively, recover is of data

type Message. Similarly, recvT(T, recover, A) represents
the action of receiving a recovery request from Alice. In this
way, we can define the behaviours of participants by actions
(act) parameterised with data. The main communications are
defined as follows. com represents the communication be-
tween Alice and Bob, and initCom describes the initialisation
communication between them. Similarly, we also use comT
to specify the communication between Alice (Bob) and TTP.
These synchronisations of actions are enforced by the encap-
sulation operator dy. In uCRL language, this is captured by
a list of equations of the form s | » = ¢ under the keyword
(comm).

comm send | recv=com
sendT | recvT=comT
initSend | initRecv=initCom

The honest and dishonest behaviours of the participants
resemble those in the Mocha models. In the following, we
present the uCRL models of honest Alice, dishonest Bob
and TTP separately. For instance, the behaviours of the ini-
tiator (honest) Alice are modelled in a process with a pa-
rameter key, which initiates the CEM protocol by send-
ing evidence of origin EOO to receiver Bob. The action
init_A(A,y,€00,1i, x, B) shows that Alice initiates a proto-
col round i for delivering an email y to Bob using a key x.
Then after receiving the verifiably encrypted message from
Bob, honest Alice will send out her key. If Bob’s final reply
EOR is correct, Alice will be sure that she has completed one
email delivery and successfully obtained the evidence of re-
ceipt. Action evidence_A(A, y, eorm, i, x, B) reports that she
has already obtained the evidence for protocol round i which
sends email y with key x. The sketch of Alice’s behaviour is
described as follows.

Alice(x:Key)= Zy:ltem 2%i:Number

initSend(A, eoo, B).

init_A(A, y, x, i, B)

recv(B, halfeorm, A).

send(A, k, B).

recv(B,eorm, A).

evidence_A(A,y,eorm, i, x, B)
where €00 represents the the first message 1°* for protocol
round i. The halfeorm and eorm represents Bob’s verifiably
encrypted signature and final signature®. We need to extend
the above process when taking TTP into account to cover
when Alice can contact TTP and receive replies from TTP,
which we omit in the above specification.

4 The detailed specifications of the terms €00, halfeorm, and eorm are left out for the clarity of presentation.
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We use two processes, Bob and Bob,, to model the mis-
behaviours of Bob. Actually, Bob acts as the main process,
and Bob; with parameters Key, ltem and Number works
as the sub-process for Bob. At the very beginning, Bob
waits for the first message from Alice, using an action ini-
tRecv(4, EQQ, B) to report the receipt of EOQO. After that
he performs an action init_Bob to represent his involvement
in the protocol. Then he moves to process Bob;, which spec-
ifies the misbehaviours.

Bob= Zx:Key Zy:ltem Zi:Number
initRecv(A, eoo, B).
init_B(A, i, eo00, B).
Bob (x,y, 1)

Bob is a process that acts as a core part of process Bob,
and it models Bob’s misbehaviours as stated before. From
the sketch of process Bob; in below, we can see that ma-
licious Bob has three choices after receiving the first mes-
sage from Alice. The first one would be that he honestly
sends out his verifiably encrypted message through the ac-
tion send(B, halfeorm, A). In this case, Bob still can choose
between whether to receive key from Alice or rerun pro-
cess Bob;. If he prefers to receive the key, he will first
get his evidence evidence_B(B, y, €00, i, x, A) and then still
face two situations, one is to deliver his final EOR, the
other is to return to Bob;. The second choice for malicious
Bob is directly sending recovery request to TTP, which is
represented with sendT(B, recoveryB, T). After that, Bob
may receive abort token (recv_abort B(x,y,i, A, B)), er-
ror message (recv_error_B(x,y,i, A, B)), the desired key
recvT(T,k, B), or he just re-executes Bob,. Malicious Bob
still can perform Bob; even if he gets abort token or error
message, and is supposed to quit the protocol. We also model
that Bob can quit the protocol if he obtains all his expected
evidences, such as EOO in the first message and key. More-
over, the last choice for Bob is the deadlock, which means he
can quit the protocol at any time he wants.

Bob, (x:Key, y:ltem, i:Number)=
send(B, halfeorm, A).
(recv(A, k, B).
evidence B(B,y,e00,1, x,A).

(Bob1(x,y,1)
+ send(B,eorm,A))

+ Bob1(x,y,i))

+ sendT (B, recoveryBob, T).
((recv_abort_B(x,y,i, A, B)
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+ recv_error_B(x,y,i, A, B)).
Bob (x,y,1)
+ Bob;(x,y,i)
+ recvI(T,k, B).
evidence B(B,y,€00,1, x, B))

+T.0

Similarly, honest Bob and dishonest Alice can be modelled
in uCRL as well.

We present the behaviours of TTP with an identity 7 with
parameters Status by process TTP. Since TTP is a fully
trusted participant which cannot misbehave, we model it
strictly according to the protocol. TTP can deal with recovery
request from both Alice and Bob, and abort request only from
Alice.

From the sketch of TTP’s behaviour below, we can see
that the action recvT(B,recoveryB,T) is used to repre-
sent receiving recovery request from Bob. In this case, Bob
will first check whether the key used in the protocol is
the right key in the key chain. If not, an error message
(error_B(x,y,i,eorm, A, B)) will be delivered to Bob. If yes,
TTP goes on checking his status for this protocol round i. If
the status has already been set to be aborted, the abort to-
ken will be sent by actions abort_B(x, y, i, A, B). However, if
the status is recovered or just empty, the corresponding key
is sent out to Bob, and the status will be kept as recovered.
Similarly, TTP receives recovery request from Alice by the
action of recvT(A, recoveryA, T).

The process of dealing with Alice’s recovery request
is similar to that of Bob. The main difference lies in
the message that sent to Alice if TTP is sure to help
in the recovery process. Actually TTP will first abstracts
the final EOR from the verifiably encrypted message and
then delivers it, which is simply represented by action
sendT(T,eorm,A). TTP can also accept Alice’s abort re-
quest stated by recvT(A,abortA, T). After that, he checks
the TTP’s status to make decisions. If the status is recov-
ered, then the final EOR will be sent. Or else, abort token
will be sent by actions abort_A(x,y,i, A, B), and after that,
the status for protocol round i will be kept as aborted.

TTP(s:Status)= Zy:ltem Zx:Key 2iNumber
recvT(B,recoveryB,T).
(error_B(x,y,i,eorm,A, B)
< not(keq(x, i) >
(abort_B(x,y,i,A, B)
< eq(s, aborted) >
sendT(T, k, B).
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TTP(recovered)))
+ recvT(A,recoveryA,T).
(error_A(x,y, i, halfeorm, A, B)
< not(keq(x, i) >
(abort_A(x,y,i,A, B)
< eq(s, aborted) >
sendT(T,eorm, A).
TTP(recovered)))

+ recvT(A, abortA, 7).
(recover_A(x,y, i, halfeorm, A, B)
< eq(s,recovered) >
(abort_A(x,y,i, A, B).
TTP(aborted))

After modelling the behaviours of honest and dishonest
agents and TTP, we put them in parallel to construct the
whole state spaces of models, including (1) honest Alice and
honest Bob; (2) honest Alice, dishonest Bob and TTP; (3)
dishonest Alice, honest Bob and TTP.

6.3.2 Analysis

Our way to check TTP transparency is by comparing traces of
getting evidences between system of only honest participants
and systems containing dishonest participants. After hiding
some actions (i.e., we keep those actions related to presenting
evidences and the starting of a protocol round) and reducing
the model (i.e., state space minimisation modulo weak trace
equivalence), we obtain a trace from the honest system that
is depicted in Fig. 3(a), which shows the situation of getting
evidences without TTP. Figure 3(b) describes traces obtained
from the model containing honest Alice, dishonest Bob, and
TTP. We can find that Fig. 3(b) has an additional trace. Evi-

evidence A
(A. m. eorm, k. B)
evidence_A(AL m, eorm. k. B)
2

evidence B(B| m. eoo. k. A)

®

initCom(A, m.|e0o, one, k. B)

©

(a) (b)

evidence_B
(B. m.eoo. k. A)

initCom(A.|m, eco, k. B)

evidence B
(B, m. eoo, k., 4)

evidence A
(A. m, eorm. k. B)
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dences for both traces are of the same form, but the sequence
of getting them are different. However, this difference does
not affect the correctness of TTP transparency. When check-
ing the evidences possessed Bob and Alice, the only thing
that matters is the content of the evidences, and the number
of transitions (which might reflect the execution time) is ir-
relevant due to the asynchrony of the protocol model. Figure
3(c) depicts the traces obtained from the model containing
dishonest Alice, honest Bob and TTP. We can find that this
figure has one more trace than Fig. 3(b). This extra trace de-
scribes Alice’s malicious behaviours of using the key (k) that
does not match the protocol round (i;). However, the occur-
rence of this trace manifests that both Alice and Bob get their
expected evidences without the intervene of TTP. As if Alice
or Bob tries to contact TTP for recovery, they will just obtain
error message instead of evidences. Therefore, this trace does
not reveal the involvement of TTP. By the above analysis, we
can draw a conclusion that our extended CEM protocol sat-
isfies TTP transparency. Note that in Fig. 3 we have omitted
the round numbers in action labels. We in fact also checked
models with two protocol rounds. The analysis of TTP trans-
parency is carried out in a similar way. Details can be found
in [53].

7 Conclusion

We have proposed a TTP transparent CEM protocol, as an
extension of Cederquist et al.’s protocol using key chains. To
achieve this, we used a verifiably encrypted signature scheme
based on bilinear pairing. Comparing to the existing CEM
protocols, ours is among the most efficient ones satisfying
strong fairness, timeliness, and TTP transparency. We have
formally verified the protocol. The verification was taken in

evidence A
evidence A (A, m, eorm, k,, )

(A, m, eorm, k

evidence B
(B, m, €00, k,,4)
evidence A

(A4, m, eorm, k|, B)

evidence_B
(B. m, eoo. k. A)

initCom(A. mjeoo. k. B)

initCon#A. m. eoo, k,. B)

Fig. 3 The obtained traces
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two steps. First, we checked fairness, timeliness and effec-
tiveness properties, using the model checker Mocha. Then we
have modelled the protocol in a process algebraic language
HCRL and used its toolsets together with CADP to check TTP
transparency. Our analysis shows that the protocol achieves
the design goals.

In this paper, we have checked the protocol with a limited
number of rounds. In general, it is a hard problem to verify
the protocol with an arbitrary number of rounds. A possible
future direction is to study ways of abstraction [55] or to de-
velop new reduction techniques [56] for game-based model
checking, in order to analyse models in Mocha with more
protocols rounds. Another direction is to use an inductive ap-
proach, e.g., [57], to prove correctness of the protocols in a
more general setting.

The way to formalise TTP transparency in this paper re-
lies on an abstraction from the underlying cryptographic
techniques and the ability of the adversary. In the future, we
would like to investigate this property in a more sophisticated
model, for example, it is interesting to see whether we can
interpret TTP transparency using the notion of static equiva-
lence in the applied pi calculus [58]. Another direction is to
extend the protocol furthermore, to cover other design goals
such as stateless TTP and accountability.
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