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Abstract In certified email (CEM) protocols, trusted third

party (TTP) transparency is an important security require-

ment which helps to avoid bad publicity as well as protecting

individual users’ privacy. Cederquist et al. proposed an opti-

mistic certified email protocol, which employs key chains to

reduce the storage requirement of the TTP. We extend their

protocol to satisfy the property of TTP transparency, using

existing verifiably encrypted signature schemes. An imple-

mentation with the scheme based on bilinear pairing makes

our extension one of the most efficient CEM protocols satis-

fying strong fairness, timeliness, and TTP transparency. We

formally verify the security requirements of the extended pro-

tocol. The properties of fairness, timeliness and effectiveness

are checked in the model checker Mocha, and TTP trans-

parency is formalised and analysed using the toolsets μCRL

and CADP.

Keywords fair exchange, CEM protocols, fairness, TTP

transparency, formal verification

1 Introduction

Certified email (CEM) protocols, as an extension of regular

email services, require that both senders and receivers be re-

sponsible for their roles in the email services. That means, as

a protocol successfully runs to the end, neither the sender can
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deny the dispatch of the email, nor can the receiver deny the

receipt. Such requirements are usually implemented by a non-

repudiable evidence of origin (EOO) that is to be acquired by

the receiver, and a non-repudiable evidence of receipt (EOR)

that is to be acquired by the sender. Both the EOO and the

EOR may serve as evidences in case of a dispute, in order to

prove the participation of the other party.

As a special class of fair exchange protocols [1], a CEM

protocol is supposed to guarantee fairness with respect to

non-repudiable evidences. Informally, at the end of a fair pro-

tocol run, either both parties acquire all the evidences, or no

party gets an evidence. A trusted third party (TTP) might be

introduced to take charge of the whole procedure and to pro-

vide undeniable records of submission (from the sender) and

delivery (to the receiver). However in this way, a TTP may

easily become a bottleneck, if it has to be involved in a large

number of CEM services. A better solution, so called opti-

mistic protocols [2], helps to release this burden from a TTP.

In the optimistic protocols, a TTP is only required to be in-

volved in case of unexpected events, such as a network failure

or one party’s misbehaviour, to restore fairness. In such situ-

ations, a TTP may digitally sign some pieces of information,

which will be used later as evidences to guarantee that the

protocol ends in a fair state. If both the signer and the receiver

behave correctly and there is no presence of significant net-

work delays, a CEM protocol terminates successfully without

intervention of the TTP. A typical structure of an optimistic

CEM protocol consists of an exchange sub-protocol, an abort

sub-protocol and a recovery sub-protocol. The exchange sub-
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protocol is executed by the communicating parties to deliver

an email as well as exchanging undeniable evidences. The

other sub-protocols are launched by a party to contact a TTP

to deal with awry situations.

We assume weaker attackers than the Dolev-Yao adver-

saries [3], in that we do not allow an attacker to block chan-

nels, forge messages or impersonate other users. Instead, we

assume resilient channels between the communicating par-

ties, so that every message is guaranteed to arrive at its re-

ceiver eventually, which is especially critical to satisfaction of

the fairness requirement. In practice, resilient channels can be

guaranteed by physical devices, or be approximated in non-

resilient networks by means of software such as the SSL pro-

tocol for Internet users. Our work is based on a general con-

cept of resilient channel that has abstracted away all detailed

implementations that are mentioned above. Forgeries of mes-

sages are handled by the assumption on the crypto strength

used by the protocols. We also assume appropriate authenti-

cation mechanisms that forbid impersonation of users to hap-

pen in our scenario. More specifically, in our attacker model

we focus on the dishonest (or malicious) behaviours of users

in CEM protocols. A dishonest user may send out a message

if he gets enough information for generating the message. He

can even send messages after he is supposed to stop. He can

send out a wrong message, or withhold a message that he is

required to send out at a certain point. Furthermore, a dis-

honest user may quit at any time, or refuse to stop at a point

where his role in the protocol is required to stop. This type of

attacker model is generally treated in the analysis of fair ex-

change protocols, e.g., see [4–12], which allows us to focus

on the actual protocol design aiming to the properties of fair-

ness, timeliness and TTP transparency, and thus significantly

reduces the complexities in the modelling phase when using

tools Mocha and μCRL/CADP.

TTP transparency states that if a TTP has been contacted to

help in a protocol, the resulting evidences will be the same as

those obtained in the case where the TTP has not participated.

In other words, by simply looking at the evidences, it is im-

possible to detect whether the TTP has been involved or not.

Transparent TTPs are important and useful in practice, for in-

stance, to avoid bad publicity. Besides, in many situations, an

institution does not necessarily keep the up-to-date signatures

or affidavits from all trusted services (especially when a TTP,

who is trusted by the two parties involved in the protocol,

may not be trusted by an external judge who is to verify the

presented evidences). Moreover, this property also ensures

privacy of the participants for asking for help from TTPs. In

the context of CEM protocols, the use of a transparent TTP

was first proposed by Micali [13], followed by a number of

works [14–22], in which different cryptographic schemes are

used to achieve TTP transparency, such as interactive proof

of knowledge on the encrypted signatures, Schnorr-like sig-

nature schemes, and RSA-based encryption schemes.

In this paper, we focus on the development of a CEM pro-

tocol with a transparent TTP. Our starting point is the key

chain based protocol of Cederquist et al. [23]. The use of

key chains is to reduce TTP’s storage requirement. Our study

exposes a weakness in the original protocol, for which we

propose a fix. Later we extend Cederquist et al.’s protocol

to satisfy TTP transparency, adopting a recently introduced

verifiably encrypted signature scheme [24]. We are able to

show, by a detailed comparison, that our protocol is one

of the most efficient CEM protocols satisfying TTP trans-

parency, in addition to the other important properties such

as strong fairness, timeliness, and effectiveness. Furthermore,

we show that our protocol satisfies the desired properties, by

incorporating formal verification techniques. The finite-state

model checker MOCHA [25] is used to verify the properties

of fairness, timeliness and effectiveness, that are naturally

interpreted in alternating-time temporal logic (ATL) formu-

las with game semantics [26]. The verification of properties

expressed in ATL corresponds to the computation of win-

ning strategies. Another toolset μCRL [27, 28] is used for

TTP transparency, which requires a comparison of observ-

able traces in various situations. The μCRL toolset has the

ability of generating state spaces that can be visualised and

manipulated by the toolbox CADP [29] which acts as a back-

end of μCRL. Preliminary results in this paper have been

reported [30, 31].

Our contributions are bifold. First we improve the work of

Cederquist et al., by fixing a weakness in that version of the

protocol and extending it to support TTP transparency. We

also measure the complexity of our protocol in terms of tim-

ing consumption comparable to RSA signatures. The other

contribution is the formal verification of the security proper-

ties in MOCHA and μCRL/CADP. In particular, to the best

of our knowledge it is the first formal analysis of TTP trans-

parency in a symbolic way.

We introduce security properties for CEM protocols in

Section 2. The CEM protocol using key chains is briefly de-

scribed in Section 3. Our extension with transparent TTP and

its informal analysis are detailed in Section 4. We compare

our proposed protocol with some state-of-the-art CEM proto-

cols supporting TTP transparency in Section 5. Formal verifi-

cation of our protocol with MOCHA and μCRL is presented

in Section 6. We conclude the paper in Section 7.
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2 Security requirements

A CEM protocol needs to protect a participant who is honest,

i.e., his behaviour strictly follows the protocol specifications.

To this point, for the sake of readability, we write Alice for the

sender and Bob for the receiver of an email. We assume the

communication channels are resilient, in the sense that every

message is guaranteed to reach its destination eventually. The

following properties are typically required for an optimistic

CEM protocol. There are more properties, such as confiden-

tiality, stateless TTP, accountability, and high performance,

which we do not discuss in this work.

• Effectiveness If no error occurs then the protocol suc-

cessfully runs till the end without any intervention from

TTP.

• Timeliness Both Alice and Bob have the ability to

eventually finish the protocol anywhere during the pro-

tocol execution. This is to prevent endless waiting of an

honest party.

• Fairness Honest Alice (Bob) will get her (his) evi-

dences, provided that the other party gets the evidence

from her (him). The evidences can be used to convince

an external judge (who is not TTP) that Bob has re-

ceived the mail, in Alice’s case, or that Alice is the

true sender of the message, in Bob’s case. A protocol

satisfies strong fairness if every judgement on Bob’s

(Alice’s) non-repudiation can be made solely and inde-

pendently from Alice’s (Bob’s) evidences, i.e., it does

not necessarily involve TTP, nor the participation of

Bob (Alice). If besides Alice’s (Bob’s) evidences, ei-

ther TTP or Bob (Alice) needs to be contacted during

the judgement, the protocol only satisfies weak fairness.

• TTP transparency If a protocol runs successfully to

the end, then the evidence that each participant obtains

is of the same format regardless of whether TTP is in-

volved in the protocol execution or not.

3 A CEM protocol using key chains

We describe the certified email protocol proposed by Ced-

erquist et al. [23]. It makes use of key chains to reduce TTP’s

storage requirement. Once a key chain is initialised between

two communication parties, the initiator can use any key

within the chain to encrypt messages. Each exchange that

uses the protocol to deliver an email (which may involve

a number of message passings) is called a protocol round,

and one initialisation phase followed by a number of proto-

col rounds is called a protocol session. Each protocol session

belongs to a unique pair of communication parties. We focus

on the main idea of the protocol, with its details available in

the original paper [23].

We use {M}k to denote a message m encrypted with a sym-

metric key k, and (M)P to denote party P’s signature on mes-

sage M. In practice a signature is always applied on a hashed

value, usually by a user’s private (or sometimes called, secret)

key.

3.1 Key chain generation

In optimistic CEM protocols, communicating parties will re-

quest TTP for help if the exchange process is disrupted. To

achieve (strong) fairness, the TTP often needs to store suffi-

cient amount of information, to have the ability to decrypt, re-

trieve or send out information for the protocol to finally reach

a fair state. In most existing CEM protocols, the initiator uses

either TTP’s public key [17] or a separate key [19] to en-

crypt the email for each exchange. This first method normally

requires asymmetric key operations, which are more expen-

sive than symmetric key operations. The second method gives

TTP burden of storing information of exchanges, such as se-

cret keys, involved parties, hash values of email content and

so on [32]. The amount of information that TTP needs to store

blows up especially when there are a huge number of proto-

col executions running in parallel, some of which are between

the same pair of sender and receiver.

To reduce the TTP’s burden of storing too much infor-

mation, the protocol [23] uses key chains. A chain of keys

is a sequence of keys K′0,K
′
1, . . . ,K

′
n (see Fig. 1), such that

K′i := H(Gi(K0)) for each i � 0, where K0 is the seed,

H : κ → κ is a publicly known one-way collision-resistant

hash function and G : κ → κ is a publicly known acyclic

function (κ is a key domain). H and G functions are non-

commutative, i.e., given an H(Ki) for which Ki is unknown,

it is infeasible to compute H(G(Ki)).

Fig. 1 A key chain

3.2 Initialisation

To initialise a session, the initiator Alice (A) sends the key

chain seed K0 and the identity of the potential responder
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Bob (B), together with a nonce nc to the TTP (T ). TTP will

check whether there already exists an entry 〈A, B,K0, �〉 in

her database indicating whether the key chain has been estab-

lished. If yes, TTP just ignores this request. Otherwise, TTP

will choose a session identity sid, send a cert := (A, B, sid)T

to Alice, and store 〈A, B,K0, sid〉 in her database.

3.3 Exchange sub-protocol

The ith protocol round in a protocol session sid is described

below. The round number i is initially 0 and then can arbitrar-

ily grow, and Alice increments i after each round.

1ex. A→ B : A, B, T, i, sid, h(K′i ), {M}K′i ,EOOM , cert
2ex. B→ A : EORM

3ex. A→ B : K′i
4ex. B→ A : EORK′i

where EOOM := (B, T, i, sid, h(K′i ), {M}K′i )A, EORM :=

(EOOM)B, EORK′ := (A,K′i , {M}K′i )B and h is just an ordi-

nary hash function.

At first, Alice sends out message 1ex to Bob. After re-

ceiving this, Bob checks the correctness of the signature on

EOOM and cert. If both are correct, Bob then commits him-

self to receiving the email by sending out message 2ex. When

Alice receives 2ex, she checks the signature on EORM . If cor-

rect, Alice will send out K′i to Bob. Upon receiving the key,

Bob checks whether this key matches the hash value of the

key that he received in message 1ex. If yes, Bob decrypts the

email and sends out a confirmation EORK′ to indicate that he

has received the key and the email.

3.4 Recovery sub-protocol

Both Alice and Bob have the right to run recovery sub-

protocol by showing EORM . The recovery sub-protocol is

mainly run with the aim of acquiring key K′i or evidence

EORK′ with the help of TTP. Typically, Alice runs the re-

covery sub-protocol when she sends out key K′i while not

receiving message 4ex, and Bob runs it when he sends out

EORM while not receiving K′i .
After receiving a recovery request from a party p ∈ {A, B}

of the form:

1r. P→ T : fr, A, B, h(K′i ), h({M}K′i ), i, sid,EORM

where fr is a flag used to identify the recovery request. TTP

checks several things such as correctness of signatures, iden-

tities, entries for the key chain. If all checks succeed, TTP can

retrieve K0 and verify whether h(H(Gi(K0))) matches h(K′i ).
If yes, TTP looks up the status of round status(i), to check

whether round i has been resolved or aborted. Essentially, if

status(i) has not been set, TTP will set it as h({M}K′i ) and

send back a recovery token (A, B, h({M}K′i ),K′i , i, sid)T to the

requester. If the round is aborted (status(i) = a), TTP will

send back an abort token (A, B, h({M}K′i ),⊥, i, sid)T . If the

status is different from h({M}K′i ) or any of the above tests

fails, TTP will send back an error message in the form of

(error, (error,mr)T ), where mr is the content of the message

in Step 1r. This error message indicates a misbehaviour and

P can quit the protocol round.

3.5 Abort sub-protocol

Only Alice can abort, if presumably the current protocol

round has not yet been recovered. Typically, Alice may abort

if she does not receive message 2ex. To abort an exchange,

Alice sends TTP the following message:

1a. A→ T : fa, A, B, i, sid, h({M}K′i ), abrt

where fa is a flag used to identify the abort request and abrt
is Alice’s signature on the abort request. After receiving this

request, TTP checks several things such as correctness of sig-

natures, identities, entries for the key chain, and status(i) to

make decisions. If status(i) has not been initialised, TTP will

set it as aborted (status(i) := a) and send back an abort token.

If the round is recovered, TTP checks whether status(i) =

h({M}K′i ). If yes, TTP will send back a recovery token. Oth-

erwise, an error message of the form (error, (error, abrt)T ) is

sent back.

3.6 Evidences and dispute resolution

When a dispute occurs, two parties can provide evidences to

an external judge. For each protocol round i, EOO desired by

Bob consists of

A, B, T,M, i, sid,K′i ,EOOM

and EOR desired by Alice consists of

A, B, T,M, i, sid,K′i , cert,EORM,EORK′

if it is obtained by running the exchange sub-protocol. If

Alice uses the recovery/abort sub-protocol, then EORM and

EORK′ will be replaced by the recovery token. In this case,

EOR has the form of

A, B, T,M, i, sid,K′i , cert, (A, B, h({M}K′i ),K′i , i, sid)T .

As already remarked [23], the protocol is not TTP trans-

parent, due to the fact that an observer can tell whether TTP

was involved by simply checking EOR.
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3.7 A vulnerability of the protocol

We found a vulnerability in the protocol. This vulnerability is

mainly due to the form of EORK′ that does not include any

information about the current protocol round i. An EORK′ in

such form can be reused in different protocol rounds, which

causes a breach on fairness.

Figure 2 depicts a scenario where dishonest Alice breaks

strong fairness of honest Bob by reusing EORK′ . This attack

requires multiple protocol rounds, which is sketched as fol-

lows. Alice first initiates an exchange i by sending out 1ex, in

which she uses K′i+1 instead of K′i to encrypt the message, and

gets the corresponding EORM , then does nothing for round

i. Alice initiates another round i + 1 with Bob, and behaves

honestly in order to acquire correct EORM and EORK′ for

round i + 1. The attack from Alice is based on the fact that

EORK′ used in both rounds i and i+1 are of exactly the same

form, (A,K′i+1, {M}K′i+1
)B. At this moment, Alice has acquired

all the necessary evidences for round i, leaving Bob in an un-

fair state. If Bob initiates a recovery sub-protocol, TTP will

send back nothing but an error message because of the mis-

match between h(K′i ) and h(K′i+1). As a result, for round i,

strong fairness is broken. In order to fix this problem, we de-

cide to revise EORK′ to be of the form (A, i,K′i , {M}K′i )B, by

adding the current protocol round number i.

Fig. 2 A vulnerability on the CEM protocol using key chains [23]

4 Protocol design

We present an extension of the protocol in the previous sec-

tion to support transparency of TTP. Our approach requires

the usage of a verifiably encrypted signature scheme to en-

code Bob’s commitment to receive the email in message 2ex.

• Notations
We write (M)B|T for Bob’s verifiably encrypted (partial) sig-

nature on M, by using the public key of TTP to encrypt Bob’s

signature on M. Everyone can verify that (M)B|T is authentic,

but only TTP and Bob are able to ‘extract’ the complete sig-

nature (M)B out of (M)B|T .

• Exchange sub-protocol
The modified exchange sub-protocol is as follows:

1ex. A→ B : A, B, T, i, sid, h(K′i ), {M}K′i ,EOOM , cert

2ex. B→ A : EOR
1
2
M

3ex. A→ B : K′i
4ex. B→ A : EORM

where EOR
1
2
M := (EOOM)B|T . After receiving EOOM , Bob

sends out his partial signature on EOOM to show his commit-

ment to receive the email. If Alice further sends Bob the key

K′i , Bob will deliver a full signature back to Alice as EOR.

• Abort and recovery sub-protocols
Alice is allowed to abort provided that she has sent out mes-

sage 1ex, but has not received message 2ex from Bob. Once

honest Alice and Bob contact TTP, they are not allowed to

continue the exchange sub-protocol.

Alice is allowed to launch the recovery sub-protocol pro-

vided that she has sent out message 3ex, but has not received

message 4ex. Similarly, Bob can launch the recovery sub-

protocol if he has sent out message 2ex, but has not received

message 3ex. The first message of the recovery sub-protocol

for Alice is

1r
A. A→ T : fr, A, B, h(K′i ), h({M}K′i ), i, sid,EOR

1
2
M ,EOOM .

The first message of the recovery sub-protocol for Bob is

1r
B. B→ T : fr, A, B, h(K′i ), h({M}K′i ), i, sid,EORM ,EOOM .

On receipt of a message for recovery, TTP needs to

check (1) the correctness of (verifiably encrypted) signatures

on EOOM and EORM (EOR
1
2
M); (2) the identity of TTP;

and (3) whether there is an entry in its database matching

〈A, B, �, sid〉. If all the above checks succeed, TTP will re-

trieve K0 and (4) check whether h(H(Gi(K0))) matches h(K′i ).
If yes, TTP will look up status(i) for round i.

• If status(i) has not been initialised, TTP will set

status(i) := h({M}K′i ). Whenever necessary TTP con-

verts EOR
1
2
M into EORM. After that, TTP sends out the

following messages:

2r. T → B : K′i
3r. T → A : EORM
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• If status(i) = h({M}K′i ), then TTP performs Step 2r and

Step 3r (again).

• If status(i) = a, TTP sends out the abort token to the

one that launched the protocol.

2r. T → A(B) : abrt, (abrt)T .

If any of the tests (1), (2), (3), and (4) fails, TTP ignores

the recovery request and sends back an error message.

2r. T → A(B) : error, (error,mr)T

where mr is the whole message received in Step 1r
A or Step

1r
B.

• Evidences and dispute resolution
When a disputation occurs, two parties can provide evidences

to an external judge. For each protocol round i, EOO desired

by Bob consists of

A, B, T,M, i, sid,K′i ,EOOM

and EOR desired by Alice consists of

A, B, T,M, i, sid,K′i , cert,EORM .

4.1 Security analysis

As a special feature, the key chain provides an opportunity

for Alice and TTP to have a predefined infinite list of sym-

metric keys. We assume that K0, the seed of the chain, is a

secret between Alice and TTP during related protocol exe-

cutions. We restrict our attention to a single protocol round.

For multiple rounds a weakness related to key chains has been

identified and fixed, but the same vulnerability does not apply

in the revised protocol in which EORK′i is no longer used. In

the following we informally justify that the revised protocol

satisfies the claimed security properties.

• Non-repudiation and fairness
If in round i Alice possesses EORM , we need to show that

Bob must receive {M}K′i , K′i and EOOM in the same round i.

There are three cases.

1. Alice receives EORM from Bob in message 4ex, i.e.,

only the exchange sub-protocol is launched and it suc-

cessfully runs to the end, during which Bob obtains

EOOM , {M}K′i , and K′i .

2. Alice receives EORM from message 3r by launching

the recovery sub-protocol herself, i.e., sending out 1r
A.

Then Alice must possess EOR
1
2
M from Bob’s message

2ex, which means Bob must have received 1ex and ob-

tained both EOOM and {M}K′i . Then in the recovery sub-

protocol, TTP must have sent message 2r from which

Bob obtains K′i .

3. Alice receives EORM from message 3r by Bob launch-

ing the recovery sub-protocol. Then Bob must have re-

ceived 1ex and have shown EOOM to TTP, i.e., Bob ob-

tains both EOOM and {M}K′i , and in message 2r Bob

receives K′i from TTP.

Furthermore, in case of a dispute, EORM alone from Alice is

sufficient to prove that Bob has received M.

If in round i Bob possesses M, EOOM and K′i , we need to

show that (1) Alice must receive EORM in the same round i,

and (2) Alice is the true sender of M. We know Bob can only

receive {M}K′i and EOOM from 1ex. There are two cases.

1. Bob receives K′i from Alice, then the exchange sub-

protocol runs at least up to message 3ex. Bob may send

4ex to Alice which contains EORM . If Bob does not

send out 4ex, Alice can always get EORM from TTP by

launching the recovery sub-protocol.

2. Bob receives K′i from TTP in the recovery sub-protocol.

No matter who lauched the recovery sub-protocol, Alice

gets EORM in message 3r (from TTP).

As to the authenticity of the message M, Bob is able to

convince every third party that M is indeed from Alice by ver-

ifying Alice’s signature on EOOM , after extracting M from

{M}K′i with Ki. Note that K′i is also verified as its hashed value

is contained in EOOM too. Since presenting (M,EOOM,K′i )
is sufficient for Bob to prove that M is originally from Alice,

together with the above EORM case for Alice, the protocol

satisfies strong fairness.

• Effectiveness
Suppose both Alice and Bob are honest, so that they faith-

fully follow the protocol in round i, and no error occurs, e.g.,

there is no significant network delays. It is obvious that only

the exchange sub-protocol is launched, and it will stop at a

state in which Alice obtains EORM , and Bob obtains both M

and EOOM .

• Timeliness
In round i Alice can always launch the abort sub-protocol af-

ter she sends out message 1ex, so that TTP will send back

either an abort token or EORM depending on whether a re-

covery message has already arrived at TTP or not. Bob can

launch the resolve sub-protocol any time after he receives

message 1ex and will get either an abort token or K′i , depend-
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ing on the communication between Alice and TTP. The re-

silient channels between TTP, Alice and Bob guarantees that

the above procedures terminate in a timely manner.

• Transparency of TTP

If the exchange sub-protocol successfully runs to the end, Al-

ice’s evidence is EORM , and Bob’s evidences are M, EOOM,

and K′i .

• Suppose the recovery sub-protocol is launched by Al-

ice, then Alice must have message 2ex which contains

EOR
1
2
M , and Bob must have message 1ex which contains

{M}K′i and EOOM . If TTP successfully verifies EOOM

and EOR
1
2
M , TTP will convert EOR

1
2
M into EORM and

send it back to Alice. Consequently TTP sends K′i to

Bob. In this case both Alice and Bob have the same ev-

idences as only the exchange sub-protocol is launched.

• Suppose the recovery sub-protocol is launched by Bob,

then Bob must have message 1ex. If TTP successfully

verifies EOOM and EORM , TTP will forward EORM

to Alice, and send K′i to Bob, so that they get the same

evidences in this case too.

In the next section, we discuss a particular signature

scheme and our motivation to implement it in our protocol.

4.2 Verifiably encrypted signature schemes

There is a variety of fair exchange protocols with verifiably

encrypted signatures (some of which are also called convert-

ible signatures) existing in the literature. Some of the earliest,

such as Asokan et al. [33], Bao et al. [34], Boyd and Foo [35],

and Camenisch and Damgård [36], apply interactive proof of

knowledge on the encrypted signatures, such that more mes-

sage exchanges are required in the protocols. Several later

approaches use Schnorr-like signature schemes to wrap up

signatures, such as by Ateniese and Nita-Rotaru [16], or

RSA-based encryption schemes, such as by Markowitch and

Kremer [14]. The GPS+RSA scheme used in [14] has been

shown an attack by Cathalo et al. [37]. Another attack on fair-

ness proposed by Bao [38] is applicable on several of the sig-

nature schemes discussed in [39]. More recently, pairing al-

gorithms for solving the decision Diffie-Hellman problem in

gap Diffie-Hellman groups have been introduced to generate

verifiably encrypted signatures [24,40]. We briefly sketch the

scheme of [24] below.

Let G1 be a cyclic additive group generated by P with

prime order q, and G2 be a cyclic multiplicative group with

the same order q. Let e : G1 × G1 → G2 be a pairing op-

eration satisfying bilinearity, i.e., e(aX, bY) = e(X, Y)ab for

all X, Y ∈ G1 and a, b ∈ Zq. The signature scheme is as

follows. Suppose G1, G2, P, e, q and H are all publicly

available, where H : {0, 1}∗ → {0, 1}λ is a cryptographic

hash function and λ is the length of the (private) key. A

user sets up x ∈ Zp as his secret key, and X = xP for

the corresponding public key. A signature on message M is

S = 1/(H(M) + x) · P. To verify the signature, one only

needs to check if e(H(M) · P + X, S ) = e(P, P), note that

e(H(M) ·P+ x ·P, 1/(H(M)+ x) ·P) = e(P, P)(H(M)+x)· 1
H(M)+x , by

bilinearity. To produce a verifiably encrypted signature, sup-

pose TTP has private key y ∈ Zq and public key Y = y·P ∈ G1,

the new signature on M becomes S ′ = 1/(H(M) + x) ·Y, with

TTP’s public key replacing G1’s group generator P. To verify

one only needs to check if e(H(M)·P+X, S ′) = e(P, Y). TTP is

able to get the true signature S by computing y−1 · S ′, where

y−1 is the inverse of TTP’s private key y (in G2). Note that

when applying this scheme to our extended protocol, both

e(P, P) and e(P, Y) can be precomputed, thus reduces compu-

tation cost for the whole session.

We choose the algorithm in [24] since it requires fewer

pairing operations than the algorithm in [40]. Moreover, there

exist efficient pairing algorithms that implements pairing op-

erations on elliptic curve-based point groups consuming time

comparable to that of the RSA signatures of the same secu-

rity level. It was studied in [41] that one 256-bit (prime field)

pairing operation takes about 15 million clock cycles on a

Core 2 Duo processor, which is the most expensive operation

in the signature scheme1). According to [42], a 3072-bit RSA

encryption (with a small exponent) takes about 620 000 and

a decryption takes about 28.6 million cycles on a Core 2 Duo

processor2). In practice, 3072-bit RSA signatures are of com-

parable security strength to 256-bit pairing-based signatures.

5 Comparison

Our protocol supports TTP transparency, i.e., on the comple-

tion of a protocol run, the final structure and contents of the

evidences possessed by both parties do not reveal whether

TTP has intervened in the protocol or not. There are a num-

ber of CEM protocols in the literature (e.g., [14–22]) that sup-

1) One 256-bit (prime field) pairing operation takes roughly 43 times as much as that of one point scalar multiplication [41], therefore, we ignore low cost
operations such as point scalar multiplication and inverse operation in such signature schemes.
2) If we implement the exponentiation algorithm by using Chinese Remainder Theorem, it will take roughly 22 million cycles with the mpz_powm_sec()
function on a Core 2 Duo processor [42], which is still of comparable speed.
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ports the transparency of TTP, as listed in Table 1. The proto-

col presented in this paper is the only one that satisfies strong

fairness, timeliness and TTP transparency with a relatively

low cost, to our knowledge.

Table 1 An overview of CEM protocols satisfying TTP transparency

Protocol Scheme Fairness Timeliness #Message #Operation

IS02 [15] Generic strong∗ No 3 4

Micali03 [17] Generic strong∗ Weak 3 4

Wang06 [19] Generic weak Yes 3 2

MK01 [14] RSA-based strong∗ Yes 4 7

AN02 [16] RSA-based strong No 4 7

NZB04 [18] RSA-based strong∗ No 4 4

MLCL06 [20] RSA-based strong∗ No 4 8

HL08 [22] RSA-based strong No 4 6

LCLQ08 [21] Bilinear pair strong No 4 5

Our protocol Bilinear pair strong Yes 4 3

In the above table, if the correctness of a protocol does not

depend on any class of signature schemes, we write down

that the protocol is generic. In such cases, the particular sig-

nature scheme is irrelevant, and the usage of verifiably en-

crypted signatures or convertible signatures is not required.

We use “strong∗” to indicate that it is claimed in the paper

that the protocol satisfies strong fairness, but there exist at-

tacks in the literature showing that the claim is invalid. All

the protocols in the table satisfy TTP transparency, but they

differ on other security properties such as timeliness and fair-

ness. We also make comparisons on the number of messages

as well as the computational costs as required by the proto-

cols. We write “#message” for the number of messages in the

exchange sub-protocol and “#operation” for the amount of

computation equivalent to the number of RSA signature op-

erations, i.e., we interpret other cryptographic operations as

the number of RSA signatures referring to the best existing

algorithms in the literature.

5.1 Timeliness

Only three protocols support timeliness (those of Wang [19],

Markowitch and Kremer [14] and ours). In most cases the

lack of timeliness is due to the fact that Alice is not allowed

to abort after the first message. This design may trap Alice

in a deadlock state, waiting forever on Bob’s reply, without

any effective ways to escape. Micali’s protocol [17] satisfies

weak timeliness by using a cut-off time, which indicates a

deadline moment to resolve in a protocol run, in order to pre-

vent endless waiting. However, this might cause problems if

Alice and Bob cannot correctly estimate time differences be-

tween their local clocks and TTP’s clock. Furthermore, in a

real situation such a mechanism might enforce Bob to contact

TTP as early as possible instead of replying to Alice if Bob is

keen to proceed the current run.

5.2 Fairness

All the protocols except Wang’s satisfy (or claim to satisfy)

strong fairness. Wang’s protocol [19] is not strongly fair,

since when Alice is presenting Bob’s EOR from the second

message, an external judge has to contact either TTP or Bob

in order to confirm that Alice has not aborted in the current

run. If Alice has successfully aborted before Bob launches

the recovery sub-protocol, and Alice has received the second

message, Bob will not be able to obtain the key if Alice re-

fuses to send out the third message. Micali’s protocol [17]

and Imamoto and Sakurai’s protocol [15] are vulnerable to

replay attack if Bob colludes with an outsider [43]. Both pro-

tocols in the work of Markowitch and Kremer [14] are shown

to be unfair by Gürgens et al. [32], in the way that if Bob col-

ludes with an outsider, he is able to gain access to the mes-

sage M without sending EORM back to Alice, by recovering

the other protocol run with the outsider3). Moreover, the GPS

scheme used by the second protocol in [14] has been proved

insecure by Cathalo et al. [37]. Nenadić et al.’s protocol ap-

plies a particular RSA based verifiable encryption scheme,

which has been shown that Bob is able to send an invalid

partial signature which is undetectable by Alice and which

is not recoverable by TTP [20]. Nevertheless, the protocol

presented in [20] is also identified with a similar attack by

Hwang and Lai [22]. So far there exist no attacks on the fair-

ness of Ateniese’s protocol [16], Hwang et al.’s protocol [22]

and Liang et al.’s protocol [21].

5.3 Efficiency

We concentrate on the amount of computation time that is

involved in the exchange sub-protocol. The overloads of the

abort and recovery sub-protocols are not considered, as such

events are supposed to occur rarely. We define one opera-

tion as one 3072-bit RSA signature operation. As to the RSA

scheme, the most time-consuming operation is modular ex-

ponentiation, and the ratio of the time taken for a modular

exponentiation operation to the time taken for a single mod-

ular multiplication is linearly proportional to the exponent’s

bit length [44]. Therefore, we ignore single modular multipli-

cations and the less time consuming algorithms such as sym-

3) This attack does not work on our key-chain based approach, because every key chain is uniquely associated to a pair of sender and receiver. Bob and the
colluding party are unable to recover from TTP unless Alice is involved.
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metric encryption/decryption and hashing in protocols. For

pairing operations, in practice one 256-bit pairing operation

can be faster than generating one 3072-bit RSA signature.

As a conservative estimation we assume that verifying one

pairing-based signature, which is the most time-consuming

operation in pairing-based signature schemes, also takes one

operation. We omit the time used to generate a pairing-based

signature as well as that used to verify an RSA-based signa-

ture in the analysis. For generic protocols we assume the RSA

3072-bit signature is used. In practice, they may choose faster

schemes such as those of 256-bit elliptic curve cryptography

(ECC) signatures.

From Table 1, we conclude that the first three generic

schemes are the most efficient, since they only need three

messages in the exchange sub-protocol and at most four op-

erations in computation. Nevertheless, none of them achieves

TTP transparency, strong fairness and timeliness at the same

time. As to the other four RSA based protocols, the number

of operations varies from 4 to 8. In our protocol, it takes time

equivalent to only three operations, since only three pairings

are required (Bob needs to verify Alice’s signature in mes-

sage 1ex, Alice needs to verify Bob’s signature in message

4ex and Bob’s encrypted signature in message 2ex). A signing

operation in pairing-based scheme takes negligible amount of

time. From Table 1, only our protocol achieves all the three

desirable properties — strong fairness, TTP transparency, and

timeliness — with a relatively low cost.

6 Protocol verification

We have shown that our extension is one of the most efficient

CEM protocols satisfying TTP transparency, in addition to

the other important properties such as strong fairness, effec-

tiveness, and timeliness. The justifications to our claims are

carried out on a rather informal level. In this section, we in-

tend to put our analysis one step further, by incorporating

formal verification techniques.

It has been acknowledged that formal verification is impor-

tant for security protocols, because of the seriousness of se-

curity flaws. In this section, we apply model checking to au-

tomatically verify whether a given model of CEM protocols

satisfy some given specifications. To our knowledge, the lit-

erature of formal verifications of CEM protocols includes the

works of Kremer et al. [4], Cederquist et al. [45] and Abadi

and Blanchet [46].

To formally analyse whether a security protocol achieves

its design goals, first we have to specify the protocol in a for-

mal language, and then express specifications for the desired

properties. The model checker MOCHA [25] allows specifi-

cation of models as concurrent game structures, and verifi-

cation of properties in ATL [26] formulas with game seman-

tics, which is suitable for checking properties such as fair-

ness, effectiveness and timeliness. For the analysis of TTP

transparency, our main idea is to compare execution traces

containing evidences acquired in different situations. This

methodology needs to put multiple traces together, which is

not supported in most of the existing model checkers, includ-

ing MOCHA. Therefore, a process algebraic language μCRL

and its toolset [27, 28] are used.

6.1 MOCHA and μCRL

MOCHA [25] is an interactive verification environment for

the modular and hierarchical verification of heterogeneous

systems. Its model framework is in the form of reactive mod-

ules. The states of a reactive module are determined by vari-

ables and are changed in a sequence of rounds. MOCHA can

check ATL formulas, which express properties naturally as

winning strategies with game semantics. This is the main rea-

son we choose MOCHA as our model checker, since proper-

ties such as fairness and timeliness specify a user’s ability to

enforce certain outcomes. MOCHA provides a guarded com-

mand language to model the protocols, which uses the con-

current game structures as its formal semantics. The syntax

and semantics of this language can be found in [25]. Assum-

ing a finite set Π of propositions, an ATL formula is one of

the following:

• p for propositions p ∈ Π.

• ¬φ or φ1 ∨ φ2, where φ, φ1, and φ2 are ATL formulas.

• 〈〈A〉〉 © φ, 〈〈A〉〉�φ, or 〈〈A〉〉φ1Uφ2, where A ⊆ Σ is a set

of players, and φ, φ1 and φ2 are ATL formulas.

ATL formulas are interpreted over the states of a concur-

rent game structure that has the same propositions and play-

ers [26]. The labeling of the states of a concurrent game struc-

ture with propositions is used to evaluate the atomic formu-

las of ATL. The logical connectives ¬ and ∨ have the stan-

dard meaning. Intuitively, the operator 〈〈A〉〉 acts as a selec-

tive quantification over those paths that the agents in A can

enforce. The path quantifiers © (next), � (globally) and U
(until) carry their usual meanings as in the logic CTL, and

�φ is defined as trueUφ.
μCRL is a language for specifying distributed systems and

protocols in an algebraic style. The μCRL language and its

toolset have been applied to the analysis of distributed sys-
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tems, e.g., see [47–49] and security protocols in particular,

e.g., see [50–52]. A μCRL specification consists of two parts:

one part specifies the data types, the other part specifies the

processes. The data part contains equational specifications;

one can declare sorts and functions working upon these sorts,

and describe the meaning of these functions by equations.

Processes are represented by process terms. Process terms

consist of action names and recursion variables with zero or

more data parameters, combined with process-algebraic op-

erators. Actions and recursion variables carry zero or more

data parameters. Intuitively, an action can execute itself, af-

ter which it terminates successfully. There are two predefined

actions: δ represents deadlock, and τ represents the internal

action. p.q denotes sequential composition, it first executes p

and then q. p + q denotes non-deterministic choice, meaning

that it can behave as p or q. Summation
∑

d:D p(d) provides

the possibly infinite choice over a data type D. The condi-

tional construct p � b � q, with a boolean data term, behaves

as p if b and as q if not b. Parallel composition p ‖ q inter-

leaves the actions of p and q; moreover, actions from p and

q may synchronise into a communication action, if explic-

itly allowed by a predefined communication function. Two

actions can only synchronise if their data parameters are the

same, which means that communication can be used to cap-

ture data transfer from one process to another. If two actions

are able to synchronise, then in general we only want these

actions to occur in communication with each other, and not

on their own. This can be enforced by the encapsulation op-

erator ∂H(p), which renames all occurrences in p of actions

from the set H into δ. Additionally, the hiding operator τI(p)

turns all occurrences in p of actions from the set I into τ. The

μCRL tool set [27, 28] is a collection of tools for analysing

and manipulating μCRL specifications. The μCRL tool set,

together with the CADP tool set [29], which acts as a back-

end for the μCRL tool set, features visualisation, simulation,

LTS generation and minimisation, model checking, theorem

proving and state-bit hashing capabilities.

6.2 Verification in Mocha

We first give a sketch of the modelling techniques in

MOCHA’s specification language and discuss how it can be

used to describe our extended CEM protocol. MOCHA also

provides a way to express the security properties of interest in

ATL formulas. A more detailed report can be found in [53].

6.2.1 Modelling the protocol in Mocha

Each participant is modelled as a player (in a game), with

the description of its behaviours using the guarded command

language of Mocha. On the top level we build two models for

each participant i, Pi, and PiH, to represent the dishonest and

honest behaviours of that participant, respectively. The model

PiH for honest behaviour is strictly in accordance with the

protocol, i.e., it strictly follows what the player is supposed to

do as specified in the protocol. The dishonest model Pi allows

the player to cheat, such as sending out a wrong message, or

withholding a message the participant is required to send out

at a certain point. Furthermore, a dishonest model may quit

at any time, or refuse to stop at a point where its role in the

protocol is required to stop. Note that we do not model out-

side intruders, as the environment in which the CEM protocol

runs assumes that potential attacks are only from dishonest

participants.

Communication is modelled by using shared variables, as

an abstract way of representing message passing. This en-

ables us to focus on the main design mechanism of the de-

signed protocol and limit the models of the protocol to a fea-

sible size for the model checker MOCHA. Evidences (EOO
and EOR), key and emails are encoded as boolean variables

which are initialised as false and updated by its sender. We

model the action of sending out an evidence, or a message

by a guarded command in which the sender resets the cor-

responding variables as true at the time the message is sent

out. In the model for honest participant PiH, the guard con-

sists of all the conditions that needs to be satisfied strictly

according to the protocol, and the following action command

represents sending of the messages as specified in the proto-

col. In the dishonest model Pi, more messages (in the form of

guarded commands) are allowed at each point of time, how-

ever the guard still needs to contain information that is neces-

sary to make its following message passing possible (That is,

all components of a message need to be available before the

message is constructed and sent). As in each transition step,

the system nondeterministically picks up one guarded com-

mand among all the enabled ones, this way of modelling al-

lows the dishonest model to exhaustively and repeatedly gen-

erate all possible (both “legal” and “illegal”) behaviours.

List 1 gives the MOCHA code describing the behaviours

of honest Alice. (In this language, comment lines are starting

with “—”) At first, Alice can do idle actions after she initiates

a protocol round by sending out EOOM . For honest Alice,

she mainly performs two kinds of actions in the exchange

sub-protocol, which includes sending evidence of origin and

the key. They are described in step (1) and (2). Step (1) mod-

els the action of sending EOOM , in which we use boolean

variables hk and pa_eoo to represent the hashed value of K′i
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and the message (B, T, i, sid, h(K′i ), {M}K′i )A signed by Al-

ice, respectively. Setting hk and pa_eoo to true means Alice

has initiated a communication with Bob by sending out her

EOOM . Step (2) says that if Alice has received the correct

verifiably encrypted message, namely pb_halfeorm has be-

come true, she can set k as true, which represents the action

of sending out key K′i . Except for the exchange sub-protocol,

Alice is also able to initiate the abort protocol if she does not

receive the verifiably encrypted signature pb_halfeorm from

Bob. This abort request A_abort_req is described in step (4),

in which the guard represents the requirements for asking for

abort from TTP, and the commands represent the behaviour

of contacting TTP for abort. Besides the abort sub-protocol,

Alice can also initiate the recovery sub-protocol which is

modelled in step (6). Recovery request is modelled as a

boolean variable A_recovery_req, and it will be set to be true

if the guard is satisfied, in which the k and pb_halfeorm are

List 1 Extracted honest model of Alice

– – idle action while not stopped

[ ] ∼pa_stop & pa_eoo –>

– – (1) Alice sends EOO to Bob

[ ] ∼pa_stop & ∼A_contacted_T & ∼pa_eoo

–> pa_eoo’ := true; hk’ := true

– – (2) Alice sends out key

[ ] ∼pa_stop & ∼A_contacted_T

& pb_halfeorm & ∼k

–> k’ := true

– – (3) Alice stops

[ ] ∼pb_stop & ∼A_contacted_T

& pb_eorm & ∼pa_rece_eorm

–> pa_rece_erom’ := true

– – (4) Alice sends abort request

[ ] ∼pa_stop & ∼A_contacted_T

& pa_eoo & ∼pb_halfeorm

–> A_contacted_T’ := true;

A_abort_req’ := true

– – (5) Alice stops after receiving abort token

[ ] ∼pa_stop & A_contacted_T

& T_abort_send_A

–> T_abort_token_A’ := true;

pa_stop’ := true

– – (6) Alice sends recovery request

[ ] ∼pa_stop & ∼A_contacted_T

& k & pb_halfeorm & ∼pb_eorm

–> A_contacted_T’ := true;

A_recovery_req’ := true

– – (7) Alice stops

after receiving recovery token

[ ] ∼pa_stop & T_recovery_send_A

–> pa_rece_eorm’ := true;

pa_stop’ := true

true while pb_eorm is false. Note that once honest Alice ini-

tiates a recovery or abort sub-protocol with TTP, she will not

continue the exchange sub-protocol. This mechanism is re-

alised by modelling a boolean variable A_contacted_T. Fi-

nally, Alice can stop if she receives final EORM from Bob

(step (3)) or recovery token from TTP (step (7)). Abort token

(step (5)) can also make Alice stop the protocol round. In a

similar way, we model the honest behaviours of Bob.

List 2 describes the behaviours of dishonest Alice, her ma-

licious behaviours are described as follows. At first Alice is

allowed not only to idle, but also to stop and to quit the proto-

col at any time she wants. The behaviours of sending EOOM

and the key are specified in step (1) and step (2). Step (1)

models that Alice can send out her evidence of origin by set-

ting variable pa_eoo to true at any time she wants, even if she

has already contacted TTP and is supposed to stop. Together

with pa_eoo, malicious Alice still has the choice of sending

out correct hashed key hk or incorrect hashed key hke. Simi-

larly, step (2) specifies that Alice can send out her key at any

time she wants. If the variable k is true, it means that the cor-

rect key has been sent out. Otherwise, it represents that Alice

has not sent out any key or the key that has been sent out is

wrong. Moreover, step (3) and step (4) models that Alice can

List 2 Extracted dishonest model of Alice

– – idle actoin while not stopped

[ ] ∼pa_stop & pa_eoo –>

– – Alice stops

[ ] ∼pa_stop & pa_eoo

–> pa_stop’ := true

– – (1) Alice sends EOO

– –sends correct hashed key

[ ] ∼pa_stop & ∼pa_eoo

& ∼hk & ∼hke

–> pa_eoo’ := true; hk’ := true

– –sends incorrect hashed key

[ ] ∼pa_stop & ∼pa_eoo & ∼hk & ∼hke

–> pa_eoo’ := true; hke’ := true

– – (2) Alice sends key

[ ] ∼pa_stop & ∼k –> k’ := true

– – (3) Alice sends abort request

[ ] ∼pa_stop & pa_eoo

–> A_abort_req’ := true

– – (4) Alice sends recovery request

[ ] ∼pa_stop & pb_halfeorm

–> A_reovery_req’ := true

– – (5) Alice receives abort token

[ ] ∼pa_stop & T_abort_send_A

–> T_abort_token_A’ := true

– – (6) Alice receives recov.∼token

[ ] ∼pa_stop & T_recovery_send_A

–> pa_rece_eorm’ := true
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contact TTP for abort or recovery as long as she has received

enough messages, but she does not set the A_contact_T as

true. The last two steps describe the situations when Alice

has received EORM or an abort token from TTP.

In a similar way, we can model the dishonest behaviours

of Bob.

List 3 models the corresponding behaviours of TTP. TTP

is a special player that has to be modelled in a particular way.

It must be objective, and cannot act in collusion with proto-

col participants. We build the model for TTP that strictly fol-

low the protocol. For each protocol round, we use a variable

T_stateAB to record the status of protocol. T_stateAB has

three possible values, which are abrt, recov and empty rep-

resenting aborted, recovered and empty states, respectively.

After receiving recovery or abort request, TTP will behave

according to the values of T_stateAB. The first part describes

how TTP deals with abort request from initiator Alice. TTP

sends out abort token to both Alice and Bob if the status is

empty or abrt, and the T_stateAB is also needed to be set as

abrt if the original status is empty. However, if T_stateAB

is recov, which means the corresponding round has already

been recovered, then the corresponding EORM and key must

be sent to Alice and Bob respectively. Part two and three mod-

els the behaviours of dealing with recovery requests from Al-

ice and Bob. If the TTP receives a recovery request and its

status is empty or recov, then the required evidences or key

must be sent to Alice and Bob respectively. Otherwise, abort

token will be sent out.

Note that we also build a two-round protocol model which

can be used to represent multiple email delivery communica-

tions, and it is based on the one-round protocol model. Details

can be found in [53].

6.2.2 Expressing properties of the protocol in ATL

Given a CEM protocol with just two participants Alice and

Bob, the following expressions are suitable for honest partic-

ipant even if the other is dishonest. Actually, we only care

about fairness and timeliness for honest participant. As to

effectiveness, it requires that both participants must behave

honestly.

• Effectiveness

If honest participants are willing to exchange emails for re-

ceipts, then the protocol will terminate in a state in which

Alice has obtained EOR and Bob has received EOO and M

without the involvement of TTP.

effectiveness ≡ (〈〈PaH, PbH〉〉� (EOO ∧ M ∧ EOR)),

where PaH and PbH represent honest participants Alice and

Bob, and EOR represents the evidence of receipt from re-

ceiver Bob. In addition, the EOO and M represents the evi-

dence of origin and the email content from Alice.

• Timeliness

At any time, an honest participant has a strategy to stop the

protocol and thus to prevent endless waiting. Timeliness for

Alice and Bob is formulated as:

timelinessPa ≡ ∀� (〈〈PaH〉〉� Pa_stop),

timeliness Pb ≡ ∀� (〈〈PbH〉〉� Pb_stop).

where PaH and PbH represent the honest Alice and Bob, and

List 3 Extracted model of TTP

– – (1) If TTP receives abort
request from Alice

[ ] A_abort_req
& (T_stateAB=abrt)
& ∼T_response_A
–> T_abort_send_A’ := true;

T_abort_send_B’ := true;
T_response_A’ := true

[ ] A_abort_req
& (T_stateAB=empty)
& ∼T_response_A
–> T_abort_send_A’ := true;

T_abort_send_B’ := true;
T_response_A’ := true;
T_stateAB’ := abrt

[ ] A_abort_req
& (T_stateAB=recov)
& ∼T_response_A
–> T_recovery_send_A’ := true;

T_recovery_send_B’ := true;
T_response_A’ := true

– – (2) If TTP receives recovery
request from Alice

[ ] A_recovery_req
& (T_state=empty)
& ∼T_response_A –>
–> T_stateAB’ := recov;

T_recovery_send_A’ := true;
T_recovery_send_B’ := true;
T_response_A’ := true

[ ] A_recovery_req
& (T_state=recov)
& ∼T_response_A –>
–> T_recovery_send_A’ := true;

T_recovery_send_B’ := true;
T_response_A’ := true

[ ] A_recovery_req
& (T_state=abrt)
& ∼T_response_A –>
–> T_abort_send_A’ := true;

T_abort_send_B’ := true;
T_response_A’ := true

– – (3) If TTP receives recovery
request from Bob

[ ] B_recovery_req
& (T_state=empty)
& ∼T_response_B –>
–> T_stateAB’ := recov;

T_recovery_send_A’ := true;
T_recovery_send_B’ := true;
T_response_B’ := true

[ ] B_recovery_req
& (T_state=recov)
& ∼T_response_B –>
–> T_recovery_send_A’ := true;

T_recovery_send_B’ := true;
T_response_B’ := true

[ ] B_recovery_req
& (T_state=abrt)
& ∼T_response_B –>
–> T_abort_send_A := true;

T_abort_send_B’ := true;
T_response_B’ := true
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Pa_stop (Pb_stop) represents that Alice (Bob) has reached a

termination state of the protocol.

• Fairness

A protocol is fair for honest Alice (PaH) if the following is

satisfied: whenever Bob obtains PaH’s non-repudiation ev-

idence of origin (EOO) and email content M, PaH has a

strategy to obtain Bob’s non-repudiable evidence of receipt

(EOR). In ATL, fairness for honest Alice can be formulated

as:
fairnessPaH ≡ ∀� ((EOO ∧ M)

⇒ 〈〈PaH〉〉� (EOR)).

Similarly, fairness for Bob is formulated as below. If Alice

obtains PbH’s EOR, honest Bob PbH has a strategy to get

Alice’s EOR and email content M.

fairnessPbH ≡ ∀� ((EOR)

⇒ 〈〈PbH〉〉� (EOO ∧ M)).

6.2.3 Analysis

We have built three Mocha models, PaH ‖ PbH ‖ TTP,

Pa ‖ PbH ‖ TTP, and PaH ‖ Pb ‖ TTP, combining the

aforementioned formulas, to verify fairness, timeliness and

effectiveness of our CEM protocol. These properties were

successfully checked in MOCHA.

6.3 Verification in μCRL

In this section, we give sketchs on how we model the proto-

col in μCRL, and discuss how to check TTP transparency of

the protocol in μCRL. The detailed models and analysis can

be found in [53].

6.3.1 Modelling the protocol in μCRL

Each μCRL specification consists of two parts, abstract data

type definitions and behavioural specifications for partici-

pants. Since the execution of protocol mainly depends on the

exchange of messages, the contents of the data are not treated

in details, instead the data type used and corresponding oper-

ations on it are captured. Therefore, we can simplify the com-

plex cryptographic primitives, such as encryption, decryption

and verifiable encryption of messages.

In our model, we abstract some data types from the pro-

tocol, which are Bool, Key, Number, Item, Player, Status
and Message. Sort Bool has the same meaning as the normal

boolean type. Item is a simple data type with a constructor d1,

which represents the email content. As our extended CEM

protocol is a key chain based protocol, sort Key is modelled

to represent the keys that belong to a key chain. For simplic-

ity, we just set two constructors for it. Correspondingly, sort

Number is also defined to model the protocol round number.

Moreover, to specify the protocol, we assume that there are

three processes which are Alice, Bob and TTP respectively.

Each of them is assigned with a unique identity (A, B or T ),

which is described in sort Player. TTP is an important player,

which should be impartial. After receiving abort or recovery

request, TTP will behave honestly according to his record

status(i), for which we define a sort Status.

sort Status
func aborted,recovered,empty→ Status
map eq: Status × Status → Bool
var s1 : Status
rew eq(s1, s1) =T

eq(aborted,recovered) =F
eq(recovered,aborted) =F
eq(empty,aborted) =F
eq(empty,recovered) =F

As the behaviour part of the model is mainly specified by

the exchange of messages, defining an appropriate data type

for message is necessary, and sort Message we defined is

the type that meets our requirements. The constructors for

this sort are boolm, itm, player, keym, pair, hash, sign,

vesign, enc, and num. Since communications between par-

ticipants are modelled by messages, the constructors boolm,
itm, player, num, and keym are defined to change the

corresponding data type into sort Message. For example,

keym(k1) represents the action of transforming k1 with type

Key into Message. Many operations in the protocol are also

specified by means of message, such as signing and verifi-

ably signing messages, encryption, etc. The constructor sign
has parameters Player and Message, which is used to model

signing actions. For example, sign(A,m) means that player A

has signed the message m using his private key. Another im-

portant action is how to partially sign the message that can

be verified by everybody. The verifiably encrypted signature

is formed by using signer’s private key and TTP’s public key.

Therefore, the constructor versign is defined with parameters

Player and Message. An example vesign(A, T,m1) shows

out the verifiably encrypted message signed by player A using

player T ’s public key. Finally, the constructor pair is defined

to connect messages.

sort Message
func boolm:Bool → Message

itm:Item → Message
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player:Player → Message
num:Number → Message
keym:Key → Message
hash:Message → Message
sign:Player ×Message → Message
vesign:Player × Player ×Message→ Message
enc:Key ×Message → Message
pair:Message ×Message → Message

There exists two functions eq and keq for sort Message,

of which eq is used to compare whether two messages are

the same, and the outcome is a boolean type. For example,

in order to compare whether the two signed messages are the

same, we have the following equation:

eq(sign(p1,m1), sign(p2,m2)) =

if(eq(p1, p2), eq(m1,m2), F).

First, it will judge whether the two messages are signed by

the same player, and if so, a further comparison of messages

are conducted, or else, it will produce false as an outcome.

Another function keq is used to check whether the given key

is the right key for a particular protocol round. Normally, it

is used by TTP when dealing with recovery request. We omit

the detailed definitions of these two functions in the sort spec-

ification of Message.

TTP transparency states that the final evidences do not re-

veal whether TTP has intervened in the protocol or not. The

main idea of checking TTP transparency is to compare traces

obtained from three different models after hiding all unnec-

essary actions, such as messages between TTP and the users,

as well as minimising the generated state space modulo weak

trace equivalence [54]. The three models are combinations of

(1) honest Alice and honest Bob, (2) honest Alice, malicious

Bob and TTP, and (3) malicious Alice and honest Bob and

TTP.

Participants are linked up by communication channels. Ac-

cording to our assumption, the communications channels are

resilient, in the sense that every message is guaranteed to

reach its destination eventually. Therefore, by using the en-

capsulation and communication operators in μCRL, we are

able enforce the actions of participants Alice, Bob and TTP

to synchronise. Each participant is defined as a process. The

communications between them are composed by actions of

sending and receiving messages. For example, we define an

action for initiator Alice of sending a recovery request to TTP

in the form of sendT(A, recover, T ), where A and T are the

identities of Alice and TTP respectively, recover is of data

type Message. Similarly, recvT(T , recover, A) represents

the action of receiving a recovery request from Alice. In this

way, we can define the behaviours of participants by actions

(act) parameterised with data. The main communications are

defined as follows. com represents the communication be-

tween Alice and Bob, and initCom describes the initialisation

communication between them. Similarly, we also use comT
to specify the communication between Alice (Bob) and TTP.

These synchronisations of actions are enforced by the encap-

sulation operator ∂H . In μCRL language, this is captured by

a list of equations of the form s | r = c under the keyword

(comm).

comm send | recv=com
sendT | recvT=comT
initSend | initRecv=initCom

The honest and dishonest behaviours of the participants

resemble those in the Mocha models. In the following, we

present the μCRL models of honest Alice, dishonest Bob

and TTP separately. For instance, the behaviours of the ini-

tiator (honest) Alice are modelled in a process with a pa-

rameter key, which initiates the CEM protocol by send-

ing evidence of origin EOO to receiver Bob. The action

init_A(A, y, eoo, i, x, B) shows that Alice initiates a proto-

col round i for delivering an email y to Bob using a key x.

Then after receiving the verifiably encrypted message from

Bob, honest Alice will send out her key. If Bob’s final reply

EOR is correct, Alice will be sure that she has completed one

email delivery and successfully obtained the evidence of re-

ceipt. Action evidence_A(A, y, eorm, i, x, B) reports that she

has already obtained the evidence for protocol round i which

sends email y with key x. The sketch of Alice’s behaviour is

described as follows.

Alice(x:Key)=
∑

y:Item
∑

i:Number

initSend(A, eoo, B).

init_A(A, y, x, i, B)

recv(B, halfeorm, A).

send(A, k, B).

recv(B, eorm, A).

evidence_A(A, y, eorm, i, x, B)

where eoo represents the the first message 1ex for protocol

round i. The halfeorm and eorm represents Bob’s verifiably

encrypted signature and final signature4). We need to extend

the above process when taking TTP into account to cover

when Alice can contact TTP and receive replies from TTP,

which we omit in the above specification.

4) The detailed specifications of the terms eoo, halfeorm, and eorm are left out for the clarity of presentation.
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We use two processes, Bob and Bob1, to model the mis-

behaviours of Bob. Actually, Bob acts as the main process,

and Bob1 with parameters Key, Item and Number works

as the sub-process for Bob. At the very beginning, Bob

waits for the first message from Alice, using an action ini-
tRecv(A,EOO, B) to report the receipt of EOO. After that

he performs an action init_Bob to represent his involvement

in the protocol. Then he moves to process Bob1, which spec-

ifies the misbehaviours.

Bob=
∑

x:Key
∑

y:Item
∑

i:Number

initRecv(A, eoo, B).

init_B(A, i, eoo, B).

Bob1(x, y, i)

Bob1 is a process that acts as a core part of process Bob,

and it models Bob’s misbehaviours as stated before. From

the sketch of process Bob1 in below, we can see that ma-

licious Bob has three choices after receiving the first mes-

sage from Alice. The first one would be that he honestly

sends out his verifiably encrypted message through the ac-

tion send(B, halfeorm, A). In this case, Bob still can choose

between whether to receive key from Alice or rerun pro-

cess Bob1. If he prefers to receive the key, he will first

get his evidence evidence_B(B, y, eoo, i, x, A) and then still

face two situations, one is to deliver his final EOR, the

other is to return to Bob1. The second choice for malicious

Bob is directly sending recovery request to TTP, which is

represented with sendT(B, recoveryB, T ). After that, Bob

may receive abort token (recv_abort_B(x, y, i, A, B)), er-

ror message (recv_error_B(x, y, i, A, B)), the desired key

recvT(T, k, B), or he just re-executes Bob1. Malicious Bob

still can perform Bob1 even if he gets abort token or error

message, and is supposed to quit the protocol. We also model

that Bob can quit the protocol if he obtains all his expected

evidences, such as EOO in the first message and key. More-

over, the last choice for Bob is the deadlock, which means he

can quit the protocol at any time he wants.

Bob1(x:Key, y:Item, i:Number)=
send(B, halfeorm, A).

(recv(A, k, B).
evidence_B(B, y, eoo, i, x, A).

(Bob1(x, y, i)
+ send(B, eorm, A))

+ Bob1(x, y, i) )
+ sendT(B, recoveryBob, T ).

((recv_abort_B(x, y, i, A, B)

+ recv_error_B(x, y, i, A, B)).
Bob1(x, y, i)

+ Bob1(x, y, i)
+ recvT(T, k, B).

evidence_B(B, y, eoo, i, x, B))
+ τ.δ

Similarly, honest Bob and dishonest Alice can be modelled

in μCRL as well.

We present the behaviours of TTP with an identity T with

parameters Status by process TTP. Since TTP is a fully

trusted participant which cannot misbehave, we model it

strictly according to the protocol. TTP can deal with recovery

request from both Alice and Bob, and abort request only from

Alice.

From the sketch of TTP’s behaviour below, we can see

that the action recvT(B, recoveryB, T ) is used to repre-

sent receiving recovery request from Bob. In this case, Bob

will first check whether the key used in the protocol is

the right key in the key chain. If not, an error message

(error_B(x, y, i, eorm, A, B)) will be delivered to Bob. If yes,

TTP goes on checking his status for this protocol round i. If

the status has already been set to be aborted, the abort to-

ken will be sent by actions abort_B(x, y, i, A, B). However, if

the status is recovered or just empty, the corresponding key

is sent out to Bob, and the status will be kept as recovered.

Similarly, TTP receives recovery request from Alice by the

action of recvT(A, recoveryA, T ).

The process of dealing with Alice’s recovery request

is similar to that of Bob. The main difference lies in

the message that sent to Alice if TTP is sure to help

in the recovery process. Actually TTP will first abstracts

the final EOR from the verifiably encrypted message and

then delivers it, which is simply represented by action

sendT(T, eorm, A). TTP can also accept Alice’s abort re-

quest stated by recvT(A, abortA, T ). After that, he checks

the TTP’s status to make decisions. If the status is recov-
ered, then the final EOR will be sent. Or else, abort token

will be sent by actions abort_A(x, y, i, A, B), and after that,

the status for protocol round i will be kept as aborted.

TTP(s:Status)=
∑

y:Item
∑

x:Key
∑

i:Number

recvT(B,recoveryB,T ).

(error_B(x, y, i, eorm,A, B)

� not(keq(x, i) �

(abort_B(x, y, i, A, B)

� eq(s, aborted) �

sendT(T, k, B).
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TTP(recovered)))
+ recvT(A, recoveryA, T ).

(error_A(x, y, i, halfeorm, A, B)

� not(keq(x, i) �

(abort_A(x, y, i, A, B)

� eq(s, aborted) �

sendT(T, eorm, A).

TTP(recovered)))
+ recvT(A, abortA, T ).

(recover_A(x, y, i, halfeorm, A, B)

� eq(s,recovered) �
(abort_A(x, y, i, A, B).

TTP(aborted))

After modelling the behaviours of honest and dishonest

agents and TTP, we put them in parallel to construct the

whole state spaces of models, including (1) honest Alice and

honest Bob; (2) honest Alice, dishonest Bob and TTP; (3)

dishonest Alice, honest Bob and TTP.

6.3.2 Analysis

Our way to check TTP transparency is by comparing traces of

getting evidences between system of only honest participants

and systems containing dishonest participants. After hiding

some actions (i.e., we keep those actions related to presenting

evidences and the starting of a protocol round) and reducing

the model (i.e., state space minimisation modulo weak trace

equivalence), we obtain a trace from the honest system that

is depicted in Fig. 3(a), which shows the situation of getting

evidences without TTP. Figure 3(b) describes traces obtained

from the model containing honest Alice, dishonest Bob, and

TTP. We can find that Fig. 3(b) has an additional trace. Evi-

dences for both traces are of the same form, but the sequence

of getting them are different. However, this difference does

not affect the correctness of TTP transparency. When check-

ing the evidences possessed Bob and Alice, the only thing

that matters is the content of the evidences, and the number

of transitions (which might reflect the execution time) is ir-

relevant due to the asynchrony of the protocol model. Figure

3(c) depicts the traces obtained from the model containing

dishonest Alice, honest Bob and TTP. We can find that this

figure has one more trace than Fig. 3(b). This extra trace de-

scribes Alice’s malicious behaviours of using the key (k2) that

does not match the protocol round (i1). However, the occur-

rence of this trace manifests that both Alice and Bob get their

expected evidences without the intervene of TTP. As if Alice

or Bob tries to contact TTP for recovery, they will just obtain

error message instead of evidences. Therefore, this trace does

not reveal the involvement of TTP. By the above analysis, we

can draw a conclusion that our extended CEM protocol sat-

isfies TTP transparency. Note that in Fig. 3 we have omitted

the round numbers in action labels. We in fact also checked

models with two protocol rounds. The analysis of TTP trans-

parency is carried out in a similar way. Details can be found

in [53].

7 Conclusion

We have proposed a TTP transparent CEM protocol, as an

extension of Cederquist et al.’s protocol using key chains. To

achieve this, we used a verifiably encrypted signature scheme

based on bilinear pairing. Comparing to the existing CEM

protocols, ours is among the most efficient ones satisfying

strong fairness, timeliness, and TTP transparency. We have

formally verified the protocol. The verification was taken in

Fig. 3 The obtained traces
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two steps. First, we checked fairness, timeliness and effec-

tiveness properties, using the model checker Mocha. Then we

have modelled the protocol in a process algebraic language

μCRL and used its toolsets together with CADP to check TTP

transparency. Our analysis shows that the protocol achieves

the design goals.
In this paper, we have checked the protocol with a limited

number of rounds. In general, it is a hard problem to verify

the protocol with an arbitrary number of rounds. A possible

future direction is to study ways of abstraction [55] or to de-

velop new reduction techniques [56] for game-based model

checking, in order to analyse models in Mocha with more

protocols rounds. Another direction is to use an inductive ap-

proach, e.g., [57], to prove correctness of the protocols in a

more general setting.
The way to formalise TTP transparency in this paper re-

lies on an abstraction from the underlying cryptographic

techniques and the ability of the adversary. In the future, we

would like to investigate this property in a more sophisticated

model, for example, it is interesting to see whether we can

interpret TTP transparency using the notion of static equiva-

lence in the applied pi calculus [58]. Another direction is to

extend the protocol furthermore, to cover other design goals

such as stateless TTP and accountability.
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