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Motivations and Applications New sign rule

Higher gradings and modified sign rule

Supergeometry: coordinates

x of degree 0

ξ of degree 1
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Motivations and Applications New sign rule

Higher gradings and modified sign rule

Z3
2-Supergeometry: coordinates

x of degree (0, 0, 0) y of degree (0, 1, 1) . . .

ξ of degree (0, 0, 1) η of degree (0, 1, 0) . . .

y · η = (−1)⟨(0,1,1),(0,1,0)⟩η · y

New features:

Even coordinates may anticommute: (−1)⟨(1,1,0),(1,0,1)⟩ = −1

Odd coordinates may commute: (−1)⟨(1,0,0),(0,1,0)⟩ = +1

Non-zero degree coordinates may not be nilpotent: (−1)⟨(1,1,0),(1,1,0)⟩ = +1
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Motivations and Applications New sign rule

Examples

Physics: - Parastatistical supersymmetry

- String orbifolds

- Anyons

Algebra: - Super differential forms (n = 2)

α ∧ β = (−1)deg(α) deg(β)+p(α) p(β)β ∧ α

- Quaternions H (n = 3)

- Clifford algebras Cℓp,q (n = p+ q + 1)

Geometry: - Superized higher vector bundles, e.g., TTM, T ∗TM . . .

- Tangent bundle of a supermanifold
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Motivations and Applications New sign rule

Tangent bundle to a supermanifold

SupermanifoldM : (x, ξ)

(x, ξ,dx,dξ)⇝ (0, 1, 1 + 0, 1 + 1)

+ usual sign rule

TM : supermanifold

C∞(x,d ξ)[ξ,dx]

(x, ξ,dx,dξ)⇝((0, 0), (0, 1), (1, 0), (1, 1))

+ new sign rule

TM : Z2
2-manifold

C∞(x)[[ξ,dx,d ξ]]
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Motivations and Applications Local model

Coherent differential calculus
Z2
2-manifold:

(0, 0), (1, 1), (0, 1), (1, 0)

ϕ : {x, y, ξ, η} 7→ {x′, y′, ξ′, η′}

x′ = x+ y2, y′ = y, ξ′ = ξ, η′ = η

F (x′) = F (x+ y2) =
∑
α

1

α!
(∂αx′F )(x)y2α

Local model:
(Rp, C∞(U)[[y, ξ, η]])

x′ =
∑
r f

x′

r (x)y2r +
∑
r g

x′

r (x)y2r+1ξη

y′ =
∑
r f

y′

r (x)y2r+1 +
∑
r g

y′

r (x)y2rξη

ξ′ =
∑
r f

ξ′

r (x)y2rξ +
∑
r g

ξ′

r (x)y
2r+1η

η′ =
∑
r f

η′

r (x)y2rη +
∑
r g

η′

r (x)y2r+1ξ
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Motivations and Applications Higher Berezinian

Key-concept

∂(x,y,ξ,η)(x
′, y′, ξ′, η′) =

(0, 0) (1, 1) (0, 1) (1, 0)

(1, 1) (0, 0) (1, 0) (0, 1)

(1, 0) (0, 1) (0, 0) (1, 1)

(0, 1) (1, 0) (1, 1) (0, 0)

Big diagonal blocks: even Zn2 -degrees

Small diagonal blocks: degree zero
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Zn2 -Berezinian: direct approach

HIGHER TRACE AND BEREZINIAN

OF MATRICES OVER A CLIFFORD ALGEBRA

Journal of Geometry and Physics (2012), 62(11), 2294-2319
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Berezinian
A: supercommutative algebra

Theorem
∃! group morphism

Ber : GL0(A)→ (A0)×

such that

❖ Ber
A

D
= det A det-1 D

❖ Ber
I B

I
= 1 = Ber

I

C I

It is defined by

Ber
A B

C D
= det(A−BD−1C) det-1(D)
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Zn2 -Berezinian
A: Zn2 -commutative algebra

Theorem
∃! group morphism

Zn
2Ber : GL

0(A)→ (A0)×

such that

❖ Zn
2Ber = det? det-1?

❖ Zn
2Ber

I

I
= 1 = Zn

2Ber
I

I

It is defined by

Zn
2Ber

A B

C D
= ?
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Zn2 -Determinant

A: (Zn2 )even-commutative algebra

Theorem
1. ∃! algebra morphism

Zn
2det : gl

0(A)→ A0

such that

❖ Zn
2det

⋆
⋆
⋆
⋆

=
∏

det ⋆

❖ Zn
2det

⋆ ⋆ ⋆
⋆ ⋆
⋆

I
I
I
I

= 1 = Zn
2det

⋆⋆⋆
⋆⋆

⋆
I
I
I
I

2. Zn
2det(X) is linear in the entries of X
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Quasideterminants (I.Gelfand and V.Retakh)

Ber
A B

C D
= det(A−BD−1C) det-1(D)
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A B
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Quasideterminants (I.Gelfand and V.Retakh)

Ber
A B

C D
= det(A−BD−1C) det-1(D)∣∣∣∣∣

(
A B

C D

)∣∣∣∣∣
11

= A−BD−1C

Definition
For a square matrix X with entries in a ring R,

|X|ij := xij−rji (Xij)−1cij ∈ R

← i-th row

↓
j-th column
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Examples

X =


x a b

c y d

e f z


|X|11 = x− bz−1e− (a− bz−1f)(y − dz−1f)−1(c− dz−1e)

X =


x a b

c y d

e f z


|X|11 =

(
x− bz−1e a− bz−1f

c− dz−1e y − dz−1f

)

Quasi-determinants are rational functions
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Zn2 -Determinant

A: (Zn2 )even-commutative algebra

Theorem
1. ∃! algebra morphism

Zn
2det : gl
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such that

❖ Zn
2det

⋆
⋆
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2det
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

UDL decomposition

X = UDL
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X = UDL
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
|X|11
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

UDL decomposition

X = UDL

D =


|X|11

|X1:1|22
. . .

Xqq



Theorem

Zn
2det(X) = det(|X|11) det(|X1:1|22) . . . det(Xrr)
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Zn2 -Berezinian

Theorem
∃! group morphism

Zn
2Ber : GL

0(A)→ (A0)×

such that

❖ Zn
2Ber = −1

❖ Zn
2Ber

I

I
= 1 = Zn

2Ber
I

I

It is defined by

Zn
2Ber

A B

C D
=
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Zn2 -Berezinian: direct approach Berezinian, Zn2 -Berezinian, Zn2 -Determinant, Zn2 -Trace

Zn2 -Berezinian

Theorem
∃! group morphism

Zn
2Ber : GL

0(A)→ (A0)×

such that

❖ Zn
2Ber =Zn

2det Zn
2det

−1

❖ Zn
2Ber

I

I
= 1 = Zn

2Ber
I

I

It is defined by

Zn
2Ber

A B

C D
= Zn

2det(A−BD−1C) Zn
2det

-1(D)

For n = 1, Zn
2Ber = Ber; for A = H, Zn

2Ber = |Ddet |; Liouville formula
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Zn2 -Geometry I: manifolds and morphisms

THE CATEGORY OF Zn2 -SUPERMANIFOLDS

JOURNAL OF MATHEMATICAL PHYSICS (2016), 57(7)
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Zn2 -Geometry I: manifolds and morphisms Zn2 -manifolds

Functor of points approach

P ∈ C[Cn], V = {z ∈ Cn : P (z) = 0} ∈ Aff, C[V ] = C[Cn]/(P ) ∈ CA

SolP : CA ∋ A 7→ SolP (A) = {a ∈ An : P (a) = 0} ∈ Set

SolP =HomCA(C[V ],−) ∈ Fun(CA, Set)

HomAff(−, V ) ∈ Fun(Affop, Set)

• : C ∋ c 7→ c := HomC(−, c) ∈ FunSh(Cop, Set)

Lim c ≃ Lim c

Colim c→ Colim c
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Zn2 -Geometry I: manifolds and morphisms Zn2 -manifolds

Functor of points approach

Representable Sh(C): trivial spaces

Sh(C): spaces

Locally representable Sh(C): varieties or manifolds Var(C)

Examples:

Var(Aff): schemes

Var(Zn2 -Domain): Zn2 -manifolds

N. Poncin Higher SG Trinity College Dublin 17 / 43



Zn2 -Geometry I: manifolds and morphisms Zn2 -manifolds

Locally ringed space approach

Definition
A Zn2 -manifold is a Zn2 -graded locally ringed space (M,AM ) that is locally
modeled on

(Rp, C∞Rp(−)[[ξ1, . . . , ξq]]) ,

where the ξa are Zn2 -commutative.
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Zn2 -Geometry I: manifolds and morphisms Zn2 -manifolds

Reconstruction theorem

Proposition
A topological space that is covered by Zn2 -graded Zn2 - commutative coordinate
systems

(x, y, . . . , ξ, η, . . .)

and is endowed with Zn2 -degree preserving coordinate transformations

φβα : (x, y, . . . , ξ, η, . . .) 7→ (x′, y′, . . . , ξ′, η′, . . .)

that satisfy the cocycle condition

φγβ φβα = φγα ,

defines a Zn2 -manifold.
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Zn2 -Geometry I: manifolds and morphisms Zn2 -manifolds

Nilpotency – Formal series

Invertibility of superfunctions:

f ∈ C∞(U)[ξ1, . . . , ξq] invertible⇔ f0 ∈ C∞(U) invertible

Proof: Nilpotency
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Zn2 -Geometry I: manifolds and morphisms Zn2 -manifolds

Nilpotency – Formal series

Invertibility of Zn2 -functions:

f ∈ C∞(U)[[ξ1, . . . , ξq]] invertible⇔ f0 ∈ C∞(U) invertible

Proof: Formal power series
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Zn2 -Geometry I: manifolds and morphisms Zn2 -morphisms

Zn2 -morphisms

Zn2 -morphism: ringed space morphism (ψ,ψ∗) : (M,A)→ (N,B)

Commutation with base projections:

B(V )
ψ∗

−−→ A(ψ−1(V ))

εV ↓ ⟲ ↓ εψ−1(V )

C∞N (V )
ψ∗

−−→ C∞M (ψ−1(V ))

ψ∗ is C0 with respect to the J -adic topology, J = ker ε

A is Hausdorff-complete for the J -adic topology
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Zn2 -Geometry I: manifolds and morphisms Zn2 -morphisms

Fundamental Zn2 -Morphism Theorem

Theorem
A Zn2 -morphism

(ψ,ψ∗) : (M,AM )→ (V, C∞V [[ξ1, . . . , ξq]])

is completely and uniquely defined by the pullbacks

ψ∗xi and ψ∗ξa

of the base coordinates xi and the formal coordinates ξa

“The result that makes Zn2 -Geometry a reasonable theory”
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem

SPLITTING THEOREM FOR Zn2 -MANIFOLDS

JOURNAL OF GEOMETRY AND PHYSICS (2016), 110
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Double vector bundles

Double vector bundles

Definition 1:

E
τE
E01

��

τE
E10

��
E01

τ
E01
M ��

E11

��

OO

E10

τ
E10
M��

M

E11 = ker τEE01
∩ ker τEE10

Trivial example:
E01 ⊕ E10 ⊕ E11

E ≃ E01 ⊕ E10 ⊕ E11 and Γ(E∗
01 ⊗ E∗

10 ⊗ E11)
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Double vector bundles

Double vector bundles

Definition 2: Pair of commuting ‘Euler’ vector fields on a manifold.

Definition 3: Locally trivial fiber bundle with standard fiber V01 ⊕ V10 ⊕ V11 s.th.
ξ′a = fau (x)ξ

u

η′b = gbv(x)η
v

y′c = hcw(x)y
w + kcu,v(x)ξ

uηv
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Zn2 -graded vector bundles, higher vector bundles, Zn2 -manifolds

Split Zn2 -manifolds

Vector bundle:
E →M ΠE := E[1]

A(ΠE) = Γ(
∧
E∗) =

⊕r
k=0Γ(⊙k(ΠE)∗)

Supermanifold: M = (M,A(ΠE))

Graded vector bundle:
E = E01 ⊕ E10 ⊕ E11 →M ΠE := E01[01]⊕ E10[10]⊕ E11[11]

A(ΠE) =
∏
k≥0Γ(⊙k(ΠE)∗)

Z2
2-manifold: M = (M,A(ΠE))
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Zn2 -graded vector bundles, higher vector bundles, Zn2 -manifolds

Non-split Zn2 -manifold

Double vector bundle: E
ξ′a = fau (x)ξ

u

η′b = gbv(x)η
v

y′c = hcw(x)y
w + kcu,v(x)ξ

uηv

- - - -> Superization, coherence, cocycle condition

Z2
2-manifold – NOT canonically split
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Zn2 -Batchelor-Gawedzki Theorem

Batchelor, Gawedzki, Kirillov and Rudakov

Smooth and real analytic, but not holomorphic

Theorem
Any Zn2 -manifold (M,A) is non-canonically split, i.e., there exists a
non-canonical isomorphism

A ≃ A(ΠE) ,

where E is a Zn2 \ {0}-vector bundle.
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Sketch of proof (I)

Step 1:

A ≃
Sh

A(ΠE) =
∏
k≥0⊙kΓ((ΠE)∗) ?
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem
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0→ J → A→ C∞ → 0

J /J 2
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Sketch of proof (I)

Step 1:

A ≃
Sh

A(ΠE) =
∏
k≥0⊙kΓ((ΠE)∗)

0→ J → A→ C∞ → 0

J /J 2 = Γ((ΠE)∗)∏
k≥0⊙k(J /J 2) ≃

Stalks
A
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Sketch of proof (I)

Step 1:

A ≃
Sh

A(ΠE) =
∏
k≥0⊙kΓ((ΠE)∗)

0→ J → A→ C∞ → 0

J /J 2 = Γ((ΠE)∗)∏
k≥0⊙k(J /J 2) −→

Sh
A ?
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Sketch of proof (I)

Step 1:

A ≃
Sh

A(ΠE) =
∏
k≥0⊙kΓ((ΠE)∗)

0→ J → A→ C∞ → 0

J /J 2 = Γ((ΠE)∗)∏
k≥0⊙k(J /J 2) −→ A

➙ J /J 2 → A

➙ 0→ J 2 → J → J /J 2 → 0
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Sketch of proof (II)

Step 2:

C∞

A = lim←−kA/J
k

. . . A/J k A/J k+1 . . .
fk,k+1

πk πk+1

φk φk+1

φ

φk+1,Ω : C∞(Ω)→ A(Ω)/J k+1(Ω)

φk+1,U : C∞(U)→ A(U)/J k+1(U)

φk+1,U |U∩V = φk+1,V |U∩V
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Sketch of proof (III)

ωk+1,UV := φk+1,U |U∩V − φk+1,V |U∩V

ωk+1,UV ∈Der(C∞(U ∩ V ),Γ(U ∩ V,⊙k(ΠE)∗))
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Zn2 -Geometry II : Batchelor-Gawedzki Theorem Proof of the generalized Batchelor-Gawedzki Theorem

Sketch of proof (III)

ωk+1,UV := φk+1,U |U∩V − φk+1,V |U∩V

ωk+1,UV ∈ Γ(U ∩ V, TM ⊗⊙k(ΠE)∗)

ωk+1 ∈ Ž1 = B̌1

φk+1,U |U∩V − φk+1,V |U∩V = ηk+1,V |U∩V − ηk+1,U |U∩V

φk+1,U + ηk+1,U consistent (correction of φk+1,U )
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Zn2 -Berezinian: cohomological approach

COHOMOLOGICAL APPROACH

TO THE GRADED BEREZINIAN

Journal of Noncommutative Geometry, 9 (2015), 543–565
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Zn2 -Berezinian: cohomological approach Pre integral calculus

Determinant module

A a commutative algebra

M a free A-module, rank r, bases (ei), (e
′
i), ej = e′iB

i
j

Det(M) =
∧r

M : rank 1 A-module with

e1 ∧ . . . ∧ er = e′1 ∧ . . . ∧ e′r · det(B)
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Zn2 -Berezinian: cohomological approach Pre integral calculus

Zn2 -Berezinian module

A a Zn2 -commutative algebra

M a free Zn2 -graded A-module, total rank r, bases (ei), (e
′
i), ej = e′iB

i
j

Definition
Zn
2Ber(M) is a rank 1 A-module on which B ∈ GL0(A) acts as − · Zn

2Ber(B)
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Zn2 -Berezinian: cohomological approach Pre integral calculus

Zn2 -Berezinian module

K = ⊙AΠM ⊗⊙AM
∗ , d =

∑
iΠei ε

i

H(K) = Hr(K) = [ω] · A

Φ : B ∈ GL0(A) 7→ ΦB ≃ (B, Z
n
2tB−1) ∈Aut0(H(K)) ≃ (A0)×

ΦB = − · Zn
2Ber(B)

ω = ω′ · Zn
2Ber(B)

ω : algebraic Zn2 Berezinian volume

N. Poncin Higher SG Trinity College Dublin 33 / 43



Zn2 -Supergeometry III: integration theory

INTEGRATION ON Zn2 -MANIFOLDS

IN PROGRESS – ORBILU HTTP://HDL.HANDLE.NET/10993/27319
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Zn2 -Supergeometry III: integration theory Local Zn2 -Berezinian section

Local Berezinian section

(U,X = (x, y, ξ, η)) : ((0, 0), (1, 1), (0, 1), (1, 0))

M = Ω1(M)(U) : (dx,d y,d ξ,d η)

M∗ = T (M)(U) : (∂x, ∂y, ∂ξ, ∂η)
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Zn2 -Supergeometry III: integration theory Local Zn2 -Berezinian section

Local Berezinian section

(U,X = (x, y, ξ, η)) : ((0, 0), (1, 1), (0, 1), (1, 0))

M = Ω1(M)(U) : (dx,d y,d ξ,d η)

M∗ = T (M)(U) : (∂x, ∂y, ∂ξ, ∂η)

ω = dxd y ⊗ ∂ξ∂η

ω(X) = ω(X ′) Zn
2Ber(∂X′X)

ω(X) f(X) = ω(X ′) f(X(X ′)) Zn
2Ber(∂X′X) =: ω(X ′) f ′(X ′)

N. Poncin Higher SG Trinity College Dublin 34 / 43



Zn2 -Supergeometry III: integration theory Integral of an integrable Zn2 -Berezinian section

Global Berezinian section

Definition
A Berezinian section of a Z2

2-manifold with an oriented base is a family

ω(X)f(X), ω(X ′)f ′(X ′), . . . ,

whose components transform according to the rule

f ′(X ′) = f(X(X ′)) Zn
2Ber(∂X′X)
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Zn2 -Supergeometry III: integration theory Integral of an integrable Zn2 -Berezinian section

Z2
2-integral I

β: Berezinian section supported in a Z2
2-domain X = (x, y, ξ, η)

β = ω(X)f(X) = (dxd y ⊗ ∂ξ∂η)
∞∑
k=0

1∑
a=0

1∑
b=0

fkab(x)y
kξaηb

Definition ∫
β :=

∫
dx

∫
d y ∂ξ∂η f(x, y, ξ, η) =∫

dx

∫
d y

∞∑
k=0

fk11(x)y
k :=

∫
dx f011(x) ∈ R

β: arbitrary Berezinian section⇝ partition of unity
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Zn2 -Supergeometry III: integration theory Integral of a generalized Zn2 -Berezinian section

Z2
2-integral II

σ: generalized Berezinian section supported in a Z2
2-domain X = (x, y, ξ, η)

σ = ω(X)L(X) = (dxd y ⊗ ∂ξ∂η)
∞∑

k=−N

1∑
a=0

1∑
b=0

fkab(x)y
kξaηb

Definition ∫
σ =

∫
dx

∫
d y

∞∑
k=−N

fk11(x)y
k :=

∫
dx f−111(x) ∈ R

σ: arbitrary generalized Berezinian section⇝ partition of unity

N. Poncin Higher SG Trinity College Dublin 37 / 43



Zn2 -Supergeometry III: integration theory Integral of a generalized Zn2 -Berezinian section

Change-of-variables formula

σ: generalized Berezinian section supported in two domains U , U ′ (X, X ′)

σ = ω(X)L(X) = ω(X ′)L′(X ′)

N. Poncin Higher SG Trinity College Dublin 38 / 43
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Zn2 -Supergeometry III: integration theory Integral of a generalized Zn2 -Berezinian section

Change-of-variables formula

σ: generalized Berezinian section supported in two domains U , U ′ (X, X ′)

σ = ω(X)L(X) = ω(X ′)L′(X ′) = ω(X ′)L(X(X ′)) Zn
2Ber(∂X′X)

Theorem ∫
U
ω(X)L(X) =

∫
U ′
ω(X ′)L(X(X ′)) Zn

2Ber(∂X′X)

N. Poncin Higher SG Trinity College Dublin 38 / 43



Zn2 -Supergeometry III: integration theory Integral of a distributional Zn2 -Berezinian section

Z2
2-integral III

∆: distributional Berezinian section supported in a Z2
2-domain X = (x, y, ξ, η)

∆ = ω(X)
∑
ℓ≤N

fℓ(X)δ(ℓ)(y) =

(dxd y ⊗ ∂ξ∂η)
∑
ℓ≤N

( ∞∑
k=0

1∑
a=0

1∑
b=0

fkab;ℓ(x)y
kξaηb

)
δ(ℓ)(y)

Definition ∫
∆ =

∫
dx

∫
d y

∑
ℓ≤N

( ∞∑
k=0

fk11;ℓ(x)y
k

)
δ(ℓ)(y) =

∫
dx

∫
d y

∑
ℓ≤N

(−1)ℓ∂ℓy

( ∞∑
k=0

fk11;ℓ(x)y
k

)
δ(y) =

∫
dx
∑
ℓ≤N

(−1)ℓℓ !fℓ11;ℓ(x) ∈ R
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Zn2 -Supergeometry III: integration theory Integral of a distributional Zn2 -Berezinian section

∫
ω(X)

∑
ℓ≤N

fℓ(X)δ(ℓ)(y)
?
=

∫
ω(X ′)Zn

2Ber(∂ Φ) Φ
∗
∑
ℓ≤N

fℓ(X)δ(ℓ)(y)
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∫
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2Ber(∂ Φ1) (Φ2 ◦ Φ1)

∗
∑
ℓ≤N

fℓ(X)δ(ℓ)(y)

=

∫
ω(X ′)Zn

2Ber(∂ Φ2)Zn
2Ber(∂ Φ1) Φ

∗
1 Φ

∗
2

∑
ℓ≤N

fℓ(X)δ(ℓ)(y)

N. Poncin Higher SG Trinity College Dublin 40 / 43



Zn2 -Supergeometry III: integration theory Integral of a local cohomology class

Zn2 -integral IV

Laurent series ⇝ generalized fractions ⇝ J -local cohomology classes
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OUTLOOK

Current and upcoming work

Zn2 -differential calculus ✓

arXiv:1608.00949

Zn2 -versions of inverse & implicit function, constant rank, Frobenius ✓

arXiv:1608.00961

Zn2 -integral calculus ✓

ORBilu:http://hdl.handle.net/10993/27319

Categorical Zn2 -Geometry and Molotkov’s work ✓

Functional analytic issues in Zn2 -Geometry ✓

Applications in Physics ✓
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