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Abstract 
 
In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include 
time and timestamps to model security protocols with timestamps: we relate a key to a crack time and com-
bine it with timestamps in order to define a notion of recency. Therefore, we can check replay attacks in this 
new framework. Second, we extend the classic strand space theory to model protocol mixture. The main idea 
is to introduce a new relation   to model the causal relation between one primary protocol session and one 
of its following secondary protocol session. Accordingly, we also extend the definition of unsolicited authen-
tication test. 
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1. Introduction 
 
The strand space model [1] is a formal approach to rea-
soning about security protocols. For a legitimate regular 
participant, a strand s  represents a sequence of mes-
sages that the participant would receive or send as part of 
a run as his/her role of the protocol. A typical message 
has the form of  

K
h  denoting the encryption of h  

using key K . An element of the set of messages is 
called a term. A term 't  is a subterm of t  is written as 

tt' . Usually, we call a strand element node. Nodes can 
be either positive, representing the transmission of a term, 
or negative, representing the reception of a term. For the 
penetrator, the strand represents atomic deductions. More 
complex deductions can be formed by connecting several 
penetrator strands. Hence, a strand space is simply a set 
of strands with a trace mapping. Two kinds of causal 
relation (arrow),   and  , are introduced to impose 
a graphic structure on the nodes of the space. The rela-
tion   is defined to be the reflexive and transitive clo-

sure of these two arrows, modelling the causal order of 
the events in the protocol execution. The formal analysis 
based on strand spaces can be carried on the notion of 
bundles. A bundle is a causally well-founded set of 
nodes and the two arrows, which sufficiently formalizes 
a session of a protocol. In a bundle, it must be ensured 
that a node is included only if all nodes that proceed it 
are already included. For the strand corresponding to a 
principal in a given protocol run, we construct all possi-
ble bundles containing nodes of the strand. In fact, this 
set of bundles encodes all possible interactions of the 
environment with that principal in the run. Normally, 
reasoning about the protocol takes place on this set of 
bundles. 

However, the original strand space model has its se- 
mantical limitations to analyze the real-world protocols 
such as Kerbeoros protocols. First, it does not include 
timestamps as formalized message components, and 
therefore can not model security protocols with time- 
stamps. In fact, the strand space model [1] as given by 
Thayer Fábrega, Herzog, and Guttman is only bench- 
marked on nonce-based protocols such as the Needham- 
Schroeder protocol and the Otway-Rees protocol. But 
many modern protocols use timestamps to prevent replay 
attacks, so this deficiency of the strand space theory 
makes it difficult to analyze these protocols. Second, it 
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does not address issues of the protocol dependency when 
several protocols are mixed together. Many real-world 
protocols are divided into causally related multiple 
phases (or subprotocols), such as the Kerberos and Neu- 
man-Stubblebine protocols. One phase may be used to 
retrieve a ticket from a key distribution center, while a 
second phase is used to present the ticket to a security- 
aware server. To make matters more complex, many 
protocols such as Kerbeors use timestamps to guarantee 
the recency of these tickets, that is, such tickets are only 
valid for an interval, and multiple sub-protocol sessions 
can start in parallel by the same agent using the same 
ticket if the ticket does not expire. Little work has been 
done to formalize the causal relation between protocols 
in a protocol mixture environment. 

The aim of this paper is twofold. The first aim is to 
extend the strand space theory to cover the aforemen- 
tioned two semantical features. Briefly, we include time 
and timestamps to model security protocols with time-
stamps: we relate a key to a crack time and combine it 
with timestamps in order to define a notion of recency. 
Therefore, we can check replay attacks in this new 
framework. We also extend the classic strand space the-
ory to model protocol mixture: a new relation   is 
introduced to model the causal relation between one 
primary protocol session and one of its following secon-
dary protocol session. Despite the extensions, we hope 
that the extended theory still maintains the simple and 
powerful mechanism to reason about protocols. The 
second aim is practical. We hope to apply the extended 
theory to the analysis of some real-world protocols. Here 
we select Kerberos V as our case study. Kerberos V is 
appropriate because it covers both timestamps and pro- 
tocol mixture semantical features. 
 
2. Motivations 
 
2.1. A Short Introduction to Kerberos V 
 
The first version of Kerberos protocol was developed in 
the mid eighties as part of project Athena at MIT [2]. 
Over twenty years, different versions of Kerberos proto-
cols have evolved. Kerberos V (Figure 1 and Figure 2) 
is the latest version released by the Internet Engineering 
Task Force (IETF) [4]. It is a password-based system for 
authentication and authorization over local area networks. 
It is designed with the following aims: once a client au-
thenticates himself to a network machine, the process of 
obtaining authorization to access another network service 
should be completely transparent to him. Namely, the 
client only needs enter his password once during the au-
thentication phase. In order to access some network ser-
vice, the client needs to communicate with two trusted 

 

Figure 1. The layout of Kerberos V. 

 

 

Figure 2. Kerberos V: message exchanging. 

 
servers Kas and Tgs . Kas is an authentication server 
(or the key distribution center) and it provides keys for 
communication between clients and ticket granting serv- 
ers. Tgs  is a ticket granting server and it provides keys 
for communication between clients and application serv- 
ers. The full protocol has three phases each consisting of 
two messages between the client and one of the servers 
in turn. Messages 2 and 4 are different from those in 
Kerberos IV [2,4] in that nested encryption has been 
cancelled. Later we will show that this change does not 
affect goals of the protocol. 
 
2.2. Timestamps 
 
Timestamps are heavily used in the Kerberos protocols 
to guarantee the recency of messages. The strand space 
model cannot express security protocols with timestamps, 
although Guttman [5] provided a notion of recency and 
he used it to analyze replay attacks of a variant of the 
Yahalom protocol, it is still impossible to analyze secu- 
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rity protocols with timestamps. Timestamps are mainly 
used to avoid replay attacks in the literature of security 
protocols. Usually such attacks occur in protocols that 
involve a message encrypted by a session key, and the 
session key itself is sent as a part of a message which is 
encrypted by a long-term key. Although penetrators can 
never obtain a long-term key K  if K  is not sent as a 
part of a message, it is usually assumed that m  will be 
obtained from  

K
m  via cryptanalysis by a penetrator 

after some time t , especially if a session key SK  is a 
component of m , then it will be compromised after the 
time t . Here, we say that the time t  is the crack time 
of K , and every key will be related to a crack time. 
Although the penetrator cannot obtain m  from  

K
m  

during a protocol session provided that  
K

m  did not 
occur in any old session and K ’s crack time is longer 
than the time of a session allowed, he still may replay 
stale messages and use the old compromised session 
keys to launch attacks if some message of the protocol 
does not contain necessary information to indicate its 
recency. 

For example, in the Needham-Schroeder symmetric 
key protocols (see Figure 3), when B  receives the third 
message  ,

BK
A K , although B  can infer that it was 

generated by S , he is not certain of its recency because 
no such information is available. Perhaps  ,

BK
A K  

has occurred in an old session, and a penetrator has 
cryptanalyzed the conversation to obtain the session K . 
In that case, the penetrator can start a session by resend- 
ing  ,

BK
A K , and later return  1b K

N  . Denning 
and Sacco [6] pioneered the use of timestamps to fix the 
flaw of the protocol. A timestamp t , which is a number, 
is employed in the ticket  , ,

BK
A K t  by S  to mark 

the time of issue, and will be compared with the current 
time by the receiver B  to check whether the ticket is 
recent. In this paper, we will assume that all agents are 
synchronized via a global clock, so an agent knows the 
time when receiving or sending a message. 
 

 

Figure 3. Needham-Schroeder symmetric key protocol. 

In this paper, we extend the strand space model with 
such features. A crack time is attached to every key. The 
crack-time of a key K  is the time needed by a penetra- 
tor to break an encrypted message  

K
m .1 We model a 

timestamp in the same way as atomic messages. A regu- 
lar agent can attach a timestamp in a message to indicate 
when it sends the message, and check whether a received 
message encrypted by a key K  is recent by comparing 
the timestamp in the message with the current time and 
the crack time of K . Once a message  

K
m  is no longer 

recent, a penetrator can break the message to obtain m . 
 
2.3. Protocol Mixture 
 
Another important feature of Kerberos, which is difficult 
to model in strand space, is protocol mixture. Kerberos 
protocol comprises three protocol phases: authentication, 
authorization, and service protocol phases. Once a client 
has passed an authentication phase and obtained an au-
thentication ticket, then he can use the ticket to start mul-
tiple sessions of the authorization protocol phases in par-
allel to obtain different service tickets to access the ser-
vices he needs provided that the authentication ticket 
does not expire. Similarly, once the client has gone 
through a session of the authorization phase, then he can 
use the service ticket obtained to access the service 
server for many times provided that the service ticket 
does not expire. Usually we refer to a protocol as one 
primary protocol, and the protocol following it as a sec-
ondary protocol. We note that other researchers have 
discussed the problem of protocols mixture [7,8], but 
they emphasized more on independency between two 
protocols. Namely, if they have disjoint encryption, then 
the first protocol is independent of the second. By this 
they mean that if the first protocol can achieve a security 
goal (either an authentication goal or a secrecy goal) 
when executed in isolation, then it still achieves the same 
security goal when executed in combination with the 
second protocol. In their theory, one primary and one 
secondary strands are rather independent of each other. 

However, in Kerberos protocols, a secondary strand 
cannot be independent of its primary strand, and the 
events of a secondary strand has temporal relation with 
the events of the primary strand. For example, assuming 
that a client A  runs a session 's  of an authorization 
phase of Kerberos V, then he must have passed an au-
thentication phase s . When A receives the second mes-
sage in the session 's , he must ensure that the current 
time should be before the ticket  , , ,

Tgs
a K

A Tgs authK T  
expires, so A  needs know the time aT  when the ticket 
is created, and checks how much time has elapsed until 
now. This side condition cannot be expressed without the 
semantical specification of s , because in the intended 

1It is not the time to obtain K from {| m|}K. 
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case the ticket is a term encrypted with Tgs ’s long-term 
key, which is unintelligible to A , A  cannot know aT  
from the ticket. Then A  can only know the time aT  
from the previous authentication phase s . Therefore, we 
need to formalize the facts that 's  follows s , and A  
holds all the knowledge of s  when he runs 's , and 
there should be causal relation between events in s  and 
those in 's . Such semantical features are not covered in 
[7,8]. 

In order to model the aforementioned causal relation 
between a primary strand and its following secondary 
strands, we introduce a new relation   between 
strands. 'ss  holds if s  is a primary protocol strand 
and 's  is a subsequent secondary protocol strand. E.g., 
let s  and 's  be client strands in an authentication 
phase and authorization phase in Kerberos V respectively, 

'ss  means that a client runs an authentication ses-
sion s , and subsequently starts an authorization session 

's . In practice, if 'ss , then s  and 's  may be two 
different processes started by the same client, and when 
the client starts s , he knows all the events which have 
occurred in s . This knowledge is useful for the client to 
perform actions in 's . E.g., when a client starts an au-
thorization session, he uses an authentication ticket 
which is obtained in the preceding authentication session, 
and he knows the time when the ticket is created. So a 
causal relation should be imposed on two events which 
occur in a primary strand and its subsequent secondary 
strand. 

Figure 4 illustrates a possible protocol execution of 
Kerberos V using the relation .  A client runs an in-
stance in authentication phase, which is represented by 
the strand 1i . Following the primary protocol instance, 
the same client may run three authorisation subprotocol 
instances in parallel, which are showed in the strands 21i , 

,22i  and 23i  respectively. 21Tr  is a subtree which is a 
collection of client strands in the service phase. 22Tr  
and 23Tr  are similar to 21Tr . Note that the semantics of 
the relation   means that 21i  and 22i  and 23i  in-
herits all the same knowledge from ,1i  so they shares 
the same ,authTicket  authK , Tgs , aT , etc. Therefore,  

if     1,1 = , , , ,
A

a K
term i authTicket A Tgs authK T  then 

then it must be the case that 

    11 1 1,1 = , , ,
authK

term i authTicket A t B  

and 

    13 2 2,1 = , , ,
authK

term i authTicket A t B  

for some 1t , 2t , 1B  and .2B  Here 1 1( )t B  can be 
different from ).( 22 Bt  This means that the client use the 
same authTicket  to obtain two different server tickets 
for accessing servers 1B  and .2B Without the relation 

 

Figure 4. An illustration of protocol mixture. 

 
,  21i  and 1i  are independent, therefore the knowl-

edge inherence relation between them can not be im-
posed. 

We extend the relation   in the strand space model 
in the way that 21 nn   holds if ),(=1 isn  and 

1),(=2 isn , or 1)))((,(=1 strlengthsn  and ,0)(=2
'sn  

and 'ss . Namely, the edge means either that 1n  is 
an immediate causal predecessor of 2n  on the same 
strand s  or that 1n  is the last event in a primary strand 
s  and 2n  is the first event in the subsequent secondary 
strand 's . 
 
Structure of the Paper. In Section 3, we present the 
theory of the strand space method with our two exten-
sions. We devote Section 5 to a new definition of unso-
licited authentication test. We discuss related work and 
conclude the paper in Section 6. 
 
3. Preliminaries 
 
3.1. Messages and Actions 
 
The set of messages is defined as the following BNF 
notation: 

  ),(|,|

)(|)(|

)(|)(::= 

21 Khhh

tK

nAh

enc

timestampkey

noncename

 

where A  is an element from a set of agents, n  from a 
set of nonces, K  from a set of keys, and t  from a set 
of times. Here we assume that Time is the set of all 
natural numbers. 21 < tt  means that the time 1t  is ear-
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lier than 2t . We represent a timestamp by marking t  
as timestamp(t). Except this extension, the definitions of 
other kinds of messages are the same as those in the 
classic strand space theory. We call a key symmetric if 

KK =1 . Otherwise, K  is a public key and 1K  is 
private. For each K , we define )(Kcracktime  as the 
crack time of K .  1 2,h h  is called a composed mes-
sage. We will write   1 2 3, ,h h h  as  1 2 3, ,h h h . 
   1 2 1 2, ,' 'h h h h  if and only if 'hh 11 =  and 'hh 22 = . 
We abbreviate ),( Khenc  as  Kh , denoting the en-
cryption of h  using key K . In our formulation, we use 

AK  to define a long-term key shared between an agent 
(also called a client) A  and a server, and clients have 
distinct keys. An element of the set of messages is also 
called a term. Terms of the form name(A), nonce(n), 
timestamp(t), or key(K) are said to be atomic.2 The set 
of all messages is denoted by Message. A message h  is 
a text message if Kh   for any K . The set of all 
atomic text messages is denoted by T . We frequently 
need the subterm relation on messages. A term 'g  is a 
subterm of g  is written as gg' . 

Definition 1 The subterm relation   is defined induc-
tively as the smallest relation such that gg ,  

K
g h  

if hg , and  1 2,g h h  if 1hg  or 2hg . 
In our extended strand space model, we need to revise 

the definition of actions. The main point is to record the 
time when an action takes place. The transmission of a 
term g  at time t  is denoted by ),,( gt  , and the re-
ception of a term g  at t  is denoted by ),,( gt  . Both 
are the possible actions that participants and a penetrator 
can take. We represent the set of finite sequences of ac-
tions by (Time, ±, Message)*. 
 
3.2. Strands and Strand Spaces 
 
A strand space   is a set of strands with a trace map-
ping *),(: MessageTime  ,tr . A strand element is 
called a node. ),( is  is the i -th node on strand s  
( )(<0 slengthi ). We use sn  to denote that a node 
n  belongs to the strand s . The set of all the nodes is 
denoted by  . If ),(= isn  and ),,(=)( gtstr i  , 
then we define )(ntime  and )(nterm  and )(nsign  to 
be the occurring time, the term and the sign of the node 
n , respectively. Namely, tntime =)( , gnterm =)( , and 

=)(nsign . We call a node positive if its term has sign 
 , and negative if its term has sign  . A strand is a 
protocol history from the point of view of a single par-
ticipant in a protocol run, so we explicitly define an at-
tribute function Aattr :  to indicate which agent’s 
peer a strand is. Namely, asattr =)(  means that a  is the 
agent who performs actions of the strand s  in the run. 

As mentioned in Section 2, we introduce a relation 
  between strands to model protocol mixture, and 

'ss  holds if s  is a primary protocol strand, and 's  
is a subsequent secondary protocol strand. To make our 
theory sound, we also restrict the relation   to be a 
tree-like one with the following principles. First,   is 
irreflexive, i.e. ss . Second, every strand has at most 
one   predecessor, meaning if ''ss  and ''' ss  , 
then 'ss = . The two restrictions are consistent with our 
intuition on protocol mixture. The first principle says that 
one protocol session can not follow itself, this simply 
means that the primary protocol session and any one of 
its following secondary protocol sessions are different. 
The second principle shows that one secondary protocol 
session follows a unique primary protocol session. 

Two kinds of causal relation (arrow),   and  , 
are introduced to impose a graph structure on the nodes 
of  . To be more precise, the relation 'nn  holds 
between nodes n  and 'n  if ),(= isn  and 1),(= isn'  
and ),()( 'ntimentime   or    1,= strlengthsn  and 

,0)(= '' sn  and 'ss  and )()( 'ntimentime  . This 
relation means that the event 'n  immediately follows 
n . On the other hand, the relation 'nn   holds for 
nodes n  and 'n  if gntermnterm ' =)(=)(  for some term 
g , =)(nsign  and =)( 'nsign , and )()( 'ntimentime  . 
This represents that n  sends a message g  and 'n  
receives the message at a later time. Obviously, here we 
require that the two relations must respect the order of 
time. The relation   is defined to be the reflexive and 
transitive closure of   and  , modelling the causal 
order of the events in the protocol execution. We say that 
a term g  originates at a node n  if and only if n  is 
positive, ),(ntermg  and there is no node 'n  such 
that nn'   and )( 'ntermg  ; We say that g  
uniquely originates if and only if there exists an unique 
node n  such that g  originates from node n . Nonces 
and other recently generated terms such as session keys 
are usually uniquely originated. 
 
3.3. Penetrator Strands 
 
The symbol Bad is defined to denote the set of all the 
penetrators, and if an agent is not in Bad, then it is regu-
lar. There is a set of keys that are known initially to all 
the penetrators, denoted as K . K  usually contains 
all the public keys, all the private keys of all the penetra-
tors, and all the symmetric keys initially shared between 
all the penetrators and principals playing by the protocol 
rules. It can also contain some keys to model known-key 
attacks. In this paper, we only need the fact that if an 
agent is not a penetrator then his shared key cannot be 
penetrated, which is formalized as follows. 

Axiom 1 If BadA , then KAK . 
2For convenience, we often write A, n, K and t instead of name (A), 
nonce (n), key (K), and timestamp (t).
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In the classic strand space theory, a penetrator can in-
tercept messages, generate messages that are computable 
from its initial knowledge and the messages it intercepts. 
These actions are modelled by a set of penetrator strands, 
and they represent atomic deductions. More complex 
deduction actions can be formed by connecting several 
penetrator strands. In our extension, we assume that 
penetrators share their initial knowledge and can cooper-
ate each other by composing their strands. Besides the 
behaviors inherited from classic strand space theory, a 
penetrator has the ability to crack an encrypted message 
once the message is no longer recent (see hKKC ,  
strand). 

Definition 2 A penetrator’s trace relative to K  is one 
of the following, where Time321 ,,, tttt  and 321 ttt  : 

• Mg (text message): )],,[( gt  , where Tg . 

• KK (key): )],,[( Kt  , where KK . 

• Cgh (concatenation):  )],,,(),,,(),,,[( 321 hgthtgt  . 

• Sg,h (separation):   ,,(),,,(),,,,[( 321  tgthgt )]h . 

• Eh,K (encryption): ,,(),,,(),,,[( 321  thtKt   )]
K

h . 

• Dh,K (decryption):   )],,(),,,(),,,[( 32
1

1 hthtKt
K

  . 

• KCK,h (key-crack):   )],,(),,,[( 21 htht
K

 , where 

21 <)( tKcracktimet  . 
In our theory, if a strand s  belongs to a penetrator, 

namely, ( )attr s Bad , then s  must be a penetrator 
strand. If a strand is not a penetrator strand, then it is 
regular. A node is called regular if it is not in the pene-
trator strands. Except the key crack strand ( hKKC ,  ), our 
penetrator model is similar to the one in [1]. Here 

gM (or KK ) does not imply that a penetrator can issue 
any unguessable terms which are not in his initial 
knowledge such as nonces and session keys. Because 
when we introduce secrecy or authentication properties 
about an unguessable term t  for all penetrators, we 
usually assume that t  uniquely originates from a regu-
lar strand, and this implicitly eliminates the possibility 
that any penetrator can originate t . Intuitively, we use 
  to model regular agents to start a primary protocol 
session and then starts multiple parallel secondary pro-
tocol sessions, so a penetrator strand cannot be mixed 
with any other strand. To be more precise, for all pene-
trator strands s  and all strands 's , we have that 

'ss  and ss'  . This implies that a penetrator 
strand can only be composed with other strands by the 
relation  . 
 
3.4. Bundles 
 
The formal analysis based on strand spaces is carried on 
the notion of bundles, which represents the protocol 
execution under some configuration. A bundle is a caus-
ally well-founded graph, which sufficiently formalizes a 

session of a protocol. 
Definition 3 Suppose   ,, � N  ,  

and .    is a bundle if 
• N  and   and   are finite; 
• If the sign of a node n  is  , and Nn , then 

there is a unique positive node 'n  such that Nn'   
and nn'

 ; 
• If nn'   and Nn , then Nn'   and 

nn'
 ; 

•   is acyclic. 
Suppose   is a bundle, we say n  if n  is a 

node in N , and use   to denote the reflexive and 
transitive closure of the relation   and   in  . In 
a bundle, it must be ensured that a node is included only 
if all nodes that proceed it are already included. So a 
bundle   has the following properties: 

Lemma 1 (Bundle well foundedness) Let   be a 
bundle. Then   is a partial order, i.e. a reflexive, 
antisymmetric, transitive relation. Every non-empty sub-
set of the nodes in   has   minimal members.  

We have formalized the above extended strand space 
theory in the theorem prover Isabelle/HOL [9]. See [10] 
for details. 
 
4. Penetrator’s Knowledge Closure Property 
 
In this section, we will describe a useful property on 
penetrator strands. This property specifies what knowl-
edge can be obtained from some special message set. 
First we need to define a key is regular w.r.t. a node m  
in a bundle. 

Definition 4 A key K  is regular w.r.t. a node m  in 
a bundle  , denoted by  ,,mkregular , if and only if 
the following condition holds: for any node n  in  , if 

Knterm =)(  and )()( mtimentime  , then n  must be 
regular. 

This definition is about K ’s secrecy w.r.t. a node m  
in a bundle  , which means that K  cannot be penetrated 
before m  in the bundle. In most of the cases, we only 
consider security properties for a protocol in a given bun-
dle, so it is natural for us to just consider whether a key 
can potentially be penetrated in this bundle. Besides, we 
also need consider temporal restriction )()( mtimentime   
because we discuss K ’s secrecy a timed framework. 

Definition 5 Let m  be a node in a bundle .  A 
message ,t  is a component w.r.t. m  in bundle ,  
denoted by  ,, mtcomponent , if 

1) g(   );,. hgth   

2)      ,,=. 1 mkregularhtkh
k

  

Intuitively,  ,,mtcomponent  means that t  basic 
unit that can not be analyzed in   by penetrators. 
Namely, t  can not be detached because t  is not a 
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concatenated form; and if t  is an encrypted form of 
 

K
h  t  can not be decrypted before m  in   be-

cause 1k  can not be penetrated before m . 
Definition 6 Let m  be a node in a bundle .  a  is 

a message which uniquely originates at some node n . A 
message set M  is a test suite for a  w.r.t. m  in ,  
denoted by  ,,,, nmaMsuite  if 

1)  taMt .   ,, mtcomponent  

2) (.  taMt   
k

hthk =.    )(mtime    

))()( kcracktimentime   

3) ;. Mttat    
Intuitively,  ,,,, nmaMsuite  means that for any 
Mt  such that ,ta  t  can not be detached or de-

crypted before m  because such t  is a component w.r.t. 
m  in bundle  ; furthermore, if t  contains a  and is 
of the form  

K
h  for some k  and ,h  t  can not be 

cracked before m  because the duration between m  
and n  is less than k ’s crack time, and this is guaran-
teed by (2). Recall that )(ntime  is the first time when 
a  occurs because a  uniquely originates at .n  

Now we need introduce a function synth  on a mes-
sage set H , which captures the “building up” aspect of 
penetrator's ability [4,11].  Hsynth  is defined to be the 
least set that includes H , agents, timestamps and is 
closed under pairing, and encryption. 

Definition 7 Consider a message set ,H  )(Hsynth  
is a message set which is defined inductively as follows: 

1) )(HsynthA  if A  is an agent name; 

2) )(Hsyntht   if t  is a timestamp; 

3) )(Hsynthm   if Hm ; 

4)   ),(Hsynthh
k
  if )(Hsynthh  and ;Hk   

5)   ),(, Hsynthhg   if )(Hsynthg   and 

).(Hsynthh   

In the context of this paper, we usually assume that a  
is an unguessable atomic message such as a nonce, 
which is uniquely originated from a regular strand and 
encrypted in a message. Let },|{=0 MttatM   in 
later discussions we usually assume that 0M  is the set 
of messages which is emitted by some regular strands. f 
M  is a test suite for a  w.r.t. m  in b , then the set 
synth  M  is a knowledge closure which penetrators 
can synthesize in the bundle b  from .M  Namely, if 
the messages received in a penetror strand are in 
synth  M , then the messages sent in the strand must 
still be in synth  .M  

Before we prove the closure property, we need two 
useful lemmas, as shown below: 

Lemma 2 If M  is a test suite for a  w.r.t. m  in 
,  and  hg, synth  ,M  then g synth  M  and 
h synth  .M   
Lemma 3 If    ,Msynthh

K
  then  Msynthh  

or   .Mh
K
  

Let a  be an atomic message that uniquely originates 
at some node n , m  be a positive penetrator node in a 
bundle   such that and  .mterma  Suppose M  is 
a test suite for a  w.r.t. m  in the bundle  , if any 
message that the penetrator can receive in the strand is in 

 ,Msynth  then the penetrator can only send a term 
which is still in  Msynth . Figure 5 illustrates such 
behaviors of penetrators on knowledge, where (a) shows 
the cases for ,,hgC  ,,KhE  and ;,KhD  (b) shows the 
case for ;,hgS  and (c) shows the case for .,hKKC  

Lemma 4 Let m  be a positive penetrator node in a 

 

 

Figure 5. Penetrator’s knowledge closure property. 
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bundle ,  a  be an atomic message that uniquely ori- 
ginates at a regular node n , M  be a message set such 
that  ,,,,, nmaMsuite  and    Msynthmterm '   for 
any node such that ,mm'   then    .Msynthmterm    

Proof. For convenience, the assumption that 
   Msynthmterm   for any node such that nm   is 

referred as (1) in the proof as follows. 
By case analysis on the form of penetrator strand, we 

can easily exclude the cases when m  is in a strand 

gM , .KK  If thus, we can conclude that a  originates 
at .m  This contradicts with the fact that uniquely origi-
nates at a regular node .n  Therefore, m  is in a strand 
i  such that i  is hgC , , ,,hgS  ,,KhE  ,,KhD  or 

hKKC , . 
Case 1: i  is in ,,hgC  then   2,=mindex    ,=,0 giterm  
  ,=,1 hiterm  and    hgmterm ,=  for some g , ,h  

and   ,=,0 isign  and   =,1isign . From the assump-
tion (1), we have    Msynthiterm ,0  and  ,1iterm  

 ,Msynth  then  Msynthg  and  ;Msynthh  By 
the definition of synth  operator,    , ,g h synth M  
then    .Msynthmterm   

Case 2: i  is in ,,hgS  then   1,=mindex  or   2,=mindex  
   ,,=,0 hgiterm    ,=,1 giterm  and  =mterm  h  

for some g , .h  From the assumption (1),  we have 
   Msynthiterm ,0 ,  hg, synth  ,M  by Lemma 

4, we have  Msynthg   and  .Msynthh  So 
 mterm   .Msynth  

Case 3: i  is in ,,KhE  then   2,=mindex  
  ,=,0 Kiterm    ,=,1 hiterm  and    

K

' hmterm =  
for some K , ,h  and   ,=,0 isign  and   .=,1 isign  
From the assumption (1) ,    Msynthiterm ,0  and 

   ,,1 Msynthiterm   then  MsynthK   and 
 ;Msynthh  by the definition of synth , we have 

   ,Msynthh
K
  then    .Msynthmterm   

Case 4: i  is in ,,KhD  then   2,=mindex    ,=,0 1Kiterm  
    ,=,1

K
hiterm  and   hmterm =  for some K , ,h  

and   ,=,0 isign  and   .=,1 isign  From the assumption 
(1), we have    Msynthiterm ,0  and    ,,1 Msynthiterm   
therefore  MsynthK 1  and    ,Msynthh

K
  by 

Lemma 4, we have either (4-1)    Msynthhmterm =  
or (4-2)   .Mh

K
  From (4-1), the lemma can be 

proved at once. For the case (4-2), there are also two 
subcases, either (4-2-1)  

K
ha  or (4-2-2)   .

KK
ha  

From (4-2-1), we have ,ha  by M  is a test suite for 
a  in b , so ,Mh  then h    synth M , then term 

'm    synth .M  From (4-2-2), then by M  is a test 
suite for a  in b , we have component  

K
h  ,b  then 

we have  .,,1 mKregular   From this and   ,0i  
and   ,=,0 1Kiterm  then i  is regular, but this contra-
dicts with that m  is in a penetrator strand. 

Case 5: i  is in ,,hKKC  then   1,=mindex  
  ,=,1 hiterm      ,=,0

K
hiterm  (2)  

   .,1<)(,0 itermKcracktimeiterm   From the assump-
tion (1),  we have    .Msynthh

K
  From this, by 

Lemma 3, we have either (5-1)  Msynthh  or (5-2) 
  .Mh

K
  From (5-1), the lemma can be proved at once. 

For the case (5-2), there are also two subcases, either 
(5-2-1)  

K
ha  or (5-2-2)   .

K
ha  From (5-2-1), we 

have ,ha  by the definition of  ,,,, nmaMsuite , so 
,Mh  then  .Msynthh  From (5-2-2), then by the 

definition of  ,,,, nmaMsuite , we have (3) 
).()()( kcracktimentimemtime   From  ,,0iterma  and 

a  uniquely originates at ,n  we have ,0).()( itimentime   
Then we have  

),(,0)()()( kcracktimeitimekcracktimentime   
with (3), we have ).(,0)()( kcracktimeitimemtime   
But this contradicts with (2). 

On the other side, a strand’s receiving nodes get mes-
sages which are all in  ,Msynth  but a new message, 
which is not in  Msynth , is sent in the strand, then the 
strand must be regular because a penetrator strand can 
not create such a term. The result can be simply inferred 
from Lemma 4. 

Lemma 5 Let mbe a positive node in a bundle ,  a  
be an atomic message that uniquely originates at a regu-
lar node n , M  be a message set such that 

 ,,,,, nmaMsuite  and    Msynthmterm '   for any 
node such that ,mm'   and    ,Msynthmterm   then 
m  is regular .  

For Lemma 4 and 5, we have two comments: 
1) Lemma 4 characterizes the knowledge closure prop-

erties of a penetrator’s operations on messages. It says 
that if a penetrator only receives messages in  ,Msynth  
where M  is a test suite for some atomic message ,a  
then the augmented knowledge of the penetrator is still in 

 Msynth  after the receiving actions. 
2) Lemma 5 provides a key technique to prove the au-

thentication guarantee that m  is regular. Intuitively, 
condition (1) of suite  requires the secrecy of the in-
verse key 1k  for any key k  which is used to encrypt 
any message in M  containing a ; condition (2) of op-
erator suite  is a recency restriction that these encrypted 
messages containing a  can not be cracked until .m  
Therefore this lemma provides a means of using secrecy 
and recency restriction to prove authentication guarantee. 
We will see this result is very useful for us to check 
whether a strand is regular in the next sections. 

Note that the two lemmas relates the algebraic opera-
tor synth  in trace theory [4,11] with penetrator’s strand 
ability to deduce knowledge, which is the most important 
one which differs our work from the classical strand 
space theory. Such closure properties are not available in 
the classical strand space theory because message alge-
bra operators such as synth  are not formalized. 
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5. Unsolicited Tests 
 
In [12] (Subsection 4.2.3), a negative node n  is an un-
solicited test for  

K
h , if  

K
h  is a test component 

for any atomic text a  in n , and K  cannot be pene-
trated in the strand space. Then an unsolicited test for 
 

K
h  in a bundle   can guarantee the existence of a 

positive regular node of which  
K

h  is a component. 
We simplify this definition of unsolicited tests by the 
following two aspects: 

1) we consider a node n  is an unsolicited test for 
 

K
h  in a bundle  ; 
2) we only require that  

K
h  is a subterm of the 

term of n , and K  is regular w.r.t. n  in the bundle 
  instead of a strand space. 

In our formulation, unsolicited authentication test is a 
kind of regularity about an encrypted term  

K
h , which 

is a subterm of a node n  where K  cannot be pene-
trated before n  in a bundle  . Then it can be ensured 
that there is a positive regular node m  originating 
 

K
h  as a subterm, i.e., m  has  

K
h  as a subterm 

and it also holds that   )( '

K
mtermh   for any node 

mm'
 . Intuitively, the reason why m  must be regular 

lies in that K  cannot be penetrated before m  in  . 
So the penetrator cannot create  

K
h  by encrypting h  

with K . 
Definition 8 Given a bundle  . A node n  in   is 

an unsolicited test for  
K

h  if   )(ntermh
K
 , and 

K  is regular w.r.t. n  in  .  
Lemma 6 (Unsolicited authentication test)   is a 

given bundle. Let n  be an unsolicited test for  
K

h . 
Then there exists a positive regular node m  in   such 
that nm   and   )(mtermh

K
  and   )( '

K
mtermh   

for any node 'm  such that mm'
 .  

Proof. Let   )}(|{= xtermhnxxP
Kdf   . Obvi-

ously, Pm . By Lemma 1, there exists a node 'm  
such that 'm  is minimal in P , which means that 
  )( '

K
mtermh  , nm'

 , and for all y  such that 
'my  , Py . Hence,   )(ytermh

K
 . 

First, we prove that the sign of 'm  is positive by 
contradiction. If =)( 'msign , then by the upward- 
closed property of a bundle there must be another node 

''m  in   such that =)( ''msign  and ''' mm  . Then 
we have (a) ''' mm   and (b) )(=)( ''' mtermmterm . 
By (a) and nm'

 , we have nm ''
 . By (b) and 

  )( '

K
mtermh  , we have   )( ''

K
mtermh  . Hence, 

Pm ''   which contradicts with the minimality of 'm . 
Second, we prove that 'm  is regular. We show that a 

contradiction can be derived if 'm  is in a penetrator 
strand. Here, we only analyze cases when 'm  is in ei-
ther 'gg

C
,

 (concatenation strand), 'Kg
E

,
 (encryption 

strand), or 
g'K

KC
,

 (key crack strand). Other cases are 
either straightforward or can be analyzed in a similar 

way. 

• 'm  is in 'gg
Ci

,
 . 

By the form of the strand 'gg
C

,
 and the fact that 'm  

is a positive node, we have ,2)(= im' , 
 '' ggmterm ,=)( , giterm =,0)( , and 'giterm =,1)(  

for some g , 'g . By the upwards-closed property of a 
bundle, we have that nodes ,0)(i  and ,1)(i  must be in 
 . By    , '

K
h g g , we have either  

K
h g  or 

 
K

h g  , i.e.   ,0)(itermh
K
  or   ,1)(itermh

K
 . 

So either node Pi ,0)( , or node Pi ,1)( . Both cases 
contradict with the minimality of 'm . 

• 'm  is in 'Kg
Ei

,
 . 

By the form of the strand 'Kg
E

,
 and the fact that 'm  

is a positive node, we have ,2)(= im' , 
  'K

' gmterm =)( , 'Kiterm =,0)( , and giterm =,1)(  
for some g  and 'K . So    

K K
h g


 . Then it is 

straightforward that either (1)  
K

h g  or (2) gh =  
and 'KK = . For the first case, we have 
  ,1)(itermh

K
 . It is easy to derive a contradiction by 

the same argument as before. For the second case, by the 
definition of the relation  , we have (a) 

,2)(,0)( itimeitime  . And by definition of P , we also 
have (b) )()( ntimemtime '  . Hence, )(,0)( ntimeitime  . 
However, by the assumption that K  must be regular 
w.r.t. n  in  , ,0)(iterm  must be regular, and this 
contradicts with the fact that i  is a penetrator strand. 

• 'm  is in 
g'K

KCi
,

 . 

By the form of the strand 
g'K

KC
,

, and the fact that 
'm  is a positive node, we have ,1)(= im' , gmterm ' =)( , 

  'K
giterm =,0)(  for some g  and K  , and  

)(<)(,0)( 'mtimeKcracktimeitime  . 

By   gmtermh '

K
=)( , so     'KK

gitermh =,0)( . 
Obviously nmi '

 ,0)( . So Pi ,0)( , which contra-
dicts with the minimality of 'm . 

The proof totally depends on the well-founded induc-
tion principle on bundles, and we have formalized the 
proof of this lemma in Isabelle/HOL in our inductive 
strand space model, and the proof scripts are available at 
[10]. In fact, lemma 6 provides a useful proof method to 
reason about authentication properties basing on secrecy 
properties. Note that the premise that n  is an unsolic-
ited test for  

K
h  requires that K  is regular w.r.t. n  

in  , which is an assumption on the secrecy of K . 
And the conclusion is an authentication guarantee of the 
existence of a regular node m . Besides, compared with 
the original version of unsolicited test, our result also has 
two extensions that nm   and m  is minimal (i.e., 
  )( '

K
mtermh   for any node 'm  such that )mm'

 . 
We find that the extended version of unsolicited authen-
tication test is quite useful in many cases, especially in 
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the verification of authentication properties of symmetric 
key based protocols. In [13], we have used a version of 
unsolicited authentication test in the classical strand 
space theory to give new proofs of authentication proper-
ties of the Otway-Rees protocol. In this work, we have 
successfully applied unsolicited authentication test to our 
study of the Kerberos V protocol in the next paper. 
 
6. Conclusions and related Work 
 
This work is an extension of [14]. We have added two 
new semantical features in our new framework: time-
stamp and protocol mixture. In essence, our treatment of 
timestamps is to add a global clock to the underlying 
execution model, and to extend every action by a tempo-
ral annotation. This allows us to align the timestamps 
sent in the protocol messages with the actual occurrence 
times of the corresponding actions. Although it is quite 
straightforward, it gives a powerful mechanism to reason 
about recency of a message. For protocol mixture, we 
admit a realistic assumption that a regular agent can start 
multiple parallel secondary sessions once he has finished 
a primary protocol session, and he holds all the informa-
tion of the primary protocol session when he begins a 
secondary protocol session. So we introduce a causal 
relation   between strands to model the protocol de-
pendency. The above two semantical features are seldom 
discussed in previous works of strand space literature. 

Despite the aforementioned extensions in semantics, 
the definition of a bundle, which is the cornerstone of the 
strand space theory, remains unchanged. So the induction 
principle on the well-foundedness of a bundle is still ef-
fective in our model. Based on this principle, we have 
proved an extended result of the unsolicited authentica-
tion test. 

In the literature, most of the existing approaches for 
protocol analysis have not concentrated on timestamps 
and replay attacks. These include the CSP model- 
checking approach [15], the rank functions [16], and the 
Multi-Set Rewriting formalism (MSR) [17]. Paulson and 
Bella's inductive method [4,11] is one exception. They 
not only have extended their method to model replay 
attacks, but also have succeeded in applying their method 
to the Yahalom protocol and the Kerberos IV protocol. 
Recently, Bozga et al. [18] proposed an approach based 
on timed automata, symbolic verification techniques and 
temporal logic to analyze security protocols with time-
stamps. But they haven’t applied their approach to any 
real-world security protocols. 

For protocol mixture, there have been a few works to 
reason rigorously about protocol interactions. For in-
stance, Meadows studied the Internet Key Exchange 
protocol, emphasizing the potential interactions among 

its specific sub-protocols [19]. The analysis work was 
conducted in the NRL protocol analyzer. Recently, Cre-
mers discussed the feasibility of multi-protocol attacks, 
and his work is done in the operational semantical frame- 
work which considers a so-called type flaw attacks [20]. 
All these works, including [7], focus on protocol interac-
tions by message exchanging. Instead, our work empha-
sizes on the dependency between a primary protocol ses-
sion and a secondary protocol session. Here we assume 
that when a regular agent starts a secondary protocol 
session, he should be aware that he has finished a corre-
sponding primary protocol session, and he maintains all 
the information obtained in the primary protocol session, 
such as tickets and the creation time of the tickets. These 
modelling assumptions fit well with the real-world envi-
ronments where the Kerberos protocols run. 
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