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Abstract
Wepresent the stochastic thermodynamics analysis of an open quantum systemweakly coupled to
multiple reservoirs and driven by a rapidly oscillating external field. The analysis is built on amodified
stochasticmaster equation in the Floquet basis. Transition rates are shown to satisfy the local detailed
balance involving the entropy flowing out of the reservoirs. Thefirst and second law of
thermodynamics are also identified at the trajectory level.Mechanical work is identified bymeans of
initial andfinal projections on energy eigenstates of the system.We explicitly show that this two step
measurement becomes unnecessary in the long time limit. A steady-state fluctuation theorem for the
currents and rate ofmechanical work is also established. This relation does not require the
introduction of a time reversed external drivingwhich is usually neededwhen considering systems
subjected to time asymmetric external fields. This is understood as a consequence of the secular
approximation applied in consistencywith the large time scale separation between the fast driving
oscillations and the slower relaxation dynamics induced by the environment. Our results are finally
illustrated on amodel describing a thermodynamic engine.

1. Introduction

The identification of thermodynamic quantities, such as heat, work and entropy, in open quantum systems
driven by an external field is a central issue in quantum thermodynamics. Such systems are encountered in a
variety of physical situations including the interactionwith electromagnetic radiation [1], driven tunneling [2],
switching inmulti-stable quantum systems [3], transport properties of driven quantumdots (QDs) [4], and
non-equilibriumBose–Einstein condensation [5].

Up to now, a consistent picture of the thermodynamics of these systems has only been givenwithin specific
limits or regimes. In particular,most studies have been focused on slowly driven andweakly coupled open
systems [6–10].Within this regime, the systemdynamics is well described by a stochasticmaster equation in the
basis of time dependent energies of the system. Entropy production, heat andwork can then be identified at the
single trajectory level, and the thermodynamic analysis of the systemperformedwithin the framework of
stochastic thermodynamics (ST) [11–13].

More recently, work has been done on the study of thermodynamic properties of open quantum systems
driven by a fast and periodic externalfield, whetherweakly coupled to a single heat reservoirs [4, 14–19] or
arranged in a specific implementation of a heat engine [20, 21]. In the present paper, we perform the general ST
analysis of an open quantum systemweakly coupled tomultiple heat or chemical reservoirs, and driven by a fast
and time periodic external force. Consideringmultiple reservoirs considerably widens the scope of possible
applications such as, for example, the study of externally driven current or thermoelectric converters.

We perform the statistics of the energy andmatter currents out of the reservoirs using the counting statistics
formalism (see [22] for a review).Within this formalism, the currents are determined bymaking initial and final
measurement of the energy and particle number in the reservoirs. In theweakly coupled and fast driving regime,
these statistics is shown to be independent of quantum coherences in the Floquet basis. This directly results from
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the dynamical decoupling between populations and coherences in the Floquet basis in this regime, togetherwith
the fact thatmeasurements of the reservoirs energy and particle number are independent of the system state.

The identification of themechanical work further requires a doublemeasurement of the initial and final
energies of the system [23–26]. Contrary to the current statistics, themechanical work statistics depends on the
evolution of coherences in the Floquet basis, which both influence and depend on the outcome of the system
energymeasurements. However, we show that the double projection in the systembecomes unnecessary at
steady-state for the identification of the rate ofmechanical work, i.e. power. In this limit, themechanical power
statistics is exclusively determined by the diagonal elements of themodified densitymatrix in the Floquet basis,
independently of quantum coherences. Thefirst law then leads to a balance equation for the currents and the
mechanical power. Furthermore, the steady-statemechanical power is shown to be given by the transfer rate of
quanta, with energy given by the driving frequency ( = 1), from the external driving to the reservoirs.

An important consequence of the dynamical decoupling between populations and coherences in the Floquet
basis is that the trajectory entropy production associated to the stochastic dynamics in the Floquet basis satisfies
a transient FT. The Shannon entropy in the Floquet basis is thus the relevant entropywithin this scheme. It is
remarkable that a FT relation for these systems can be derivedwithout need to formally introduce a time
reversed external driving [27–29]. This is a direct consequence of the assumption of large time scale separation
between the fast driving oscillations and the slower relaxation time scale induced by the environment.Within
this limit, a secular approximation overmany driving oscillations can be consistently applied, resulting in a
master equationwith time-independent rates [1, 16, 30–32].

The connection between entropy production and the heat currents is provided by the local detailed balance
(LDB) satisfied by the transition rates between Floquet states, which is herewritten in terms of the heat
exchanged between the system and the reservoirs during the correspondingmicroscopic transition. The heat
exchange includesmultiples of the driving frequencywhich result from the presence of the non conservative
external force due to the driving, and are identified as the dissipatedmechanical work.Wemake use of the LDB
condition in order towrite the steady-state entropy production in terms of the currents andmechanical power.
A steady-state FT for these quantities is also established by using the LDB,which is the steady-state version of the
transient FT obtained in [10]. A steady-state FT for themechanical power is recoveredwhen considering a single
heat reservoir [17, 19].

This paper is organized as follows. In section 2, wefirst introduce the generalHamiltonian of a periodically
driven open quantum system aswell as the Floquet basis of the system and its associated quasi-energies. This
section ismainlymeant tofix notations.

In section 3, we perform the counting statistics of the currents of energy andmatter through the systemby
using the counting statistics formalism.We derive themodified stochasticmaster equation [22] by using
standard assumptions: weak coupling between system and environment, wide spacing between the quasi-
energies and fast driving as compared to the relaxation dynamics [16, 32–35]. This section extends former
results [4, 14–16, 18] to an environment consisting ofmultiple reservoirs.

The ST analysis of the system starts in section 4. In thefirst part of this sectionwe use the energy conservation
law to construct themechanical work statistics. The steady-state statistics is also discussed and the first law is
introduced. In the second part, we show that the trajectory entropy production satisfies a transient FT and
formally establish a FT for the currents andmechanical power.

We apply our results to the analysis of a thermodynamic engine in section 5. This engine consists of a two
level system,weakly coupled to two particle reservoirs. For this system, the stochasticmaster equation is exposed
and the large deviation function (LDF) of the output power is numerically obtained and illustrated.We also
investigate both average and fluctuations of the output power. Quite remarkably, the output power is subject to
largefluctuations in the regime ofmaximumoutput power in thismodel.

Finally, a summary of the obtained results and possible perspectives are drawn in the concluding section 6.

2.ModelHamiltonian

Weconsider a periodically driven open quantum systemmodeled by aHamiltonian of the form

= + +H t H t H V( ) ( ) , (1)S R

where = +H t H t T( ) ( )S S denotes theHamiltonian of the periodically driven system,HR stands for the
environmentHamiltonian andV describes the interaction between the system and the environment.

According to Floquet theory, the dynamics associated to the time-periodicHamiltonian H t( )S admit a

complete set of solutions under the form ψ∣ 〉 = ∣ 〉ϵ−t s( ) es
t

t
i s , where ϵs are the so-called quasi-energies of the

systemwhile the Floquet states ∣ 〉st have the same periodicity as theHamiltonian, that is, ∣ 〉 = ∣ 〉+s st T t [36, 37].
These Floquet states and quasi-energies satisfy the eigenvalue problem
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ϵ− ∂ =( )H t s s( ) i (2)S t t s t

which is obtained by inserting the quantum state ψ∣ 〉t( )s into the Schrödinger equation associated to the system

Hamiltonian H t( )S . Floquet states can be Fourier expanded according to ∣ 〉 = ∑ ∣ 〉ω−s set k
k t

k
i in terms of the

driving frequency ω π= T2 . The systemquasi-energies are defined up to amultiple of the frequencyω, and can
thus be restricted to the first Brillouin zone, ϵ ω∈ [0, ]s .

We assume that the particle number operator in the system, denoted byNS, commutes with the system
Hamiltonian at all times, i.e. =N H t[ , ( )] 0S S . As a result, the operators − ∂H t( ) iS t andNS can be
simultaneously diagonalized and the Floquet states ∣ 〉s may be chosen in such away as to have awell defined
particle number ns.

The environment consists of a set ofmacroscopic reservoirs of energy and particles labelled by the index
ν = N1, ..., . ItsHamiltonian is written as

∑ ∑ϵ= =
ν

ν ν ν ν νH H H r rwith , (3)R

r

r

where ∣ 〉νr is a quantum state in the reservoir νwith energy ϵ νr and particle number νnr . The particle number
operator in reservoir ν is then given by

∑=ν ν ν νN n r r . (4)
r

r

Each reservoir ν is assumed to be initially at grand canonical equilibriumwith inverse temperature
β =ν ν

−k T( )B
1 and chemical potential μν

ρ =ν

β μ

ν

− −ν ν ν ν( )

Z

e
, (5)

H N
eq

where =ν
β μ− −ν ν ν ν{ }Z Tr e H N( ) is the partition function of reservoir ν.

The interaction between the system and its environment is written as

∑=
νκ

κ κ
νV S R , (6)

where the sum runs over all the possible interaction terms and κS and κ
νR denote operators acting on theHilbert

space of the system and the reservoir ν, respectively.
The total particle number operator, = + ∑ν νN N NS , is assumed to commutewith the totalHamiltonian

(1), i.e. =N H[ , ] 0, so that the total number of particles is conserved in the full system.

3. Counting statistics of energy andmatter currents

Atfinite times, the statistical properties of the energy andmatter currents are completely characterized by the
generating function (GF)

ξ λ = ∑ν ν
ξ Δϵ λ Δ− +ν ν ν ν ν( ) ( )G t, , e , (7)n

t

the average 〈 〉· t being takenwith respect to the probability distribution Δϵ Δν νp n t( , , )of observing an amount
of energy Δϵν and particles Δ νn flowing out of reservoir ν between time 0 and time t.

The counting statistics formalism provides a general framework to calculate theGF (7) in open quantum
systems.One introduces themodifiedHamiltonian [22]

ξ λ = ∑ ∑ν ν
ξ λ ξ λ− + +

ν ν ν ν ν ν ν ν ν ν( ) ( ) ( )H t H t, , e ( )e , (8)H N H Ni
2

i
2

and themodified densitymatrix which satisfies the dynamical equation

ρ ξ λ ξ λ ρ ξ λ ρ ξ λ ξ λ∂ = − − −ν ν ν ν ν ν ν ν ν νt H t t t H ti ( , , ) ( , , ) ( , , ) ( , , ) ( , , ). (9)t

The currentGF can then bewritten as the trace of themodified densitymatrix,

ξ λ ρ ξ λ=ν ν ν ν{ }G t t( , , ) Tr (i , i , ) .

We nowproceed bymaking the standard assumptions leading to a stochasticmaster equation for the
diagonal elements in the Floquet basis of the reduced densitymatrix of the system

ρ ξ λ ρ ξ λ≡ν ν ν ν{ }( ) ( )t t, , Tr , , , (10)S R
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the trace Tr { · }R being taken over the reservoirs degrees of freedom.A similar approach has recently been used
in order to study the thermodynamics of rapidly driven quantum systems connected to a single heat
reservoir [16, 18].

Thewhole system is assumed to be initially in the factorized state

∏ρ ξ λ ρ ρ= ⨂ν ν
ν

ν( ), 0 (0) , (11)S
eq

where ρ (0)S denotes the initial reduced densitymatrix of the system and the ρν
eq are defined in (5).We further

make the following assumptions [1, 16, 30–35]:

(i) The environment is composed of reservoirs which are weakly coupled to the quantum system and large
enough to remain unaffected by the quantum system. Their correlation time τC is then assumed to bemuch
shorter than the typical relaxation time scale of the system τR.

(ii) The free oscillations at the driving frequency, ω, and at the Bohr frequencies of the Floquet basis,
ω ϵ ϵ= −′ ′ss s s , aremuch faster than the relaxation process induced by the reservoirs over time scale τR.We
note that since quasi-energies are restricted to the first Brillouin zone, ϵ ϵ ω− ⩽′s s , a fast driving frequency
is necessary though not sufficient in order to have a sparse Floquet spectrum.We further note that the
absence of degeneracies in the energies of the undriven systemdoes not necessarily imply the absence of
degeneracies in the Floquet spectrum. A careful analysis of the Floquet spectrum is thus necessary in order
to check the validity of the present assumption.We refer the reader to [16, 32] for amore detailed
discussion on this account.

Under these assumptions, one can take the Born–Markov approximation and apply the rotatingwave
approximation (RWA) [33, 35] by averaging the systemdynamics over a time scale Δt which is intermediate
between

τ Δ τ≪ ≪t . (12)C R

As a result of this procedure, the dynamics of the populations and coherences in the Floquet basis are decouple.
TheGF of the currents is then completely determined by the diagonal elements of the system reduced density
matrix

∑ξ λ ρ ξ λ=ν ν ν ν( ) ( )G t t, , i , i , , (13)
s

ss

where ρ ξ λ ρ ξ λ= 〈 ∣ ∣ ′〉ν ν ν ν′ t s t s( , , ) ( , , )ss S .
Wefirst give themodified stochasticmaster equation that rule the evolution of populations

ξ λ ρ ξ λ≡ν ν ν νg t t( , , ) (i , i , )s ss . In the following, functions defined on the set of quasi-energy states →s ff: s are
arranged into vectors with components = ff[ ]s s . For brevity, the sumof their components arewritten as

≡ ∑ =f f 1 f· ,s s where ≡1 (1, 1, ..., 1) and · denotes amatrix product.
With these notations, populations in the Floquet basis follow the set of dynamical equations

Γξ λ ξ λ ξ λ=ν ν ν ν ν νt tg g˙ ( , , ) ( , ) · ( , , ), (14)

where thematrix elements Γ ξ λν ν( , ) containing the counting parameters can bewritten as

∑ ∑Γ ξ λ Γ δ Γ= −ν ν
ν

ν ξ ϵ ϵ ω λ ν
′

′
− − + − −

′ ′ν ν′ ′( ) ( ) ( ), e e . (15)
ss

l

ss
l l n n

ss

s

ss
l

, ˜

˜
s s s s⎡⎣ ⎤⎦

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

The transition rates appearing in (15) are given by

∑Γ γ α ϵ ϵ ω= − +ν

κκ
κκ κ κ

ν
′

′
′ ′ ′ ′( )l . (16)ss

l
ss

l
s s

In this last expression, the amplitudes

∑γ = ′ ′κκ κ κ′ ′ + + ′s S s s S s (17)ss
l

k k

k k l k l k

1 2

1 1 2 2

∫ ∫= ′ ′ω
κ

ω
κ

−
′

t

T
s S s

t

T
s S s

d
e

d
e (18)

T
lt

t t

T
lt

t t
0

i

0

i
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

characterize the time scale of the corresponding transitions and depend on the number of quanta l transferred
from the driving protocol to the reservoirs. An important feature of these amplitudes is that they do not
necessarily vanish for = ′s s leading to so-called pseudo-transitions between differentmodes of the same Floquet
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state [16]. These pseudo-transitions directly contribute to the statistics of the currents which ismanifest by the
presence of terms of the form ξ ωνe l along the diagonal of the transition ratematrix (15).

Furthermore, relation (18) emphasizes the fact that the allowed number of quanta exchangedwith the
mechanical driving during stochastic transitions is determined by the spectral properties of thematrix elements
〈 ∣ ∣ ′〉κs S st t .

The reservoir correlation functions, on the other hand, are given by

∫α τ τ ρ=κκ
ν τ

ν κ
ν

κ
ν

ν′
−∞

∞
′{ }x R R( ) d e Tr ( ) , (19)xi

with ρν denoting the grand canonical equilibriumdensitymatrix (5) in reservoir ν and the trace νTr { · }being
taken over itsHilbert space. These equilibrium correlation functions encapsulate the thermodynamic properties
of the reservoir and satisfy the Kubo–Martin–Schwinger (KMS) condition

α α= −κκ
ν

κ κ
ν β μ Δ

′ ′
−ν ν κ

ν( )x x( ) ( )e , (20)x n

where Δ κ
νn denotes the particle number change in reservoir ν induced by the operator κ

νR , that is, assuming that
δ Δ〈 ∣ ∣ ′〉 ∝ − −κ

ν
κ
ν

′r R r n n n( )r r .
The coherences in the Floquet basis, ρ ξ λν ν′ t( , , )ss with ≠ ′s s , are also shown to follow the dynamics

ρ ξ λ Υ ξ Θ ρ ξ λ= − −ν ν ν ν ν′ ′ ′ ′( ) ( ( ) ) ( )t t˙ , , i , , , (21)ss ss ss ss

with damping rates given by

∑ ∑

∑∑

Υ ξ α ω

γ α ϵ ϵ ω γ α ϵ ϵ ω

= − ′ ′

+ − − + − −

ν
κκ

κ κ κ κ
ν ξ ω

κκ
κκ κκ

ν
κκ κκ

ν

′
′

+ + ′ ′

′
′ ′ ′ ′ ′ ′

ν

( )

( )

( ) ( )

s S s s S s l

l l

( )e

1

2
(22)

ss

l k k

k k l k l k
l

ls
ss

l
s s s s

l
s s

, ,

i

˜
˜ ˜ ˜ ˜

1 2

1 1 2 2

and frequencies by

∫∑∑Θ ϵ ϵ
π

γ
α

ϵ ϵ ω
γ

α

ϵ ϵ ω

= − +

×
− − −

−
− − −

κκ

κκ
κκ
ν

κκ
κκ
ν

′ ′
′ −∞

∞

′
′

′ ′
′

′

( ) ( )

x

x

l x

x

l x

1

2
p.v. d

, (23)

ss s s

ls

ss
l

s s
s s

l

s s

˜

˜
˜

˜
˜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where p.v. denotes theCauchy principal value.
The coherences thus evolve independently of each other and undergo exponentially damped oscillations.

Quite remarkably the damping rates (22) depend on the energy counting fields ξν contrary to the autonomous
situation.

The amount of energy andmatter exchanged between the system and reservoirs during amicroscopic
transition is apparent in the expression of themodified rates (15). The different transitions between states s and
s′ are distinguished by their indices ν and l. Such transitions involve an energy and particle exchange between the
system and reservoir ν respectively given by ϵ ϵ ω− −′ ls s and − ′n ns s .

The summation over integermultiples of the driving frequencyω in the ratematrix elements (15) is
characteristic of the presence of the external periodic force. Aswewill later see, the non conservative
contributions ωl to the energy flow are identified as themechanical work dissipated into the reservoirs at steady-
state. The statistics of themechanical work is then obtained in the long time limit by only counting these terms.

At this point, we note that the usual stochasticmaster equation in the Floquet basis [1, 16, 30–32] is simply

obtained by setting the counting fields to zero in equations (14) and (21), i.e. ρ ρ ξ λ= ν ν ξ λ′ ′ = =ν ν
t t( ) ( , , )ss ss 0

.

Such equation is the analog of the stochasticmaster equation derived inwithin the Born–Markov and secular
approximations for autonomous systems. Themain difference in the driven case is the appearance of quasi-
energies which replace the system energies of the autonomous case, and the appearance of integermultiples of
the driving frequency in the amounts of energy exchanged between the system and the reservoirs. In the absence
of external driving, the quasi-energies ϵs become the actual energies of the system and the summation over l
disappears, leading to the usualmaster equation for autonomous open systems.

An essential task in ST is the identification of themicroscopic processes related through time reversal. Such
processes involve opposite amounts of energy and particle exchanges with the environment as well as inverted
initial and final states. From the above discussion, these pairs of processes have transition rates given by Γν

′ss
l and

Γν
′
−

s s
l .

By virtue of the symmetry relation γ γ=κκ κ κ′ ′ ′ ′
−

ss
l

s s
l andKMS condition (20), these pairs of transition rates

satisfy the LDB condition

5
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Γ
Γ

β ϵ ϵ ω μ= − − − − −
ν

ν ν ν
′

′
− ′ ′( )l n nln ( ) , (24)ss
l

s s
l s s s s

where the right-hand side is the entropyflowing from reservoir ν during the transition.
The presence of ωl terms in the energetics of (24) shows that themechanical driving can enhance or decrease

the statistical frequency of particular transitions. For example, by providing an extra amount of energy through
the exchange of quanta at the driving frequency, themechanical driving effectively lowers the energy cost of a
particular transition thus increasing its probability rate. This observationwill prove useful in the study of the
thermodynamic engine considered in section 5.

Finally, we note that the quantity μ− −ν ′n n( )s s is the chemical work performed by the system to bring
− ′n ns s particles into reservoir ν against the chemical potential μν.
The fundamental relation (24) plays a key role inwriting the entropy production as the sumof the system

entropy change and the entropy flow from the environment [11, 12, 38]. In addition, it also leads to a steady-
state FT for themechanical work and the currents out of the reservoirs as we show in section 4.2.

For systemsmaintained in a non-equilibrium steady-state by boundary constraints, such as temperature and
chemical potential differences between the reservoirs, the cumulant generating function (CGF)

 ξ λ ξ λ≡ν ν ν ν
→∞

( ) ( )
t

G t, lim
1

ln , , (25)
t

is ameasure of the currentfluctuations at steady-state. In particular, all themoments and correlations between
the currents can be obtained by successive derivation of theCGFwith respect to its counting parameters ξν and
λν at zero values.

A related object is the LDF of the currents

 Δϵ Δ≡ −ν
ϵ

ν ν ν
→∞

( ) ( )j j
t

p n t, lim
1

ln , , , (26)n

t

where the currents are defined as

Δϵ Δ
= =ν

ϵ ν
ν

νj
t

j
n

t
and . (27)n

TheCGF (25) and LDF (26) are related through the Legendre–Fenchel transformation as stated by theGärtner–
Ellis theorem [39].

Using the formal solution of equation (14), the currentGF can bewritten as

ξ λ = Γ
ν ν

ξ λν ν( ) ( )G t 1 p, , · e · , (28)t,
0

where p0 denotes the initial occupation probability of the system. This also shows that theCGF (25) is given by
the dominant eigenvalue of the ratematrix Γ ξ λν ν( , ) [22]. Besides, the average values of the energy andmatter
currents, obtained as the first derivatives of the CGF, are then given by

 ∑∑ ϵ ϵ ω Γ= −∂ = − −ν
ϵ

ξ
ν

ν

′
′ ′ ′ν ( )J l p(0, 0) (29)

l ss

s s ss
l

s
st

 ∑∑ Γ= −∂ = −ν λ
ν

ν

′
′ ′ ′νJ n n p(0, 0) ( ) , (30)n

l ss

s s ss
l

s
st

in terms of the steady-state probabilities = →∞ tp plim ( )st
t .

Finally, let usmention some interesting differences between the fast driving limit considered here and the
slow driving limit. In this latter case, populations of the densitymatrix are known to satisfy a stochasticmaster
equation in the time dependent energy eigenbasis of the system. The presence of the external field is then
manifest by the time dependent system energies appearing in the tunnelling rates. These rates are known to
satisfy a LDB condition, which depends on the time dependent parameters of the system. In the rapidly driven
systems considered here, populations and coherences of the densitymatrix are dynamically decoupled in the
Floquet basis and the stochasticmaster equation is now time independent in this basis. In this regime, the
external driving results in the presence of non conservative terms in the LDB,which are expressed under the
formof integermultiples of the driving frequency.

4. Stochastic thermodynamics

Thewhole framework of ST relies on the identification of the first and second laws at themicroscopic level. The
first law requires the discrimination between themechanical and thermal contributions to the energy balance of
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the considered physical system. Themicroscopic version of the second law is expressed as a transient FT for the
trajectory entropy production.

In the following subsectionwe identify themechanical work by using initial and finalmeasurements of the
system energy. Its statistics is derived and particular emphasis is put on the steady-state fluctuations of
mechanical power.Within this limit, the initial andfinalmeasurements of energy are shown to be irrelevant and
themechanical power can then be interpreted as the transfer rate of quanta to the system at the driving
frequency.

The second law and FTs are discussed in section 4.2. Since populations and coherences in the Floquet basis
are decoupled in the regime considered here, the trajectory entropy production of the stochastic process ruled by
(14) and (15) satisfies a transient FT [11, 13, 29, 40]. Quite remarkably, this is true despite the quantum
coherences in the Floquet basis introduced by the initialmeasurement of the system energy.We further consider
the long time limit and formally establish a steady-state FT for the currents andmechanical power [10].

4.1. Energy balance andwork statistics
In theweak coupling limit, themechanical work performed by the external driving is given by the changes in
system and reservoir energies between initial and final times, respectively chosen as time 0 and time t.Measuring
the energy change in the system requires projectivemeasurements of its initial and final energies. The necessity
to project the system at initial andfinal times in order to perform the energetic analysis stems from the fact that
Floquet states are not eigenstates of the time dependent systemHamiltonian H t( )S .

In the following, we denote by ∣ 〉et the instantaneous eigenstate of the systemHamiltonian H t( )s with
eigenvalue et, that is ∣ 〉 = ∣ 〉H t e e e( )S t t t . The system is assumed to undergo idealmeasurements of its energy at
initial and final times yielding the values e0 and et respectively. The reduced densitymatrix of the system is thus
given by ρ ≡ ∣ 〉〈 ∣e e e(0; )S 0 0 0 in case the initialmeasurement of the system energy yields e0, while this happens
with probability ρ= 〈 ∣ ∣ 〉p e e(0)e S0 00

.

Themechanical work is then given by the changes in the system and environment energies, i.e.
Δ Δϵ= − ∑ν νw eS , with Δ = −e e eS t 0 and Δϵν denoting the change of energy in reservoir ν between times 0

and t. By following the general approach exposed in [22], we obtain theGF of thework as

α = α−G t( , ) e (31)w
w

t

∑ ∑ ρ α= ′αΔ−

′
′ ( )e s t e p s ee i , ; . (32)

e e

e

ss

t s s e t0

t

S

0

0

The average in the first line is takenwith respect to thework distribution p w t( , )of observing an amount of
workw performed by the external driving from time 0 to t. On the second line, themodified densitymatrix
elements ρ α′ t e( , ; )s s 0 are obtained from those of themodified ratematrix of the currents introduced in the

previous section as ρ α ρ ξ λ= ν ν ξ α λ′ ′ =− =ν ν
t e t( , ; ) ( , , )s s s s0

, 0
. Note that the initial condition used in order to

solve the dynamical equations (14) and (21) is now to be taken as

ρ ρ= ′′ ( ) ( )e s e s0; 0; (33)s s S0 0

due to the initialmeasurement of the system energy.
We further note that this initialmeasurement of the system energy also affects the current statistics atfinite

times. Indeed, if an initialmeasurement of the system energy is performed, onemust consider the initial
condition ξ λ ρ= ∑ν νg e( , , 0) (0; )s e ss 00

when solving the dynamical equation (14).However, though

coherences in the Floquet basis of the systemdensitymatrix ρ (0)S may affect the initial weight of the
populations after themeasurement as taken place, theGF (7) is independent of the subsequent evolution of
coherences in the Floquet basis induced by thismeasurement.

To the contrary, themechanical workGF (32) does depend on the coherences in the Floquet basis induced
by the initialmeasurement. This ismainly due to the fact that the operator which is counted in order to perform
thework statistics, + ∑ν νH t H( )S , does not necessarily commutewith the initial densitymatrix of the system
ρ (0)S before thefirstmeasurement has been performed [22].

Nevertheless, the steady-state CGFof themechanical work

 α α=
→∞ t

G t( ) lim
1

ln ( , ) (34)w
t

w

only depends on the populations of themodified densitymatrix ρ α t e( , ; )ss 0 since coherences vanish at steady-
state, i.e. ρ =→∞ ′ tlim ( ) 0t ss for ≠ ′s s (see the appendix for details). Provided the energy in the system remains
finite in the long time limit, themechanical workCGF (34) is then obtained as the dominant eigenvalue of the
ratematrix
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∑ ∑Γ α Γ δ Γ= −
ν

ν α ω

ν

ν
′ ′ ′ ′[ ( )] e , (35)ss

l

ss
l l

ss

l s

ss
l

, , ,˜

˜

obtained bymaking the substitutions ξ α→ν and λ → 0 in the ratematrix (15) and noting that terms of the

form α ϵ ϵ−′e ( )s s do not contribute to its eigenvalue.
At the trajectory level, we see that the stochastic variable associated to the mechanical power ẇ is given

by the transfer rate of quanta from the external driving to the system multiplied by the driving frequency,
i.e. ωΔ∼w l t˙ for → ∞t and where Δl denotes the number of quanta transfered from the driving during
a given realization of the dynamics. At steady-state, this mechanical power is entirely dissipated into the
reservoirs.

The above discussion also shows that themechanical powerCGF (34) can be obtained from the current CGF
(42) by the following substitution

 α α=( ) ( , 0). (36)w

This relation emphasizes the fact that, at steady state, themechanical power is equal to the sumof incoming
energy currents from the reservoirs, that is, = ∑ν ν

ϵw j˙ .
We are now in position towrite down thefirst law of thermodynamics at steady-state, relating the heat

currents to themechanical and chemical powers. By introducing the heat flows μ= −ν ν
ϵ

ν νq j j˙ n in terms of the

currents (27), as well as the chemical power μ= ∑ν ν νw j˙c
n, thefirst law of thermodynamics reads

∑ + + =
ν

νq w w˙ ˙ ˙ 0 (37)c

at steady-state, that is, for → ∞t .
We note that the average rate ofmechanical work is obtained from (34) as

 ∑∑ω Γ= −∂ =α
ν

ν

′
′ ′W l p˙ (0) , (38)w

l ss

ss
l

s
st

which is the steady-state current of quantawith frequencyω injected into the system. A direct inspection of this
relations together with (29) and (30) shows that = ∑ν ν

ϵW J˙ . This relation can also be used in order towrite the
first law at the average level, in consistencywith (37),

∑ + + =
ν

νQ W W˙ ˙ ˙ 0, (39)c

where the average heatflowout of reservoir ν is given by μ= −ν ν ν νQ J J˙ , and the rate of chemical work provided

to the systemby particles flowing out of the reservoirs by μ= ∑ν ν νW J˙
c .

4.2. Entropy balance andfluctuation theorem
The populations of the system in the Floquet basis satisfy a closed stochasticmaster equation [1, 16, 30–32] as
can be seen by setting the counting fields to zero in equations (14) and (16). Since transition rates satisfy the LDB
(24), the trajectory entropy production associated to this stochastic process can be decomposed into [38, 40]

Δ Δ Δ= −s s s, (40)i e

where Δs denotes the change in the system entropy and Δ β Δ= ∑ν ν νs qe is the entropy flow from the
environment. The probability distribution of the entropy production in a system ruled by a stochasticmaster
equation is known to satisfy a fundamental FT at finite times [11, 13, 29, 40]. The fact that this result applies in
our case thus simply follows from the dynamical decoupling between populations and coherences in the Floquet
basis when the driving frequency is sufficiently high.

Let us however emphasize a striking difference between systems driven by rapidly oscillating fields as
considered here and those driven by a slow and/or non-periodic external driving λ t( ). In the latter case,
definiting the trajectory entropy production requires the introduction of backward trajectories which are
assumed to be ruled by the backward dynamics defined along a time reversed external driving λ τ − t( ),
where τ denotes the time length of the considered trajectory. In the present case however, such inversion of
the external protocol is not needed since the generator of the stochastic process is effectively time
independent. This is a direct consequence of the time averaging overmany driving periods (RWA) and the
large time scale separation between the fast driving oscillations and the slower relaxation process induced by
the reservoirs.

At steady-state, the entropy change in the systembecomes negligible as compared to the entropy flow from
the environment. As a result, the rate of entropy production becomes equal to the rate of entropy flow from the
environment in this limit. The FT for the entropy production then leads to a steady-state FT for the currents,
independently of the initial condition in the system.
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Such steady-state FT for the currents is nowproven by establishing afluctuation symmetry for the current
CGF (25). As afirst step, we note that the ratematrix (16) satisfies

Γ Γξ λ β ξ β μ λ= − − −ν ν ν ν ν ν ν
⊤( ) ( ), , , (41)

by virtue of the LDB condition (24) andwhere ⊤ denotes amatrix transposition. Since theCGF is obtained as the
dominant eigenvalue of themodified ratematrix, this last relation leads in turn to the aforementioned
fluctuation symmetry

 ξ λ β ξ β μ λ= − − −ν ν ν ν ν ν ν( ) ( ), , . (42)

This FT can be equivalently restated in terms of the LDFof the currents as [22]

  ∑β μ− − − = −ν
ϵ

ν ν
ϵ

ν
ν

ν ν
ϵ

ν ν( ) ( ) ( )j j j j j j, , , (43)n n n

where the stochastic variables ν
ϵj and νj

n stand for the steady-state currents of energy andmatter, respectively,
flowing out of reservoir ν.

Alternatively, the symmetry relation (42) leads to a FT for the currents and themechanical powermaking
explicit reference to the thermodynamic affinities applied to the system. By using the fact that the rate of power is
equal to the sumof energy currents incoming from the reservoirs at steady-state, we note that a CGF of thework
and currents can be obtained bymaking the following substitution in the counting fields

α χ η α χ η≡ − +ν ν ν ν χ η= =
( )G̃( , , ) , . (44)

01 1

In this last relation, the counting field α accounts for themechanical power fluctuations. The symmetry relation
(42) then leads to the steady-state FT

α χ η β α χ η≡ − − −ν ν ν
ϵ

ν ν ν( ) ( )G G A A˜ , , ˜ , , , (45)n
1

for themechanical work and currentfluctuations, and in terms of the thermodynamic forces driving the
currents

β β β μ β μ= − = −ν
ϵ

ν ν ν νA Aand . (46)n
1 1 1

Again, this FT is equivalent to

  ∑− − − − = + +ν
ϵ

ν ν
ϵ

ν
ν

ν
ϵ

ν
ϵ

ν ν( ) ( ) ( )w j j w j j w A j A j˙ , , ˙ , , ˙ (47)n n n n

in terms of the LDF of themechanical power and currents

 ∑α ξ λ α ξ λ= + + −ν
ϵ

ν
α ξ λ ν

ν
ϵ

ν ν ν ν ν
=ν ν

( ) ( ) ( )w j j w j j G˙ , , sup ˙ ˜ , , . (48)n
N

n

, , 2

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

This FT is the steady-state version of the finite-time FT for thework and currents obtained in [10]. The presence
of a FT for the currentfluctuations is known to have important consequences on the response properties of the
system [41]. In the present case, the FT (47) can be used to obtain non-trivial relations between themechanical
response of a physical system and its electrical and/or thermal transport properties.

In absence ofmechanical driving, themechanical power vanishes, =ẇ 0, and one recovers the usual steady-
state FT for the currents [42, 43]. On the other hand, a steady-state FT for the rate ofmechanical work is
recoveredwhen considering a single heat reservoir [17, 19].

Let us furthermention the particular case of homogeneous temperatures, β β=ν , the FT (47) then relates
thefluctuations ofmechanical power performed by the external driving to the chemical power performed by the
particle currents, ≡ ∑ν ν νw A j˙c

n n.
At the average level, the entropy production can be decomposed into

= − ⩾S S S˙ ˙ ˙ 0, (49)i e

the positivity resulting from the FT for the entropy production. The average rate of system entropy change Ṡ is
here given by the time derivative of the Shannon entropy in the Floquet basis, = ∑S p plns s s . The average rates
of entropy production and entropyflow are then given by [11–13]

∑∑Γ
Γ

Γ
=

ν

ν
ν

ν
′

′ ′
′ ′

′
−

S p
p

p
˙ ln (50)i

ss l

ss
l

s
ss

l
s

s s
l

s
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and

∑∑Γ
Γ

Γ
= −

ν

ν
ν

ν
′

′ ′
′

′
−

S p˙ ln (51)e

ss l

ss
l

s
ss

l

s s
l

respectively.
At this point, we emphasize the importance of distinguishing betweenmicroscopic processes involving

different numbers of quanta exchangedwith the external driving, especially when assessing thermodynamic
properties. Indeed, a coarse-graining of the dynamics over the number of quanta exchangedwith the external
driving leads to a systematic underestimation of the entropy production [12]. By using the log-sum inequality,
one observes that

∑∑Γ
Γ
Γ

= ⩽
ν

ν
ν

ν
′

′ ′
′ ′

′
S p

p

p
S˙ ln ˙ , (52)i

ss

ss s
ss s

s s s
i

cg

where the coarse-grained entropy production Ṡi
cg
is written in terms of the coarse-grained transition rates

Γ Γ= ∑ν ν
′ ′ss l ss

l.We note that this coarse-graining can be understood as a coarse-graining of the dynamics in an
extended Schnakenberg networkwhosemicro-states correspond to individual Fouriermodes of the Floquet
states while themacro-states correspond to the Floquet states themselves [12, 44].

At steady-state, the average rate of entropy change in the system vanishes, i.e. =Ṡ 0, so that

∑ ∑β β= − = − = + +
ν

ν ν
ν

ν
ϵ

ν
ϵ

ν ν( )S S Q W A J A J˙ ˙ ˙ ˙ , (53)i e
n n

1

wherewe used the LDB condition (24) and the conservation laws for the currents and power at steady-state to
obtain the last equality. This last expression shows that the average irreversible entropy production can be
written as the sumof the powers dissipated by the currents against the thermodynamic affinities (46) and the
dissipatedmechanical power. This picture proves useful at the time of characterizing the efficiency of
thermodynamic engines as illustrated on the example exposed in the next section.

This finalizes the stochastic thermodynamic analysis of themodelHamiltonian introduced in section 2. The
key points of the analysis are the following.

Though the current statistics is shown to be independent of quantum coherences in the Floquet basis, this is
not the case for themechanical work statistics atfinite times. This is generally understood in the context of
counting statistics by the fact that the quantumoperator which is used to countmechanical work,

+ ∑ν νH t H( )S , does not commute in general with the densitymatrix of the systemwhen the counting
experiment begins.We note that this is in contrast to the slow driving situation, inwhich the environment
naturally projects the systemonto instantaneous eigenstates of the systemHamiltonian.

Nevertheless, the steady-state fluctuations ofmechanical power are shown to be independent of quantum
coherences in the Floquet basis.Within this limit, the contribution of the initial and finalmeasurements
becomes negligible, and the rate of dissipatedmechanical work is equal to the rate of injection of quanta from the
external driving to the system.

Despite the presence of coherences at finite times, we have shown that a thermodynamically consistent
definition of entropy production can be introducedwhich only depends on the populations and their dynamics.
Aswe explained, this peculiar property ismainly due to the dynamical decoupling between populations and
coherences resulting from the use of the RWA.

5.Model system

Wenowmake use of the analysis developed above in the study of a thermodynamic engine based on an ac-driven
QDcoupled to twoparticle reservoirs [1, 4, 45]. A schematic picture of the system is given infigure 1. The ac-
drivenQD is convenientlymodeled by the time-dependentHamiltonian

ω μ= ↑ ↑ − ↓ ↓ + ↑ ↓ + ↓ ↑ω ω−( )H t
F

( )
1

2
( )

2
e e (54)S

t t
0

i i

in terms of the splitting ω0 between the two single particle states of the system in absence of driving, ∣↑〉 and ∣↓〉,
the coupling strength μF to the laser field and its frequencyω.

The Floquet states of this system are readily obtained as

Ω
Ω δ Ω δ± = ± ± ↑ + ∓ ↓ω( )1

2
e (55)ti

in terms of the detuning parameter δ ω ω= −0 and the Rabi frequency Ω δ μ= + F( )2 2 . Their
corresponding quasi-energies are given by
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ϵ ω Ω= ±
±

2
. (56)

The particle number in theQD fluctuates as a consequence of its interactionwith the particle reservoirs. In
the present case, the system is allowed to be in either the empty state ∣ 〉0 or the singly occupied states ∣+〉 and ∣−〉.

The interaction between theQD and the particle reservoirs is thenmodelled by the interactionHamiltonian

∑ ∑ ∑ σ σ= +
σ ν

ν
σ

ν ν
=↑ ↓ =

( )V T c c0 0 , (57)
k

k k k

, 1,2

†

where νc k ( νc k
† ) denotes the annihilation (creation) operator of a single particle statewithwave number k and

energy ϵk in reservoir ν, and ν
σT k is a parameter characterizing the strength of the coupling to the same reservoir.

The reservoirs are themselves assumed to be composed of a collection of single particle states withHamiltonian
given by ϵ= ∑ν ν νH c ck k k k

† .
The transition rates (16) for thismodel can be evaluated by using themethod described in section 3 yielding

Γ Ω δ
Ω

γ ϵ ϵ ϵ ϵ= ± − − −ν
ν ν±
↑

± ±( )f
2

( ) 1 ( ) (58)0
,0

0 0

Γ Ω δ
Ω

γ ϵ ϵ ϵ ϵ= ± − −ν
ν ν±
↑

± ±f
2

( ) ( ) (59)0
,0

0 0

Γ Ω δ
Ω

γ ϵ ϵ ω ϵ ϵ ω= ∓ − − − − −ν
ν ν±

− ↓
± ±( )f

2
( ) 1 ( ) (60)0

, 1
0 0

Γ Ω δ
Ω

γ ϵ ϵ ω ϵ ϵ ω= ∓ − − − −ν
ν ν±
↓

± ±f
2

( ) ( ), (61)0
,1

0 0

where the energy dependent tunneling rates are given by γ π δ ϵ≡ ∑ ∣ ∣ −ν
σ

ν
σx T x( ) 2 ( )k k k

2 . The Fermi–Dirac

distributions β μ= − +ν ν
−f x x( ) (exp ( ) 1) 1 characterize the statistical occupation of single particle states in

reservoir ν. As expected, these transition rates satisfy the LDB condition (24)

Γ
Γ

β ϵ ϵ μ
Γ
Γ

β ϵ ϵ ω μ= − − = − − −
ν

ν ν ν

ν

ν ν ν
±

±
±

±

±
− ±ln ( ), ln ( ). (62)0

,0

0
,0 0

0
,1

0
, 1 0

We further note that the transitions with l=1 involve the exchange of smaller amounts of energywith the
reservoirs as compared to thosewith l=0. This remarkwill have its importance whenwe later identify the best
working regime of a thermodynamic engine based on this setup.

As a result of the non-equilibrium constraints applied to the system, the chemical bias Δμ μ μ= −1 2 and the
periodicmechanical drivingwith frequencyω, the system is subject to steadyfluxes of energy andmatter. These
lead to a positive rate of entropy production (53) here given by

β= + ⩾( )S W W˙ ˙ ˙ 0. (63)i c

In this last equation, Ẇ denotes the averagemechanical power provided by the ac-driving, while the quantity
Δμ=W J˙

c
n

1 is the rate of chemical work provided by the current J1
n in order to bring particles from reservoir 1 to

reservoir 2.
The statistical properties of the dissipating fluxes ẇ and Δμ=w j˙c

n
1
are fully captured by their CGF or LDF as

discussed in section 3. Bothwere evaluated numerically and shown to satisfy the steady-state FTs (45) and (47).
For example, the joined LDF fo themechanical and chemical powers  w w( ˙ , ˙ )c was shown to satisfy the steady-
state FT

Figure 1. Schematic picture of the ac-drivenQD connected to two particle reservoirs. The particle transfer processes with the
reservoirs can be separated into two categories: those involving the absorption/emission of exactly one quantumof energyω by the
driving, and those that do not.
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  β− − − = +( ) ( ) ( )w w w w w w˙ , ˙ ˙ , ˙ ˙ ˙ , (64)c c c

in consistencywith (43). The right-hand side of this last relation is the fluctuating rate of entropy production of
the system (cf equation (63)). Infigure 2we illustrate themarginal LDF of the chemical power,  w( ˙ )c , for
different values of the bias applied to the circuit.

We now consider a thermodynamic engine based on this setupwhich converts the inputmechanical power
=w w˙ ˙in performed by the external ac-driving into an output chemical power Δμ= −w j˙ n

out 1
provided to the

particle current which nowworks against the chemical bias Δμ > 0. The efficiency of suchmachine is defined as
the ratio of its average output power divided by the average input power

η = = − ⩽
W

W

W

W

˙

˙

˙

˙
1, (65)cout

in

the last inequality resulting from the second law of thermodynamics.
The upper bound in (65) is only reached for vanishingly small output and input powers, i.e. close to

equilibrium. This hasmotivated the investigation of themaximumoutput power regime, with regard to
practical implementations [46–50]. Two aspectsmust be considered to attain this regime.

One is the identification of the properties of the external system towhich our engine will provide the highest
output power. In the present case, the external system consists of the circuit formed by the reservoirs themselves,
and its adjustable parameter is the output bias Δμ.

The design of the systemperforming the conversion and its connection to the environment constitute other
important aspects of power optimization.Here, theQD itself is the vector of the conversion and its spectrum and
interaction parameters with the driving and reservoirs provide the adjustable parameters in order to reach
maximumoutput power. In particular, we note that an asymmetry in the coupling between the system and
reservoirs 1 and 2 is necessary for the conversion frommechanical to chemical work to be possible. An extreme
and ideal situation is the one forwhich the input and output powers are tightly coupled, i.e. ∝w w˙ ˙out in, and are
thusmaximally correlated.

In the following, we consider our engine towork in the tight coupling regimewith the only non-vanishing
tunnelling amplitudes being γ ϵ ϵ−±( )1 0 and γ ϵ ϵ ω− −±( )2 0 . In this situation, themechanical driving provides
one quantumof energy equal toω to charge the system from reservoir 2, while the system can be discharged into
reservoir 1without any energy supply from the environment. This favors the net pumping of particles from
reservoir 2 to reservoir 1 against the bias Δμ > 0.

In this regime, the output and input powers are proportional to each other so that the engine efficiency can
be simplywritten as

η Δμ
ω

= . (66)

Within the regime ofmaximal output power,most studies have focused on the average output power and the
corresponding efficiency of the considered engine.Here, we use the counting statistics formalism exposed in
section 3 above in order to investigate the fluctuations of output power.

The average andmean root square of the output power, respectively given by

Δμ δ Δμ= − = −( )W J W j J˙ and ˙ (67)n n n
out 1 out 1 1

2

Figure 2. Illustration of the output power LDF for different values of the bias Δμ applied to the circuit. Other parameters where
chosen as β = 1, μ μ μ≡ + =( ) 2 11 2 , μ =F 1.4, ω = 0.70 , ω = 1.2, γ γ≡ =ν

σ 1.3.Markers represent values obtained
numerically, continuous lines being guides for the eye.
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are illustrated infigure 3 as a function of the efficiency (65). The regimes ofmaximumoutput power are shown
to correspond to high, although not necessarilymaximal, power fluctuations. Another striking feature is the
relative size of powerfluctuations which are one order ofmagnitude larger than the average power in the
illustrated regime.

Infigure 4, parameters of the ac-drivenQDand the output bias Δμwere individually adjusted to reach
maximumoutput power for each value of the driving frequencyω, while temperaturewasfixed at β = 1. The
magnitudeof powerfluctuations are seen to remain significantly bigger than the averageup to a certain value of the
driving frequency.Above this value, the situation is reversed and the average and rootmean square output power
increase, respectively, quadratically and linearlywith thedriving frequency. Theoptimize values of the bias Δμ and
thenatural frequency ω0 of theQD increase linearlywith thedriving frequencyω, as shown in the inset of the same
figure. The regimeof large driving frequency can thus be here understood as a low temperature limit inwhich
fluctuations are indeed expected to be reduced.This is confirmedby repeating thismaximizationprocedure for
different values of temperature. Bydoing this, one sees that the value of thedriving frequency ωc at the crossing point,
where the average value of the output power and its variance are equal, increasesmonotonicallywith temperature.

The above observationsmay be summarized as follows. First, thefluctuations of output power in the
quantum engine we consider can be substantial and exceed its average bymore than one order ofmagnitude.
This assertion is in the present case particularly justified in the regime ofmaximumoutput power forwhich the
fluctuations are shown to systematically exceed the average output power up to a certain value of the driving
frequency. Second, the relativemagnitude offluctuationswith respect to the averagemay be lowered by getting
away from equilibrium.

These observations suggest that compromisesmay be necessary in the design of nano-scaled heat engines,
depending on the priority to deliver a high or stable output power. In this sense, engines performbetter far rather
than close to equilibrium.

6. Conclusion andperspectives

Wereported the STanalysis of aweakly coupled openquantumsystemconnected tomultiple reservoirs anddriven
by a fast externalfield. This analysis is of particular interest in the context of the studyof nano-scaled thermodynamic

Figure 3.Average (left panel) and rootmean square (right panel) of the output chemical power = −w w˙ ˙c performed against the bias
Δμ > 0 as a function of the engine efficiency η Δμ ω= and for different values of the driving frequencyω. Parameters are chosen as
β = 1, μ μ μ≡ + =( ) 2 11 2 , μ =F 2, ω = 0.70 , γ ϵ ϵ γ ϵ ϵ ω− = − − =± ±( ) ( ) 1.31 0 2 0 .

Figure 4.Plots of the average and rootmean square of output power in the regime ofmaximumoutput power. Parameters are chosen
as β=1, γ ϵ ϵ γ ϵ ϵ ω− = − − =± ±( ) ( ) 201 0 2 0 . Other parameters are numerically adjusted to reachmaximumoutput power. ωc is
here defined as the frequency value at the crossing point between the average current and its variance. Inset: (solid line) optimized
values of the natural frequency of theQD ω0 as a function of the driving frequencyω, (dashed line) optimized values of the ouput bias
Δμ as a function of the driving frequency.
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engines as illustrated in the examplewe considered in theprevious section. Suchmodels of thermodynamic engines
maybe realized through ac-driven semiconducting circuits [1, 4, 45] or cold atomgases [51–54].

The use of the RWAhas proven useful in order to gain physical insight into the thermodynamic properties of
open quantum systems aswas already the case for the slow driving limit. However, several open issues remain
regarding the thermodynamic properties of driven open quantum systems outside the range of application of
the RWA.

In particular, the characterization of the entropy production in quantum systemswith sustained coherences
and their subsequent thermodynamic analysis constitute challenging problems of non-equilibriumquantum
thermodynamics.

Another issue is the identification of thermodynamic quantities when broadening effects cannot be
neglected.On top of these fundamental difficulties, the expansion to second order in the interaction between
system and reservoirs is void in this case, and onemust appeal to complementarymethods such as the non-
equilibriumGreen’s functions formalism [55].
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Appendix

Wehere prove that themechanical workCGF is independent of quantum coherences in the Floquet basis for
systemswith bounded energy.

Wefirst note that ρ ξ λ →ν ν′ t( , , ) 0ss for → ∞t by virtue of (21). By using this property and expressions
(32) and (34), we rewrite theworkCGF as

 ∑ ∑α ρ α= αΔϵ
→∞

− ( )
t

e s t e p s e( ) lim
1

ln e i , ; . (68)w
t

e e s

t ss e t0

t

S

0

0

The populations ρ α t e(i , ; )ss 0 satisfy amaster equation similar to (14) butwith ratematrix given by (35). A
formal solution of this equation can bewritten as

ρ ρα = Γ α( ) ( )t e ei , ; e · 0; , (69)t
0

( )
0

where the initial condition is chosen as ρ = 〈 ∣ 〉〈 ∣ 〉e s e e s(0; )ss 0 0 0 , ρ (0)S denoting the reduced densitymatrix of
the systembefore the initialmeasurement of the system energy takes place.

We now introduce the eigenvectors αv ( )of the ratematrix Γ α( )with eigenvalues αv ( ) such that
Γ α α α α=v vv( ) · ( ) ( ) ( ). TheCGF can nowbe rewritten as

 ∑ ∑∑α α α ρ= αΔϵ α
→∞

− ( )
t

e s s e v v e( ) lim
1

ln e ( ) ( )e 0; , (70)w
t

e e v ss

t t s s
v t

ss
˜

˜
* ( )

˜˜ 0

t

S

0

where the sumover v runs over all the eigenvectors of Γ α( ).
By assuming the system to have a bounded energy at all times, ΔϵS becomes negligible in front of αv t( ) as

→ ∞t , andwe get that

 ∑∑∑α α α ρ= α
→∞

( )
t

e s s e v v e p( ) lim
1

ln ( ) ( )e 0; (71)w
t

e e v ss

t t s s
v t

ss e
˜

˜
* ( )

˜˜ 0

t0

0

∑∑∑ α α ρ= α
→∞

(
t

v v elim
1

ln ( ) ( )e 0; (72)
t

e v ss

s s
v t

ss
˜

˜
* ( )

˜˜ 0

0

α= v ( ), (73)

where αv ( ) is the dominant eigenvalue of the ratematrix Γ α( ), i.e. α α= αv v( ) max {Re { ( )}}v ( ) .
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