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Abstract

We present the stochastic thermodynamics analysis of an open quantum system weakly coupled to
multiple reservoirs and driven by a rapidly oscillating external field. The analysis is built on a modified
stochastic master equation in the Floquet basis. Transition rates are shown to satisfy the local detailed
balance involving the entropy flowing out of the reservoirs. The first and second law of
thermodynamics are also identified at the trajectory level. Mechanical work is identified by means of
initial and final projections on energy eigenstates of the system. We explicitly show that this two step
measurement becomes unnecessary in the long time limit. A steady-state fluctuation theorem for the
currents and rate of mechanical work is also established. This relation does not require the
introduction of a time reversed external driving which is usually needed when considering systems
subjected to time asymmetric external fields. This is understood as a consequence of the secular
approximation applied in consistency with the large time scale separation between the fast driving
oscillations and the slower relaxation dynamics induced by the environment. Our results are finally
illustrated on a model describing a thermodynamic engine.

1. Introduction

The identification of thermodynamic quantities, such as heat, work and entropy, in open quantum systems
driven by an external field is a central issue in quantum thermodynamics. Such systems are encountered ina
variety of physical situations including the interaction with electromagnetic radiation [ 1], driven tunneling [2],
switching in multi-stable quantum systems [3], transport properties of driven quantum dots (QDs) [4], and
non-equilibrium Bose—Einstein condensation [5].

Up to now, a consistent picture of the thermodynamics of these systems has only been given within specific
limits or regimes. In particular, most studies have been focused on slowly driven and weakly coupled open
systems [6—10]. Within this regime, the system dynamics is well described by a stochastic master equation in the
basis of time dependent energies of the system. Entropy production, heat and work can then be identified at the
single trajectory level, and the thermodynamic analysis of the system performed within the framework of
stochastic thermodynamics (ST) [11-13].

More recently, work has been done on the study of thermodynamic properties of open quantum systems
driven by a fast and periodic external field, whether weakly coupled to a single heat reservoirs [4, 14-19] or
arranged in a specific implementation of a heat engine [20, 21]. In the present paper, we perform the general ST
analysis of an open quantum system weakly coupled to multiple heat or chemical reservoirs, and driven by a fast
and time periodic external force. Considering multiple reservoirs considerably widens the scope of possible
applications such as, for example, the study of externally driven current or thermoelectric converters.

We perform the statistics of the energy and matter currents out of the reservoirs using the counting statistics
formalism (see [22] for a review). Within this formalism, the currents are determined by making initial and final
measurement of the energy and particle number in the reservoirs. In the weakly coupled and fast driving regime,
these statistics is shown to be independent of quantum coherences in the Floquet basis. This directly results from
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the dynamical decoupling between populations and coherences in the Floquet basis in this regime, together with
the fact that measurements of the reservoirs energy and particle number are independent of the system state.

The identification of the mechanical work further requires a double measurement of the initial and final
energies of the system [23-26]. Contrary to the current statistics, the mechanical work statistics depends on the
evolution of coherences in the Floquet basis, which both influence and depend on the outcome of the system
energy measurements. However, we show that the double projection in the system becomes unnecessary at
steady-state for the identification of the rate of mechanical work, i.e. power. In this limit, the mechanical power
statistics is exclusively determined by the diagonal elements of the modified density matrix in the Floquet basis,
independently of quantum coherences. The first law then leads to a balance equation for the currents and the
mechanical power. Furthermore, the steady-state mechanical power is shown to be given by the transfer rate of
quanta, with energy given by the driving frequency (% = 1), from the external driving to the reservoirs.

An important consequence of the dynamical decoupling between populations and coherences in the Floquet
basis is that the trajectory entropy production associated to the stochastic dynamics in the Floquet basis satisfies
atransient FT. The Shannon entropy in the Floquet basis is thus the relevant entropy within this scheme. It is
remarkable that a FT relation for these systems can be derived without need to formally introduce a time
reversed external driving [27-29]. This is a direct consequence of the assumption of large time scale separation
between the fast driving oscillations and the slower relaxation time scale induced by the environment. Within
this limit, a secular approximation over many driving oscillations can be consistently applied, resultingin a
master equation with time-independent rates [1, 16, 30-32].

The connection between entropy production and the heat currents is provided by the local detailed balance
(LDB) satisfied by the transition rates between Floquet states, which is here written in terms of the heat
exchanged between the system and the reservoirs during the corresponding microscopic transition. The heat
exchange includes multiples of the driving frequency which result from the presence of the non conservative
external force due to the driving, and are identified as the dissipated mechanical work. We make use of the LDB
condition in order to write the steady-state entropy production in terms of the currents and mechanical power.
A steady-state FT for these quantities is also established by using the LDB, which is the steady-state version of the
transient FT obtained in [10]. A steady-state FT for the mechanical power is recovered when considering a single
heat reservoir [17, 19].

This paper is organized as follows. In section 2, we first introduce the general Hamiltonian of a periodically
driven open quantum system as well as the Floquet basis of the system and its associated quasi-energies. This
section is mainly meant to fix notations.

In section 3, we perform the counting statistics of the currents of energy and matter through the system by
using the counting statistics formalism. We derive the modified stochastic master equation [22] by using
standard assumptions: weak coupling between system and environment, wide spacing between the quasi-
energies and fast driving as compared to the relaxation dynamics [ 16, 32—35]. This section extends former
results [4, 14-16, 18] to an environment consisting of multiple reservoirs.

The ST analysis of the system starts in section 4. In the first part of this section we use the energy conservation
law to construct the mechanical work statistics. The steady-state statistics is also discussed and the first law is
introduced. In the second part, we show that the trajectory entropy production satisfies a transient FT and
formally establish a FT for the currents and mechanical power.

We apply our results to the analysis of a thermodynamic engine in section 5. This engine consists of a two
level system, weakly coupled to two particle reservoirs. For this system, the stochastic master equation is exposed
and the large deviation function (LDF) of the output power is numerically obtained and illustrated. We also
investigate both average and fluctuations of the output power. Quite remarkably, the output power is subject to
large fluctuations in the regime of maximum output power in this model.

Finally, a summary of the obtained results and possible perspectives are drawn in the concluding section 6.

2. Model Hamiltonian

We consider a periodically driven open quantum system modeled by a Hamiltonian of the form
H(t) = Hs(t) + Hr + V, (1)

where Hg(t) = Hg(t + T) denotes the Hamiltonian of the periodically driven system, Hg stands for the
environment Hamiltonian and V describes the interaction between the system and the environment.

According to Floquet theory, the dynamics associated to the time-periodic Hamiltonian Hg (¢) admita
complete set of solutions under the form |y (£)) = e™!|s, ), where ¢, are the so-called quasi-energies of the
system while the Floquet states |s; ) have the same periodicity as the Hamiltonian, thatis, |s;y7) = |s;) [36,37].
These Floquet states and quasi-energies satisfy the eigenvalue problem

2



10P Publishing

New J. Phys. 17 (2015) 055002 G B Cuetaraet al

(Hs(t) = i0,)5) = e |s.) (2)

which is obtained by inserting the quantum state |y (¢) ) into the Schrédinger equation associated to the system
Hamiltonian H (t). Floquet states can be Fourier expanded accordingto |s;) = Y, e7*®* |5} in terms of the
driving frequency @ = 2z/T. The system quasi-energies are defined up to a multiple of the frequency w, and can
thus be restricted to the first Brillouin zone, ¢; € [0, w].

We assume that the particle number operator in the system, denoted by N, commutes with the system
Hamiltonian at all times, i.e. [Ns, Hg(¢)] = 0. Asaresult, the operators Hs (f) — id; and Ngcan be
simultaneously diagonalized and the Floquet states |s) may be chosen in such a way as to have a well defined
particle number .

The environment consists of a set of macroscopic reservoirs of energy and particles labelled by the index
v =1, .., N.Its Hamiltonian is written as

Hp = ZHU with  H, = Zem ) (rl, (3)

where |r), is a quantum state in the reservoir v with energy €,, and particle number #,,. The particle number
operator in reservoir v is then given by

N, = Z”ru |r>u <r|y‘ (4)

Each reservoir v is assumed to be initially at grand canonical equilibrium with inverse temperature
f = (kgT,)"'and chemical potential 4,

=B, (Hb —u,Ny )
e
eq _
pl=—— (5)
v ZV
where Z, = Tr { e A H~nN) } is the partition function of reservoir v.
The interaction between the system and its environment is written as

V=) SR, (6)

where the sum runs over all the possible interaction terms and S, and R/ denote operators acting on the Hilbert
space of the system and the reservoir v, respectively.

The total particle number operator, N = Ng + ZD N,, is assumed to commute with the total Hamiltonian
(1),i.e. [N, H] = 0, so that the total number of particles is conserved in the full system.

3. Counting statistics of energy and matter currents

At finite times, the statistical properties of the energy and matter currents are completely characterized by the
generating function (GF)

G (fw Ao t) — <e_ Zv(éAeprAm) >t , (7)

the average ( - ), being taken with respect to the probability distribution p (4de,, An,, t) of observing an amount
of energy A¢, and particles An, flowing out of reservoir v between time 0 and time ¢.

The counting statistics formalism provides a general framework to calculate the GF (7) in open quantum
systems. One introduces the modified Hamiltonian [22]

H(&, 4, t) = e D6 HAN) H(p)et T, (6H420), (®)

and the modified density matrix which satisfies the dynamical equation
1dtp (51/) /11/: t) =H (gw /11/) f)P (51» ﬂw t) 4 (51/) j'ln t)H (_ gw - )vm t) . (9)
The current GF can then be written as the trace of the modified density matrix,
G (s Jur 1) = Tr {p(i&y, iy, )},
We now proceed by making the standard assumptions leading to a stochastic master equation for the
diagonal elements in the Floquet basis of the reduced density matrix of the system

ps (& hur ) = Trefp (& 20, 1)}, (10)
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the trace Trg{ - } being taken over the reservoirs degrees of freedom. A similar approach has recently been used
in order to study the thermodynamics of rapidly driven quantum systems connected to a single heat
reservoir [16, 18].

The whole system is assumed to be initially in the factorized state

P& 1,0) = p50) [T @0, (1)

where pg (0) denotes the initial reduced density matrix of the system and the p9 are defined in (5). We further
make the following assumptions [ 1, 16, 30-35]:

(i) The environment is composed of reservoirs which are weakly coupled to the quantum system and large
enough to remain unaffected by the quantum system. Their correlation time 7 is then assumed to be much
shorter than the typical relaxation time scale of the system 7.

(ii) The free oscillations at the driving frequency, w, and at the Bohr frequencies of the Floquet basis,
Wy = € — €y, are much faster than the relaxation process induced by the reservoirs over time scale 7z. We
note that since quasi-energies are restricted to the first Brillouin zone, ¢, — €y < w, a fast driving frequency
is necessary though not sufficient in order to have a sparse Floquet spectrum. We further note that the
absence of degeneracies in the energies of the undriven system does not necessarily imply the absence of
degeneracies in the Floquet spectrum. A careful analysis of the Floquet spectrum is thus necessary in order
to check the validity of the present assumption. We refer the reader to [16, 32] for a more detailed
discussion on this account.

Under these assumptions, one can take the Born—-Markov approximation and apply the rotating wave
approximation (RWA) [33, 35] by averaging the system dynamics over a time scale At which is intermediate
between

Tc K At K 3. (12)

As aresult of this procedure, the dynamics of the populations and coherences in the Floquet basis are decouple.
The GF of the currents is then completely determined by the diagonal elements of the system reduced density
matrix

G (& du t) = Dop (180, ihs 1), (13)

where Pss (gw Aw t) = <5 | Ps (gw Aw t) |5l>'
We first give the modified stochastic master equation that rule the evolution of populations
g (&, Ay, t) = p,(i6,, 1Ay, t). Inthe following, functions defined on the set of quasi-energy states f: s — f, are
arranged into vectors with components [f]; = f,. For brevity, the sum of their components are written as
f= Zsfs =1-f,wherel = (1, 1, ..., 1)and-denotes a matrix product.
With these notations, populations in the Floquet basis follow the set of dynamical equations

g(gw /11/) t) = r(é:w j'1/) : g(éw j'w t)) (14)

where the matrix elements I" (¢, 4, ) containing the counting parameters can be written as

[r(zgy, AD)] = Z[r;je—s’v(fs'—€s+lw)e—ﬂ»("s'—"s) —s. Y. (15)

v,
The transition rates appearing in (15) are given by
I =Yyl wak(e - e+ o). (16)
KK
In this last expression, the amplitudes

1 —
Tactee = 25

kik

T dt i ’ T dt —iw 4
=(~/0‘ ?e“"lt(st|SK |st))(‘/0 Fe (s/| S |st)) (18)

characterize the time scale of the corresponding transitions and depend on the number of quanta I transferred
from the driving protocol to the reservoirs. An important feature of these amplitudes is that they do not
necessarily vanish for s = s’ leading to so-called pseudo-transitions between different modes of the same Floquet

Sk

5121+l><5122+l| Sy 5kz> (17)
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state [16]. These pseudo-transitions directly contribute to the statistics of the currents which is manifest by the
presence of terms of the form e along the diagonal of the transition rate matrix (15).

Furthermore, relation (18) emphasizes the fact that the allowed number of quanta exchanged with the
mechanical driving during stochastic transitions is determined by the spectral properties of the matrix elements

(s¢1Sels/ )
The reservoir correlation functions, on the other hand, are given by

ab.(x) = /oo dre Tr,,{R,f(T)R,f/,OD}, (19)

with g, denoting the grand canonical equilibrium density matrix (5) in reservoir v and the trace Tt,{ - } being
taken over its Hilbert space. These equilibrium correlation functions encapsulate the thermodynamic properties
of the reservoir and satisfy the Kubo—Martin—Schwinger (KMS) condition

abe (%) = afy (=x)ef(xmani), (20)

where An. denotes the particle number change in reservoir v induced by the operator R/, that is, assuming that
(r| R |ty x 8(n, — ny — An?).
The coherences in the Floquet basis, p. (&,, 4., t) with s # s’, are also shown to follow the dynamics

ﬂss’ (gw Aus t) = (_Y;s’ (fy) - i@ss’>,055' (‘):w Avs t>> (21)

with damping rates given by

Ye(8)== 3 X{ou s

l,k],kz KK/

+ %ZZ(ylfK,‘sga,fKr(es — € — la)) + }/Klk/ls,ga,f,(r(esf — € — la))) (22)

5 xkx'

i, I
Stost ) (ko] Ser [st, ) @l () e

and frequencies by

1 (o]
Oy =c¢; — ey + P ZZp.v. f_w dx

5 KK’

v v
), N
x|l -y —
IS e — e — lw — x WIS e — e =l — x|

where p.v. denotes the Cauchy principal value.

The coherences thus evolve independently of each other and undergo exponentially damped oscillations.
Quite remarkably the damping rates (22) depend on the energy counting fields &, contrary to the autonomous
situation.

The amount of energy and matter exchanged between the system and reservoirs during a microscopic
transition is apparent in the expression of the modified rates (15). The different transitions between states s and
s are distinguished by their indices v and . Such transitions involve an energy and particle exchange between the
system and reservoir v respectively given by ¢, — ey — lw and n; — ny.

The summation over integer multiples of the driving frequency w in the rate matrix elements (15) is
characteristic of the presence of the external periodic force. As we will later see, the non conservative
contributions lw to the energy flow are identified as the mechanical work dissipated into the reservoirs at steady-
state. The statistics of the mechanical work is then obtained in the long time limit by only counting these terms.

At this point, we note that the usual stochastic master equation in the Floquet basis [1, 16, 30-32] is simply

obtained by setting the counting fields to zero in equations (14) and (21),1.e. p (t) = py (&y» Aps t) ‘5 oy

Such equation is the analog of the stochastic master equation derived in within the Born—Markov and secular
approximations for autonomous systems. The main difference in the driven case is the appearance of quasi-
energies which replace the system energies of the autonomous case, and the appearance of integer multiples of
the driving frequency in the amounts of energy exchanged between the system and the reservoirs. In the absence
of external driving, the quasi-energies ¢; become the actual energies of the system and the summation over /
disappears, leading to the usual master equation for autonomous open systems.

An essential task in ST is the identification of the microscopic processes related through time reversal. Such
processes involve opposite amounts of energy and particle exchanges with the environment as well as inverted
initial and final states. From the above discussion, these pairs of processes have transition rates given by I and
ryl.

By virtue of the symmetry relation yKlK,lss, =
satisfy the LDB condition

-1

Ter|ss and KMS condition (20), these pairs of transition rates
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vl
rss'

ln—l=
v —
Fs’s

4 (& — e — lo =, (n, = n)), (24)
where the right-hand side is the entropy flowing from reservoir v during the transition.

The presence of lw terms in the energetics of (24) shows that the mechanical driving can enhance or decrease
the statistical frequency of particular transitions. For example, by providing an extra amount of energy through
the exchange of quanta at the driving frequency, the mechanical driving effectively lowers the energy cost of a
particular transition thus increasing its probability rate. This observation will prove useful in the study of the
thermodynamic engine considered in section 5.

Finally, we note that the quantity —y, (n; — ny) is the chemical work performed by the system to bring
ns — ny particles into reservoir v against the chemical potential 4.

The fundamental relation (24) plays a key role in writing the entropy production as the sum of the system
entropy change and the entropy flow from the environment [11, 12, 38]. In addition, it also leads to a steady-
state FT for the mechanical work and the currents out of the reservoirs as we show in section 4.2.

For systems maintained in a non-equilibrium steady-state by boundary constraints, such as temperature and
chemical potential differences between the reservoirs, the cumulant generating function (CGF)

6(6. 1) = lim—1n G (&, 4, ) (25)

is a measure of the current fluctuations at steady-state. In particular, all the moments and correlations between
the currents can be obtained by successive derivation of the CGF with respect to its counting parameters &, and
A, at zero values.

A related object is the LDF of the currents

1
I(j% ") =-lim—1Inp|(4e, An,, t), 26
(.7r) = -tim i s, a0
where the currents are defined as
. Aey, . An,
=t and =S 27)
t t

The CGF (25) and LDF (26) are related through the Legendre—Fenchel transformation as stated by the Gartner—
Ellis theorem [39].
Using the formal solution of equation (14), the current GF can be written as

G (& A t) =1 el (&4)0 py) (28)

where p,, denotes the initial occupation probability of the system. This also shows that the CGF (25) is given by
the dominant eigenvalue of the rate matrix I" (§,, 4, ) [22]. Besides, the average values of the energy and matter
currents, obtained as the first derivatives of the CGF, are then given by

JE==0:6(0,0) = 23 (e — e = lo) I¥py! (29)
Ul ss'
Ji==0,6(0,0)= Y. ¥ (n, — ne)[ps, (30)
vl ss'

in terms of the steady-state probabilities p* = lim,_, ,,p ().

Finally, let us mention some interesting differences between the fast driving limit considered here and the
slow driving limit. In this latter case, populations of the density matrix are known to satisfy a stochastic master
equation in the time dependent energy eigenbasis of the system. The presence of the external field is then
manifest by the time dependent system energies appearing in the tunnelling rates. These rates are known to
satisfy a LDB condition, which depends on the time dependent parameters of the system. In the rapidly driven
systems considered here, populations and coherences of the density matrix are dynamically decoupled in the
Floquet basis and the stochastic master equation is now time independent in this basis. In this regime, the
external driving results in the presence of non conservative terms in the LDB, which are expressed under the
form of integer multiples of the driving frequency.

4. Stochastic thermodynamics

The whole framework of ST relies on the identification of the first and second laws at the microscopic level. The
first law requires the discrimination between the mechanical and thermal contributions to the energy balance of

6
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the considered physical system. The microscopic version of the second law is expressed as a transient FT for the
trajectory entropy production.

In the following subsection we identify the mechanical work by using initial and final measurements of the
system energy. Its statistics is derived and particular emphasis is put on the steady-state fluctuations of
mechanical power. Within this limit, the initial and final measurements of energy are shown to be irrelevant and
the mechanical power can then be interpreted as the transfer rate of quanta to the system at the driving
frequency.

The second law and FT's are discussed in section 4.2. Since populations and coherences in the Floquet basis
are decoupled in the regime considered here, the trajectory entropy production of the stochastic process ruled by
(14) and (15) satisfies a transient FT [11, 13, 29, 40]. Quite remarkably, this is true despite the quantum
coherences in the Floquet basis introduced by the initial measurement of the system energy. We further consider
the long time limit and formally establish a steady-state FT for the currents and mechanical power [10].

4.1. Energy balance and work statistics

In the weak coupling limit, the mechanical work performed by the external driving is given by the changes in
system and reservoir energies between initial and final times, respectively chosen as time 0 and time . Measuring
the energy change in the system requires projective measurements of its initial and final energies. The necessity
to project the system at initial and final times in order to perform the energetic analysis stems from the fact that
Floquet states are not eigenstates of the time dependent system Hamiltonian Hs (¢).

In the following, we denote by |e; ) the instantaneous eigenstate of the system Hamiltonian H; (¢) with
eigenvalue ¢, thatis Hs (t)|e;) = e;|e;). The system is assumed to undergo ideal measurements of its energy at
initial and final times yielding the values ey and e, respectively. The reduced density matrix of the system is thus
given by p, (0; eg) = |eg) (eo|in case the initial measurement of the system energyyields ey, while this happens
with probability p, = (eolps(0)]eg).

The mechanical work is then given by the changes in the system and environment energies, i.e.

w = Aes — Y., Ae,, with Aeg = e, — ¢gand A¢, denoting the change of energy in reservoir v between times 0
and t. By following the general approach exposed in [22], we obtain the GF of the work as

Gy (a, 1) = (&™), (31)
=Y e Y (e]s' )y, (i, 15 €0)p, (sler)- (32)

The average in the first line is taken with respect to the work distribution p (w, t) of observing an amount of
work w performed by the external driving from time 0 to #. On the second line, the modified density matrix
elements p.. (a, t; ey) are obtained from those of the modified rate matrix of the currents introduced in the

: . Note that the initial condition used in order to
===

solve the dynamical equations (14) and (21) is now to be taken as
pes(05 €0) = (5’1 ps (05 €0 ) Is) (33)

due to the initial measurement of the system energy.

We further note that this initial measurement of the system energy also affects the current statistics at finite
times. Indeed, if an initial measurement of the system energy is performed, one must consider the initial
condition g (&,, 1,, 0) = ZEO 2 (05 eg) when solving the dynamical equation (14). However, though

previoussectionas p_ (a, t; eg) = po (& Ay t)

coherences in the Floquet basis of the system density matrix pg (0) may affect the initial weight of the
populations after the measurement as taken place, the GF (7) is independent of the subsequent evolution of
coherences in the Floquet basis induced by this measurement.

To the contrary, the mechanical work GF (32) does depend on the coherences in the Floquet basis induced
by the initial measurement. This is mainly due to the fact that the operator which is counted in order to perform
the work statistics, Hg (t) + Y, H,, does not necessarily commute with the initial density matrix of the system
s (0) before the first measurement has been performed [22].

Nevertheless, the steady-state CGF of the mechanical work

G (a) = lim~InG, (a, 1) (34)

t— 00

only depends on the populations of the modified density matrix g, (a, t; e,) since coherences vanish at steady-
state, i.e. lim,_, op, (t) = 0for s # s’ (see the appendix for details). Provided the energy in the system remains
finite in the long time limit, the mechanical work CGF (34) is then obtained as the dominant eigenvalue of the
rate matrix
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[ ()] = Y Tde™ — 50 T, (35)
vl v,1,5
obtained by making the substitutions £, - a and 4 — 0 in the rate matrix (15) and noting that terms of the
form e%(¢~¢) do not contribute to its eigenvalue.

At the trajectory level, we see that the stochastic variable associated to the mechanical power w is given
by the transfer rate of quanta from the external driving to the system multiplied by the driving frequency,
i.e. w ~ wAl/t for t - oo and where Al denotes the number of quanta transfered from the driving during
a given realization of the dynamics. At steady-state, this mechanical power is entirely dissipated into the
Ireservoirs.

The above discussion also shows that the mechanical power CGF (34) can be obtained from the current CGF
(42) by the following substitution

Gw(a) = G(a, 0). (36)

This relation emphasizes the fact that, at steady state, the mechanical power is equal to the sum of incoming
energy currents from the reservoirs, thatis, w = Eb ]lf

We are now in position to write down the first law of thermodynamics at steady-state, relating the heat
currents to the mechanical and chemical powers. By introducing the heat flows g, = j* — 4" in terms of the
currents (27), as well as the chemical power w. = Y, 4, jD”, the first law of thermodynamics reads

Dg, + i+ =0 (37)
v
at steady-state, that s, for t - oo.
We note that the average rate of mechanical work is obtained from (34) as

W =~0,G,(0) = 0} Y1 Tep, (38)

Ul s’

which is the steady-state current of quanta with frequency w injected into the system. A direct inspection of this
relations together with (29) and (30) shows that W = )", J°. This relation can also be used in order to write the
first law at the average level, in consistency with (37),

DQ+ W+ W =0, (39)
where the average heat flow out of reservoir vis given by Q, = J, — 4 Ju» and the rate of chemical work provided
to the system by particles flowing out of the reservoirsby W, = Y.y J,.-

4.2. Entropy balance and fluctuation theorem

The populations of the system in the Floquet basis satisfy a closed stochastic master equation [1, 16, 30-32] as
can be seen by setting the counting fields to zero in equations (14) and (16). Since transition rates satisfy the LDB
(24), the trajectory entropy production associated to this stochastic process can be decomposed into [38, 40]

A;s = As — A,s, (40)

where As denotes the change in the system entropyand A, s = )}, 4 4q, is the entropy flow from the
environment. The probability distribution of the entropy production in a system ruled by a stochastic master
equation is known to satisfy a fundamental FT at finite times [11, 13, 29, 40]. The fact that this result applies in
our case thus simply follows from the dynamical decoupling between populations and coherences in the Floquet
basis when the driving frequency is sufficiently high.

Let us however emphasize a striking difference between systems driven by rapidly oscillating fields as
considered here and those driven by a slow and/or non-periodic external driving 4 (). In the latter case,
definiting the trajectory entropy production requires the introduction of backward trajectories which are
assumed to be ruled by the backward dynamics defined along a time reversed external driving A (z — t),
where 7 denotes the time length of the considered trajectory. In the present case however, such inversion of
the external protocol is not needed since the generator of the stochastic process is effectively time
independent. This is a direct consequence of the time averaging over many driving periods (RWA) and the
large time scale separation between the fast driving oscillations and the slower relaxation process induced by
the reservoirs.

At steady-state, the entropy change in the system becomes negligible as compared to the entropy flow from
the environment. As a result, the rate of entropy production becomes equal to the rate of entropy flow from the
environment in this limit. The FT for the entropy production then leads to a steady-state FT for the currents,
independently of the initial condition in the system.
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Such steady-state FT for the currents is now proven by establishing a fluctuation symmetry for the current
CGF (25). As a first step, we note that the rate matrix (16) satisfies

r(e,2,)=T(f & —Aun-4), (41)

by virtue of the LDB condition (24) and where T denotes a matrix transposition. Since the CGF is obtained as the
dominant eigenvalue of the modified rate matrix, this last relation leads in turn to the aforementioned
fluctuation symmetry

G(& 1) =G (B — & —fu, — 4). (42)
This FT can be equivalently restated in terms of the LDF of the currents as [22]
r(is i) = (=5 =i) = ZAi - wil), (43)

where the stochastic variables j* and j" stand for the steady-state currents of energy and matter, respectively,
flowing out of reservoir v.

Alternatively, the symmetry relation (42) leads to a FT for the currents and the mechanical power making
explicit reference to the thermodynamic affinities applied to the system. By using the fact that the rate of power is
equal to the sum of energy currents incoming from the reservoirs at steady-state, we note that a CGF of the work
and currents can be obtained by making the following substitution in the counting fields

G(a>)(p) r’y)Eg<_a+X[/’ 771,) (44)

n=m=0

In this last relation, the counting field @ accounts for the mechanical power fluctuations. The symmetry relation
(42) then leads to the steady-state FT

G(a, K> nu) = G(ﬂl —a, Al —y,, A — 71”>, (45)

for the mechanical work and current fluctuations, and in terms of the thermodynamic forces driving the
currents

A =p—f and Al =fu, — fiy. (46)
Again, this FT is equivalent to
I (v, ) = T (=, =i, —if') = w + 2 (ALiC + A7) (47)
in terms of the LDF of the mechanical power and currents
N
1 (v, ") = sup {Wa + Y (e + i) - G(a, &, /1)} (48)
&8y v=2

This FT is the steady-state version of the finite-time FT for the work and currents obtained in [10]. The presence
of a FT for the current fluctuations is known to have important consequences on the response properties of the
system [41]. In the present case, the FT (47) can be used to obtain non-trivial relations between the mechanical
response of a physical system and its electrical and/or thermal transport properties.

In absence of mechanical driving, the mechanical power vanishes, w = 0, and one recovers the usual steady-
state FT for the currents [42, 43]. On the other hand, a steady-state FT for the rate of mechanical work is
recovered when considering a single heat reservoir [17, 19].

Let us further mention the particular case of homogeneous temperatures, f, = f, the FT (47) then relates
the fluctuations of mechanical power performed by the external driving to the chemical power performed by the
particle currents, v, = Y, A/'j".

At the average level, the entropy production can be decomposed into

$;i=$-8.20, (49)

the positivity resulting from the FT for the entropy production. The average rate of system entropy change S is
here given by the time derivative of the Shannon entropy in the Floquet basis, S = )’ p In p. The average rates
of entropy production and entropy flow are then given by [11-13]

Si= ZZFS’ﬁpS, In v /—l :

ss' ol s's ks

(50)
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and

. ry
S, = _ZZr;!ps, In —* (51)
ss' vl Fs/s

respectively.

At this point, we emphasize the importance of distinguishing between microscopic processes involving
different numbers of quanta exchanged with the external driving, especially when assessing thermodynamic
properties. Indeed, a coarse-graining of the dynamics over the number of quanta exchanged with the external
driving leads to a systematic underestimation of the entropy production [12]. By using the log-sum inequality,
one observes that

. C rsl;;PS, .
$%=Y Y TIkp,In T < S, (52)

ss’ Ssks

where the coarse-grained entropy production $;* is written in terms of the coarse-grained transition rates
Il =Y, I'Y. Wenote that this coarse-graining can be understood as a coarse-graining of the dynamics in an
extended Schnakenberg network whose micro-states correspond to individual Fourier modes of the Floquet
states while the macro-states correspond to the Floquet states themselves [12, 44].

At steady-state, the average rate of entropy change in the system vanishes, i.e. S = 0, so that

Si==S=-YRQ =AW+ X (AT + A1), (53)

where we used the LDB condition (24) and the conservation laws for the currents and power at steady-state to
obtain the last equality. This last expression shows that the average irreversible entropy production can be
written as the sum of the powers dissipated by the currents against the thermodynamic affinities (46) and the
dissipated mechanical power. This picture proves useful at the time of characterizing the efficiency of
thermodynamic engines as illustrated on the example exposed in the next section.

This finalizes the stochastic thermodynamic analysis of the model Hamiltonian introduced in section 2. The
key points of the analysis are the following.

Though the current statistics is shown to be independent of quantum coherences in the Floquet basis, this is
not the case for the mechanical work statistics at finite times. This is generally understood in the context of
counting statistics by the fact that the quantum operator which is used to count mechanical work,

Hg(t) + Y, H,, does not commute in general with the density matrix of the system when the counting
experiment begins. We note that this is in contrast to the slow driving situation, in which the environment
naturally projects the system onto instantaneous eigenstates of the system Hamiltonian.

Nevertheless, the steady-state fluctuations of mechanical power are shown to be independent of quantum
coherences in the Floquet basis. Within this limit, the contribution of the initial and final measurements
becomes negligible, and the rate of dissipated mechanical work is equal to the rate of injection of quanta from the
external driving to the system.

Despite the presence of coherences at finite times, we have shown that a thermodynamically consistent
definition of entropy production can be introduced which only depends on the populations and their dynamics.
As we explained, this peculiar property is mainly due to the dynamical decoupling between populations and
coherences resulting from the use of the RWA.

5. Model system

We now make use of the analysis developed above in the study of a thermodynamic engine based on an ac-driven
QD coupled to two particle reservoirs [ 1, 4, 45]. A schematic picture of the system is given in figure 1. The ac-
driven QD is conveniently modeled by the time-dependent Hamiltonian

1 F, _. .
Hs (1) = oo (I1)(1 = 1D + E= (e 1D+ [1)(1]) (54)
in terms of the splitting wg between the two single particle states of the system in absence of driving, | 1) and |l ),
the coupling strength uF to the laser field and its frequency @.

The Floquet states of this system are readily obtained as

1 iwt
|¢>=E(i\/ﬂ—iém+\/9¢56 1)) (55)

in terms of the detuning parameter § = @y — @ and the Rabi frequency Q = /6> + (uF)*. Their
corresponding quasi-energies are given by

10
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Figure 1. Schematic picture of the ac-driven QD connected to two particle reservoirs. The particle transfer processes with the
reservoirs can be separated into two categories: those involving the absorption/emission of exactly one quantum of energy w by the
driving, and those that do not.

w+ Q

5 (56)

€y =

The particle number in the QD fluctuates as a consequence of its interaction with the particle reservoirs. In
the present case, the system is allowed to be in either the empty state |0) or the singly occupied states [+) and |—).
The interaction between the QD and the particle reservoirs is then modelled by the interaction Hamiltonian

V=Y ¥ Y Ti(ckle) Ol + ¢k [0)(ol), (57)

o=Nlv=1,2 k

where ¢, (ch) denotes the annihilation (creation) operator of a single particle state with wave number k and
energy ¢ in reservoir v, and T, is a parameter characterizing the strength of the coupling to the same reservoir.
The reservoirs are themselves assumed to be composed of a collection of single particle states with Hamiltonian
givenby H, = ¥, exclicur.

The transition rates (16) for this model can be evaluated by using the method described in section 3 yielding

Q+0
=220 -0 (1- e - ) (58)
Q+6
ry = %}’J(Q — €o)f, (ex — €o) (59)
_ QF6

Fé”il=%yj(€i—eo—a))(l—fy(ei—eo—a))) (60)

v QFo
ribl = %73(61 — €y — w)f;(ei - € — o), (61)

27 Y | Tk 176 (x — €). The Fermi-Dirac
distributions f, (x) = (exp f(x — y,) + 1)~! characterize the statistical occupation of single particle states in
reservoir v. As expected, these transition rates satisfy the LDB condition (24)

where the energy dependent tunneling rates are given by 7, (x)

v,0 1
In Foff’o =f(es—eo—p), In F“ =flex—eo— @ — 4,). (62)
+ +

We further note that the transitions with / = 1 involve the exchange of smaller amounts of energy with the
reservoirs as compared to those with / = 0. This remark will have its importance when we later identify the best
working regime of a thermodynamic engine based on this setup.

Asaresult of the non-equilibrium constraints applied to the system, the chemical bias Ay = p; — p, and the
periodic mechanical driving with frequency w, the system is subject to steady fluxes of energy and matter. These
lead to a positive rate of entropy production (53) here given by

$i=p(W + W) >0. (63)

In this last equation, W denotes the average mechanical power provided by the ac-driving, while the quantity
W, = Ay J{" is the rate of chemical work provided by the current J{ in order to bring particles from reservoir 1 to
reservoir 2.

The statistical properties of the dissipating fluxes 1 and 1 = Apj," are fully captured by their CGF or LDF as
discussed in section 3. Both were evaluated numerically and shown to satisfy the steady-state FTs (45) and (47).
For example, the joined LDF fo the mechanical and chemical powers T (w, 1) was shown to satisfy the steady-
state FT

11
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Figure 2. [llustration of the output power LDF for different values of the bias Ay applied to the circuit. Other parameters where
chosenas =1, u = (u; + p,)/2 = 1, uF = 1.4, w9 = 0.7, ® = 1.2,y = y = 1.3. Markers represent values obtained
numerically, continuous lines being guides for the eye.

I, i) = (=, —iie) = B (w + e, (64)

in consistency with (43). The right-hand side of this last relation is the fluctuating rate of entropy production of
the system (cfequation (63)). In figure 2 we illustrate the marginal LDF of the chemical power, T (#;.), for
different values of the bias applied to the circuit.

We now consider a thermodynamic engine based on this setup which converts the input mechanical power
Win = W performed by the external ac-driving into an output chemical power 1o, = —Ap j" provided to the
particle current which now works against the chemical bias Ay > 0. The efficiency of such machine is defined as
the ratio of its average output power divided by the average input power

n=@=—ﬁ<l, (65)
Wi w
the last inequality resulting from the second law of thermodynamics.

The upper bound in (65) is only reached for vanishingly small output and input powers, i.e. close to
equilibrium. This has motivated the investigation of the maximum output power regime, with regard to
practical implementations [46-50]. Two aspects must be considered to attain this regime.

One is the identification of the properties of the external system to which our engine will provide the highest
output power. In the present case, the external system consists of the circuit formed by the reservoirs themselves,
and its adjustable parameter is the output bias Ap.

The design of the system performing the conversion and its connection to the environment constitute other
important aspects of power optimization. Here, the QD itselfis the vector of the conversion and its spectrum and
interaction parameters with the driving and reservoirs provide the adjustable parameters in order to reach
maximum output power. In particular, we note that an asymmetry in the coupling between the system and
reservoirs 1 and 2 is necessary for the conversion from mechanical to chemical work to be possible. An extreme
and ideal situation is the one for which the input and output powers are tightly coupled, i.e. Wy, « Wj,,and are
thus maximally correlated.

In the following, we consider our engine to work in the tight coupling regime with the only non-vanishing
tunnelling amplitudes being ¥ (€. — €) and , (€. — €y — w). In this situation, the mechanical driving provides
one quantum of energy equal to @ to charge the system from reservoir 2, while the system can be discharged into
reservoir 1 without any energy supply from the environment. This favors the net pumping of particles from
reservoir 2 to reservoir 1 against the bias Ay > 0.

In this regime, the output and input powers are proportional to each other so that the engine efficiency can
be simply written as

A
n="E.
w

(66)

Within the regime of maximal output power, most studies have focused on the average output power and the
corresponding efficiency of the considered engine. Here, we use the counting statistics formalism exposed in
section 3 above in order to investigate the fluctuations of output power.

The average and mean root square of the output power, respectively given by

Wour = —Ap J'  and 5VV(>ut = Au <(j1n - )2> (67)
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Figure 3. Average (left panel) and root mean square (right panel) of the output chemical power #w = —. performed against the bias

Ap > 0asafunction of the engine efficiency # = Au/w and for different values of the driving frequency w. Parameters are chosen as
f=1Lpu=(uy + ,uz)/Z =1L uF=2,00=07,p(ex — €) =p(ex — € — w) = 1.3.

A W out

--— 5W0ul

00 05 1.0 15 20 25 30 35
w

Figure 4. Plots of the average and root mean square of output power in the regime of maximum output power. Parameters are chosen
asfp=1,7(ex — €) = 1, (e — €o — w) = 20. Other parameters are numerically adjusted to reach maximum output power. a, is
here defined as the frequency value at the crossing point between the average current and its variance. Inset: (solid line) optimized
values of the natural frequency of the QD ) as a function of the driving frequency w, (dashed line) optimized values of the ouput bias
Ay as a function of the driving frequency.

are illustrated in figure 3 as a function of the efficiency (65). The regimes of maximum output power are shown
to correspond to high, although not necessarily maximal, power fluctuations. Another striking feature is the
relative size of power fluctuations which are one order of magnitude larger than the average power in the
illustrated regime.

In figure 4, parameters of the ac-driven QD and the output bias Ay were individually adjusted to reach
maximum output power for each value of the driving frequency w, while temperature was fixed at # = 1. The
magnitude of power fluctuations are seen to remain significantly bigger than the average up to a certain value of the
driving frequency. Above this value, the situation is reversed and the average and root mean square output power
increase, respectively, quadratically and linearly with the driving frequency. The optimize values of the bias Ay and
the natural frequency w, of the QD increase linearly with the driving frequency w, as shown in the inset of the same
figure. The regime of large driving frequency can thus be here understood as a low temperature limit in which
fluctuations are indeed expected to be reduced. This is confirmed by repeating this maximization procedure for
different values of temperature. By doing this, one sees that the value of the driving frequency w. at the crossing point,
where the average value of the output power and its variance are equal, increases monotonically with temperature.

The above observations may be summarized as follows. First, the fluctuations of output power in the
quantum engine we consider can be substantial and exceed its average by more than one order of magnitude.
This assertion is in the present case particularly justified in the regime of maximum output power for which the
fluctuations are shown to systematically exceed the average output power up to a certain value of the driving
frequency. Second, the relative magnitude of fluctuations with respect to the average may be lowered by getting
away from equilibrium.

These observations suggest that compromises may be necessary in the design of nano-scaled heat engines,
depending on the priority to deliver a high or stable output power. In this sense, engines perform better far rather
than close to equilibrium.

6. Conclusion and perspectives

We reported the ST analysis of a weakly coupled open quantum system connected to multiple reservoirs and driven
by a fast external field. This analysis is of particular interest in the context of the study of nano-scaled thermodynamic
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engines as illustrated in the example we considered in the previous section. Such models of thermodynamic engines
may be realized through ac-driven semiconducting circuits [ 1, 4, 45] or cold atom gases [51-54].

The use of the RWA has proven useful in order to gain physical insight into the thermodynamic properties of
open quantum systems as was already the case for the slow driving limit. However, several open issues remain
regarding the thermodynamic properties of driven open quantum systems outside the range of application of
the RWA.

In particular, the characterization of the entropy production in quantum systems with sustained coherences
and their subsequent thermodynamic analysis constitute challenging problems of non-equilibrium quantum
thermodynamics.

Another issue is the identification of thermodynamic quantities when broadening effects cannot be
neglected. On top of these fundamental difficulties, the expansion to second order in the interaction between
system and reservoirs is void in this case, and one must appeal to complementary methods such as the non-
equilibrium Green’s functions formalism [55].
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Appendix

We here prove that the mechanical work CGF is independent of quantum coherences in the Floquet basis for
systems with bounded energy.

We first note that p (£, 4,, t) = 0fort — cobyvirtue of (21). By using this property and expressions
(32) and (34), we rewrite the work CGF as

G, (a) = }gg% In Ze—aAesZ(eAs)gs(ia, t; eo)pe0 (sles). (68)

epe; s

The populations g, (ia, t; e,) satisfy a master equation similar to (14) but with rate matrix given by (35). A
formal solution of this equation can be written as

p(ia, £ eo) = el (@)t -p(O; eo), (69)

where the initial condition is chosen as p_ (0; eg) = (s|eg){eols), ps(0) denoting the reduced density matrix of
the system before the initial measurement of the system energy takes place.

We now introduce the eigenvectors v () of the rate matrix I" () with eigenvalues v (@) such that
I' (a) - v(a) = v(a)v (a). The CGF can now be rewritten as

Gw(a) = lim% In Ze“’A“Z;(etls) (sle:)v(a)v: (@)e @t 55(0; eo), (70)

t— 00
epe; v

where the sum over v runs over all the eigenvectors of I" ().
By assuming the system to have a bounded energy at all times, Aeg becomes negligible in front of v () ¢ as
t — o0, and we get that

Gw(a) = }Lrilo% In ;;g(etls)(slet)vs (a)v: (a)e” @F §§<0; eo)pe0 (71)
= tlirg’% In ;;gvs (a)ve (a)ev(a)t 55(0; €o (72)
=7 (a), (73)

where 7 (a) is the dominant eigenvalue of the rate matrix I (@), i.e. ¥ (@) = max, ){Re {v(a)}}.
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