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Abstract

Within the framework of this thesis two apparatuses for an absolute mea-

surement of gravity were designed, constructed, and tested for the purpose of

detecting long-term variations of gravity, determining the absolute gravity value

for metrological applications, and for research in fundamental physics. The work

includes a stationary gravimeter, which functions as a highly accurate reference

system and a portable gravimeter, which is aimed for field measurements.

The principle these gravimeters use to determine the gravity value is based

on the relation between the falling distance, the falling time, and the acceleration

due to gravity. A Michelson interferometer measures the distance change be-

tween a falling object mirror and an inertial reference mirror with a Helium-Neon

laser (633 nm). The whole fringe signal is digitized by a high-speed ADC, which

is disciplined by a rubidium frequency standard. This fringe recording is novel

compared to common gravimeters, which use an analogue zero-crossing determi-

nation.

Our portable gravimeter’s mechanics also deviate from the standard type.

Springs, preloaded by a small motor accelerate the carriage supporting the falling

object. This reduces the shock vibrations on the system.

Furthermore, a novel method was developed to reduce the uncertainty due

to the falling body’s rotation. The position of the optical centre is determined

in order to subsequently superpose it with the falling object’s centre of mass by

means of a common balancing method. Resolutions of distance of less than 16 µm

were reached in three dimensions, which reduces the uncertainty contribution to

less than 0.7 µGal (7 nm s−2).

A complete uncertainty budget is given for both gravimeters. The combined

standard uncertainty for the portable gravimeter is estimated to give 38.4 µGal,

and that for the stationary 16.6 µGal, whereas for the portable gravimeter a stan-

dard error of 1.6 µGal (statistical uncertainty for 24 hours of measurement), and
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for the stationary gravimeter 0.6 µGal (1 month of measurement) was reached.

This is comparable to the resolution of the world’s best absolute gravimeters.

The portable gravimeter was brought to the European Comparison of Ab-

solute Gravimeters (ECAG) 2007 in Luxembourg, and to another comparison

with the German Federal Agency of Cartography and Geodesy (Bundesamtes für

Kartographie und Geodäsie – BKG), where it showed an agreement of the mea-

sured values obtained with other gravimeters within the instrument’s uncertainty.
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Zusammenfassung

Im Rahmen dieser Arbeit wurden ein stationäres und ein tragbares Gerät zur

Absolutschweremessung entworfen, gebaut und getestet. Die Geräte sollen sowohl

zur Messung von Langzeit-Schwereänderungen und zum Einsatz in der Metrolo-

gie, als auch in der Grundlagenforschung verwendet werden. Das stationäre

Gravimeter soll hierbei als ein hochgenaues Referenzgerät dienen, wohingegen

das tragbare Gravimeter für Feldmessungen ausgelegt ist.

Das hier angewandte Messprinzip zur Bestimmung des absoluten Schwerewer-

tes beruht auf der Beziehung zwischen Fallhöhe, Fallzeit und Schwerebeschleuni-

gung. Mit Hilfe eines Michelson-Interferometers wird die Entfernungsänderung

zwischen einem fallenden Objektspiegel und dem inert gelagerten Referenzspiegel

gemessen. Als Längenstandard dient hier ein Helium-Neon-Laser (633 nm). Das

komplette Interferenzsignal wird mittels eines ultraschnellen Analog-Digital-Wand-

lers, der durch eine Rubidium-Uhr stabilisiert wird, digitalisiert. Der Schwere-

wert wird anschließend durch eine eigens entwickelte Software ermittelt. Diese

Interferenzsignal-Erfassung ist eine Besonderheit im Vergleich zu herkömmlichen

Gravimetern, die üblicherweise eine analoge Erfassung der Nulldurchgänge an-

wenden.

Das tragbare Gravimeter hat außerdem eine spezielle Mechanik. Federn,

die durch einen kleinen Motor vorgespannt werden, dienen dazu den Wagen,

der den Fallkörper beinhaltet, nach unten zu beschleunigen. Dies reduziert die

Schwingungen, die auf das System übertragen werden.

Ferner wurde eine neuartige Methode entwickelt, die dazu dient, die Unsicher-

heit zu verringern, die entsteht, wenn der Fallköper während des Freifalls rotiert.

Dazu wird die Position des optischen Zentrums des Fallkörpers ermittelt, um an-

schließend seinen Schwerpunkt zu diesem hin zu verschieben. Ein herkömmliches

Auswuchtgerät übernimmt diese Aufgabe. Auflösungen in der Bestimmung der
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Entfernung im dreidimensionalen Raum von besser als 16 µm wurden hierbei er-

reicht. Dies entspricht einer Unsicherheit von weniger als 0.7 µGal (7 nm s−2).

Eine vollständige Messunsicherheitsanalyse wurde für beide Gravimeter ermit-

telt. Für das tragbare Gravimeter beträgt diese 38.4 µGal. Für das stationäre

Gravimeter sind 16.6 µGal anzugeben. Hierbei wurden für das tragbare Gerät

ein Standardfehler von 1.6 µGal (Messdauer von 24 Stunden) und beim sta-

tionären Gerät von 0.6 µGal (Messdauer von 1 Monat) gemessen. Dies ist mit

der Auflösung der besten Absolutgravimeter weltweit vergleichbar.

Das tragbare Gravimeter nahm an einem europäischen Vergleich von Ab-

solutegravimetern (ECAG), der 2007 in Luxemburg abgehalten wurde, teil und

wurde mit dem Gravimeter des Deutschen Bundesamtes für Kartographie und

Geodäsie (BKG) verglichen, wobei es eine gute Übereinstimmung innerhalb der

ermittelten Messunsicherheit zeigte.
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Chapter 1

Introduction

By the end of the 16th century Galileo Galilei showed experimentally that the

free-fall is a uniformly accelerated motion. He showed that bodies of different

materials fall equal distances during equal times. In the 17th Sir Isaac Newton

derived the law of motion of a freely falling body from the Keplerian laws of

planetary motion. In the same century Christian Huygens developed the the-

ory of the mathematical and physical pendulum. Thus two basic relations for

the measurement of gravity have been established. The need for a measurement

of the gravity was connected with the determination of the figure of the Earth.

Over the years sophisticated pendulum methods were invented to measure the

acceleration due to gravity (simply called “g,”) and the pendulum methods were

replaced by free-fall determination methods, in the 1950’s. Today, this technique

still represents the state-of-the-art.

Further applications arose with the absolute gravimeters’ improving accuracy

and resolution, and the measurement of g has become indispensable today, even

in many areas of daily life. Resolutions of 1 µGal (=10 nm s−2) are the state-

of-the-art for absolute gravimeters - this corresponds to a resolution of height of

about 0.3 cm. Navigation systems, for instance, became more precise with the

increasing accuracy of the measurements, since the gravitational potential has to

be known to determine the satellite positions accurately. Highly accurate maps of

the Earth are based on these results, and the dimension of height is now defined

through gravity. Gravimeters are used to monitor tectonic changes and to detect
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1. INTRODUCTION

mineral resources. Table 1.1 lists the orders of magnitudes of some influence fac-

tors, to give an idea of how precise today’s gravimeters are.

Metrology is another field that benefits from absolute gravity determination.

Table 1.1: Orders of magnitudes of gravitational attraction on Earth’s
surface. (Data compiled from Niebauer et al. (1995); Peters et al. (1999);
Torge (1989))

Source Magnitude/µGal
Earth 980 000 000
Change due to gravity gradient /1 m -300
Solid Earth tides (Moon /Sun) ±150
Ocean loading ±10
Ground water level ±10
Air mass (atmospheric pressure 0.3 µGal/m) ±9
Polar motion ±6
Geodynamics (glacial rebound, tectonic motion) ±5
Gravity field anomaly (due to minerals) up to 10 000
Human activity (construction, excavations) ±100
Person of 70 kg weight at 0.5 m 2

The redefinition of the “kg” requires a relative standard uncertainty in g of 10−8

or better (Schwitz et al., 2004). There are also plans to redefine the “Kelvin”,

which require an exact measurement of the Boltzmann constant, which in turn is

based on the measurement of g. The Planck constant is a further candidate for

a more highly accurate standardisation by the same principle as the kg. Finally,

gravimeters can be used to determine the less accurately known fundamental

physical constant G, Newton’s gravitational constant, which is of high impor-

tance in many parts of physics.

Gravimetry is essential for the above reasons and additionally, in military

applications and deposit exploration. However, the gravimeters still need to be

improved to give higher resolution and accuracy, and they need to be minia-

turised.

Chapter 1 presents a definition of gravity and a brief mathematical description

of the gravitational influence of the Sun and Moon on the gravity values measured

2



1.1 Theory of gravity

on the Earth’s surface. This is instructive, as gravity variations due to tidal

influences can be nicely seen in our long term measurements.

1.1 Theory of gravity

The following will provide the terminology of gravity and derive the equation of

motion of a freely falling test mass in a gravity field. The treatment is standard

and can be found in many textbooks (e.g. Dehlinger, 1978; Hofmann-Wellenhof

& Moritz, 2005; Lowrie, 1997; Seidelmann, 1992).

1.1.1 The figure of the Earth

The main objective of geodesy is to determine the figure of the Earth and its

gravity field. There are many models for this figure. The simplest is a sphere,

which is a good approximation of the actual shape of the Earth, as the Earth’s

flattening f (defined as f = (a − c)/a (cf. Appendix A for numbers), where c

is the polar radius, and a the equatorial radius) is just 3.4 × 10−3. However,

this model was quickly superseded, as more complex models emerged. One is the

reference ellipsoid, which is a close approximation to the equipotential surface of

gravity, but at heart is just a mathematical convenience. Nowadays, the figure of

the Earth is defined by the so called geoid. It is defined as one of the equipotential

surfaces of the Earth’s gravity potential. This potential coincides with the mean

(a) The geoid surface coincides with the mean sea
level. The geoid undulation is the displacement be-
tween the Geodetic Reference Ellipsoid and the geoid.

(b) The geoid.

Figure 1.1: Geoid and reference ellipsoid.
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1. INTRODUCTION

surface of the oceans. The difference between the reference ellipsoid and the geoid

is called geoid undulation, and is sketched in Fig. 1.1(a). In fact, the deviation

of the geoid from the best-fitting ellipsoid is quite small. The largest negative

undulation of −105 m is in the Indian Ocean, and the largest positive undulation

of +73 m is in the Pacific Ocean (Lowrie, 1997). Often a three dimensional map of

the geoid is shown, like that in Fig. 1.1(b), to demonstrate that the gravitational

shape of the Earth bears more similarity to a “potato” than a sphere, however

one should note that such figures are exaggerated by many orders. As a result

of this definition of the geoid, gravity enters into the geometry of the Earth.

“Heights above sea level” are heights above the geoid (Hofmann-Wellenhof &

Moritz, 2005). This brings up the question why the shape of the Earth is not just

measured with GPS (Global Positioning System). Geocentric positions today can

be measured to better than 0.1 m by means of GPS. The answer is that satellite

orbits also follow potential surfaces, and this is where the gravity field comes in

again.

1.1.2 Acceleration due to gravity

The potential of the geoid equals the gravity potential W (also called geopoten-

tial) at mean sea level. W is defined as the sum of the gravitational potential V ,

and the centrifugal potential Z of the Earth:

W = V + Z = −GM

r
+

1

2
ω2r2 sin2(ϑ) . (1.1)

Then the force due to gravity Fg
1 is the sum of the gravitational force and the

centrifugal force (cf. Fig. 1.2), and can be written as the gradient of the gravity

potential:

Fg = −∇W . (1.2)

In geophysical applications, however, accelerations are more important than forces.

Comparing Newton’s law of motion

F = mia , (1.3)

1Boldfaced letters denote vectors.
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1.1 Theory of gravity

where mi denotes the inertial mass of the test mass m, and a its acceleration,

with Newton’s law of gravitation

F = −GmgM

r3
r , (1.4)

where mg denotes the gravitational mass of the test mass m, M the field gener-

ating mass, G the Newtonian constant of gravitation, and r = |r| the distance

between the centre of mass of the attracting mass M and the test mass m, the

gravitational acceleration ag can be written as

ag = −GM

r3
r , (1.5)

for mi = mg. This equality has been proved to relative accuracies better than

9 × 10−13, by Braginsky & Panov (1971) (cf. also Adelberger et al. (1990); Su

et al. (1994)).

From the second potential of Equ. (1.1), the centrifugal potential, we can

derive the centrifugal acceleration. To calculate the centrifugal acceleration we

Figure 1.2: Gravity is the sum of gravitational force and centrifugal force.
The direction of g depends on the combination of centrifugal acceleration
ac and gravitational acceleration ag at each point.
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can write (cf. Fig. 1.2)

ac = ω2x
x

x
, or

ac = ω2r sin ϑ
x

x
.

(1.6)

Here ϑ is the polar angle describing the angle between the axis of rotation and

the the position vector in an earthbound system with the origin of the coordinate

system coinciding with the centre of the Earth. From Fig. 1.2 we see that the

forces add to the resultant force of gravity g (divided by unit mass). The direction

of g coincides with the plumb line and is perpendicular to the geoid’s surface at

each point.

Let us define a local coordinate system in a way that its positive z-direction

coincides with the gravity vector g. If we now assume a constant angular velocity

ω and a homogeneous gravitational field, the resultant acceleration due to gravity

will be

|g| = |ag + ac| = g = constant . (1.7)

Thus, the equation of free fall motion we get by integrating twice will have the

form

z(t) = z0 + v0t +
g

2
t2 , (1.8)

where z0 is the position, and v0 the velocity of the test mass at the time t = 0.

Equation (1.8) is the form of the equation of motion we will use later for our data

analysis.

In high-precision measurements, however, the gradient cannot be neglected, as

the acceleration due to gravity changes by≈ 300 µGal m−1 (1 µGal = 10 nm s−2).

We will now include it in the equation of motion. For simplification, but still in

a good approximation, we assume the change in gravity with height to be linear,

so that we can write for the gravity gradient γ(z) = dg(z)/dz = γ0 z, where γ0 is

a constant. Then the gravity is given by

z̈ = g(z) = g0 + γ0 z , (1.9)

the solution of which is (Cook, 1965):

z(t) =
g0

γ0

(
cosh (

√
γ0 t)− 1

)
, (1.10)
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1.1 Theory of gravity

where we set z0 = 0 and v0 = 0, and z̈ = d2z
dt2

. The cosh can be expanded in a

Taylor series, which gives

z(t) =
g0

2

(
t2 +

γ0t
4

12

)
, (1.11)

neglecting higher order terms. This shows that by neglecting the gradient, the

height to which the gravity value is referred, is no longer z|t=0, but instead refers

to a position z|t>0. The height the calculated g-value refers to in the presence of

a gravity gradient will be calculated later (Sec. 5.1.14).

1.1.3 Tides

The problem of tide calculations is a fascinating, albeit also a very complex sub-

ject. The variations measured in the g-value not only contain the lunar-solar

attraction, but also secondary effects, such as deformation of the solid earth and

ocean tides, which are the manifestations of the sea to keep its surface perpen-

dicular to the gravity vector. Because of the deformation of the Earth, gravity

measurements are also influenced by changes of the Earth’s radius, which can

reach up to 56 cm (Dehlinger, 1978).

Fortunately, astronomy has a long tradition, allowing the times and positions

of the Sun and Moon to be calculated to considerable precision, as the basis for

calculating tidal corrections can thus be calculated that can easily be applied to

measured gravity data.

The following will show a method of calculating the lunar tidal attraction.

The solar tidal attraction is calculated in a similar way.

Let us start with the Moon’s potential on the Earth’s surface (cf. Fig. 1.3):

VM =
GMM

r1

, (1.12)

where G is the Newtonian constant of gravitation and MM is the Moon’s mass.

Furthermore, we have the relation

r2
1 = r2 + R2 − 2rR cos(ϕ) , (1.13)
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Figure 1.3: Illustration of the lunar attraction on a point P on the Earth’s
surface. R determines the distance between the centre of mass of the Earth
O and the centre of mass of the Moon A. The Earth’s radius is given by
r, and r1 is the distance from the Moon’s centre of mass to the point P

on the Earth’s surface. The zenith angle w.r.t. the centre of the Earth is
given by ϕ. The arrows indicate the tidal forces acting on the Earth.

where ϕ describes the zenith angle in a reference system bound to the Earth’s

centre. Inserting (1.13) in (1.12) gives

VM =
GMM

R

[
1− 2

( r

R

)
cos(ϕ) +

( r

R

)1/2
]−1/2

. (1.14)

In the case of the Earth and Moon r/R ≈ 1/60. Therefore, we can expand the

right hand side of (1.14) in a Taylor series in terms of r/R and obtain

VM =
GMM

R
+

GMM

R

( r

R

)
cos(ϕ) +

GMM

R

( r

R

)2
(

1

2

) (
3 cos2(ϕ)−1

)
+ · · · .

(1.15)

This can be regarded as a sum of different potentials. The tidal forces are cal-

culated from the gradient of the potential. The first term in (1.15) is a constant

and, hence, does not produce any force.

The second term in (1.15) is linear in r and thus produces a constant force,

namely the one which keeps the Earth in its orbit around the centre of mass of

the Earth-Moon system.

The third term is the most interesting of the three. Assuming that higher

order terms are neglected in (1.15), it is the third term that produces tides. The

tide-generating potential can thus be written as

VTide =
GMMr2

2R3

(
3 cos2(ϕ)− 1

)
. (1.16)
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1.1 Theory of gravity

The vertical component of the attractive force per unit mass can easily be calcu-

lated from the potential (1.16):

(g⊥)M = −∂VTide

∂r
= −GMMr

R3

(
3 cos2(ϕ)− 1

)
. (1.17)

The subscript ⊥ shall denote the fact that this component of force acts perpen-

dicular to the sea level. For the sake of completeness we will give the component

parallel to the sea level:

(g‖)M = −1

r

∂VM

∂ϕ
= −3GMMr

R3

(
sin(ϕ) cos(ϕ)

)
. (1.18)

The same calculation can be performed for the Sun’s attraction. Although

the Sun’s mass is much larger than the Moon’s, its distance to the Earth is

also greater, and it can be shown that the ratio between the Sun’s and Moon’s

attractions is gS/gM = 0.46, where gS denotes the acceleration due to the Sun.

The influence of other planets is so small (5 orders less in the case of Jupiter!)

that they can safely be ignored.

By inserting into equation (1.17) the values for G, R, MM , and r (= Earth’s

equatorial radius a; cf. Appendix A), we obtain as a maximum acceleration due

to the Moon’s gravitation [(g⊥)M ]max = −109.7 µGal, and as a minimum value

[(g⊥)M ]min = 54.8 µGal. The respective values for the Sun are [(g⊥)S]max =

−50.5 µGal, and [(g⊥)S]min = 25.3 µGal. When the Sun and Moon are in line

with the Earth (and on the same side), the tidal attraction superposes to give

a maximum value of 240 µGal. If we also consider the variation due to the

deformation of the Earth, it can be shown (Dehlinger, 1978) that these effects

reach magnitudes of up to 40 µGal, the maximum variation in gravity therefore

summing up to 300 µGal.

Now, let us consider the temporal variation of tidal attraction on a point P

on the Earth’s surface. It turnes out to be inconvenient to describe the Moon’s

position with respect to this point P in terms of the zenith angle ϕ. Therefore,

we introduce a geocentric reference system (cf. Fig. 1.4) where the Moon’s

position can be described by its astronomic latitude φ, its declination north of the

equatorial plane δ, and its hour angle τ . The hour angle defines the longitude of

the Moon where the plane described by the Earth’s rotating axis and the Moon

9
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Figure 1.4: Instead of the zenith angle ϕ latitude φ, declination δ and
hour angle τ can be introduced.

crosses the equator. The transformation is done with the following equation,

known from spherical trigonometry (Dehlinger, 1978):

cos(ϕ) = sin(φ) sin(δ) + cos(φ) cos(δ) cos(τ) . (1.19)

By substituting (1.19) into (1.16) we get:

VM =
GMMr2

R3

1

4

[(
3 sin2(φ)− 1

)(
3 sin2(δ)− 1

)
+ 3 sin(2φ) sin(2δ) cos(τ)

+ 3 cos2(φ) cos2(δ) cos(2τ)
]

. (1.20)

The quantities φ, δ and τ change with different periods. Doodson (1921) proposed

a Fourier series expansion in order to group the tidal signal into components by

frequencies and spacial variability. According to Doodson, each component has

a frequency

f =
6∑

i=1

ni fi . (1.21)

The numbers ni are integer numbers with n1 ranging from 1 to 3, and n2,...,6

taking values ranging from -5 to +5. In order to avoid negative numbers for
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1.2 Absolute measurement of gravity

the values n2,...,6, Doodson added 5 to each of these numbers. As a result, we

can classify the tidal constituents into groups of semi diurnal, diurnal, and long

periodic frequencies. The main tidal components are shown in the following table

1.2 (adopted from Dehlinger (1978)). Doodson included almost 400 constituents

Table 1.2: Main tidal constituents. The subscripts, like M2, refer to the
number of cycles per day. The letters are called Darwin’s symbols (after
Darwin, G.H.) and often denote the origin of the constituent.

Symbol Tidal component Period
Semi diurnal M2 Principal lunar 12.42 h
n1 = 2 S2 Principal solar 12.00 h

N2 Lunar ellipticity (due to monthly vari-
ation in the moon’s distance)

12.66 h

K2 Lunar-solar declination 11.97 h
Diurnal O1 Principal lunar 25.82 h
n1 = 1 P1 Principal solar 24.07 h

K1 Lunar-solar declination 23.93 h
Long period M0 Lunar flattening 13.66 days
n1 = 0 S0 Solar flattening 182.5 days

in his expansion. 100 of them are long periodic.

The theoretical tidal accelerations can be calculated from the tide-generating

potential derived above. Longman (1959) did this as early as 1959 for an IBM

709 computer. Nowadays, the most popular program is called ETERNA. It was

developed by Wenzel (1996b). Today’s programs also include secondary tidal

effects. (To show how those effects are calculated is outside the scope of this

thesis, and the interested reader is encouraged to look up e.g. Dehlinger (1978),

Lambeck (1980), or Seidelmann (1992).)

Figures 1.5 and 1.6 show the theoretical tides and the amplitude spectrum,

respectively, for the site Erlangen calculated with the program TSoft (van Camp

& Vauterin, 2005).

1.2 Absolute measurement of gravity

With an absolute gravimeter the absolute value of gravity acceleration can be

measured. In contrast, relative gravimeters are for measuring the difference of
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Figure 1.5: The figure shows the temporal variations in the gravity value
for the site Erlangen (49.34◦N, 11.00◦E, elevation 287.0 m). The values
are calculated with the program TSoft. Start 24-01-2008, duration 30 days.
The amplitude is given in nm s−2.
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Figure 1.6: The amplitude spectrum of the tidal influences is calculated
for Erlangen, with the program TSoft. The horizontal axis shows the cycles
per day which correspond to the Doodson-numbers n1 in table 1.2. The
main tidal constituents can clearly be seen.
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two gravity values, and need to be calibrated using an absolute gravimeter.

1.2.1 Historical Background

The investigation of gravity started with the development of the theoretical de-

scription of the free fall motion by Sir Isaac Newton (1643-1727) in his “Phi-

losophiae Naturalis Principia Mathematica”, published in 1687, and with the

description of the motion of the pendulum by Christian Huygens (1629-1695).

For a long time (≈ 200 years) the pendulum was the only apparatus for mea-

suring gravity. Although the pendulum (patented by Christian Huygens in 1657)

was originally invented to measure time, it soon became evident that the os-

cillation period depended on the latitude and on the height (above sea level).

The pendulums used were mostly simple approximations of the mathematical

pendulum. The breakthrough in accuracy came in 1818 with Kater’s reversible

pendulum (Cook, 1965). Who really invented the reversible pendulum is not clear

(Kühnen & Furtwängler, 1906). A reversible pendulum was also used by Kühnen

& Furtwängler (1906) who measured g at the “Königliches Geodätisches Institut

Potsdam” in Germany. This measurement was a key event in Germany’s geodet-

ical history, as this value 1909 became the global gravity reference (Dehlinger,

1978) for a period of more than 50 years, which ended with the advent of free fall

measurements, as these turned out to be more accurate.

The epoch of free fall gravimeters started with the proposals by Guillet, and

by Volet in 1946 (Cook, 1965). In 1952 Volet conducted a first measurement with

a falling graduated scale and high speed photography. Later free fall experiments

were performed by Agaletzkij et al. (1959) in Leningrad, Russia, Preston-Thomas

et al. (1960) in Ottawa, Canada, Thulin (1961) in Sèvres (Paris), France, and

Faller (1965) in Princeton, New Jersey, USA. In 1967 Cook built the first symmet-

ric free fall gravimeter, where a glass ball was launched upward and fell back under

the force of gravity. Sakuma improved this design in 1971 in Sèvres, France, by

applying optical (white light) interferometry for the length measurement (Faller

was the first contemporary with him to do this). By the end of the seventies a

Ukrainian group started a series of rise-and-fall gravimeters (Bondarenko et al.,

1997). Under the supervision of Faller, Niebauer (1987) launched the first serial
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Figure 1.7: Historical overview of the gravimeter’s increasing accuracy.

production of absolute free fall gravimeters (JILAG). The “new generation of ab-

solute gravimeters” (Niebauer et al., 1995) named FG5 was an improvement of

the JILAG. They were the first commercially available gravimeters on the mar-

ket, sold by the company AXIS (now MicroG-LaCoste).

Finally, Kasevich & Chu (1991) succeeded in the first measurement of grav-

itational acceleration with a gravimeter based on an atom interferometer (cf.

Baudon et al., 1999). Despite the sophisticated setup, the atom gravimeter is

still a free fall gravimeter, with the difference that the falling body is now micro-

scopic, rather then macroscopic objects, namely atoms, which obey the same law

of gravitation.

Figure 1.7, adopted from Torge (1989), illustrates the historical development

in terms of accuracy of absolute gravimeters.

1.2.2 Free fall gravimeters

1.2.2.1 Free fall

Nowadays, the most common ballistic gravimeter is the simple free fall gravime-

ter. This type of gravimeter uses a macroscopic object as a test body.

14
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The operating principle of a free fall gravimeter is quite simple. A test

Laser

Free falling
object mirror

Vibration isolated
reference mirror

BS

Detection
system

g

Figure 1.8: Working principle of a Michelson interferometer in a free fall
gravimeter. The object mirror (falling mirror) is attached to the test mass.
During the drop the change in path length with respect to the reference
mirror is measured. (BS = beam splitter)

body, to which a triple mirror retro-reflector is attached, functions as an object

mirror in a Michelson-type interferometer (cf. Fig. 1.8). The reference mirror

is attached to a long period seismometer (D’Agostino, 2005) or an active vibro-

isolation (Rinker, 1983) and defines a quasi-inertial reference system which the

movement of the test body is referred to. Due to the path length change, which

occurs when dropping the test mass, a chirped fringe signal (interferences of the

reference beam and object beam) is generated on the detector over a frequency

range from DC - 6 MHz, for a 200 ms drop (cf. Fig. 1.9). By measuring the

time when the zero crossings of the fringe signal occur, the trajectory can be

described (displacement in function of time). Each zero crossing equals a spacial

displacement of λ/4, where λ is the laser wavelength (usually a Helium-Neon

laser with λ = 633 nm). With a least squares fitting of the equation of motion

(e.g. equation 1.8) to the obtained trajectory, the parameters g (acceleration due

to gravity), v0 (velocity at t = 0) and z0 (position at t = 0) of the equation of

motion can be derived.

Modern gravimeters reach accuracies of the order of 1-2×10−9 (Niebauer

et al., 1995). Therefore relative uncertainties of 1 × 10−9 and 5 × 10−10 have to
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Figure 1.9: The interference signal generated due to the dropped mirror is
a chirped sine wave, which ranges from approximately DC to about 6 MHz
for a 200 ms drop. Each zero crossing signifies a relative translation of λ/4,
where λ denotes the laser wavelength.

be reached for the displacement and the time interval measurement, respectively.

This is only possible due to the invention of stabilized lasers and due to atomic

clocks, as well as the invention of the corner cube retroreflectors (Peck, 1948).

1.2.2.2 Symmetric free fall - Rise and fall

The operation principle of the symmetric free fall (also rise and fall) gravimeter,

which was first built by Cook in 1967, is essentially the same as that of the

simple free fall gravimeter, with the difference that the test body is launched

upwards rather than just dropped. So the movements upwards and downwards

are tracked and processed. The data acquisition is similar to that of simple free

fall gravimeters.

The advantages of this type of gravimeters are that the trajectory is longer

(up to 400 ms (D’Agostino, 2005)) – this reduces the error due to seismic noise

– and the gravimeter is less sensitive to air drag and non-homogeneous electrical

and magnetic fields, but more difficult to align. As the test body is launched, it

can have a horizontal velocity component, which introduces an error due to the

Coriolis effect. This error is one of the biggest contributions to the uncertainty
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1.2 Absolute measurement of gravity

Figure 1.10: The picture shows the rise and fall gravimeter IMGC#2 of
the Institute of Metrology G. Colonnetti, Italy, at the international com-
parison of absolute gravimeters in Walferdange, Luxembourg, November
2007.

budget of a rise and fall gravimeter (D’Agostino, 2005). Figure 1.10 shows an

example of a symmetric free fall gravimeter.

1.2.3 Atom gravimeters

Basically, atom gravimeters are free fall gravimeters, with the difference that

atoms are dropped instead of macroscopic objects. The principle is basically

laser ranging of atoms, where the position information is encoded into the atomic

wavefunction. This type of gravimeter is based on atomic interferometry (Baudon

et al., 1999). The first atom gravimeter was realized by Kasevich & Chu (1991).

However, its accuracy was quite poor. With an improved gravimeter, they reached

an accuracy of 3 × 10−9 (Peters et al., 1999). Although the dropping chamber

can already be built quite compact, the electronics are very bulky (cf. Fig. 1.11),

making real portable gravimeters infeasible. The considerable costs are another

disadvantage. On top of this, atom gravimeters suffer from the same sensitivity

of the reference mirror to seismic noise as the simple free fall gravimeters.
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Figure 1.11: Atom gravimeter from ONERA. Although the set-up is com-
pact, the electronics is bulky.

1.3 Selected applications

There are many applications for gravimeters. One of the main applications is

surely the determination of the geoid, i.e. geodesy, and with it cartography,

which needs gravity data for the height determination. But there are a variety of

applications that indirectly require the value of gravitational acceleration. These

are metrology, physical sciences, and geophysics, among others. The following

will report on some selected applications.

1.3.1 New definition of the Kelvin

Up to this date, the triple point of water (TPW) is used to define the unit

of temperature T . This means that the temperature is linked to a material

property. Recently, there was a proposal for a new definition of the Kelvin, namely

via the Boltzmann constant kB (Fischer et al., 2007). However, the current

uncertainty, with the temperature linked to the TPW, is 3 × 10−7, whereas the
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uncertainty of the Boltzmann constant is 10−6. For a redefinition of the Kelvin,

the new definition’s uncertainty should equal or exceed the old definition’s. The

most promising of the proposed measurement methods is dielectric-constant gas

thermometry (DCGT). The idea is basically to replace the density in the equation

of state of a gas by the dielectric constant ε. This constant is then measured via

a capacitor, which is placed in the gas bulb. The equation of measurement is

obtained by stipulating that

R = kBNA ,

where R is the molar gas constant, kB is the Boltzmann constant, and NA is the

Avogadro constant. The molar polarizability Aε, defined as

Aε =
NAα0

3ε0

,

contains the static electric dipole polarizability α0, and the exactly known electric

constant ε0. Combining both equations results in

kB =
Rα0

Aε3ε0

.

Finally, performed ab initio calculations (Fellmuth et al., 2006) gave exactly the

static electric dipole polarizability of the 11S ground state of the 4He atom in the
4He reduced atomic unit of polarizability

α∗
0(

4He) =
α0(

4He)

(4πε0a3
0(1 + me/mα)3)

,

where a0 is the Bohr radius and me/mα is the electron to α particle mass ratio.

Thus, the final measurement equation for kB becomes

kB =
4π

3
a3

0

(
1 +

me

mα

)3
α∗

0(
4He)

(Aε/R)4He

.

The need for the acceleration due to gravity g enters here via the measurement

of pressure. By combining the virial expression of the equation of state of a real

gas and the Clausius-Mosotti equation, the pressure p can be approximated as

p ≈ χ

(3Aε/RT ) + κeff

[
1 +

B(T )

3Aε

χ +
C(T )

(3Aε)2
χ2 + · · ·

]
,
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with χ = ε/ε0 − 1 as the dielectric susceptibility and κeff as the effective com-

pressibility. B(T ) and C(T ) are the second and third density virial coefficients,

respectively. For different pressures p of the gas-filled capacitor, the relative

change in capacitance is measured, which finally determines 3Aε/RT . This mea-

surement, however, requires an exact pressure determination, which demands a

knowledge of the gravitational acceleration to accuracies of better than 1× 10−7

(Sabuga, 2007).

1.3.2 New definition of the kilogram

Of the seven units of measurement in the International System (SI), the kilogram

is the only unit still defined by an artefact standard. It recently also became

evident that the kilogram (based on the International Prototype Kilogram (IPK),

a bar of platinum-iridium alloy made in the 1880’s and kept in a vault near Paris)

is loosing weight. Many international scientists believe it is time to redefine it

(Walker, 2004). Among other proposals to redefine the kilogram based on a

fundamental constant (Schwitz et al., 2004; Wignall, 2005), one idea is to relate

mechanical to electrical power via the so called moving-coil watt balance, first

suggested by Kibble (1976) (cf. also Kibble et al. (1990)). This is done as follows

(Fig. 1.12). On one side of a balance the gravitational force on a mass m in the

Figure 1.12: With the moving-coil watt balance mechanical force is com-
pared to electrical force.

Earth’s gravitational field is measured, where the acceleration due to gravity g

has to be known. This force is compared to the electromagnetic force acting on

a coil of the length l in a magnetic field B when a current I flows through it.
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When the balance is in equilibrium, we have

I(Bl) = mg .

In a further step of the experiment the coil is moved with the velocity v through

the magnetic field B. The induced voltage U gives

U = v(Bl) .

Combining both equations, for the site of measurement the following equation

results:

UI = mgv .

The electrical power is determined by means of the Quantum-Hall-effect and the

Josephson-effect:

P = UI = kf2
Jh ,

where fJ is the Josephson-frequency of the microwaves (typically about 70 GHz),

radiating onto the Josephson-element, h is Planck’s constant, and k is a calibra-

tion constant. The final result is for the mass

m = kf 2
Jh

1

gv
.

Hence, by means of this balance the kilogram will be traced back to electrical

power, which can be measured very accurately through the Josephson effect and

the quantum Hall effect. To convert the weight, which is measured with such a

balance, into kilograms, the gravitational acceleration g needs to be known. The

accuracy of a new mass presentation should be better than 10−8 (Schwitz et al.,

2004).

1.3.3 Measurement of the Planck constant

The same moving-coil watt balance can also be used to measure the Planck con-

stant to higher accuracy (Williams (1998); also see Eichenberger et al. (2003);

Robinson & Kibble (2007); Steiner et al. (2005)). Here again the knowledge of

g is necessary, and the mass m has to be known, as well. The current relative

standard uncertainty for the Planck constant is 5× 10−8 (NIST).
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1.3.4 Measurement of the Newtonian constant

Newtonian constant of gravitation, G, is determined with the least accuracy

(1.5 × 10−4). This is because of tremendous experimental difficulties. Henry

Cavendish performed the first measurement to determine G, in 1798, with a

torsion balance, invented in 1777 by Charles-Augustin de Coulomb, and inde-

pendently by John Michell, in 1783 (Jungnickel & McCormmach, 1996). Later

measurements were mainly based on the same principle. However, to reveal sys-

tematic errors, it is helpful to have different kinds of measurement principles to

measure the same quantity. Schwarz and collaborators (Schwarz, 1998; Schwarz

et al., 1998) were finally able to measure G using a free fall gravimeter. They

determined G by differential measurement, locating a huge test mass (≈ 500 kg)

close to the gravimeter at subsequently different positions. The achieved relative

accuracy was 1.4×10−3. Fixler et al. (2007) performed a similar experiment with

an atom interferometer. Systematic uncertainties limited the experiment to an

accuracy of 3 ‰.

1.3.5 Time keeping

In a recent article Kleppner (2008) reported the latest achievements in time stan-

dard (Ludlow et al., 2008; Rosenband et al., 2008). An overall uncertainty of

5.2 × 10−17 could be reached. At this level of accuracy, a general relativistic ef-

fect had to be included in the uncertainty budget. The uncertainty contribution

of 1 × 10−18 arises from the potential difference, which corresponds to a height

difference of 1 cm. Kleppner concludes that “the effects of general relativity that

mix time with gravity are starting to approach a point that will require rethink-

ing the basic concept of ‘keeping time’ ”. Modern gravimeters, however, can

resolve the potential difference surging from height differences, to better than

1 cm. Gravimeters, hence, could contribute to time measurement.

1.4 Organization of the thesis

This chapter briefly introduced the reader to gravimetry, showed how theoretical

tides can be calculated, and gave some selected applications. Also a historical
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overview of absolute gravity measurement was given and the working principles

of current free fall gravimeters were sketched.

The following Chapters 2 and 3 are dedicated to the gravimeter set ups,

developed during the thesis. The mechanics and optics of the stationary, as well

as of the portable gravimeter will be explained, and results will be discussed.

Two novel methods to balance the falling body will be described in-depth in

Chapter 4.

Before concluding with a summary and outlook in Chapter 6, the uncertainty

budgets for both gravimeters are given in detail in Chapter 5.
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Chapter 2

Stationary free fall gravimeter

MPG-1

This chapter presents the setup of the stationary free fall gravimeter (MPG-1)

and its operation principle. The mechanical, optical and electronics parts are

described. Results from long-term measurements are shown and discussed, as

well.

2.1 Setup

In Fig. 2.1 the schematic of MPG-1 (abbreviated from Max Planck Gravimeter)

(a), and the laboratory setup (b) are shown. The whole measurement apparatus

can be divided into three principal parts. (1) The ballistic block, with the mechan-

ics and falling body; (2) the laser interferometer with the quasi-inertial reference

mirror; (3) the electronics and computer for data acquisition and processing. As

the figure illustrates, the ballistic block (dropping chamber) is placed on an op-

tical table. The interferometer is mounted on top of the table except for the

quasi-inertial reference mirror, in this case a Super Spring (Rinker, 1983), which

is also used in the commercial FG5 absolute gravimeters from MicroG-LaCoste.

The Super Spring is placed on the laboratory floor beneath a 30 cm × 30 cm hole

in the optical table, so it is not visible in the top view photograph in Fig. 2.1(b).
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2. STATIONARY FREE FALL GRAVIMETER MPG-1

a) b)

Figure 2.1: Set up of the stationary gravimeter MPG-1. a) The schematic
of the measurement apparatus. b) The set up in the laboratory at Erlangen.

2.1.1 Optics and laser

The falling body’s free fall is traced with a Michelson type interferometer (2.2).

The object mirror, which is part of the falling body (FB), and the reference

mirror, which is part of the Super Spring, are not physically connected to the

rest of the interferometer. This main block of the interferometer consists of two

non-polarizing beam splitters (BS) and two mirrors (M). The design of the in-

terferometer is chosen so that a vertical displacement of the main block does not

introduce any change in path length (in-line interferometer system; cf. Niebauer

et al. (1995)). Only horizontal movements can alter the measurement, but those

movements are assumed to be small. The laser light emitted from a Helium-Neon

laser is expanded from 2 mm to 5 mm by means of a telescope. It is then split into

two beams by a non-polarizing beam splitter BS1. The reference beam (which

has to be aligned along g) is reflected from the free falling object mirror CCM1 to

the vibration isolated reference mirror CCM2, deflected by mirrors M1 and M2,

to finally recombine at beam splitter BS2 with the reference beam. By means of

a third lens L3, the interfering beams are focussed on the detector.

As a laser, a polarisation-stabilized (Spectra Physics1, A117), with a wave-

length of 633 nm, is used (for specifications see table 5.7). The beam splitters

1Sold by Newport

26



2.1 Setup

Figure 2.2: Interferometer setup. A Michelson-type interferometer is cho-
sen. The free falling corner cube mirror (CCM1) and the reference mirror
(CCM2), isolated by the Super Spring, are not mechanically connected to
the non-polarizing beam splitters (BS1,2), the two mirrors (M1,2), and the
two lenses (L1,2).

and the mirrors are commercially available and have surface qualities of better

than λ/10.

2.1.2 Electronics

One of the new features of our setup is that the whole fringe signal (with up to

1.6 million data points) is digitized and processed. In other gravimeters usually

just parts of the fringe signal are used for data processing. Since the duration

of our FB’s fall in the MPG-1 is about 200 ms, the resultant signal reaches a

frequency of up to 6.2 MHz. As an industry standard, a sampling rate of at

least 7 times the measured frequency is suggested. This means that the sampling

rate of the digitizing card should be a minimum 50 MHz. We use a high perfor-

mance digitizing PCI card (Gage Applied, CS 12400) capable of sampling up to

400 MS s−1. Usually, a sampling rate of 100 MS s−1 is taken. The ADC card has
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2. STATIONARY FREE FALL GRAVIMETER MPG-1

512 MB onboard memory, with a 12 bit amplitude resolution, and is built into an

industrial computer with a Pentium IV processor (3 GHz), with 2 GB of RAM

running under Microsoft Windows XP.

Since the sampling frequency gives the time scale of the tracked falling body,

the sampling time has to be referenced to a time standard. This is done by con-

necting an external (atomic) clock to the digitizing card, in our case a rubidium

time standard (SRS, FS725).

To trigger the digitizer, a special frequency trigger was built at our insti-

tute. This frequency trigger gives a TTL pulse when the signal frequency reaches

1 MHz, i.e. a pure free fall of ≈ 0.5 cm. Here, a stable starting reference height

is reached.

The laser fringe signal is converted by a photodetector into an AC signal and

is amplified.

Figure 2.3 shows the data acquisition and processing schematic. The laser fringe

Photo-
detector Amplifier ADC

Frequency
trigger Ref.

clock zerocrossing

1 MHz

s0
v0
g0

n0 , t0
n1 ,t1

.

.
nn ,tn

PC

Matlab

zerocrossing

Figure 2.3: Data acquisition and processing.

signal is first detected and amplified, and then digitized, before it is processed by

the software.
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2.1.3 Software

After the fringe signal is digitized, the data is loaded onto the PC and processed.

The analysis software was written with MATLAB. Figures 2.5(a) and 2.5(b) show

screen shots of the graphical user interface.

Alongside the data analysis, MATLAB also controls the motor. Although the

trajectories for the motor are programmed with software provided by Mattke AG,

the motor company, the MATLAB code retrieves the trajectories, stored in the

motor drive, by an RS232 serial connector. So the whole measurement is auto-

mated with the software. The algorithm for the measurement is depicted in Fig.

2.4.

Since the whole fringe signal is digitized, different fitting algorithms can

motor is initialized

motor moves the elevator with FB
slowly downwards to find the end switch

end switch 
defines zero 

position for all
following 
movements

motor moves the elevator with FB to the top end 
of the rail (start position)

motor accelerates elevator downwards with slightly
more than g;

FB falls freely

when f =1 MHz 
data acquisition starts

motor decelerates elevator and FB is caught softly data are processed

results are displayed

digitizing card is armed and frequency
trigger waits for signal;

ready for drop

Figure 2.4: Workflow of MPG-1.

be applied to the same drop and can be compared. We have implemented (1)

digital zero crossing (DZC ), (2) the second difference method (2ndDiff ) and (3)
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(a) GUI – principle page.

(b) GUI – residuals page.

Figure 2.5: The graphical user interface programmed with MATLAB.
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heterodyning. This opens new possibilities in data analysis. So far just DZC

is used, but comparisons of the three methods are planned for future long-term

measurements.

DZC works similar to analogue zero crossing. The fringe signal is browsed

Filtered Fringe Signal

Figure 2.6: The non phase shifting digital filter helps to reduce noise in
the fringe signal. The blue dots show the digitized fringe signal, and the
green line the filtered fringe signal.

for zero crossings and the respective times are calculated. Each zero crossing

signifies a change in path length of the falling object of a quarter wavelength λ/4

of the laser (λ ≈ 633 nm for the He-Ne laser). To these time-space data pairs, a

polynomial of second order is fitted (Equ. 1.8). The coefficient of the quadratic

term contains the acceleration due to gravity.

One advantage DZC has over analogue zero crossing is that it allows for ap-

plication of digital filters. In our software, we included a non-phase-shifting filter.

This filter makes it possible to clean a noisy fringe signal, without introducing
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2. STATIONARY FREE FALL GRAVIMETER MPG-1

errors due to phase shifts. When the signal is noisy, fake multiple zero crossings

can be detected, as seen in Fig. 2.6. These values give a bad g-value and the

drop should be skipped. So by applying this filter, the number of outliers can be

reduced and the lifetime of the gravimeter can be enhanced.

The 2ndDiff method will not be explained here, but a detailed description can

be found in Tsubokawa & Svitlov (1999).

Both of these methods, DZC and the 2ndDiff employ linear models. In con-

trast, the third method, the heterodyning, is a non-linear method. The advantage

of heterodyning is that the signal can be undersampled. So if memory has to be

saved, or the maximum sampling rate of the digitizing card cannot fulfil the

Nyquist-Shannon theorem, where the sample rate must be more than twice the

signal frequency then this method provides a good alternative. A description of

the method can be found in Niebauer et al. (2006). A drawback is the difficulty

of introducing disturbing effects in a non-linear model.

Table 2.1 shows typical single drop parameters for the MPG-1.

Table 2.1: Typical single drop parameters
Falling time T = 200 ms
Tracked falling distance H ≈ 26 cm
(Triggered @ 1 MHz, or h0 ≈ 0.5 cm after 33 ms of a free fall)
Effective height heff = 9.80/8.80 cm (depending on the method)
Sampling frequency fs = 100/200/400 MS/s
Required memory depth = 160/320/640 MByte
Amplitude resolution = 12 Bit
Number of samples = 20/40/80 MS
Number of zero crossings ≈ 1.6 Million (in case of linear model)
Time to process 1 drop td ≈ 15/30/45 s

2.1.4 Mechanics

The dropping chamber is composed of the vacuum chamber, with the mechanics

inside, the motor, and the ion pump. The vacuum chamber is made of stainless

steel, measures 100 cm in height and has a diameter of 25 cm. It is placed on

a smaller table, which in turn is fixed to the surface of the optical table. The

verticality of the vacuum chamber can be adjusted by means of three screws on
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the bottom flange of the chamber. This aligns the rail the elevator, and hence

the FB, moves along, parallel to the gravity vector g. Only coarse adjustment is

needed here, as the FB falls freely during the measurement with no physical con-

tact with the elevator until it is caught again. The alignment of the rail ensures

that the FB falls into the elevator’s vee-grooves in the same position it had in the

beginning, when the data acquisition started. The bottom flange of the vacuum

chamber also has a fused silica window, through which the vertically aligned laser

beam enters from the interferometer, goes to the object mirror, i.e. the FB, and

is reflected back to the interferometer.

The mechanical parts inside are made of aluminium and stainless steel. The

Figure 2.7: The elevator is connected to a perforated steel belt. The
pulley is driven by a position controlled motor.

small lifting chamber (elevator), containing the falling body is fixed to a perfo-

rated stainless steel belt (fig. 2.7). Its perforation holes fit into small teeth from

the pulley, which prevent the belt from slipping through. This belt, in turn, is

connected to the motor (Mattke AG), which has a position encoder, which – to-

gether with the perforated belt – allows precise positioning of the lifting chamber.

Different ramps can thus be programmed on the motor and the distance between

the lifting chamber and the falling body can be calculated. As the motor lies

outside the vacuum chamber, a rotary magnetic feedthrough is used to connect

the motor to the belt. It is dimensioned for a vacuum of the order of 10−10 mbar.

The lifting chamber is guided along a rail by two bearings (THK), which provide
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high stiffness on the one hand and low friction on the other. UHV-grease (Lub-

con, Ultratherm 2000) is used for lubrication.

The whole setup sits on an optical table (Opta GmbH) with a mass of approx-

imately 500 kg. This huge mass makes the whole set up very rigid and reduces

the transmission of the shocks resulting from the drop to the laboratory floor

and, hence to the Super Spring, i.e. the reference mirror.

All of the mechanical parts and the vacuum chamber were baked during the

first pumping, to free all surfaces from residual water molecules. Once the desired

vacuum of the order of 1 × 10−8 mbar is reached by means of the rough pump

and the turbo pump, the vacuum is maintained with an ion pump (Varian Inc),

attached to the bottom end of the vacuum chamber, at a sufficient distance to

avoid disturbing magnetic fields on the FB.

The FB itself is made of titanium and contains a hollow corner cube retro-

reflector (ProSystems1, model VersaMount, USA), silver coated for a laser wave-

length of 633 nm. Three ball-bearing balls, which fit into three vee-grooves of

a support ring, are pressed into its housing, and the support ring is mounted

to the interior of the elevator. Due to the fact that the elevator is accelerated

downwards with more than g when a drop is performed, the FB separates to up

to 5 mm from the support ring until it is softly caught again by the elevator. The

distance the elevator moves during the drop is about 50 cm. During this distance

a pure free fall length of the FB of 30 cm can be reached, i.e. a drop duration of

about 250 ms.

2.2 Results and analysis

After 1.5 years, MPG-1 was able to record long-term measurements (LT) with

standard errors of less than 10 µGal. With this resolution we were able to re-

veal systematic errors, like a serious problem caused by the interferometer being

mounted on the optical table, where it was picking up the motor’s vibration.

The error source was easily removed by putting the interferometer on an active

vibration isolation, which reduced the residuals in a single drop data fit from ≈
1This company does not produce retroreflectors any more.
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100 nm to less than 10 nm.

Once the main error sources were eliminated or reduced, and the measurement

procedure was automated, the set up was tested in a one-month LT. Figure 2.8

shows the result, whereas Fig. 2.9 is a closeup of a 72 hour section of the same

LT. The measured data (blue dots) very smoothly fit to the theoretical change

of gravity calculated by an Earth tides model (TSoft, 2008). During the LT, a

Figure 2.8: One month of measured gravity with MPG-1 (LT#5). The
red solid line shows the theoretical tidal gravity influence. The blue dots
show the measured values with the respective standard errors as error bars.

sampling frequency fs of 100 MS s−1 was used. Each hour one set of data was

taken, with a set of data consisting of 10 single measurements. The standard

error bars (shown in Figs. 2.8, 2.10 and 2.9; mean g-values are subtracted) are

calculated from these sets. Figure 2.10 shows the residuals of the LT after sub-

tracting the mean g-value. One set takes approximately 3 minutes. The time

needed to perform one set of measurements could be reduced by just skipping the

digital filter, but it greatly improved the number of accepted drops, so the option

is kept switched on. Unfortunately, first saving the fringe signal and processing it

later does not improve the performance, since saving data takes as much time as

processing them. The filtering algorithm is a built in function from MATLAB’s
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Figure 2.9: One month of measured gravity with MPG-1 (LT#5). A
closer look clearly shows that the data measured agree with theoretical
tidal models.

signal processing toolbox, and hence, already optimized. DZC is also optimized

and leaves no room for further improvement.

With the one-month LT we finally were able to reach a resolution of 0.6 µGal,

after correction for solid tides, pressure effects, and temperature effects.

In Fig. 2.11 the amplitude spectrum of LT#5 is shown. The diurnal con-

stituents O1 (26 h 16 m) and K1 (23 h 49 m) can be identified, as well as the

semi-diurnal constituents M2 (12 h 29 m) and S2 (12 h 03 m). This is in good

agreement with the amplitude spectrum obtained from theoretical data (cf. Fig.

1.6 and Tab. 1.2).
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Figure 2.10: Residuals of one month of measured gravity with MPG-1
(LT#5), with the theoretical tides subtracted. The mean g-value is also
subtracted.
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Figure 2.11: Amplitude spectrum of one month of measured gravity with
MPG- 1 (LT#5).
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Chapter 3

Portable free fall gravimeter

MPG-2

3.1 Introduction

Once MPG-1 was running and producing satisfactory results, we went on to

build a portable absolute gravimeter MPG-2 based on the experience obtained

with MPG-1. As an improvement over MPG-1, the mechanics were redesigned

to reduce the vibrations the motor caused during the drop.

The need for a portable device is obvious. In a day-to-day practice, gravi-

metric measurements have to be carried out on-site at different locations. The

data obtained on-site are compared and are used for gravity networks. While

MPG-1 functions as a highly accurate reference system, the portable gravimeter

is further developed in order to be directly compared with other gravimeters, as

is regularly done at international comparisons like the European Comparison of

Absolute Gravimeters (ECAG), Luxembourg, or the International Comparison of

Absolute Gravimeters (ICAG) at the Bureau International des Poids et Mesures

(BIPM), Paris.

This chapter presents the setup of the portable absolute free fall Max Planck

Gravimeter 2 (MPG-2). The results of the ECAG 2007 in Walferdange, Luxem-

bourg, will be discussed, as well as a further comparison with Germany’s federal

agency for cartography and geodesy, which was conducted in February 2008.
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3.2 Set up

Figure 3.1 shows the setup of the MPG-2. It is a portable absolute gravimeter,

albeit still a prototype. It consists of the dropping chamber with the ion pump, a

tripod, the Super Spring as reference mirror, and a notebook with a PCI exten-

sion. Further components are the laser and the atomic clock, as separate units.

Figure 3.1: The setup of the portable free fall gravimeter MPG-2 at a
measurement point in the mine in Walferdange/ Luxembourg in November
2007. (The position of the ion pump is different in the new setup - see
discussion in Subsection 3.3.1).

3.2.1 Optics and laser

MPG-2’s interferometer follows the same principle as used for MPG-1, but minia-

turized and fixed to the housing of the Super Spring (Fig. 3.2). Additionally, the

laser is fibre-coupled to the interferometer. The beam verticality is aligned by

replacing the second beam splitter with a hollow retroreflector, and is explained
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in Section 5.1.5. The same laser is used for MPG-2 and MPG-1, but with MPG-2

Figure 3.2: The Michelson interferometer is directly mounted on the Super
Spring.

it is fibre-coupled and mounted on a breadboard. For this breadboard, a housing

was constructed to make the setup rigid and portable.

3.2.2 Electronics

The electronics is assembled in a 4-slot PCI-extension from Magma (Fig. 3.3).

It consists of the digitizing card and the frequency trigger. The PCI-extension is

connected to a notebook (2 GB RAM, Intel® Core™ T7200@2.00 GHz). The mo-

tor drive and power supplies are integrated in a 19 inch rack, which is connected

to the PCI-extension.

3.2.3 Software

The same software is used for MPG-2 and MPG-1, which is possible due to its

option of switching from MPG-1 to MPG-2 parameters. The workflow of a drop

is sketched in Fig. 3.4.

3.2.4 Mechanics

The mechanics were completely redesigned for MPG-2. It was necessary to reduce

the motor’s size and minimize the vibrations it caused during the drops. Beyond
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Figure 3.3: The electronics for MPG-2 is assembled in a PCI extension,
connected to a notebook.

this, a portable gravimeter should be easy to disassemble and have a compact

design. The main modification to MPG-1’s mechanics is that MPG-2’s elevator

is accelerated by springs instead of a motor (cf. Fig. 3.5). MPG-2’s vacuum-

compatible stepper motor (Phytron) is mounted inside the vacuum chamber and

has the sole purpose of lifting the elevator containing the FB. On its way up, the

elevator is guided by two ball bearings (THK), lubricated with vacuum grease.

A third ball bearing guides a cart that hooks into the elevator to tow it upwards.

The springs are loaded during the lifting process. When a special mechanism

releases them once they reach the top position, they withdraw the elevator back

to its initial position.

A further modification was made regarding the drop length. MPG-1’s max-

imum drop length is 30 cm, whereas MPG-2 is reduced to 10 cm as a further

requirement to compactness. The drop length can be adjusted by changing the

spring’s length and strength.

The vacuum chamber has an upper and a lower window flange, the upper serv-

ing as an observation window while the lower is the entrance and exit window

of the laser light. Originally, the ion pump was placed on the vacuum chamber

next to the falling tower. During the international comparison it became evident

that this arrangement negatively affected the measurements (cf. Section 3.3.1).

The magnetic field produced by the ion pump was far too strong at this distance

and accordingly distorted the results. So in a later design we displaced it to a
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3.2 Set up

motor is initialized

motor lifts up the elevator containing 
the FB to search the end switch

positioned at the top end of the rail
(FB is released, but no data are taken)

end switch 
defines zero 

position for all
following 
movements

tow-cart goes down and picks up the
elevator with the FB

digitizing card is armed and frequency
trigger waits for signal;

ready for drop

tow-cart goes down and picks up the
elevator with the FB

elevator with FB is towed upwards;
2 cm before end switch velocity is reduced

when elevator reaches end switch tow-car is 
released

springs are loaded

elevator is accelerated downwards by means of springs
FB falls freely

when f =1 MHz 
data acquisition starts

springs decelerate elevator and FB is caught softly
data are processed

results are displayed

Figure 3.4: Workflow of MPG-2.
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Motor

FB Elevator

Towing 
cart

Springs

Release
mechanism

Figure 3.5: The portable gravimeter MPG-2 uses springs for acceleration
of the elevator, rather than the motor. The motor is just used to lift up
the elevator and load the springs. Herewith the vibrations during the free
fall are reduced.

position approximately 30 cm further away from the dropping chamber.

As a stable base, a tripod made of aluminium profiles was constructed. The

vacuum chamber is placed on the tripod, which has an x-y-adjustable plate on

the top. This adjustable plate allows to align the reflected laser beam, to give

a good overlap of the two beams in the interferometer. This is done via two

micrometer screws.

The entire mechanical setup measures about 1.30 m in height, and the weight

of the whole equipment is about 70 kg.

3.2.5 Results

After less than one year of construction, the first satisfactory results with MPG-2

were obtained. Figure 3.6 shows the first long-term measurement we conducted

in the end of October 2007.
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3.3 International comparison ECAG 2007,
Walferdange/Luxembourg

By correcting the value for theoretical tides we obtained a statistical uncertainty
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Figure 3.6: The first long-term measurement at site Erlangen showed very
promising results

of 1.6 µGal, when measured during 24 hours. This was an excellent result.

3.3 International comparison ECAG 2007,

Walferdange/Luxembourg

We participated in the European Comparison of Absolute Gravimeters (ECAG)

from November 6th to 9th, 2007, in Walferdange, Luxembourg. The measure-

ment site was located in a gypsum mine (Fig. 3.7). Besides our MPG-2, the

comparison included 17 FG5’s, 1 JILAG, and the only European rise-and-fall

gravimeter IMGC-2.

For the comparison each group had to measure at least for 12 hours at 3

different pillars. The different pillars were located at different heights inside the

same measurement room. Additionally, the atomic clocks, thermometers, and

pressure gages of each participating group were compared. The first setup time

of MPG-2 took several hours, mainly due to the warm-up time of the standards

and apparatus. When moving to the next measurement site, however, it took us

only one hour to start the next set of measurements.
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a) b)

Figure 3.7: The ECAG 2007 took place in a gypsum mine in Walferdange,
Luxembourg: a) map of the mine; b) picture from the measurement room
inside the mine.

Measurements were conducted at three different sites (Fig. 3.8 shows the

 

Figure 3.8: Measurement at the site C4 at ECAG 2007.

measurement results conducted at site C4) and no serious problems occurred.

However, our results showed a considerable disagreement with the values obtained

by other apparatuses. Previous results showed that our gravimeter measured a

value 510.7±13.4 µGal higher than other devices, although the measurement stan-

dard uncertainty of MPG-2 during the comparison was typically about 5 µGal.
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3.4 Comparison with BKG

3.3.1 Discussion of results

Although the offset of our measured values with respect to other gravimeters was

too large, it was quite stable from site to site. The measurements very distinctly

depicted the different heights (Fig. 3.9; measurement time at pillar A1 was not

12 hours, since due to warm-up time the measurement was started too late).

Tracing back our value to Erlangen, we were able to investigate the reason for
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Figure 3.9: The measurements with MPG-2 showed good repeatability.
The different mean values result from the different heights of the measure-
ment sites.

the large offset observed at ECAG 2007. It turned out that the ion pump’s magnet

was too close to the dropping chamber (Fig. 3.10(a)). It acted directly on the

FB and accelerated it downwards. Measurements were conducted to determine

the magnetic field. Finally, we were able to reduce the offset by placing the ion

pump about 30 cm further away (Fig. 3.10(b)).

3.4 Comparison with BKG

After the source of the offset during ECAG 2007, was located, another comparison

had to be carried out to re-evaluate the offset. We were invited by the Bunde-

samt für Kartographie und Geodäsie (BKG) for a comparison at Bad Homburg,
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(a) Ion pump close to dropping chamber (b) Ion pump far from dropping
chamber

Figure 3.10: The influence of the ion pump’s magnetic field was reduced
by placing it farther away from the FB.

Germany. Besides the absolute gravimeters, the BKG owns two superconducting

relative gravimeters that take continuous data. These were good conditions for

a further investigation of our apparatus’ systematic errors. Our assumption was

confirmed. The offset was reduced by a factor 10. Taking the uncertainty budget

and corrections (cf. Table 5.25) into account, our gravimeter’s accuracy is in good

agreement with FG5-101 from BKG (cf. Table 3.1 and Fig. 3.12). Our offset

with respect to the value measured with the FG5 was −37.6±38.4 µGal, for pillar

BA, and +9.8 ± 38.4 µGal, for pillar AA. Figure 3.11 shows the measurement

results for pillar AA.

Table 3.1: Measurement results – Bad Homburg.
Pillar BA Pillar AA

Pure measurement 981 055 060.8± 3 981 055 072.9± 3
With corrections & std. unc. 981 055 046.5± 38.4 981 055 057.5± 38.4
Nominal value (FG5) 981 055 081.0± 2.0 981 055 044.6± 1.1
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Figure 3.11: Measurements at Bad Homburg – pillar AA.
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Figure 3.12: Measurement results – Bad Homburg. The FG5-value is the
reference.
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3.4.1 Discussion of the results

The comparison at BKG gave us an opportunity to evaluate our gravimeter in

more detail. The results of the comparison were more than satisfactory. A full

agreement of the measured values within the assessed uncertainty was reached.

Of course, all possible error sources have to be further investigated. Just an im-

proved uncertainty budget can give more information about an absolute accuracy.

Nevertheless, the portable gravimeter MPG-2 can compete with state-of-the-art

gravimeters.
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Chapter 4

High-precision balancing of the

falling body

For many years, the error due to the rotation of the falling body during its free

fall was one of the biggest contributions to the absolute gravimeter’s uncertainty

budget (Hanada, 1988; Hanada et al., 1996; Niebauer et al., 1995). This is why

many groups worked on reducing this error (Germak et al., 2002; Hanada, 1988;

Vitouchkine & Faller, 2004). This chapter describes how we reduced the con-

tribution of the rotation of the falling body to the uncertainty budget. The

development of these methods is a principal item of the thesis and will be dis-

cussed in more detail. We were the first in determining the distance between

the optical centre of the falling body, and his centre of mass in three dimensions.

Others did it only in one dimension.

Two different methods were developed. The first one includes a simple triple-

mirror retroreflector assembled in a housing. The position of the optical centre

(OC) of the triple mirror can have an unknown position inside the housing, but

is determined with a coordinate measuring machine (CMM). The centre of mass

(COM) of the entire housing-mirror assembly is then shifted to the OC by em-

ploying a commercial balancing machine.

We had two reasons developing a second method. The first was that the bal-

ancing technique needed to be enhanced, and the second was to find a way to

perform the process without a CMM. CMMs are expensive, so to avoid buying
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one or having the OC’s position measured commercially, which would have in-

volved bringing the falling body assembly to an according company, we started

looking for commercial triple mirrors with known exact OC positions. Then we

constructed the housing in a way that the housing-mirror assembly still provides

knowledge of the OC to a small tolerance. By means of an enhanced balancing

technique the COM is then shifted to the assumed OC.

The first of the two methods we discuss was published in 2007 (Rothleitner

et al., 2007a).

4.1 Introduction

An absolute gravimeter measures the acceleration of a body, falling freely in the

Earth’s gravity field. The falling body (FB) contains the object mirror of a laser

interferometer (a corner cube prism or a hollow corner cube retroreflector; in

our description, we employ a hollow corner cube mirror assembly). The Earth’s

gravity g acts on the centre of mass (COM) of the falling body. However, the

interferometer measures the displacement of the optical centre (OC) of the falling

body. Therefore it is vital that the COM and OC coincide. With the OC addi-

tionally rotating around the COM during free fall, an additional acceleration will

be measured. Its vertical component is

a(t) = ω2R sin(γ0 + ωt) , (4.1)

where ω is the horizontal component of the angular velocity, R the actual dis-

tance between the OC and the COM, and γ0 the initial angular position of the

OC relative to the horizontal plane (Fig. 4.1).

For small rotation angles ωt during free fall, minimum distortion is reached

when γ0 ≈ 0◦ or γ0 ≈ 180◦, i.e. the OC and the COM are separated mainly hor-

izontally. On the other hand, it hits the maximum, when γ0 ≈ 90◦ or γ0 ≈ 270◦,

i.e. the separation between the centres is vertical. In this case the distorting accel-

eration (4.1) is a(t) ≈ ±ω2R cos(ωt), where the ± refer to the OC above/below

the COM. Here the value of acceleration does not depend on the direction of

rotation. The maximum acceleration is given by

|amax| = ω2R . (4.2)
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Figure 4.1: Rotation of the falling body causes an error in g measurement.
If the OC rotates by an angle ωt about the COM, an apparent change in
path length is h(t) = h2 − h1 = −R sin (γ0 + ωt) + R sin γ0, which results
in a distorting acceleration a(t) = ω2R sin (γ0 + ωt).

At first glance it seems that only the distance in z-direction is important to

be balanced. However, if the FB sits not exactly horizontal in the vee-grooves,

but inclined to some degree, a distance between the COM and the OC in the

horizontal x-y-plane has a projected part along the z-axis. The other reason why

a 3-dimensional balancing should be considered is, that a separation of the two

centres in the x-y-plane produces distortions in the third order term, which con-

tains the gravity gradient. An extraction of the gravity gradient from a single

drop is planned for the future.

Equation 4.2 illustrates that there are two ways to reduce the error due to FB

rotation: either to decrease the value of rotational velocity during free fall or to

minimize the distance between the centres. As a rotation is often unavoidable,

much research is concentrated on reducing the distance between the centres.

Early works employed an interferometric method to coincide the OC with the

COM. A Michelson interferometer generates a fringe pattern between a reference

corner cube retroreflector and the corner cube falling body assembly. The falling

body assembly is placed on a rotating table. The interference signal contains

information about the distance between the OC and the axis of rotation. The
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table is constructed in a way that the falling body can be rotated around either

the COM (Hanada, 1988) or the OC (Germak et al., 2002). In the first case, the

OC is adjusted to within about 50 µm of the vertical axis of rotation by minimiz-

ing the number of fringes during one revolution of the rotating table (Hanada,

1988). Similarly, in the second case, the falling body assembly is shifted to coin-

cide the OC with the horizontal axis of rotation. Then the natural equilibrium

of the falling body assembly, mounted on the previously balanced rotating table,

indicates the position of the COM relative to the axis of rotation. Hence, in

both cases it is possible to adjust the OC and the COM to the axis of rotation.

In Germak et al. (2002) it was also realized that the total distance in 3D space

had to be accounted for. The smallest achievable distances between centres were

hence estimated to be 33 µm and 14 µm for the falling body assemblies with

masses of 33 g and 75 g, respectively (Germak et al., 2002).

Another method to improve the alignment of the centres is to monitor the

value of g while introducing a defined rotation on the falling body (Vitouchkine

& Faller, 2004). In this case, the COM is moved to coincide with the OC until

the difference in the measured values of g is minimized. However, this method

requires the vacuum chamber to be opened several times to extract the falling

body in order to adjust the COM.

Here, we describe a different method for measuring and minimizing the dis-

tance between the OC and the COM in 3D space using a mechanical balancing

technique. The method is similar to that commonly used in industry to balance

rigid rotors (Schneider, 2003). We demonstrate that the resolution of this method

approaches that of an interferometric one with the advantage that the relative

position of the centres in 3D space is well defined.

4.2 Balancing in three dimensions

4.2.1 Theory of balancing

Consider an object with a mass m that rotates at an angular velocity Ω about an

axis. If the COM is offset from the rotation axis by a vector e with coordinates
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x, y, and z, a centrifugal force F = meΩ2 is produced. The product me is called

the imbalance u:

u = me . (4.3)

The imbalance during rotation around the z-axis, projected onto the x-y plane,

is uL = meL (Fig. 4.2). Similarly, projection of this imbalance onto the y-z plane

Figure 4.2: Eccentricity of the centre of mass in 3D space (vector e with
coordinates x, y, and z).

is uQ = meQ. Here eL and eQ are the eccentricities, which express the distance

from the axis of rotation to the projection of the COM onto the orthogonal plane.

The lengths of these vectors are:

|eL| =
√

(x2 + y2) ,

|eQ| =
√

(y2 + z2) .
(4.4)

The angles between the projected vector eL and the x-axis, and vector eQ and

the z-axis are called α and β, respectively:

α = arctan
(y

x

)
,

β = arctan
(y

z

)
.

(4.5)
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A balancing machine measures the vibrational accelerations at the shaft of

the rotor a = KSF/mS, where KS and mS are the scale factor (sensitivity)

and the inertial mass of the accelerometer, respectively. Provided that another

scale factor C = |u|/|a| is derived during the calibration, the balancing machine

calculates the values of the imbalances uL = |uL| = C|aL| or uQ = |uQ| = C|aQ|
with the corresponding angles α or β. By changing the mass distribution of the

rotor, the imbalance can be reduced.

If the mass m of an object is known and constant, and the values of the

imbalances uL, uQ and the angles α, β are measured, it is possible to solve Eqs.

(4.3), (4.4) and (4.5) to find the position of the COM, namely the coordinates

xCOM , yCOM , and zCOM . Given that the OC is located at the known coordinates

xOC , yOC , and zOC , the COM can then be shifted to this point by changing the

mass distribution of the falling body. Thus, instead of completely reducing the

imbalance, one has to adjust it to an amount deduced from the position of the

OC and the mass value of the falling body.

4.2.2 Method

To adjust the COM to the OC, we first constructed a suitable housing for the

corner cube retroreflector (Fig. 4.3(a)). For light weight and high strength, the

housing is constructed using titanium. A commercial, high precision, hollow cor-

ner cube retroreflector (VersaMount Prosystems, USA) with an aperture diameter

of 1 inch (25.4 mm)is embedded inside the housing. In order to shift the COM of

the entire test body assembly, tap holes and a movable counter mass are added

(Fig. 4.3(a)). The housing is designed in a way as to rotate the falling body

around two axes perpendicular to each other (Fig. 4.3(b)). By adjusting the

counter mass, the COM can be moved along the z-axis. To move the COM in the

x-y-plane, screws can be wound into or out of the tap holes. After mounting the

retroreflector in the housing, the actual coordinates (xOC , yOC , and zOC) of the

OC are measured in the Cartesian coordinate system, using a coordinate mea-

suring machine (DEA, Italy, model Global classic, Hexagon Metrology; Fig. 4.4).

This coordinate system has its origin in the intersection point of two rotational

axes (Fig. 4.3(b)).
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4.2 Balancing in three dimensions

Figure 4.3: Falling body of the absolute gravimeter: a) housing of the
corner cube retro-reflector (1 - counter mass, 2 - tap hole); b) position
during balancing (point of intersection of the rotational axes defines origin
of the coordinate system).

Figure 4.4: The position of the OC is measured with a coordinate mea-
suring machine.

Once the OC’s position is determined, it is possible to start balancing the

falling body. A commercial balancing machine (Micro Präzision Marx GmbH,

Germany, model BMT 210M) is used. Figure 4.5 shows the main set up. The

falling body (a) is centred in the support by two mounting jigs. Its rotation is

driven by a motor (b). An optical sensor (c) is employed to detect the angular

frequency and phase. A vibration sensor (d) is used to measure the vibrational
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accelerations. The balancing machine is calibrated first by introducing a well

defined imbalance, i.e. by placing a known mass at a known radius. After cal-

ibration, this calibration mass is removed. The balancing machine reports the

calculated values of the imbalance in the polar coordinate system. The polar

axis of this coordinate system starts at the origin, shown in Fig. 4.3 (b), and

passes through the position of the calibration mass, attached during calibration.

Thus, after balancing in two planes, the values of the imbalances uL and uQ with

the corresponding angles α and β are known. Then from (4.3) the values of the

eccentricities are

eL =
uL

m
,

eQ =
uQ

m
.

(4.6)

From (4.4) and (4.5) the coordinates of the COM are

xCOM = eL cos α ,

yCOM = eL sin α ,

zCOM = eQ cos β .

(4.7)

Compared with the known coordinates xOC , yOC and zOC of the OC, the

Figure 4.5: Balancing setup: (a) falling body; (b) drive motor; (c) optical
sensor; (d) vibration sensor.
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differences between the centres in each coordinate are

∆x = xCOM − xOC ,

∆y = yCOM − yOC ,

∆z = zCOM − zOC .

(4.8)

Hence, the total distance R between the two centres is

R =
√

(∆x2 + ∆y2 + ∆z2) . (4.9)

To minimize R, the COM is moved to the OC by shifting the counter mass of

the housing or by winding in or out screws in the tap holes (Fig. 4.3(a)). After

each change of mass distribution, the imbalances are remeasured and calculations

(4.6) – (4.9) are repeated. This procedure is performed for both the x-axis and

z-axis of rotation (Fig. 4.3(b)) until R is minimized.

In order to measure the minimized distance R more precisely, we apply

Figure 4.6: Enhanced method to detect the imbalance. The unknown
imbalance u0 is at the unknown angle Θ0 to the x-axis of the Cartesian
coordinate system, where the OC is defined. The additional imbalance
u1 is applied at twelve different angles Θn. The measured imbalance |un|
reaches a maximum, when Θ = Θn −Θ0 = 0.

the procedure with the enhanced resolution (Schneider, 2003). In this case the
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imbalance is measured in another polar coordinate system where the polar axis

starts at the same origin (Fig. 4.3(b)) and coincides with the positive x-axis or

the z-axis (Fig. 4.6). A small mass is then attached to the falling body (or to

the mounting jigs) at twelve different angular positions in the plane, orthogonal

to the axis of rotation. The measured imbalance un = |un| depends on the angle

Θ = Θn−Θ0 between the existing imbalance u0 and the additional imbalance u1

(Fig. 4.6). To calculate it, the “parallelogram rule” and the cosine theorem can

be used:

un =
√

u2
0 + u2

1 + 2u0u1 cos(Θn −Θ0) . (4.10)

Here u0 = |u0| is the unknown imbalance of the falling body located at the

unknown angle Θ0, and u1 = |u1| is the additional imbalance located under the

known angle Θn.

The imbalance (4.10) reaches a maximum when a zero difference occurs in the

angular positions between the vectors u0 and u1 (Fig. 4.6).

In some cases when the imbalances u0 and u1 are essentially different in mag-

nitude (Schneider (2003) recommends setting this ratio in a range 5 to 10), (4.10)

can be reduced to the sine curve:

un ≈ u0 + u1 cos(Θn −Θ0) , (4.11)

or

un ≈ u1 + u0 cos(Θn −Θ0) . (4.12)

The first equation (4.11) is valid for u1 � u0 while the second one (4.12) can

be used for u0 � u1. The maximal relative error of approximation for Θn = Θ0

is of the order of 0.5(u1/u0)
2 and 0.5(u0/u1)

2 for (4.11) and (4.12), respectively.

For the sake of generality, we fit the curve (4.10) with three unknown parame-

ters (u0, u1 and Θ0) to the measured imbalances un using the weighted non-linear

fitting option in the software package Origin™. The obtained solutions, namely

the values uL = u0 and α = Θ0 or uQ = u0 and β = Θ0, are then used to

recalculate the final results (4.6) – (4.9).
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4.2 Balancing in three dimensions

4.2.3 Results

The actual position of the OC in the housing (Fig. 4.3(a)) was derived using

the above-mentioned coordinate measuring machine. Its conventional procedure

allows to measure the hollow corner cube’s apex coordinates in the Cartesian

coordinate system. For this, each of the three surfaces of the hollow corner cube

are contacted at 16 different points by a spherical probe (Renishaw, model SP25).

This gives results of the length measurements relative to the well-defined refer-

ence plane. Three geometrical surfaces (planes in this case) are then fitted to the

measured coordinate data. The calculated point of intersection of these planes

gives the apex of the corner cube. Hence, the results of measurements are the

OC coordinates xOC , yOC and zOC (Table 4.1). To compare with the results of

the COM determination in the polar coordinate system, the OC coordinates are

recalculated into the eccentricities and angles, using Eqs. (4.4) and (4.5) (cf.

Table 4.1).

Balancing of the falling body was performed in a few iterations according to

the procedure described in Subsection 4.2.2. Finally, in each of the orthogonal

planes the imbalance was measured six times for each of the twelve angular po-

sitions of the additional mass. These results are given in Tab. 4.1 and shown in

Fig. 4.7 together with the curve (4.10), fitted to the measured imbalances. The

fitted values are uL = (14.10±0.02) gmm, α = (103.43±1.06)◦ (rotation around

the z-axis) and uQ = (14.43± 0.02) gmm, β = (247.35± 1.33)◦ (rotation around

the x-axis). If the simplified model (4.11) is used, the differences in the estimated

parameters are within 1%, which is acceptable for some applications. In our case

the ratio u1/u0 ≈ 0.12 leads to the maximal relative error of approximation (4.11)

of the order of 0.7%. To avoid this, we use the general model (4.10).

For the mass of the falling body m = 121.61 g the eccentricities eL and eQ

from (4.6) are 115.93 µm and 118.64 µm respectively. The coordinates of the

COM are calculated using Eqs. (4.7). The total distance R = 43.2 µm is ob-

tained from equation (4.9). All the uncertainties, listed in Tab. 4.1, are derived

in the following sections.

Assume a maximum value for the angular velocity ω = 10 mrad s−1 during free

fall (Niebauer et al., 1995) and an expanded uncertainty of the distance between
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

centres UR = 74.7 µm (cf. Table 4.1)1. Then, according to (4.2), the expanded un-

certainty of g, resulting from such a rotation, is given by Ug = ω2UR ≈ 0.7 µGal.

This is well within the acceptable performance limit for modern free-fall absolute

gravimeters.

Table 4.1: Results of the COM to the OC adjustment.
Eccentricities/µm Angles/degrees Coordinates/µm
eQ eL β α x y z

OC 114.2 117.1 271.3 102.7 -25.8±1.5 114.2±1.5 -2.5±1.6
COM 118.6±13.5 115.9±3.5 247.4±1.4 103.4±1.1 -26.9±2.3 112.8±3.4 -45.7±5.8
Distance between centres in each coordinate -1.1±2.8 -1.4±3.8 -43.2±6.0
Total distance between centres in 3D space 43.2±15.7
Expanded uncertainty ( k = 2) of the distance
between centres in 3D space

UR = 43.24 + 2× 15.72 = 74.68

  

Figure 4.7: Results of the imbalance measurements when rotating around
the x-axis (a) and the z-axis (b). Dots are measured values with the sta-
tistical standard deviations shown as error bars. The smooth line is the
fitted sine curve (4.10). Obtained values of the imbalances and angles are
reported with the standard errors derived from the weighted least square
fitting.

1We use the symbol U with the subscripts for the expanded uncertainty. The symbol u

with the subscripts is for the imbalance.

62



4.2 Balancing in three dimensions

4.2.4 Uncertainty analysis

4.2.4.1 Propagation of uncertainty

The measurement equations are given by (4.6) – (4.9). Let the coordinates of the

OC (xOC , yOC , zOC) be known with the standard uncertainties σx,OC , σy,OC and

σz,OC . Let the eccentricities eL and eQ be derived from (4.6) with the standard

uncertainties σL and σQ. These latter uncertainties combine statistical errors af-

ter the weighted non-linear least squares fitting of the curve (4.10) with known

erroneous imbalances and eccentricities. Angles α and β are derived from the

same least squares fitting with the standard uncertainties σα and σβ, which com-

bine statistical errors after fitting with an uncertainty due to misalignment of

the coordinate systems. Then from (4.7) and (4.8), following the law of uncer-

tainty propagation (ISO, 1995), we obtain the standard uncertainties of the COM

coordinates

σx,COM =
√

(eL sin α)2σ2
α + (cos α)2σ2

L ,

σy,COM =
√

(eL cos α)2σ2
α + (sin α)2σ2

L ,

σz,COM =
√

(eQ sin β)2σ2
β + (cos β)2σ2

Q

(4.13)

and the standard uncertainties of the differences between the centres in each

coordinate:

σ∆x =
√

σ2
x,COM + σ2

x,OC ,

σ∆y =
√

σ2
y,COM + σ2

y,OC ,

σ∆z =
√

σ2
z,COM + σ2

z,OC .

(4.14)

In the case when all coordinates of the COM are obtained independently, the

standard uncertainty σR of the total distance R, derived from (4.9), is

σR =

√
∆x2σ2

∆x + ∆y2σ2
∆y + ∆z2σ2

∆z

∆x2 + ∆y2 + ∆z2
. (4.15)

Note that in our case, the x- and y-coordinates of the COM were calculated

using the same measured values eL and the angle α (see (4.7)). Hence, the input
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

quantities ∆x and ∆y in (4.9) are not independent, and the estimation of the

standard uncertainty by (4.15) can not be used. To overcome the problem, we

take this correlation into account (Sommer & Siebert, 2006). For this we first

substitute the measured imbalance uL through the eccentricity eL with the angle

α directly into equation (4.9) and then calculate the standard uncertainty of the

total difference between the centres. With equations (4.7), (4.8) and (4.9) we

obtain:

R2 = e2
L + x2

OC − 2eL

√
x2

OC + y2
OC sin (α + φ) + y2

OC + (zCOM − zOC)2 , (4.16)

where

φ =

arctan
(

xOC

yOC

)
, if yOC ≥ 0

π + arctan
(

xOC

yOC

)
, if yOC < 0 .

(4.17)

Note that now measurement equation (4.16) does not contain the correlated

results xCOM and yCOM . The standard uncertainty of the total distance R be-

tween the centres is then derived from (4.16) as

σR =
1

R

{
e2

L

[
σ2

L +
(
sin (α + φ)

)2

σ2
OC

]

+ x2
OC

(
σ2

x,OC + S2
xy

)
+ y2

OC

(
σ2

y,OC + S2
xy

)
+

(
zCOM − zOC

)2

σ2
∆z

}1
2

,

(4.18)

where

σ2
OC =

(
x2

OCσ2
x,OC + y2

OCσ2
y,OC

)
(x2

OC + y2
OC)

,

S2
xy =

(
sin (α + φ)

)2

σ2
L +

(
eL cos (α + φ)

)2 (
σ2

α + σ2
φ

)
,

σφ =
σOC

|yOC |
,

σ2
∆z = σ2

z,OC + (eQ sin β)2 σ2
β + (cos β)2 σ2

Q .

(4.19)

Numerical values of the contributing uncertainties are calculated below.
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4.2.4.2 OC coordinates

Experimental standard errors of the OC coordinates xOC , yOC and zOC , derived

according to the procedure of Subsection 4.2.2, are 0.14 µm, 0.13 µm and 0.22 µm,

respectively. In addition, the specified MPE of the coordinate measuring machine

is ∆L = ±(2.5+L/300) µm, where L is the measured distance in millimetres. For

the longest measured distance L = 50 mm, from the reference plane to the points

of contact with the surfaces of the retroreflector, the MPE is ∆L = ±2.67 µm.

This corresponds to an equivalent standard deviation of 1.54 µm (assuming a

uniform probability distribution). The combined uncertainties are thus σx,OC =

1.55 µm, σy,OC = 1.54 µm and σz,OC = 1.56 µm.

4.2.4.3 Misalignment of the coordinate systems

To estimate the possible systematic effect through the misalignment of the polar

axis and the x-axis or z-axis (cf. Fig. 4.6), we consider the tolerance limits, given

in the fabrication process of the falling body or the mounting jigs. The tolerance

value of ±0.5◦ corresponds to an equivalent standard deviation of ±0.29◦ for both

axes of rotation (assuming a uniform probability distribution). Combined with

the statistical standard errors of the measured angles, shown in Fig. 4.7, we

obtain the standard errors σα = 1.10◦ and σβ = 1.36◦.

4.2.4.4 Mass values

The mass of the falling body m = 121.61 g is required to convert the measured

imbalance into the eccentricity (4.6). It is also necessary to know a value of

the calibration mass (m̃C = 0.590 g)1 to calibrate the balancing machine. We

measured these masses using commercial analytical balances, which are specified

for such values of mass according to the high accuracy class II with a MPE of

±0.10 g and±0.001 g, respectively. These values correspond to equivalent relative

standard deviations of σm/m ≈ 4.8× 10−4 and σmC
/mC ≈ 9.8× 10−4 (assuming

a uniform probability distribution).

1In Subsections 4.2.4.4 and 4.2.4.5 we denote an estimate x̃ (random variable) for the
measured quantity x (unknown but fixed value).
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4.2.4.5 Balancing machine calibration

In order to derive the scale factor C of the balancing machine, we compare its

readings with and without the calibration mass mC attached to the falling body at

the radial distance rC from the axis of rotation. When rotating with the angular

velocity ΩC , the centrifugal force F̃C = mCrCΩ̃2
C acts on the inertial mass of

the vibration sensor mS. Hence, with the estimated scale factor (sensitivity)

of the vibration sensor K̃S, the measured acceleration is ãC = K̃S(F̃C/mS) =

K̃SmCrCΩ̃2
C/mS. Calibration of the balancing machine, with the given values of

the dynamic stiffness of the rotor and foundation, gives an estimate C̃ of

C̃ =
m̃C r̃C

ãC

=
m̃C r̃CmS

K̃SmCrCΩ̃2
C

. (4.20)

The estimates m̃C and r̃C are inquired to input by the software of the balancing

machine. Hence, in (4.20) the estimates m̃C , r̃C , K̃S and Ω̃C are the random

variables and the values mS, mC and rC are fixed constants.

There are two groups of uncertainties in the estimate C̃ for the scale factor

C. The first relates to the uncertainty of the calibration imbalance due to the

uncertainties in the calibration mass and the calibration radius. The second

is due to the measurement imbalance, shown by the balancing machine, which

includes the amplitude non-linearity of the vibration sensor (or uncertainty of

the estimated scale factor K̃ over an operating amplitude range) and non-stable

angular velocity Ω̃. From (4.20), the combined relative standard uncertainty of

the scale factor C is

σC

C
=

√((σKS

KS

)2

+
(σmC

mC

)2

+
(σrC

rC

)2

+
(
2
σΩ

Ω

)2
)

. (4.21)

The amplitude non-linearity of the vibration sensor is specified to be within

±1%, which corresponds to an equivalent relative standard deviation σKS
/KS ≈

5.77× 10−3, where the uniform probability distribution is assumed. The relative

standard deviation of the calibration mass is σmC
/mC ≈ 9.8×10−4. The value of

the calibration radius is rC = (16± 0.1) mm, where the tolerance is given by the

tolerance limits in fabrication of the falling body. Due to design considerations,

we assume that the COM of the screw, being wound in as the calibration mass,
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4.2 Balancing in three dimensions

is within ±0.1 mm of the calibration radius. Hence the total relative standard

deviation of the calibration radius is σrC
/rC = (0.2/

√
6)/16 ≈ 5.10 × 10−3 (a

triangular probability distribution is assumed). The nominal value of the rota-

tional velocity during calibration is ΩC = 1537 rpm, but during measurements it

varied within ±10 rpm. Thus, the corresponding relative standard deviation of

the angular velocity is σΩ/Ω ≈ 3.76× 10−3 (the uniform probability distribution

is assumed). Finally, the combined relative standard uncertainty of the balancing

machine scale factor is σC/C ≈ 10.81× 10−3.

The estimate for the scale factor C̃ is used as a constant C during measure-

ments to convert the vibrational accelerations to the imbalance units: ũ = C̃a.

Hence, a systematic contribution from the calibration of the balancing machine

to the combined uncertainty of any measured imbalance ũ can be calculated

as σu,C = (σC/C)ũ = 10.81 × 10−3ũ. With the measured imbalances ũL =

14.10 gmm and ũQ = 14.43 gmm (cf. Fig. 4.7), we get σL,C = 0.15 gmm and

σQ,C = 0.16 gmm.

4.2.4.6 Dynamic imbalances

Here we collect erroneous imbalances which are caused by imperfect geometry of

both the falling body and the balancing machine. During free fall, the falling

body rotates around its COM. On the other hand, while balancing, the body

rotates around the fixed rotational axes (x and z, cf. Fig. 4.3). Since these axes

are not exactly perpendicular to each other, the position of the COM can have

an offset from the rotational axes by an amount ∆r⊥. The resulting error in im-

balance will be ∆u⊥ = m∆r⊥, where m is the mass of the falling body. From the

tolerance limits given in the fabrication process, we estimate ∆r⊥ = ±2.5 µm.

The corresponding standard deviation in imbalance is then σu,L gmm for each

axis of rotation (assuming a uniform probability distribution).

During balancing the mounting jigs themselves produce some additional im-

balance. Without the falling body attached, the measured values of the imbal-

ances are uQ,m.j. = 2.3 gmm and uL,m.j. = 0.5 gmm, for different axes of rota-

tion. When balancing the falling body, the angular position of the mounting jigs’

imbalance can have one of many different angular values, which are uniformly
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distributed over the whole period. Since the magnitudes of these imbalances

(2.3 gmm and 0.5 gmm) are much less then the imbalance of the falling body

(near 14 gmm), equation (4.11) can be considered. Then the effect of such an

imbalance is approximately a root mean square value of the sine curve (4.11)

with the amplitudes equal to the measured imbalances of the mounting jigs, (as-

suming a U-shaped probability distribution). This yields standard deviations of

the mounting jigs’ imbalance 1.64 gmm and 0.35 gmm, when rotating about the

x-axis and z-axis, respectively. The relatively large value, when rotating about

the x-axis, explains an observed discrepancy between the measured imbalance

and the fitted curve (Fig. 4.7(a)). Assuming that suitable materials, speed of

rotation and fixing methods are properly chosen, the uncertainties due to possible

changes in the dynamic stiffness of the falling body, bearings and foundation can

be neglected.

Table 4.2 lists all uncertainty components of the measured imbalances (as

discussed in previous sections).

Table 4.2: Uncertainty budget of the measured imbalance.
Standard uncertainty/g mm

Source of uncertainty
uQ uL

Calibration of the balancing machine 0.16 0.15
Measured value of the imbalance:
repeated observations 0.02 0.02
imbalance of the mounting jigs 1.64 0.35
non-perpendicularity of the rotational axes 0.18 0.18
Combined standard uncertainty 1.64 0.42

4.2.4.7 Calculated eccentricities

From equations (4.6), the combined standard uncertainty of the calculated eccen-

tricity depends on the uncertainty of the measured imbalance and the uncertainty

of the mass of the falling body:

σe = e

√(σu

u

)2

+
(σm

m

)2

=

√(σu

m

)2

+
(σm

m

)2

e2 , (4.22)

where the combined standard uncertainties of the measured imbalances are given

in Tab. 4.2, the relative standard deviation of the mass of the falling body is
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calculated in Subsection 4.2.4.4 and the eccentricities eQ and eL are shown in Tab.

4.1. Then the combined standard uncertainties of the calculated eccentricities are

σQ = 13.51 µm and σL = 3.48 µm.

4.2.4.8 COM coordinates and difference between the centres

With the combined standard uncertainties of the eccentricities σQ and σL, the

combined standard uncertainties of the COM coordinates and of the total distance

between the centres can be calculated from Eqs. (4.13) and (4.18), respectively

(cf Tab. 4.3). The expanded uncertainty of the total distance between centres is

given by

UR = |R|+ kσR , (4.23)

where R = 43.24 µm as calculated from (4.9) and σR = 15.72 µm as calculated

from (4.18). For the sake of simplicity, the conventional value of the coverage

factor k = 2 (Taylor & Kuyatt, 1993) is used here.

The combined uncertainty of the total distance in 3D space between the

Table 4.3: Uncertainty budget: COM and OC adjusted.
Standard uncertainty/µm

Measured value
x y z

OC coordinates 1.55 1.54 1.56
COM coordinates 2.30 3.43 5.82
Difference between OC and
COM coordinates

2.77 3.76 6.02

Total difference between centres in 3D space,
combined standard uncertainty

15.72

Expanded uncertainty (k = 2)
of the distance between centres in 3D space

74.68

COM and OC is approximately 16 µm, while in each coordinate it is no more

than 6 µm. Clearly, it is possible to reduce the expanded uncertainty UR (4.23)

by further reducing the total distance between centres, because the resolution of

this method in 3D space is of the order of 16 µm. It is important to note that

the calculation of the combined standard uncertainty by (4.15) instead of (4.18),

in case of correlated measurements in the x-y plane, leads to the underestimated

value of 6.0 µm instead of 15.7 µm.
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4.3 Method of index balancing

The previous Section 4.2 explained how in a falling body (FB) the centre of mass

(COM) and the optical centre (OC) can be superposed, which was done in three

dimensions for the first time in this project. The distance between the two centres

was reduced to 43 µm, with an uncertainty of 16 µm. The position of the optical

centre was first measured with a coordinate measuring machine (CMM), and then

the COM was shifted to that point with a balancing method. This method does

away with the requirement that the OC has to lie in the geometrical centre of the

falling body assembly.

This approach worked very well, and the results obtained with the FB were

more than satisfactory (cf. Chapters 2 and 3). Nevertheless, we decided to go for

an improved method. As already mentioned, the goal was to discontinue using a

CMM to measure the position of the OC.

We designed a new FB for this purpose. An improved balancing method,

with a more sophisticated balancing setup is applied by simply reducing the

imbalance of the FB assembly to its geometrical centre, which now coincides

within the tolerance limits given by the fabrication tolerances of the different

parts of the assembly. Here, another hollow corner cube retroreflector is used,

with the distributor providing the well-defined position of the OC relative to the

external surface. The index balancing method is adopted from Schneider (2003).

4.3.1 Theory of index balancing

Let us consider a rotor with an imbalance u. To balance the rotor with a balancing

machine, it has to be fastened to the balancing machine with a mandrel (mounting

jig). When measuring the mandrels imbalance without the rotor, the display of

the balancing machine shows the imbalance H (angle αH and amount of imbalance

|H| after calibration of the balancing machine, see Fig. 4.8).

When measuring the imbalance of the rotor with the balancing-machine-

mandrel-rotor assembly, the shown imbalance on the display is A, which is the

sum of the imbalance due to the mandrel H and the rotor u (cf. Fig. 4.9(a)).

Now, once the rotor is turned by 180◦ with respect to the mandrel and

rebalanced the balancing machine shows a new imbalance A′ (cf. Fig. 4.9(b)).
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Figure 4.8: Imbalance of the mandrel without rotor.

a) b)

Figure 4.9: a) Imbalance of the mandrel with rotor. A is the net force,
composed of the imbalance of the mandrel H and the imbalance of the rotor
u. u denotes the position of the COM of the rotor; b) Imbalance of the
mandrel with rotor. The rotor is turned by 180◦.

The imbalance of the rotor can now be reduced by shifting the COM of the whole

assembly to the point X, which describes the midpoint of the distance between A

and A′ (cf. Fig. 4.10). With this sort of “differential balancing”, the imbalance

of the mandrel is excluded from the final result.
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Figure 4.10: Imbalance of the rotor u can be calculated from the net
imbalances A and A′. The imbalance of the mandrel is cancelled out.

Finally, the residual imbalance u can be calculated from the net imbalances

A and A′ by means of the equation

|u| = |A−A′|
2

. (4.24)

4.3.1.1 Eccentricity of the mounting jigs

Additionally to the imbalance of the mandrel, the point of support of the mount-

ing jig can be offset from the axis of rotation. This eccentricity of the mounting

jig with respect to the axis of rotation introduces another imbalance E, which

will add up to the net imbalance A. However, again, this error is systematic and

will be cancelled out by index balancing (cf. Figs. 4.11(a), 4.11(b) and 4.12).

4.3.2 Method

The idea for the new FB design was to make it easy to balance and avoid having

to measure the OC with a CMM.

The first requirement “easy to balance” means that the COM of the FB should

be shifted to the axis of rotation, i.e. the imbalance needs to be reduced. The

advantage is, that it eliminates tedious recalculations of the actual position of
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a) b)

Figure 4.11: a) The imbalance E due to the eccentricity of the mounting
jig with respect to the axis of rotation D adds to the net imbalance A.; b)
After turning the rotor by 180◦ the eccentricity of the mounting jig E with
respect to the axis of rotation D adds to the net imbalance A′.

Figure 4.12: The imbalance of the rotor u can be calculated from the net
imbalances A and A′. The imbalance of the mandrel and the eccentricity
are cancelled out.

the COM. Masses can be attached or reduced to minimize the imbalance. Hence,

the housing of the FB should define three axes of rotation for balancing, and the

position of the COM should coincide with the intersection point of the three axes
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– defining the origin of a coordinate system (cf. Fig. 4.13).

The second requirement stipulates that the retroreflector should be placed

Figure 4.13: The figure shows the three rotation axes around which the
FB will be balanced. The intersection point of the three axes coincides with
the OC.

in the housing, and the OC of the retroreflector should coincide with the origin,

defined by the housing, without the need of measuring the position of the OC

after assembling the FB.

To master these requirements, we took a ball-mounted hollow retroreflector

(BMR) (PLX Inc., BMR-0.875-1, USA, cf. Fig. 4.14(a) whose OC is centred with

respect to the spherical surface to within 0.0001 inch (2.5 µm). Its ball diameter

is 0.875 inches (22.2 mm), and its beam divergence is better than 10 arc seconds.

The next step was to design the housing in a way that the BMR was fitted

inside of it to a tight tolerance and the OC coincided with the intersection point

of the three balancing axes (Fig. 4.13). The universal housing (cf. Fig. 4.14(b))

is made of titanium, and can be used normally as well as upside down, i.e. the

laser can enter the ballistic block from above or from below. Figure 4.14(b) shows

the tap holes and the counter mass. They are used to shift the COM of the FB,

as described in Section 4.2.
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a) b)

Figure 4.14: Falling body of the absolute gravimeter: a) ball mounted
hollow retro-reflector (BMR); b) housing of the BMR (1 - counter mass, 2
- tap hole).

Once the BMR is mounted inside the housing, the FB can be balanced. There-

fore special mounting jigs are constructed (Fig. 4.15) which fit exactly to a

commercial balancing machine (Micro Präzision Marx GmbH, model BMT 200

S, Germany, cf. Fig. 4.16). The balancing machine has a feedback control for the

a) b)

Figure 4.15: A special mounting jig is designed for balancing the FB: the
mounting jig for balancing around the Z-axis is shown a) when it is closed;
b) when it is open, the conical shapes of the supports are seen which centres
the FB to the axis of rotation of the balancing machine.

rotation speed, which allows stable rotation velocities of up to (2000± 0.5) rpm.

After attaching the mounting jig to the balancing machine, the balancing machine

is calibrated by putting a defined bias mass at a defined angular position and a

defined distance from the axis of rotation. Next the bias mass is removed and the
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mounting jig is balanced without the FB. This is done by winding screws in or

out of the mounting jig (the mounting jig contains tap holes). When the residual

imbalance of the mounting jig is reduced to a minimum, the FB is mounted inside

the mounting jig, and the whole setup is balanced again. This is done around

all three axes, as proposed in Section 4.2, to reduce the uncertainty. Balancing

around the X- and Y -axis can be done with one setup, however for balancing

around the Z-axis another mounting jig has to be fixed to the balancing ma-

chine. The index balancing method as described in Section 4.3.1 is applied for

Figure 4.16: Balancing machine BMT 200 S (modified) with the mounting
jig for balancing around X- and Y -axis mounted.

balancing. This means that during the balancing procedure the FB is put into

the mounting jig in a defined position, and then the imbalance is measured. This

gives the imbalance value A at an angular position αA. Then the FB is turned

around by 180◦ and the net imbalance is measured again. This will give another

value for the net imbalance, say A′ at a different angle αA′ . The imbalance u now

can be reduced by shifting the net imbalance to the point X (Fig. 4.10). This is

done for the mounting jigs alone as well as for the FB in all three dimensions.

When the FB’s imbalance is reduced to a minimum, the final imbalance is

measured by the method of index balancing and, combined with a method ex-

plained in Section 4.2.2 to enhance the resolution:
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A bias mass is attached to the rotor at up to 16 different angular positions αn and

the imbalance un is measured. The bias mass is chosen in a way that it produces

an imbalance of a factor of 5 to 10 times the residual imbalance u (Schneider,

2003). This is done again by index balancing, i.e. with the FB in two positions,

turned by 180◦. Hence, for each axis two diagrams are obtained, to which a curve

of type (4.10) is fitted. The respective curve is fitted to the data and the values

for the imbalances AX,Y,Z , A′
X,Y,Z , and the angular positions of the residual net

imbalances αAX ,AY ,AZ
, and αA′

X ,A′
Y ,A′

Z
can be calculated for each axis respectively.

The final residual imbalances of the FB uX,Y,Z are obtained by first converting

the polar coordinates into Cartesian coordinates with the formulae1

ax = |uA| cos αA

ay = |uA| sin αA ,
(4.25)

and

a′x = |uA′| cos αA′

a′y = |uA′| sin αA′ .
(4.26)

Its difference gives

∆x = ax − a′x

∆y = ay − a′y ,
(4.27)

and finally for the imbalance of the FB in the respective plane we have (4.24)

|uX,Y,Z | =
√

∆x2 + ∆y2

2
= uX,Y,Z . (4.28)

To get the three dimensional displacement of the COM of the FB from the inter-

section point of the three axes of rotation we apply

eX,Y,Z =
uX,Y,Z

m
, (4.29)

where m is the final mass of the FB.

The final distance R between the OC and the COM is then obtained from

R =
√

e2
X + e2

Y + e2
Z . (4.30)

1Lower case letters x and y denote the components of the 2-dimensional vector. Upper case
letters X, Y , Z denote the axis the balancing is done around.
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4.3.3 Results

The OC’s actual position in the housing is given by the precise construction

of the housing and the BMR and coincides, to within an uncertainty, with the

intersection point of the three rotation axes (Fig. 4.13).

Balancing was performed as described in Section 4.3.2 for each dimension and

two different positions of the FB. Due to the stability of the rotational velocity of

the balancing machine, for each position of the bias mass, just one measurement

was performed. The results for each axis are shown in figure 4.17 together with

the fitted curve (4.10). Table 4.4 shows the fitted values with their standard

errors.

Table 4.4: The fitted values obtained with the enhanced method.
With FB - position A With FB - position A’

Balancing
around

Imbalance
UA/g mm

Angle of
imbalance
αA/degree

Imbalance
UA′/g mm

Angle of
imbalance
αA′/degree

X-axis 0.62 ± 0.01 302.67 ± 1.44 0.61 ± 0.01 116.94 ± 1.06
Y -axis 0.17 ± 0.01 115.53 ± 5.02 0.94 ± 0.01 157.74 ± 0.80
Z-axis 0.59 ± 0.01 114.83 ± 0.88 3.11 ± 0.01 350.03 ± 0.22

In order to calculate the 3-dimensional distance of the COM to the OC, Eqs.

(4.25) to (4.28) are applied to the numbers listed in Tab. 4.4 to obtain the

imbalances of the FB. The respective eccentricities are calculated with (4.29),

where the final mass of the falling body m = 124.84 g is taken. Finally, the

3-dimensional distance is derived from (4.30):

X-axis :
(4.25)−(4.28)⇒ uX = 0.61 gmm

(4.29)⇒ eX = 4.9 µm

Y -axis :
(4.25)−(4.28)⇒ uY = 0.82 gmm

(4.29)⇒ eY = 6.6 µm

Z-axis :
(4.25)−(4.28)⇒ uZ = 1.73 gmm

(4.29)⇒ eZ = 13.9 µm


(4.30)⇒ R = 16.1 µm .

(4.31)

All uncertainties will be derived in the next sections and are listed in Tab. 4.5.

Again, we assume a maximum angular velocity ω = 10 mrad s−1 during free

fall (Niebauer et al., 1995) and an expanded uncertainty of the distance between
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Figure 4.17: Results of the imbalance measurement when rotating around
the X-axis ((a) and (b)), around the Y -axis ((c) and (d)), and around the
Z-axis ((e) and (f)). The dots are the values measured. The solid lines are
the fitted curves (4.10). The obtained values of the imbalances and angles
are reported with the standard errors derived from the least squares fitting.
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

the centres UR = 39.1 µm1. Then, with (4.2), the expanded uncertainty of g, as

the result of such a rotation, amounts to Ug = ω2UR ≈ 0.4 µGal.

Table 4.5: Results of the centre of mass to the optical centre adjustment.
Eccentricities/µm

eX eY eZ

OC 0 ± 6.50 0 ± 6.50 0 ± 6.50
COM 4.9 ± 1.2 6.6 ± 1.2 13.9 ± 1.4
Total distance between centres in 3D space 16.1 ± 11.48
Expanded uncertainty (k = 2)
of the distance between centres in 3D space

UR = 16.1 + 2× 11.48 = 39.06

4.3.4 Uncertainty analysis

4.3.4.1 Propagation of uncertainty

The idea with the new FB design is to coincide the OC with the intersection

point of the three balancing axes. A measurement of the OC’s real position

should be avoided. So the standard uncertainty of the OC position – the position

coordinates will be called xOC , yOC , and zOC – is composed of the uncertainty of

fabrication tolerance of the BMR and the uncertainty of the fabrication tolerance

of the housing and will be called σx,OC , σy,OC , and σz,OC . The eccentricities of

the COM are calculated from Eqs. (4.25) to (4.28) and will be called eX , eY ,

and eZ , with their respective uncertainties σX , σY , and σZ . To calculate these

eccentricities, the imbalances (absolute value and angle) are derived from the non-

linear least squares fitting of (4.10). Following the law of uncertainty propagation

(ISO, 1995), from (4.28) for the uncertainty of the imbalances in each dimension

we get

2σu =

√(∆x

2u
σ∆x

)2

+
(∆y

2u
σ∆y

)2

, (4.32)

1The symbol U is reserved for the uncertainty, while the symbol u is used as imbalance.

80



4.3 Method of index balancing

with u = |u|.
The uncertainties σ∆x and σ∆y are derived from (4.27)

σ∆x =
√

σ2
ax

+ σ2
a′

x

σ∆y =
√

σ2
ay

+ σ2
a′

y
,

(4.33)

and with the uncertainties σax , σay , σa′
x
, and σa′

y
obtained from (4.25) and (4.26)

σax =
[
(σuA

cos αA)2 + (uA sin αAσαA
)2

]1
2

σay =
[
(σuA

sin αA)2 + (uA cos αAσαA
)2

]1
2 ,

(4.34)

and

σa′
x

=
[
(σuA′ cos αA′)2 + (uA′ sin αA′σαA′ )

2
]1

2

σa′
y

=
[
(σuA′ sin αA′)2 + (uA′ cos αA′σαA′ )

2
]1

2 .

(4.35)

As the eccentricities of all three dimensions are independent, the standard uncer-

tainty σe, derived from (4.30), is

σe =

√
e2

Xσ2
eX

+ e2
Y σ2

eY
+ e2

Zσ2
eZ

eX
2 + eY

2 + eZ
2

. (4.36)

4.3.4.2 OC coordinates

As the real position of the OC was not measured, the uncertainty of its position

with respect to the intersection point of the balancing axes is obtained from the

fabrication tolerances of the housing, as well as the BMR.

The BMR is fabricated in a manner that the OC is centred to within 2.5 µm

with respect to the outer ball surface. This gives an uncertainty of (2.5 µm/2)√
3
√

3
=

0.42 µm for each dimension. The fabrication tolerance of the ball diameter is

5 µm; hence has an uncertainty of 2.9 µm, and the combined standard uncertainty

for the BMR amounts to σBMR = 3.24 µm.

The housing, on the other hand, is fabricated in a way that the BMR fits

exactly into it, and the OC coincides with the intersection point of the balancing

axes. The fabrication tolerance of the housing (i.e. its inner diameter; cf. Fig.
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

Figure 4.18: Fabrication tolerances for the housing.

4.18) is +9 µm (uncertainty = 9/(2
√

3) = 2.6 µm), whereas the depth tolerance

is ±10 µm (uncertainty = 5.8 µm). For simplicity is sake we take the uncertainty

σhousing = 5.8 µm for all three dimensions.

It follows that the combined standard uncertainty for the OC coordinates then

is 6.65 µm for each dimension.

4.3.4.3 Mass values

As already described in Section 4.2.4.4 the mass of the FB m = 124.84 g is

required to convert the measured imbalances into the eccentricities (4.29). The

same balances were used to weigh the FB and the calibration mass (mC = 3.01 g).

Assuming a uniform probability distribution, the values corresponding to the

equivalent relative standard deviations are σm/m ≈ 4.6 × 10−4 and σmC
/mC ≈

1.9× 10−4, respectively.

4.3.4.4 Calibrating the balancing machine

To estimate the uncertainty due to the calibration of the balancing machine,

we follow the same arguments as in Section 4.2.4.5. The only difference to the

given uncertainty of the scale factor is that the uncertainty due to the angular

velocity is now negligible, as the motor of the balancing machine is feed back

controlled. Hence, the combined relative standard uncertainty of the scale factor

can be estimated to

σC

C
=

√(
σKS

KS

)2

+

(
σmC

mC

)2

+

(
σrC

rC

)2

, (4.37)
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where the same values as in section 4.2.4.5 can be taken:

amplitude non-linearity of the vibration sensor – σKS
/KS ≈ 5.77× 10−3;

relative standard deviation of the calibration mass – σmC
/mC ≈ 9.8× 10−4;

Total standard deviation of the calibration radius – σrC
/rC = (0.2/

√
6)/240 ≈

3.4 × 10−4, with the calibration radius rC = 240 ± 0.1 mm and a triangular

probability distribution assumed.

The uncertainties of the measured imbalances resulting from the uncertainty

of machine calibration are listed in Tab. 4.6 under the category Calibrating the

balancing machine.

4.3.4.5 Dynamic imbalances

The dynamic imbalances are cancelled out due to the index balancing method.

4.3.4.6 Calculated eccentricities

The combined standard deviation of the calculated eccentricities depends after

(4.29) on the standard deviation of the measured imbalance and the standard

deviation of the mass of the FB:

σeX,Y,Z
= eX,Y,Z

√(σuC(X,Y,Z)

uC(X,Y,Z)

)2

+
(σm

m

)2

, (4.38)

where the combined standard deviations of the measured imbalances uC are

shown in Tab. 4.6. With the standard deviation of the mass, derived in sec-

tion 4.3.4.3, the combined standard deviations of the calculated eccentricities are

σeX
= 1.9 µm, σeY

= 1.9 µm, and σeZ
= 2.0 µm.

4.3.4.7 COM coordinates and difference between the centres

With this balancing method, we shift the COM to the origin of our coordinate

system. It should be noted that the labels of the eccentricities given in (4.31)

do not correspond to the axes shown in Fig. 4.13, i.e. eX is not the eccentricity

along the X-axis, but the eccentricity in the Y -Z-plane. We are not interested

in the exact position of the COM within the FB, although we would be able to

calculate it. Our aim is to approximate the centres as closely as possible, that in
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Table 4.6: Uncertainty budget of the measured imbalance.
Standard uncertainty/g mm

Source of X Y Z
uncertainty A A’ A A’ A A’
Calibrating
the balancing 3.6×10−3 3.5×10−3 1.0×10−3 5.4×10−3 3.4×10−3 18.0×10−3

machine
Measured value of the imbalance:
repeated
observations

0.01 0.01 0.01 0.01 0.01 0.01

Combined
standard 0.01 0.01 0.01 0.01 0.01 0.02
uncertainty

the optimum case is coincided with the origin.

The expanded uncertainty of the total distance between the OC and the COM

is given by

UR = kσR , (4.39)

where from (4.31) we have for R = 16.1 µm, and (4.36) σe gives 11.73 µm. For

simplicity, we choose a coverage factor k = 2 (Taylor & Kuyatt, 1993). Hence,

the distance between the centres with the expanded uncertainty amounts to

UR = (16.1+2×11.73) µm = 39.56 µm. The uncertainty budget for the adjusted

centres is shown in Tab. 4.7.

Table 4.7: Uncertainty budget: COM and OC adjusted.
Standard uncertainty/µm

Measured value X Y Z

OC coordinates 6.50 6.50 6.50
COM coordinates 1.2 1.2 1.4
Difference between optical centre and 6.61 6.61 6.65
centre of mass coordinates
Total difference between centres in 3D space, 11.48
combined standard uncertainty
Expanded uncertainty (k = 2)

UR = 16.1 + 2× 11.48 = 39.06

of the distance between centres in 3D space
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4.4 Conclusion

This Chapter presented two methods to coincide the positions of the COM and

the OC of the falling body for an absolute gravimeter. With the first method

the total distance between the centres in 3D space is approximately 43 µm with

a combined standard uncertainty of 16 µm. This result is presently sufficient for

our newly developed absolute gravimeters, where the expanded uncertainty of the

measured g value, due to the effect of rotation of the falling body, is less than

1 µGal.

With known relative positions of both centres in 3D space, it is possible to

calculate a rotation correction, using (4.1). For this, the rotation of the falling

body during free fall should be recorded, as discussed regarding the FG5 ab-

solute gravimeter (Niebauer et al., 1995). With this correction applied, the ex-

panded uncertainty of the measured g value due to rotation will be reduced to

Ug = ω2(2σR) ≈ 0.3 µGal. As a result, the rejection level of the rotational veloc-

ity can be increased, more drops will be accepted and the dropping mechanism’s

lifetime will be extended.

The reported study regards a hollow corner cube. Nevertheless, the proposed

balancing method can be extended to the case of a corner cube prism if the coor-

dinates of the corner cube prism’s OC are known (Peck, 1948). It is also expected

that the method can be used in other applications where precision balancing is

required.

The second method presented here employs an improved balancing method.

The resolution of 11.48 µm is better than with the first method and good enough

for most absolute free fall gravimeters. For many years, the error due to the dis-

placement of the two centres was one of the biggest contributions to the absolute

gravimeter’s uncertainty budget (Hanada, 1988; Hanada et al., 1996; Niebauer

et al., 1995). We have shown that with our method this is no longer the case.

The easy assemble and balancing makes the construction of the FB straight for-

ward. If the FB’s housing is damaged, the retroreflector can easily be placed

inside another housing. Our innovation makes it possible to build a more cost-

efficient alternative to the admittedly expensive contemporary gravimeters, since
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it allows more drops to be realized without fear of abrading the FB.
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Chapter 5

Uncertainty budgets and possible

errors

Since a gravimeter is designed to measure an absolute value, it is necessary to

assign the measurement apparatus an accuracy to which the real value can be

measured. This is known as an uncertainty budget. However, for common mea-

suring devices such as rulers, clocks, etc. the real value can be given as it is

determined by a primary standard. For gravimeters, however, this is not possi-

ble. No such primary standard exists. Gravity is not constant, neither in space

nor in time. A calibration is impossible. History showes (as in the case of the

inverted pendulum in Potsdam; cf. Sec. 1.2.1) that assumedly highly precise

apparatuses can turn out to be highly inaccurate once a new method is invented

that permits comparing systematic errors. The higher the targeted accuracy, the

more difficult it is to give a complete uncertainty budget.

The error sources considered in this chapter are already treated in the lit-

erature (D’Agostino, 2005; Niebauer et al., 1995; Zumberge, 1981) and will be

applied to our gravimeter setups. The uncertainty of the FB rotation, however,

is described in more detail, since a new method was invented in the course of this

dissertation, so a separate Chapter 4 is dedicated to this subject. Additionally,

the uncertainty due to the non-linearity of electronics (cf. Subsection 5.1.15) is

studied in more detail and cannot be found elsewhere in this form, as well as the

estimation of the uncertainty due to the residual ground vibrations in subsection

5.1.12.
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The uncertainty budget falls into two categories. Uncertainty factors due to

the instrument and due to environmental effects. The uncertainty budgets apply

to both gravimeters, MPG-1 and MPG-2.

5.1 Uncertainty budget due to the instrument

In general, it is very difficult to measure all of the physical effects that can influ-

ence the measurement. In this section we will use simplified models to estimate

what uncertainties arise from the measurement apparatus itself.

5.1.1 Vacuum

The errors due to residual air inside the ballistic block can be put into three

different categories. The air drag effect, the outgassing of the falling body (FB),

and the buoyancy acting on the FB.

5.1.1.1 Air drag

During the drop, the FB experiences a resistance due to residual air molecules.

The force acting on the FB can be estimated according to Niebauer et al. (1995)

to give

Fd =
AρV

4
v , (5.1)

where A ≈ 117.8 × 10−4 m2 is the total surface area of the FB, v ≈ 2.3 (1.6)

m s−1 is the maximum velocity of the FB for MPG1 (MPG2), V ≈ 476 m s−1 is

the mean gas velocity for gas molecules of N2, and ρ ≈ 0.5× 10−11 kg m−3 is the

mean gas density. The mean gas density is calculated by

ρ =
mrp

kBT
. (5.2)

Here mr = (2×14)/(6.022×1023) ≈ 4.65×10−23 g is the relative molecular mass

of diatomic nitrogen, kB is the Boltzmann constant (cf. Appendix A), T ≈ 300 K

room temperature, and p ≈ 3× 10−6 (2× 10−4) Pa is the pressure in the ballistic

block of MPG-1 (MPG-2). With the mass m ≈ 0.121 kg of the FB, the biasing

acceleration ∆gd = Fd/m due to air drag amounts to 1.33 × 10−2 (4.0) µGal for
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MPG-1 (MPG-2). Since the model is not very precise, we assume an uncertainty

of 20% of the correction value. This gives 0.3 × 10−2 (0.8) µGal for MPG-1

(MPG-2).

The bias and the resulting uncertainty for MPG-2 are clearly too high. The

future plan is to place the motor outside of the dropping chamber. This will allow

the use of copper gaskets and thus pumping to a higher vacuum level.

Table 5.1: Uncertainty budget for air drag.
Correction/µGal Standard uncertainty/µGal

MPG-1 1.33× 10−2 0.3× 10−2

MPG-2 4.0 0.8

5.1.1.2 Outgassing

Another effect to consider is the outgassing of the FB. The pumping speed of

the ion pump used for MPG-1 and MPG-2 is dV/dt = 50 l s−1 and 20 l s−1,

respectively. Starting from the ideal gas equation

mog = mmn =
pV

RT
, (5.3)

where mog is the outgassing mass pumped off by the ion pump, mm = 29 ×
10−3 kg mol−1 is the molar mass of air, n is the number of air molecules, p ≈
3 × 10−6 (2 × 10−4) Pa is the pressure inside the dropping chamber of MPG-

1 (MPG-2), R is the molar gas constant (see appendix A), and T ≈ 300 K

is room temperature. Deriving (5.3) with respect to time gives the mass flux

Q = dm/dt = 1.7 (46.4) × 10−12 kg s−1. To calculate the outgassing of the

FB the surface area of MPG-1 (MPG-2) is estimated to be AMPG1 = 0.88 m2

(AMPG2 = 0.24 m2). With the FB’s surface of AFB = 117.8×10−4 m2 the relation

between MPG1 (MPG2) and the FB’s surface area is rMPG1 = AFB/AMPG1 =

1.3 × 10−2 (rMPG1 = AFB/AMPG2 = 4.9 × 10−2). Finally, the error in the mea-

surement of g is ∆gog = (rQv)/mFB = 4.2× 10−5 µGal for MPG-1, and ∆gog =

(rQv)/mFB = 3× 10−3 µGal for MPG-2. Here, the velocity v = 2.3 (1.6) m s−1,

and the mass of the FB mFB ≈ 0.121 kg is used.

The numbers resulting from these estimations are very small and hence will

be neglected in the uncertainty budget.
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Table 5.2: Uncertainty budget for outgassing.
Correction/µGal Standard uncertainty/µGal

MPG-1 4.2× 10−5 negligible
MPG-2 3× 10−3 negligible

5.1.1.3 Buoyancy

An estimation of the buoyancy effect is straightforward by using

∆gbu =
ρfl

ρFB

g , (5.4)

with ρfl = 1.2 × 10−9 kg m−3 and ρFB = 4.507 × 103 kg m−3 are the density of

the fluid (air for MPG2) and the FB (titanium), respectively. This is so small

that it will also be neglected in our uncertainty budget.

5.1.2 Magnetic field

5.1.2.1 Magnetic attraction

The measurements with MPG-2 at ECAG 2007 showed (cf. Sec. 3.4) that the

magnetic field resulting from the ion pump gave rise to a big acceleration on

the FB. The reason is that the balls that fit the FB into the vee-grooves of the

support ring, are made of hardened steel (ball bearing balls). These balls are

magnetic, albeit only slightly. The induced magnetic attraction caused an error

in g in the order of 500 µGal. The best error reduction were achieved by moving

the magnets of the ion pump – which are factory-shielded with a µ-material –

as far away from the dropping chamber as possible. Measurements of the stray

magnetic field showed, that it decays very rapidly with growing distance. The

residual magnetic field strength acting on the dropping chamber with the new

setup is in the order of the natural Earth magnetic field. The magnetic field due

to the ion pump is assumed to be zero, now, with a negligible error. The next

generation of FBs is planned to contain no magnetic material at all. The balls

will be made of ruby or ceramic.
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5.1.2.2 Eddy currents

Two objects in the setup produce magnetic field. Non-homogeneities of those

fields could produce eddy currents in the FB, since it is made of conducting

material. The eddy currents, in turn, produce a force that counteracts the motion

of the FB. Such sources include the ion pump’s magnet and the motor. The

measured magnetic field around the dropping chamber, however, is in the order

of the Earth’s magnetic field, which is about 50 µT (0.5 G) in Central Europe.

Following the estimation by Niebauer et al. (1995), and modelling the FB as a

ring made of titanium, the induced force is of the order Fec = 1.3 × 10−15 N,

for a magnetic field strength of 1 mT. For our FB’s mass (mFB = 121 g), this

would result in an acceleration of about 10−6 µGal. Here, we adopt the attributed

uncertainty to magnetic fields of 0.1 µGal to our uncertainty budget.

Table 5.3: Uncertainty budget for eddy currents.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 0.1
MPG-2 none 0.1

5.1.3 Electrostatic field

The dropping chambers of the MP gravimeters are made of stainless steel and

aluminium. The only non-conducting parts are the glass windows at the top and

the bottom, that allow the laser beam to enter the dropping chamber. For this

reason the chamber functions as a Faraday cage surrounding the FB that shields

it from external electrostatic fields. One problem to expect is formation of electric

capacitance between the FB and the support ring. Murata (1978) and Niebauer

et al. (1995) estimated already this effect to be negligible.

Table 5.4: Uncertainty budget for electrostatic field.
Correction/µGal Standard uncertainty/µGal

MPG-1 negligible negligible
MPG-2 negligible negligible
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5.1.4 Influence of instrumental masses

As the gravitational force is a really weak force compared to other fundamental

forces, most of the apparatus parts’ influence on the FB are assumed to be neg-

ligible. On the other hand, this force has a very large range, as the measured

influence of the Sun and Moon demonstrates. However, a brief calculation shows

that for a spherical body of the mass M = 0.2 kg the gravitational attraction at

a distance of r =1 cm amounts, according to

g =
GM

r2
, (5.5)

to 13.3 µGal, where G is Newton’s constant. In general, however, the part’s shape

differ from a sphere. A brief estimation should give an idea of what gravitational

attraction the apparatus has on the FB. On the one hand, heavy parts would be

expected to exert the most critical influence, but they would have to be very close

to the FB to do so, on the other. We will estimate the gravitational acceleration

due to the bottom plate of MPG-2, which weighs approximately 7 kg, and, as it

is closest to it, the support ring on which the FB sits.

The bottom plate measures 0.42× 0.32 m2, with a thickness of ∆z = 0.02 m,

and is made of aluminium. We will model this square shaped plate as a disc with

the radius r = 0.15 m. Its distance from the FB at the start-of-drop position

is about z1 = 0.35 m. The gravitational acceleration due to the bottom plate is

given by

gbp = G

∫∫∫
V

ρAl

q2
cos α dV , (5.6)

where α denotes the angle between the plumb line z1 and the line q between the

FB and the mass particle mi (cf. Fig. 5.1). The integration goes over the volume

V of the bottom plate. As ρAl is a constant, we can write it before the integral,

and after inserting the limits of integration we get

gbp = GρAl

∫ R

0

∫ z1+∆z

z1

∫ 2π

0

cos α

q2
r dθ dr dz . (5.7)

By substituting q2 = r2 + z2 and cos α = z
q

this can be written as

gbp = GρAl

∫ R

0

∫ z1+∆z

z1

∫ 2π

0

z

(r2 + z2)3/2
r dθ dr dz . (5.8)
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Figure 5.1: The gravitational attraction due to instrumental parts can be
modelled by circular plates.

After performing the integration, the final expression for gbp becomes

gbp = GρAl2π

(
∆z +

√
z2
1 + R2 −

√
(z1 + ∆z)2 + R2

)
. (5.9)

When all values (ρAl = 2.7× 103 kg m−3) are inserted, the acceleration amounts

to 0.23 µGal.

To estimate the attraction of the support ring, we use the same Eq. (5.8), but

with z1 = 5×10−3 m, ρSt = 8×103 kg m−3 (for stainless steel), ∆z = 10×10−3 m.

Now, the integration limit for the radius covers the range from r1 = 17.5×10−3 m

to r1 + ∆r, with ∆r = 6 × 10−3 m. The resultant acceleration amounts to only

0.34× 10−3 µGal.

These brief calculations show that an uncertainty due to instrumental attrac-

tion of 0.5 µGal is reasonable for MPG-2.

The influence in the case of MPG-1 seems more serious, as it is mounted on

an optical table of about 500 kg of mass. The distance to the FB is approxi-

mately 1 m. We will remodel the table as a disc with the radius r = 0.75 m,

and a thickness of ∆z = 0.45 m. The mean density of the table amounts to

roughly ρot = 630 kg m−3. A calculation with Eq. (5.8) results in an attraction

of 1.8 µGal. For a better calculation the exact density distribution of the optical

table has to be known. As a correction we will give −1.8 µGal for MPG-1, and

an uncertainty of 0.5 µGal.
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Table 5.5: Uncertainty budget for instrumental masses.
Correction/µGal Standard uncertainty/µGal

MPG-1 -1.8 0.5
MPG-2 none 0.5

5.1.5 Verticality of the laser beam

If the laser is not exactly aligned along the plumb line, a different effective wave-

length results to measure g, thereby introducing an error ∆g. Figure 5.2 demon-

Figure 5.2: A deviation of the laser beam from the plumb line introduces
an error in the g measurement.

strates that the effective wavelength λeff resulting from a misalignment angle Θ,

is given by

λeff = λ cos Θ (5.10)

and leads to a measured value of gm = g cos(Θ) ≈ g(1 − Θ2

2
), if a small angle is

assumed. This means the measured acceleration due to gravity becomes lower

than the “real” value. From (5.10) results that a beam deviation of 9 arcsec

(equals 44 µrad) causes an error of 1 µGal.

In order to minimize this error, the beam is aligned along g by the method

sketched in Fig. 5.3. The laser beam leaving the laser is reflected by mirror M

and is split up into two beams by beam splitter BS1. Beam 1 hits the falling

mirror (which is kept stationary during the alignment procedure), and then hits
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a) b)

Figure 5.3: a) The verticality of the laser beam is aligned by reflecting
the object beam on a mercury surface and watching the fringe signal. b)
A tilt of the test beam can be estimated by the fringe signal formed on a
screen.

the surface of a mercury (or ethanol) pool. This reflects beam 1 back to BS1.

Beam 2 serves as a reference beam. It is reflected back by a corner cube mirror

CC (the filter F is just to adjust the intensities of both beams) to BS1, where it

is finally recombined with beam 1. The superposing beams form a fringe pattern,

which contains information about the angle Θ. For plane waves the angle can be

estimated as shown in Fig. 5.4. So for small angles we can write

sin(Θ) =
λ

d
≈ Θ , (5.11)

where λ = 633 nm is the wavelength of the laser, d is the distance between

two fringes, and Θ is the deviation angle. In our case, the beam spot has a

diameter of 3 mm and hence, if two fringes are visible on the screen, the resulting

angle is 210 µrad, which corresponds to an error of Θ2

4
g = 11 µGal (D’Agostino

et al., 2003). For the remaining uncertainty we assume a rectangular distribution

(D’Agostino et al., 2003), which gives
√

Θ4

48
g = 6 µGal. A possible solution could

be the use of an autocollimator to adjust the beam.
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Figure 5.4: The beam deviation angle Θ can be estimated by measuring
the distance d between two fringes.

Table 5.6: Uncertainty budget for laser verticality.
Correction/µGal Standard uncertainty/µGal

MPG-1 11 6
MPG-2 11 6

5.1.6 Accuracy and stability of the laser

The trajectory of the FB is measured by counting the interference fringes pro-

duced in a Michelson interferometer, and so the measurement of the displacement

of the FB directly depends on the stability of the laser frequency. For our gravime-

ters a Helium-Neon laser (Spectra Physics, A117, Newport) with a wavelength

of 633 nm is used as a length standard. Its wavelength was measured with our

institute’s frequency comb.

Although the stability is not as good as that of an iodine stabilised HeNe laser,

Table 5.7: Length standard specifications.
Frequency (measured) 473 612 527 590 ± 77 kHz (min.)
Short-term frequency stability < 100 kHz (typically)

< 300 kHz (1 minute)
Long-term frequency drift < 3 MHz (8 hours)
Temperature sensitivity 0.5 MHz ◦C−1

we preferred it due to its compactness and easy handling. For the MPG1 setup,
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the laser was used in a free space setup, but the MPG2 laser was fibre-coupled.

This reduced the output power from ≈ 1.3 mW to 500 µW, but is still good

enough to get a fringe signal of an amplitude of 1 Vpp. The specifications of the

laser are listed in Tab. 5.7. Assuming a rectangular probability distribution, the

uncertainty amounts to 3.64 µGal.

This uncertainty is still too high. However, a prototype of a caesium stabi-

lized diode laser (852 nm) was built at our institute by our colleague Dr. Jianwei

Zhang to our specifications. First measurements of the laser showed accuracies in

the order of 9×10−11. An advantage over the usual iodine stabilized helium-neon

lasers is that there is no modulation on the frequency, and an output power of

several mW is no problem. We just started first g-measurements with the new

laser, so they are not reported in the framework of the thesis.

Table 5.8: Uncertainty budget for laser stability.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 3.64
MPG-2 none 3.64

5.1.7 Accuracy and stability of the atomic clock

The ADC-card used to digitize the fringe signal is disciplined by a rubidium

frequency standard (SRS, FS725), giving a 10 MHz sine wave signal. Its accuracy

is specified with < 5× 10−11 (monthly) and < 5× 10−10 (yearly) (cf. Tab. 5.9).

The clock was calibrated at our institute and also compared to other standards

during the ECAG 2007 in Luxembourg. Assuming a rectangular probability

distribution, the error can be estimated to be less than 0.6 µGal. As the main

uncertainty arises from the drift, a frequent calibration, say every 6 months,

should keep the error small. This can be done with other caesium clocks and the

maser, which are available at our institute. Another possibility is to use a GPS-

disciplined rubidium clock like the AR70 A series from AccuBeat Ltd., where the

GPS signal guarantees the long term stability.
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Table 5.9: Frequency standard specifications.
Amplitude 1 Vrms ± 10%
Ageing monthly: < 5× 10−10

yearly: < 5× 10−9

Short-term stability < 2× 10−11 (1 s)
< 1× 10−11 (10 s)
< 2× 10−12 (100 s)

Table 5.10: Uncertainty budget for clock stability.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 0.6
MPG-2 none 0.6

5.1.8 Corner cube rotation

The minimisation of the error due to corner cube rotation was one of this work’s

key projects and is described in detail in Sections 4.2 and 4.3. The uncertainty

derived in section 4.2 was 0.7 µGal. The FB treated in Section 4.3 is not used in

our gravimeters yet, and hence will not be shown in the uncertainty budget.

Table 5.11: Uncertainty budget for corner cube rotation.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 0.7
MPG-2 none 0.7

5.1.9 Radiation pressure

The laser beam reflected by the FB transfers momentum to the FB and hence

slows it down. For a total reflection, the force acting on the surface of the mirror

is equal to F = 2∆p/∆t = 2∆E/(c∆t) = 2P/c, where P ≈ 0.5 mW is the

laser power (for the free space set up), p is the momentum of a photon, and c

is the velocity of light. Dividing by the mass mFB = 0.121 kg of the FB, the

acceleration caused is ≈ 2.8× 10−3 µGal.
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Table 5.12: Uncertainty budget for radiation pressure.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 2.8× 10−3

MPG-2 none 2.8× 10−3

5.1.10 Beam divergence

Even if the laser beam is collimated, diffraction causes the light waves to spread

transversely. There is no such thing as a perfectly collimated beam. This diffrac-

tion, or spreading, results in a curved wavefront, so not all of the beam reaches

the retroreflector aligned along g. The result is a bias in g similar to the one

mentioned in Subsection 5.1.5. This effect is well known and discussed in litera-

ture (Westrum & Niebauer, 2003).

To quantify the error caused by diffraction we can use the following equation,

which is valid in the far field of the laser beam:

∆g

g
=

λ2

4π2ω2
0

=
φ2

4
, (5.12)

where λ ≈ 633 nm denotes the laser wavelength, φ is half the angle of divergence,

and ω0 is the beam waist, i.e. the radius of the beam at its smallest diameter (cf.

Fig. 5.5). This means that when the divergence is measured, the error can be

calculated and corrected. The divergence was measured by determining the beam

Figure 5.5: A collimated laser beam diverges. The radius at its smallest
point is called beam waist radius ω0.

diameter at different positions in the far field. The beam diameter is defined as

the diameter at which the intensity has fallen to 1/e2 (13.5%) of its peak value. A

beam profiler from Coherent was used to measure the diameter at seven positions

approximately 3 m away from the collimator, and with a distance of 5 cm between
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the different positions. The result was an angle (φ = 250± 84) µrad, which gives

a correction of ∆g = 22 µGal, and an uncertainty of σdiff = 1.8 µGal. It should

be noted that the effect, as in the case of the beam verticality, always lowers the

“real” g value.

The uncertainty in g due to the beam divergence is still too high. The best

way to reduce this uncertainty is to use bigger beam diameters. A beam waist

diameter of more than 3.2 mm is required for a correction of less than 1 µGal.

In the free space setup of MPG-1 the beam diameter was bigger than 5 mm and,

hence, the error was smaller than 1 µGal. However, for the uncertainty budget

we will use the number derived from the fibre-coupled system.

Table 5.13: Uncertainty budget for beam divergence.
Correction/µGal Standard uncertainty/µGal

MPG-1 22 1.8
MPG-2 22 1.8

Here we note that together with the finite beam size of a Gaussian beam, there

is also another phase shift – the Gouy phase shift – along the beam propagation

direction. This phase shift may represent another source of systematic error and

has not been considered in all previous works. The detailed analysis will be

published elsewhere.

5.1.11 Temperature effects

5.1.11.1 Temperature gradient

If there is a temperature gradient between the top and the bottom of the FB

during the drop, a pressure difference is induced. The pressure change can be

calculated for an ideal gas as

∆ptg =
∆T

T
p , (5.13)

where ∆T is the difference in temperature between the ends of the FB, T is the

nominal temperature, p is the nominal pressure inside the dropping chamber and
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∆p the induced pressure difference. This pressure difference causes a force that

acts on the FB, and the uncertainty in g can be calculated by

σ∆ptg = ∆T
PAFB

TMFB

, (5.14)

with AFB = (24 mm)2π denoting the cross-section area of the FB, and MFB =

121 g its mass. By inserting the values pMPG−1 = 2× 10−4 Pa, with the nominal

temperature T = 300 K, a temperature-induced acceleration gradient for MPG-

1 of 1.5 × 10−2 µGal K−1 is obtained. Pessimistically assuming a temperature

difference of 0.1 K, the resultant uncertainty amounts to 1.5 × 10−3 µGal. For

MPG-2 the nominal pressure is pMPG−2 = 3× 10−6 Pa, and, hence, the induced

acceleration per 1 K amounts to ≈ 1µGal K−1. Again assuming a temperature

difference of 0.1 K over the length of the FB, the uncertainty is in the order of

0.1 µGal.

Table 5.14: Uncertainty budget for temperature gradient.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 1.5× 10−3

MPG-2 none 0.1

5.1.11.2 Effects on the setup

By virtue of temperature changes a tilt of the optical table MPG-1 is placed on,

was observed. This had an influence on the beam verticality, as the interferometer

was placed on the table in case of MPG-1. A correction formula was derived

from a long-term measurement. Figure 5.6 shows the good correlation between

the temperature and tilts of the optical table. Figure 5.7 shows the correlation

between the measured gravity values and temperature. The empirical correction

formula, derived from the long-term measurement, is

∆gT =

(
790.07− 32.5

◦C
T

)
µGal , (5.15)

where T is the temperature in ◦C. The correlation factor is ρ = 0.647 and hence

significant. It can be seen in Fig. 5.7 that the change in g ranges up to ±40 µGal.

Assuming an uncertainty of 10% of the maximum range as the uncertainty in g,
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Figure 5.6: A change in room temperature causes a tilt of the optical
table.

Figure 5.7: Correlation between gravity values and temperature. ρ is the
correlation factor.
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this error contributes 4 µGal to the uncertainty budget.

This effect was not observed for MPG-2. This has two reasons. First, MPG-2

is not installed on the optical table, and second, for MPG-2 a fibre-coupled laser

is used.

The free space interferometer setup will be replaced in our further measure-

ments with MPG-1. The interferometer will be placed directly on the super

spring, as in the case for MPG-2, so this correction will become obsolete.

Another interesting point in this context is the laser beam pointing stability.

As in the future only fibre-coupled setups will be used, it may not cause any

serious problems, but in my opinion it is worth mentioning that laser pointing

stability in free space setups is an error source not to be neglected. The error is

similar to a misalignment of the verticality of the laser beam. Gray et al. (2001)

investigated the problem of pointing stability for the Spectra-Physics 117A He-

Ne laser. A peak-to-peak amplitude of 15 mrad (≈ 56 mGal) could be shown

for the first 200 s after turning on the laser. After the intensity stabilisation was

established, the amplitudes were lower, but still up to 1.5 mrad (≈ 560 µGal).

Furthermore oscillations were sensitive to temperature drifts just over 1 ◦C were

observed.

The laser beam leaving a fibre should not have such a big pointing instability,

but could be an interesting point for further studies.

5.1.12 Floor recoil and seismic vibrations

The measurement of the falling distance of the FB is a relative measurement.

With the interferometer the distance of the reference mirror (the mirror of the

Super Spring) to the beam splitter is compared to the distance of the retroreflector

in the FB to the beam splitter. The aim is to measure the trajectory of the FB

in an inertial system. This inertial system, however, is just realizable to a certain

extent. If the reference mirror oscillates, the measurement is biased. A gravimeter

can be considered as a low pass filter with a corner frequency given by (Svetlov,

1997)

fc ≈
0.8

T
, (5.16)
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Figure 5.8: Ground vibration acceleration spectrum of a quiet site; nor-
malized spectrum.

where T is the drop time. For our gravimeters this corner frequency is about

10 Hz and 4 Hz for MPG-2 and MPG-1, respectively. Torge (1989) quantifies

the natural microseismics caused by marine surge with periods of 1 to 10 s, and

amplitudes of 0.1 to 10 µm. A typical amplitude spectral density plot is given

in Fig. 5.8 following Speake (1987). A corner frequency of 10 Hz means that

all seismic noise below this frequency penetrates the measurement. The Super

Spring does good work here isolating the reference mirror from microseismic noise.

Since it has a period of 60 s, it shifts the corner frequency of the low pass filter
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Figure 5.9: Single drop residuals of MPG-2 when Super Spring is locked.

from ≈ 10 Hz to ≈ 0.02 Hz and, hence, filters out the biggest part of the noise.

Figure 5.9 shows the residuals of a single drop, obtained with MPG-2 and the
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Super Spring locked, while Fig. 5.10(b) shows typical residuals obtained from a

single drop with MPG-2, but with the Super Spring working. We can state that

the standard deviation in a set of drops could be improved at least by a factor

10 with the Super Spring.

Figures 5.10(a) and 5.10(b) show typical residuals of a single drop. Those

residual vibrations cause a bias in the measurement. The error caused by such
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Figure 5.10: A closer look at the residuals of a single drop.

residual microseismics can be estimated according to Svetlov (1997) with

∆gseis =
30
√

2

πT 3

A0

f0

, (5.17)

and the standard uncertainty

σgseis
=

∆gseis√
2

. (5.18)

Applying these formulas, where T denotes the total fall time, A0 the amplitude,

and f0 the frequency, to the frequencies in our residuals, the uncertainty for

MPG-2 (f0 = 50 Hz, A0 = 1 nm, T = 0.08 s) amounts to σgseis,2
= 37.3 µGal.

Whereas for MPG-1 (f0 = 50 Hz, A0 = 6 nm, T = 0.2 s) the uncertainty is

σgseism,1
= 14.3 µGal. In the case of MPG-1 we also record higher frequency

parts of up to 100 Hz, however the maximum error is computed with the lower

frequencies. A simple simulation shows that this is reasonable. For this purpose

we synthetically generated drop data with a sine wave added, that approaches

the observed one, seen in Fig. 5.11(a) (in the plot only every 1000th sample is
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shown). The resultant residuals are shown in Fig. 5.11(b). When computing

the acceleration due to gravity, the value obtained is by 28 µGal lower than the

nominal value, which is well within the predicted uncertainty.

Where our residual microseismics come from, is not clear. We suppose that
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(b) MPG-2 – Simulated drop.

Figure 5.11: A synthetically generated drop compared to a real drop
shows a systematic offset in g.

they arise from the fact that one part of the object beam path is in the air, and

the other part is – inside the dropping chamber – in the vacuum. Hence, a vibra-

tion of the dropping chamber causes changes in pathlength. Besides, floor recoil

causes also tilts of the interferometer, since it is fixed on top of the Super Spring.

As a result the laser beam oscillates around the plumb line. We conclude this

since such vibrations are systematic and can be observed in the residuals of each

drop. The phase in the observed residual vibrations is almost constant from drop

to drop, the frequency, however, varies from measurement site to measurement

site.

This systematic effect is big, and Klopping et al. (1991) already reported that

systematic errors as high as 20 µGal were possible and detected for the JILA

gravimeters, which were specified to have an accuracy of 3 to 5 µGal. However,

they presented a mathematical method to reduce the error by subsequently re-

moving frequency parts from the residuals, with which they improved their data

to the stated accuracy. Timmen et al. (1993) later tried to reproduce the results

with the software provided by Klopping, but they concluded that the absolute
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accuracy could not be improved, while the precision could (see also Timmen

(1994)).

This effect is very complex and cannot be investigated in the framework of

this thesis. Hence, we decided to add the theoretical uncertainty to our combined

standard uncertainty. To accurately distinguish between vibrations and the free

fall, additional information is necessary. A combination of a gradiometer with

a gravimeter could be a solution. According to Moritz & Hofmann-Wellenhof

(1993) this gives the possibility to separate gravitational from inertial forces.

Table 5.15: Uncertainty budget for seismic noise.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 14.3
MPG-2 none 37.3

5.1.13 Speed of light

The second order polynomial which is fitted to the measured time-distance pairs,

does not consider the finite propagation velocity of light. Two possible methods

can be chosen among to correct for this error (Kuroda & Mio (1991); in our case

the positive z-axis is oriented downwards). The first one is an indirect correction:

After the least-squares fitting the correction value, obtained from the equation

∆gc = −g0

(
3
v0

c
+

12

7

g0 T

c

)
(5.19)

– which is valid for data equally spaced in distance – is subtracted from the

measured value. Subtracted, because the FB is falling towards the BS, which

increases the laser frequency. The correct value therefore must be lower. Here

g0 is the uncorrected g-value, c is the vacuum velocity of light (cf. Appendix A),

v0 is the initial velocity of the FB when the first data pair is taken, and T is the

total free fall time.

The second way is to introduce a retarded time. The corrected, or retarded,

time t′i has the form

t′i = ti +

(
b− zi(ti)

c

)
, (5.20)
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where zi and ti are the i-th distance and time, respectively, as acquired, and b is

the initial separation of the FB and the beam splitter. The quotient b/c, however,

is a negligible constant, as it does not contribute to the acceleration – the entire

drop distance is all that counts. This corrects the value for each time-distance

data pair. The g-value thus obtained is already corrected for the speed of light

then. In our gravimeters, the data acquisition is started when v0 = 0.32 m s−1.

This is valid for both gravimeters. For a drop time of T = 0.2 s this gives a

correction of -14.1 µGal (MPG-1), and for T = 0.08 s it amounts to -7.5 µGal

(MPG-2). The uncertainty arising from this correction mainly comes from the

uncertain knowledge of the initial velocity, which is assumed to be 0.01 m s−1. A

standard uncertainty can be calculated by σgc = ∆v0

v0
gc and amounts to 0.44 µGal

for MPG-1, and 0.23 µGal for MPG-2. For an uncertainty in total fall time, the

error is assumed to be negligible.

Table 5.16: Uncertainty budget for speed of light.
Correction/µGal Standard uncertainty/µGal

MPG-1 -14.1 0.44
MPG-2 -7.5 0.23

5.1.14 Reference height

For the absolute gravimeters MPG-1 and MPG-2 the drop lengths are up to

30 cm, and 15 cm, respectively. With a linear gravity gradient γ of about 300

µGal m−1 this signifies a gravity difference between the starting point of the drop

and the end point of 90 µGal, and 45 µGal, respectively. The tracked trajectory,

however, is fitted to a second order linear equation, which means the value for

g obtained from the fitted curve refers to some point between the starting point

and the end point. Several propositions have been made to correct for this ef-

fective height (Murata, 1978; Nagornyi, 1995; Niebauer, 1989; Zumberge, 1981).

We adopt a method proposed by Timmen (2003). Figure 5.12 shows the relation

between the instrument height, the reference height, and the effective height. His

method requires no previous knowledge of the gravity gradient for the computa-

tion; only the initial velocity v0 and the standard gravity value g = 9.80665 m s−2
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5.1 Uncertainty budget due to the instrument

(cf. Appendix A) are needed as input parameters. Then the effective height is

calculated as

heff =
Av4

0T + Bv3
0g0T

2 + Cv2
0g

2
0T

3 + Dv0g
3
0T

4 + Eg4
0T

5

Fv3
0 + Gv2

0g0T + Hv0g2
0T

2 + Ig3
0T

3
, (5.21)

with

A = 56.0 B = 102.4 C = 61.2

D = 14.0 E = 1.0 F = 112.0 (5.22)

G = 168.0 H = 67.2 I = 5.6 .

According to this, the reference height href , which is the instrument height hinst

minus the effective height heff and the initial height h0, therefore is the height

to which the measured value should be referred. A reduction of the g-value, geff ,

from the reference height to the rest position is possible, but brings additional

errors with it, as a gradiometer is needed to measure the gravity gradient. If the

gradient γ is known, the reduced value grest at the instrument height is calculated

by

grest = geff + (heff + h0) γ , (5.23)

where γ is taken as a negative number.

As we use a frequency trigger adjusted to trigger at 1 MHz, the respective

velocity is about 0.32 m s−1, and the scatter from drop to drop is negligibly small.

Timmen (2003) indicates an uncertainty in the effective height determination of

less than 0.5 mm. To measure the instrument’s height, i.e. the rest position of the

FB’s apex, with respect to the reference mark on the measurement site ground,

a ruler is used. The uncertainty assigned to this measurement is assumed to be

within a range of 1 mm. The combined uncertainty, converted into acceleration,

is 0.3 µGal.

Table 5.17: Uncertainty budget for effective height.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 0.3
MPG-2 none 0.3
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Figure 5.12: The reference height is obtained by subtracting the initial
height of the trajectory h0 and the effective height heff from the instrument
height hinst.

5.1.15 Non-linearity of electronics

Each amplifier introduces a phase shift to the measured signal. If this phase

shift is constant or linear over the entire frequency range, there is no bias on

the measured g value. However, in the case the phase shift is a function of

frequency, and non-linear, the phase shift simulates an additional acceleration

that causes a systematic error. We investigated this problem by measuring the

phase shift produced by the amplifier HCA-200M-20K-C (for specifications see

Tab. 5.18), from FEMTO Messtechnik GmbH with the network analyser E5061A

from Agilent. A direct measurement with the network analyser shows a very

Table 5.18: Specifications of high-speed photoreceiver with SI PIN Pho-
todiode.
Gain Transimpedance 2.0× 104 V A−1 (@ 50 Ω load)
Frequency response Lower Cut-Off Frequency DC

Upper Cut-Off Frequency 200 MHz (±10%)
Rise/Fall Time (10%-90%) 1.8 ns

straight line (Fig. 5.13(a)). The non-linearity only becomes visible after a linear

term is subtracted (Fig. 5.13(b)). The data obtained can then be converted

into distance (Fig. 5.13(c)), from which the acceleration can be calculated. It
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5.2 Uncertainty budget due to environmental effects

turned out that of all ranges, just in the important frequency range (DC-7 MHz)

the amplifier shows non-linearities. The error is calculated considering the fringe

signal U(t) = A sin(2πz(t)
λ/2

), where A denotes the maximum amplitude, λ is the

laser wavelength and z(t) is the height fallen by the FB. For an unperturbed free

fall, the velocity, and hence the signal frequency, changes linearly and can be

correlated to the drop time. The phase shift introduced by the amplifier, makes

a fictitious change in height. The error can be calculated by fitting the second

order polynomial, i.e. the free fall model, to the phase response, converted into

displacement. Fig. 5.13 (bottom graph) shows the residuals after applying the

least squares fit. In our case, this error amounts to ∆g = (−4.71±0.02) µGal – for

correction 4.71 µGal has to be added to the measured value. This is systematic

and valid for a drop length of 200 ms, as in the case of MPG1. In the case of

MPG2, where the starting point is the same, namely 1 MHz, but the total drop

time is just 80 ms, the error is ∆g = (−1.9 ± 0.6) µGal. The uncertainty in

the non-linearity correction results from the uncertainty in the initial frequency,

i.e. the accuracy of the frequency trigger, where a standard error of 32 kHz is

assumed.

Table 5.19: Uncertainty budget for non-linearity of amplifier.
Correction/µGal Standard uncertainty/µGal

MPG-1 -4.71 0.02
MPG-2 -1.9 0.6

5.2 Uncertainty budget due to environmental

effects

5.2.1 Solid Earth tides

When measuring the Earth’s gravity field, the tidal influences of other astronom-

ical objects have to be corrected for. The theory of tidal parameter calculation

was sketched in Chapter 1. The body tides due to the Sun and Moon are the

biggest influences on the measurement, with a range of ±150 µGal. The software

TSoft (TSoft, 2008; van Camp & Vauterin, 2005) is used to correct the measured
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(a) Direct measurement of the phase response.

 

(b) Phase response when linear term is subtracted.

 

(c) Residuals after least squares fit. nm.

Figure 5.13: Results of the phase response measurement of the amplifier.
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data for the body tides. The quoted uncertainty for the tidal correction is 0.1

µGal.

Table 5.20: Uncertainty budget for solid Earth tides.
Correction/µGal Standard uncertainty/µGal

MPG-1 ±150 0.1
MPG-2 ±150 0.1

5.2.2 Ocean loading

When the sea is drawn by the Sun’s and Moon’s attractions, the Earth is de-

formed. The huge load at the coastal regions pulls down the solid ground. For

this reason, the vertical displacement due to ocean loading can reach up to 20 cm

(in Cornwall, (cf. van Camp, 2005)), which equals approximately 30 µGal. In-

land, the contribution due to ocean loading is much smaller. For the site Erlangen

the ocean loading effect is no more than 3 µGal, with an error estimated to about

10 %, which contributes with 0.3 µGal to our uncertainty budget. A better es-

timate of this effect needs better models to describe the ocean tides, which are

the main error source, and also a better knowledge of the rheology of the Earth’s

interior (van Camp, 2005).

Table 5.21: Uncertainty budget for ocean loading.
Correction/µGal Standard uncertainty/µGal

MPG-1 ±3 0.3
MPG-2 ±3 0.3

5.2.3 Polar motion

The Earth’s axis of rotation is not fixed within the the Earth, but is displaced

at any moment by a few meters from the axis of maximum inertia. Although

this can be measured by observing the zenith distance of the celestial pole of

rotation, it cannot be predicted accurately. Chandler observed in 1891 that the

amplitude of the quasi-circular motion changes in a range of 0.05 to 0.25 arc

seconds within a period of 6 years (Seidelmann, 1992). In his honour, this polar
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motion is also called Chandler wobble. It corresponds to the Euler nutation in

an elastic Earth. Variations of up to 13 µGal in surface gravity are possible

(Wahr, 1985). The formula specified in the IAGBN Absolute Observations Data

Processing Standards (1992) (extracted from Vauterin & van Camp (2007)) for

polar motion correction (in nm s−2) is

∆gpm = −1.164 ω2a sin φ cos φ(xp cos λ− yp sin λ) , (5.24)

where ω is the angular velocity of the Earth (in radians s−1), a = 6378136.6(1)

m is the semi major axis of the reference ellipsoid (number from McCarthy &

Petit (2003), IERS Numerical Standards), φ is the geodetic latitude (in radians),

and λ the geodetic longitude (in radians). xp and yp are the pole coordinates

(in radians) and are available on ftp://hpiers.obspm.fr/iers/eop/eopc04/.

The daily predicted values can also be found in the IERS Bulletin – A, and the

final daily polar coordinates are published in the IERS Bulletin – B. IERS’s site

(http://hpiers.obspm.fr/eop-pc/) estimates that the present relative uncer-

tainty as to the Earth’s orientation parameters is about 10−4, hence we consider

the uncertainty to be negligible.

Table 5.22: Uncertainty budget for polar motion.
Correction/µGal Standard uncertainty/µGal

MPG-1 ±13 10−4

MPG-2 ±13 10−4

5.2.4 Pressure effects

A change in local pressure also changes the gravity value, as a higher pressure

signifies a higher mass of air above the measurement apparatus. This means

an attraction upwards, and hence lowers the nominal value. A correction can

be applied as recommended in Boedecker & Richter, Bu. (1984): The nominal

pressure at a measurement height hm (in meters) is defined by the equation

pn = 1013.25

(
1− 0.0065

hm

288.15 m

)
hPa . (5.25)
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With the barometric factor defined as fB = 0.3 µGal hPa−1 the correction to the

observed value go amounts to

∆pcorr = fB(po − pn) . (5.26)

To collect weather data we use the Heavy Weather station 2300. It has a pressure

resolution of 0.1 hPa. Assuming the standard error of the pressure gage to be

1 hPa, the relative standard deviation amounts to about 1× 10−3. This gives an

uncertainty contribution to our uncertainty budget of 0.3 µGal. This can easily

be reduced by the pressure gauge frequently calibrating. For the comparison at

Bad Homburg in February 2008, the pressure values provided by the supercon-

ducting gravimeters, were taken. For this comparison, the uncertainty due to

environmental pressure is negligible.

Table 5.23: Uncertainty budget for environmental pressure.
Correction/µGal Standard uncertainty/µGal

MPG-1 ±3 0.3
MPG-2 ±3 0.3

5.2.5 Coriolis force

A vertical acceleration – the Coriolis acceleration – on the FB can be generated, if

during the start of the drop the FB has a horizontal momentum in the east-west

direction, according to the following equation:

aCor = 2 ΩNvEW sin Θ =
14.6 µGal

mm s−1 vEW sin Θ . (5.27)

Here ΩN is the nominal angular velocity of the Earth (cf. Appendix A), vEW is

the velocity component of the FB in the east-west direction, and Θ is the lati-

tude of the site of measurement. To estimate this effect we assume that our rail

which guides the elevator is not well aligned along g. This can easily observed

by the movement of the laser spot, when moving up and down the elevator by

means of the motor. The rail is usually aligned so that the beam spot does not

move more than 0.5 mm. The range the elevator can be moved up and down is

about 250 mm. Hence the inclination with respect to the plumb line is about
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5. UNCERTAINTY BUDGETS AND POSSIBLE ERRORS

Table 5.24: Uncertainty budget for Coriolis force.
Correction/µGal Standard uncertainty/µGal

MPG-1 none 0.5
MPG-2 none 0.5

2× 10−3 rad. The acceleration of the elevator is about 11 m s−2. Overestimating

a dragging contact time between the vee-grooves and the falling body to be 10 ms

gives a velocity along the rail of about 110 mm s−1 and, hence, as a horizontal

component vEW = 0.22 mm s−1. This would give an Coriolis acceleration (for

Θ ≈ 50◦) of approximately 0.5 µGal. For our uncertainty budget we assume

0.5 µGal as an upper limit.
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5.3 Combined standard uncertainty

5.3 Combined standard uncertainty

By combining all of the error sources we can give the total corrections and un-

certainty for the gravimeters MPG-1 and MPG-2.

5.3.1 MPG-1

Table 5.25: Corrections and standard uncertainty for MPG-1.
Correction/µGal Standard uncertainty/µGal

Air drag 0.3× 10−2

Outgassing 4.2× 10−5

Buoyancy negligible
Magnetic attraction negligible
Eddy currents 0.1
Electrostatic field negligible
Instrumental masses -1.8 0.5
Beam verticality 6
Laser stability 3.64
Clock stability 0.6
FB rotation 0.7
Radiation pressure 2.8× 10−3

Beam divergence +22 1.8
Temperature gradient 1.5×10−3

Tilt of optical table up to ±40 4
Floor recoil & seismic vibrations 14.3
Speed of light -14.1 0.44
Reference height 0.3
Non-linearity of electronics +4.71 0.02
Solid Earth tides up to ±150 0.1
Ocean loading up to ±3 0.3
Polar motion up to ±13 1×10−4

Environmental pressure up to ±3 0.3
Coriolis force 0.5
Statistical uncertainty 0.6 (Erlangen)
(1 month)
Total correction +10.81
Combined standard uncertainty 16.58
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5.3.2 MPG-2

Table 5.26: Corrections and standard uncertainty for MPG-2.
Correction/µGal Standard uncertainty/µGal

Air drag +4.0 0.8
Outgassing 3× 10−3

Buoyancy negligible
Magnetic attraction negligible
Eddy currents 0.1
Electrostatic field negligible
Instrumental masses 0.5
Beam verticality 6
Laser stability 3.64
Clock stability 0.6
FB rotation 0.7
Radiation pressure 2.8× 10−3

Beam divergence +22 1.8
Temperature gradient 1.5× 10−3

Floor recoil & seismic vibrations 37.3
Speed of light -7.5 0.23
Reference height 0.3
Non-linearity of electronics +1.9 0.6
Solid Earth tides up to ±150 0.1
Ocean loading up to ±3 0.3
Polar motion up to ±13 1× 10−4

Environmental pressure up to ±3 0.3
Coriolis force 0.5
Statistical uncertainty 5.0 (Bad Homburg)
(24 hours) (1.6 (Erlangen))
Total correction +20.4
Combined standard uncertainty 38.36 (Bad Homburg)

(38.07 (Erlangen))

5.4 Discussion of the uncertainty budgets

The uncertainty budgets listed above result from a first careful study of the newly

designed absolute free fall gravimeters, and do not claim to be complete. Both

gravimeters were developed together in less than three years. The main focus
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was developing a new method to balance the falling body and to design new me-

chanics for a portable system. Both tasks were accomplished to our satisfaction.

The resolutions of MPG-1 and MPG-2 are 0.6 µGal and 1.6 µGal, respectively.

The specified combined standard uncertainties (accuracies) of 16.58 µGal and

38.07 µGal for MPG-1 and MPG-2, respectively, can be regarded as overestima-

tions. Looking closer at the uncertainty budget we can clearly distinguish the

main error sources, such as floor recoil and seismic vibrations, beam verticality

and laser stability. Without the uncertainty due to floor recoil and seismic vibra-

tions, the combined standard uncertainty would decrease to 7.62 µGal for MPG-2.

This were an excellent result. We believe that residual vibrations mainly come

as a result of path length differences due to vibrations of the dropping chamber.

This changes the relation between the beam propagating in vacuum and that

in air. A full treatment of this effect is very complex and is outside the scope

of this thesis. A very careful estimation has been done therefore. Except for

the vibration problems we expect to be able to reduce or eliminate these error

sources soon. A new laser system has already been constructed and tested to

reduce laser instability. Beam verticality uncertainties can be reduced by a new

alignment method, e.g. employing an autocollimator.
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Chapter 6

Summary and outlook

During the last three years two new absolute gravimeter systems have been de-

signed, constructed and tested. The first one (MPG-1) was aimed to provide

stationary, long-term, highly accurate gravity measurements. Several long-term

measurements were conducted over months, with measurement standard errors

of down to 0.6 µGal month−1. Due to its long drop duration of up to 250 ms,

the main uncertainty source in the uncertainty budget, namely residual vibra-

tions, can be reduced in comparison to the portable gravimeter MPG-2. This

high accuracy allows the stationary gravimeter MPG-1 the status of a reference

apparatus.

The second gravimeter (MPG-2) was developed to provide a portable ap-

paratus, which enables field measurements and intercomparisons with other in-

struments. It was brought to an european comparison of absolute gravimeters

and showed a good agreement with most other European gravimeters. With its

compact design and measurement standard errors of about 5 µGal (12 h)−1 it rep-

resents a competitive device in the field of absolute gravity measurements. An

estimated combined standard uncertainty for MPG-2 of 38.5 µGal comes mainly

from disturbing vibrations. For a better understanding of the origin of these vi-

brations, further investigations have to be conducted. Once this source of error

can be eliminated, we believe that the uncertainty can be reduced to the µGal-

scale.

For now, the target tasks are achieved. A highly accurate stationary reference

absolute gravimeter and a fully automated, portable absolute gravimeter were
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built, which can find application in many fields of physics, geophysics, and the

military, just to name some. The expanded uncertainty of 77 µGal (coverage fac-

tor k = 2), is good enough for the measurement of the Boltzmann constant and

the redefinition of the Kelvin, which require a relative uncertainty of 1× 10−7.

The novel spring mechanics in the portable gravimeter promises to be a good

way of decreasing disturbing vibrations. The new method developed to balance

falling bodies to high precision gives hope of further increasing the accuracy of

free fall absolute gravimeters, as during the last years it proved to be the biggest

error contribution. A new laser system with a high stability and accuracy, and

which needs no modulation on the frequency, is finished. Together with a new

inertial reference mirror system that is under development, the whole gravimeter

will be a completely own development, which will help to detect systematic er-

rors, and hence, give more insight to the accuracy of modern free fall gravimeters.

Gravity measurements are becoming increasingly important in many fields

beyond physics. Some instances are the use of gravity data to determine mineral

deposits (Bell & Hansen, 1998; Pawlowski, 1998), or applications in archaeology,

i.e. to reveal local gravity changes associated with remains of ancient buildings

within the cultural layer (Slepak, 1997), as well as in geophysics to observe land

uplifts (Müller et al., 2007). Metrology and fundamental physics are highly in-

terested in further improvements of gravimeters, because of the devices’ high

potential to measure the Planck constant, the Boltzmann constant, the New-

tonian constant or to redefine the Kelvin and the kilogram (cf. Sec. 1.3).

Regarding the influence of radiation pressure of 2.8 × 10−3 µGal (cf. Sec.

5.1.9) in our system, a laser with higher power and a lighter falling body could

detect this effect. As an application, Newton’s second law could be verified by

comparing the mechanical force with the light force. Measurements in this field

were already done by Gundlach et al. (2007), but using a torsion pendulum, or

by Abramovici & Vager (1986), employing the prototype of their active cavity

gravitational-radiation detector.
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In conclusion, it can be said that the two free fall absolute gravimeters built in

the framework of this thesis under the supervision of Prof. L.J. Wang, and Dr. S.

Svitlov present excellent devices to continue research in fundamental physics. The

groundwork is laid for prospective projects.
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Appendix A

List of numbers and physical

constants

In the following table some of the important numbers and constants used in

the thesis are compiled. Physical constants are taken from NIST (2008), or

IERS Constants (2008), and the material density numbers from Fischer et al.

(2002).

Remark on the use of the unit µGal:

The SI unit of acceleration is m s−2, but it is impractical for use in geophysics,

as the effects of interest are in the cm s−2 range and lower. In the c.g.s. system

however, the unit of acceleration is cm s−2 which, in honour of Galileo Galilei, is

called “Gal” (1 µGal is 10 nm s−2). It is widely used in geophysics as well as in

geodesy.

The unit E (Eötvös) for the gravity gradient is also not compatible with the

SI, but frequently used for convenience. The conversion is 1 E = 10−9 s−2 =

0.1 µGal m−1.

Coordinates for the site Erlangen:

49.34◦N, 11.00◦E, 287.0 m elevation
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Table A.1: Physical Constants and numbers.

Name of Value Relative Standard Unit (SI)

constant Uncertainty

Newtonian constant 6.674 28× 10−11 1×10−4 m3 kg−1 s−2

of gravitation G

Speed of light 299 792 458 (exact) m s−1

in vacuum c

Standard acceleration 9.806 65 (exact) m s−2

of gravity g

Boltzmann constant kB 1.380 650 4× 10−23 1.7× 10−6 J K−1

Avogadro constant NA 6.022 141 79× 1023 5× 10−8 mol−1

Planck constant h 6.626 068 96× 10−34 5×10−8 J s

Molar gas constant R 8.314 472 1.7×10−6 J mol−1 K−1

Earth’s equatorial 6 378 136.6 1.5×10−8 m
radius a

Earth’s flattening f 1/298.256 42 3× 10−8

Geocentric constant 3.986 004 418× 1014 2× 10−9 m3 s−2

of gravitation GM

Heliocentric constant 1.327 124 420 76× 1020 4× 10−10 m3 s−2

of gravitation GS

Nominal angular velocity 7.292 115 146 706 4 (exact) rad s−1

of the Earth ΩN ×10−5

Density of titanium ρTi 4.5× 103 kg m−3

Density of aluminium ρAl 2.7× 103 kg m−3

Density of stainless 7.9× 103 kg m−3

steel ρSt
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Appendix B

Results of long term

measurements

B.1 Measurements with MPG-1

The following presents some graphs of long-term measurements conducted with

the stationary absolute gravimeter MPG-1. The gaps seen in the figures are

mainly due to software glitches, which caused the measurement to stop. The FB

was also observed to jump out of the support ring. This error was tracked to a

lack of grease on the rails and did not reoccur once the rail and ball bearings had

been maintenanced.
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a) b)

c) d)

Figure B.1: Results of the long term measurement #4 with MPG-1.
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Figure B.2: Amplitude spectrum of one month of measured gravity with

MPG- 1 (LT#4).
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Figure B.3: Results of the long term measurement #5 with MPG-1.
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B. RESULTS OF LONG TERM MEASUREMENTS

B.2 Measurements with MPG-2

The following figures show the measurements realized during ECAG 2007 at the

observation sites A1 and B2:

 

(a) Observation site A1

 

(b) Observation site B2

Figure B.4: Measurements at ECAG 2007 in Walferdange/ Luxembourg

with MPG-2.
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Figure B.5: Measurements at Bad Homburg – pillar BA.
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