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Abstract

Within the framework of this thesis two apparatuses for an absolute mea-
surement of gravity were designed, constructed, and tested for the purpose of
detecting long-term variations of gravity, determining the absolute gravity value
for metrological applications, and for research in fundamental physics. The work
includes a stationary gravimeter, which functions as a highly accurate reference
system and a portable gravimeter, which is aimed for field measurements.

The principle these gravimeters use to determine the gravity value is based
on the relation between the falling distance, the falling time, and the acceleration
due to gravity. A Michelson interferometer measures the distance change be-
tween a falling object mirror and an inertial reference mirror with a Helium-Neon
laser (633 nm). The whole fringe signal is digitized by a high-speed ADC, which
is disciplined by a rubidium frequency standard. This fringe recording is novel
compared to common gravimeters, which use an analogue zero-crossing determi-
nation.

Our portable gravimeter’s mechanics also deviate from the standard type.
Springs, preloaded by a small motor accelerate the carriage supporting the falling
object. This reduces the shock vibrations on the system.

Furthermore, a novel method was developed to reduce the uncertainty due
to the falling body’s rotation. The position of the optical centre is determined
in order to subsequently superpose it with the falling object’s centre of mass by
means of a common balancing method. Resolutions of distance of less than 16 ym
were reached in three dimensions, which reduces the uncertainty contribution to
less than 0.7 pGal (7 nm s™2).

A complete uncertainty budget is given for both gravimeters. The combined
standard uncertainty for the portable gravimeter is estimated to give 38.4 puGal,
and that for the stationary 16.6 uGal, whereas for the portable gravimeter a stan-

dard error of 1.6 uGal (statistical uncertainty for 24 hours of measurement), and



for the stationary gravimeter 0.6 pGal (1 month of measurement) was reached.
This is comparable to the resolution of the world’s best absolute gravimeters.
The portable gravimeter was brought to the European Comparison of Ab-
solute Gravimeters (ECAG) 2007 in Luxembourg, and to another comparison
with the German Federal Agency of Cartography and Geodesy (Bundesamtes fiir
Kartographie und Geodésie — BKG), where it showed an agreement of the mea-

sured values obtained with other gravimeters within the instrument’s uncertainty.
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Zusammenfassung

Im Rahmen dieser Arbeit wurden ein stationéres und ein tragbares Gerét zur
Absolutschweremessung entworfen, gebaut und getestet. Die Gerate sollen sowohl
zur Messung von Langzeit-Schwereanderungen und zum Einsatz in der Metrolo-
gie, als auch in der Grundlagenforschung verwendet werden. Das stationare
Gravimeter soll hierbei als ein hochgenaues Referenzgeréit dienen, wohingegen
das tragbare Gravimeter fiir Feldmessungen ausgelegt ist.

Das hier angewandte Messprinzip zur Bestimmung des absoluten Schwerewer-
tes beruht auf der Beziehung zwischen Fallhohe, Fallzeit und Schwerebeschleuni-
gung. Mit Hilfe eines Michelson-Interferometers wird die Entfernungsanderung
zwischen einem fallenden Objektspiegel und dem inert gelagerten Referenzspiegel
gemessen. Als Langenstandard dient hier ein Helium-Neon-Laser (633 nm). Das
komplette Interferenzsignal wird mittels eines ultraschnellen Analog-Digital-Wand-
lers, der durch eine Rubidium-Uhr stabilisiert wird, digitalisiert. Der Schwere-
wert wird anschlieend durch eine eigens entwickelte Software ermittelt. Diese
Interferenzsignal-Erfassung ist eine Besonderheit im Vergleich zu herkémmlichen
Gravimetern, die iiblicherweise eine analoge Erfassung der Nulldurchgange an-
wenden.

Das tragbare Gravimeter hat auflerdem eine spezielle Mechanik. Federn,
die durch einen kleinen Motor vorgespannt werden, dienen dazu den Wagen,
der den Fallkorper beinhaltet, nach unten zu beschleunigen. Dies reduziert die
Schwingungen, die auf das System iibertragen werden.

Ferner wurde eine neuartige Methode entwickelt, die dazu dient, die Unsicher-
heit zu verringern, die entsteht, wenn der Fallkoper wahrend des Freifalls rotiert.
Dazu wird die Position des optischen Zentrums des Fallkorpers ermittelt, um an-
schliefend seinen Schwerpunkt zu diesem hin zu verschieben. Ein herkémmliches

Auswuchtgerit tibernimmt diese Aufgabe. Auflosungen in der Bestimmung der
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Entfernung im dreidimensionalen Raum von besser als 16 ym wurden hierbei er-
reicht. Dies entspricht einer Unsicherheit von weniger als 0.7 pGal (7 nm s2).

Eine vollstandige Messunsicherheitsanalyse wurde fiir beide Gravimeter ermit-
telt. Fir das tragbare Gravimeter betragt diese 38.4 pGal. Fiir das stationére
Gravimeter sind 16.6 pGal anzugeben. Hierbei wurden fiir das tragbare Gerat
ein Standardfehler von 1.6 pGal (Messdauer von 24 Stunden) und beim sta-
tionéren Gerdt von 0.6 puGal (Messdauer von 1 Monat) gemessen. Dies ist mit
der Auflésung der besten Absolutgravimeter weltweit vergleichbar.

Das tragbare Gravimeter nahm an einem europaischen Vergleich von Ab-
solutegravimetern (ECAG), der 2007 in Luxemburg abgehalten wurde, teil und
wurde mit dem Gravimeter des Deutschen Bundesamtes fiir Kartographie und
Ceodisie (BKG) verglichen, wobei es eine gute Ubereinstimmung innerhalb der

ermittelten Messunsicherheit zeigte.
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Chapter 1

Introduction

By the end of the 16" century Galileo Galilei showed experimentally that the
free-fall is a uniformly accelerated motion. He showed that bodies of different
materials fall equal distances during equal times. In the 17" Sir Isaac Newton
derived the law of motion of a freely falling body from the Keplerian laws of
planetary motion. In the same century Christian Huygens developed the the-
ory of the mathematical and physical pendulum. Thus two basic relations for
the measurement of gravity have been established. The need for a measurement
of the gravity was connected with the determination of the figure of the Earth.
Over the years sophisticated pendulum methods were invented to measure the
acceleration due to gravity (simply called “g,”) and the pendulum methods were
replaced by free-fall determination methods, in the 1950’s. Today, this technique
still represents the state-of-the-art.

Further applications arose with the absolute gravimeters’ improving accuracy
and resolution, and the measurement of g has become indispensable today, even
in many areas of daily life. Resolutions of 1 pGal (=10 nm s~2) are the state-
of-the-art for absolute gravimeters - this corresponds to a resolution of height of
about 0.3 cm. Navigation systems, for instance, became more precise with the
increasing accuracy of the measurements, since the gravitational potential has to
be known to determine the satellite positions accurately. Highly accurate maps of
the Earth are based on these results, and the dimension of height is now defined

through gravity. Gravimeters are used to monitor tectonic changes and to detect



1. INTRODUCTION

mineral resources. Table 1.1 lists the orders of magnitudes of some influence fac-
tors, to give an idea of how precise today’s gravimeters are.

Metrology is another field that benefits from absolute gravity determination.

Table 1.1: Orders of magnitudes of gravitational attraction on Earth’s
surface. (Data compiled from Niebauer et al. (1995); Peters et al. (1999);
Torge (1989))

Source Magnitude/pGal
Earth 980 000 000
Change due to gravity gradient /1 m -300
Solid Earth tides (Moon /Sun) +150
Ocean loading +10
Ground water level +10

Air mass (atmospheric pressure 0.3 pGal/m) +9
Polar motion +6
Geodynamics (glacial rebound, tectonic motion) +5
Gravity field anomaly (due to minerals) up to 10000
Human activity (construction, excavations) £100
Person of 70 kg weight at 0.5 m 2

The redefinition of the “kg” requires a relative standard uncertainty in g of 1078
or better (Schwitz et al., 2004). There are also plans to redefine the “Kelvin”,
which require an exact measurement of the Boltzmann constant, which in turn is
based on the measurement of g. The Planck constant is a further candidate for
a more highly accurate standardisation by the same principle as the kg. Finally,
gravimeters can be used to determine the less accurately known fundamental
physical constant GG, Newton’s gravitational constant, which is of high impor-
tance in many parts of physics.

Gravimetry is essential for the above reasons and additionally, in military
applications and deposit exploration. However, the gravimeters still need to be
improved to give higher resolution and accuracy, and they need to be minia-

turised.

Chapter 1 presents a definition of gravity and a brief mathematical description

of the gravitational influence of the Sun and Moon on the gravity values measured



1.1 Theory of gravity

on the Earth’s surface. This is instructive, as gravity variations due to tidal

influences can be nicely seen in our long term measurements.

1.1 Theory of gravity

The following will provide the terminology of gravity and derive the equation of
motion of a freely falling test mass in a gravity field. The treatment is standard
and can be found in many textbooks (e.g. Dehlinger, 1978; Hofmann-Wellenhof
& Moritz, 2005; Lowrie, 1997; Seidelmann, 1992).

1.1.1 The figure of the Earth

The main objective of geodesy is to determine the figure of the Earth and its
gravity field. There are many models for this figure. The simplest is a sphere,
which is a good approximation of the actual shape of the Earth, as the Earth’s
flattening f (defined as f = (a — ¢)/a (cf. Appendix A for numbers), where ¢
is the polar radius, and a the equatorial radius) is just 3.4 x 1073. However,
this model was quickly superseded, as more complex models emerged. One is the
reference ellipsoid, which is a close approximation to the equipotential surface of
gravity, but at heart is just a mathematical convenience. Nowadays, the figure of
the Earth is defined by the so called geoid. It is defined as one of the equipotential

surfaces of the Earth’s gravity potential. This potential coincides with the mean

Earth’s surface

_______
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(a) The geoid surface coincides with the mean sea (b) The geoid.
level. The geoid undulation is the displacement be-

tween the Geodetic Reference Ellipsoid and the geoid.

Figure 1.1: Geoid and reference ellipsoid.



1. INTRODUCTION

surface of the oceans. The difference between the reference ellipsoid and the geoid
is called geoid undulation, and is sketched in Fig. 1.1(a). In fact, the deviation
of the geoid from the best-fitting ellipsoid is quite small. The largest negative
undulation of —105 m is in the Indian Ocean, and the largest positive undulation
of +73 m is in the Pacific Ocean (Lowrie, 1997). Often a three dimensional map of
the geoid is shown, like that in Fig. 1.1(b), to demonstrate that the gravitational
shape of the Earth bears more similarity to a “potato” than a sphere, however
one should note that such figures are exaggerated by many orders. As a result
of this definition of the geoid, gravity enters into the geometry of the Earth.
“Heights above sea level” are heights above the geoid (Hofmann-Wellenhof &
Moritz, 2005). This brings up the question why the shape of the Earth is not just
measured with GPS (Global Positioning System). Geocentric positions today can
be measured to better than 0.1 m by means of GPS. The answer is that satellite
orbits also follow potential surfaces, and this is where the gravity field comes in

again.

1.1.2 Acceleration due to gravity

The potential of the geoid equals the gravity potential W (also called geopoten-
tial) at mean sea level. W is defined as the sum of the gravitational potential V',
and the centrifugal potential Z of the Earth:

GM

r

1
W=V+27=- +§w2r2sin2(19). (1.1)

Then the force due to gravity Fg' is the sum of the gravitational force and the
centrifugal force (cf. Fig. 1.2), and can be written as the gradient of the gravity

potential:
Fo=-VIV. (1.2)

In geophysical applications, however, accelerations are more important than forces.

Comparing Newton’s law of motion

F= m;a , (13)

IBoldfaced letters denote vectors.



1.1 Theory of gravity

where m; denotes the inertial mass of the test mass m, and a its acceleration,

with Newton’s law of gravitation

GmgM
-

F = r, (1.4)

where m, denotes the gravitational mass of the test mass m, M the field gener-
ating mass, G the Newtonian constant of gravitation, and r = |r| the distance
between the centre of mass of the attracting mass M and the test mass m, the
gravitational acceleration ag can be written as

ag = —

—r, (1.5)

for m; = my. This equality has been proved to relative accuracies better than
9 x 10713, by Braginsky & Panov (1971) (cf. also Adelberger et al. (1990); Su
et al. (1994)).

From the second potential of Equ. (1.1), the centrifugal potential, we can

derive the centrifugal acceleration. To calculate the centrifugal acceleration we

Figure 1.2: Gravity is the sum of gravitational force and centrifugal force.
The direction of g depends on the combination of centrifugal acceleration

a. and gravitational acceleration ag at each point.
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can write (cf. Fig. 1.2)

5 X
a, =w‘r—, or

2? < (1.6)
a. = wrsiny — .

x
Here ¥ is the polar angle describing the angle between the axis of rotation and
the the position vector in an earthbound system with the origin of the coordinate
system coinciding with the centre of the Earth. From Fig. 1.2 we see that the
forces add to the resultant force of gravity g (divided by unit mass). The direction
of g coincides with the plumb line and is perpendicular to the geoid’s surface at
each point.

Let us define a local coordinate system in a way that its positive z-direction
coincides with the gravity vector g. If we now assume a constant angular velocity
w and a homogeneous gravitational field, the resultant acceleration due to gravity
will be

|g| = |ag + ac| = g = constant . (1.7)

Thus, the equation of free fall motion we get by integrating twice will have the

form

2(t) = 2 + vot + gﬁ , (1.8)

where 2 is the position, and vy the velocity of the test mass at the time t = 0.
Equation (1.8) is the form of the equation of motion we will use later for our data
analysis.

In high-precision measurements, however, the gradient cannot be neglected, as
the acceleration due to gravity changes by ~ 300 uGal m~! (1 uGal= 10 nm s~2).
We will now include it in the equation of motion. For simplification, but still in
a good approximation, we assume the change in gravity with height to be linear,
so that we can write for the gravity gradient v(z) = dg(z)/dz = v z, where g is

a constant. Then the gravity is given by

i=g(z)=g90+t7%, (1.9)
the solution of which is (Cook, 1965):

2(t) = @<cosh (Vt)— 1) : (1.10)

Yo
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. 2 .
where we set zp = 0 and vp = 0, and Z = %. The cosh can be expanded in a

Taylor series, which gives

t4
A1) = % (t2 + 710—2) , (1.11)

neglecting higher order terms. This shows that by neglecting the gradient, the
height to which the gravity value is referred, is no longer z|;—o, but instead refers
to a position z|;~o. The height the calculated g-value refers to in the presence of

a gravity gradient will be calculated later (Sec. 5.1.14).

1.1.3 Tides

The problem of tide calculations is a fascinating, albeit also a very complex sub-
ject. The variations measured in the g-value not only contain the lunar-solar
attraction, but also secondary effects, such as deformation of the solid earth and
ocean tides, which are the manifestations of the sea to keep its surface perpen-
dicular to the gravity vector. Because of the deformation of the Earth, gravity
measurements are also influenced by changes of the Earth’s radius, which can
reach up to 56 cm (Dehlinger, 1978).

Fortunately, astronomy has a long tradition, allowing the times and positions
of the Sun and Moon to be calculated to considerable precision, as the basis for
calculating tidal corrections can thus be calculated that can easily be applied to
measured gravity data.

The following will show a method of calculating the lunar tidal attraction.
The solar tidal attraction is calculated in a similar way.

Let us start with the Moon’s potential on the Earth’s surface (cf. Fig. 1.3):

~ GMy

Vi 1.12
M - 9 ( )

where G is the Newtonian constant of gravitation and M), is the Moon’s mass.

Furthermore, we have the relation

r?2 = 1%+ R?* — 2rRcos(y) , (1.13)
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Earth

Figure 1.3: Illustration of the lunar attraction on a point P on the Earth’s
surface. R determines the distance between the centre of mass of the Earth
O and the centre of mass of the Moon A. The Earth’s radius is given by
r, and 71 is the distance from the Moon’s centre of mass to the point P
on the Earth’s surface. The zenith angle w.r.t. the centre of the Earth is

given by ¢. The arrows indicate the tidal forces acting on the Earth.

where ¢ describes the zenith angle in a reference system bound to the Earth’s

centre. Inserting (1.13) in (1.12) gives
M 127 —1/2
Var = GTM [1 —9 (%) cos(p) + (%) 1 . (1.14)

In the case of the Earth and Moon r/R ~ 1/60. Therefore, we can expand the
right hand side of (1.14) in a Taylor series in terms of /R and obtain

= - S (ot + S (1) i) + -
(1.15)

This can be regarded as a sum of different potentials. The tidal forces are cal-

culated from the gradient of the potential. The first term in (1.15) is a constant
and, hence, does not produce any force.

The second term in (1.15) is linear in r and thus produces a constant force,
namely the one which keeps the Earth in its orbit around the centre of mass of
the Earth-Moon system.

The third term is the most interesting of the three. Assuming that higher
order terms are neglected in (1.15), it is the third term that produces tides. The

tide-generating potential can thus be written as

GY]\fj\/[’l"2 2
Vride = 2—}%3(3 cos”(p) — 1) . (1.16)
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The vertical component of the attractive force per unit mass can easily be calcu-
lated from the potential (1.16):

_GVTide _ GMMT'

(91)m = o 7 <3c082(90) — 1) : (1.17)

The subscript L shall denote the fact that this component of force acts perpen-
dicular to the sea level. For the sake of completeness we will give the component

parallel to the sea level:

10V _ 3GMyr

(1) = = g =~ g (sin(p) cos() - (1.18)

The same calculation can be performed for the Sun’s attraction. Although
the Sun’s mass is much larger than the Moon’s, its distance to the Earth is
also greater, and it can be shown that the ratio between the Sun’s and Moon’s
attractions is gs/gy = 0.46, where gg denotes the acceleration due to the Sun.
The influence of other planets is so small (5 orders less in the case of Jupiter!)
that they can safely be ignored.

By inserting into equation (1.17) the values for G, R, My, and r (= Earth’s
equatorial radius a; cf. Appendix A), we obtain as a maximum acceleration due

to the Moon’s gravitation [(g.)n],,,, = —109.7 uGal, and as a minimum value

[(90)m], s, = 54.8 pGal. The respective values for the Sun are [(g1)s],,,. =
—50.5 pGal, and [(g1)s],.,, = 25.3 uGal. When the Sun and Moon are in line

with the Earth (and on the same side), the tidal attraction superposes to give

man

a maximum value of 240 pGal. If we also consider the variation due to the
deformation of the Earth, it can be shown (Dehlinger, 1978) that these effects
reach magnitudes of up to 40 pGal, the maximum variation in gravity therefore
summing up to 300 uGal.

Now, let us consider the temporal variation of tidal attraction on a point P
on the Earth’s surface. It turnes out to be inconvenient to describe the Moon’s
position with respect to this point P in terms of the zenith angle . Therefore,
we introduce a geocentric reference system (cf. Fig. 1.4) where the Moon’s
position can be described by its astronomic latitude ¢, its declination north of the
equatorial plane d, and its hour angle 7. The hour angle defines the longitude of

the Moon where the plane described by the Earth’s rotating axis and the Moon
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Polar axis

Lunar orbital
plane

Lunar orbit

Figure 1.4: Instead of the zenith angle ¢ latitude ¢, declination § and
hour angle 7 can be introduced.

crosses the equator. The transformation is done with the following equation,

known from spherical trigonometry (Dehlinger, 1978):
cos(p) = sin(¢) sin(d) + cos(¢) cos(d) cos(T) . (1.19)
By substituting (1.19) into (1.16) we get:

Vi = GMur” L [(3 sin*(¢) — 1) (3sin*(8) — 1)

R 4
+ 3sin(2¢) sin(26) cos(7)
+ 3 cos?(¢) cos*(6) cos(27')] . (1.20)
The quantities ¢, 0 and 7 change with different periods. Doodson (1921) proposed
a Fourier series expansion in order to group the tidal signal into components by

frequencies and spacial variability. According to Doodson, each component has

a frequency
6
i=1

The numbers n; are integer numbers with n; ranging from 1 to 3, and ny_ ¢

taking values ranging from -5 to +5. In order to avoid negative numbers for

10
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the values ny g, Doodson added 5 to each of these numbers. As a result, we
can classify the tidal constituents into groups of semi diurnal, diurnal, and long
periodic frequencies. The main tidal components are shown in the following table
1.2 (adopted from Dehlinger (1978)). Doodson included almost 400 constituents

Table 1.2: Main tidal constituents. The subscripts, like My, refer to the
number of cycles per day. The letters are called Darwin’s symbols (after

Darwin, G.H.) and often denote the origin of the constituent.

Symbol Tidal component Period
Semi diurnal M, Principal lunar 12.42 h
ny =2 So Principal solar 12.00 h
Ny Lunar ellipticity (due to monthly vari- 12.66 h
ation in the moon’s distance)
K> Lunar-solar declination 1197 h
Diurnal (OF Principal lunar 25.82 h
ny =1 P, Principal solar 24.07 h
K; Lunar-solar declination 23.93 h
Long period My Lunar flattening 13.66 days
ny =0 So Solar flattening 182.5 days

in his expansion. 100 of them are long periodic.

The theoretical tidal accelerations can be calculated from the tide-generating
potential derived above. Longman (1959) did this as early as 1959 for an IBM
709 computer. Nowadays, the most popular program is called ETERNA. It was
developed by Wenzel (1996b). Today’s programs also include secondary tidal
effects. (To show how those effects are calculated is outside the scope of this
thesis, and the interested reader is encouraged to look up e.g. Dehlinger (1978),
Lambeck (1980), or Seidelmann (1992).)

Figures 1.5 and 1.6 show the theoretical tides and the amplitude spectrum,
respectively, for the site Erlangen calculated with the program TSoft (van Camp
& Vauterin, 2005).

1.2 Absolute measurement of gravity

With an absolute gravimeter the absolute value of gravity acceleration can be

measured. In contrast, relative gravimeters are for measuring the difference of

11
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Figure 1.5: The figure shows the temporal variations in the gravity value
for the site Erlangen (49.34°N, 11.00°E, elevation 287.0 m). The values
are calculated with the program TSoft. Start 24-01-2008, duration 30 days.

The amplitude is given in nm s~2.
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Figure 1.6: The amplitude spectrum of the tidal influences is calculated
for Erlangen, with the program TSoft. The horizontal axis shows the cycles
per day which correspond to the Doodson-numbers n; in table 1.2. The

main tidal constituents can clearly be seen.
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1.2 Absolute measurement of gravity

two gravity values, and need to be calibrated using an absolute gravimeter.

1.2.1 Historical Background

The investigation of gravity started with the development of the theoretical de-
scription of the free fall motion by Sir Isaac Newton (1643-1727) in his “Phi-
losophiae Naturalis Principia Mathematica”, published in 1687, and with the
description of the motion of the pendulum by Christian Huygens (1629-1695).

For a long time (= 200 years) the pendulum was the only apparatus for mea-
suring gravity. Although the pendulum (patented by Christian Huygens in 1657)
was originally invented to measure time, it soon became evident that the os-
cillation period depended on the latitude and on the height (above sea level).
The pendulums used were mostly simple approximations of the mathematical
pendulum. The breakthrough in accuracy came in 1818 with Kater’s reversible
pendulum (Cook, 1965). Who really invented the reversible pendulum is not clear
(Kiihnen & Furtwéngler, 1906). A reversible pendulum was also used by Kiithnen
& Furtwéngler (1906) who measured g at the “Konigliches Geodéatisches Institut
Potsdam” in Germany. This measurement was a key event in Germany’s geodet-
ical history, as this value 1909 became the global gravity reference (Dehlinger,
1978) for a period of more than 50 years, which ended with the advent of free fall
measurements, as these turned out to be more accurate.

The epoch of free fall gravimeters started with the proposals by Guillet, and
by Volet in 1946 (Cook, 1965). In 1952 Volet conducted a first measurement with
a falling graduated scale and high speed photography. Later free fall experiments
were performed by Agaletzkij et al. (1959) in Leningrad, Russia, Preston-Thomas
et al. (1960) in Ottawa, Canada, Thulin (1961) in Sevres (Paris), France, and
Faller (1965) in Princeton, New Jersey, USA. In 1967 Cook built the first symmet-
ric free fall gravimeter, where a glass ball was launched upward and fell back under
the force of gravity. Sakuma improved this design in 1971 in Sevres, France, by
applying optical (white light) interferometry for the length measurement (Faller
was the first contemporary with him to do this). By the end of the seventies a
Ukrainian group started a series of rise-and-fall gravimeters (Bondarenko et al.,
1997). Under the supervision of Faller, Niebauer (1987) launched the first serial

13



1. INTRODUCTION

Uncertainty Richer Repsold
Rel y /Bougue:r Kiihnen &
: T W Kater Furtwingler
error e D Heyl &
5 < u,
107 + 7
Bessel i Volet & Thulin
: Borda &
10° + Cassini Schiiler et al.
o A.H. Cook
i Faller &
Hammond
Worden
-8
107 4 Faller
Romberg Niebauer et al.
A
O,
10° L Sakuma % \
1 Il I ] 1 ?(Y »
16001700 1800 1850 1900 1950 1805000 > Year

Figure 1.7: Historical overview of the gravimeter’s increasing accuracy.

production of absolute free fall gravimeters (JILAG). The “new generation of ab-
solute gravimeters” (Niebauer et al., 1995) named FG5 was an improvement of
the JILAG. They were the first commercially available gravimeters on the mar-
ket, sold by the company AXIS (now MicroG-LaCoste).

Finally, Kasevich & Chu (1991) succeeded in the first measurement of grav-
itational acceleration with a gravimeter based on an atom interferometer (cf.
Baudon et al., 1999). Despite the sophisticated setup, the atom gravimeter is
still a free fall gravimeter, with the difference that the falling body is now micro-
scopic, rather then macroscopic objects, namely atoms, which obey the same law
of gravitation.

Figure 1.7, adopted from Torge (1989), illustrates the historical development

in terms of accuracy of absolute gravimeters.

1.2.2 Free fall gravimeters

1.2.2.1 Free fall

Nowadays, the most common ballistic gravimeter is the simple free fall gravime-

ter. This type of gravimeter uses a macroscopic object as a test body.

14
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The operating principle of a free fall gravimeter is quite simple. A test

Free falling

g object mirror

. Detection
>—p

Laser >—>- ’
system
BS

Vibration isolated
reference mirror

Figure 1.8: Working principle of a Michelson interferometer in a free fall
gravimeter. The object mirror (falling mirror) is attached to the test mass.
During the drop the change in path length with respect to the reference

mirror is measured. (BS = beam splitter)

body, to which a triple mirror retro-reflector is attached, functions as an object
mirror in a Michelson-type interferometer (cf. Fig. 1.8). The reference mirror
is attached to a long period seismometer (D’Agostino, 2005) or an active vibro-
isolation (Rinker, 1983) and defines a quasi-inertial reference system which the
movement of the test body is referred to. Due to the path length change, which
occurs when dropping the test mass, a chirped fringe signal (interferences of the
reference beam and object beam) is generated on the detector over a frequency
range from DC - 6 MHz, for a 200 ms drop (cf. Fig. 1.9). By measuring the
time when the zero crossings of the fringe signal occur, the trajectory can be
described (displacement in function of time). Each zero crossing equals a spacial
displacement of A/4, where \ is the laser wavelength (usually a Helium-Neon
laser with A = 633 nm). With a least squares fitting of the equation of motion
(e.g. equation 1.8) to the obtained trajectory, the parameters g (acceleration due
to gravity), vy (velocity at ¢t = 0) and z, (position at t = 0) of the equation of
motion can be derived.

Modern gravimeters reach accuracies of the order of 1-2x107° (Niebauer

et al., 1995). Therefore relative uncertainties of 1 x 1072 and 5 x 1071° have to
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Figure 1.9: The interference signal generated due to the dropped mirror is
a chirped sine wave, which ranges from approximately DC to about 6 MHz
for a 200 ms drop. Each zero crossing signifies a relative translation of A/4,
where A denotes the laser wavelength.

be reached for the displacement and the time interval measurement, respectively.
This is only possible due to the invention of stabilized lasers and due to atomic

clocks, as well as the invention of the corner cube retroreflectors (Peck, 1948).

1.2.2.2 Symmetric free fall - Rise and fall

The operation principle of the symmetric free fall (also rise and fall) gravimeter,
which was first built by Cook in 1967, is essentially the same as that of the
simple free fall gravimeter, with the difference that the test body is launched
upwards rather than just dropped. So the movements upwards and downwards
are tracked and processed. The data acquisition is similar to that of simple free
fall gravimeters.

The advantages of this type of gravimeters are that the trajectory is longer
(up to 400 ms (D’Agostino, 2005)) — this reduces the error due to seismic noise
— and the gravimeter is less sensitive to air drag and non-homogeneous electrical
and magnetic fields, but more difficult to align. As the test body is launched, it
can have a horizontal velocity component, which introduces an error due to the

Coriolis effect. This error is one of the biggest contributions to the uncertainty
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Figure 1.10: The picture shows the rise and fall gravimeter IMGC#2 of
the Institute of Metrology G. Colonnetti, Italy, at the international com-
parison of absolute gravimeters in Walferdange, Luxembourg, November
2007.

budget of a rise and fall gravimeter (D’Agostino, 2005). Figure 1.10 shows an

example of a symmetric free fall gravimeter.

1.2.3 Atom gravimeters

Basically, atom gravimeters are free fall gravimeters, with the difference that
atoms are dropped instead of macroscopic objects. The principle is basically
laser ranging of atoms, where the position information is encoded into the atomic
wavefunction. This type of gravimeter is based on atomic interferometry (Baudon
et al., 1999). The first atom gravimeter was realized by Kasevich & Chu (1991).
However, its accuracy was quite poor. With an improved gravimeter, they reached
an accuracy of 3 x 1079 (Peters et al., 1999). Although the dropping chamber
can already be built quite compact, the electronics are very bulky (cf. Fig. 1.11),
making real portable gravimeters infeasible. The considerable costs are another
disadvantage. On top of this, atom gravimeters suffer from the same sensitivity

of the reference mirror to seismic noise as the simple free fall gravimeters.
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Figure 1.11: Atom gravimeter from ONERA. Although the set-up is com-

pact, the electronics is bulky.

1.3 Selected applications

There are many applications for gravimeters. One of the main applications is
surely the determination of the geoid, i.e. geodesy, and with it cartography,
which needs gravity data for the height determination. But there are a variety of
applications that indirectly require the value of gravitational acceleration. These
are metrology, physical sciences, and geophysics, among others. The following

will report on some selected applications.

1.3.1 New definition of the Kelvin

Up to this date, the triple point of water (TPW) is used to define the unit
of temperature T. This means that the temperature is linked to a material
property. Recently, there was a proposal for a new definition of the Kelvin, namely
via the Boltzmann constant kp (Fischer et al., 2007). However, the current

uncertainty, with the temperature linked to the TPW, is 3 x 1077, whereas the
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uncertainty of the Boltzmann constant is 107¢. For a redefinition of the Kelvin,
the new definition’s uncertainty should equal or exceed the old definition’s. The
most promising of the proposed measurement methods is dielectric-constant gas
thermometry (DCGT). The idea is basically to replace the density in the equation
of state of a gas by the dielectric constant €. This constant is then measured via
a capacitor, which is placed in the gas bulb. The equation of measurement is
obtained by stipulating that
R =FkpNyu ,

where R is the molar gas constant, kp is the Boltzmann constant, and N4 is the

Avogadro constant. The molar polarizability A., defined as

A = Naayg

380

contains the static electric dipole polarizability ag, and the exactly known electric

constant £3. Combining both equations results in

RO&O
Az—: 380 .

kp =

Finally, performed ab initio calculations (Fellmuth et al., 2006) gave exactly the
static electric dipole polarizability of the 1'S ground state of the *He atom in the

4He reduced atomic unit of polarizability

Qp (4H6)

op(“He) = (dmegad(1 + me/my)?)

Y

where ag is the Bohr radius and m./m,, is the electron to a particle mass ratio.

Thus, the final measurement equation for kg becomes

47 me\® o (*He)
kp=—ay(1+—) —L——.
b 3“°< ! ) (A /R

(e}

The need for the acceleration due to gravity g enters here via the measurement
of pressure. By combining the virial expression of the equation of state of a real

gas and the Clausius-Mosotti equation, the pressure p can be approximated as

B(T) . (D)

34. X T (34.)

X
3A8/RT) + /ieff

PR [1+ X
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with x = €/eg — 1 as the dielectric susceptibility and ks as the effective com-
pressibility. B(T') and C(T') are the second and third density virial coefficients,
respectively. For different pressures p of the gas-filled capacitor, the relative
change in capacitance is measured, which finally determines 3A./RT. This mea-
surement, however, requires an exact pressure determination, which demands a
knowledge of the gravitational acceleration to accuracies of better than 1 x 10~7
(Sabuga, 2007).

1.3.2 New definition of the kilogram

Of the seven units of measurement in the International System (SI), the kilogram
is the only unit still defined by an artefact standard. It recently also became
evident that the kilogram (based on the International Prototype Kilogram (IPK),
a bar of platinum-iridium alloy made in the 1880’s and kept in a vault near Paris)
is loosing weight. Many international scientists believe it is time to redefine it
(Walker, 2004). Among other proposals to redefine the kilogram based on a
fundamental constant (Schwitz et al., 2004; Wignall, 2005), one idea is to relate
mechanical to electrical power via the so called moving-coil watt balance, first
suggested by Kibble (1976) (cf. also Kibble et al. (1990)). This is done as follows

(Fig. 1.12). On one side of a balance the gravitational force on a mass m in the

GG%G
[oYoX¢: (o]
20 d|e R J
S IOLOIOTC)

Figure 1.12: With the moving-coil watt balance mechanical force is com-

OO ¢—m

pared to electrical force.

Earth’s gravitational field is measured, where the acceleration due to gravity g
has to be known. This force is compared to the electromagnetic force acting on

a coil of the length [ in a magnetic field B when a current I flows through it.
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When the balance is in equilibrium, we have
I(Bl) =mg .

In a further step of the experiment the coil is moved with the velocity v through

the magnetic field B. The induced voltage U gives
U=uv(BIl).

Combining both equations, for the site of measurement the following equation
results:

Ul =mgv .

The electrical power is determined by means of the Quantum-Hall-effect and the
Josephson-effect:
P=Ul=kf?h,

where f; is the Josephson-frequency of the microwaves (typically about 70 GHz),
radiating onto the Josephson-element, A is Planck’s constant, and £ is a calibra-

tion constant. The final result is for the mass
1

m=kfih— .
gu

Hence, by means of this balance the kilogram will be traced back to electrical
power, which can be measured very accurately through the Josephson effect and
the quantum Hall effect. To convert the weight, which is measured with such a
balance, into kilograms, the gravitational acceleration g needs to be known. The
accuracy of a new mass presentation should be better than 107® (Schwitz et al.,
2004).

1.3.3 Measurement of the Planck constant

The same moving-coil watt balance can also be used to measure the Planck con-
stant to higher accuracy (Williams (1998); also see Eichenberger et al. (2003);
Robinson & Kibble (2007); Steiner et al. (2005)). Here again the knowledge of
g is necessary, and the mass m has to be known, as well. The current relative
standard uncertainty for the Planck constant is 5 x 107% (NIST).
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1.3.4 Measurement of the Newtonian constant

Newtonian constant of gravitation, G, is determined with the least accuracy
(1.5 x 107*). This is because of tremendous experimental difficulties. Henry
Cavendish performed the first measurement to determine G, in 1798, with a
torsion balance, invented in 1777 by Charles-Augustin de Coulomb, and inde-
pendently by John Michell, in 1783 (Jungnickel & McCormmach, 1996). Later
measurements were mainly based on the same principle. However, to reveal sys-
tematic errors, it is helpful to have different kinds of measurement principles to
measure the same quantity. Schwarz and collaborators (Schwarz, 1998; Schwarz
et al., 1998) were finally able to measure G using a free fall gravimeter. They
determined G by differential measurement, locating a huge test mass (=~ 500 kg)
close to the gravimeter at subsequently different positions. The achieved relative
accuracy was 1.4 x 1073, Fixler et al. (2007) performed a similar experiment with
an atom interferometer. Systematic uncertainties limited the experiment to an

accuracy of 3 %o.

1.3.5 Time keeping

In a recent article Kleppner (2008) reported the latest achievements in time stan-
dard (Ludlow et al., 2008; Rosenband et al., 2008). An overall uncertainty of
5.2 x 10717 could be reached. At this level of accuracy, a general relativistic ef-
fect had to be included in the uncertainty budget. The uncertainty contribution
of 1 x 107!8 arises from the potential difference, which corresponds to a height
difference of 1 cm. Kleppner concludes that “the effects of general relativity that
mix time with gravity are starting to approach a point that will require rethink-

)

ing the basic concept of ‘keeping time Modern gravimeters, however, can

resolve the potential difference surging from height differences, to better than
1 ecm. Gravimeters, hence, could contribute to time measurement.

1.4 Organization of the thesis

This chapter briefly introduced the reader to gravimetry, showed how theoretical

tides can be calculated, and gave some selected applications. Also a historical
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overview of absolute gravity measurement was given and the working principles
of current free fall gravimeters were sketched.

The following Chapters 2 and 3 are dedicated to the gravimeter set ups,
developed during the thesis. The mechanics and optics of the stationary, as well
as of the portable gravimeter will be explained, and results will be discussed.

Two novel methods to balance the falling body will be described in-depth in
Chapter 4.

Before concluding with a summary and outlook in Chapter 6, the uncertainty

budgets for both gravimeters are given in detail in Chapter 5.
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Chapter 2

Stationary free fall gravimeter
MPG-1

This chapter presents the setup of the stationary free fall gravimeter (MPG-1)
and its operation principle. The mechanical, optical and electronics parts are
described. Results from long-term measurements are shown and discussed, as

well.

2.1 Setup

In Fig. 2.1 the schematic of MPG-1 (abbreviated from Maz Planck Gravimeter)
(a), and the laboratory setup (b) are shown. The whole measurement apparatus
can be divided into three principal parts. (1) The ballistic block, with the mechan-
ics and falling body; (2) the laser interferometer with the quasi-inertial reference
mirror; (3) the electronics and computer for data acquisition and processing. As
the figure illustrates, the ballistic block (dropping chamber) is placed on an op-
tical table. The interferometer is mounted on top of the table except for the
quasi-inertial reference mirror, in this case a Super Spring (Rinker, 1983), which
is also used in the commercial FG5 absolute gravimeters from MicroG-LaCoste.
The Super Spring is placed on the laboratory floor beneath a 30 cm x 30 cm hole
in the optical table, so it is not visible in the top view photograph in Fig. 2.1(b).
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Figure 2.1: Set up of the stationary gravimeter MPG-1. a) The schematic
of the measurement apparatus. b) The set up in the laboratory at Erlangen.

2.1.1 Optics and laser

The falling body’s free fall is traced with a Michelson type interferometer (2.2).
The object mirror, which is part of the falling body (FB), and the reference
mirror, which is part of the Super Spring, are not physically connected to the
rest of the interferometer. This main block of the interferometer consists of two
non-polarizing beam splitters (BS) and two mirrors (M). The design of the in-
terferometer is chosen so that a vertical displacement of the main block does not
introduce any change in path length (in-line interferometer system; cf. Niebauer
et al. (1995)). Only horizontal movements can alter the measurement, but those
movements are assumed to be small. The laser light emitted from a Helium-Neon
laser is expanded from 2 mm to 5 mm by means of a telescope. It is then split into
two beams by a non-polarizing beam splitter BS1. The reference beam (which
has to be aligned along g) is reflected from the free falling object mirror CCM1 to
the vibration isolated reference mirror CCM2, deflected by mirrors M1 and M2,
to finally recombine at beam splitter BS2 with the reference beam. By means of
a third lens L3, the interfering beams are focussed on the detector.

As a laser, a polarisation-stabilized (Spectra Physics!, A117), with a wave-

length of 633 nm, is used (for specifications see table 5.7). The beam splitters

1Sold by Newport
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Cccmi
g < Free falling

object mirror
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Laser H >—P- . >
L1 L2 BS1 A L3 Detection
M1 system
\ 4 >
M2
A

Optical table

[ 4 b
Fixed system CCM2

Vibration isolated
reference mirror

Figure 2.2: Interferometer setup. A Michelson-type interferometer is cho-
sen. The free falling corner cube mirror (CCM1) and the reference mirror
(CCM2), isolated by the Super Spring, are not mechanically connected to
the non-polarizing beam splitters (BS1,2), the two mirrors (M1,2), and the
two lenses (L1,2).

and the mirrors are commercially available and have surface qualities of better
than A\/10.

2.1.2 Electronics

One of the new features of our setup is that the whole fringe signal (with up to
1.6 million data points) is digitized and processed. In other gravimeters usually
just parts of the fringe signal are used for data processing. Since the duration
of our FB’s fall in the MPG-1 is about 200 ms, the resultant signal reaches a
frequency of up to 6.2 MHz. As an industry standard, a sampling rate of at
least 7 times the measured frequency is suggested. This means that the sampling
rate of the digitizing card should be a minimum 50 MHz. We use a high perfor-
mance digitizing PCI card (Gage Applied, CS 12400) capable of sampling up to
400 MS s7!. Usually, a sampling rate of 100 MS s is taken. The ADC card has

27



2. STATIONARY FREE FALL GRAVIMETER MPG-1

512 MB onboard memory, with a 12 bit amplitude resolution, and is built into an
industrial computer with a Pentium IV processor (3 GHz), with 2 GB of RAM
running under Microsoft Windows XP.

Since the sampling frequency gives the time scale of the tracked falling body,
the sampling time has to be referenced to a time standard. This is done by con-
necting an external (atomic) clock to the digitizing card, in our case a rubidium
time standard (SRS, FS725).

To trigger the digitizer, a special frequency trigger was built at our insti-
tute. This frequency trigger gives a TTL pulse when the signal frequency reaches
1 MHz, i.e. a pure free fall of ~ 0.5 cm. Here, a stable starting reference height
is reached.

The laser fringe signal is converted by a photodetector into an AC signal and
is amplified.

Figure 2.3 shows the data acquisition and processing schematic. The laser fringe

5233 t::)t-or Amplifier ADC °e
Matlab
nO’ t0
nl 'tl
Frequency .
trigger Ref. Nt
clock zerocrossing -

L o

Figure 2.3: Data acquisition and processing.

signal is first detected and amplified, and then digitized, before it is processed by

the software.
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2.1 Setup

2.1.3 Software

After the fringe signal is digitized, the data is loaded onto the PC and processed.
The analysis software was written with MATLAB. Figures 2.5(a) and 2.5(b) show
screen shots of the graphical user interface.

Alongside the data analysis, MATLAB also controls the motor. Although the

trajectories for the motor are programmed with software provided by Mattke AG,

the motor company, the MATLAB code retrieves the trajectories, stored in the

motor drive, by an RS232 serial connector. So the whole measurement is auto-

mated with the software. The algorithm for the measurement is depicted in Fig.

2.4.

Since the whole fringe signal is digitized, different fitting algorithms can

motor is initialized

end switch

motor moves the elevator wit

slowly downwards to find the end switch

defines zero
position for all
following

h FB

movements

motor moves the elevator with FB to
of the rail (start position)

the top end

trigger waits for signal;
ready for drop

digitizing card is armed and frequency

more than g;
FB falls freely

motor accelerates elevator downwards with slightly

when f =1 MHz
data acquisition starts

4

J

—[ motor decelerates elevator and FB is caught softly ] [

data are processed ]

[ results are displayed ]

Figure 2.4: Workflow of MPG-1.

be applied to the same drop and can be compared. We have implemented (1)
digital zero crossing (DZC'), (2) the second difference method (2ndDiff) and (3)
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Figure 2.5: The graphical user interface programmed with MATLAB.
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2.1 Setup

heterodyning. This opens new possibilities in data analysis. So far just DZC
is used, but comparisons of the three methods are planned for future long-term
measurements.

DZC works similar to analogue zero crossing. The fringe signal is browsed

Filtered Fringe Signal

.....................ID:::..

Figure 2.6: The non phase shifting digital filter helps to reduce noise in
the fringe signal. The blue dots show the digitized fringe signal, and the

green line the filtered fringe signal.

for zero crossings and the respective times are calculated. Each zero crossing
signifies a change in path length of the falling object of a quarter wavelength A/4
of the laser (A &~ 633 nm for the He-Ne laser). To these time-space data pairs, a
polynomial of second order is fitted (Equ. 1.8). The coefficient of the quadratic
term contains the acceleration due to gravity.

One advantage DZC' has over analogue zero crossing is that it allows for ap-
plication of digital filters. In our software, we included a non-phase-shifting filter.

This filter makes it possible to clean a noisy fringe signal, without introducing
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2. STATIONARY FREE FALL GRAVIMETER MPG-1

errors due to phase shifts. When the signal is noisy, fake multiple zero crossings
can be detected, as seen in Fig. 2.6. These values give a bad g-value and the
drop should be skipped. So by applying this filter, the number of outliers can be
reduced and the lifetime of the gravimeter can be enhanced.

The 2ndDiff method will not be explained here, but a detailed description can
be found in Tsubokawa & Svitlov (1999).

Both of these methods, DZC and the 2ndDiff employ linear models. In con-
trast, the third method, the heterodyning, is a non-linear method. The advantage
of heterodyning is that the signal can be undersampled. So if memory has to be
saved, or the maximum sampling rate of the digitizing card cannot fulfil the
Nyquist-Shannon theorem, where the sample rate must be more than twice the
signal frequency then this method provides a good alternative. A description of
the method can be found in Niebauer et al. (2006). A drawback is the difficulty
of introducing disturbing effects in a non-linear model.

Table 2.1 shows typical single drop parameters for the MPG-1.

Table 2.1: Typical single drop parameters
Falling time T = 200 ms
Tracked falling distance H = 26 cm
(Triggered @ 1 MHz, or hy = 0.5 cm after 33 ms of a free fall)

Effective height h.ys = 9.80/8.80 cm (depending on the method)
Sampling frequency f = 100/200/400 MS/s

Required memory depth = 160/320/640 MByte

Amplitude resolution = 12 Bit

Number of samples = 20/40/80 MS

Number of zero crossings ~ 1.6 Million (in case of linear model)

Time to process 1 drop tg  ~ 15/30/45 s

2.1.4 Mechanics

The dropping chamber is composed of the vacuum chamber, with the mechanics
inside, the motor, and the ion pump. The vacuum chamber is made of stainless
steel, measures 100 cm in height and has a diameter of 25 cm. It is placed on
a smaller table, which in turn is fixed to the surface of the optical table. The

verticality of the vacuum chamber can be adjusted by means of three screws on
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2.1 Setup

the bottom flange of the chamber. This aligns the rail the elevator, and hence
the FB, moves along, parallel to the gravity vector g. Only coarse adjustment is
needed here, as the FB falls freely during the measurement with no physical con-
tact with the elevator until it is caught again. The alignment of the rail ensures
that the FB falls into the elevator’s vee-grooves in the same position it had in the
beginning, when the data acquisition started. The bottom flange of the vacuum
chamber also has a fused silica window, through which the vertically aligned laser
beam enters from the interferometer, goes to the object mirror, i.e. the FB, and
is reflected back to the interferometer.

The mechanical parts inside are made of aluminium and stainless steel. The

Figure 2.7: The elevator is connected to a perforated steel belt. The

pulley is driven by a position controlled motor.

small lifting chamber (elevator), containing the falling body is fixed to a perfo-
rated stainless steel belt (fig. 2.7). Its perforation holes fit into small teeth from
the pulley, which prevent the belt from slipping through. This belt, in turn, is
connected to the motor (Mattke AG), which has a position encoder, which — to-
gether with the perforated belt — allows precise positioning of the lifting chamber.
Different ramps can thus be programmed on the motor and the distance between
the lifting chamber and the falling body can be calculated. As the motor lies
outside the vacuum chamber, a rotary magnetic feedthrough is used to connect
the motor to the belt. It is dimensioned for a vacuum of the order of 107!° mbar.

The lifting chamber is guided along a rail by two bearings (THK), which provide
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2. STATIONARY FREE FALL GRAVIMETER MPG-1

high stiffness on the one hand and low friction on the other. UHV-grease (Lub-
con, Ultratherm 2000) is used for lubrication.

The whole setup sits on an optical table (Opta GmbH) with a mass of approx-
imately 500 kg. This huge mass makes the whole set up very rigid and reduces
the transmission of the shocks resulting from the drop to the laboratory floor
and, hence to the Super Spring, i.e. the reference mirror.

All of the mechanical parts and the vacuum chamber were baked during the
first pumping, to free all surfaces from residual water molecules. Once the desired
vacuum of the order of 1 x 10~® mbar is reached by means of the rough pump
and the turbo pump, the vacuum is maintained with an ion pump (Varian Inc),
attached to the bottom end of the vacuum chamber, at a sufficient distance to
avoid disturbing magnetic fields on the FB.

The FB itself is made of titanium and contains a hollow corner cube retro-
reflector (ProSystems!, model VersaMount, USA), silver coated for a laser wave-
length of 633 nm. Three ball-bearing balls, which fit into three vee-grooves of
a support ring, are pressed into its housing, and the support ring is mounted
to the interior of the elevator. Due to the fact that the elevator is accelerated
downwards with more than g when a drop is performed, the FB separates to up
to 5 mm from the support ring until it is softly caught again by the elevator. The
distance the elevator moves during the drop is about 50 cm. During this distance
a pure free fall length of the FB of 30 cm can be reached, i.e. a drop duration of
about 250 ms.

2.2 Results and analysis

After 1.5 years, MPG-1 was able to record long-term measurements (LT) with
standard errors of less than 10 pGal. With this resolution we were able to re-
veal systematic errors, like a serious problem caused by the interferometer being
mounted on the optical table, where it was picking up the motor’s vibration.
The error source was easily removed by putting the interferometer on an active

vibration isolation, which reduced the residuals in a single drop data fit from ~

!This company does not produce retroreflectors any more.
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2.2 Results and analysis

100 nm to less than 10 nm.

Once the main error sources were eliminated or reduced, and the measurement
procedure was automated, the set up was tested in a one-month LT. Figure 2.8
shows the result, whereas Fig. 2.9 is a closeup of a 72 hour section of the same
LT. The measured data (blue dots) very smoothly fit to the theoretical change
of gravity calculated by an Earth tides model (TSoft, 2008). During the LT, a
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Figure 2.8: One month of measured gravity with MPG-1 (LT#5). The
red solid line shows the theoretical tidal gravity influence. The blue dots

show the measured values with the respective standard errors as error bars.

sampling frequency f, of 100 MS s~ was used. Each hour one set of data was
taken, with a set of data consisting of 10 single measurements. The standard
error bars (shown in Figs. 2.8, 2.10 and 2.9; mean g-values are subtracted) are
calculated from these sets. Figure 2.10 shows the residuals of the LT after sub-
tracting the mean g-value. One set takes approximately 3 minutes. The time
needed to perform one set of measurements could be reduced by just skipping the
digital filter, but it greatly improved the number of accepted drops, so the option
is kept switched on. Unfortunately, first saving the fringe signal and processing it
later does not improve the performance, since saving data takes as much time as

processing them. The filtering algorithm is a built in function from MATLAB’s
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Figure 2.9: One month of measured gravity with MPG-1 (LT#5). A
closer look clearly shows that the data measured agree with theoretical
tidal models.

signal processing toolbox, and hence, already optimized. DZC' is also optimized
and leaves no room for further improvement.

With the one-month LT we finally were able to reach a resolution of 0.6 uGal,
after correction for solid tides, pressure effects, and temperature effects.

In Fig. 2.11 the amplitude spectrum of LT#?5 is shown. The diurnal con-
stituents O; (26 h 16 m) and K; (23 h 49 m) can be identified, as well as the
semi-diurnal constituents My (12h 29 m) and Sy (12h 03 m). This is in good
agreement with the amplitude spectrum obtained from theoretical data (cf. Fig.
1.6 and Tab. 1.2).
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Figure 2.10: Residuals of one month of measured gravity with MPG-1
(LT#5), with the theoretical tides subtracted. The mean g-value is also
subtracted.
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Chapter 3

Portable free fall gravimeter
MPG-2

3.1 Introduction

Once MPG-1 was running and producing satisfactory results, we went on to
build a portable absolute gravimeter MPG-2 based on the experience obtained
with MPG-1. As an improvement over MPG-1, the mechanics were redesigned
to reduce the vibrations the motor caused during the drop.

The need for a portable device is obvious. In a day-to-day practice, gravi-
metric measurements have to be carried out on-site at different locations. The
data obtained on-site are compared and are used for gravity networks. While
MPG-1 functions as a highly accurate reference system, the portable gravimeter
is further developed in order to be directly compared with other gravimeters, as
is regularly done at international comparisons like the European Comparison of
Absolute Gravimeters (ECAG), Luxembourg, or the International Comparison of
Absolute Gravimeters (ICAG) at the Bureau International des Poids et Mesures
(BIPM), Paris.

This chapter presents the setup of the portable absolute free fall Max Planck
Gravimeter 2 (MPG-2). The results of the ECAG 2007 in Walferdange, Luxem-
bourg, will be discussed, as well as a further comparison with Germany’s federal

agency for cartography and geodesy, which was conducted in February 2008.
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3. PORTABLE FREE FALL GRAVIMETER MPG-2

3.2 Set up

Figure 3.1 shows the setup of the MPG-2. It is a portable absolute gravimeter,
albeit still a prototype. It consists of the dropping chamber with the ion pump, a
tripod, the Super Spring as reference mirror, and a notebook with a PCI exten-

sion. Further components are the laser and the atomic clock, as separate units.

Figure 3.1: The setup of the portable free fall gravimeter MPG-2 at a
measurement point in the mine in Walferdange/ Luxembourg in November
2007. (The position of the ion pump is different in the new setup - see

discussion in Subsection 3.3.1).

3.2.1 Optics and laser

MPG-2’s interferometer follows the same principle as used for MPG-1, but minia-
turized and fixed to the housing of the Super Spring (Fig. 3.2). Additionally, the
laser is fibre-coupled to the interferometer. The beam verticality is aligned by

replacing the second beam splitter with a hollow retroreflector, and is explained

40



3.2 Set up

in Section 5.1.5. The same laser is used for MPG-2 and MPG-1, but with MPG-2

"ltoTFB
1

SuperSpring

Figure 3.2: The Michelson interferometer is directly mounted on the Super

Spring.

it is fibre-coupled and mounted on a breadboard. For this breadboard, a housing

was constructed to make the setup rigid and portable.

3.2.2 Electronics

The electronics is assembled in a 4-slot PCl-extension from Magma (Fig. 3.3).
It consists of the digitizing card and the frequency trigger. The PCl-extension is
connected to a notebook (2 GB RAM, Intel® Core™ T7200 @2.00 GHz). The mo-

tor drive and power supplies are integrated in a 19 inch rack, which is connected
to the PCl-extension.

3.2.3 Software

The same software is used for MPG-2 and MPG-1, which is possible due to its
option of switching from MPG-1 to MPG-2 parameters. The workflow of a drop
is sketched in Fig. 3.4.

3.2.4 Mechanics

The mechanics were completely redesigned for MPG-2. It was necessary to reduce

the motor’s size and minimize the vibrations it caused during the drops. Beyond
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Figure 3.3: The electronics for MPG-2 is assembled in a PCI extension,

connected to a notebook.

this, a portable gravimeter should be easy to disassemble and have a compact
design. The main modification to MPG-1’s mechanics is that MPG-2’s elevator
is accelerated by springs instead of a motor (cf. Fig. 3.5). MPG-2’s vacuum-
compatible stepper motor (Phytron) is mounted inside the vacuum chamber and
has the sole purpose of lifting the elevator containing the FB. On its way up, the
elevator is guided by two ball bearings (THK), lubricated with vacuum grease.
A third ball bearing guides a cart that hooks into the elevator to tow it upwards.
The springs are loaded during the lifting process. When a special mechanism
releases them once they reach the top position, they withdraw the elevator back
to its initial position.

A further modification was made regarding the drop length. MPG-1’s max-
imum drop length is 30 cm, whereas MPG-2 is reduced to 10 cm as a further
requirement to compactness. The drop length can be adjusted by changing the
spring’s length and strength.

The vacuum chamber has an upper and a lower window flange, the upper serv-
ing as an observation window while the lower is the entrance and exit window
of the laser light. Originally, the ion pump was placed on the vacuum chamber
next to the falling tower. During the international comparison it became evident
that this arrangement negatively affected the measurements (cf. Section 3.3.1).
The magnetic field produced by the ion pump was far too strong at this distance

and accordingly distorted the results. So in a later design we displaced it to a
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Figure 3.4: Workflow of MPG-2.
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Towing
cart

Release
mechanism

FB Elevator

Figure 3.5: The portable gravimeter MPG-2 uses springs for acceleration
of the elevator, rather than the motor. The motor is just used to lift up
the elevator and load the springs. Herewith the vibrations during the free

fall are reduced.

position approximately 30 cm further away from the dropping chamber.

As a stable base, a tripod made of aluminium profiles was constructed. The
vacuum chamber is placed on the tripod, which has an x-y-adjustable plate on
the top. This adjustable plate allows to align the reflected laser beam, to give
a good overlap of the two beams in the interferometer. This is done via two
micrometer screws.

The entire mechanical setup measures about 1.30 m in height, and the weight

of the whole equipment is about 70 kg.

3.2.5 Results

After less than one year of construction, the first satisfactory results with MPG-2
were obtained. Figure 3.6 shows the first long-term measurement we conducted
in the end of October 2007.
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3.3 International comparison ECAG 2007,
Walferdange /Luxembourg

By correcting the value for theoretical tides we obtained a statistical uncertainty
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Figure 3.6: The first long-term measurement at site Erlangen showed very

promising results

of 1.6 uGal, when measured during 24 hours. This was an excellent result.

3.3 International comparison ECAG 2007,
Walferdange /Luxembourg

We participated in the European Comparison of Absolute Gravimeters (ECAG)
from November 6th to 9th, 2007, in Walferdange, Luxembourg. The measure-
ment site was located in a gypsum mine (Fig. 3.7). Besides our MPG-2, the
comparison included 17 FG5’s, 1 JILAG, and the only European rise-and-fall
gravimeter IMGC-2.

For the comparison each group had to measure at least for 12 hours at 3
different pillars. The different pillars were located at different heights inside the
same measurement room. Additionally, the atomic clocks, thermometers, and
pressure gages of each participating group were compared. The first setup time
of MPG-2 took several hours, mainly due to the warm-up time of the standards
and apparatus. When moving to the next measurement site, however, it took us

only one hour to start the next set of measurements.
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Geological cross-section (North-East) of the gypsum mine of Walferdange
(J.Bintz - J. Flick)

b)

Figure 3.7: The ECAG 2007 took place in a gypsum mine in Walferdange,
Luxembourg: a) map of the mine; b) picture from the measurement room

inside the mine.

Measurements were conducted at three different sites (Fig. 3.8 shows the

Figure 3.8: Measurement at the site C4 at ECAG 2007.

measurement results conducted at site C4) and no serious problems occurred.

However, our results showed a considerable disagreement with the values obtained

by other apparatuses. Previous results showed that our gravimeter measured a

value 510.7£13.4 pGal higher than other devices, although the measurement stan-

dard uncertainty of MPG-2 during the comparison was typically about 5 pGal.
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3.3.1 Discussion of results

Although the offset of our measured values with respect to other gravimeters was
too large, it was quite stable from site to site. The measurements very distinctly
depicted the different heights (Fig. 3.9; measurement time at pillar A1 was not
12 hours, since due to warm-up time the measurement was started too late).

Tracing back our value to Erlangen, we were able to investigate the reason for

MPG-2 at ECAG-2007: Measured Gravity
980964900

—e— measured gravity
980964800 %A 1 —— theoretical tides

980964700

980964600 —

Gravity, uGal

980964500 —

980964400 —

Time (hrs) since 2007 - 11 - 06 - 15:30 GMT

Figure 3.9: The measurements with MPG-2 showed good repeatability.
The different mean values result from the different heights of the measure-

ment sites.

the large offset observed at ECAG 2007. It turned out that the ion pump’s magnet
was too close to the dropping chamber (Fig. 3.10(a)). It acted directly on the
FB and accelerated it downwards. Measurements were conducted to determine
the magnetic field. Finally, we were able to reduce the offset by placing the ion

pump about 30 cm further away (Fig. 3.10(b)).

3.4 Comparison with BKG

After the source of the offset during ECAG 2007, was located, another comparison
had to be carried out to re-evaluate the offset. We were invited by the Bunde-

samt fiir Kartographie und Geodésie (BKG) for a comparison at Bad Homburg,
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(a) Ton pump close to dropping chamber (b) Ion pump far from dropping

chamber

Figure 3.10: The influence of the ion pump’s magnetic field was reduced
by placing it farther away from the FB.

Germany. Besides the absolute gravimeters, the BKG owns two superconducting
relative gravimeters that take continuous data. These were good conditions for
a further investigation of our apparatus’ systematic errors. Our assumption was
confirmed. The offset was reduced by a factor 10. Taking the uncertainty budget
and corrections (cf. Table 5.25) into account, our gravimeter’s accuracy is in good
agreement with FG5-101 from BKG (cf. Table 3.1 and Fig. 3.12). Our offset
with respect to the value measured with the FG5 was —37.6+38.4 uGal, for pillar
BA, and +9.8 + 38.4 uGal, for pillar AA. Figure 3.11 shows the measurement
results for pillar AA.

Table 3.1: Measurement results — Bad Homburg.

Pillar BA Pillar AA
Pure measurement 981 055060.8+ 3 981 055072.94+3
With corrections & std. unc. 981055046.5+38.4 981055057.5+38.4
Nominal value (FG5) 981055081.0£2.0 981055044.6+1.1
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Measured gravity, nGal
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Figure 3.11: Measurements at Bad Homburg — pillar AA.
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3.4.1 Discussion of the results

The comparison at BKG gave us an opportunity to evaluate our gravimeter in
more detail. The results of the comparison were more than satisfactory. A full
agreement of the measured values within the assessed uncertainty was reached.
Of course, all possible error sources have to be further investigated. Just an im-
proved uncertainty budget can give more information about an absolute accuracy.
Nevertheless, the portable gravimeter MPG-2 can compete with state-of-the-art

gravimeters.
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Chapter 4

High-precision balancing of the
falling body

For many years, the error due to the rotation of the falling body during its free
fall was one of the biggest contributions to the absolute gravimeter’s uncertainty
budget (Hanada, 1988; Hanada et al., 1996; Niebauer et al., 1995). This is why
many groups worked on reducing this error (Germak et al., 2002; Hanada, 1988;
Vitouchkine & Faller, 2004). This chapter describes how we reduced the con-
tribution of the rotation of the falling body to the uncertainty budget. The
development of these methods is a principal item of the thesis and will be dis-
cussed in more detail. We were the first in determining the distance between
the optical centre of the falling body, and his centre of mass in three dimensions.
Others did it only in one dimension.

Two different methods were developed. The first one includes a simple triple-
mirror retroreflector assembled in a housing. The position of the optical centre
(OC) of the triple mirror can have an unknown position inside the housing, but
is determined with a coordinate measuring machine (CMM). The centre of mass
(COM) of the entire housing-mirror assembly is then shifted to the OC by em-
ploying a commercial balancing machine.

We had two reasons developing a second method. The first was that the bal-
ancing technique needed to be enhanced, and the second was to find a way to

perform the process without a CMM. CMMs are expensive, so to avoid buying
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

one or having the OC’s position measured commercially, which would have in-
volved bringing the falling body assembly to an according company, we started
looking for commercial triple mirrors with known exact OC positions. Then we
constructed the housing in a way that the housing-mirror assembly still provides
knowledge of the OC to a small tolerance. By means of an enhanced balancing
technique the COM is then shifted to the assumed OC.

The first of the two methods we discuss was published in 2007 (Rothleitner
et al., 2007a).

4.1 Introduction

An absolute gravimeter measures the acceleration of a body, falling freely in the
Earth’s gravity field. The falling body (FB) contains the object mirror of a laser
interferometer (a corner cube prism or a hollow corner cube retroreflector; in
our description, we employ a hollow corner cube mirror assembly). The Earth’s
gravity g acts on the centre of mass (COM) of the falling body. However, the
interferometer measures the displacement of the optical centre (OC) of the falling
body. Therefore it is vital that the COM and OC coincide. With the OC addi-
tionally rotating around the COM during free fall, an additional acceleration will

be measured. Its vertical component is
a(t) = w?Rsin(yy + wt) | (4.1)

where w is the horizontal component of the angular velocity, R the actual dis-
tance between the OC and the COM, and 7 the initial angular position of the
OC relative to the horizontal plane (Fig. 4.1).

For small rotation angles wt during free fall, minimum distortion is reached
when vy &= 0° or vy ~ 180°, i.e. the OC and the COM are separated mainly hor-
izontally. On the other hand, it hits the maximum, when vy &= 90° or vy =~ 270°,
i.e. the separation between the centres is vertical. In this case the distorting accel-
eration (4.1) is a(t) &~ +w?R cos(wt), where the + refer to the OC above/below
the COM. Here the value of acceleration does not depend on the direction of

rotation. The maximum acceleration is given by

|tmaz| = W?R . (4.2)
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h ( I3 ’/’I E h2
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"' ot R
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v

Figure 4.1: Rotation of the falling body causes an error in g measurement.
If the OC rotates by an angle wt about the COM, an apparent change in
path length is h(t) = ha — hy = —Rsin (7 + wt) + Rsin~, which results
in a distorting acceleration a(t) = w?Rsin (yo + wt).

At first glance it seems that only the distance in z-direction is important to
be balanced. However, if the FB sits not exactly horizontal in the vee-grooves,
but inclined to some degree, a distance between the COM and the OC in the
horizontal z-y-plane has a projected part along the z-axis. The other reason why
a 3-dimensional balancing should be considered is, that a separation of the two
centres in the x-y-plane produces distortions in the third order term, which con-
tains the gravity gradient. An extraction of the gravity gradient from a single
drop is planned for the future.

Equation 4.2 illustrates that there are two ways to reduce the error due to FB
rotation: either to decrease the value of rotational velocity during free fall or to
minimize the distance between the centres. As a rotation is often unavoidable,
much research is concentrated on reducing the distance between the centres.

Early works employed an interferometric method to coincide the OC with the
COM. A Michelson interferometer generates a fringe pattern between a reference
corner cube retroreflector and the corner cube falling body assembly. The falling
body assembly is placed on a rotating table. The interference signal contains

information about the distance between the OC and the axis of rotation. The
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

table is constructed in a way that the falling body can be rotated around either
the COM (Hanada, 1988) or the OC (Germak et al., 2002). In the first case, the
OC is adjusted to within about 50 um of the vertical axis of rotation by minimiz-
ing the number of fringes during one revolution of the rotating table (Hanada,
1988). Similarly, in the second case, the falling body assembly is shifted to coin-
cide the OC with the horizontal axis of rotation. Then the natural equilibrium
of the falling body assembly, mounted on the previously balanced rotating table,
indicates the position of the COM relative to the axis of rotation. Hence, in
both cases it is possible to adjust the OC and the COM to the axis of rotation.
In Germak et al. (2002) it was also realized that the total distance in 3D space
had to be accounted for. The smallest achievable distances between centres were
hence estimated to be 33 um and 14 pm for the falling body assemblies with
masses of 33 g and 75 g, respectively (Germak et al., 2002).

Another method to improve the alignment of the centres is to monitor the
value of g while introducing a defined rotation on the falling body (Vitouchkine
& Faller, 2004). In this case, the COM is moved to coincide with the OC until
the difference in the measured values of ¢ is minimized. However, this method
requires the vacuum chamber to be opened several times to extract the falling
body in order to adjust the COM.

Here, we describe a different method for measuring and minimizing the dis-
tance between the OC and the COM in 3D space using a mechanical balancing
technique. The method is similar to that commonly used in industry to balance
rigid rotors (Schneider, 2003). We demonstrate that the resolution of this method
approaches that of an interferometric one with the advantage that the relative

position of the centres in 3D space is well defined.

4.2 Balancing in three dimensions

4.2.1 Theory of balancing

Consider an object with a mass m that rotates at an angular velocity {2 about an

axis. If the COM is offset from the rotation axis by a vector e with coordinates
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4.2 Balancing in three dimensions

z, y, and z, a centrifugal force F = me Q? is produced. The product me is called

the imbalance u:
u=me. (4.3)

The imbalance during rotation around the z-axis, projected onto the x-y plane,

is uy = mey (Fig. 4.2). Similarly, projection of this imbalance onto the y-z plane

Figure 4.2: Eccentricity of the centre of mass in 3D space (vector e with

coordinates x, y, and z).

is ug = meqg. Here e;, and eq are the eccentricities, which express the distance
from the axis of rotation to the projection of the COM onto the orthogonal plane.

The lengths of these vectors are:

ler| = /(22 +y?),
leql = /(¥ + 2%).

The angles between the projected vector ey, and the z-axis, and vector eg and

(4.4)

the z-axis are called o and [, respectively:

= arctan )
o = arctan | =) ,
T

[ = arctan (g) ) (5
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A balancing machine measures the vibrational accelerations at the shaft of
the rotor a = KgF/mg, where Kg and mg are the scale factor (sensitivity)
and the inertial mass of the accelerometer, respectively. Provided that another
scale factor C' = |u|/|a] is derived during the calibration, the balancing machine
calculates the values of the imbalances u;, = |ug| = Clay| or ug = Jug| = Claqg|
with the corresponding angles o or 3. By changing the mass distribution of the
rotor, the imbalance can be reduced.

If the mass m of an object is known and constant, and the values of the
imbalances ur,, ug and the angles «, § are measured, it is possible to solve Eqs.
(4.3), (4.4) and (4.5) to find the position of the COM, namely the coordinates
room, Ycom, and zoonr. Given that the OC is located at the known coordinates
Toc, Yoo, and zpc, the COM can then be shifted to this point by changing the
mass distribution of the falling body. Thus, instead of completely reducing the
imbalance, one has to adjust it to an amount deduced from the position of the

OC and the mass value of the falling body.

4.2.2 Method

To adjust the COM to the OC, we first constructed a suitable housing for the
corner cube retroreflector (Fig. 4.3(a)). For light weight and high strength, the
housing is constructed using titanium. A commercial, high precision, hollow cor-
ner cube retroreflector (VersaMount Prosystems, USA) with an aperture diameter
of 1 inch (25.4 mm)is embedded inside the housing. In order to shift the COM of
the entire test body assembly, tap holes and a movable counter mass are added
(Fig. 4.3(a)). The housing is designed in a way as to rotate the falling body
around two axes perpendicular to each other (Fig. 4.3(b)). By adjusting the
counter mass, the COM can be moved along the z-axis. To move the COM in the
x-y-plane, screws can be wound into or out of the tap holes. After mounting the
retroreflector in the housing, the actual coordinates (zoc, yoc, and zoc) of the
OC are measured in the Cartesian coordinate system, using a coordinate mea-
suring machine (DEA, Italy, model Global classic, Hexagon Metrology; Fig. 4.4).
This coordinate system has its origin in the intersection point of two rotational

axes (Fig. 4.3(b)).
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origin

b)

Figure 4.3: Falling body of the absolute gravimeter: a) housing of the
corner cube retro-reflector (1 - counter mass, 2 - tap hole); b) position
during balancing (point of intersection of the rotational axes defines origin
of the coordinate system).

Figure 4.4: The position of the OC is measured with a coordinate mea-

suring machine.

Once the OC’s position is determined, it is possible to start balancing the
falling body. A commercial balancing machine (Micro Prizision Marx GmbH,
Germany, model BMT 210M) is used. Figure 4.5 shows the main set up. The
falling body (a) is centred in the support by two mounting jigs. Its rotation is
driven by a motor (b). An optical sensor (c) is employed to detect the angular

frequency and phase. A vibration sensor (d) is used to measure the vibrational
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accelerations. The balancing machine is calibrated first by introducing a well
defined imbalance, i.e. by placing a known mass at a known radius. After cal-
ibration, this calibration mass is removed. The balancing machine reports the
calculated values of the imbalance in the polar coordinate system. The polar
axis of this coordinate system starts at the origin, shown in Fig. 4.3 (b), and
passes through the position of the calibration mass, attached during calibration.
Thus, after balancing in two planes, the values of the imbalances u;, and ug with
the corresponding angles a and [ are known. Then from (4.3) the values of the

eccentricities are

ur,
€L = —,

mn (4.6)
o= 12
Q=

From (4.4) and (4.5) the coordinates of the COM are

Tcom — € Cos o,
Ycom = €L sin « s (47)

2com = €Q cos 3 .

Compared with the known coordinates zoc, yoc and zpc of the OC, the

Jigs

Figure 4.5: Balancing setup: (a) falling body; (b) drive motor; (c¢) optical

sensor; (d) vibration sensor.
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4.2 Balancing in three dimensions

differences between the centres in each coordinate are

Azr = xcom — Toc ,
Ay = ycom — Yoc (4.8)

Az = zcom — Zoc -

Hence, the total distance R between the two centres is

R = /(A2 + Ay? + A2?) . (4.9)

To minimize R, the COM is moved to the OC by shifting the counter mass of
the housing or by winding in or out screws in the tap holes (Fig. 4.3(a)). After
each change of mass distribution, the imbalances are remeasured and calculations
(4.6) — (4.9) are repeated. This procedure is performed for both the z-axis and
z-axis of rotation (Fig. 4.3(b)) until R is minimized.

In order to measure the minimized distance R more precisely, we apply

120°
bias mass

150° 30°

180°

210° 330°

240° 300°
270°

Figure 4.6: Enhanced method to detect the imbalance. The unknown
imbalance ug is at the unknown angle ©( to the z-axis of the Cartesian
coordinate system, where the OC is defined. The additional imbalance
u; is applied at twelve different angles ©,,. The measured imbalance |u,|

reaches a maximum, when © = ©,, — ©g = 0.

the procedure with the enhanced resolution (Schneider, 2003). In this case the
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imbalance is measured in another polar coordinate system where the polar axis
starts at the same origin (Fig. 4.3(b)) and coincides with the positive z-axis or
the z-axis (Fig. 4.6). A small mass is then attached to the falling body (or to
the mounting jigs) at twelve different angular positions in the plane, orthogonal
to the axis of rotation. The measured imbalance u,, = |u,| depends on the angle
O = 0, — Oy between the existing imbalance uy and the additional imbalance u;
(Fig. 4.6). To calculate it, the “parallelogram rule” and the cosine theorem can

be used:

Up = \/ug + u? + 2uguy cos(0, — Oy) . (4.10)

Here uy = |ug| is the unknown imbalance of the falling body located at the
unknown angle Oy, and u; = |u;| is the additional imbalance located under the
known angle ©,,.

The imbalance (4.10) reaches a maximum when a zero difference occurs in the
angular positions between the vectors uy and u; (Fig. 4.6).

In some cases when the imbalances uy and u; are essentially different in mag-
nitude (Schneider (2003) recommends setting this ratio in a range 5 to 10), (4.10)

can be reduced to the sine curve:
Uy, &2 U + up cos(0, — ) , (4.11)

or

Up, & Uy + ug cos(©, — Og) . (4.12)

The first equation (4.11) is valid for u; < ug while the second one (4.12) can
be used for ug < u;. The maximal relative error of approximation for 6, = 6,
is of the order of 0.5(u; /ug)? and 0.5(ug/uy)? for (4.11) and (4.12), respectively.

For the sake of generality, we fit the curve (4.10) with three unknown parame-
ters (ug, u; and Op) to the measured imbalances u,, using the weighted non-linear
fitting option in the software package Origin". The obtained solutions, namely
the values u;, = up and a = ©g or ug = up and 8 = Oy, are then used to
recalculate the final results (4.6) — (4.9).
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4.2.3 Results

The actual position of the OC in the housing (Fig. 4.3(a)) was derived using
the above-mentioned coordinate measuring machine. Its conventional procedure
allows to measure the hollow corner cube’s apex coordinates in the Cartesian
coordinate system. For this, each of the three surfaces of the hollow corner cube
are contacted at 16 different points by a spherical probe (Renishaw, model SP25).
This gives results of the length measurements relative to the well-defined refer-
ence plane. Three geometrical surfaces (planes in this case) are then fitted to the
measured coordinate data. The calculated point of intersection of these planes
gives the apex of the corner cube. Hence, the results of measurements are the
OC coordinates xoc, yoc and zoc (Table 4.1). To compare with the results of
the COM determination in the polar coordinate system, the OC coordinates are
recalculated into the eccentricities and angles, using Eqs. (4.4) and (4.5) (cf.
Table 4.1).

Balancing of the falling body was performed in a few iterations according to
the procedure described in Subsection 4.2.2. Finally, in each of the orthogonal
planes the imbalance was measured six times for each of the twelve angular po-
sitions of the additional mass. These results are given in Tab. 4.1 and shown in
Fig. 4.7 together with the curve (4.10), fitted to the measured imbalances. The
fitted values are uy, = (14.10+0.02) gmm, o = (103.43+1.06)° (rotation around
the z-axis) and ug = (14.43 £0.02) gmm, 3 = (247.35 £ 1.33)° (rotation around
the z-axis). If the simplified model (4.11) is used, the differences in the estimated
parameters are within 1%, which is acceptable for some applications. In our case
the ratio u; /up =~ 0.12 leads to the maximal relative error of approximation (4.11)
of the order of 0.7%. To avoid this, we use the general model (4.10).

For the mass of the falling body m = 121.61 g the eccentricities ez, and eg
from (4.6) are 115.93 pm and 118.64 pm respectively. The coordinates of the
COM are calculated using Eqgs. (4.7). The total distance R = 43.2 um is ob-
tained from equation (4.9). All the uncertainties, listed in Tab. 4.1, are derived
in the following sections.

Assume a maximum value for the angular velocity w = 10 mrad s~* during free

fall (Niebauer et al., 1995) and an expanded uncertainty of the distance between
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centres Ur = 74.7 ym (cf. Table 4.1)!. Then, according to (4.2), the expanded un-

certainty of g, resulting from such a rotation, is given by U, = w?Up ~ 0.7 uGal.

This is well within the acceptable performance limit for modern free-fall absolute

gravimeters.
Table 4.1: Results of the COM to the OC adjustment.
Eccentricities/um Angles/degrees Coordinates/pm
eqQ er, J6] « T Y z
ocC 114.2 117.1 271.3 102.7 -25.841.5 114.24+1.5 -2.5+1.6

COM 118.6+13.5 115.943.5

Distance between centres in each coordinate

247.4+1.4

Total distance between centres in 3D space

Expanded uncertainty ( k = 2) of the distance

between centres in 3D space

103.4+1.1 -26.9+£2.3 112.843.4 -45.7£5.8

-1.14£2.8 -1.44£3.8  -43.2£6.0
43.2+£15.7

Up = 43.24 4+ 2 x 15.72 = 74.68

o (1443 £ 0.02) gmm 4

Imbalance/g'-mm

o

e

T I T T I T T T
0 30 60 90 120 150 180 210 24

; T I T T
270 300 330 360 390

Angular position of the additional mass/°

Imbalance/g-mm

 a=(10343%

AL S UL S S S B L W B S
0 30 60 90 120 150 180 210 240 270 300 330 360 390
Angular position of the additional mass/®

Figure 4.7: Results of the imbalance measurements when rotating around

the z-axis (a) and the z-axis (b). Dots are measured values with the sta-

tistical standard deviations shown as error bars. The smooth line is the

fitted sine curve (4.10). Obtained values of the imbalances and angles are

reported with the standard errors derived from the weighted least square

fitting.

'We use the symbol U with the subscripts for the expanded uncertainty. The symbol u

with the subscripts is for the imbalance.
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4.2.4 Uncertainty analysis
4.2.4.1 Propagation of uncertainty

The measurement equations are given by (4.6) — (4.9). Let the coordinates of the
OC (zoc, Yoo, zoc) be known with the standard uncertainties o, oc, 0y 00 and
0.0c. Let the eccentricities e;, and eg be derived from (4.6) with the standard
uncertainties o7, and og. These latter uncertainties combine statistical errors af-
ter the weighted non-linear least squares fitting of the curve (4.10) with known
erroneous imbalances and eccentricities. Angles a and [ are derived from the
same least squares fitting with the standard uncertainties o, and o, which com-
bine statistical errors after fitting with an uncertainty due to misalignment of
the coordinate systems. Then from (4.7) and (4.8), following the law of uncer-
tainty propagation (ISO, 1995), we obtain the standard uncertainties of the COM

coordinates

Or.cOM = \/(eL sin )?02 + (cos a)?0? |

Oy.com = \/(eL cos)?02 + (sina)?0? | (4.13)

0.,COM = \/(6@ Sinﬁ)QU% + (COS 5)205

and the standard uncertainties of the differences between the centres in each

coordinate:

_ 2 2
OAz = \/U;v,COM + 0300
_ 2 2
Oay = \/%,COM + 000 (4.14)

_ 2 2
Onz = \/Uz,COM + 0 0c -

In the case when all coordinates of the COM are obtained independently, the

standard uncertainty or of the total distance R, derived from (4.9), is

Az20%  + Ay20% + Az202
aR:\/ e T Y 0Ay Az (4.15)

Az? + Ay? + Az?

Note that in our case, the - and y-coordinates of the COM were calculated

using the same measured values ey, and the angle «v (see (4.7)). Hence, the input
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

quantities Az and Ay in (4.9) are not independent, and the estimation of the
standard uncertainty by (4.15) can not be used. To overcome the problem, we
take this correlation into account (Sommer & Siebert, 2006). For this we first
substitute the measured imbalance uy through the eccentricity e, with the angle
a directly into equation (4.9) and then calculate the standard uncertainty of the
total difference between the centres. With equations (4.7), (4.8) and (4.9) we

obtain:

R* = e} + xpe — 2e00\) Tho + Ydesin (@ + @) + ype + (2com — 200)” , (4.16)

where
arctan (“O—C> , if yoc >0
b= yoc (417)
T + arctan (;g—g) , i yoe <0.

Note that now measurement equation (4.16) does not contain the correlated
results xcon and ycoar- The standard uncertainty of the total distance R be-

tween the centres is then derived from (4.16) as

1 2
Op = E{G% {ai + (Sin (o + gb)) 0?)0}
1
5 2
+ 2H0 (Ui,oc + S£y> + Yoc (‘75,00 + 55;,) + (ZCOM - Zoc) Uiz} ;

(4.18)
where

o2 (t6c0% 0c + YocT,.00)

oC (T3¢ + Yde) ’

2 2

Sy = (sm(a+0)) of + (ercosa+a)) (2+03) . (41
5. — OocC

¢ |?JOC| 7

= Uz,oc + (eg sin 5)2 0[23 + (cos ﬁ)2 aé )

Numerical values of the contributing uncertainties are calculated below.
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4.2.4.2 OC coordinates

Experimental standard errors of the OC coordinates zoc, yoc and zoc, derived
according to the procedure of Subsection 4.2.2, are 0.14 gm, 0.13 ym and 0.22 pm,
respectively. In addition, the specified MPE of the coordinate measuring machine
is AL = +(2.5+L/300) pum, where L is the measured distance in millimetres. For
the longest measured distance L = 50 mm, from the reference plane to the points
of contact with the surfaces of the retroreflector, the MPE is AL = +2.67 pum.
This corresponds to an equivalent standard deviation of 1.54 pm (assuming a
uniform probability distribution). The combined uncertainties are thus o, oc =

1.55 pm, oy oc = 1.54 pm and o, oc = 1.56 pm.

4.2.4.3 Misalignment of the coordinate systems

To estimate the possible systematic effect through the misalignment of the polar
axis and the z-axis or z-axis (cf. Fig. 4.6), we consider the tolerance limits, given
in the fabrication process of the falling body or the mounting jigs. The tolerance
value of +0.5° corresponds to an equivalent standard deviation of +0.29° for both
axes of rotation (assuming a uniform probability distribution). Combined with
the statistical standard errors of the measured angles, shown in Fig. 4.7, we

obtain the standard errors o, = 1.10° and o3 = 1.36°.

4.2.4.4 Mass values

The mass of the falling body m = 121.61 g is required to convert the measured
imbalance into the eccentricity (4.6). It is also necessary to know a value of
the calibration mass (m¢c = 0.590 g)! to calibrate the balancing machine. We
measured these masses using commercial analytical balances, which are specified
for such values of mass according to the high accuracy class II with a MPE of
+0.10 g and £0.001 g, respectively. These values correspond to equivalent relative
standard deviations of o,,/m ~ 4.8 x 107* and 0,,../mc ~ 9.8 x 107* (assuming

a uniform probability distribution).

n Subsections 4.2.4.4 and 4.2.4.5 we denote an estimate # (random variable) for the

measured quantity « (unknown but fixed value).
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

4.2.4.5 Balancing machine calibration

In order to derive the scale factor C' of the balancing machine, we compare its
readings with and without the calibration mass m¢ attached to the falling body at
the radial distance r¢ from the axis of rotation. When rotating with the angular
velocity ()¢, the centrifugal force Fo = mcrcfl% acts on the inertial mass of
the vibration sensor mg. Hence, with the estimated scale factor (sensitivity)
of the vibration sensor Kg, the measured acceleration is ac = f(S(FC /mg) =
K SmCrCQQC /mg. Calibration of the balancing machine, with the given values of
the dynamic stiffness of the rotor and foundation, gives an estimate C' of

merc mcTcms

C =

(4.20)

ac KemerceQ2

The estimates m¢ and 7¢ are inquired to input by the software of the balancing
machine. Hence, in (4.20) the estimates m¢, 7, KS and QC are the random
variables and the values mg, m¢ and r¢o are fixed constants.

There are two groups of uncertainties in the estimate C' for the scale factor
C. The first relates to the uncertainty of the calibration imbalance due to the
uncertainties in the calibration mass and the calibration radius. The second
is due to the measurement imbalance, shown by the balancing machine, which
includes the amplitude non-linearity of the vibration sensor (or uncertainty of
the estimated scale factor K over an operating amplitude range) and non-stable
angular velocity Q. From (4.20), the combined relative standard uncertainty of

the scale factor C' is

(G G G eR)) e

The amplitude non-linearity of the vibration sensor is specified to be within

+1%, which corresponds to an equivalent relative standard deviation o,/ Kg ~
5.77 x 1073, where the uniform probability distribution is assumed. The relative
standard deviation of the calibration mass is 0,,,/mc ~ 9.8 x 10~*. The value of
the calibration radius is r¢ = (16 £ 0.1) mm, where the tolerance is given by the
tolerance limits in fabrication of the falling body. Due to design considerations,

we assume that the COM of the screw, being wound in as the calibration mass,
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4.2 Balancing in three dimensions

is within +0.1 mm of the calibration radius. Hence the total relative standard
deviation of the calibration radius is o,./r¢ = (0.2/v/6)/16 ~ 5.10 x 1072 (a
triangular probability distribution is assumed). The nominal value of the rota-
tional velocity during calibration is Q¢ = 1537 rpm, but during measurements it
varied within £10 rpm. Thus, the corresponding relative standard deviation of
the angular velocity is 0o/ &~ 3.76 x 1073 (the uniform probability distribution
is assumed). Finally, the combined relative standard uncertainty of the balancing
machine scale factor is o¢/C ~ 10.81 x 1073.

The estimate for the scale factor C' is used as a constant C' during measure-
ments to convert the vibrational accelerations to the imbalance units: @ = Ca.
Hence, a systematic contribution from the calibration of the balancing machine
to the combined uncertainty of any measured imbalance @ can be calculated
as o,c = (0¢/C)u = 10.81 x 107%a. With the measured imbalances u; =
14.10 gmm and ug = 14.43 gmm (cf. Fig. 4.7), we get o, = 0.15 gmm and
og,c = 0.16 gmm.

4.2.4.6 Dynamic imbalances

Here we collect erroneous imbalances which are caused by imperfect geometry of
both the falling body and the balancing machine. During free fall, the falling
body rotates around its COM. On the other hand, while balancing, the body
rotates around the fixed rotational axes (x and z, cf. Fig. 4.3). Since these axes
are not exactly perpendicular to each other, the position of the COM can have
an offset from the rotational axes by an amount Ar,. The resulting error in im-
balance will be Au; = mAr,, where m is the mass of the falling body. From the
tolerance limits given in the fabrication process, we estimate Ar; = +2.5 um.
The corresponding standard deviation in imbalance is then o, ; gmm for each
axis of rotation (assuming a uniform probability distribution).

During balancing the mounting jigs themselves produce some additional im-
balance. Without the falling body attached, the measured values of the imbal-
ances are uUgm.;. = 2.5 gmm and ur ., ;. = 0.5 gmm, for different axes of rota-
tion. When balancing the falling body, the angular position of the mounting jigs’

imbalance can have one of many different angular values, which are uniformly
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

distributed over the whole period. Since the magnitudes of these imbalances
(2.3 gmm and 0.5 gmm) are much less then the imbalance of the falling body
(near 14 gmm), equation (4.11) can be considered. Then the effect of such an
imbalance is approximately a root mean square value of the sine curve (4.11)
with the amplitudes equal to the measured imbalances of the mounting jigs, (as-
suming a U-shaped probability distribution). This yields standard deviations of
the mounting jigs’ imbalance 1.64 gmm and 0.35 gmm, when rotating about the
xr-axis and z-axis, respectively. The relatively large value, when rotating about
the z-axis, explains an observed discrepancy between the measured imbalance
and the fitted curve (Fig. 4.7(a)). Assuming that suitable materials, speed of
rotation and fixing methods are properly chosen, the uncertainties due to possible
changes in the dynamic stiffness of the falling body, bearings and foundation can
be neglected.

Table 4.2 lists all uncertainty components of the measured imbalances (as

discussed in previous sections).

Table 4.2: Uncertainty budget of the measured imbalance.

Standard uncertainty /g mm

Source of uncertainty

uQ ury,
Calibration of the balancing machine 0.16 0.15
Measured value of the imbalance:
repeated observations 0.02 0.02
imbalance of the mounting jigs 1.64 0.35
non-perpendicularity of the rotational axes 0.18 0.18
Combined standard uncertainty 1.64 0.42

4.2.4.7 Calculated eccentricities

From equations (4.6), the combined standard uncertainty of the calculated eccen-
tricity depends on the uncertainty of the measured imbalance and the uncertainty

of the mass of the falling body:

L IR T

where the combined standard uncertainties of the measured imbalances are given

in Tab. 4.2, the relative standard deviation of the mass of the falling body is
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4.2 Balancing in three dimensions

calculated in Subsection 4.2.4.4 and the eccentricities e and ey, are shown in Tab.
4.1. Then the combined standard uncertainties of the calculated eccentricities are

oo = 13.51 pm and oy, = 3.48 pm.

4.2.4.8 COM coordinates and difference between the centres

With the combined standard uncertainties of the eccentricities oy and oy, the
combined standard uncertainties of the COM coordinates and of the total distance
between the centres can be calculated from Eqs. (4.13) and (4.18), respectively
(cf Tab. 4.3). The expanded uncertainty of the total distance between centres is
given by

Ur = |R| + kor, (4.23)

where R = 43.24 um as calculated from (4.9) and or = 15.72 um as calculated
from (4.18). For the sake of simplicity, the conventional value of the coverage
factor k = 2 (Taylor & Kuyatt, 1993) is used here.

The combined uncertainty of the total distance in 3D space between the

Table 4.3: Uncertainty budget: COM and OC adjusted.
Standard uncertainty /um

Measured value

x y z
OC coordinates 1.55 1.54 1.56
COM coordinates 2.30 3.43 5.82
Difference between OC and
COM coordinates 2.1 376 6.02
Total difference between centres in 3D space,
combined standard uncertainty 15.72
Expanded uncertainty (k = 2) 168

of the distance between centres in 3D space

COM and OC is approximately 16 um, while in each coordinate it is no more
than 6 um. Clearly, it is possible to reduce the expanded uncertainty Ug (4.23)
by further reducing the total distance between centres, because the resolution of
this method in 3D space is of the order of 16 ym. It is important to note that
the calculation of the combined standard uncertainty by (4.15) instead of (4.18),
in case of correlated measurements in the z-y plane, leads to the underestimated

value of 6.0 pm instead of 15.7 ym.
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4.3 Method of index balancing

The previous Section 4.2 explained how in a falling body (FB) the centre of mass
(COM) and the optical centre (OC) can be superposed, which was done in three
dimensions for the first time in this project. The distance between the two centres
was reduced to 43 pm, with an uncertainty of 16 um. The position of the optical
centre was first measured with a coordinate measuring machine (CMM), and then
the COM was shifted to that point with a balancing method. This method does
away with the requirement that the OC has to lie in the geometrical centre of the
falling body assembly.

This approach worked very well, and the results obtained with the FB were
more than satisfactory (cf. Chapters 2 and 3). Nevertheless, we decided to go for
an improved method. As already mentioned, the goal was to discontinue using a
CMM to measure the position of the OC.

We designed a new FB for this purpose. An improved balancing method,
with a more sophisticated balancing setup is applied by simply reducing the
imbalance of the FB assembly to its geometrical centre, which now coincides
within the tolerance limits given by the fabrication tolerances of the different
parts of the assembly. Here, another hollow corner cube retroreflector is used,
with the distributor providing the well-defined position of the OC relative to the

external surface. The index balancing method is adopted from Schneider (2003).

4.3.1 Theory of index balancing

Let us consider a rotor with an imbalance u. To balance the rotor with a balancing
machine, it has to be fastened to the balancing machine with a mandrel (mounting
jig). When measuring the mandrels imbalance without the rotor, the display of
the balancing machine shows the imbalance H (angle ay and amount of imbalance
|H| after calibration of the balancing machine, see Fig. 4.8).

When measuring the imbalance of the rotor with the balancing-machine-
mandrel-rotor assembly, the shown imbalance on the display is A, which is the
sum of the imbalance due to the mandrel H and the rotor u (cf. Fig. 4.9(a)).

Now, once the rotor is turned by 180° with respect to the mandrel and

rebalanced the balancing machine shows a new imbalance A’ (cf. Fig. 4.9(b)).
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90°

150 I 0-

e

270°

Figure 4.8: Imbalance of the mandrel without rotor.

90°

180° 180° 0°

270°

Figure 4.9: a) Imbalance of the mandrel with rotor. A is the net force,
composed of the imbalance of the mandrel H and the imbalance of the rotor
u. u denotes the position of the COM of the rotor; b) Imbalance of the
mandrel with rotor. The rotor is turned by 180°.

The imbalance of the rotor can now be reduced by shifting the COM of the whole
assembly to the point X, which describes the midpoint of the distance between A
and A’ (cf. Fig. 4.10). With this sort of “differential balancing”, the imbalance

of the mandrel is excluded from the final result.
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90°

180° 0°

Figure 4.10: Imbalance of the rotor u can be calculated from the net

imbalances A and A’. The imbalance of the mandrel is cancelled out.

Finally, the residual imbalance u can be calculated from the net imbalances
A and A’ by means of the equation

_ A=A

|u 5 (4.24)

4.3.1.1 Eccentricity of the mounting jigs

Additionally to the imbalance of the mandrel, the point of support of the mount-
ing jig can be offset from the axis of rotation. This eccentricity of the mounting
jig with respect to the axis of rotation introduces another imbalance E, which
will add up to the net imbalance A. However, again, this error is systematic and
will be cancelled out by index balancing (cf. Figs. 4.11(a), 4.11(b) and 4.12).

4.3.2 Method

The idea for the new FB design was to make it easy to balance and avoid having
to measure the OC with a CMM.

The first requirement “easy to balance” means that the COM of the FB should
be shifted to the axis of rotation, i.e. the imbalance needs to be reduced. The

advantage is, that it eliminates tedious recalculations of the actual position of
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90°

180° 180° 0°
H
u A’
a) b) A
270° 270°

Figure 4.11: a) The imbalance E due to the eccentricity of the mounting
jig with respect to the axis of rotation D adds to the net imbalance A.; b)
After turning the rotor by 180° the eccentricity of the mounting jig E with
respect to the axis of rotation D adds to the net imbalance A’.

90°

180°

Figure 4.12: The imbalance of the rotor u can be calculated from the net
imbalances A and A’. The imbalance of the mandrel and the eccentricity

are cancelled out.

the COM. Masses can be attached or reduced to minimize the imbalance. Hence,
the housing of the FB should define three axes of rotation for balancing, and the

position of the COM should coincide with the intersection point of the three axes
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

— defining the origin of a coordinate system (cf. Fig. 4.13).

The second requirement stipulates that the retroreflector should be placed

7 A
b/

Figure 4.13: The figure shows the three rotation axes around which the
FB will be balanced. The intersection point of the three axes coincides with

the OC.

in the housing, and the OC of the retroreflector should coincide with the origin,
defined by the housing, without the need of measuring the position of the OC
after assembling the FB.

To master these requirements, we took a ball-mounted hollow retroreflector
(BMR) (PLX Inc., BMR-0.875-1, USA, cf. Fig. 4.14(a) whose OC is centred with
respect to the spherical surface to within 0.0001 inch (2.5 pm). Its ball diameter
is 0.875 inches (22.2 mm), and its beam divergence is better than 10 arc seconds.

The next step was to design the housing in a way that the BMR was fitted
inside of it to a tight tolerance and the OC coincided with the intersection point
of the three balancing axes (Fig. 4.13). The universal housing (cf. Fig. 4.14(b))
is made of titanium, and can be used normally as well as upside down, i.e. the
laser can enter the ballistic block from above or from below. Figure 4.14(b) shows
the tap holes and the counter mass. They are used to shift the COM of the FB,

as described in Section 4.2.

4



4.3 Method of index balancing

\

10 mm

a) b)

Figure 4.14: Falling body of the absolute gravimeter: a) ball mounted
hollow retro-reflector (BMR); b) housing of the BMR (1 - counter mass, 2
- tap hole).

Once the BMR is mounted inside the housing, the FB can be balanced. There-
fore special mounting jigs are constructed (Fig. 4.15) which fit exactly to a
commercial balancing machine (Micro Prézision Marx GmbH, model BMT 200

S, Germany, cf. Fig. 4.16). The balancing machine has a feedback control for the

b)

Figure 4.15: A special mounting jig is designed for balancing the FB: the
mounting jig for balancing around the Z-axis is shown a) when it is closed;
b) when it is open, the conical shapes of the supports are seen which centres
the FB to the axis of rotation of the balancing machine.

rotation speed, which allows stable rotation velocities of up to (2000 £ 0.5) rpm.
After attaching the mounting jig to the balancing machine, the balancing machine
is calibrated by putting a defined bias mass at a defined angular position and a

defined distance from the axis of rotation. Next the bias mass is removed and the
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mounting jig is balanced without the FB. This is done by winding screws in or
out of the mounting jig (the mounting jig contains tap holes). When the residual
imbalance of the mounting jig is reduced to a minimum, the FB is mounted inside
the mounting jig, and the whole setup is balanced again. This is done around
all three axes, as proposed in Section 4.2, to reduce the uncertainty. Balancing
around the X- and Y-axis can be done with one setup, however for balancing
around the Z-axis another mounting jig has to be fixed to the balancing ma-

chine. The index balancing method as described in Section 4.3.1 is applied for

Figure 4.16: Balancing machine BMT 200 S (modified) with the mounting
jig for balancing around X- and Y-axis mounted.

balancing. This means that during the balancing procedure the FB is put into
the mounting jig in a defined position, and then the imbalance is measured. This
gives the imbalance value A at an angular position a4. Then the FB is turned
around by 180° and the net imbalance is measured again. This will give another
value for the net imbalance, say A’ at a different angle a 4. The imbalance u now
can be reduced by shifting the net imbalance to the point X (Fig. 4.10). This is
done for the mounting jigs alone as well as for the FB in all three dimensions.
When the FB’s imbalance is reduced to a minimum, the final imbalance is
measured by the method of index balancing and, combined with a method ex-

plained in Section 4.2.2 to enhance the resolution:
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4.3 Method of index balancing

A bias mass is attached to the rotor at up to 16 different angular positions «,, and
the imbalance u,, is measured. The bias mass is chosen in a way that it produces
an imbalance of a factor of 5 to 10 times the residual imbalance u (Schneider,
2003). This is done again by index balancing, i.e. with the FB in two positions,
turned by 180°. Hence, for each axis two diagrams are obtained, to which a curve
of type (4.10) is fitted. The respective curve is fitted to the data and the values
for the imbalances Axy 7z, A’y 7, and the angular positions of the residual net
imbalances aay Ay 4,, and . a; 4, can be calculated for each axis respectively.
The final residual imbalances of the FB ux y 7 are obtained by first converting

the polar coordinates into Cartesian coordinates with the formulae!

a, = [ualcosay

(4.25)
a, = |uy|sinay ,
and
al = [uu|cosaq
(4.26)
ay = [ua|sinay .
Its difference gives
Azr = a, — a,
) (4.27)
Ay =a, —a,,

and finally for the imbalance of the FB in the respective plane we have (4.24)

2 2
VAazt+ Ay (4.28)

=Uuxy,z -
2

To get the three dimensional displacement of the COM of the FB from the inter-

section point of the three axes of rotation we apply

|11X,Y,Z| =

U
ex\y,z = —Xn’j’z , (4.29)

where m is the final mass of the FB.
The final distance R between the OC and the COM is then obtained from

R=\/e% +e} +e%. (4.30)

Lower case letters x and y denote the components of the 2-dimensional vector. Upper case

letters X, Y, Z denote the axis the balancing is done around.
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4.3.3 Results

The OC’s actual position in the housing is given by the precise construction
of the housing and the BMR and coincides, to within an uncertainty, with the
intersection point of the three rotation axes (Fig. 4.13).

Balancing was performed as described in Section 4.3.2 for each dimension and
two different positions of the FB. Due to the stability of the rotational velocity of
the balancing machine, for each position of the bias mass, just one measurement
was performed. The results for each axis are shown in figure 4.17 together with
the fitted curve (4.10). Table 4.4 shows the fitted values with their standard

eITors.

Table 4.4: The fitted values obtained with the enhanced method.

With FB - position A With FB - position A’
Balancing Imbalance Angle of Imbalance Angle of
around Ua/g mm imbalance Uas /g mm imbalance
a4 /degree a4 /degree
X-axis 0.62 £ 0.01 302.67 + 1.44 0.61 + 0.01 116.94 + 1.06
Y-axis 0.17 £ 0.01 115.53 £ 5.02 0.94 £ 0.01 157.74 + 0.80
Z-axis 0.59 £+ 0.01 114.83 £+ 0.88 3.11 £ 0.01 350.03 £ 0.22

In order to calculate the 3-dimensional distance of the COM to the OC, Egs.
(4.25) to (4.28) are applied to the numbers listed in Tab. 4.4 to obtain the
imbalances of the FB. The respective eccentricities are calculated with (4.29),
where the final mass of the falling body m = 124.84 g is taken. Finally, the

3-dimensional distance is derived from (4.30):

(4.25)—(4.28)

—
W~

2

©
=

X-axis : = uxy =0.6lgmm =" ex = 4.9um

25)—(4, . (4.30)
Y-axis : S 25)=>(4 ) uy = 0.82 gmm (4:2>9) ey = 6.6 um = R=16.1pum.
Z-axis : (4'25):_>(4'28) uyz = 1.73 gmm (4':2>9) ez = 13.9 um

(4.31)
All uncertainties will be derived in the next sections and are listed in Tab. 4.5.
Again, we assume a maximum angular velocity w = 10 mrad s~! during free

fall (Niebauer et al., 1995) and an expanded uncertainty of the distance between
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Figure 4.17: Results of the imbalance measurement when rotating around
the X-axis ((a) and (b)), around the Y-axis ((c) and (d)), and around the

Z-axis ((e) and (f)). The dots are the values measured. The solid lines are

the fitted curves (4.10). The obtained values of the imbalances and angles

are reported with the standard errors derived from the least squares fitting.
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the centres Ur = 39.1 ym'. Then, with (4.2), the expanded uncertainty of g, as

the result of such a rotation, amounts to U, = w?*Ug = 0.4 uGal.

Table 4.5: Results of the centre of mass to the optical centre adjustment.

Eccentricities/pum
€x €y €z
ocC 0 + 6.50 0 + 6.50 0 + 6.50
COM 49 £1.2 6.6 £ 1.2 139+ 14
Total distance between centres in 3D space 16.1 4+ 11.48

Expanded uncertainty (k = 2) . oLt 2 1145 — 006
of the distance between centres in 3D space r = 10142 1148 = 59.

4.3.4 Uncertainty analysis

4.3.4.1 Propagation of uncertainty

The idea with the new FB design is to coincide the OC with the intersection
point of the three balancing axes. A measurement of the OC’s real position
should be avoided. So the standard uncertainty of the OC position — the position
coordinates will be called xoc, yoc, and zpc — is composed of the uncertainty of
fabrication tolerance of the BMR and the uncertainty of the fabrication tolerance
of the housing and will be called 0, 0c, 0y0c, and 0, 0c. The eccentricities of
the COM are calculated from Eqgs. (4.25) to (4.28) and will be called ey, ey,
and ey, with their respective uncertainties ox, oy, and oz. To calculate these
eccentricities, the imbalances (absolute value and angle) are derived from the non-
linear least squares fitting of (4.10). Following the law of uncertainty propagation
(ISO, 1995), from (4.28) for the uncertainty of the imbalances in each dimension

we get

20, =) (Son) + (5Lon) (432

'The symbol U is reserved for the uncertainty, while the symbol u is used as imbalance.
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with u = |ul.

The uncertainties oa, and oa, are derived from (4.27)

_ 2
Ops = /02 + Oar

(4.33)

and with the uncertainties o,,, 04,, 0a;, and o4 obtained from (4.25) and (4.26)

1
Oap = [(0u, cOs@a)® + (uasinaaoa, )?] 2
4 4 | (4.34)
0o, = [(auA sinag)? + (u4 cos OéAO'aA)Q] 2
and
| : )2
Oa, = [(Ou,, cosan)” + (uarsinaqgo,,)”|?
4 o (4.35)
2

O-ag; = [(UUA/ sin aA')2 + (uA’ CoS aA'UaA’>2]

As the eccentricities of all three dimensions are independent, the standard uncer-

tainty o, derived from (4.30), is

(4.36)

2 52 2 52 2 52
- _\/€X03X+6ygey+ezgez
. =

€X2 -+ €Y2 -+ 622
4.3.4.2 OC coordinates

As the real position of the OC was not measured, the uncertainty of its position
with respect to the intersection point of the balancing axes is obtained from the
fabrication tolerances of the housing, as well as the BMR.

The BMR is fabricated in a manner that the OC is centred to within 2.5 um

(2.5 um/2) _
V33

0.42 pm for each dimension. The fabrication tolerance of the ball diameter is

with respect to the outer ball surface. This gives an uncertainty of

5 pm; hence has an uncertainty of 2.9 um, and the combined standard uncertainty
for the BMR amounts to oy g = 3.24 pm.

The housing, on the other hand, is fabricated in a way that the BMR fits
exactly into it, and the OC coincides with the intersection point of the balancing

axes. The fabrication tolerance of the housing (i.e. its inner diameter; cf. Fig.
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

Figure 4.18: Fabrication tolerances for the housing.

4.18) is +9 pm (uncertainty = 9/(2v/3) = 2.6 pum), whereas the depth tolerance
is £10 pm (uncertainty = 5.8 um). For simplicity is sake we take the uncertainty
Ohousing = 9.8 pm for all three dimensions.

It follows that the combined standard uncertainty for the OC coordinates then

is 6.65 pum for each dimension.

4.3.4.3 Mass values

As already described in Section 4.2.4.4 the mass of the FB m = 124.84 g is
required to convert the measured imbalances into the eccentricities (4.29). The
same balances were used to weigh the FB and the calibration mass (m¢ = 3.01 g).
Assuming a uniform probability distribution, the values corresponding to the
equivalent relative standard deviations are o,,/m ~ 4.6 X 10~ and Ome /Mo =

1.9 x 1074, respectively.

4.3.4.4 Calibrating the balancing machine

To estimate the uncertainty due to the calibration of the balancing machine,
we follow the same arguments as in Section 4.2.4.5. The only difference to the
given uncertainty of the scale factor is that the uncertainty due to the angular
velocity is now negligible, as the motor of the balancing machine is feed back
controlled. Hence, the combined relative standard uncertainty of the scale factor

can be estimated to

2 2 2
oc OKg Ome Ora
S 4.
C \/(KS> +(mc) +(rc) ’ (4.37)
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where the same values as in section 4.2.4.5 can be taken:
amplitude non-linearity of the vibration sensor — o, /Kg ~ 5.77 x 1073;
relative standard deviation of the calibration mass — oy, /mec ~ 9.8 x 1074
Total standard deviation of the calibration radius — o,./rc = (0.2/1/6)/240 ~
3.4 x 1074, with the calibration radius r¢ = 240 4+ 0.1 mm and a triangular
probability distribution assumed.

The uncertainties of the measured imbalances resulting from the uncertainty
of machine calibration are listed in Tab. 4.6 under the category Calibrating the

balancing machine.

4.3.4.5 Dynamic imbalances

The dynamic imbalances are cancelled out due to the index balancing method.

4.3.4.6 Calculated eccentricities

The combined standard deviation of the calculated eccentricities depends after
(4.29) on the standard deviation of the measured imbalance and the standard
deviation of the mass of the FB:

Ouc(x,v,z) 2 Om \ 2
Oe =exyv,z (— : ) + <—) , 4.38
X,Y,Z \/ UC(xy.2) m ( )

where the combined standard deviations of the measured imbalances uc are

shown in Tab. 4.6. With the standard deviation of the mass, derived in sec-
tion 4.3.4.3, the combined standard deviations of the calculated eccentricities are

Ocy = 1.9 pm, 0., = 1.9 pm, and 0., = 2.0 pum.

4.3.4.7 COM coordinates and difference between the centres

With this balancing method, we shift the COM to the origin of our coordinate
system. It should be noted that the labels of the eccentricities given in (4.31)
do not correspond to the axes shown in Fig. 4.13, i.e. ex is not the eccentricity
along the X-axis, but the eccentricity in the Y-Z-plane. We are not interested
in the exact position of the COM within the FB, although we would be able to

calculate it. Our aim is to approximate the centres as closely as possible, that in
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4. HIGH-PRECISION BALANCING OF THE FALLING BODY

Table 4.6: Uncertainty budget of the measured imbalance.

Standard uncertainty /g mm
Source of X Y Z
uncertainty A A’ A A’ A A’
Calibrating
the balancing  3.6x1073 3.5x1073 1.0x1073 5.4x107% 34x107% 18.0x1073
machine

Measured value of the imbalance:

repeated

. 0.01 0.01 0.01 0.01 0.01 0.01
observations
Combined
standard 0.01 0.01 0.01 0.01 0.01 0.02
uncertainty

the optimum case is coincided with the origin.
The expanded uncertainty of the total distance between the OC and the COM
is given by

UR = kO’R y (439)

where from (4.31) we have for R = 16.1 um, and (4.36) o, gives 11.73 ym. For
simplicity, we choose a coverage factor k = 2 (Taylor & Kuyatt, 1993). Hence,
the distance between the centres with the expanded uncertainty amounts to
Ur = (16.14+2x 11.73) pm = 39.56 um. The uncertainty budget for the adjusted

centres is shown in Tab. 4.7.

Table 4.7: Uncertainty budget: COM and OC adjusted.
Standard uncertainty /um

Measured value X Y Z
OC coordinates 6.50 6.50 6.50
COM coordinates 1.2 1.2 1.4
Difference between optical centre and 6.61 6.61 6.65

centre of mass coordinates
Total difference between centres in 3D space, 11.48

combined standard uncertainty

Expanded uncertainty (k = 2) Ur = 16.1 42> 11.48 = 39.06

of the distance between centres in 3D space
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4.4 Conclusion

This Chapter presented two methods to coincide the positions of the COM and
the OC of the falling body for an absolute gravimeter. With the first method
the total distance between the centres in 3D space is approximately 43 pm with
a combined standard uncertainty of 16 ym. This result is presently sufficient for
our newly developed absolute gravimeters, where the expanded uncertainty of the
measured ¢ value, due to the effect of rotation of the falling body, is less than
1 pGal.

With known relative positions of both centres in 3D space, it is possible to
calculate a rotation correction, using (4.1). For this, the rotation of the falling
body during free fall should be recorded, as discussed regarding the FG5 ab-
solute gravimeter (Niebauer et al., 1995). With this correction applied, the ex-
panded uncertainty of the measured g value due to rotation will be reduced to
U, = w?(20r) ~ 0.3 pGal. As a result, the rejection level of the rotational veloc-
ity can be increased, more drops will be accepted and the dropping mechanism’s
lifetime will be extended.

The reported study regards a hollow corner cube. Nevertheless, the proposed
balancing method can be extended to the case of a corner cube prism if the coor-
dinates of the corner cube prism’s OC are known (Peck, 1948). It is also expected
that the method can be used in other applications where precision balancing is

required.

The second method presented here employs an improved balancing method.
The resolution of 11.48 pm is better than with the first method and good enough
for most absolute free fall gravimeters. For many years, the error due to the dis-
placement of the two centres was one of the biggest contributions to the absolute
gravimeter’s uncertainty budget (Hanada, 1988; Hanada et al., 1996; Niebauer
et al., 1995). We have shown that with our method this is no longer the case.
The easy assemble and balancing makes the construction of the FB straight for-
ward. If the FB’s housing is damaged, the retroreflector can easily be placed
inside another housing. Our innovation makes it possible to build a more cost-

efficient alternative to the admittedly expensive contemporary gravimeters, since
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it allows more drops to be realized without fear of abrading the FB.
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Chapter 5

Uncertainty budgets and possible

errors

Since a gravimeter is designed to measure an absolute value, it is necessary to
assign the measurement apparatus an accuracy to which the real value can be
measured. This is known as an uncertainty budget. However, for common mea-
suring devices such as rulers, clocks, etc. the real value can be given as it is
determined by a primary standard. For gravimeters, however, this is not possi-
ble. No such primary standard exists. Gravity is not constant, neither in space
nor in time. A calibration is impossible. History showes (as in the case of the
inverted pendulum in Potsdam; cf. Sec. 1.2.1) that assumedly highly precise
apparatuses can turn out to be highly inaccurate once a new method is invented
that permits comparing systematic errors. The higher the targeted accuracy, the
more difficult it is to give a complete uncertainty budget.

The error sources considered in this chapter are already treated in the lit-
erature (D’Agostino, 2005; Niebauer et al., 1995; Zumberge, 1981) and will be
applied to our gravimeter setups. The uncertainty of the FB rotation, however,
is described in more detail, since a new method was invented in the course of this
dissertation, so a separate Chapter 4 is dedicated to this subject. Additionally,
the uncertainty due to the non-linearity of electronics (cf. Subsection 5.1.15) is
studied in more detail and cannot be found elsewhere in this form, as well as the
estimation of the uncertainty due to the residual ground vibrations in subsection
5.1.12.
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5. UNCERTAINTY BUDGETS AND POSSIBLE ERRORS

The uncertainty budget falls into two categories. Uncertainty factors due to
the instrument and due to environmental effects. The uncertainty budgets apply
to both gravimeters, MPG-1 and MPG-2.

5.1 Uncertainty budget due to the instrument

In general, it is very difficult to measure all of the physical effects that can influ-
ence the measurement. In this section we will use simplified models to estimate

what uncertainties arise from the measurement apparatus itself.

5.1.1 Vacuum

The errors due to residual air inside the ballistic block can be put into three
different categories. The air drag effect, the outgassing of the falling body (FB),
and the buoyancy acting on the FB.

5.1.1.1 Air drag

During the drop, the FB experiences a resistance due to residual air molecules.
The force acting on the FB can be estimated according to Niebauer et al. (1995)
to give

ApV
T4
where A &~ 117.8 x 107* m? is the total surface area of the FB, v ~ 2.3 (1.6)
m s~! is the maximum velocity of the FB for MPG1 (MPG2), V ~ 476 m s~ is

the mean gas velocity for gas molecules of Ny, and p ~ 0.5 x 107 kg m~3 is the

Fd v, (51)

mean gas density. The mean gas density is calculated by

m,p
— . 5.2
P =T (5.2)

Here m, = (2 x 14)/(6.022 x 10?®) ~ 4.65 x 10723 g is the relative molecular mass
of diatomic nitrogen, kg is the Boltzmann constant (cf. Appendix A), T =~ 300 K
room temperature, and p ~ 3 x 107% (2 x 107%) Pa is the pressure in the ballistic
block of MPG-1 (MPG-2). With the mass m ~ 0.121 kg of the FB, the biasing
acceleration Agy = Fy/m due to air drag amounts to 1.33 x 1072 (4.0) uGal for
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5.1 Uncertainty budget due to the instrument

MPG-1 (MPG-2). Since the model is not very precise, we assume an uncertainty
of 20% of the correction value. This gives 0.3 x 1072 (0.8) pGal for MPG-1
(MPG-2).

The bias and the resulting uncertainty for MPG-2 are clearly too high. The
future plan is to place the motor outside of the dropping chamber. This will allow

the use of copper gaskets and thus pumping to a higher vacuum level.

Table 5.1: Uncertainty budget for air drag.

Correction/puGal  Standard uncertainty/pGal
MPG-1 1.33 x 1072 0.3 x 1072
MPG-2 4.0 0.8

5.1.1.2 Outgassing

Another effect to consider is the outgassing of the FB. The pumping speed of
the ion pump used for MPG-1 and MPG-2 is dV/dt = 501s7! and 20157,
respectively. Starting from the ideal gas equation
pV

RT

where m,, is the outgassing mass pumped off by the ion pump, m,, = 29 x

Mog = My N =

(5.3)

1072 kg mol~! is the molar mass of air, n is the number of air molecules, p ~
3 x 107% (2 x 107*) Pa is the pressure inside the dropping chamber of MPG-
1 (MPG-2), R is the molar gas constant (see appendix A), and 7" ~ 300 K
is room temperature. Deriving (5.3) with respect to time gives the mass flux
Q = dm/dt = 1.7 (46.4) x 107'2 kgs~!. To calculate the outgassing of the
FB the surface area of MPG-1 (MPG-2) is estimated to be Ay pgi = 0.88 m?
(Aprpae = 0.24 m?). With the FB’s surface of App = 117.8x 104 m? the relation
between MPG1 (MPG2) and the FB’s surface area is rypg1 = Arp/Anmpc1 =
1.3 x 1072 (ryper = Arg/Anpae = 4.9 x 1072). Finally, the error in the mea-
surement of ¢ is Ag,y = (rQu)/mpp = 4.2 x 107° pGal for MPG-1, and Ag,, =
(rQu)/mpp = 3 x 1073 pGal for MPG-2. Here, the velocity v = 2.3 (1.6) m s™,
and the mass of the FB mpp ~ 0.121 kg is used.

The numbers resulting from these estimations are very small and hence will

be neglected in the uncertainty budget.
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5. UNCERTAINTY BUDGETS AND POSSIBLE ERRORS

Table 5.2: Uncertainty budget for outgassing.

Correction/puGal  Standard uncertainty /puGal
MPG-1 4.2 x107° negligible
MPG-2 3 x 1073 negligible

5.1.1.3 Buoyancy

An estimation of the buoyancy effect is straightforward by using

Agru =g, (5.4)

PFB
with pyy = 1.2 x 107 kg m™ and ppp = 4.507 x 10® kg m—® are the density of
the fluid (air for MPG2) and the FB (titanium), respectively. This is so small

that it will also be neglected in our uncertainty budget.

5.1.2 Magnetic field

5.1.2.1 Magnetic attraction

The measurements with MPG-2 at ECAG 2007 showed (cf. Sec. 3.4) that the
magnetic field resulting from the ion pump gave rise to a big acceleration on
the FB. The reason is that the balls that fit the FB into the vee-grooves of the
support ring, are made of hardened steel (ball bearing balls). These balls are
magnetic, albeit only slightly. The induced magnetic attraction caused an error
in g in the order of 500 pGal. The best error reduction were achieved by moving
the magnets of the ion pump — which are factory-shielded with a py-material —
as far away from the dropping chamber as possible. Measurements of the stray
magnetic field showed, that it decays very rapidly with growing distance. The
residual magnetic field strength acting on the dropping chamber with the new
setup is in the order of the natural Earth magnetic field. The magnetic field due
to the ion pump is assumed to be zero, now, with a negligible error. The next
generation of FBs is planned to contain no magnetic material at all. The balls

will be made of ruby or ceramic.
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5.1.2.2 Eddy currents

Two objects in the setup produce magnetic field. Non-homogeneities of those
fields could produce eddy currents in the FB, since it is made of conducting
material. The eddy currents, in turn, produce a force that counteracts the motion
of the FB. Such sources include the ion pump’s magnet and the motor. The
measured magnetic field around the dropping chamber, however, is in the order
of the Earth’s magnetic field, which is about 50 xT (0.5 G) in Central Europe.
Following the estimation by Niebauer et al. (1995), and modelling the FB as a
ring made of titanium, the induced force is of the order F,. = 1.3 x 107 N,
for a magnetic field strength of 1 mT. For our FB’s mass (mpp = 121 g), this
would result in an acceleration of about 107% uGal. Here, we adopt the attributed

uncertainty to magnetic fields of 0.1 uGal to our uncertainty budget.

Table 5.3: Uncertainty budget for eddy currents.

Correction/puGal  Standard uncertainty/pGal
MPG-1 none 0.1
MPG-2 none 0.1

5.1.3 Electrostatic field

The dropping chambers of the MP gravimeters are made of stainless steel and
aluminium. The only non-conducting parts are the glass windows at the top and
the bottom, that allow the laser beam to enter the dropping chamber. For this
reason the chamber functions as a Faraday cage surrounding the FB that shields
it from external electrostatic fields. One problem to expect is formation of electric
capacitance between the FB and the support ring. Murata (1978) and Niebauer
et al. (1995) estimated already this effect to be negligible.

Table 5.4: Uncertainty budget for electrostatic field.
Correction/puGal  Standard uncertainty/pGal
MPG-1 negligible negligible
MPG-2 negligible negligible
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5. UNCERTAINTY BUDGETS AND POSSIBLE ERRORS

5.1.4 Influence of instrumental masses

As the gravitational force is a really weak force compared to other fundamental
forces, most of the apparatus parts’ influence on the FB are assumed to be neg-
ligible. On the other hand, this force has a very large range, as the measured
influence of the Sun and Moon demonstrates. However, a brief calculation shows
that for a spherical body of the mass M = 0.2 kg the gravitational attraction at

a distance of r =1 cm amounts, according to

GM
g:

) (5.5)

r2
to 13.3 uGal, where GG is Newton’s constant. In general, however, the part’s shape
differ from a sphere. A brief estimation should give an idea of what gravitational
attraction the apparatus has on the FB. On the one hand, heavy parts would be
expected to exert the most critical influence, but they would have to be very close
to the F'B to do so, on the other. We will estimate the gravitational acceleration
due to the bottom plate of MPG-2, which weighs approximately 7 kg, and, as it
is closest to it, the support ring on which the FB sits.

The bottom plate measures 0.42 x 0.32 m?, with a thickness of Az = 0.02 m,
and is made of aluminium. We will model this square shaped plate as a disc with
the radius r = 0.15 m. Its distance from the FB at the start-of-drop position

is about z; = 0.35 m. The gravitational acceleration due to the bottom plate is

gbp:G// %cosa av, (5.6)
v

where a denotes the angle between the plumb line z; and the line ¢ between the

given by

FB and the mass particle m; (cf. Fig. 5.1). The integration goes over the volume
V' of the bottom plate. As p4; is a constant, we can write it before the integral,

and after inserting the limits of integration we get

gy = Gpa /R /21+AZ /27r COSQa rdfdrdz . (5.7)
0 Jzu 0 q
By substituting ¢? = r% + 22 and cosa = Z this can be written as
R [zi+Az p2r p,
avp = Gpa /0 /Z1 /0 m rdfdrdz . (5.8)
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Figure 5.1: The gravitational attraction due to instrumental parts can be
modelled by circular plates.

After performing the integration, the final expression for g, becomes

gop = Gpai2m (Az +4/2 4+ R2— /(2 + Az)? + R2> . (5.9)

When all values (pa; = 2.7 x 10® kg m~3) are inserted, the acceleration amounts
to 0.23 pGal.

To estimate the attraction of the support ring, we use the same Eq. (5.8), but
with 2; = 5x 1073 m, pg; = 8x 103 kg m ™ (for stainless steel), Az = 10x 107 m.

Now, the integration limit for the radius covers the range from r; = 17.5x 1072 m

to r1 + Ar, with Ar = 6 x 1073 m. The resultant acceleration amounts to only
0.34 x 1073 pGal.

These brief calculations show that an uncertainty due to instrumental attrac-
tion of 0.5 uGal is reasonable for MPG-2.

The influence in the case of MPG-1 seems more serious, as it is mounted on
an optical table of about 500 kg of mass. The distance to the FB is approxi-
mately 1 m. We will remodel the table as a disc with the radius r = 0.75 m,
and a thickness of Az = 0.45 m. The mean density of the table amounts to
roughly p,s = 630 kg m™3. A calculation with Eq. (5.8) results in an attraction
of 1.8 uGal. For a better calculation the exact density distribution of the optical
table has to be known. As a correction we will give —1.8 pGal for MPG-1, and
an uncertainty of 0.5 uGal.
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Table 5.5: Uncertainty budget for instrumental masses.

Correction/puGal — Standard uncertainty/pGal
MPG-1 -1.8 0.5
MPG-2 none 0.5

5.1.5 Verticality of the laser beam

If the laser is not exactly aligned along the plumb line, a different effective wave-

length results to measure g, thereby introducing an error Ag. Figure 5.2 demon-

Z;
~

Actt
. %m
[~

y

A////

Figure 5.2: A deviation of the laser beam from the plumb line introduces
an error in the g measurement.

strates that the effective wavelength A resulting from a misalignment angle ©,
is given by
Aeff = Acos© (5.10)

and leads to a measured value of g, = gcos(©) ~ g(1 — %2), if a small angle is
assumed. This means the measured acceleration due to gravity becomes lower
than the “real” value. From (5.10) results that a beam deviation of 9 arcsec
(equals 44 urad) causes an error of 1 uGal.

In order to minimize this error, the beam is aligned along g by the method
sketched in Fig. 5.3. The laser beam leaving the laser is reflected by mirror M
and is split up into two beams by beam splitter BS1. Beam 1 hits the falling

mirror (which is kept stationary during the alignment procedure), and then hits
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Figure 5.3: a) The verticality of the laser beam is aligned by reflecting
the object beam on a mercury surface and watching the fringe signal. b)
A tilt of the test beam can be estimated by the fringe signal formed on a

screen.

the surface of a mercury (or ethanol) pool. This reflects beam 1 back to BS1.
Beam 2 serves as a reference beam. It is reflected back by a corner cube mirror
CC (the filter F is just to adjust the intensities of both beams) to BS1, where it
is finally recombined with beam 1. The superposing beams form a fringe pattern,
which contains information about the angle ©. For plane waves the angle can be

estimated as shown in Fig. 5.4. So for small angles we can write
) A
sin(©) = 7~ O, (5.11)

where A\ = 633 nm is the wavelength of the laser, d is the distance between
two fringes, and © is the deviation angle. In our case, the beam spot has a
diameter of 3 mm and hence, if two fringes are visible on the screen, the resulting
angle is 210 prad, which corresponds to an error of %Qg = 11 pGal (D’Agostino
et al., 2003). For the remaining uncertainty we assume a rectangular distribution
(D’Agostino et al., 2003), which gives \/i):; g = 6 uGal. A possible solution could

be the use of an autocollimator to adjust the beam.
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Figure 5.4: The beam deviation angle © can be estimated by measuring

the distance d between two fringes.

Table 5.6: Uncertainty budget for laser verticality.

Correction/puGal  Standard uncertainty/puGal
MPG-1 11 6
MPG-2 11 6

5.1.6 Accuracy and stability of the laser

The trajectory of the FB is measured by counting the interference fringes pro-
duced in a Michelson interferometer, and so the measurement of the displacement
of the FB directly depends on the stability of the laser frequency. For our gravime-
ters a Helium-Neon laser (Spectra Physics, A117, Newport) with a wavelength
of 633 nm is used as a length standard. Its wavelength was measured with our
institute’s frequency comb.

Although the stability is not as good as that of an iodine stabilised HeNe laser,

Table 5.7: Length standard specifications.
Frequency (measured) 473 612 527 590 £+ 77 kHz (min.)
Short-term frequency stability < 100 kHz (typically)
< 300 kHz (1 minute)
Long-term frequency drift < 3 MHz (8 hours)

Temperature sensitivity 0.5 MHz °C~!

we preferred it due to its compactness and easy handling. For the MPG1 setup,
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the laser was used in a free space setup, but the MPG2 laser was fibre-coupled.
This reduced the output power from =~ 1.3 mW to 500 uW, but is still good
enough to get a fringe signal of an amplitude of 1 V,,,. The specifications of the
laser are listed in Tab. 5.7. Assuming a rectangular probability distribution, the
uncertainty amounts to 3.64 pGal.

This uncertainty is still too high. However, a prototype of a caesium stabi-
lized diode laser (852 nm) was built at our institute by our colleague Dr. Jianwei
Zhang to our specifications. First measurements of the laser showed accuracies in
the order of 9 x 107, An advantage over the usual iodine stabilized helium-neon
lasers is that there is no modulation on the frequency, and an output power of
several mW is no problem. We just started first g-measurements with the new

laser, so they are not reported in the framework of the thesis.

Table 5.8: Uncertainty budget for laser stability.
Correction/uGal  Standard uncertainty/uGal
MPG-1 none 3.64
MPG-2 none 3.64

5.1.7 Accuracy and stability of the atomic clock

The ADC-card used to digitize the fringe signal is disciplined by a rubidium
frequency standard (SRS, FS725), giving a 10 MHz sine wave signal. Its accuracy
is specified with < 5 x 107! (monthly) and < 5 x 107! (yearly) (cf. Tab. 5.9).
The clock was calibrated at our institute and also compared to other standards
during the ECAG 2007 in Luxembourg. Assuming a rectangular probability
distribution, the error can be estimated to be less than 0.6 pGal. As the main
uncertainty arises from the drift, a frequent calibration, say every 6 months,
should keep the error small. This can be done with other caesium clocks and the
maser, which are available at our institute. Another possibility is to use a GPS-
disciplined rubidium clock like the AR70 A series from AccuBeat Ltd., where the
GPS signal guarantees the long term stability.
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Table 5.9: Frequency standard specifications.
Amplitude 1 Vs = 10%
Ageing monthly: < 5 x 10710
yearly: <5 x 1079
Short-term stability < 2 x 1071 (1 )
<1x107 (10 s)
<2 x 10712 (100 s)

Table 5.10: Uncertainty budget for clock stability.
Correction/uGal  Standard uncertainty/uGal
MPG-1 none 0.6
MPG-2 none 0.6

5.1.8 Corner cube rotation

The minimisation of the error due to corner cube rotation was one of this work’s
key projects and is described in detail in Sections 4.2 and 4.3. The uncertainty
derived in section 4.2 was 0.7 uGal. The FB treated in Section 4.3 is not used in

our gravimeters yet, and hence will not be shown in the uncertainty budget.

Table 5.11: Uncertainty budget for corner cube rotation.

Correction/puGal  Standard uncertainty/uGal
MPG-1 none 0.7
MPG-2 none 0.7

5.1.9 Radiation pressure

The laser beam reflected by the FB transfers momentum to the FB and hence
slows it down. For a total reflection, the force acting on the surface of the mirror
is equal to F' = 2Ap/At = 2AFE/(cAt) = 2P/c, where P ~ 0.5 mW is the
laser power (for the free space set up), p is the momentum of a photon, and ¢
is the velocity of light. Dividing by the mass mprp = 0.121 kg of the FB, the

acceleration caused is &~ 2.8 x 1073 uGal.
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Table 5.12: Uncertainty budget for radiation pressure.

Correction/puGal  Standard uncertainty/pGal
MPG-1 none 2.8 x 1073
MPG-2 none 2.8 x 1073

5.1.10 Beam divergence

Even if the laser beam is collimated, diffraction causes the light waves to spread
transversely. There is no such thing as a perfectly collimated beam. This diffrac-
tion, or spreading, results in a curved wavefront, so not all of the beam reaches
the retroreflector aligned along g. The result is a bias in ¢ similar to the one
mentioned in Subsection 5.1.5. This effect is well known and discussed in litera-
ture (Westrum & Niebauer, 2003).

To quantify the error caused by diffraction we can use the following equation,

which is valid in the far field of the laser beam:

A )\2 2
S = ¢ : (5.12)

g Ar2wi 4
where A & 633 nm denotes the laser wavelength, ¢ is half the angle of divergence,
and wy is the beam waist, i.e. the radius of the beam at its smallest diameter (cf.
Fig. 5.5). This means that when the divergence is measured, the error can be

calculated and corrected. The divergence was measured by determining the beam

Figure 5.5: A collimated laser beam diverges. The radius at its smallest

point is called beam waist radius wy.

diameter at different positions in the far field. The beam diameter is defined as
the diameter at which the intensity has fallen to 1/e? (13.5%) of its peak value. A
beam profiler from Coherent was used to measure the diameter at seven positions

approximately 3 m away from the collimator, and with a distance of 5 cm between

99
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the different positions. The result was an angle (¢ = 250 £ 84) prad, which gives
a correction of Ag = 22 pGal, and an uncertainty of o457y = 1.8 pGal. It should
be noted that the effect, as in the case of the beam verticality, always lowers the
“real” ¢ value.

The uncertainty in g due to the beam divergence is still too high. The best
way to reduce this uncertainty is to use bigger beam diameters. A beam waist
diameter of more than 3.2 mm is required for a correction of less than 1 pGal.
In the free space setup of MPG-1 the beam diameter was bigger than 5 mm and,
hence, the error was smaller than 1 pGal. However, for the uncertainty budget

we will use the number derived from the fibre-coupled system.

Table 5.13: Uncertainty budget for beam divergence.

Correction/puGal — Standard uncertainty/puGal
MPG-1 22 1.8
MPG-2 22 1.8

Here we note that together with the finite beam size of a Gaussian beam, there
is also another phase shift — the Gouy phase shift — along the beam propagation
direction. This phase shift may represent another source of systematic error and
has not been considered in all previous works. The detailed analysis will be

published elsewhere.

5.1.11 Temperature effects

5.1.11.1 Temperature gradient

If there is a temperature gradient between the top and the bottom of the FB
during the drop, a pressure difference is induced. The pressure change can be

calculated for an ideal gas as

AT
Apyg = =D, (5.13)

where AT is the difference in temperature between the ends of the FB, T' is the

nominal temperature, p is the nominal pressure inside the dropping chamber and
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Ap the induced pressure difference. This pressure difference causes a force that

acts on the FB, and the uncertainty in g can be calculated by

PApp

=AT
O-Aptg TMFB )

(5.14)

with App = (24 mm)?n denoting the cross-section area of the FB, and Mpp =
121 g its mass. By inserting the values pyrpe—1 = 2 x 10~* Pa, with the nominal
temperature T' = 300 K, a temperature-induced acceleration gradient for MPG-
1 of 1.5 x 1072 puGal K7t is obtained. Pessimistically assuming a temperature
difference of 0.1 K, the resultant uncertainty amounts to 1.5 x 10~® uGal. For
MPG-2 the nominal pressure is pypg—2 = 3 x 107% Pa, and, hence, the induced
acceleration per 1 K amounts to ~ 1uGal K~!. Again assuming a temperature
difference of 0.1 K over the length of the FB, the uncertainty is in the order of
0.1 uGal.

Table 5.14: Uncertainty budget for temperature gradient.

Correction/puGal  Standard uncertainty/uGal
MPG-1 none 1.5 x 1073
MPG-2 none 0.1

5.1.11.2 Effects on the setup

By virtue of temperature changes a tilt of the optical table MPG-1 is placed on,
was observed. This had an influence on the beam verticality, as the interferometer
was placed on the table in case of MPG-1. A correction formula was derived
from a long-term measurement. Figure 5.6 shows the good correlation between
the temperature and tilts of the optical table. Figure 5.7 shows the correlation
between the measured gravity values and temperature. The empirical correction

formula, derived from the long-term measurement, is

32.5
AQT = <79007 — W ) uGal s (515)
where T is the temperature in °C. The correlation factor is p = 0.647 and hence
significant. It can be seen in Fig. 5.7 that the change in g ranges up to £40 pGal.

Assuming an uncertainty of 10% of the maximum range as the uncertainty in g,
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5.1 Uncertainty budget due to the instrument

this error contributes 4 pGal to the uncertainty budget.

This effect was not observed for MPG-2. This has two reasons. First, MPG-2
is not installed on the optical table, and second, for MPG-2 a fibre-coupled laser
is used.

The free space interferometer setup will be replaced in our further measure-
ments with MPG-1. The interferometer will be placed directly on the super
spring, as in the case for MPG-2, so this correction will become obsolete.

Another interesting point in this context is the laser beam pointing stability.
As in the future only fibre-coupled setups will be used, it may not cause any
serious problems, but in my opinion it is worth mentioning that laser pointing
stability in free space setups is an error source not to be neglected. The error is
similar to a misalignment of the verticality of the laser beam. Gray et al. (2001)
investigated the problem of pointing stability for the Spectra-Physics 117A He-
Ne laser. A peak-to-peak amplitude of 15 mrad (= 56 mGal) could be shown
for the first 200 s after turning on the laser. After the intensity stabilisation was
established, the amplitudes were lower, but still up to 1.5 mrad (=~ 560 pGal).
Furthermore oscillations were sensitive to temperature drifts just over 1 °C were
observed.

The laser beam leaving a fibre should not have such a big pointing instability,

but could be an interesting point for further studies.

5.1.12 Floor recoil and seismic vibrations

The measurement of the falling distance of the FB is a relative measurement.
With the interferometer the distance of the reference mirror (the mirror of the
Super Spring) to the beam splitter is compared to the distance of the retroreflector
in the FB to the beam splitter. The aim is to measure the trajectory of the FB
in an inertial system. This inertial system, however, is just realizable to a certain
extent. If the reference mirror oscillates, the measurement is biased. A gravimeter
can be considered as a low pass filter with a corner frequency given by (Svetlov,

1997)

0.8
e =, 5].6
ol (5.10
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where T' is the drop time. For our gravimeters this corner frequency is about
10 Hz and 4 Hz for MPG-2 and MPG-1, respectively. Torge (1989) quantifies
the natural microseismics caused by marine surge with periods of 1 to 10 s, and
amplitudes of 0.1 to 10 um. A typical amplitude spectral density plot is given
in Fig. 5.8 following Speake (1987). A corner frequency of 10 Hz means that
all seismic noise below this frequency penetrates the measurement. The Super
Spring does good work here isolating the reference mirror from microseismic noise.

Since it has a period of 60 s, it shifts the corner frequency of the low pass filter

Single drop residuals - Super Spring locked

\
[
J\

Residuals (hm)

0 20 30 40 50 60 70 80
Time (ms)

Figure 5.9: Single drop residuals of MPG-2 when Super Spring is locked.

from ~ 10 Hz to = 0.02 Hz and, hence, filters out the biggest part of the noise.
Figure 5.9 shows the residuals of a single drop, obtained with MPG-2 and the
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5.1 Uncertainty budget due to the instrument

Super Spring locked, while Fig. 5.10(b) shows typical residuals obtained from a
single drop with MPG-2, but with the Super Spring working. We can state that
the standard deviation in a set of drops could be improved at least by a factor
10 with the Super Spring.

Figures 5.10(a) and 5.10(b) show typical residuals of a single drop. Those

residual vibrations cause a bias in the measurement. The error caused by such

Single drop residuals MPG-1 Single drop residuals MPG-2
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Figure 5.10: A closer look at the residuals of a single drop.

residual microseismics can be estimated according to Svetlov (1997) with

30v/2 A
Agseis = W% , (5.17)

and the standard uncertainty

Agseis
Ugseis = \/§ °

Applying these formulas, where T denotes the total fall time, Ag the amplitude,

(5.18)

and fp the frequency, to the frequencies in our residuals, the uncertainty for
MPG-2 (fy = 50 Hz, Ay = 1 nm, T'" = 0.08 s) amounts to oy, , = 37.3 pGal.
Whereas for MPG-1 (fy = 50 Hz, Ag = 6 nm, 7" = 0.2 s) the uncertainty is
Ogseisma = 14.3 pGal. In the case of MPG-1 we also record higher frequency
parts of up to 100 Hz, however the maximum error is computed with the lower
frequencies. A simple simulation shows that this is reasonable. For this purpose
we synthetically generated drop data with a sine wave added, that approaches

the observed one, seen in Fig. 5.11(a) (in the plot only every 1000th sample is
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shown). The resultant residuals are shown in Fig. 5.11(b). When computing
the acceleration due to gravity, the value obtained is by 28 pGal lower than the
nominal value, which is well within the predicted uncertainty.

Where our residual microseismics come from, is not clear. We suppose that

Single drop residuals - MPG-2 -Erlangen Single drop residuals - simulation

o
«”

Residuals (nm)
Residuals (nm)

-0.5

"0 10 20 30 40 50 60 70 80 T 90 20 30 40 50 60 70 80
Time (ms) Time (ms)

(a) MPG-2 — Real drop. (b) MPG-2 — Simulated drop.

Figure 5.11: A synthetically generated drop compared to a real drop

shows a systematic offset in g.

they arise from the fact that one part of the object beam path is in the air, and
the other part is — inside the dropping chamber — in the vacuum. Hence, a vibra-
tion of the dropping chamber causes changes in pathlength. Besides, floor recoil
causes also tilts of the interferometer, since it is fixed on top of the Super Spring.
As a result the laser beam oscillates around the plumb line. We conclude this
since such vibrations are systematic and can be observed in the residuals of each
drop. The phase in the observed residual vibrations is almost constant from drop
to drop, the frequency, however, varies from measurement site to measurement
site.

This systematic effect is big, and Klopping et al. (1991) already reported that
systematic errors as high as 20 puGal were possible and detected for the JILA
gravimeters, which were specified to have an accuracy of 3 to 5 uGal. However,
they presented a mathematical method to reduce the error by subsequently re-
moving frequency parts from the residuals, with which they improved their data
to the stated accuracy. Timmen et al. (1993) later tried to reproduce the results

with the software provided by Klopping, but they concluded that the absolute
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5.1 Uncertainty budget due to the instrument

accuracy could not be improved, while the precision could (see also Timmen
(1994)).

This effect is very complex and cannot be investigated in the framework of
this thesis. Hence, we decided to add the theoretical uncertainty to our combined
standard uncertainty. To accurately distinguish between vibrations and the free
fall, additional information is necessary. A combination of a gradiometer with
a gravimeter could be a solution. According to Moritz & Hofmann-Wellenhof

(1993) this gives the possibility to separate gravitational from inertial forces.

Table 5.15: Uncertainty budget for seismic noise.

Correction/uGal  Standard uncertainty/pGal
MPG-1 none 14.3
MPG-2 none 37.3

5.1.13 Speed of light

The second order polynomial which is fitted to the measured time-distance pairs,
does not consider the finite propagation velocity of light. Two possible methods
can be chosen among to correct for this error (Kuroda & Mio (1991); in our case
the positive z-axis is oriented downwards). The first one is an indirect correction:

After the least-squares fitting the correction value, obtained from the equation

12 g, T
= (5224 207)

c 7 c

(5.19)

— which is valid for data equally spaced in distance — is subtracted from the
measured value. Subtracted, because the FB is falling towards the BS, which
increases the laser frequency. The correct value therefore must be lower. Here
go is the uncorrected g-value, ¢ is the vacuum velocity of light (cf. Appendix A),
Vg is the initial velocity of the FB when the first data pair is taken, and 7" is the
total free fall time.

The second way is to introduce a retarded time. The corrected, or retarded,

=t + (M) : (5.20)

c

time t; has the form
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where z; and t; are the i-th distance and time, respectively, as acquired, and b is
the initial separation of the FB and the beam splitter. The quotient b/c, however,
is a negligible constant, as it does not contribute to the acceleration — the entire
drop distance is all that counts. This corrects the value for each time-distance
data pair. The g-value thus obtained is already corrected for the speed of light
then. In our gravimeters, the data acquisition is started when vy = 0.32 m s™.
This is valid for both gravimeters. For a drop time of T" = 0.2 s this gives a
correction of -14.1 pGal (MPG-1), and for 7" = 0.08 s it amounts to -7.5 uGal
(MPG-2). The uncertainty arising from this correction mainly comes from the
uncertain knowledge of the initial velocity, which is assumed to be 0.0l ms™!. A
standard uncertainty can be calculated by o, = szo g. and amounts to 0.44 pGal

for MPG-1, and 0.23 pGal for MPG-2. For an uncertainty in total fall time, the

error is assumed to be negligible.

Table 5.16: Uncertainty budget for speed of light.
Correction/puGal  Standard uncertainty/uGal
MPG-1 -14.1 0.44
MPG-2 -7.5 0.23

5.1.14 Reference height

For the absolute gravimeters MPG-1 and MPG-2 the drop lengths are up to
30 cm, and 15 cm, respectively. With a linear gravity gradient v of about 300
puGal m~1 this signifies a gravity difference between the starting point of the drop
and the end point of 90 uGal, and 45 pGal, respectively. The tracked trajectory,
however, is fitted to a second order linear equation, which means the value for
g obtained from the fitted curve refers to some point between the starting point
and the end point. Several propositions have been made to correct for this ef-
fective height (Murata, 1978; Nagornyi, 1995; Niebauer, 1989; Zumberge, 1981).
We adopt a method proposed by Timmen (2003). Figure 5.12 shows the relation
between the instrument height, the reference height, and the effective height. His
method requires no previous knowledge of the gravity gradient for the computa-

tion; only the initial velocity vy and the standard gravity value ¢ = 9.80665 m s~2
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(cf. Appendix A) are needed as input parameters. Then the effective height is

calculated as

Av3T + BudgoT? + Cvig2T? + DuogdT* + EggT?

hepr = , 5.21
1 Fvd + GuagoT + HuvggdT? + 1g3T° (5:21)
with

A =56.0 B =102.4 C =612

D =14.0 E=10 F=112.0 (5.22)

G = 168.0 H =672 I=56.

According to this, the reference height h,.s, which is the instrument height ;s
minus the effective height h.s; and the initial height hg, therefore is the height
to which the measured value should be referred. A reduction of the g-value, g.s,
from the reference height to the rest position is possible, but brings additional
errors with it, as a gradiometer is needed to measure the gravity gradient. If the
gradient v is known, the reduced value g,.s at the instrument height is calculated
by

Grest = Gesf + (hegs +ho) 7, (5.23)

where 7 is taken as a negative number.
As we use a frequency trigger adjusted to trigger at 1 MHz, the respective

velocity is about 0.32 m s+

, and the scatter from drop to drop is negligibly small.
Timmen (2003) indicates an uncertainty in the effective height determination of
less than 0.5 mm. To measure the instrument’s height, i.e. the rest position of the
FB’s apex, with respect to the reference mark on the measurement site ground,
a ruler is used. The uncertainty assigned to this measurement is assumed to be

within a range of 1 mm. The combined uncertainty, converted into acceleration,

is 0.3 pGal.

Table 5.17: Uncertainty budget for effective height.
Correction/uGal  Standard uncertainty/pGal
MPG-1 none 0.3
MPG-2 none 0.3
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Figure 5.12: The reference height is obtained by subtracting the initial
height of the trajectory hy and the effective height h. sy from the instrument
helght hinst-

5.1.15 Non-linearity of electronics

Each amplifier introduces a phase shift to the measured signal. If this phase
shift is constant or linear over the entire frequency range, there is no bias on
the measured g value. However, in the case the phase shift is a function of
frequency, and non-linear, the phase shift simulates an additional acceleration
that causes a systematic error. We investigated this problem by measuring the
phase shift produced by the amplifier HCA-200M-20K-C (for specifications see
Tab. 5.18), from FEMTO Messtechnik GmbH with the network analyser E5061A

from Agilent. A direct measurement with the network analyser shows a very

Table 5.18: Specifications of high-speed photoreceiver with ST PIN Pho-

todiode.
Gain Transimpedance 2.0 x 10 V A~ (@ 50  load)

Frequency response Lower Cut-Off Frequency = DC
Upper Cut-Off Frequency 200 MHz (+10%)
Rise/Fall Time (10%-90%) 1.8 ns

straight line (Fig. 5.13(a)). The non-linearity only becomes visible after a linear
term is subtracted (Fig. 5.13(b)). The data obtained can then be converted

into distance (Fig. 5.13(c)), from which the acceleration can be calculated. It
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turned out that of all ranges, just in the important frequency range (DC-7 MHz)

the amplifier shows non-linearities. The error is calculated considering the fringe

signal U(t) = Asin(2§j(2t)), where A denotes the maximum amplitude, A is the
laser wavelength and z(t) is the height fallen by the FB. For an unperturbed free
fall, the velocity, and hence the signal frequency, changes linearly and can be
correlated to the drop time. The phase shift introduced by the amplifier, makes
a fictitious change in height. The error can be calculated by fitting the second
order polynomial, i.e. the free fall model, to the phase response, converted into
displacement. Fig. 5.13 (bottom graph) shows the residuals after applying the
least squares fit. In our case, this error amounts to Ag = (—4.714+0.02) pGal - for
correction 4.71 puGal has to be added to the measured value. This is systematic
and valid for a drop length of 200 ms, as in the case of MPGI1. In the case of
MPG2, where the starting point is the same, namely 1 MHz, but the total drop
time is just 80 ms, the error is Ag = (—1.9 £ 0.6) uGal. The uncertainty in
the non-linearity correction results from the uncertainty in the initial frequency,
i.e. the accuracy of the frequency trigger, where a standard error of 32 kHz is

assumed.

Table 5.19: Uncertainty budget for non-linearity of amplifier.

Correction/puGal  Standard uncertainty/pGal
MPG-1 -4.71 0.02
MPG-2 -1.9 0.6

5.2 Uncertainty budget due to environmental

effects

5.2.1 Solid Earth tides

When measuring the Earth’s gravity field, the tidal influences of other astronom-
ical objects have to be corrected for. The theory of tidal parameter calculation
was sketched in Chapter 1. The body tides due to the Sun and Moon are the
biggest influences on the measurement, with a range of +150 uGal. The software
TSoft (TSoft, 2008; van Camp & Vauterin, 2005) is used to correct the measured
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data for the body tides. The quoted uncertainty for the tidal correction is 0.1
pGal.

Table 5.20: Uncertainty budget for solid Earth tides.
Correction/puGal  Standard uncertainty/pGal
MPG-1 +150 0.1
MPG-2 +150 0.1

5.2.2 Ocean loading

When the sea is drawn by the Sun’s and Moon’s attractions, the Earth is de-
formed. The huge load at the coastal regions pulls down the solid ground. For
this reason, the vertical displacement due to ocean loading can reach up to 20 cm
(in Cornwall, (cf. van Camp, 2005)), which equals approximately 30 puGal. In-
land, the contribution due to ocean loading is much smaller. For the site Erlangen
the ocean loading effect is no more than 3 pGal, with an error estimated to about
10 %, which contributes with 0.3 puGal to our uncertainty budget. A better es-
timate of this effect needs better models to describe the ocean tides, which are
the main error source, and also a better knowledge of the rheology of the Earth’s

interior (van Camp, 2005).

Table 5.21: Uncertainty budget for ocean loading.

Correction/uGal  Standard uncertainty/puGal
MPG-1 +3 0.3
MPG-2 +3 0.3

5.2.3 Polar motion

The Earth’s axis of rotation is not fixed within the the Earth, but is displaced
at any moment by a few meters from the axis of maximum inertia. Although
this can be measured by observing the zenith distance of the celestial pole of
rotation, it cannot be predicted accurately. Chandler observed in 1891 that the
amplitude of the quasi-circular motion changes in a range of 0.05 to 0.25 arc

seconds within a period of 6 years (Seidelmann, 1992). In his honour, this polar
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motion is also called Chandler wobble. It corresponds to the Euler nutation in
an elastic Farth. Variations of up to 13 uGal in surface gravity are possible
(Wahr, 1985). The formula specified in the IAGBN Absolute Observations Data
Processing Standards (1992) (extracted from Vauterin & van Camp (2007)) for

polar motion correction (in nm s~2) is
Agpm = —1.164 w?asin ¢ cos ¢(z, cos A — y, sin \) | (5.24)

where w is the angular velocity of the Earth (in radians s7'), a = 6378136.6(1)
m is the semi major axis of the reference ellipsoid (number from McCarthy &
Petit (2003), IERS Numerical Standards), ¢ is the geodetic latitude (in radians),
and A the geodetic longitude (in radians). z, and y, are the pole coordinates
(in radians) and are available on ftp://hpiers.obspm.fr/iers/eop/eopc04/.
The daily predicted values can also be found in the IERS Bulletin — A, and the
final daily polar coordinates are published in the IERS Bulletin — B. IERS’s site
(http://hpiers.obspm.fr/eop-pc/) estimates that the present relative uncer-
tainty as to the Earth’s orientation parameters is about 10~*, hence we consider

the uncertainty to be negligible.

Table 5.22: Uncertainty budget for polar motion.

Correction/puGal  Standard uncertainty/puGal
MPG-1 +13 10~4
MPG-2 +13 1074

5.2.4 Pressure effects

A change in local pressure also changes the gravity value, as a higher pressure
signifies a higher mass of air above the measurement apparatus. This means
an attraction upwards, and hence lowers the nominal value. A correction can
be applied as recommended in Boedecker & Richter, Bu. (1984): The nominal

pressure at a measurement height h,, (in meters) is defined by the equation

P
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With the barometric factor defined as fz = 0.3 uGal hPa~! the correction to the

observed value g, amounts to

Apcm"r = fB(po _pn> . (526)

To collect weather data we use the Heavy Weather station 2300. It has a pressure
resolution of 0.1 hPa. Assuming the standard error of the pressure gage to be
1 hPa, the relative standard deviation amounts to about 1 x 1073, This gives an
uncertainty contribution to our uncertainty budget of 0.3 uGal. This can easily
be reduced by the pressure gauge frequently calibrating. For the comparison at
Bad Homburg in February 2008, the pressure values provided by the supercon-
ducting gravimeters, were taken. For this comparison, the uncertainty due to

environmental pressure is negligible.

Table 5.23: Uncertainty budget for environmental pressure.

Correction/puGal  Standard uncertainty/pGal
MPG-1 +3 0.3
MPG-2 +3 0.3

5.2.5 Coriolis force

A vertical acceleration — the Coriolis acceleration — on the FB can be generated, if
during the start of the drop the FB has a horizontal momentum in the east-west

direction, according to the following equation:

14.6 pGal
ACor — 2 QNUEW sin® = Wﬂs—la VEW Sin© . (527)

Here Q) is the nominal angular velocity of the Earth (cf. Appendix A), vgy is
the velocity component of the FB in the east-west direction, and © is the lati-
tude of the site of measurement. To estimate this effect we assume that our rail
which guides the elevator is not well aligned along g. This can easily observed
by the movement of the laser spot, when moving up and down the elevator by
means of the motor. The rail is usually aligned so that the beam spot does not
move more than 0.5 mm. The range the elevator can be moved up and down is

about 250 mm. Hence the inclination with respect to the plumb line is about
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Table 5.24: Uncertainty budget for Coriolis force.
Correction/puGal — Standard uncertainty/puGal
MPG-1 none 0.5
MPG-2 none 0.5

2 x 1073 rad. The acceleration of the elevator is about 11 m s™2. Overestimating

a dragging contact time between the vee-grooves and the falling body to be 10 ms

1

gives a velocity along the rail of about 110 mm s~ and, hence, as a horizontal

component vgy = 0.22 mm s

This would give an Coriolis acceleration (for
© = 50°) of approximately 0.5 uGal. For our uncertainty budget we assume

0.5 uGal as an upper limit.
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5.3.1 MPG-1

5.3 Combined standard uncertainty

By combining all of the error sources we can give the total corrections and un-
certainty for the gravimeters MPG-1 and MPG-2.

Table 5.25: Corrections and standard uncertainty for MPG-1.

Correction/uGal — Standard uncertainty /uGal
Air drag 0.3x 1072
Outgassing 4.2 x107°
Buoyancy negligible
Magnetic attraction negligible
Eddy currents 0.1
Electrostatic field negligible
Instrumental masses -1.8 0.5
Beam verticality 6
Laser stability 3.64
Clock stability 0.6
FB rotation 0.7
Radiation pressure 2.8 x 1073
Beam divergence +22 1.8
Temperature gradient 1.5x1073
Tilt of optical table up to +40 4
Floor recoil & seismic vibrations 14.3
Speed of light -14.1 0.44
Reference height 0.3
Non-linearity of electronics +4.71 0.02
Solid Earth tides up to +£150 0.1
Ocean loading up to +3 0.3
Polar motion up to £13 1x10~4
Environmental pressure up to £3 0.3
Coriolis force 0.5
Statistical uncertainty 0.6 (Erlangen)
(1 month)
Total correction +10.81

Combined standard uncertainty

16.58

117
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5.3.2 MPG-2

Table 5.26: Corrections and standard uncertainty for MPG-2.
Correction/puGal  Standard uncertainty/puGal

Air drag +4.0 0.8
Outgassing 3x 1073
Buoyancy negligible
Magnetic attraction negligible
Eddy currents 0.1
Electrostatic field negligible
Instrumental masses 0.5
Beam verticality 6

Laser stability 3.64
Clock stability 0.6

FB rotation 0.7
Radiation pressure 2.8 x 1073
Beam divergence +22 1.8
Temperature gradient 1.5 x 1073
Floor recoil & seismic vibrations 37.3
Speed of light -7.5 0.23
Reference height 0.3
Non-linearity of electronics +1.9 0.6

Solid Earth tides up to £150 0.1
Ocean loading up to £3 0.3

Polar motion up to £13 1x1074
Environmental pressure up to £3 0.3
Coriolis force 0.5
Statistical uncertainty 5.0 (Bad Homburg)
(24 hours) (1.6 (Erlangen))
Total correction +20.4

Combined standard uncertainty 38.36 (Bad Homburg)

(38.07 (Erlangen))

5.4 Discussion of the uncertainty budgets

The uncertainty budgets listed above result from a first careful study of the newly
designed absolute free fall gravimeters, and do not claim to be complete. Both

gravimeters were developed together in less than three years. The main focus
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5.4 Discussion of the uncertainty budgets

was developing a new method to balance the falling body and to design new me-
chanics for a portable system. Both tasks were accomplished to our satisfaction.
The resolutions of MPG-1 and MPG-2 are 0.6 uGal and 1.6 pGal, respectively.
The specified combined standard uncertainties (accuracies) of 16.58 pGal and
38.07 uGal for MPG-1 and MPG-2, respectively, can be regarded as overestima-
tions. Looking closer at the uncertainty budget we can clearly distinguish the
main error sources, such as floor recoil and seismic vibrations, beam verticality
and laser stability. Without the uncertainty due to floor recoil and seismic vibra-
tions, the combined standard uncertainty would decrease to 7.62 puGal for MPG-2.
This were an excellent result. We believe that residual vibrations mainly come
as a result of path length differences due to vibrations of the dropping chamber.
This changes the relation between the beam propagating in vacuum and that
in air. A full treatment of this effect is very complex and is outside the scope
of this thesis. A very careful estimation has been done therefore. Except for
the vibration problems we expect to be able to reduce or eliminate these error
sources soon. A new laser system has already been constructed and tested to
reduce laser instability. Beam verticality uncertainties can be reduced by a new

alignment method, e.g. employing an autocollimator.

119



5. UNCERTAINTY BUDGETS AND POSSIBLE ERRORS

120



Chapter 6

Summary and outlook

During the last three years two new absolute gravimeter systems have been de-
signed, constructed and tested. The first one (MPG-1) was aimed to provide
stationary, long-term, highly accurate gravity measurements. Several long-term
measurements were conducted over months, with measurement standard errors
of down to 0.6 #Gal month™*. Due to its long drop duration of up to 250 ms,
the main uncertainty source in the uncertainty budget, namely residual vibra-
tions, can be reduced in comparison to the portable gravimeter MPG-2. This
high accuracy allows the stationary gravimeter MPG-1 the status of a reference
apparatus.

The second gravimeter (MPG-2) was developed to provide a portable ap-
paratus, which enables field measurements and intercomparisons with other in-
struments. It was brought to an european comparison of absolute gravimeters
and showed a good agreement with most other European gravimeters. With its
compact design and measurement standard errors of about 5 uGal (12 h)~! it rep-
resents a competitive device in the field of absolute gravity measurements. An
estimated combined standard uncertainty for MPG-2 of 38.5 uGal comes mainly
from disturbing vibrations. For a better understanding of the origin of these vi-
brations, further investigations have to be conducted. Once this source of error
can be eliminated, we believe that the uncertainty can be reduced to the uGal-
scale.

For now, the target tasks are achieved. A highly accurate stationary reference

absolute gravimeter and a fully automated, portable absolute gravimeter were
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built, which can find application in many fields of physics, geophysics, and the
military, just to name some. The expanded uncertainty of 77 uGal (coverage fac-
tor k = 2), is good enough for the measurement of the Boltzmann constant and
the redefinition of the Kelvin, which require a relative uncertainty of 1 x 1077.
The novel spring mechanics in the portable gravimeter promises to be a good
way of decreasing disturbing vibrations. The new method developed to balance
falling bodies to high precision gives hope of further increasing the accuracy of
free fall absolute gravimeters, as during the last years it proved to be the biggest
error contribution. A new laser system with a high stability and accuracy, and
which needs no modulation on the frequency, is finished. Together with a new
inertial reference mirror system that is under development, the whole gravimeter
will be a completely own development, which will help to detect systematic er-

rors, and hence, give more insight to the accuracy of modern free fall gravimeters.

Gravity measurements are becoming increasingly important in many fields
beyond physics. Some instances are the use of gravity data to determine mineral
deposits (Bell & Hansen, 1998; Pawlowski, 1998), or applications in archaeology,
i.e. to reveal local gravity changes associated with remains of ancient buildings
within the cultural layer (Slepak, 1997), as well as in geophysics to observe land
uplifts (Miiller et al., 2007). Metrology and fundamental physics are highly in-
terested in further improvements of gravimeters, because of the devices’ high
potential to measure the Planck constant, the Boltzmann constant, the New-

tonian constant or to redefine the Kelvin and the kilogram (cf. Sec. 1.3).

Regarding the influence of radiation pressure of 2.8 x 1073 uGal (cf. Sec.
5.1.9) in our system, a laser with higher power and a lighter falling body could
detect this effect. As an application, Newton’s second law could be verified by
comparing the mechanical force with the light force. Measurements in this field
were already done by Gundlach et al. (2007), but using a torsion pendulum, or
by Abramovici & Vager (1986), employing the prototype of their active cavity

gravitational-radiation detector.
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In conclusion, it can be said that the two free fall absolute gravimeters built in
the framework of this thesis under the supervision of Prof. L..J. Wang, and Dr. S.
Svitlov present excellent devices to continue research in fundamental physics. The

groundwork is laid for prospective projects.
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Appendix A

List of numbers and physical

constants

In the following table some of the important numbers and constants used in
the thesis are compiled. Physical constants are taken from NIST (2008), or
IERS Constants (2008), and the material density numbers from Fischer et al.
(2002).

Remark on the use of the unit uGal:
The SI unit of acceleration is m s™2, but it is impractical for use in geophysics,
as the effects of interest are in the cm s=2 range and lower. In the c.g.s. system

2 which, in honour of Galileo Galilei, is

however, the unit of acceleration is cm s~
called “Gal” (1 pGal is 10 nm s~2). It is widely used in geophysics as well as in
geodesy.

The unit £ (Eotvos) for the gravity gradient is also not compatible with the
SI, but frequently used for convenience. The conversion is 1 E = 107 s72 =

0.1 uGal m~1.

Coordinates for the site Erlangen:
49.34°N, 11.00°E, 287.0 m elevation
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A. LIST OF NUMBERS AND PHYSICAL CONSTANTS

Table A.1: Physical Constants and numbers.

NAME OF VALUE RELATIVE STANDARD  UNIT (SI)
CONSTANT UNCERTAINTY

Newtonian constant 6.67428 x 10711 1x10~* m?3 kg=! s72
of gravitation G

Speed of light 299 792 458 (exact) ms?

in vacuum c

Standard acceleration 9.806 65 (exact) m s~2

of gravity g

Boltzmann constant kp 1.3806504 x 10~23 1.7 x 10~ JK!
Avogadro constant N4 6.02214179 x 1023 5x 1078 mol ~*
Planck constant h 6.626 068 96 x 10734 5x1078 Js

Molar gas constant R 8.314 472 1.7x1076 J mol~t K—!
Earth’s equatorial 6378136.6 1.5x1078 m

radius a

Earth’s flattening f 1/298.256 42 3x 1078

Geocentric constant 3.986 004 418 x 10 2 x 1079 m?3 s72

of gravitation GM

Heliocentric constant 1.32712442076 x 1020 4 x 10710 m?3 72

of gravitation GS

Nominal angular velocity 7.292115146 706 4 (exact) rad s—1

of the Earth Qp x1075

Density of titanium prp; 4.5 x 103 kg m~3
Density of aluminium p 4; 2.7 x 103 kg m—3
Density of stainless 7.9 x 103 kg m~3

steel pgy
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Appendix B

Results of long term

measurements

B.1 Measurements with MPG-1

The following presents some graphs of long-term measurements conducted with
the stationary absolute gravimeter MPG-1. The gaps seen in the figures are
mainly due to software glitches, which caused the measurement to stop. The FB
was also observed to jump out of the support ring. This error was tracked to a
lack of grease on the rails and did not reoccur once the rail and ball bearings had

been maintenanced.
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B. RESULTS OF LONG TERM MEASUREMENTS
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Figure B.1: Results of the long term measurement #4 with MPG-1.
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Figure B.2: Amplitude spectrum of one month of measured gravity with

MPG- 1 (LT#4).
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B.1 Measurements with MPG-1
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Figure B.3: Results of the long term measurement #5 with MPG-1.
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B. RESULTS OF LONG TERM MEASUREMENTS

B.2 Measurements with MPG-2

The following figures show the measurements realized during ECAG 2007 at the

observation sites Al and B2:
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Figure B.4: Measurements at ECAG 2007 in Walferdange/ Luxembourg
with MPG-2.

Data from the comparison at Bad Homburg:
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Figure B.5: Measurements at Bad Homburg — pillar BA.
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