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Abstract

Networks are an essential part of the everyday life of million of individuals and organizations around
the planet. Management and security are critical to ensure the correct functioning of networks and
applications using them. Additionally, the requirements in terms of performance but also security
have greatly increased in recent years. Simultaneously, the high adoption rate of distributed com-
puting paradigms and cloud-based applications are dependent on the performance of data centre and
computing facilities. This scenario shows the need for strong data analytic techniques capable of con-
textualizing multiple events in order to identify security events efficiently. The emergence of Software
Defined Networks (SDN) has suggested promising improvements in network performance improve-
ment. In this context, data analytic methods for network management require support in order to be
be efficient.

This thesis addresses the topic of data analytics for network security, including a multidimensional
monitoring approach to detecting anomalies of distributed applications in loosely restricted access net-
works, as for example: TCP/IP, Domain Name System and crowd-sourced location-based applications
for vehicular routing. As a complement, we propose an approach to leverage the performance of SDN-
based data centre environments by raising application-level awareness to the network management
level.

In this thesis, we validate our multidimensional aggregated model for representing network events
and its associated metrics involved in the detection of anomalies and malicious activity. For the valida-
tion experiments we use real-world data and proposed an approach for identifying and counteracting
network threats in particular circumstances. Last but not least, we have implemented a framework
to raise application-awareness as a proof-of-concept for improving the performance at data centre
environments.
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Chapter 1

Introduction

1.1 Context

In recent years Internet access has become a global phenomenon, and the use of Internet-based services
has grown exceptionally. Access to this wide spectrum of Internet-based services is leveraged by the
increasing use of personal communication devices with network access capabilities. According to a
study carried out by Cisco Inc [1], in the past five years we have witnessed more than fivefold increase
of global Internet traffic. In 2013, mobile data traffic accounted for 30 times the volume of the global
Internet traffic in 2000, which reached two and half exabytes per month at the end of 2014 [2], as
shown in Figure 1.1. The high adoption rate of personal devices for using Internet-based services has
impacted on networks in term of information volume for routing and storage but also on security.
The volume, frequency and complexity of attacks have increased, as suggested by a security report
conducted by Arbor Networks in 2014 [3], as for example, the volume of Distributed Denial of Service
(DDoS) attacks in the 2013 increased by 50%. This is explained by the fact that a bigger surface of
attack and a larger number of potential victims are now available.

This evolution represents a challenge of paramount importance for information security. Security
mechanisms are not only required for establishing confidential and reliable channels of communication
between users and applications encompassing all intermediary points, but also because an exceptional
increase in data volumes in terms both of transfer and of storage. The magnitude of this increase has
affected negatively web hosting servers, name servers, and data centres by multiplying the potential
risks of attacks against infrastructure and magnifying the havoc caused by security threats.

According to a survey published by Kaspersky Security [4], in 2014 more than 90% of the companies
encountered information security issues, which, their top concerns in security were: protecting highly
sensitive data, preventing IT security breaches and protecting business-critical infrastructure (e.g.
preventing DDoS attacks). Data loss due attacks and security issues is carried out using a variety of
strategies, as illustrated in Figure 1.2. Not all the attacks are carried out aiming at large organizations,
the motivations from malicious users can be financially driven, therefore a vast portion of attacks are
targeted to individuals employing Phishing or Malware strategies.

Phishing and Spam activities have also become of relevant importance. According to a recent
report conducted by Anti-Phishing Working Group [5], payment services continue to be the most
targeted industry sector. Also, it was pointed out that, not less than 30% of Internet connected
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computers were infected with Phishing or Spam related malware. This type of security threat follows
a global distribution suggesting The United States, China and Russia as the top countries hosting
phishing sites. Only in the first quarter of 2014 more than 100 thousand new phishing domains were
detected [5]. Kaspersky Labs has recently reported that malware is becoming multifunctional, not
only sending spam, but also performing more complex tasks as participating in DDoS attacks [6].

This scenario sets out the need for monitoring techniques to leverage the detection of the diverse
and complex techniques carried out by the attackers. Monitoring a the traffic that passes through an
Internet Service Provider (ISP) can be a costly process, therefore approaches for aggregated analysis
offer a cost-effective solution. Due to the vast diversity of attacks against services and applications,
using individual approaches for detection could not to be scalable enough. Therefore, a realistic
approach is to employ methods for analysis as general as possible, capable of handling unstructured
data from multiple sources, which could differ significantly from the approaches traditionally applied.

Significant changes in the data analytic methods for information security are discussed in a forecast
published recently by Gartner [7]. This changes are explained by the emergence of centralized storage
for multiple sources of events, followed by the advances in techniques for the analysis of aggregated
data, which were not practicable before due performance limitations of computing centres. Hence,
data analytic approaches are needed to cope with the large and heterogeneous data sets, and also to
keep pace with the increases on volume that security applications are facing [8]. From the perspective
of Intrusion Detection System, data analytic approaches can be applied with diverse purposes (.i.e
forensics, detection, monitoring) to reduce the time for correlating and contextualizing events. Recent
advances in computing infrastructure have made possible to implement distributed computing patterns
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Introduction 3

Figure 1.2: External threats reported during the year 2014 [4]

and storage methods for empowering data analytic approaches [7].

Distributed computing has evolved from local and small environments to larger, and even global
installations with a significantly larger user base. In 2013 global data centre traffic accounted 3.1
zettabytes (ZB) per year (255 exabytes per month) [9]. For the period 2013-2018 is expected a
23% compound annual growth rate (CAGR) increase on data centre global traffic, as illustrated in
Figure 1.3. At the same time, the emergent use of Software Defined Networks (SDN) may lead to
a significant improvement on the performance of networks at dedicated computing facilities [10, 11].
This can be in part explained by the increase in the adoption rate of virtualization in data centres,
as suggested recently in [12]. From the user perspective, information availability and storage media
have become a of less concern in comparison to fast and ubiquitous network connectivity. One of the
main reasons behind this phenomenon is the emergence of the Cloud computing and its applications,
which allows computing, accessing and storing information in a globally distributed fashion1.

The emergence of distributed-based services for public and private storage and computing, referred
currently as Cloud computing, sets out as top priority for enterprises the need of significant infrastruc-
ture changes [8]. This change has not only affected the requirements in terms of infrastructure, but
also it evidences a change in the use of distributed computing towards centralized services [7]. Despite
bandwidth exceptional increase in recent years [9], along with throughput and latency are among the
major concerns of many organizations [8]. This can be explained by the fact that most of organi-
zations’ infrastructure was not designed to respond to the requirements of Cloud-based applications.

1As for example services such as Google Apps (https://www.google.com/work/apps/business/), Apple Cloud
(http://www.apple.com) or Dropbox (http://www.dropbox.com)
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Figure 1.3: Data centre traffic growth forecast for the years 2013-2018 [9].

This sets out a vast field for performance improvements at specially data centres where Cloud-based
applications are hosted. The use of SDN in data centres has recently showed promising advances in
terms of performance and security, as recently pointed out by authors in [13].

The adoption of SDN allows obtaining valuable traffic volume metrics that can be studied to achieve
a greater performance in data centres. Approaches considering the specific needs of applications to
allocate and guarantee resources are a suitable solution. These types of approaches combined to
the virtualization techniques and technological advances may lead to significant improvements in
performance in terms of bandwidth, throughput and latency.

1.2 Problem Description and Contributions

This thesis addresses the problems and challenges that arise for monitoring distributed applications
over the Internet and managing network to support these applications or services. To fulfill our goal,
we focus on aggregation techniques via the usage of data analytics that will help in reducing the volume
of the data, making it easier to perform observations and draw preliminary conclusions about data
patterns corresponding to network anomalies, which could lead to the detection of network attacks or
malicious users.

Additionally, we address also the problems for implementing efficiently in a distributed fashion (in
the Cloud) data analytic methodologies for management and security.

Network Security

In this thesis we study address the inherent relationships of hierarchical data belonging to applications
distributed over large-scale networks or the Internet from the perspective of network security in the
following areas:

• In the context of network monitoring, how information from multiple heterogeneous sources
can be extracted, stored and, further on correlated to analyze significant events leading to the
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detection of anomalies?

As pointed out by many authors [14–18], aggregation approaches have been applied for diverse
purposes in network security. However, some approaches are specific to a certain type of network
protocols or may encounter severe limitations in terms of performance while considering multiple
sources of information. In addition, another limitation in the mentioned approaches is the need
of human interaction for defining the granularity of aggregation.

We introduce an approach for handling heterogeneous-formed data, with diverse sources. We
propose a methodology for temporal and spatial aggregation for reducing the scale of data, with
out loosing the relevancy of information. A first aspect of our approach is considering multiple
features or dimensions by design. A second attribute of our approach is that the granularity is
given by the data aggregation process, where only relevant events are held. Since smaller events
are aggregated into larger ones, the information is not lost but collapsed into more relevant
entities. Our approach considers every feature independently without giving prominence to any
specific one. In addition, we provided an implementation of our methodology, which has been
validated using several real world scenarios.

• How the dynamics of multidimensional data in IP networks can be studied using aggregated
traffic patterns for the detection of anomalies?

Over recent years network monitoring became a fundamental part in network security, at ISP
levels. In the scenario of a large network, the volume of data available for analysis may also
become big, thus, this have a negative impact on the time for post-processing time and further
analysis. An efficient method for reducing the scale of the data is to aggregate network traffic, as
for example with the use NetFlow protocol [19]. Traffic analysis on aggregated traffic has proven
to be effective for detecting anomalies using aggregated flows, as suggested by authors in [14,16].
However, the attacks observed recently have become more diverse, frequent and complex. Despite
stronger methods for scanning, monitoring and accounting have been developed, detection of
network attacks is still of a major concern [4, 20–23]. In particular, large network attacks such
DDoS and Botnets are still a major threat to Internet operators and the general public.

Our approach consists in studying the quantitative changes over time of the network activity
present in NefFlow records. Our methodology is leveraged using multidimensional tree-based
aggregation, that enables us, to apply metrics considering multiple features simultaneously (
e.g. source, destination, port number, etc.). To validate our approach, we conducted experi-
ments for detecting TCP Flood attacks present in network traffic offered by one major ISP in
Luxembourg [187].

A major improve to this approach is to analyze not only the IP traffic by also consider another
widely used protocols as sources such as Domain Name Service (DNS), HTTP Secure (HTTPS)
or position-based applications. This points out to a subsequent scenario that we address in the
next research question.

• How to apply metrics for the analysis of the match between DNS names and IP subnetworks to
find out potential malicious websites?

The correct functioning of many Internet distributed applications is crucial for wide variety of
large-scale services. Basic Internet infrastructure has become a target for hackers, as suggested
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in [20]. In particular, applications such DNS or HTTPS are essential for an immense number
of people using end-user applications.Public concert about security issues has also experienced
changes in recent years as exposed in [20], which also points out the evolution of the attackers
goals. DNS traffic monitoring can help to identify two major threats, FastFlux and phishing,
and can also provide insights into other malicious activities [24–26]. A common characteristic
of malicious websites is their rapid changes of IP addresses and DNS names, due the reactive
actions of blacklists and malware reporting websites.

In this scenario, we propose our approach for identifying anomalies and detection of malicious
web sites using a metric based on the association time between an IP subnetworks and a DNS
names. Our approach was carried out by studying the persistence over time of DNS records,
which were included into the repertory of Multidimensional Aggregation Monitoring (MAM) for
multidimensional aggregation. Our detection method was leveraged by aggregation to reduce
the scale of the data set and also to consider multiple sources of information such as a Passive
DNS database [27] and blacklists [28]. To validate our approach we conducted macroscopic (over
the course of one year) and microscopic (during one week) experiments. Our results suggest that
malicious domains can be detected efficiently using our approach [188].

Network monitoring approaches still encounter limitations when facing mobile technologies.
Communication channels have become more heterogeneous with the advent of new network tech-
nologies such as Vehicular Ad Hoc Networks (VANETs), and the Internet of Things along with
rapid advances in cellular network technologies. Car communications in VANETs are expected
to experience rapid growth, for the year 2020, 220 million cars are expected to be manufactured
with connectivity devices, according to a recent forecast [29]. The emergent technologies for
communication and computing platforms for Vehicular Ad Hoc Network (VANET) are nowa-
days very diverse. Hence, we believe that our contributions to this field should be from a general
perspective, thus the technology have not yet been standardized. This points to a following
research problem addressed in this thesis.

• In the context of security for crowd-sourced applications. How the dynamics of positional infor-
mation in an unrestricted VANET could lead to the detection of traffic anomalies?

Position-based services are essential for an immense number of vehicles using applications for
routing and safety. According to a report published in 2014 by the U.S. Department of Trans-
portation, National Highway Traffic Safety Administration, safety applications would on an
annual basis potentially prevent 250 thousand crashes on average [30]. Assuming a crowd-
sourced application, there is no strong restriction on users, everybody is basically identified with
pseudonyms. Therefore, an attacker or a malfunctioning device can produce erroneous data and
inject it. This topic is of major concern among the researchers [31–36]. Our approach consisted
in leverageing detection with multidimensional aggregated analysis, which consists in studying
the plausibility of the reported positions of moving cars. In addition, we developed a mechanism
for malicious information removal from a compromised data set reducing the information loss.
To validate our approach we conducted simulations using a state of the art simulator [37].

Network Management New uses of technology have emerged recently, which centralize the com-
puting and storage of information into cloud-based applications [38]. Simultaneously, performance
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requirements of such applications have become critical due the increase in the number of users, in
particular using mobile devices [2]. Therefore, network management has become of a paramount
importance [7, 9]. This scenario sets out the need for approaches towards efficient network manage-
ment. In such a context, the network plays a vital role to guarantee QoS. This scenario motivates the
following research question:

• How to leverage network awareness in a SDN cloud-based environment to apply flexible applications-
based policies for security requests, availability and performance?

Software Defined Networking clearly helps in defining and applying advanced flow based policy. How-
ever, an SDN controller is not able to take fully optimized decision without knowing about the context
of the flows. Our approach takes a step to fill up this gap by proposing a framework that allows the SDN
controller to learn about the flows context and take more optimized decision. We also demonstrate
the feasibility of our approach by implementing the framework and making it work with existing SDN
controller. Our evaluation results also reveal that our proposed framework has very little footprint,
while enabling the network to take much optimized decision to meet QoS requirements of applications.

1.3 Structure of the thesis

The structure of this thesis follows the order of the research questions listed below. The contributions
of this thesis are set out in chapters 5 and 6. In chapter 5 explain in details the contribution to
the methods of data analytics proposed. In chapter 6 our approach for performing data analytics
using the methods as enablers is detailed. The first part, about State of the art is organized in three
chapters. The first two correspond to the State of the art of data analytics for network security, and
the last chapter is for data analytics for network management, in particular on the field of data centre
networks.

The remainder of this thesis is organized as follows:

• Part II - State of the Art: In chapter 2 we first cover the data structures and methodologies
relevant to the field of network monitoring. The second part of the chapter describes the princi-
ples of network security and sets out as the state of the art. Additionally, we introduce network
management concerns for big data applications in chapter 3.

• Part III - Contributions: In chapter 5 we present two data analytic methods for improving
network security and management. The first one, is a multidimensional data structure for
representing large scale network traffic in order to reduce its volume before further monitoring
techniques [187]. The second enabler is employed to implement flexible network policies for
security requests, availability and performance in Cloud infrastructure. In chapter 6 we introduce
several methodologies for the analysis of large-scale distributed applications on unrestricted
access networks. These include NetFlow analysis, DNS and positioning services on vehicular
networks.

• Part IV - Evaluation: In chapter 7 we present our evaluation of the proposed techniques for
large scale monitoring, malicious activity detection and recovery for NetFlow, DNS and position-
based crowd-sourced services [187–190]. In particular, results of experiments which validate our
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approach on real world data. In chapter 8 we present our experimental evidence on performance
and security policy enforcement in Software Defined Networks.

• Part V - Conclusion: In chapter 9 we conclude this thesis with a discussion of the most relevant
contributions and highlights perspectives open by our contributions.



Part I

State of the Art





Chapter 2

Data Analytics: Concepts & Methods

Ways to store, retrieve and analyze information have always been among the most frequently ad-
dressed problems in computer science. Since the early days of computer science many outstanding
contributions have been made into this field, including new algorithms and data structures.

Hierarchical data is present in most scientific disciplines. For instance, any taxonomic classification
system (biology, astronomy, computer science) uses a hierarchical underlying model. In particular in
computer science and computer networks, most address spaces (e,g IPv4, DNS, MAC, among others)
for locating computers in a network follow a hierarchical model. However, these address spaces are
so vast that reducing their scale is necessary to facilitate analysis and representation. An example is
using subnets to group and study the packet traffic in a network. It is important to note that reducing
the scale in order to observe data allows a more compact representation, but could result in some
small-scale phenomena, not being represented due to the magnitude of the scaling. For example, a
representation of network traffic by network class can summarize large groups of hosts, but renders
individual traffic patterns unobservable.

In the following sections we will address several contributions to the field of data structures and
methods employed in the analytics of network and applications.

2.1 Data Structures

The data structures covered in this section are those that serve to efficiently store aggregated data, in
order to support or enable network monitoring tools. For example, a common use case in monitoring
is to efficiently retrieve the volume of data for a certain portion of a network or user group, in order
to determine the bandwidth consumed per host at a given time. In this case, efficiently maintaining
an aggregated data structure with its intermediate values (elements of the hierarchy) is critical. Addi-
tionally, scalability becomes a crucial factor when the volume of data grows almost without bound as
it may, for example, with network users, bandwidth or simultaneous requests to an application server.
For aggregation over a single dimension, a binary tree structure is suitable [39–41]; however it is also
possible to aggregate single-dimensional data into a k-ary tree [42]. For more than one dimension, this
chapter covers the data structures employed in state-of-the-art approaches for network monitoring and
data analytics [14,16,18]. These structures are: Fenwick trees, Quadtrees, Octtrees and K-D trees.

The authors of [39] describe the Fenwick, or Binary Indexed, tree, a data structure designed to
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0  1    2    3    4    5    6    7    8 
      0001  0010     0011      0100    0101    0110   0111   1000

Figure 2.1: Fenwick tree representation of a 4 bit coded frequency [39]

efficiently store aggregated cumulative frequencies. The basic principle behind Fenwick trees is: As
an integer can be represented as a decomposed sum of smaller integers, cumulative frequency can
also be represented as a sum of its subfrequencies. Each node is indexed with a positive integer; the
node at the index i stores the sums from i to i − 2k + 1 where k is the greatest integer that satisfies
i mod 2k = 0. For example, a Fenwick tree using a 4-bit index, is illustrated in Figure 2.1. Node 7,
binary 0111, carries the sums from 7 to (6+1), and is a terminal node. Node 6, binary 0110 (so k = 2),
stores the sums from 6 to (4+1). Therefore, node 8 accumulates the sums of all its predecessors.

One of the main advantages of Fenwick trees is their temporal and spatial complexity for retrieval.
Retrieval of a node can be done in logarithmic or constant time, where the worst case complexity is
O(log(MaxV al)), with MaxV al the maximum integer in the tree [39]. The memory requirements
of a Binary Indexed tree are linear in the number of nodes to be stored, also allows the storage of
n-dimensional arrays.

While Binary Indexed trees were created for data compression, [43] shows how they may be used
in network monitoring tools. Here, the authors propose using a Fenwick tree to store the cumulative
percentage of activity of a network (or a part of it) in terms of data consumption, using the prefix
length in the network address as an index. For example, the tree would partition the 192.168.1.0/24
subnet into smaller subnets - /26, /27 and so on.

Quadtrees [41] were introduced in the late 70’s to model bi-dimensional data. A Quadtree is
defined as a tree with four children per node, each child representing a recursive subdivision of the
data space. Each node has a defined capacity. As illustrated in Figure 2.2, the base case for a Quadtree
is to represent an undivided 2D plane, then four nodes are created at each step by subdiving the 2D
plane into four equal sub-parts. This recursive subdivisions continues until the capacity of the node
is reached.

While, traditionally Quadtrees are used for spatial representation of 2D objects in the X,Y plane,
their use is not limited this field. However, the authors of [44] propose a TCP packet classification
approach based on a priority-based quad-tree (PQT); this will be described in detail in Section 5, on
page 55. [45] shows how Quadtrees may be use to index Peer-to-Peer (P2P) networks.

Just as Quadtrees are used to represent bi-dimensional spaces, Octtrees [46] are used for three
dimensional spaces. This approach can be generalized to an M-dimensional space, as [47] shows.
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Figure 2.2: Quad tree representation of a pixel matrix [41]

Patricia Tries [40] played a part in the implementation of critical networking tasks, for example,
in the BSD kernel routing table [48]. A trie is the simplest version of a prefix tree, as illustrated in
Figure 2.3 (a), where only the leaves store the values (full words); it is used for string storage. It offers
faster retrieval than a classic Binary Search tree. A string look-up operation on a trie has a complexity
of O(m), where m is the length of the string, while on a Binary Search tree, it has a complexity of
O(m log n) with n the number of nodes in the Binary Search tree. Patricia tries or radix trees are
a compact version of the trie [49] data structure. Nodes with a single child are merged together,
resulting in a tree structure where every internal node has at least two child nodes and a maximum
of r, where r is a positive integer and a power of Two (the size of the prefix space), as illustrated in
Figure 2.3 (b). One of the differences that makes Patricia trees more efficient than regular tries is
their support for prefix search (by comparing chunks instead of single characters).

Limitations One of the most significant limitations of the above-mentioned data structures is their
lack of flexibility for multidimensional problems. Despite their use in network monitoring, Fenwick
trees are limited to only one dimension, meaning that each node can aggregate only one dimension
at a time. As an example, a bi-dimensional tree representing source and destination of IPv4 address
cannot be used to aggregate both dimensions simultaneously.

Quadtrees have been proven to be efficient for spatial representation; however, their limitation
concerns dynamic partitioning, because once a node size has been defined, it must remain as defined
throughout the life cycle of the data structure instance. Another key limitation is the lack of granularity
for aggregation: once a structure has been created with a previously defined aggregation parameter,
it must remain as it was created. As explored in [50], limitation particularly affects tools using prefix-
or-suffix based trees such as Aguri.

The generic issue of storing multidimensional data was investigated in the past. While data
structures cited in [41,47] are plausible model tools for K-Dimensional spaces, they are recommended
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Figure 2.3: Examples of string storage using Tries

only for use on regular partitioned spaces, with the previously mentioned data structures implying a
requirement for a pre-established order among dimensions. However, in our context, the dimensional
space division is not known in advance and instead is determined on the fly when the tree is created.

2.2 Algorithms & Methods

2.2.1 Data Mining

Knowledge Discovery in Databases (KDD) may be defined as “the subject of the emerging field of
knowledge discovery in databases” [51]; it consists in extracting information not known in advance
from a dataset. The application of KDD is crucial in large volume data analysis where manual
techniques are not feasible. For example, given a data set of users and their call records for a whole
country, KDD might be used to extract trends concerning users’ calling habits. Knowledge Discovery,
as defined by [51] is a multi-step process, entailing:

• Selection: The initial phase of the process consists in selecting a subset of the original data. For
example appling a filter to select only data containing a specific attribute.

• Pre-processing: During this step, processing takes place if any noise or missing fields are present
in the selected data.

• Transformation: After pre-processing, data is projected or reduced to match the data represen-
tation required for data mining.

• Data mining: During this step the search for patterns takes place.

• Evaluation: In this step the extracted patterns are interpreted and also may be visualized.
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Figure 2.4: An overview of the original KDD process

This process is illustrated in Figure 2.4. Data mining stage is responsible for identifying patterns
present in the original data. In recent years, some modifications to the original KDD have been
proposed, including a business-oriented variant [52] and an automated version of the process [53].

Data mining methods and algorithms are intended to predict and describe data. Prediction employs
variables to intuit new or unknown values, while description relies on human interpretation of patterns
to explain data. However, the boundary between these two sub-disciplines is sometimes loose [54].

2.2.2 Machine Learning

Among the most powerful methods and algorithms used for data mining are learning algorithms.
These are used as a tool to generalize a function over a domain for which there is no pre-existing
data. For instance, given a series of values for a stock market index, a learning algorithm can use
the existing data to estimate future values. As set out in Section 2.2.1 on page 14, there is usually
a strong link between machine learning, statistics and to data mining. Some of the most prominent
algorithms are illustrated in Figure 2.5.

In order to estimate the values of one or multiple variables, a prediction model is needed. A model
is a representation of pre-existing knowledge used to generate predictions or estimates. In essence, the
model is fed through a learning process using pre-existing data to establish a decision criterion not
fixed in advance. Some algorithms use a supervised learning model, while others require no supervision
during learning. The supervision process gives feedback to the algorithm by corresponding to a given
input. One advantage of unsupervised learning is that it can be fully automated [54, 55]. A third
type of learning is reinforcement learning, where an algorithm must learn unsupervised from the
environment or the real world. Such learning algorithms are used in intrusion detection systems,
autonomic behaviour in robots or automatic game playing against human opponents [56].
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Problems with Machine Learning

• Classification: A classifier is a function that partitions the input space into two (or sometimes
more) predefined classes. For example, a spam filter indicates whether a message should be
labelled as unwanted or not, based on previous messages of both classes. There is a large family
of classifiers, each having variable performance according to the data and the particular problem.
For example, as illustrated in Figure 2.5(a), a linear classifier can be used to predict whether a
new point belongs to “black” or “white”.

• Regression: In contrast to a classifier, where the output is binary (in the case where there are
only two classes), a regression estimates the value of a variable with a real range. A common for
regression methods is to provide support for extrapolation or interpolation. Regression methods
are also used for estimating probabilities. Hence, in practice there is no great difference between
the models used for regression and classification. For example, a regression method can be used
to calculate the probability of an email being spam, while a classifier can be used to label an
email as spam, when its probability of being unwanted exceeds a certain threshold. Regression
methods support both linear and nonlinear models to fit series of values.

• Clustering: Clustering algorithms are used to establish a grouping criteria to describe the data
from the dataset. Groups are formed according to a distance metric given by the user. For
example, given a set of points in a space, a clustering algorithm can be used to find groups that
minimize the Euclidean distance within each group, as illustrated in Figure 2.5(b). Algorithms
of this category are diverse in the method used for establishing a grouping criteria: hierarchical,
centroid, density unsupervised, are among the possibilities [57]. A common use for clustering
algorithms is in recommendation systems and behaviour prediction, for online marketing, in
particular, but also for security policy grouping [55].

• Summarization: This method groups algorithms which processes a data set to extracting metrics
in a compact format. For example, aggregating every field into standard deviation. More
complex analysis made possible by summarization includes multiple variable visualization and
interactive exploratory data reports.

• Dependency modelling: This technique finds dependencies among the variables of a model. Auto-
matic tools focus on detecting three main kinds of dependencies: Structural (those dependencies
observable in graphical plots), Quantitative (only observable by changing the scale or applying
multiplying factors) and Multivariate interdependencies associated with probabilistic models.
One of the most widely used techniques for testing dependency is the mutual information index
of two random variables [55].

Learning Methods The choice of a method is usually determined by the nature of the dataset and
the nature of the problem. For instance, given a set of data where there is a is large proportion is
already labelled, as is the case for spam detection, a method using posteriori probability as a Bayesian
classifier is a suitable choice. Well known methods for classification and regression mentioned in [55,58]
are : bayesian methods,support vector machines, decision trees, neural networks, k-nearest neighbours,
density-based clustering, threshold methods (as illustrated in Figure 2.5(c)) and non-linear methods.
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In some cases, there is no linear function able to split a set of data in two without a great loss
of specificity. This situation is illustrated in Figure 2.5(d). Several families of functions such as
polynomials, splines and sigmoid functions can be adapted for classification and regression. Use of
these functions are widely used in disciplines such as Neural Networks. [55].

Predicted Class
Class A Class B

Actual Class
Class A True Positive False Positive
Class B True Negative False Negative

Table 2.1: Summary Table Example of the classification results for Machine Learning Algorithms of
Figure 2.5

True Positive (TP) Black Dots in Class A (20) False Positive (FP) White Points in Class B (3)

True Negative (TN) White Points in Class A (16) False Negative (FN) Black Points in Class A (4)

Table 2.2: Confusion Table reporting the performance of the classification algorithm in Figure 2.5c

Evaluation of Learning Methods Learning algorithms are evaluated based on their performance
in estimating values. For example, a classification algorithm for labelling emails as “spam” or “so-
licited” can be evaluated according to how many emails it labels as spam, but also counting how many
“solicited” emails are mislabelled as “spam”. In this manner, the performance of classification and
clustering algorithms can be measured by several methods using the confusion matrix [55]. As illus-
trated in Table 2.1, which summarizes successful and unsuccessful classification cases. Based on the
success/failure ratio of classification instances summary, a similar to Table 2.2 can be generated [55].

The following metrics are used to evaluate classification and recommendation algorithms [54,55,57].

• True Positive Rate (TPR) or Sensitivity: Represents the proportion of given data that was cor-
rectly classified among all the elements of the predicted class (including those classified wrongly).

Defined formally as:
TP

TP + FN

• True Negative Rate (TNR) or Specificity: Represents the proportion of negatives identified

correctly. Defined formally as:
TN

FP + TN

• Precision or Positive Predictive Value: Represents the proportion of correctly classified data

among all the elements of the actual class. Defined formally as:
TP

TP + FP

• False Positive Rate (FPR): Represent the proportion of elements that raise a “false alarm”,

elements from the negative class incorrectly classified as positive. Formally defined as
FP

FP + TN
or 1− TNR

• Accuracy: Represents the proportion of elements that have been correctly guessed. However, it
may lead to misleading conclusions if the poroprtion of data in unbalanced. Defined formally

as:
TP + TN

TotalPopulation
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• F1 Score: Represents a metric associated to the arithmetic mean of sensitivity and precision.

Defined formally as:
2× TP

2× TP + FP + FN

• Receiver Operating Characteristic (ROC): ROC Charts show the performance of a binary clas-
sifier as a function of its detection threshold. The graphic is generated by plotting the TPR
against the FPR

The metrics cited above are usually used together to evaluate the performance of machine learning
algorithms. Additional validation can be done by splitting the dataset into training and evaluation.
This methodology is known as “Folding”. A common practice is to N Fold the data set as follows:

1. Partition the dataset into N random sets having the same number of elements.

2. Use N − 1 subsets for learning, and the remainder for evaluation.

3. Repeat alternating all the possible combinations.

4. Calculate average confusion matrix and the performance metrics.

2.3 Data Analytics Computing Paradigms

2.3.1 Big data

 What Is Big Data? Hint: You’re a Part of It Every Day 5

Characteristics of Big Data
Three characteristics define Big Data: volume, variety, and velocity (as shown 
in Figure 1-1). Together, these characteristics define what we at IBM refer to 
as “Big Data.” They have created the need for a new class of capabilities to 
augment the way things are done today to provide better line of site and 
controls over our existing knowledge domains and the ability to act on them.

The IBM Big Data platform gives you the unique opportunity to extract 
insight from an immense volume, variety, and velocity of data, in context, 
beyond what was previously possible. Let’s spend some time explicitly  
defining these terms.

Can There Be Enough? The Volume of Data
The sheer volume of data being stored today is exploding. In the year 2000, 
800,000 petabytes (PB) of data were stored in the world. Of course, a lot of the 
data that’s being created today isn’t analyzed at all and that’s another prob-
lem we’re trying to address with BigInsights. We expect this number to reach 
35 zettabytes (ZB) by 2020. Twitter alone generates more than 7 terabytes 
(TB) of data every day, Facebook 10 TB, and some enterprises generate 
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Figure 1-1 IBM characterizes Big Data by its volume, velocity, and variety—or simply, V3.
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Figure 2.6: Characterization of Big Data by IBM [59]

Big data refers to large datasets, that given their size, it is not feasible to perform computational
tasks in a reasonable time. Among the scientific community there is not an established consensus about
the definition of the term “big data” [60]. The definition can vary from sector to sector, with different
considerations regarding the size of the datasets and the computing power required for processing.
According to authors [61] big data can be defined as:

“Big data” refers to datasets whose size is beyond the ability of typical database software tools to
capture, store, manage, and analyse. This definition is intentionally subjective and incorporates a
moving definition of how big a dataset needs to be in order to be considered big data.
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The term Big data can also be characterized according to the following description [59] (as shown
in Figure 2.6):

Three characteristics define Big Data: volume, variety, and velocity

2.3.2 Distributed Computing Paradigms for Big Data

Block 1

Block 2

Block 3

Mappers Reducers

K1,V1

K2,V2
K2,V3
K3,V4

K4,V5
K1,V6

Shuffle

Line 1
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K1,func(V1,V6)
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(a) Map-Reduce with K as key and V as value

Spouts Bolts

(b) Storm

Figure 2.7: Big data computational model and the underlying network traffic as plain arrows

Distributed applications represent a large proportion of the usage of the cloud [38, 62, 63], which
offers the distributed and on-line storage and elastic computing services. That, big data applications
need to scale their computing and storage requirements on the fly. Building on recent improvements
in virtual computing, data centres can offer a virtualized infrastructure in order to fit custom require-
ments. This flexibility has been a decisive enabler for the success of big data application. As an
example, many applications of this type rely, directly or indirectly, on the MapReduce programming
model [64] whose most popular implementation is Apache Hadoop1. The MapReduce paradigm just
distributes computing tasks between mappers to produce intermediate results which are aggregated
in a second stage by the reducers. This is illustrated in Figure 2.7(a) where the mappers send partial
results (values) to specific reducers based on keys. Each reducer is in charge of applying a function to
the whole set of values corresponding to a single key. For example, it can be an aggregating function
like a summation.

Hadoop [65] is an open source MapReduce framework created by Apache Software Foundation2,
which implements distributed storage (using its own file system) and distributed computing. Hadoop’s
implementation of MapReduce is redundant, fault tolerant and scalable. It is offered as cloud hosting
services by Amazon Elastic Cloud and Microsoft Azure, additionally it has been used by corporations
as Facebook and Yahoo. The cycle of a MapReduce task in Hadoop is implemented as follows (as
shown in Figure 2.7(a)): initially, all the data is stored in the Hadoop’s file system; the data is split
and the Map phase takes place; the output of the map phase is shuffled and transferred to the reducers;
finally, the Reduce phase is executed and yields the output. An application may require a cycle of
MapReduce tasks to calculate a given functionality.

To limit the volume of data transfer in the cluster the data is local to the executed code. However,
large chunks of data are still transferred between the mappers and reducers in the shuffle phase

1hadoop.apache.org
2https://www.apache.org/



Data Analytics: Concepts & Methods 21

necessitating an efficient underlying network infrastructure. It is important to note that the shuffle
phase can start as soon as the mappers begin producing (key, value) pairs; there is no need to delay
shuffling it until mapping is complete. Since failures or bottlenecks can occur, Hadoop tasks are
constantly monitored, and if one is not performing well (e.g. it does not progress as fast as others), it
can be duplicated to another node (load balancing) at the cost of some additional data transfer.

Storm [66] is a Big data approach for low-latency data-analytics designed to operate in real time.
Real-time applications such as Twitter3 has been using Storm since 2011. It receives the input a
stream, therefore it is able to implement interactive processes, unlike Hadoop which was originally
designed for batch processing. Storm-based applications follow the topology of a directed acyclic graph
(DAG), which represent the operations and the data path as shown in Figure 2.7(b). Storm comprises
spouts, which read a data source to generate tuples to pass on to bolts, these bolts processing the tuples
producing new tuples which are processed by further bolts.

The data transfer pattern during a Strom-based application is fairly constant, since the data is
not local to the application (it arrives as a continuously as a stream). In contrast, the pattern of a
Hadoop-based application is characteristic to the specific phases of a task, in particular the shuffle
phase is the most traffic intensive.

There is also an approach to enable Storm applications and Hadoop applications to be hosted on
a single cluster4. This approach may optimize cloud-storage allowing low-latency applications and
batch applications to share the input data.

3https://www.twitter.com
4https://developer.yahoo.com/blogs/ydn/storm-hadoop-convergence-big-data-low-latency-processing-54503.html
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Chapter 3

Data Analytics: Security of
Distributed Applications

3.1 Overview

A distributed application is an ensemble of running software and/or network-interconnected hardware
which is distributed logically (and physically) to implement a given functionality. A major class of
distributed applications are those running on multiple machines interconnected through a network,
e.g. in a data centre or over the Internet. For example, DNS [67,68] is a global distributed application
which implements a name resolution service accessible from almost every device connected to the
Internet.

The design patterns underlying distributed applications can differ substantially according to the
functional and non-functional requirements of their users. For example, the design of an application
hosted the world wide web (e.g. using Representational state transfer (REST)) is radically different
from a peer-to-peer file sharing application operating over the Internet. The differences between
design patterns include: the interconnection between components, the number of components and the
separation of concerns among components.

One of the most significant advantages of using distributed applications is the avoidance of a
single point of failure, providing grater robustness and fault tolerance than non-distributed systems.
Additionally, in some cases, depending the Nature of the application, the data is produced in one
location and consumed in other locations, for example, an application for the remote monitoring of
sensors or distribution of images taken by security cameras. Only a distributed application approach
can implement the requirements of those applications. In addition, when applications are distributed,
other non-functional requirements might arise such as security concerns, and intellectual property
considerations, among others.

Given the wide variety of distributed applications, the literature lacks an unified classification.
However, the following classification groups the unrestricted access networks cases of distributed ap-
plications, which are relevant for this thesis. There is a conceptual difference between distributed
applications and parallel applications. In the first, case each component has a private processor with
its own memory, and communication among components is by message exchange. In the second case,
communication uses shared resources such as shared memory or internal bus.



24 Data Analytics: Security & Management

(a) Client-Server Architecture (b) Peer-to-Peer Architecture

Figure 3.1: The different types of architectural pattern for distributed applications

User access to distributed applications can also vary considerably, depending on the application.
For example, DNS is an open access application that operates as a service and, despite the access
control which can be enforced at network level (i.e. by IP addresses), the protocol specification does
not provide any access control [67, 68]. However, other distributed applications or services such as
telephony services over the Internet, for example Skype1, require the user to be subscribed or previously
registered. Additionally, security approaches using cryptography are usually employed for integrity
and privacy but they are not efficient against network availability attacks such as DDoS attacks.

In this thesis, distributed applications are studied in this context. Examples include DNS, location
services and crowd-sourced applications. Therefore, there is an crucial need to monitor the traffic of
such networks in order to detect anomalies.

Architecture of Distributed Applications

Distributed applications on the Internet can be categorized using the following grouping based on
their architectural design:

• Client-Server: In the Client-Server pattern, the information is held centrally on in one or more
servers. Clients connect to the central server to request a service that provides data or performs
an action. Important examples of this architecture are, the Simple Mail Transfer Protocol
(SMTP), the Hypertext Transfer Protocol (HTTP) and Representational state transfer (REST)-
based applications. For example, a typical HTTP application centralizes all the content in a
web server which clients access through a browser, as illustrated in Figure a.

• Peer-to-Peer: In this scheme, the clients act also as servers, becoming active actors in content
distribution and routing. Examples of this category are the BitTorrent protocol for file sharing
and also some communication services, for example Skype, as illustrated in Figure 3.1(b).

1http://www.skype.com
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• Hybrid patterns: Certain applications such as those based on Apache Hadoop, normally used
for big data applications, are designed with a hybrid approach. Here, there is central controller
that distributes the tasks to be executed by a cluster of slave computers. The data required
for performing the computations is distributed along the network-interconnected slave devices,
which can communicate with each other to exchange data chunks.

The security aspects of a distributed application is affect to all its layers and components. While,
security can be applied specifically to each structural layer, such as network security for low-level
communication components, a global approach to security requirements is of paramount importance.

Often demonstrated, it is possible to trigger an attack with devastating consequences by exploiting
a localized vulnerability. Consequently a key role of monitoring is to analyze the traces and traffic
of distributed applications with the aim of identifying anomalies. These anomalies in some cases are
symptom of distributed attacks, or a less serious scenario, can point out malfunctioning components.
Usage trends could also be identified by monitoring the traffic of distributed applications.

There is a need to observe the activity traces of distributed applications at a global level. Nor-
mally, this is done in by aggregating data, collecting traces from communications and studding them
in a compressed form in which only aggregated metrics and the most relevant features are retained.
However, due to the critical role of some applications, such as DNS, WWW or email, it is sometimes
necessary to take a step further and look beyond aggregated data derived solely from the communica-
tion patterns. In the following section, Internet Monitoring and Application Specific Monitoring, the
concepts behind monitoring will be explored.

To some applications availability is critical for economic reasons, as for instance, major Denial Of
Service (DOS) attacks can affect the normal functioning of payment gateways or content distribution
websites. According to an Arbor Networks report [69] there are more than 6,000 DDOS attacks each
day.

3.2 Internet Monitoring

In recent years, the number Internet connections has experienced a dramatic increase. According
to recent studies, the number of Internet connections has expanded in almost all countries% [70, 71]
between year 2000 and 2015. In Europe, North America and Oceania, more than 60% of the population
has access to a domestic Internet connection. This trend is illustrated in Figure 3.2. Although this
trend is far from reaching its peak, the usage of the Internet has changed drastically. During the
90’s the most significant application of Internet was the email; however, with the boom in social
media applications and widespread adoption of mobile computing (smartphones, tablets and handheld
devices) the variety of applications is now a rich and heterogeneous ecosystem [2,9].

This phenomenon has multiplied the variety of security threats and exploitable vulnerabilities in
this vast ecosystem of distributed applications. The complexity of attacks can also be correlated with
the increase in the variety of Internet use and applications and with the growth of reachable hosts.
A good starting point for monitoring traffic for anomalies and subsequent attacks is the ISP level.
Depending on to the data retention and privacy regulations of each country, an ISP may inspect the
traffic of its clients and store the resulting data for an extended period.
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Figure 3.2: Internet users of the world, global average (per 100 people) according to International
Telecommunication Union, World Telecommunication/ICT Development Report and database, and
World Bank estimates. [72]

Flow-based monitoring

Monitoring techniques can be applied over several scopes. For instance, is possible to analyze a packet
exchange between two hosts on the Internet or within the IP address space of an ISP. However, it is
not practical to make such a fine-grained analysis for every connection because this approach does not
scale. A solution which reduces the volume of communication packet exchange data is to summarize
the whole communication as an IP Flow.

While the reader may refer to source document [19] and IETF IPFIX standard (RFC 5101) [73]
for the full exposition of the term, the RFC 3954 [74] states:

A flow is defined as a unidirectional sequence of packets with some common properties that pass
through a network device. These collected flows are exported to an external device, the NetFlow collec-
tor. Network flows are highly granular; for example, flow records include details such as IP addresses,
packet and byte counts, timestamps, Type of Service (ToS), application ports, input and output inter-
faces

A flow is uniquely described by a combination of the seven fields instances. Given two flows, if
any of the field values differs, there are treated as different flows.

• IP source address

• IP destination address

• Source port

• Destination port

• Layer 3 protocol type

• Class of Service
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• Router or switch interface

Version 9 of the NetFlow protocol [19] add the following fields accounting:

• Flow timestamps to understand the life of a flow; timestamps are useful for calculating packets
and bytes per second

• Next hop IP addresses including BGP routing Autonomous Systems (AS)

• Subnet mask for the source and destination addresses to calculate prefixes

• TCP flags to examine TCP handshakes

Normally, flows are collected centrally, as show in in Figure 3.3. Each NetFlow enabled device
router can summarize the traffic it handles as NetFlow records and forward them to a NetFlow
collector server. NetFlow collectors can be deployed at remote locations of the cost of the bandwidth
resources required to transfer the records, which typically have a volume of 1-5% of the traffic that
they describe [75].

The use of NetFlow to monitor large networks has some limitations and shortcomings. In most
cases, NetFlow records are stored and analyzed in “off-line” mode, although there are some commercial
solutions offering “on-line” or real-time NetFlow analysis [76]. The first issue is the storage require-
ments resulting from high traffic deployments; another is the time and infrastructure required for
NetFlow processing. Normally, an ISP might have to handle 60,000 flows/second [76]. Some commer-
cial solutions such as [77–79] offer data compression to reduce the storage requirement. Compression
only reduces the scale of storage requirements: in the long run, flow records will deplete all available
resources. Another solution is to discard part of the data by selecting only the most relevant parts of
the information, this in itself is a non-trivial problem. Several authors [80, 81] propose storing only
a sample of the total number of records. However, the effectiveness of this method depends on the
sampling rate and strategy chosen by the user.

Using efficient data structures to optimize storage and access has also been explored. Giura et
al. [82] introduce NetStore method, an efficient storage infrastructure for network flow data using a
column-oriented storage that outperforms row-based techniques.

Security
Data analysis makes it feasible to detect and monitor network security threats by observing NetFlow

records. The major issue is small quantity of information embedded in a single flow record, which
makes correlation between multiple flows necessary. In recent work, authors [76, 78, 83–87] propose
various techniques including anomaly detection leveraging machine learning techniques. Using the
building blocks described in literature [78,88], the attacks and security threats that are most frequently
detected by IP intrusion detection systems can be classified into the following taxonomy:

• Denial of Service (DOS): This attack does not exploit a vulnerability, but rather a technical
limitation. It consists of compromising the availability of a given service or application. In
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Figure 3.3: Example of NetFlow Collection

practice, this attack can be implemented by causing congestion in the network, or saturating
the computing resources where a service or application is running. When carried out by a very
large number of clients (far greater from the number of legitimate users expected) simultaneously
accessing a given service, it is known a Distributed Denial of Service (DDOS). For example, the
Smurf attack [21] uses a broadcast Internet Control Message Protocol (ICMP) with a spoofed
address to trigger a very large number of ICMP responses back to a targeted victim host.

• Malware propagation (worms): This category consists of programs that have a mechanism for self
replication over the Internet. In the early 90’s a well-known technique was to infect the victims
computer and then scan the address book to send emails containing a copy of the virus [89].
Worms are sometimes used to seed botnets, normally remaining with low network activity until
fully activated remotely. On July 19, 2001, not less than 359,000 hosts with Internet connection
were infected with the Code-Red in nearly half a day [90].

• Botnets: Botnets are collections of hosts infected with a malicious application that can be
controlled remotely. This allows a single attacker to control and orchestrate thousands of hosts
simultaneously. Normally, the host do not show any evidence of being compromised until the
remote controller initiates an attack. Botnets are often responsible for DDoS attacks, spam
distribution and espionage [91]. Botnet operations usually support criminal activities such as
phishing, malware and child exploitation. One common technique to hide Botnets from detection
tools is FastFlux [92,93]; this particular attack is covered in Section 3.3 on page 34.

• Network Attacks: Network attacks [88] are not targeted to weaknesses in specific applications,
such as a buffer overflow or a privilege escalation. Instead, they exploit flaws in communication
protocols through techniques such as the Man in the middle. Some attackers will first “sniff” a
large network, looking for potential victims with open ports and running vulnerable or outdated
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software. Port scanning is considered to be attack if it is done with malicious intent; however,
intentions are intuit in advance. TCP/UDP flooding is also regarded as a network attack; they
can only be successful against software implementations of the TCP/UDP Stack. Generally,
network attacks are a forewarning of a future application and user-targeted attack.

• Spam: Unsolicited bulk email affects a broad spectrum of Internet users. Initially, unsolicited
messages were delivered only through email, but nowadays the appear in other sources such as
social media, online gaming, blogs and instant messaging. From a security perspective, the mere
distribution of advertising does not represent a threat by itself; however it may serve as a vector
for other attacks such as phishing, XSS and virus distribution. In addition, it has been found
that infected computers in botnets are responsible for Spam distribution [94].

• Application-Specific: There is broad range of application-specific attacks such as buffer overflow,
SQL injection, SIP session forging, password cracking, Transport Layer Security (TLS) exploits
and many more, which can compromise specific applications, that possibly leading to a leak of
sensitive information or a privilege escalation. Compromised systems that are victims of such
attacks are likely to eventually download or upload content, making themselves visible to a
network intrusion detection system.

– Web: XSS or Cross-Site Scripting is a technique for injecting a chunk of malicious HTML
or JavaScript code into the content delivered website, exploiting a sanitation vulnerability.
Whenever, whenever a compromised website is visited, it triggers a redirection to a malicious
site. [95]

– DNS: DNS Spoofing or DNS Cache poisoning consists in compromising the database of
names used for IP resolution, and usually targets the resolver’s cache. Victims are redirected
to malicious websites or compromised servers. A variant of this attack injects malicious
data when the name databases are copied from one DNS server to another. To mitigate and
prevent this attack, a variant of DNS called Secure DNS (DNSSEC), which incorporates a
public/private key authentication mechanism, is set out in RFC 3383 [96].

It is important to note that many of the attacks found in the wild fall into multiple categories.
For instance, an attacker might use a worm to distribute a malicious binary that serves as a seed for
a botnet. Once the botnet is successfully deployed, the attacker is ready to launch a DDoS attack.

In the recent years, flow monitoring has been an active topic in the security community, both to
monitor anomalies, and to develop detection techniques that apply attacks listed above.

Many researchers have proposed approaches to monitoring large scale networks, as well as to
tackle storage and scalability problems. The creators of Aguri [18] describe an aggregation tool with
a variable granularity over the IP space. Their most significant contribution is a tree-shaped data
structure, which aggregates TCP/IP packets spatially and temporally. By defining a custom time
unit, the IP activity can be aggregated in subnets. The aggregation technique is guaranteed to
capture at least a specified portion of network activity. In [100] uses the Aguri trees to detect attacks
such as TCP Flood and DDoS attacks. As an example, in Figure 3.4 an instance of an Aguri Tree
represents the traffic of the volume of traffic per source for the private network 192.168.0.0/17 during
a time window t.



30 Data Analytics: Security & Management

Figure 3.4: Example of an aggregated Aguri Tree representing source traffic volume of the private
network 192.168.0.0/17

Authors References (D)DOS Botnets Malware
or Spam

Network
Attacks

Application Specific
(DNS & Web)

Cho at al. [18] x x

Wagner et al. [14, 97] x x x

Francois et al. [15, 98] x

Moreira et al. [50] x x

Lee et al. [99] x

Table 3.1: Comparison of approaches for mitigating or preventing attacks according to taxonomic
classification

Using a similar approach, BadHoods [50] reduces the volume of data, performing aggregation
on a subnet basis to demonstrate that malicious hosts can be referenced locally in the IP space
(i.e. malicious nodes may be close to each other in the IP space). Fenwick trees [39] handle single
dimensions by efficiently storing prefix sums for given values represented as a table. For example, an
IP subnetwork’s hash tables can be indexed using a Fenwick tree, for rapid access to its aggregated
traffic volume. However, the authors note that is difficult to arrive at an appropriate setting for the
prefix size of the subnets to be monitored. The authors of [16] leverage the aggregation of attack flows
by measuring the entropy of flow tables, rejecting flows which appears to be intended to overflow the
cache tables of routing devices. This is done by studying the source and destination fields in flow
tables using information theory algorithms.

In addition, Machine Learning techniques have been used recently to detect of anomalies. Signif-
icant contributions have been made by the authors of [14], who described to employ Support Vector
Machines (SVM) to assess and classify IP Flows. Their classification-based approach has proven ef-
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fective against port scanning and TCP and UDP flood attacks. Sequential Pattern mining is used by
the authors of [99] to generalize attack patterns applied to an Intrusion Detection System.

Botnet detection is also a recurrent topic in the security community. A notable contribution made
by [15,98] uses the MapReduce computing paradigm to cope with large IP Flow data sets. The authors
propose a community detection approach for P2P Botnets using an adapted distributed PageRank
algorithm [101].

The approaches described in this section are summarized in Table 3.1 on page 30.

3.3 Domain Name System

Overview DNS is an essential service for the Internet [102]. Its main function is to associate domain
names with IP addresses but it can also be used to associate IP addresses with names (i.e. reverse
search). Almost every device connected to the Internet uses DNS on a daily basis.

"."
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Secondary-level Domains

Top-level Domains (TLD)
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.lu .fr .de

Generic (gTLD)

Country Code (ccTLD)
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www own

www.uni.lu

Figure 3.5: Example of domain name levels: The three essential layers

Architecture
DNS follows a strict hierarchical architecture. DNS can be tiered into three essential levels: Root

Servers; Top Level Domain (TLD) or Authoritative Servers; and Delegated Zone Servers. There are 13
root servers distributed globally [67, 68, 102]. Each root server is responsible for answering root zone
requests and also provides TLD server lists (TLDs are split into two categories: generic such as com,
org, edu, mil, gov, info and country code such as .lu, .fr, .de, .tv). The DNS service delegates the
responsibility of matching IP addresses to names to Authoritative Name Servers, which are in charge
of their assigned domains. Authoritative Servers can also delegate authority over subdomains, (i.e.
subexample.example.com). This pattern is illustrated in Figure 3.5. Each Secondary Level Domain is
managed by the entity responsible for the registration of names in that domain. Thus, the delegation
of zones contributes significantly to the DNS service robustness by decentralizing the database of
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names and avoiding a single point of failure for domain namesresolution. Formally defined by RFCs
1034-5 [67,68], a domain name is a list of labels separated by a dot “.” character. Each label is limited
to a length of 63 characters, traditionally ASCII-encoded. The number of labels is limited to 127.

DNS resolution takes place every time a user or program requires to access an Internet resource
by its domain name, for example http://www.uni.lu points to the World Wide Web home page of
the University of Luxembourg. The resolution of a DNS query can be carried out in many possible
ways; A client can resolve using its own cache stored locally (e.g. in Unix-based operative systems
located in /etc/hosts), also a DNS server can maintain its own cache of resource record information
to minimize the number of recursive request. Typically, during the resolution process extensive cache
mechanism are be deployed at each level to cut down on traffic and speed operation. Caches are
updated periodically, during the update process an attacker can aim at poisoning the cache with non
legitimate data if caution is not taken [103].

ISP DNS Server
Where is www.uni.lu ?

uni.lu Name Server

Yes

Root DNS Server

.lu TLD
Name Server

User

Try at TLD .lu?

W
here is www.uni.lu?

Try at uni.lu?

Where is www.uni.lu?

Do you have
www.uni.lu?

IP X.Y.Z.W

IP X.Y.Z.W

Figure 3.6: Example of the DNS resolution process

The following name resolution is illustrated in Figure 3.6:

1. A user wants to access a certain Internet host

2. The user’s device makes a DNS request to the recursive resolver

3. The recursive resolver queries the root DNS server requesting for the corresponding TLD server

4. The TLD returns the address of the name server where the given domain is registered

5. The recursive server queries the delegated name server for the Uniform Resource Locator (URL)
the user wanted to browse

DNS Security: Monitoring and Detection of Malicious Activity
DNS security is of paramount importance due the critic role of DNS in the Internet. Passive
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monitoring of DNS is one of the pillars of DNS monitoring; this collection mechanism described
in [27], opened a vast spectrum of research into monitoring and its applications. A passive DNS server
is placed near recursive servers and gathers the requests to and the responses from authoritative
servers. The passive DNS collection mechanism is illustrated in Figure 3.7.

Figure 3.7: Example of a Passive DNS database gathering process

Passive DNS collection works as follows:

1. A client initiates a query requesting domain name resolution.

2. The DNS server receives the client’s query and performs a recursive lookup.

3. The passive DNS sensor tracks the recursive lookup, storing the type of each answer in the
recursive loop ( Figure 3.6 illustrates the resolution step by step), as well as IP addresses and
types of records

4. The client receives its response

5. The Passive DNS stores the lookup and request in its database.

Passive DNS has provided the basis several research works such as [24,104–106].

DNS Security: Taxonomic Classification of Threats and Malicious activities
The following taxonomic classification, sets out the threats and malicious activities that are relevant

to DNS monitoring; these activities are all observable through their DNS activity.

• Botnets: Networks of infected computers can be commanded and controlled using the DNS
protocol. Among the most complex attacks in this category are FastFlux attacks, used to hide
a hive of infected computers controlled to perform DDOS attacks, Spam distribution or other
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malicious activities. FastFlux points infected computers to a TLD and changes the association
of the corresponding A records frequently (every 300 seconds or less), whith the result that that
a particular host acts as a reverse proxy for the zombies for only a short time before being
replaced by other [92,93,107,108]. This technique makes tracing the reverse proxy difficult, and
blocking or shutting them down non-effective.

• Phishing: This threat tricks a user into accessing a malicious website impersonating a legitimate
one. The malicious site attains to obtain login credentials or certificates for use in other malicious
activities such as credit card and banking fraud [109].

• Malware Distribution: Malware and Virus are distributed through websites forged or compro-
mised to infect visitors’ computers in order to take control or perform another types of attack.
This category also includes “Spyware”. Such programs generally do not harm the victim’s
computer but instead collect personal data such as websites visited, login credentials or other
sensitive information. [110]

• Application Specific: DNS cache poisoning consists in an inaccurate resolution of an Fully Qual-
ified Domain Name (FQDN) at the cache of a DNS resolver. Usually, is part of a Machine to
Machine (M2M) attack and it can alter the normal functioning of almost any application con-
nected to the Internet. However, is observable through DNS monitoring techniques [107] such
as Passive DNS.

DNS Security: Detection of attacks
In recent years researchers have made important contributions to the detection of the Fast-Flux

networks. Using FastFlux, attackers can deliver malicious content through a distributed, fault tolerant
architecture.

A Fast-Flux attack rotates the IP address assigned to a FQDN with a very short Time-To-Live
(TTL) (such as three minutes). The IP addresses rotated (using e.g. round-robin scheme) belong
to compromised hosts. The complexity can be increased by choosing infected nodes with the best
available bandwidth and by using multiple mapping to balance the load across the hosts. This scheme
is illustrated in Figure 3.8 on page 35.

A second step referred to in literature as Double Flux can be added to this attack [111]. In
practice, the infected computers in the IP address pool act as reverse proxies, allowing an attacker
to hide behind redirection. Essentially, the malicious content is no longer stored at the IP address
resolved in the first step; instead it is accessible by traffic forwarding to an ever-changing pool of
servers. The controller component of the Fast-Flux network is known as the “mothership”; it acts as
a hidden upstream node, delivering malicious content to the content in response to user request.

While botnets are operated over Internet Relay Chat (IRC) or with a command and control system,
however, the more powerful mothership concept allows FastFlux network to have more features than
a regular botnet. One mothership can serve thousands of infected machines.

Despite the high fault-tolerance of FastFlux networks there are significant techniques for detecting
them. In [92] the authors show how Fast Flux networks may be unmasked assessing revealing features
(such as IP Addresses, Name Servers and Autonomous System Numbers). Another approach to
detecting FastFlux networks is to monitor the TTL field associated to a given DNS Record. The
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Figure 3.8: Example of the FastFlux resolution process

authors of [112] also considered features such as country of origin and type of Internet connection
(cable, DSL, etc.), in addition to the TTL feature.

EXPOSURE [26] relies only on pure passive DNS analysis to detect any kind of malicious activity.
Anomalies related to malicious activity are reflected in the name resolution data extracted as features
from the Passive DNS collection. Request features are complemented with other features like the
usage of numerical characters and time-based (metrics e.g. short-lived domains and traffic volume per
unit time). The authors also considered looking for the longest meaningful words in a domain name.
In [110], the system assess the DNS data of DNS servers near the top in the top hierarchy (root and
TLDs) to determine the IP addresses of the recursive servers relaying the requests of their clients.
Some methods also take in account shared behaviours between hosts and domains [22, 104] and so
cannot be used to analyze a single domain. Failure graphs are helpful for locating suspicious activities
because they link domains and the hosts from which requests originate. However, standard passive
DNS cannot provide access to the request originator due to legal constraints steaming from privacy
considerations. Studying user trends and in particular country-based behaviours is explored in [113].

A technique to detect botnets by monitoring DNS traffic and differentiating DNS query origin is
described in [23]. The novelty of this approach is that it uses evidence on the usage of certain features
that might are absent in legitimate DNS queries and present in a botnet-originated traffic.

Another major concern for DNS monitoring is the detection of phishing and malware download
websites. In this context the use of a Passive DNS is a reactive method, leading to proactive alternatives
being proposed in recent years. Another reason for discovering phishing domain names actively is that
Passive DNS monitoring has specific limitations. Only websites visited by users of the ISP where the
Passive DNS is installed are monitored. Thus, the data from Passive DNS Databases is only a sample
of global DNS activity.

Another monitoring technique not limited by passive monitoring’s restrictions is the semantic
exploration of domain names. A variety of strategies for exploring the DNS name space have been
proposed. Notable among these is brute-forcing. Is important to note that the same IP address may
host more than one domain name, meaning that brute forcing of the IPv4 address space is not a priori
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a solution for domain name brute-forcing. In any case, in the IPv6 address space, brute-forcing is not
an option due the enormous grow of the address.

The authors of [24, 114, 115] take a proactive approach for detecting malicious websites. Using a
semantic engine, they build a semantic tree to probe the name space. Semantic exploration leads to
the discovery of malicious websites, which may then be categorized.

Heuristic-based models provide a significant alternative to approaches based on semantics. These
approaches rely on classification algorithms leveraged by machine learning such as SVM, Bayes and
logic regression. The features used to classify FQDN and websites can be extracted from either the
host information (WHOIS, AS Number, IP Address) or from the website contents and attributes
including its URL. The authors of [116] rely on the occurrences of certain terms in the composition
of the domain name. In contrast, [117, 118] use features such as protocol, host name, TLD, domain
length, the length of the URL. Table 3.2 summarizes the approaches to detect or mitigate DNS-based
attacks.

Authors References Botnets
(FastFlux)

Phishing
& Malware
(Passive)

Phishing
& Malware
(Active)

Application
Specific

Holz et al. [92] x

Antonakakis et al. [119] x

Perdisci et al. [112] x

Zdrnja et al. [120] x

Choi et al. [23] x x

Blum et al. [117,118] x x

Prakash et al. [121] x x

Marchal et al. [24, 114,
115]

x x

Table 3.2: Comparison for mitigating or preventing DNS and network-based attacks by taxonomic
classification

Last but not least, as an alternative to methods based on heuristics, several authors have worked on
the active blacklisting of malicious websites. In [122] blacklists are compiled by monitoring the activity
of newly-registered domain names, particularly the activity immediately following the registration.
However, this approach cannot be widely applied because domain zone information is not always
available and requires prior knowledge. Alternatively [121] describes PhishNet, a tool that uses existing
phishing URL as a basis for generating and validating new ones. If the attempt is successful, then the
entry goes into a dynamically confectioned blacklist.

As a final remark, on the DNS monitoring approaches cited focus on single properties of malicious
sites, or aspects of malicious behaviour. While they perform with certain degree of accuracy and
effectiveness when analyzing DNS data traces to detect malicious activity, there is scope for additional
contributions in the area of multidimensional analysis.
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3.4 Crowd-sourced Applications: Position Reporting Services

In recent years with the advances in mobile technologies and the proliferation of devices equipped with
a GPS receiver, applications based on position reporting and urban routing have become available for
widespread use. There is a wide range of applications2 offering urban and road navigation services
based on both Wi-Fi and GPS for positioning. These applications also use the positions reported
by their users to estimate road conditions and make traffic predictions. Additionally, there is wide
variety of aggregation service applications based on personal position. These applications work by
gathering multiples sources of information and combining them to provide recommendations based
on distinguishing features, such as geographical location. These include, applications to find specific
shops, free parking places or which promote encounters with other users within a given distance of the
user’s position. Position reporting services are an essential foundation for urban navigation, routing
applications and aggregated service applications. Hence, it is crucial important to monitor position
reporting services for sings of abuse if databases of reported positions are compiled collectively without
enforcing strict access control. This section addresses methods for detecting malfunctioning devices
and malicious users.

Internet

Users/Vehicles

Positions

Service provider

Forged 
Positions Faked vehicles 

and congestion

Figure 3.9: Example of a forged position attack on a VANET

Most of the applications offering navigation and social services are free to use. Therefore, with-
out strong user authentication, crucial information like vehicle identity or position can essentially
be forged to create multiple realistic, but false, driven paths or even single positions as shown in
Figure 3.9. In [35], the authors describe the environment and conditions required to perpetuate a
position-spoofing attack. Forged positions and Sybil vehicles are highlighted as major vulnerabilities
for VANETs according to a risk study of roadside attackers in [123], however, the authors suggest
no countermeasures verifying locations, there are several approaches which rely on the infrastructure
to check the agreement between the claimed location and the actual existence of the vehicle at this
location. For example, the distance between the claimed position and a fixed probing station can be
estimated using challenge-response time [124,125]. The deployment of roadside units is also a prereq-
uisite in [126,127]. For these approaches to be effective, the service provider must be in control of the
infrastructure. However, in many applications for urban navigation and aggregation services based

2such as Google Maps (http://maps.google.com), OpenStreetNav, TomTom3, among others
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on geographical position, this might not be the case. Therefore, the effectiveness of the approaches
described in [126–128] is predicated on specific implementations of VANETs.

Authors References Plausibility Routing Trust manage-
ment

Application
Specific

Leinmuller et al. [123] x x x x

Chen et al. [127] x x

Xiao et al. [126] x x

Song et al. [129] x x

Hsiao et al. [130] x x

Bissmeyer et al. [131] x x x

Zhang et al. [132] x x x

Table 3.3: Comparison of approaches for mitigating or preventing distributed application attack on
VANETs by taxonomic classification

Vehicles may be equipped with additional sensors to check the locations of other vehicles in their
immediate neighbourhood [34], but this requires a vehicle modification, in contrast to the recent
trend, which is to use network devices like smart phones. Properly authenticating users has also been
proposed [130, 133–135], but this assumes a defined and trusted set of users, which is crowd-sourced
applications, although this potentially allow the attacker to create a large number of fake vehicles.
Another possible scenario assumes few misbehaving vehicles among population authenticated using a
key management infrastructure [33,136].

Some approaches [33,130,133–136] propose mechanisms based on properties like position and speed
for authenticating vehicles before retrieving data. However, this is not practical in VANETs where
users are not requested to identify themselves.

In recent years there has been much research into anomaly in VANETs based on metrics for the
measurement of radio signals (e.g. signal strength, and beaconing rate) [123, 129, 132, 137, 138]. The
underlying concept is to build a physical model for a plausibility check, of physical properties of
moving vehicles (i.e. position, speed, acceleration). The authors in [139] described how position may
be estimated based on radio signal strength. Based on radio signal for the positioning service, [137]
sets out the following model: a node (a vehicle) performs a self-check of received information from
other peers to validate its consistency. The authors show how the number of vehicles in a given space
may be calculated using radio range, map topology, and speed between two consecutive beacons.

In [128] this approach is extended by enabling cooperation between nodes. A similar approach
using an ellipse-based is taken in [129]. Self sensing methodologies have been also discussed in [138]. A
final approach uses the time-of-flight of signals between cooperative nodes to complement positioning
services, as presented [132].

As well as being useful for anomalies detection, vehicle positioning is also relevant to network
routing. The different approaches for routing within a VANET are discussed in [140]. Traditionally,
nodes in a network have a fix geographic location; however in a VANET, a node’s position can be
dynamic. The advantages and disadvantages of each of the available routing protocols for VANETs
are compared in [141], which classifies routing protocols into the following categories:
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1. Topology-based routing protocols

2. Position-based routing protocols

3. Cluster-based routing protocols

4. Geocast-based routing protocols

5. Broadcast-based routing protocols

Positioning is crucial for cases 2, 3 and 4, since the routing protocols need to know the vehicles
positions to establish links between nodes [140, 141]. Hence, an attack using spoofed positions might
compromise the decisions of the routing algorithms. For instance, an attacker could fake its position,
so being selected as an intermediary able to perform a Man in the middle attack.

Another domain of particular importance is the trust management of the disseminating node in
VANETs. The issues are discussed in [142]. As in the field of positioning services, radio frequency
measurements like signal strength and timing differences provide the major metrics used to derive
conclusions. A whistle-blowing approach is suggested in [131]. The nodes report detected misbehaviour
to a centralized service, which aggregates them in order to implement countermeasures. This allow the
impact of a Sybil attack to be mitigated, since the misbehaving nodes can be prohibited permanently
or temporarily from disseminating their positions. In this case, location spoofing detection relies on
end-user devices while the approach which we set out in the following chapter shifts location spoofing
detection to service provider. In this way, resources are saved on the client side and a grater variety
of client devices can be supported: standard devices, like smart phones or tablets, can be connected
over the Internet, and do not require the ability to intercept the communications of other devices in
vehicles around them.

Is important to remark that most of the actual approaches for plausibility checking and trust man-
agement involve microscopic analysis of VANETs position-based applications. This implies knowing
the position and identity of each moving node within the VANET. One of the drawbacks of using a
microscopic model is its scalability. Hence, for a very large number of peers or nodes a macroscopic
approach is a valid alternative. This allows nodes to be studied in groups and metrics aggregated.

3.5 Conclusion

This section reviewed a relevant part of the state of the art approaches for the analysis of distributed
applications on the Internet. A common thread to the three fields; IP Networks, DNS and position-
based applications is that usually week access control is enforced to join these networks or applications.
Under this conditions malicious users may take advantage of the loose access restrictions, to carry out
various types of attacks. Despite the great efforts proposed, the variety of security threats continues
growing, as introduced by authors in [4]. This is a major concern from the security point of view,
therefore a strong monitoring technique with data analytics for anomaly detection is needed to cope
with the variety and complexity of attacks. Computing complex data analytics involves correlating
big volumes of data from multiple sources, which is usually undertaken in large computing premises
or data centres.
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In the next chapter, we focus on the management of networks, specially in data-centres to host
distributed applications. The performance of this applications becomes a critical factor when from
their output, sensitive information can be computed for security or safety.



Chapter 4

Data Analytics: Management of
Distributed Applications

4.1 Overview

While technological improvements were mainly highlighted by a new computing design and approaches,
like Hadoop, network optimizations are primordial to guarantee high performances. This section
reviews existing approaches to configure network and schedule flows in such a context. In the following
sub sections, the various optimization methods grouped according to their intrinsic features and their
contributions will be detailed. In particular, recent network technologies such as SDN empowered the
programmability of switching devices. Consequently, more complex network scheduling algorithms
can be afforded to leverage the performances of Map-Reduce jobs. That is why this section focuses
on SDN-based solutions but also introduces common networking approaches which could be applied
as well as virtualization techniques. The latter are strongly coupled with the network design. For
example, end-hosts in a datacentre are virtual machines which can be assigned to different tasks and
so would lead to various traffic types, which can be better handled if the network is adaptive and so
reconfigurable easily.

4.2 Topology design

Datacentres networks usually follow a scheme called Hierarchical Network Model [143,144] with three
defined layers:

• Core layer: This layer is the backbone of the network where high-end switches and fibers are
deployed. In this layer only L2 forwarding takes place without any packet manipulation. The
equipment for this layer is the more expensive among the hierarchical network model.

• Aggregation or distribution layer: in this layer takes place most of the L3 routing.

• Access layer: This layer provides connectivity to the end nodes and so are located at the top of
the racks. They performs the last step of L3 packet routing and packet manipulation. Normally,
those are the cheapest devices in the hierarchical network model.
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Figure 4.1: Example of a Hierarchical Network Model: Multi-rooted Network Topology

Thanks to this hierarchical model, a low latency is achieved for traffic between two nodes in the
same rack. This explains why approaches like Hadoop leverage rack awareness to ensure fast replication
of data by selecting nodes in the same rack for copying data (but also others out of the rack in order
to guarantee data availability under a rack failure). In addition, this type of configuration supports a
large number of ports at the access layer.

A specific instance of the hierarchical model is the fat tree proposed in [63] and illustrated in
Figure 4.1 which enables fault-tolerance by ensuring redundant paths in a deterministic manner.

The fat tree or Clos topology was introduced more than 25 years ago [145] to reduce the cost on
telephony switched networks. The topology layout is organized as k-ary trees, where in every branch
of the tree there are k switches, grouped in pods. Actually, a pod consists in (k/2)2 end-hosts and k/2
switches. At the edge level, switches must have at least k ports connected as follow: half of the ports
are assigned to end nodes and the other half is connected to the upper aggregation layer of switches.
In total, the topology supports (k2/2) k -port switches for connecting host nodes.

DCell [146] is a recursively interconnected architecture proposed by Microsoft. Compared to a
Fat Tree Topology, DCell is a fully interconnected graph in order to be largely fault tolerant even
under several link failures. In fact, high level DCell nodes are recursively connected to low level
ones, implemented with mini switches to scale out as showed In Figure 4.2). Experimental results
have showed that with a 20 nodes network can outperform by two times a large data-centrer used
for Map-Reduce. As a downside, DCell requires a full degree of connectivity, making it in practice
costly to maintain and deploy. To enhance network connectivity between servers, CamCube [147]
is a torus topology where each server is interconnected to other 6 servers and all communications
are going through them, without any switch for internal communication. Finally, recent propositions
like [148] promote a high flexibility by alleviating the need for a well-defined fixed graph structure, as
the fat-trees are, and so by introducing some randomness in the topology.
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Figure 4.2: A DCell topology for 5 Cells of level 0, each containing 4 servers (src: [146])

4.3 Conventional Networking

4.3.1 Routing

Datacentre network topologies like fat trees imply a large number of links leading to redundant paths.
Therefore, routing algorithms can take benefit of that to achieve a higher bandwidth. As an illustrative
example in Figure 4.3(a), the shortest path is used to route the traffic between the two tasks of the
job J1. Unfortunately, it goes through a congested link. Hence, a redundant path can be used (Figure
4.3(b)) and even multiple of them conjointly (Figure 4.3(a)). Although these approaches have been
proposed for routing in general, they are also used in datacentres to improve the performance of the
Big Data applications. This is the reason why this section covers some propositions about how to use
these principles in case of Big Data. However, the general issues are (1) to predict the traffic patterns
and (2) to be able to rapidly change the configuration of the routing when the traffic suddenly changes,
which is the case in a cloud infrastructure.

Nowadays, a major representative of such an approach is the Equal Cost Multi Path (ECMP)
algorithm [149]. ECMP leverages the opportunity to route flows among multiple paths. Unlike
traditional routing algorithms like Open Shortest Path First (OSPF) which are considering a single
best path, ECMP consider all the best multi-paths according to any metric (as for example the number
of hop) among which a single one is selected for a given flow through a load balancer. The number of
multiple paths is dependent on the router implementation but usually bounded to 16. Hence, this may
yield to a lower performance than expected for large datacentres. In fact, the amount of entries in the
routing tables grows at exponential rate, increasing the latency of the routing algorithm. Commercial
solutions promoting multi-path routing include FabricPath by Cisco Systems BCube [143], VL2 and
Oracle Sun data-centre InfiniBand.

In addition to promote the fat tree topology usage for datacentres, the authors of [63] proposed a
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(a) Shortest path routing (b) High throughput rout-
ing

(c) Mutlipath routing

Figure 4.3: Routing decisions fro one job with two tasks. The width of a link represents its load.

dedicated routing algorithm based on an approach called Two-Level Routing Tables, where the routing
tables are split into two hierarchical tables linked on the prefix length of the network address. A two
layer table approach aims at leveraging the routing algorithm speed for establishing a route. This
is possible because the authors introduced a private addressing system respecting a pre-established
pattern like 8.pod.switch.host assuming a class A network. The first table index entries use a left
handed prefix length (eg, 8.1.2.0/24, 8.1.1.0/24, etc). The entries of the first table are linked to a
smaller secondary table indexed by a right handed suffix. (eg, 0.0.0.1/4, 0.0.0.4/4). For example, to
find the route to the address 8.8.8.8, the algorithm will lookup in the first table, find the corresponding
entry for the first part of the network address 8.8.8.0/24, then jumps to the secondary table and find
the remaining of the route. Since that each switch of the aggregation layer in a fat tree topology
has always a k/2 degree of connectivity to the access layer, two-Level routing tables are bounded in
the worst case to k/2 entries for suffixes and prefixes. Moreover, flows can be actually classified by
duration and size. Then, the proposed algorithm in [63] minimizes the overlap between the paths of
voluminous flows. To achieve that, a central scheduler is in charge of keeping track of used links in
the network in order to assign a new flow to a non-used path. From this perspective, it fails into
the category of centralized networking (see section 4.4.1) where a switch acts as the controller by
informing other ones about the link to use to forward specific packets of a flow.

The flow establishment is also leveraged by the previously described routing lookup. In this
approach, instead of routing traffic at a packet level, streams of data are grouped into flows and
routed as a whole entity. One of the benefits of this approach is a faster route computation as it is
reduced in a similar fashion as in circuit switching legacy technology. For example, if a host node
requires to transfer a large data file as a part of a Big Data job, the whole stream will follow a
pre-established route, reducing the latency of establishing a different route for each packet of the
stream.

In order to enhance routing and network speed, hardware plays a core role. Therefore, there have
been propositions to replace standard hardware. In particular, the authors in [150] argue for an hybrid
optical-electric switch as optical links achieve higher throughput but has not well adapted to bursty
traffic. Combining both technologies thus helps in obtaining good trade-off between accuracy and cost.
Moreover, the technological availability of programmable circuits also lead to an approach for imple-
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menting switching devices, specially in the aggregation and core layer using ASIC and FPGA devices.
Authors of [151] propose an approach for implementing switching cards with a PCI-E interface.

A recent proposal [152] addresses dynamic routing by replacing the traditional DHCP address
configuration for an another automated configuration address system. In this approach, the network
is automatically blue printed as a graph. Then, by interpreting a set of labels assigned to each
computing node, the system tries to find an isomorphism that minimize the traffic at the aggregation
layer. From the preliminary results, this approach has yielded promising results. However, it actually
runs only over BCube or DCell topologies because they have a fully connected topology.

4.3.2 Flow Scheduling

In order to provide a network service that fits to the service needs running over the network, network
operators may perform traffic management. This consists in classifying the traffic according to the
intrinsic characteristics of each service or application using the network directly. For example, using
the IPv4 Type-of-Service field, it is already possible to define policies to give special treatments to Big
Data applications. Similarly, the IPv6 Traffic Class includes the possibility of attaching information
specific to a given application to the packet stream. Another types of support for enabling network
infrastructure to perform management of the traffic is proposed in RFCs [153] and [154]. The first
(DiffServ) proposes a protocol for differentiating services and its network behaviour. The latter, RSVP
(Resource Reservation protocol), specifies also a protocol, that enables application to reserve network
resources in advance of initiating a data transfer.

As highlighted in introduction, data analytics includes both batch processing and streaming ana-
lytics which are different by nature. In particular, batch processing are more prone to use the network
heavily during certain phases while streaming uses the network constantly but still with various rates.
Therefore, the apparition of a batch job (like Hadoop) may suddenly impact the network and so the
other underlying applications. The authors of [155] researched on scheduling flows in a FIFO-LM
(Limited Multiplexing) fashion. Therefore, flows are scheduled in the order of arrival with a certain
degree of freedom since multiplexing may occur over a limited number of flows which thus allows small
flows to be processed along with a large flow. Such a policy is then applied to switches using queues
which are associated to application identifiers assuming the latter have been set by a central point of
the network. Such an approach allows the co-execution of batch and streaming Big Data applications.

Limitations It is important to mention that, in common networking, only aggregation and core layer
switches have the capability of scheduling flows. This is a limitation given by the hardware. To be
able to exploit the full potential of flow scheduling, an additional network hardware is required. This
is often implemented in a central controller, that takes the delegation of the computing algorithms.
Thus, with a central controller, core and aggregation switches can be replaced by simple switches.
One of the main advantages of using this approach is the reduced cost of switching and forwarding
(L2) devices. Another disadvantage of common networking is that the network configuration remains
static and so impacts on the maintenance cost of the infrastructure because any modification of the
topology must be wired manually by the network administrators. Virtualized networks cope with the
lack of flexibility of common networks, and became popular over the last years thanks to the emerging
virtualization technologies and computing power to support them. Traditionally, data centre owners
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offer their clients not only virtual machines (know as Virtual Private Servers (Virtual Private Servers
(VPS))) but also the capability of virtualizing the network infrastructure. This allows VPS users
to create customized topologies. Virtual LANs (VLAN) have been popular in the past decades for
splitting large organizational networks into smaller ones. This approach fails to segregate application
traffic because inside a VLAN all the traffic is bounded to the same routing system. A possible solution
to this issue is to use a dynamic topology, adapting the paths to the specific needs of each application.
In such a scope, the next Section 4.4.1 covers emerging methods to configure the network dynamically
using a centralized approach.

4.4 Centralized Networking

As dedicated to centralized solutions for networking, this section covers both formal approaches as
well as practical implementations. Solutions highlighted in the following paragraphs combine three
strong concepts: computational patterns present in most of Big Data services, data centres network
architectural improvements such as hierarchical topologies (e.g. Fat-Trees) and dynamic routing algo-
rithms leveraged by the adoption of technologies such as SDN. These three forces combined together
allow to adapt the network configuration from the core to the aggregation infrastructure layer to suit
better Big Data application needs.

Routing and scheduling decisions rely on the traffic matrix. Such a matrix can be observed in
real-time at the network level but can also predicted in order to plan next actions. The traffic matrix
usually reflects the flow’s size, duration and frequency for each pair of nodes and eventually application
instances or even between multiple tasks of a single job. Alternatively, Big Data applications can in-
teract with a central controller to expose their current usage and needs. These two types of approaches
are differentiated in Figures 4.4(a) and 4.4(b). In every cases, there is a Big Data application controller
or manager (like the jobtracker or the resource manager in Hadoop) which is in charge of triggering
and monitoring the tasks. In Figure 4.4(a), a monitoring service is gathering traffic statistics. In
this figure, it gets it from forwarding devices. Then, this traffic monitor sends the information to the
network controller itself which is in charge of taking routing decisions. The monitoring can even be
done by OpenFlow [191] [156] (see next section) as an OpenFlow controller can request such statistics
from OpenFlow switches. In such a case, both the monitor and controller are merged in a single entity.
In a second case (Figure 4.4(b)), the Big Data controller sends itself information about the running
applications to the network controller which can thus take proper configuration actions. Finally, it
is also possible to imagine an hybrid approach (Figure 4.4(c)) where both types of information are
gathered. It might be useful if the level of details from the Big Data controller is too coarse-grained.

As a brief summary, the different methods covered in the following paragraphs are, actually, similar
to conventional networking (select better paths, minimizing congestion, etc.) but they rely on a higher
and more dynamic coupling between the network configuration and applications (or the corresponding
traffic).

4.4.1 Software Defined Networks

In the recent years, SDN technology has emerged. A new layer of abstraction is introduced for
managing networks. Under this approach, switches are just forwarding devices while most of the
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(a) Traffic-aware networking (b) Application-aware networking

(c) Hybrid awareness

Figure 4.4: The different type of *-aware networking (Small circles represent a task of a Big Data
process
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Figure 4.6: Software Defined Network with
Open Flow rules

computing (e.g. routing decisions) is performed in a central controller. As a main improvement,
forwarding devices are centrally controlled and the cost of administration is reduced. Also, the cost
of forwarding devices can drop drastically.

As shown in Figure 4.5, when decoupling and abstracting the network control, two planes are
usually distinguished:

• Control Plane: The concept of the control plane is to have a dedicated communication channel
for exchanging signalization messages among forwarding and management devices. Most of the
available products for SDN expose a so called North Bound API for applications to subscribe to
real time statistics and service usage. Control plane messages have either as source or destination
the central network controller.

• Data Plane: In this layer, also refereed as the Forwarding Plane, the traffic sent is the traffic to
be routed or forwarded by the infrastructure. The traffic in this plane is accounted and measured
and, also forwarding algorithms take place according to rules installed.

Additionally, the application layer is composed of custom made applications. The latter subscribe
to the North Bound API of the SDN controller to enable extra functionality not provided by the
hardware manufacturer. For example, these applications might be security oriented [157] or for routing
purposes [158].

OpenFlow [159] is adopted as the most popular choice as the control protocol. OpenFlow acts
as the communication channel between switches and controllers (e.g. NOX, Floodlight, POX, etc).
An OpenFlow rule consists of two parts: a match field, that filters packet headers, and instructions,
indicating what actions to take with the matched packets.

Upon arrival of a packet to a switch, the switch forwards this packet to a controller if it cannot find
a rule in its cache. This event is known as PacketIn. When a PacketIn is sent to the controller, the
highest priority rule that matches the packet header will indicate an action. If no match is produced,
then a default action can be used. After looking up for an action to take, the controller forwards
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the action to be taken to the switch. This event is known as FlowMod. Finally, the packet is sent
(PacketOut). The figure 4.6, illustrate an example where a routing action is taken upon arrival a
packet with destination X and source Y. Additionally, a controller can provision switches with flow
tables entries in advance. Hence, a PacketIn message is not required to emit an event FlowMod. The
rules also have soft (last seen packet) and hard (maximum absolute value) timeouts, after expiration
of these time-outs the rule is removed.

While originally proposed for campus but not large networks, the modification proposed by authors
of [160] consists in reducing the overhead induced by OpenFlow to enable a more efficient flow man-
agement for Big Data networking through the extensive use of wild cards rules within the switches to
avoid to invoke the OpenFlow controller for each new flow. However, the extensive use of wild cards on
OpenFlow might cause loss of granularity in the statistics derived from the counters on the controller
and evidently on routing and scheduling decisions. As mentioned, [160], DevoFlow aims to devolve
control by cloning rules whenever a flow is created using wildcards. The cloned rule, will replace the
wild cards fields using the clone’s specific information. Additionally, DevoFlow enriches OpenFlow
rules by including local routing actions (without relying on the OpenFlow controller), such as, multi
path routing. This last feature allows to rapidly reconfigure the route for a given flow leveraging the
flow scheduling.

4.4.2 Traffic-aware networking

The Topology Switching approach [161] proposes a novel approach in network management by exposing
several adaptive logical topologies on top of a single physical one. This approach targets the allocation
every individual flow to a specific path to satisfy an optimization objective, as for example network
capacity, trying to use as most as possible the available bandwidth. Considering a fat-tree Topology as
showed in Figure 4.1, individual flows from Map-Reduce bisection traffic are considered as a separate
routing task. Thus, each task runs an instance of a particular routing system. For each routing
system, a pre-allocated bandwidth is established in the physical topology to ensure a certain total
bandwidth. Topology Switching is implemented in a central topology server, responsible for allocating
resources but also for subtracting unused resources and collecting metrics. The two metrics used in
this approach are the bisection bandwidth and the all-to-all transfer. The bisection is used to measure
the topology ability to handle concurrent transfers at the physical layer. The all-to-all metric is used
to evaluate how the logical topologies react under a worst case scenario. Based on both metrics, the
Topology Switching approach runs an adaptive algorithm for readjusting the logical configurations for
the virtual networks. Topology Switching offers an alternative for “one-size fit all” data centre design,
providing a good trade off between performance and isolation.

The Hedera [162] scheduler assigns the flows to non-conflicting paths similarly to [63], especially by
aiming at not allocating more than one flow for routes that cannot satisfy the network requirements in
terms of bandwidth. Hedera works by collecting flow information from the aggregation layer switches,
then computing non-conflicting paths, and re-programming the aggregation layer to accommodate
the network topology in order to fulfill the Map-Reduce jobs requirements. This approach yields an
optimization at the aggregation layer in the specific case of the bisection. Unlike a local approach,
bottlenecks can be identified based on a global overview of path states and traffic requirements.
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4.5 Application-aware networking

The methods described in this section improve the network performance by rescheduling flows ac-
cording to an application-level point of view. At the layer of transport, flows are not distinguishable
from each other but groups of computing nodes in Big Data Application usually expose an application
semantic. For example, a Hadoop-based task can be composed of several shuffle phases and each of
them corresponds to a specific set of flows. Furthermore, a Big Data application can evaluate its
current stage. For instance, the mapper status (completion time) is computed from the proportion
of the data, from the source, which has been read and such a completion time can approximate the
remaining data to transfer. Therefore, a mapper having read 50% of its data source and having already
sent 1GB of data should approximatively sent again 1GB. This is an approximation and it cannot be
guaranteed that the mapper will send as much information for the remaining data it has to read. For
example, a usual example where a mapper sends a < key, value > pair for each read line can also
apply some filtering and so may emit nothing based on the line content.

Therefore, some methods build a semantic model reflecting the Big Data application needs, which
used for these approaches associates the network traffic to be managed with the characteristics and
the current state of the application it originates from. This model might differ among the different
proposed works buts aims at assessing the state of the Big Data applications and their related flows.

In this context, the authors of [163] propose to optimize network performances by arranging QoS
policies according to users requests. Host nodes running Big Data applications can exchange messages
within this complementary framework called PANE to submit QoS policies similarly to what can be
done with conventional networks (Section 4.3.2). Naturally, this approach will lead into traffic over
subscription under high traffic demand circumstances. To solve this issue, users have also to provide
conflict resolution rules for each QoS rule they submit into the system. Also, this approach can
be employed for implementing security policies such as denial of service prevention by setting a top
hierarchy policy triggered at the SDN controller.

OFScheduler [164] is a scheduler which assesses the network traffic while executing Map-Reduce
jobs and then load-balance the traffic among the links and so aims at decreasing the finishing time of
jobs based on the estimated demand matrix of Map-Reduce jobs. OFScheduler assumes that Map-
Reduce flows can be marked (for example by Hadoop itself) to distinguish those related to the shuffle
and those related to the load balancing (when a task is duplicated). The scheduling first searches for
heavy loaded links and then selects flows which should be offloaded by giving the preference to (1)
load-balancing flows and (2) larger flows in order to limit the impact on performances (cost of the
offloading due to OpenFlow rule installation). The reason for (1) is that it corresponds to a duplicated
task whose the original may finish somewhere else in the data centre unlike the others. The rational
behind (2) is to minimize the global cost of offloading and so by moving a big flows, there are more
chance to remedy the problem of the link load without re-scheduling additional ones.

Assuming optical links, authors of [11] describes an application-aware SDN controller that config-
ures optical switches in real-time based on the traffic needs and patterns of Big Data applications. By
enabling the Hadoop Job Scheduler to interact with the SDN controller they propose an aggregation
methodology to optimize the use of optical links by leveraging intermediate nodes in the aggregation.
In the most simple case, when a single aggregate has to gather data through N switches whereas the
number of optical links is lower, it has to go through multiple rounds (optical switching) in order to
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complete the job. The other switches only using a single connection to the aggregating switch can
also be connected together to act as intermediate nodes to form a spanning tree rooted in the aggre-
gator and so to avoid the multiple rounds. Such a principle (M-to-1) is extended towards general case
with M-to-N jobs or when multiple single aggregation overlaps (e.g., different sources overlap their
aggregators). This thus requires more complex topologies such as torus. Other approaches addressed
in this chapter such as DCell or CamCube also make use of high redundancy to build similar shaped
topologies. Building a torus topology is more complicated than a tree because the search space for
suitable neighbours is larger, a greedy heuristic is used to support as much as possible the traffic de-
mand. The routing algorithm within the torus topology is meant to exploit all possible optical paths.
Authors also propose to assign weights to the optical links for load-balancing purposes on the torus
topology.

Although the previous approaches rely on the current status of an application, FlowComb [165]
is a proactive and reactive method for flow scheduling. It allows the Hadoop controller to specify
requirements but also promotes the use of a statistic-based method that predicts based on the network
load of previous runs. Hence, this approach lies between application-aware, because it interacts with
the application to monitor it, and traffic-aware, because it aims at predicting future flows similarly to
a traffic matrix. Based on that, any routing or scheduling approaches described in section 4.4.2 could
be applied, especially Hedera [162] which has been chosen by the authors. The central decision engine
gathers all the job pertinent data and creates a set of Open Flow rules to be installed temporarily and
erased after job completion. However, the main drawback of the proactive method using estimation
is that circa 30% of jobs are detected after they start, and 56% before they finish.

Coflow [166] proposes a full reactive method, that only after receiving the Hadoop Job Scheduler
network requirements is able to yield results. Its implementation exposes an API for declaring flows
at application level. This API can be used for example from the Hadoop Job Scheduler as it is
mentioned by the authors to express on demand bandwidth requirements at the different phases of a
Map-Reduce job. Actually, CoFlow introduced an abstraction layer to model all dependencies between
flows in order to schedule an entire application, i.e. a set of flows, and not only a single flow.

In contrast with the methods described previously, the authors [167] propose an approach for
routing on a packet basis by splitting the flows in chunks similarly to TCP. These chunks are distributed
to the available ports of a switch using different strategies: random, round robin and counter based.
However, the main limitation of this approach is the necessity to reorder the chunks.

4.6 Conclusion

In this chapter we have discussed the most relevant approaches behind the recent technological im-
provements data centre computing, design and architecture for coping with large data sets. This set
of technologies and methodologies for analyzing large data volumes has been recently referred as big
data analytics. Data centre networks have recently included techniques for reconfigure the topology
and schedule flows to support the needs of the big data applications. However, the traditional net-
works’ limitations might impact on the performance of big data applications. With the emergence of
SDN in recent years, approaches have been proposed for improving network management and enhanc-
ing network performance, as for example, using OpenFlow to speed up the traffic forwarding [159].
Specific approaches for big data applications in SDN-based networks have been also proposed, as for



52 Data Analytics: Management of Distributed Applications

instance enabling the network controllers to consider the state of MapReduce jobs in the forwarding
rules [63,162].

Simultaneously, traffic-aware approaches have been proposed by several authors to trigger rapid
changes in virtual network topologies to fit the requirements of big data applications [162]. The
approaches of this type are not free from limitations, since not every data centre is able to move
onwards a fully virtualized network scheme without making significant changes in the infrastructure.
Therefore, this scenario sets out the need of approaches focusing the application requirements to take
routing and management decisions at the control level. Application-awareness approaches are of a
paramount of importance, since they are able to focus on real application specific needs to perform
network optimizations and leverage routing.



Part II

Contributions





Chapter 5

Methods for Data Analytics

5.1 Multidimensional Aggregation Monitoring

Problem Statement: Network monitoring is a critical tool for network management and security,
in particular at large scale networks and at ISPs. The volume of data to analyze has experienced an
exceptional growth in recent years, as suggested by [1, 12]. While, aggregated monitoring approaches
have been proven to be effective [14, 16, 18, 19], existing approaches have their limitations when they
consider multiple sources of information such as network traffic, user activity, network events from
Intrusion Detection System. All of these produce a large volume of data which needs to be stored,
analyzed and correlated. Scalability may become an issue while combining individual approaches.
Therefore, an efficient aggregation approach combining the multiple sources into multidimensional
data is a good solution in this scenario.

Figure 5.1: Schematic use of MAM

We targeted the design and implementation of a novel aggregation technique which is able to
handle multiple kinds of dimension, e.g. features like traffic capture or host locations, without giving
any preference a priori to any particular feature for ordering the aggregation process among dimensions.
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Aggregation supports dynamic space granularity, which can be determined on the fly depending on
the events which it is desired to monitor. In order to keep the computational overhead low, an efficient
data structure is needed.

Our approach can be potentially used in many fields to leverage monitoring, such as at ISPs,

Computer Emergency Response Team (CERT) organizations, or other forensic units for security inci-
dents, as illustrated in in Figure 5.1. Also, since our approach allows any hierarchical type of data for
aggregation, telephone operators for example could use multidimensional aggregation to consolidate
call records and speeding up post processing analysis.

5.1.1 Overview

The general goal of Multidimensional Aggregation Monitoring (MAM) is to to aggregate multidimen-
sional data spatially and temporally. To do this, MAM combines multidimensional unstructured data
into a single tree structure associated with a time frame or window, the temporal dimension. Even if
the data does not contain a temporal feature, MAM can still be used to create a single tree for the
whole dataset. Figure 5.2 gives an overview of the procedure and its main components.

Our approach uses an aggregation tool which accepts network monitoring traffic data from hetero-
geneous sources and very large collections. For example, MAM can simultaneously consider the source
and destination IP addresses and the ports of a network traffic capture, in particular from NetFlow
records.

An important attribute of our approach is its capability to aggregate data, such as traffic load, over
multiple dimensions without having to specify the granularity. Considering the NetFlow records case,
this means that the data will not necessarily be aggregated using a fixed partitioning into subnetworks.
With our tool, the space of a dimension is not split a priori, for example, by using a fixed-size subnets.
The aggregation is thus able to keep track of information related to IP subnets having different sizes.
This is illustrated in Figure 5.3, which exposes two possible partitions of a bidimensional IP address
space. Figure 5.3(a) shows that the data’s original distribution does not fit a regular partitioning
(source, destination), preventing it from being partitioned in a simple way. In contrast, Figure 5.3(b)
shows a dynamic partitioning of the space,where the data is grouped by a space partitioning built to
fit the data’s original pattern. The aggregation process is guided by the events which it is desired to
monitor, in this case reaching a quantifiable visibility (5% of the traffic load in bytes or packets for
instance).

Another important attribute relevant to our approach is to aggregate data without giving any
preference to any particular view in advance. Considering the example of NetFlow records, this means
that the data will not necessarily be aggregated first on source IP addresses and then on ports. This
decision is usually made by human experts using their own skills. Some of will want to monitor the
usage per service first (ports) and then per IP addresses, while others will prefer to have statistics per
IP addresses first and then the details for each service. In the first case, statistics about global traffic
of an IP address are not directly available and need to be reconstructed by iterating over all ports.

Aggregation can be used for post-analysis or for real time monitoring. In the first scenario, memory
and computational cost can be rise considerably in order to reach a high level of precision. However in
the case of real time monitoring execution time is a real constraint. Thus, two optimization strategies
are introduced in Section 5.1.4 for real time computing, leading to a particular approach to monitoring.
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Figure 5.2: MAM overview

(a) Regular IP Address space partitioning (b) Dynamic IP Address space partitioning

Figure 5.3: IP address space partitioning examples

Scalability can be achieved by optimizing the usage of storage data structures. MAM leverages a tree
based structure to store data in a hierarchical representation of bounded size. Different strategies are
described to satisfy this constraint.

MAM allows the user to provide a data model describing both the type of data and how to parse
and aggregate. Some data models are already provided with the tool, for example for the IP address,
services and geographical coordinates. As illustrated in Figure 5.2, the first step is to parse the input
data. For each data item (usually a line in a file), MAM creates a corresponding node. Which is
inserted into the current tree based on the hierarchy of each dimension (the following sections provide
details). These steps are repeated until the tree reaches a preset size, at which point it is compressed
by aggregating nodes in the tree from the leaves to the root in order to keep only relevant information.
Compression takes place either when the size of the tree is too great (online aggregation), reducing
resource consumption, or at the end of a time window (simple aggregation).

Following end-of-window compression, the tree is returned as a result to the user and MAM will
continue the process by starting to parse the next time window.
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5.1.2 Data Aggregation Structures

Aggregation reduce the granularity of data by grouping data instances according to some criterion,
e.g. sharing similar properties. For instance, aggregation over the IP address space could consider
the shared prefix as the property, leading to monitoring of network traffic by subnet. The parameter
defining the size of the subnet, equivalent to the prefix length, is quite arbitrary like /24, /28, etc.
Changing this parameter leads to different observations according the context [50]. This is illustrated
in Figure 5.3 with a naive example where a regular partition of IP address space, in Figure 5.3(a), may
not lead to identify subgroups of hosts, unlike the dynamic partitioning of Figure 5.3(b). For example,
to monitor the hosts listed in Traffic Flow Table 1, monitoring /16 networks will give a general
overview of the network activity which is probably too coarse; /24 seems more useful. However,
using /24 or greater may be too fine-grained at the Internet level. Moreover, since traffic is probably
not well-balanced between machines and subnets, some of them should be more carefully monitored,
equivalent to use a greater prefix length, while others may be monitored with a coarse-grained view
(smaller prefix length).

To counter this problem, aggregation can be guided by the nature of the events being monitored.
For example, the traffic load can be aggregated in order to observe phenomena reaching a certain
proportion of the entire traffic load or of Intrusion Detection System alerts.

Traffic Flow Table 1 Traffic flow example of a network nodes within 192.168.0.0/16 (Web and Mail
services)

PORT PROTO KB TIME SOURCE DEST
80 TCP 1491 2010-02-24 02:20:15 192.168.6.2 92.250.221.82
110 TCP 988 2010-02-24 02:20:19 192.168.8.2 92.250.223.87
443 TCP 902 2010-02-24 02:20:27 192.168.11.2 92.250.220.82
110 TCP 1513 2010-02-24 02:20:29 192.168.112.1 92.250.222.81
80 TCP 1205 2010-02-24 02:20:29 192.168.11.1 92.250.220.82
80 TCP 1491 2010-02-24 02:20:31 192.168.1.2 92.250.220.83
110 TCP 1467 2010-02-24 02:20:39 192.168.12.2 92.250.221.81
80 TCP 927 2010-02-24 02:20:39 192.168.12.2 92.250.220.82
443 TCP 1294 2010-02-24 02:20:39 192.168.11.1 92.250.223.82
110 TCP 940 2010-02-24 02:20:49 192.168.21.2 92.250.221.81
80 TCP 917 2010-02-24 02:20:49 192.168.23.1 92.250.220.82
443 TCP 460 2010-02-24 02:20:59 192.168.26.2 92.250.220.85

As set out in Section 2.1 on page 11, aggregation on a single dimension can be carried out using
a tree structure, as proposed in [14, 18]. Spatial representation of a bi-dimensional space can be
accomplished using a quad tree structure [41] where each internal node has exactly four children.
Normally the space is recursively portioned into four quadrants or regions. A similar structure, an
oct-tree, can be used to partition a three dimensional space. A general structure supporting M
dimensions is a multidimensional tree (k-d Tree [47]) for k-dimensional space-partitioning. However,
in our context, the dimensional space division is not known in advance and instead worked out on the
fly as the tree is created.
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Figure 5.4: Single dimension tree (source IP addresses) based on Traffic Flow Table 1, activity volume:
number of bytes, α = 10%

Figure 5.5: Single dimension tree (application) based on Traffic Flow Table 3, activity volume: number
of bytes, α = 5%
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We consider features where it is possible to derive underlying hierarchical relationships covering
all potential data instances represented as nodes in a tree. Assuming two different data nodes, one
is qualified as more specific or there is no relationship between them. Formally, the hierarchical
relationship between two nodes ni, nj represents whether there is a path from the root of the tree to
nj that passes through ni. In that case, ni is more general than nj . As for example, in Figure 5.5 the
hierarchical relationship is given by the taxonomic classification of applications in Figure 5.6 on page
61.

Single Dimension

Spatial and temporal aggregation on a single dimension for traffic flows was proposed in Aguri [18]
and Danak [14]. Temporal aggregation splits the dataset into fixed size time windows on which spatial
aggregation is applied. We extend the notion of spatial aggregation to multiple and generic dimensions
(features).

IP address aggregation is performed by extracting the traffic volume (bytes or packets) for the
source or destination addresses. Aggregation is based on a tree structure following the common
subnet hierarchy where each node represents an IP subnet or a single address. The total volume of
traffic transmitted is decomposed into particular volumes expressed as absolute percentage values.
Nodes with a proportion of traffic lower than a chosen threshold, α, are aggregated into their parents.
An example of this from Traffic Flow Table 1 is given in Figure 5.4. In this small example, only nodes
with more than 10% of the total traffic are kept. As shown, the root concentrates the global traffic of
a /17 network. Each node contains the following information:

1. Dimension name and value (e.g. {app:ROOT}, {src ip:0.0.0.0/0})

2. Percentage of aggregated activity (activity volume defined as vol) for the current node

3. Cumulated percentage of activity of the node and its subtree defined as acc vol

Intuitively, a single-dimension tree represent a subset of the entire hierarchy (all the possible values)
of a given feature, as illustrated in Figure 5.4.

Formally, an IP address single dimension tree of N nodes is [14]:

• A set of N nodes, where T = {n0 . . . nN} and ni =< prefixi, prefix lengthi, voli >. IP subnets
are decomposed using CIDR format [168]. prefixi and prefix lengthi are the prefix value and
size of node ni while voli is the entire traffic load associated to the IP addresses included in the
subnet ni.

• A parent-child relationship where a child : T → P(T ) returns a set of child nodes for a given
node.

Single dimension aggregation can also be done for many other attributes such as protocol messages,
port numbers, and spatial coordinates. Aggregation for TCP port numbers, using data from Traffic
Flow Table 3, is set out in Figure 5.5. In this case, every node represents an application family or a
specific application, defined by the taxonomic classification of Figure 5.6. We consider a dimension as
a feature for which the values may be represented in a hierarchical tree with final values at the leaf
nodes and group values as internal nodes.

This definition can be extended to any generic dimension as follows:
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Figure 5.6: Example Application Taxonomy by TCP Port Numbers

• A set of N nodes, where T = {n0 . . . nN} and ni = < fi, voli >, where fi is an associative
array modeling a dimension from a given traffic flow. For example, in the case of application
port fi = {app : valuei} where app is a label and valuei is a string modelling a path in
the taxonomic tree described in Figure 5.6. As mentioned above, this can be a full path to a
leaf or an intermediate branch describing a subfamily of applications. For IP addresses, fi is
{prefix : prefixi , prefix length : prefix lengthi}.

• A parent-child relationship where a child : T → P(T ) returns a set of child nodes for a given
node.

Single dimension aggregation has proven to be an effective technique for practical network analysis
methods and anomalous network traffic detection [14, 18]. However, information from network traffic
includes more than one dimension. Furthermore, the anomalies can be present in a combination of
dimensions.

Port scanning consider the applications/service features, while IP scanning monitors IP addresses.
Assuming a botnet carrying out port scanning from and to multiple IP addresses, all these features
(source and destination IP addresses, destination ports) must be monitored to observe the attack
activity globally. Consequently, predicting the single dimension or the combination of dimensions to
monitor is hard.

Traffic Flow Table 2, on page 63, illustrates a simple example of several hosts performing a DDoS
against a web server. IP-address-based aggregation (illustrated in Figure 5.7) on page 62 cannot
clearly detect this but aggregation using TCP port is more successful. Another scenario is, Traffic
Flow Table 3 on page 64. In this case, a reduced group of hosts is targeting several applications;
this cannot be caught by aggregation on TCP ports. However, the multidimensional tree depicted in
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Figure 5.7: Single dimension tree (Source IP addresses) from Traffic Flow Table2

Figure 5.8 on page 63 is able to detect this behaviour. This highlights the fact that 20% of the HTTP
traffic is due to web session initiations in the 192.168.0.0/20 subnet.

Multiple Dimensions

To extend the previous approach, we present an aggregation technique for monitoring network using
multiple dimensions simultaneously (e.g : IP Address, Fully Qualified Domain Name FQDN, TCP
ports, GPS Coordinates, etc). Multidimensional aggregation is performed by using a user-defined
threshold α and an interval of η seconds to define the size of a time window. For each dimension,
the data is assembled into a tree composed of nodes, including multiple dimensions, where only those
having acc vol > α are kept.

In Figure 5.8, source and destination IP addresses and application from Traffic Flow Table 3 are
aggregated.

Assuming a data instance that can be decomposed in many dimensions, a formal definition of a
multidimensional tree of M dimensions and N nodes is as follows:

• A set of M associative arrays that model the M dimensions

• A set of N nodes, where T = {n0 . . . nN} and ni = < {fi1 . . . fim}, voli >, fij ∈ {fi1 . . . fim} is
an associative array modelling the j − th dimension according to the previous definition

Thus, we can define fi1 = {prefix : prefixi , prefix length : prefix lengthi} for IP addresses.
For the application/service level, fi3 = {app : valuei} where app is a fixed label and valuei is
the a string modelling a path in the taxonomic tree described in Figure 5.6.

• A parent-child relationship where a child : T → P(T ) returns a set of child nodes for a given
node.

5.1.3 Aggregation Algorithms

To construct a single-dimensional tree, a leaf node is built after extracting relevant information (di-
mensions and values) to be inserted at the right place (or updating the node in the tree if it already
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Figure 5.8: Multiple dimension aggregation based on Traffic Flow Table 3, α = 10%

Traffic Flow Table 2 Traffic Flow Table showing an example of a possible DDoS against a web
server.

PORT PROTO KB TIME SOURCE DEST
80 TCP 895 2010-02-24 02:20:59 192.168.1.17 92.250.220.82
80 TCP 47 2010-02-24 02:20:59 192.168.1.25 92.250.220.82
80 TCP 570 2010-02-24 02:20:59 192.168.1.45 92.250.220.82
80 TCP 952 2010-02-24 02:20:59 192.168.1.44 92.250.220.82
80 TCP 408 2010-02-24 02:20:59 192.168.1.61 92.250.220.82
80 TCP 609 2010-02-24 02:20:59 192.168.1.9 92.250.220.82
80 TCP 690 2010-02-24 02:20:59 192.168.1.15 92.250.220.82
80 TCP 88 2010-02-24 02:20:59 192.168.1.29 92.250.220.82
80 TCP 997 2010-02-24 02:20:59 192.168.1.27 92.250.220.82
80 TCP 650 2010-02-24 02:20:59 192.168.1.9 92.250.220.82
80 TCP 298 2010-02-24 02:20:59 192.168.1.46 92.250.220.82
80 TCP 502 2010-02-24 02:20:59 192.168.1.52 92.250.220.82
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Traffic Flow Table 3 Traffic Flow Table example for a destination address being targeted by reduced
group of hosts.

PORT PROTO KB TIME SOURCE DEST
25 TCP 4660 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
443 TCP 2417 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
443 TCP 1945 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
21 TCP 4206 2010-02-24 02:20:59 192.168.1.1 92.250.220.82
80 TCP 4336 2010-02-24 02:20:59 192.168.1.3 92.250.220.82
110 TCP 2110 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
23 TCP 4257 2010-02-24 02:20:59 192.168.1.1 92.250.220.82
25 TCP 2005 2010-02-24 02:20:59 192.168.1.3 92.250.220.82
993 TCP 2434 2010-02-24 02:20:59 192.168.1.1 92.250.220.82
443 TCP 3270 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
993 TCP 4775 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
22 TCP 690 2010-02-24 02:20:59 192.168.1.3 92.250.220.82

exists). During then node insertion it may be necessary to create intermediate nodes, such as nodes
representing intermediate IP subnets. If the node already exists, voli is updated accordingly, otherwise
voli is initialized. To produce an outline subsequently, the tree is traversed post-order to aggregate
nodes and to compute cumulative percentages (acc vol). If the activity volume, voli, of a node ni is
less than the aggregation threshold, α, it is aggregated to its parent node, nj . Thus, the node ni is
removed, voli is added to volj and all child nodes of ni are attached to nj . This allows the deletion of
intermediate nodes which unlike their child nodes do not represent large activity volumes. Otherwise
(voli < α), the node is kept as it is.

During the post-order traversal, activity volumes, voli are computed as percentages. In fact, they
are stored as absolute values during the tree construction since the total activity volume is not known.

At the end, thanks a global counter, VOL =
∑
i

voli, each voli is updated accordingly, i.e. voli/V OL.

Directions

Due to their hierarchical relationships, we suppose there is a strict order relation between values of the
same dimension. To construct the multidimensional prefix tree structure, it is necessary to develop
the concept of directions. Intuitively directions correspond to finding the correct path in the tree to
attach a node or to navigate within the tree in order to access a given node.

Some dimensions are more likely to find or define a natural direction. For example, IP addresses
have two directions, 0 or 1, modelling the next bit value. Taking the example of the subnet X.Y.Z.0/24,
all IP addresses which the 25th bit is 1 (like X.Y.Z.128/25) will be placed on the left branch while
every others , where this bit is 0, will be placed on the right branch.

Other dimensions such as UDP/TCP ports could simply be compared as integers but this is unlikely
to be relevant, as services associated with a given category like mail do not necessarily use consecutive
blocks of ports. In this case, a hierarchical classification, as shown in Figure 5.6, is required. In



Methods for Data Analytics 65

our tool, the direction function may be customized by the user. This function is used to label the
parent-child relationship in the multidimensional tree. To do this, we consider the longest common
prefix which represents the most specific common ancestor of two nodes

Assuming ni = < {fi1 . . . fim}, voli > and nj = < {fj1 . . . fjm}, volj >, the longest common prefix
is defined as:

lcp(ni, nj) =< {flcp1
. . . flcpm

} (5.1)

where flcpi
is the most specific common part for the ith dimension, which corresponds to the longest

sequence of directions. Therefore, for IP address, this is a sequence of bits which is similar to the
standard definition.

Considering TM a M dimensional tree, defined in Section 5.1.2, a multi-dimensional direction is
defined as a tuple of M directions (one for each dimension ):

∀ni ∈ TM , nj ∈ TM , nk ∈ TM , nj ∈ child(ni), nk ∈ child(ni)

nk 6= nj ⇐⇒ direction(ni, nk) 6= direction(nj , nk) ⇐⇒ lcp(ni, nk) 6= lcp(nj , nk)
(5.2)

This corresponds to having only one child node per unique tuple of directions. Conceptually, a
direction can be any set of tuples that allow child nodes to be distinguished. In practice, this usually
matches some concrete value like the bit values for IP address or the application subclass for TCP
ports. Directions using a 3-tuple (application, source and destination IP addresses) are illustrated in
Figure 5.8 on page 63. The direction SAME was introduced to allow a child node to be different from
its parent with a respect to a subset of dimension values while others remain the same. Preliminary
tests show that this limits the number of internal nodes. However, at least one direction of the tuple
must not be SAME.

Multidimensional Tree Construction

Intuitively, the tree is constructed by creating a root and then adding new nodes or updating existing
nodes. Based on the directions, a pre-order traversal is made looking for a match to insert the node ni
(line 4 in Algorithm 1). Assuming that traversal stops at the node nj , there are three different cases:

• if there is a perfect match (dimension values are the same), the activity volume is updated
volj ← volj + voli. This is done in line 5 of the Algorithm 1.

• if ni is a child nj , a new child node is created by computing the directions tuple from nj to ni
(there is not yet a node at this position, otherwise the traversal would have continued). This is
done in line of the Algorithm 1. This situation is illustrated in Figure 5.9.

• otherwise, the traversal has followed the direction but ends at a node that is too specific. This
happens, to avoid a scalability issue, because not all possible internal nodes are created: for
instance X.Y.Z.0/24 may be a direct child of X.Y.0.0/16 on the IP address dimension. In
this case, a new branching point (internal node) is created from lcp(ni, nj). Thus ni and
nj are the child nodes and two directions are then computed, direction(ni, lcp(ni, nj)) and
direction(nj , lcp(ni, nj)). This is done at Line 15 of Algorithm 1.
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Algorithm 1 Update Tree insert node(tree, ni)

1: if tree is empty then
2: tree.set root(ni)
3: else
4: ni ← tree.search matching node(ni)
5: if nj matches all directions then
6: update nj volume {Perfect Match}
7: else
8: if nj is ni child then
9: {Partial Match}

10: for dim ∈ ni do
11: add ni to nj childs
12: end for
13: update tree set branching point parent of nj and ni
14: else
15: branch← empty node {New Branch case}
16: for dim ∈ nj do
17: branch[dim]← Directiondim(nj [dim], ni[dim])
18: end for
19: update tree set branching point parent of nj and ni
20: end if
21: end if
22: end if

Therefore, by construction, every node represents a subspace of its parent according to all dimen-
sions.

Once the tree construction is finished at the end of the time window, aggregation takes place.
Aggregation is done by traversing the tree in post order to find nodes having an activity volume
voli ≤ α. These nodes are aggregated into their parents. While doing this, directions are discarded,
since they are only needed during construction and because they may not satisfy equation (5.2) due
to the deletion of internal nodes. Therefore, the k-dimensional space is not divided a priori and the
space is not split at regular intervals. This allows an irregular granularity over the dimensions for
efficient monitoring of the targeted events.

5.1.4 Online Tree Aggregation Strategies

Since memory consumption grows with the size of input data, and hence the size of the tree, we have
developed strategies for maintaining the tree structure within a predefined size. Once the number of
nodes is higher than MAX NODES, one of the following strategies is triggered:

• Root aggregation: this strategy performs simple aggregation (as described in the previous sec-
tion) from the root
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Figure 5.9: Example of insertion algorithm upon a partial match

• Least Recently Used (LRU): in this case the least recently used nodes are candidates for aggre-
gation

These methods are described as online because they perform pre-aggregation before the end of the
time window in order to save memory resources.

Root Aggregation

The root aggregation algorithm is shown in Algorithm 2. Every time the tree grows over the user
defined threshold, the aggregation mechanism explained in Section 5.1.3 is triggered. While this is the
simplest solution, it is not an efficient mechanism since all nodes below the threshold α are aggregated,
even though the objective is just to reduce the number of nodes to MAX NODES. This can be seen in
line 5 of Algorithm 2. The cost of the aggregation mechanism triggered in line 6 is O(n× log(n)) [18].
Its worst case complexity is O(n2 × log(n)) where n is the number of nodes. This is because worst
case scenario represents triggering aggregation after every inserted node (For Loop in line 2).

Algorithm 2 Build Tree T (dimensions, data)

1: tree← empty tree
2: for d ∈ data do
3: node← build node(d)
4: tree.insert tree(node)
5: if tree.size > MAX NODES then
6: tree.aggregate()
7: end if
8: end for
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LRU Aggregation

Algorithm 3 consists of triggering aggregation on the least recently used node only. The main idea
behind this mechanism is to label every node with a timestamped tag that indicates the last time it
was used. This is done in Algorithm 4 and used in line 4 of Algorithm 3 to update the timestamps
of nodes which have been traversed when a node is inserted or updated (i.e.its parent and ancestor
nodes).

Aggregation is performed only for the least recently used node. To achieve this, a min-max heap
is employed [169] using the timestamped tag present in each node as a key. Algorithm 4 implements
this mechanism extending Algorithm 1 functionality to label and maintain the heap structure used
for retrieve the LRU node. This corresponds to line 14 of Algorithm 4. This operation is based on
updating a min max heap, and has a complexity of O(log2(n)) [169]. Assuming n, the number of
nodes, the average size of a tree branch is log(n). If every node in the branch has to be updated, an
entry on the heap must be modified. Hence the subcost of that operation is O(log2(n)) and in the
worst case O(n× log(n)) (a single branch of n nodes). To calculate this complexity, the Else branch
in line 5 of Algorithm 4 is executed. During the last for-cycle (line 14), the list update nodes will
contain log(n) elements that corresponding to the path explored to place node in the tree.

After updating the last time used timestamp, the max heap is updated with a complexity of
O(log2(n)). Hence the total complexity is O(log2(n) + log(n)) = O(log2(n).

Algorithm 3 Build Tree LRU T (dimensions, data)

1: tree← empty tree
2: for d ∈ data do
3: node← build node(d)
4: tree.update lru tree(node)
5: if tree.size > MAX NODES then
6: candidate← tree.lru heap.top()

Get the top element, candidate to be aggregated
7: candidate.aggregate()
8: end if
9: end for

In the else statement (line 5 of Algorithm 5 ), the timestamp is updated such that the leaf node
(inserted or updated) has a timestamp older than its ancestors (reverse path is constructed during
the insertion itself without any additional cost). This ensures that a leaf node is always retrieved
and aggregated in line 7 of Algorithm 3. Otherwise, such an element could be an internal node and
aggregation might lead to the removal of entire subtrees.

5.1.5 Summary

In this section we have introduced a multidimensional aggregation which is able to handle the multiple
dimensions without requiring any predefined order. Moreover, the aggregation is guided by the nature
of the events to being monitored. This leads to the space being split into partition of different sizes.
This allows, distributed coordinated behaviours to be observed, unlike traditional approaches that rely
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Algorithm 4 Update Tree update lru tree(tree, node)

1: if tree is empty then
2: node.ltu← now
3: update nodes← [node]
4: tree.set root(node)
5: else
6: path← tree.insert node(node)
7: for n in reverse(path) do
8: n.ltu← now
9: now ← now + 1

10: update nodes.append(n)
11: end for
12: end if
13: for n in update nodes do
14: tree.ltu heap.update(n)
15: end for

on a regular space division, which may not necessarily reflect the current distribution of the network
activity. Based on formal definitions, this section highlights the data structure and algorithms used to
perform aggregation using multiple dimensions related to network administration such as IP addresses,
position-based applications, and DNS.

Since memory consumption grows with the size of input data, and hence the size of the tree, the
root aggregation process cannot be applied in real time. Another limitation is its temporal complexity
of O(n2 × log(n)) where n is the number of nodes. Therefore, we have introduced an improvement
for this method based on an LRU cache algorithm to keep only recently updated nodes. This method
keeps the data structure bounded to a certain number of nodes, limiting the memory consumption of
the process, which has a temporal complexity of O(log2(n), where n is the total number of nodes.

In chapter 6 we explain in detail the proposed metric used in this thesis for data analytics using
MAM as an enabler to enhance anomaly detection. In chapter 7 to validate this approach, we conduct
experiments for detecting anomalies in three main scenarios: IP networks, DNS, and position-based
applications. Since online aggregation involves sequentially reading data, a change in data ordering
will produce different results. Inserting the same data instance at the end of the window will not
have the same effect as at the beginning, since the tree may already have been aggregated many times
before. The impact of the data ordering is evaluated in section 7.2.5.

5.2 Flow Management: Software Defined Networks

The scale and complexity of current compute and communication infrastructure is making them harder
to manage for the network operators. The difficulty of managing communication infrastructure is a
result of their size and the heterogeneous services they offer, as suggested in [7, 9]. One of the major
challenges for the network operators is to meet the Quality of Service (QoS) requirements from a wide
range of applications running on a shared infrastructure. Recent QoS-related functionality to add and



70 Methods for Data Analytics

improve network design and management principals have gone through several iterations. A traditional
way of meeting QoS requirements is by attributing classes to traffic using the IPv4 Type-of-Service
(TOS) field or the IPv6 Traffic Class (TC) field, and then perform traffic engineering based on these
classes. However ,such an approach lack flexibility, for example the need for dedicated routers, no single
interface to update all router configurations, etc. and of limited use, as claimed in [170]. This lack
of flexibility is one of the driving forces behind advanced protocols like GMPLS [171], but these have
never been widely deployed despite a decade of development and standardization efforts. Additionally,
as shown by the authors in [164], an application can have a poor performance in heterogeneous clusters,
unless concurrent bandwidth usage is controlled and its consumption limited.

In recent times, Software Defined Networking offers the prospect of easing the network management
tasks by decoupling the network control plane from the data forwarding plane. This separation of plane
allows faster deployment and easier management of network functions [170,172]. OpenFlow [159], the
de facto standard for SDN, has made the management of QoS related services easier by providing
primitives to ensure flow-level QoS requirements. We leverage the features of SDN to propose an
application-level flow management framework.

Problem Statement: How should application-based policies be applied to leverage network
awareness in a SDN cloud-based environment?

SDN Service SDN Service

Figure 5.10: Example of the proposed network configuration

5.2.1 Overview

Our goal is to enable fine-grained traffic management policies based on application and the user
requirements. Although current solutions aggregate traffic within static classes of service (VoIP,
business data, etc.) with different priorities, our framework allows network-wide policy enforcement on
users and applications. This is of a great importance in the current context of cloud data centres, which
are slowly supplanting traditional single facilities. Nowadays, due to the advances in virtualization
technologies, it is common to define the data centres as virtual computing centers with a high degree
of flexibility. These cloud infrastructure, allow the execution of a user application at many locations
and have the ability to migrate them to increase resource utilization and resilience. Hence, there is
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a great need for flexibility in order to be able to monitor flows from these applications under such
dynamic conditions [164]. This leads us to focus mainly on cloud infrastructure, although whereas our
framework can be applied to any SDN-enabled environment.

We propose a framework to define and apply networking configuration rules while taking application-
specific requirements into account. We present a technique that senses applications (such as HTTP
browsers, MapReduce jobs, messaging clients, etc.) and implements a mechanism for translating
application requirements to flow-based rules. We propose a SDN-based solution, which is able to
aggregate flows associated with users and applications in near real time. While our framework can
be used to enforce QoS policies, it can also be used to support any other type of policy, for example
blocking a user. From a general point of view, our work enables the network to associate flows with
the originating application’s context. What follows, we use to phrase “application level” to refer to
both users and applications on a host.

A first use case for our approach, is to apply QoS policies to a certain group of applications to
grant them a higher priority in the network. For example, prioritizing the tasks of a MapReduce-based
application such as Hadoop, can help to reduce the time taken to assemble relevant data. In addition,
our approach supports QoS policies for optimizing the usage of the network, which can be done by
dedicating bandwidth to certain applications. This can be achieved by through a prior interaction
between the application and the network controller, in which the application is able to state its network
requirements. Finally, our approach can be used for access policies, as illustrated in Figure 5.11, where
a particular application is blocked by the network due to its access rights .

5.2.2 Architecture

Our proposed network configuration uses a specific underlying network architecture, which in the
context of an SDN based network. Thie allow us to assume that an SDN Controller will be available
with a northbound API. As shown in Figure 5.10, we have introduced one additional component to the
typical SDN architecture, the Augmented Controller (AC). The typical SDN architecture is: at least
one Open Flow compatible switch, an SDN network controller, and several end hosts. The Augmented
Controller is directly connected to the SDN Network Controller and servers as an additional logic unit.
Its main function is to act as an external processing unit in order to aggregate the flows per application,
and provides an interface for implementing policies and rules at the application level.

The proposed network configuration has in two main components: an SDN Service running on
each host and an Augmented Controller, which is a logical extension to an SDN controller. In the
following, we describe the components in detail:

• SDN Service The SDN Service (SDNS) is a background process running at each end host. The
SDNS has both northbound and southbound API. The north bound API allows the applications
running on that host to communicate parameters to the AC. For example, a MapReduce job
can tell the AC about different parameters of its shuffle phase; or a FTP transfer can tell
the AC about the size of the file being transferred. In addition to providing the northbound
API, the SDNS collects system wide statistics and allows system administrators to specify user
and application level access and QoS policies. As a part of translating the policies, the SDNS
associates the users and processes in the host with the network flow signatures originating from
that host. The SDNS’s southbound API communicates these associations with the Augmented
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Augmented

Controller

App1
{
    src ip =A.B.C.D, src port = XX; 
    src ip =A.B.C.D, src port = YY 
}
App2
{
    src ip = A.B.C.D, src port = ZZ

}

Host 1

SDN Service

Applications

App 1

Policies / Rules
Block App 1

1

App 2

2

3

SDN

Controller

    src ip =A.B.C.D, src port = XX => BLOCK 
    src ip =A.B.C.D, src port = YY => BLOCK

4

Switch

5
    src ip =A.B.C.D, src port = XX => BLOCK 
    src ip =A.B.C.D, src port = YY => BLOCK

APP 2 Flow

APP 1 Flows

BLOCKED

6

Figure 5.11: Example of Augmented Controller and SDN Service usage to enforce a blocking policy
on a given application’sfFlows

Controller. The SDNS also communicates the different administrator set policies and application
level requests to the AC as well. For example, a system administrator could tell the SDNS to
limit the bandwidth usage of a group of users during some specific hours. In order to translate
this policy, the SDNS identifies the processes run by the targeted user group and also identifies
the flows originated from those processes. When any user from that group initiates a network
transfer, e.g., an FTP file transfer, the SDNS exchanges parameters with the AC to ensure
proper provisioning of resources in the network to enforce the administrator defined policies.

We have developed an in house protocol for the communication between the SDNS and AC.
This protocol is based on HTTP and allows SDNS and AC to talk to each other in a RESTful
manner.

• Augmented Controller (AC) The Augmented Controller is a logical extension to the SDN
controller. The AC is informed by the SDNSs of different hosts about the association between
users, processes and network flow signatures, and abount administrator/application specified
policies. In order to handle the application specific requests, the AC can have custom application
handler to handle request concerning a particular type of application. For example, the AC
can have a batch processing job application that tries to optimize the network for data flow
between the different stages of the batch jobs. The AC provisions appropriate resources in
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the network to enforce these policies. In order to provision these resources, the AC translates
the flow associations and the requests made by administrators/applications to OpenFlow rules
with corresponding actions and time-outs. The SDN controller then installs these rules in the
concerned OpenFlow switches to enforce the policies in the network.

5.2.3 Example

In this section, we illustrate the operation of AC and SDNS with an example. In Figure 5.11, Host
1 is running two applications, App 1 and App 2. A system administrator, admin, issues a command
to the SDNS running in Host 1 to block all traffic from App 1 between midnight and noon. The
SDNS will associate the network flow signatures originating at Host 1 with the processes running in
Host 1. The SDNS will also tell the AC about this association and also about the policy that all
traffic from App 1 should be blocked between midnight and noon. The AC uses this information
to generate corresponding OpenFlow rules along with appropriate timeouts. On the request of the
AC, the SDN controller installs these rules in the appropriate OpenFlow switch(es) to enforce the
administrator-specified policy.

5.2.4 Operational Modes

The SDNS provides an internal interface that can be used by any application or by the OS to send
and exchange custom messages with the Augmented Controller. The SDNS also collects system wide
statistics and periodically sends them to the AC. This means that, even in the absence of application
specific requirements, the AC gets an overview of the network usage requirements of the hosts is able
to make some optimization decision based on that.

It should be noted that our design does not restrict how the AC is to be implemented. If the SDN
controller has a northbound API to push rules, the AC can be implemented as a separate piece of
software that uses the SDN controller’s API. Otherwise, it can be implemented as a module within
the SDN controller, thus providing a controller interface to interact with the SDNS.

To summarize, our framework has two modes of operation:

• Passive mode: In the passive mode, the applications do not interact directly with the SDN
Service (SDNS). Which is responsible for associating flows with applications and users by mon-
itoring the end-host systems. This corresponds to the example in Figure 5.11.

• Active mode: In the active mode, applications can send customized messages to the AC
through the SDNS. Here, the SDNS acts as a middleware component and avoids the need for a
tight coupling between the AC and the applications.

5.2.5 Implementation

In this section, we describe the functionalities of the AC and its association with the SDNS, together
with implementation details (Section 5.2).
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Augmented Controller REST API

Our work relies on the northbound API of Floodlight [173]. Therefore, actions are limited to the set
of actions that floodlight can perform on the network configuration. The Augmented Controller is
implemented as a service running on Linux, exposing a REST API offering the following functions:

• Authentication & Authorization: this function allows applications and users to authenticate
themselves. This function also checks whether the authenticated applications and users have
the proper privilege to set/request network resources on the AC. Normally, these permissions
are set in advance by the network administrator, following the security policies and directives
of a given network. For example, certain users or hosts might have a less constrained access
to network resources, such as monitoring or network management applications. Authentication
and authorization are a vital function to prevent malicious users from setting policies using the
AC.

• Flow Updates: this function allows the SDNS to specify association between flows, applications
and users. The AC maintains a database of these associations. We implemented the database
using Redis1, which provides high performance using in-memory storage, allowing speedy reac-
tivity by the AC.

• Set Policy : this function allows to enable or disable a rule in the Augmented Controller. An
example might be blocking or setting a higher priority for a given application running in a
participating host.

• Testing Capabilities: this function allows checking what applications are supported by a custom
application handler in the AC.

• Push Message: this function allows the SDNS to forward a custom message to the application
handler in the AC at the request of a running application. To make use of this functionality, the
application must be supported and have the appropriate rights granted.

SDN Service

The SDNS was implemented using Python 2.7 and the standard Linux tool Netstat. It periodically
polls the OS tables /proc/net/tcp, /proc/net/udp2 and the pid to identify open sockets and processes.
For every process, it is possible to correlate the inode from the system tables and the networking
tables mentioned above. The SDNS only monitors processes which have subscribed. For instance,
the administrator can configure the SDNS to monitor all processes or only applications that whish to
obtain the benefit of the AC. For every process subscribed to the SDNS, the service communicates
with the AC to update its flows. In addition, the service monitors every process termination and
informs the AC that the associated flows can be discarded from the switch flow tables. This is an
additional benefit of our approach which helps to limit the size of flow tables.

1http://redis.io/
2It can be easily extended to other protocols like ICMP but we consider that UDP and TCP are sufficiently repre-

sentative for an initial implementation and testing
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5.2.6 Summary and Considerations

In this section we have proposed an approach to leverage data analytic applications using an application
level flow management method for SDN based cloud infrastructure. A major requirement of our
proposal is to deploy the SDNS on as many end hosts as possible, so allowing the AC to make better
decisions. However, as mentioned in Section 5.2, our focus in mainly on cloud environments. A cloud
infrastructure is usually operated and administrated by a single authority. This allows us to make a
rational assumption that the single authority will be able to easily configure the end-hosts to run the
SDNS.

Another issue is type of service offered by the cloud. When a user deploys his own Virtual Machine
(VM), the SDNS runs on the host system and cannot monitor processes and users within the VM.
Therefore, the monitoring granularity of SDNS will be at the level of VM processes and their owners.
This will allow the administrators to specify policies that are applied down only to the VM level. The
cloud tenants could be encouraged to install the SDNS on their VMs in order to get the benefits out of
a more optimized network. However, cloud providers may also offer other types of services (platform,
software), which are executed in a completely controlled environment. Therefore, if a cloud provider
is offering several big data analytics services like Hadoop or Storm3, they can be monitored by the
SDNS and so rules can be applied. For example, Hadoop flows (mainly batch jobs) would be placed
on high throughput links while Storm flows (real-time processing) would be provided with low-delay
links by configuring the network appropriately with SDN.

A final consideration is that, due to the interactions between the SDNS and the AC, flows may
reach the switches before the corresponding rules have pushed to them. This is not a problem specific
to our framework but is inherent in SDN.

3https://storm.incubator.apache.org/
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Chapter 6

Data Analytics for Security

6.1 Overview

Monitoring is a fundamental part of network management. It is essential for checking the network
activity and status, e.g. tracking abnormal occurrences or changes (attacks, configuration errors,
failures, etc.). Several steps are required to do this. First, is collected from various sources and
locations. Then, the data is stored before it can be directly visualized or analyzed by human expert
to provide summarized information, such as alarms, to the network operational team. Aggregation
has been widely adopted for network monitoring due to the recent large increase in data volumes
(IP flow data, passive DNS database, etc.). It allows many interesting phenomena to be correlated,
in particular in the security domain (distributed denial of service, botnet control, spam campaigns),
which can only be monitored using the macroscopic view obtained from aggregation methods.

In Section 5.1 of the previous chapter we have introduced our multidimensional aggregation ap-
proach in Section 5.1. Each feature is associated with a dimensional space where data can be aggre-
gated. For example, IP addresses can be aggregated by sub-networks and DNS names by subdomains.
MAM is leveraged due to its two major advantages. Firstly, the data space is not divided a priori and
the aggregation granularity varies over the space according to the events being monitored, e.g.reaching
a user-defined volume-based threshold (number of bytes, alerts, etc), as shown in Chapter 5 on page 55.
To illustrate, IP addresses are aggregated into subnets but the subnet size is not fixed manually and
Multidimensional Aggregation Monitoring (MAM) can decide for example to aggregate part of data
using a /16 prefix, while using /24 for another, or even keeping single host information (/32). The
second advantage is that there are no order relationships between dimensions. When, for example,
both domain names and IP addresses are monitored with a less flexible tool, the user may decide to
aggregate data on addresses first and then on subdomains. With MAM, there is no need to make such
a choice.

In this chapter we focus on the development of methodologies and metrics used to monitor and
detect anomalies in three main scenarios:

• NetFlow Records: In Section 6.3, we study the volume of traffic aggregated by source and
destination IP addresses simultaneously. In particular, we introduce a metric on NetFlow records
and use it to leverage anomaly detection. Our detection method is based on the identification of
anomalies in the volume of traffic in the network. TCP flood and Distributed Denial of Service
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(DDoS) attacks can sometimes be detected by the large volumes of network activtiy that they
produce.

• DNS Records: Malware and phishing websites have a relatively short life before they are reported
and taken off-line [110]. In Section 6.4, we develop an approach to detect malicious websites and
their domain name based on the time persistence of the match between IP addresses and names.

• Positioning-Based Records: Assuming a crowd-sourced application based on personal geograph-
ical location, a malicious user might report fake positions and inject them into the network to
alter the estimated traffic conditions. To counter such attacks, Section 6.5 presents an approach
for performing plausibility checks in an aggregated manner. In Section 6.5.1, we introduce our
approach for the detection and recovery of data in location spoofing a scenario.

The temporal and spatial aggregation using MAM outputs a sequence of multidimensional trees,
in which each node represents the activity volume of events during a certain interval of time. Our
approach is to compare consecutive trees and define metrics that can select the relevant information
from each event, leading to further evaluations. The comparison process is done pairwise between
nodes, within a predefined window of consecutive trees representing aggregated events in time. In
this chapter we develop a method for tree comparison inspired by the the notion of edit distance for
strings. This has led us to create powerful metrics for comparing trees and their sub elements.

The subsection that follows comprehensively explores both the concept of distance and similarity
between trees,and among instances of each dimension. In particular, metrics for evaluating similarity
of DNS, NetFlow records and geospatial coordinates are explained in the detail. These metrics one of
the most significant contributions of this work.

6.2 Distance Functions

6.2.1 Introduction

Trees are perhaps one of the most widely used, diverse and well-studied data structures in computer
science. In this section, our goal is to introduce a formal notion of similarity or distance between
multidimensional trees. The importance of having a distance function as a metric is crucial to the
further use of trees for monitoring purposes. The Levenshtein distance [174, 175] is usually refereed
to as the edit distance between two strings, and is defined as the minimum number of operations
to transform one string into the other by deletion, insertion or substitution. As an example, the
strings “sos” and “sbs” have a distance of 1 because one may be transformed into the other by
performing one substitution of the character “o” into “b”. This notion of distance was initially
defined for strings where every operation has a single cost of 1. For multidimensional trees we propose
a distance function inspired in the Levenshtein distance. One simple approach is to encode the trees
as strings using a traversal algorithm and compare them, but this is sometimes not accurate, since the
string representation is not unique. Therefore, in our approach we calculate the required number of
transformations to be performed on a multidimensional tree in the same manner as the Levenshtein
distance. As a node is a more complex structure than a character, a single transformation step may
require discrete operations on more than one of the node’s dimensions. Consequently, while each
operation is still assigned a cost of 1, the cost of the whole step may be greater than 1.
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6.2.2 Multidimensional Distance Function

In Section 5.1 on page 55 we introduced a tree based representation of network traffic for a given
period of time. In this section construct a metric that reflects as generally as possible the changes
in network traffic patterns. Additionally, since the multidimensional tree construction mechanism is
sensitive to data order (as aggregation occurs on the fly), we introduce the distance metric as a tool
to check that data order has no significant impact on our techniques and further experiments. In
particular, we measure the degree of similarity for trees built from the same data but received in a
different order.

According to the formal definition of a M -multidimensional tree, a node is defined as ni = <
{fi1 . . . fim}, voli >. Assuming a distance function for each dimension k as Distancek(fik , fjk), global
metrics can be calculated such as:

• Average:

∑M
k=1 Distancek(f1k , f2k)

m
where m is the number of dimensions used.

• Sum:
M∑
k=1

Distancek(f1k , f2k)

• Min: minMk=1Distancek(f1k , f2k)

• Max: maxMk=1Distancek(f1k , f2k)

We used the average as a global distance function to calculate the cost of an operation (insertion,
removal or modification) since we seek to include the cost of every distance per dimension in a nor-
malized manner. However, the remaining metrics can still be representative in different situations, for
example, to calculate a minimal cost for operations that transform one tree into another.

Thus, the distance function must be defined for each dimension. Tree distance can be computed by
calculating a distance matrix as the result of the pair wise comparison between the nodes of the trees
being compared. We then calculate the average over the minimal distance of every row and column.

Given Ta having n nodes and Tb having m nodes with both n,m ∈ ℵ. The distance between Ta
and Tb can be calculated comparing the trees pair-wise and looking for the most similar nodes at each
step (using the min function). The following definition details one possible distance between trees:

DistanceMatrix(Ta, Tb) =


Dist(Ta1 , Tb1) Dist(Ta1 , Tb2) · · · Dist(Ta1 , Tbn)
Dist(Ta2 , Tb1) Dist(Ta2 , Tb2) · · · Dist(Ta2 , Tbn)

...
...

. . .
...

Dist(Tam , Tb1) Dist(Tam , Tb2) · · · Dist(Tam , Tbn)



Distance(Ta, Tb) =

∑m
j=1 mini=1...n

(Dist(Taj , Tbi))

m
+∑n

j=1 mini=1...n
(Dist(Tai , Tbj ))

n
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6.3 NetFlow-based Trees

6.3.1 Problem Description

Network monitoring at Internet Service Provider (ISP) level is a critical task known to be helpful in
network management and security context [176]. The data collected in network may consist of full
packet captures on a network or NetFlow [75] records. An individual flow is an aggregated view of a
stream of packets between a source and a destination characterized by IP address, protocol and port
when necessary. Since nowadays, the volume of such information is growing rapidly, the scalability is
a challenge. An ISP can expect to attend not less than 60,000 flows per second.

Aggregation allows the process of monitoring and analysis to be speed up, as pointed out by authors
in [16, 18, 76]. Building on this finding, we propose an approach for modelling the network activity
using more than one feature, including applications and IP Addresses, as illustrated in Figure 6.1.

In particular, the following problems are addressed in this section:

• Studying the IP traffic of a network through multidimensional aggregated data structures.

• Providing through aggregation an approach which increases scalability by compressing data and
by creating summarized outputs which are smaller and easier to analyze.

• Detecting major events indicating changes in the volume of traffic in a network. Such events are
often related to the occurrence of attacks such as DDoS and TCP Flood [177].

6.3.2 NetFlow-based Metric

In this section we describe a two dimensional representation of the NetFlow records. To do so,
source and destination address are represented as: IPsrc = {prefix : prefixsrc , prefix length :
prefix lengthsrc}, and IPdst = {prefix : prefixdst , prefix length : prefix lengthdst}.

Assuming a sequence of N trees S = {T1, T2, . . . , TN}, each node n ∈ Node in a tree is defined by
the following elements:

• nacc vol is the accumulated proportion of activity volume as defined in MAM,

• nprefixsrc and nprefix lensrc are respectively the IPsrc prefix and its size,

• nprefixdst and n
prefix lendst are respectively the IPdst prefix and its size,

As is required by MAM, a distance function should be provided per dimension. In our case, we
define it based on the longest common prefix between two IP addresses or on the longest common
path in the taxonomy tree for ports. A notion of similarity based on the hierarchical structure of IP
addressing (subnets), as suggested by authors in [14] as follows:

Dist(x, y) = α× IP sim(xsrc, ysrc) + β × IP sim(xdst, ydst) + γ × V ol(xvol, yvol)

To avoid giving preference to any parameter, α = β = γ =
1

3
in the precedent equation.
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Figure 6.1: Multiple dimension aggregation based on Traffic Flow Table 6.2, α = 10%

PORT PROTO KB TIME SOURCE DEST
25 TCP 4660 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
443 TCP 2417 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
443 TCP 1945 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
21 TCP 4206 2010-02-24 02:20:59 192.168.1.1 92.250.220.82
80 TCP 4336 2010-02-24 02:20:59 192.168.1.3 92.250.220.82
110 TCP 2110 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
23 TCP 4257 2010-02-24 02:20:59 192.168.1.1 92.250.220.82
25 TCP 2005 2010-02-24 02:20:59 192.168.1.3 92.250.220.82
993 TCP 2434 2010-02-24 02:20:59 192.168.1.1 92.250.220.82
443 TCP 3270 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
993 TCP 4775 2010-02-24 02:20:59 192.168.1.2 92.250.220.82
22 TCP 690 2010-02-24 02:20:59 192.168.1.3 92.250.220.82

Figure 6.2: Traffic Flow Table example for a destination address being targeted by reduced group of
host.

IP sim : Node×Node→ < ∈ [0, 1]]

IP sim(n1, n2) =


1− |n1prefix len − n2prefix len|

32
if naddress

1 ⊂ naddress
2

1− |n2prefix len − n1prefix len|
32

if naddress
2 ⊂ naddress

1

0 else
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V ol : <× < → [0; 1]

V ol(n1, n2) = exp(−|n1 − n2|
2

φ
)

a

b c

d e f g

Ta = Tb = 

b

d e

Node Source IP Address
+ Prefix Length

Destination IP
Address + Prefix
Length

Node Volume Accumulated
Volume

a 0.0.0.0/0 10.0.0.0/0 5% 95%

b 0.0.0.0/0 10.2.0.0/16 15% 60%

c 0.0.0.0/0 10.5.0.0/16 5% 35%

d 0.0.0.0/0 10.2.0.0/24 10% 20%

e 0.0.0.0/0 10.2.1.0/24 5% 15%

f 0.0.0.0/0 10.5.0.0/16 15% 15%

g 10.2.1.1/32 10.5.0.0/24 15% 15%

Figure 6.3: Example of an aggregate tree (α = 5%) comparison using Edit Distance, Ta and Tb. (Nodes
are listed in the table above)

For example to calculate the distance for Ta and Tb as set out in Figure 6.3, the steps are:

DistanceMatrix(Ta, Tb) =

Dist(a, b) Dist(b, b) Dist(c, b) · · · Dist(g, b)
Dist(a, d) Dist(b, d) Dist(c, d) · · · Dist(g, d)
Dist(a, c) Dist(b, c) Dist(c, c) · · · Dist(g, c)


since Tb is contained on the left side of Ta. Dist(b, b) = Dist(d, d) = Dist(e, e) = 0. Dist(a, b) =

Dist(a, d) = d
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The remaining entries of the matrix account for:

DistanceMatrix(Ta, Tb) =

 d 0 0.25 · · · 0.25
d 0.75 0.75 · · · 0

0.35 0.35 0 · · · d


6.3.3 Summary and Conclusion

In this section we have summarized a part of the contribution made by [187]. Network monitoring
is of paramount importance for enforcing security in networks, as it can lead to anomaly detection
and the identification of attacks. Our approach in this section has been to define a multidimensional
representation of source and destination addresses present in the NetFlow records. This definition can
be extended to include other dimensions such as application type and port number. An evaluation of
our approach is appears in Section 7.2, where we investigate the performance of the multidimensional
IP-based aggregation, and leverage detection of anomalies methods by watching changes in distance.
Also since, as mentioned in Section 5.1.5 on page 68, the order of data might impact the tree-based
data structure, the impact of data order on aggregation is explored in Section 7.2.

6.4 DNS

6.4.1 Problem Description

The Domain Name Service (DNS) is a critical system for the Internet, which maps human-readable
names such as www.uni.lu to IP addresses. It allows resource to be reallocated or distributed dynami-
cally and transparently with little effort. However, these properties make it a good target and tool for
attackers. For example, by disrupting a DNS server with a denial of service attack, DNS clients can
be prevented from locating services. DNS spoofing attacks are even worse, because their objective is
to falsify the IP address mapping of a domain name and so transparently redirect users to malicious
machines [103]. DNS traffic monitoring can help to identify these two major threats, FastFlux and
phishing, and can also provide insights into other malicious activities [24–26]. Firstly, intuition suggest
that domains used in malicious activity are intuitively requested over short periods of time (during
an attack campaign, for example, and/or before being disrupted by defensive measures). Secondly,
the IP addresses associated with a malicious domain can be highly variable, FastFlux being the best
example. These features are leveraged in [104,105].

Aggregation helps to increase the visibility of the match between domain name and IP addresses,
since one legitimate domain name (e.g. www.wikipedia.org ) might be associated with multiple IP
addresses. Therefore, at an aggregated view makes it possible to observe a domain name or subodmain
associated to a group of IP addresses as sub networks. This type of views allow identifying changes in
distributed events as required to monitor FastFlux attacks to be identified avoiding bias due to local
phenomena. As both DNS and IP space follow ahierarchical organisation, we propose using MAM
(Multidimensional Aggregated Monitoring) [187] to handle the IP and DNS spaces simultaneously.

In particular, the following problems are addressed in this section:

• Studying the DNS traffic behaviour using a Passive DNS Database, to identify the temporary
behaviour of malicious domains in terms of the domain name and its IP address associations.
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• Discovering malicious domains for detection purposes, based on macroscopic (long-term) analysis
of the matches between IP addresses and domain names.

• Discovering through microscopic analysis (local view) which domains and IP addresses are re-
sponsible for these changes.

• Developing an efficient aggregation techniques which, given the large volume of data available
in this scenario, helps out to reduce the scale of the problem minimizing information.

6.4.2 DNS representation using Aggregated Trees

We are interested in the mapping between domain names and IP addresses, the two monitored di-
mensions. To represent this data, we use a multidimensional tree, in which each node contains the
following information:

1. IP address and subnet

2. domain name

3. percentage of aggregated activity (activity volume, defined as vol) for the current node

4. cumulative percentage of activity of the node and its sub-tree defined as acc vol

An IP address is defined as prefix, a prefix length and suffix, similar to the definition in Section 6.3.
As described in Section 3.3, the DNS follows a hierarchical structure, where the level domains represent
intermediate nodes. We consider the root level (ROOT) and a final level denoted by $. This allows
differentiation between a node corresponding to all *.uni.lu names like www.uni.lu or snt.uni.lu

and a direct request to uni.lu, which is represented by $.uni.lu. Each unique mapping between a
domain name and an IP address is considered to have a volume vol = 1. Hence, it only represents the
existence of such a mapping and is independent of the number of times the domain has been requested.

For aggregation purposes, MAM creates leaf nodes representing unique data instances (/32 IP
address and a domain like $.*.ROOT) and inserts them iteratively by creating intermediate nodes if
necessary. Only nodes representing a minimum volume, vol > α, are retained; otherwise they are
aggregated into their parents by summing vol meanwhile.

Data is also aggregated over time by specifying η, a time window size in seconds. All events
within a single window are aggregated using the space aggregation scheme described above. This is
an essential feature of MAM since our goal is to study the dynamic of DNS mapping over time.

We analyze time series of the constructed by MAM. As illustrated in Figure 6.4, the trees are
constructed using tuples < timestamp, , IP address >. Such tuples serve as input to MAM, with the
IP address being the address matching a domain name in a DNS.

6.4.3 Steadiness metrics

DNS names are usually associated with a group of IPv4 Addresses, and this association tends to be
stable over time for benign domains. However, inconstant mappings between domains and IP subnets
are suspect [26,106]. This concept is extended to the trees obtained from MAM.
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dns: .ROOT

ip: 0.0.0.0/0

0.00% 100.00%

dns: $.betterblock.org..ROOT

ip: 173.201.208.1/32

33.33% 33.33%

dns: $.blockbuster.org..ROOT

ip: 72.233.2.58/32

33.33% 33.33%

dns: $.balconytv.com..ROOT

ip: 75.101.145.87/32

33.33% 33.33%

DNS
IP

Accumulated activity Node activity

Figure 6.4: Sample tree for IP Address and FQDN

We propose a metric to characterize the persistence over time for a match between an IP address
and a domain name (steadiness). While this can be taken as a measure of the local steadiness of a
node in a tree, it is also possible to evaluate the global persistence of all nodes over a sequence of
trees, and thus assess the general steadiness of the mapping between IP and DNS spaces.

Assuming a sequence of N trees S = {T1, T2, . . . , TN}, each node n ∈ Node in a tree is defined by
the following elements:

• nacc vol is the cumulated proportion of activity volume as defined in MAM,

• nprefix and nprefix len are respectively the IP prefix and its size,

• ndns is the set of level names of the Fully Qualified Domain Name (FQDN)(for example {www, uni, lu}
for www.uni.lu)

When evaluating the steadiness of a node n1 in a tree Ti, stead(n1), the objective is to check for
the presence of n1 in the previous tree Ti−1. However, while aggregation improves scalability, exact
information is lost and precise correspondence between nodes is rare. Therefore it is necessary to find
the most similar node to n1 in the tree Ti−1. The notion of similarity is based on the hierarchical
structure of IP addressing (subnets) and DNS naming space (subdomains). Assuming two nodes, n1
and n2, the similarity is positive only if one of the following condition is verified:

• n1 and n2 represent the same domain and IP subnet

• n1 is a child of n2 for at least one dimension (DNS or IP) and is the same as n2 for the remaining
ones

• n2 is a child of n1 for at least one dimension (DNS or IP) and is the same as n1 for the remaining
ones

In brief, nodes with locations that are disjoint in at least one space will have a similarity of 0,
i.e. none of them can be a child of the the other in a MAM tree. For example, 192.168.10.0/24
and 192.168.20.0/24 represent disjoint portions of the IP space; and www.uni.lu and snt.uni.lu are
disjoint in the DNS space whereas www.uni.lu is a child (subdomain) of uni.lu.
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Based on this definition, the built tree allows easy location of the most similar node to n1, denoted
as most sim(n1), since parent-child relationships are preserved. Assuming a current node n0 having
a strictly positive similarity with n1, i.e. sim(n1, n0) > 0, the algorithm considers each child node
of n0 in the tree to find the node n0′ such that sim(n1, n′0) > sim(n1, n0) and sim(n1, n0′) =
maxn2∈child(n0) sim(n1, n2). The goal is to find the child node with the maximum similarity. If no
child guarantees sim(n1, n0′) > sim(n1, n0), the algorithm stops because this means that all child
nodes represent divergent spaces relative to n1. The most similar node is thus n0, the current node.
The algorithm is initialized by starting from the root.

The similarity between two nodes, n1 and n2, is calculated over the different features and the
activity volumes as follows:

sim : Node×Node→ [0; 1]
sim(n1, n2) = α× IP sim(n1, n2)

+β ×DNS sim(n1, n2)
+γ × vol sim(n1, n2)

(6.1)

subject to:

IP sim : Node×Node→ [0; 1]

IP sim(n1, n2) = 1−
|n1prefix len − n2prefix len|

32

(6.2)

DNS sim : Node×Node→ [0; 1]

DNS sim(n1, n2) =
|n1dns ∩ n2.dns|
|n1dns ∪ n2dns|

(6.3)

vol sim : Node×Node→ [0; 1]
vol sim(n1, n2) = 1− |n1acc vol − n2acc vol|

(6.4)

α, β and γ can be fine tuned to give preference to a certain feature based on the user knowledge
(α+ β + γ = 1).

Being inspired by [178, 187], equation (6.2) considers the size difference between two IP subnets
with respect to the number of IP addresses and normalized with respect to the total number, 232, of
IPv4 addresses. This yields a value bounded between 0 and 1, which is subtracted from one to obtain
a similarity value. Obviously, this is only meaningful only if one subnet is a subnet of the others,
which, in our case, is guaranteed by searching for the most similar node. Therefore, the more similar
the prefix size, higher the similarity.

The second part of the metric focuses on the variation of DNS names in Equation ( 6.3) (e.g.,
www.google.com vs. google.com) by splitting the DNS name into a set of labels using the dot as
a separator (www, google and com for www.google.com). Based on these sets, the Jaccard index is
computed (the ratio between the number of elements in the intersection and the union) to evaluate the
similarity between pairs of sets. Again, searching for the most similar node guarantees that compared
domains are the same or, that one is a subdomain of the other. Thus, the similarity is proportional
to the number of shared level names.

Therefore, the similarity is a value bounded between 0 and 1. The steadiness of the node n1 in
Ti is evaluated regarding the similarity of n1 to the most similar node in the previous tree, Ti−1, and
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the steadiness of the latter. This smoothing allows the steadiness of the node n1 to be dependent not
only on the previous time window but also the earlier ones.

n1 ∈ Ti, n2 ∈ Ti−1, n2 = most sim(n1)
stead(n1) = sim(n1, n2) + µ× stead(n2)

(6.5)

To avoid giving preference to any parameter, α = β = γ = µ = 1/4 in Equation 6.1 and Equa-
tion 6.5

Although the previous equation is helpful in calculating the individual steadiness of a node (local
steadiness), the global persistence (macroscopic steadiness) of the tree Ti is the average steadiness of
all nodes in Ti

pers(Ti) =

∑
n∈Ti

stead(n)

|{n ∈ Ti}|
(6.6)

6.4.4 Conclusion

In this section we summarized the work which researches on the mapping between IP addresses and
domain names. Thanks to the aggregation scheme, the volume of data to analyze is reduced and
distributed behaviours can be identified more easily, which is helpful in the security context. In this
section we have introduced a steadiness metric that can be applied to study the persistence over
time of the association between domain names and IP addresses. This metrics are further employed
by comparing consecutive time windows an observing the changes in the associations, to identify
the behaviour of anomalous websites we propose a threshold-based detection system. It is useful
in tracking entire harmful IP subnets or domain names while keeping the computational overhead
low. We have defined a specific metric to study the steadiness of time series of trees produced by
MAM. The evaluation on real data has proven its efficiency for detecting global abnormal changes
(macroscopic steadiness) and for tracking specific domains and IP subnets which are responsible for
them (local steadiness). In Section 7.3 we conduct a series of experiments to validate that our approach
is helpful for detecting malicious domains. Also, the scalability has also been assessed, since our method
leverages the analysis of aggregated data reducing the post processing time requirements.

6.5 Positioning-Based Applications: Steadiness and Recovery

6.5.1 Problem Description

In the context of a crowd-source position-based application used for vehicle navigation and traffic
estimation there is no strong restriction on users, everybody is basically identified with pseudonyms
and able to join the application1. Thus, an attacker can inject erroneous data, as shown in Figure 3.9,
using multiple vehicle identities (Sibyl attack) using a standard computer which is considered as the
most realistic and threatening scenario [123]. Even without a success rate of 100%, an attacker may
cause unforeseen and catastrophic consequences to location based services (creating traffic congestion

1http://maps.google.com
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and so indirectly rerouting people to specific locations, indicating false collisions which may provoke
unnecessary braking, etc).

Location Spoofing Detection and Recovery

Metrics
Evaluation

Anomaly detection

Time splitInput Data:
timestamp,coordinate X,

coordinate Y

Aggregation

MaM

Anomaly Localization

Recovery

Experimental datasets

Traffic simulator

Spoofed traffic injectionTopology information

Position reporting log

Filtered Position reporting log

Figure 6.5: System overview

In this section, we aim to identify and localize an attacker who submits forged positions of numerous
vehicles to a position-based service. Obviously, injection may be done continuously to be more stealthy
and effective. Hence an attacker can mimic a driven vehicle by reporting multiple positions along a
path in a coherent timely manner.

In particular, the following problems are addressed in this section:

• Location spoofing detection: the goal is to detect that an anomaly occurs in the reported loca-
tions.

• Spoofed position recovery: assuming that the location spoofing has been detected, the goal
of the recovery consists into precisely identifying which positions are subject to the attack for
discarding the corresponding records in order to keep the database of reported positions (and so
the road traffic flows) in a safe state.

While the first objective is to detect when a spoofing attack occurs, the second one tries to localize
where it occurs and remove the anomalous data.

In this work, we decided to model an area as bounded intervals. In fact, an area is defined as a bi
dimensional space using Cartesian coordinates to represent the longitude and latitude (altitude is not
considered). Hence, the areas are represented as rectangles defined by two points: ((X1, Y1) : (X2, Y2)).
The most specific representation is an interval of a single point: X1 = X2 and Y1 = Y2.

In the sample output shown in Figure 6.6, each node represents a specific rectangular area defined
as:

1. X dimension range: (X1, X2) where X1 ∈ < and X2 ∈ <

2. Y dimension range: (Y1, Y2) where Y1 ∈ < and Y2 ∈ <

3. Percentage of vehicles in the corresponding area excluding its children: vol ∈ <



Security of Distributed Applications 89

x: -1.31/7.79

y: 42.62/50.79

0.03% 98.15%

x: 7.79/7.79

y: 49.63/49.63

0.06% 0.06%

x: 7.79/7.79

y: 46.00/46.00

0.22% 0.22%

x: -1.31/7.79

y: 42.62/50.63

0.04% 97.84%

x: 1.64/4.71

y: 50.63/50.63

0.03% 0.06%

x: -0.43/7.79

y: 42.62/50.63

0.02% 97.58%

x: -0.64/-0.49

y: 43.43/49.63

0.02% 0.11%

x: 2.00/2.00

y: 50.63/50.63

0.03% 0.03%

x: 0.17/3.97

y: 50.19/50.63

0.02% 0.02%

x: -0.32/7.79

y: 42.62/49.67

0.04% 97.54%

x: -0.64/-0.64

y: 46.00/46.00

0.08% 0.08%

....

....

Figure 6.6: MAM sample output (Due to visualization, values are rounded with two decimal places)

4. Cumulated percentage of vehicles in the corresponding area (including its children): acc vol ∈ <

The corresponding area of a node is actually embedded into the area associated to its parent node.

As highlighted before, a hierarchical model has to be built over such dimensions. In order to keep
the advantages of MAM, the areas are not fixed in advance as we could have done using a grid-based
approach. Rectangle are built regarding the percentage of activity which, in this case, represents the
percentage of vehicles. To do so, the areas are created on the fly by assembling points together. For
example, assuming two individual points as ((X1, Y1) : (X1, Y1)) and ((X2, Y2) : (X2, Y2)), this will
entails the creation of the area: ((mix(X1, X2),mix(Y1, Y2)) : (max(X1, X2),max(Y1, Y2))). When
the third point has to be added, either it falls into this created area which implies the creation of an
embedded area, or it falls outside creating a parent area. This process continues until no new data
points have to be added. Hence, this automatically creates a hierarchy between areas which is not
known a priori unlike IP subnetworks. In the meantime, each area maintains a counter about the
number of vehicles it contains. Aggregation is then performed from the leaves to the root. For each
node, if vol > α, the node is kept, otherwise it is discarded and its vol value is added to the one
of its parent node. This aggregation process is the standard one of MaM which is fully described in
Section 5.1.3, page 66.

6.5.2 Metrics

We propose a method for analyzing series of aggregated trees based on stability over time. The
intuitive idea behind is similar to plausibility checks by considering that vehicles movements from one
area to another are bounded by physical properties but also depending on the traffic conditions. To
achieve that, we defined a stability metric that captures the dynamic of the traffic, (i.e. the movement
of the car) by comparing consecutive vehicle positions. Observing the variation of the stability when
no attack occurs, we are then capable of detecting future abnormal variations. The aggregation helps
in considering the global road traffic dynamic. In addition, this avoids to detect isolated deviant
behaviours which are not necessary malicious (faulty ones) and, in fact, does not have an impact on
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n1

n2

Figure 6.7: Area comparison

the large scale location-based service that relies on mass information. From a general point of view,
stability based detection is equivalent to plausibility checks using aggregated views.

As explained, the stability captures the dynamic of the cars. It is a bounded value between 0 and
1. Assuming cars which are blocked in a traffic jam, the stability will be very high. On the contrary,
cars moving very fast entails a low stability. Therefore, the goal is to evaluate the stability of the
traffic (and so vehicles positions) between consecutive time windows. To do so, it is firstly required to
define the stability between two nodes, n1 and n2. It is higher if the distance between the associated
areas (Area Distance(n1, n2)) are close, if the overlap between them is high (Area Com(n1, n2)) and
if the number of vehicles is similar:

Stability(n1, n2) = η ×Area Com(n1, n2)+

ψ ×Area Distance(n1, n2)+

γ × (1− |n1.vol − n2.vol|)
(6.7)

The common space is evaluated regarding the ratio between the intersected rectangular area and

the merged rectangular area: Area Com(n1, n2) =
∩(n1, n2)

∪(n1, n2)

The distance is evaluated regarding the centroid of the areas and normalized regarding the diago-

nal distance of the monitored map: Area Distance(n1, n2) = 1− |n1.centroid− n2.centroid|
DIAG DISTANCE

The common area and centroids can be easily retrieved from the coordinates and Figure 6.7
illustrates them. Evidently, areas are not always intersected and in such a case, Area Com(n1, n2) = 0.
Without specific knowledge, η = ψ = γ = 1/3 which weights equally each factor.

The objective is to compare the stability between ti and a previous tree tj . To achieve that, the
individual stability of each node ni ∈ ti is calculated. This is calculated by comparing with the most
similar node in tj which ismostsim(ni, tj) ∈ tj ∀nj∈tjStability(ni,mostsim(ni, tj)) ≥ Stability(ni, nj).

Finally, to globally assess the abnormality of a tree ti, the average stability over all nodes is
considered:

Avg stab(ti, tj) =

∑
ni∈ti Stability(ni,mostsim(ni, tj))

|ti|
(6.8)
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6.5.3 Algorithms

In this section, the core algorithms involved in the location spoofing detection and recovery are pre-
sented. As mentioned before, the location spoofing attack is detected by evaluating the global stability
in equation (6.8) and detecting abnormal variation. For sake of clarity, we use a single profile which
corresponds to set a threshold value of an acceptable stability variation. It is also possible to imagine
more complex models taking in account peak hours for example. However, the method remains the
same by using the stability measure to establish multiple profiles depending on certain criteria. To
not be biased by local events, our approach promotes the use of a sliding window by comparing a tree
with its S predecessors.

Hence, the algorithm 5 computes the stability of all nodes of a tree assuming a list of predecessors.
The idea is to compare pairwise nodes from the current tree (noted as parameter t) against the previous
trees within the sliding window. This can be observed in line 6 where the most similar node (having
the highest stability) of each node of t is searched in the predecessors, as defined in the previous
section. Then, the average stability for every single node t is computed over all the predecessors (line
7). In line 3, the algorithm iterates over each node of the input tree which leads to O(n) assuming n
nodes in a tree. For each node a look up over all S predecessors is performed in line 5, and in line
6 the most similar node is searched for every element on the predecessors list, with so a final cost of
S × n. In line 7 scalar operation are performed with a constant cost. Thus, the average complexity of
algorithm 5 is O(n2) where n is the number of nodes since S is fixed constant.

Algorithm 5 Calculate the stability for the nodes of a given tree and its predecessors

Input: t : Tree
predecessors : List < Tree >

Output: StabMap(t, predecessors) : Map < Node >< Float >
1: nodes← nodes from t
2: res←Map()
3: for n in nodes do
4: st← 0
5: for ti ∈ predecessors do
6: c← mostsim(n, ti)
7: st← st+ Stability(n, c)
8: end for
9: res(n)← st/length(predecessors)

10: end for
11: return res

The detection and recovery algorithm 6 works as follows. If the average stability variation equation
(6.8) exceeds the threshold θ, then an attack is detected as shown in line 2 which requires to compute
the stability of all nodes of the current tree based in line 1 which executes algorithm 5. The function
values allows to extract only the values of the map data structure. In fact, the recovery is an iteration
process which removes one by one the least stable leaves until the difference between the current and
past average stability values does not exceed the threshold θ as shown in lines 4-6.

The computation of the stability of the nodes is done once in line 1 which has a complexity of
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O(n2) where n is the number of nodes in a tree. The average stability is calculated but iterating over
all values in stabMap which corresponds to the number of nodes. In parallel, the least stable leaf
can be found, which means that operations in lines 2 - 4 are executed meanwhile by iterating over all
nodes. In the worst case (in case every node needs recovery), the while loop condition will be also
evaluated n times. This finally leads to a complexity equals O(n2 + n2) = O(n2).

Algorithm 6 Detection and Recovery

Input: current : Tree
Input: predecessors : List < Tree >
Input: previous stab : float
Output: Recovery(current) : Tree

1: stabMap← StabMap(current, predecessors)
2: while |avg(values(stabMap))− previous stab| > θ do
3: leafs← leafs from current
4: least stable← l ∈ leafs, ∀l′ ∈ leafs, stabMap(l′) ≥ stabMap(l)
5: remove l from current
6: remove l from stabMap
7: end while
8: return current

Therefore, the general process takes as input position data with timestamps in order to create
aggregated trees on the fly depending on the time window size β and the aggregation threshold α.
When a time window ends, the corresponding tree is preprocessed using the Algorithm 5 before the
detection and the recovery is triggered in Algorithm 6.

6.5.4 Conclusion

This section describes our proposed location spoofing detection and recovery mechanism [189] can be
applied to a large scale database of position data such as those used in many vehicular applications.
Our approach uses as a first step MAM for collection and data aggregation. On top of it, we defined
dedicated metrics to asses the plausibility of moving vehicles in order to point out anomalies. To
validate our approach, we conducted several experiments using realistic traffic simulations, in which
we took under consideration two major types of urban grids, as introduced in Section 7.4.4. The
main advantages of the aggregation are the global evaluation the traffic without considering too small
events and the scalability improvement. In addition, a recovery mechanism is proposed which allows
to safely removed most of the anomalous data while discarding very few benign data.

6.6 Summary

In this chapter we presented our approach to leverage security with data analytics based on mul-
tidimensional aggregation. During our approach we proposed several metrics and carried out their
analysis, based on different contexts (NetFlow, DNS, and Position-based crowd-source applications).
The main principle is to analyze and evaluate consecutive trees representing aggregated events in time.
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We were able to apply and extend the initial methodology for multidimensional aggregation proposed
in Chapter 5. Also, scalability was taken in account, in particular for position-based applications,
where we developed an approach for recovering affected information from a position spoofing attack.
These approaches are validated with experiments on the three mentioned fields in Chapter 7.
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Part III

Evaluation





Chapter 7

Monitoring of distributed applications

7.1 Overview

This chapter outlines the evaluation of the methods and metrics proposed in Chapter 5 and Chapter 6
respectively. The first section of the chapter presents the empirical validation of the multidimensional
aggregation methodology. To conduct the experiments we included diverse dimensions, and compared
aggregated trees altering the data order to asses its impact to the aggregation process. As a case
study, we performed the validation of the efficiency of aggregation techniques on a real world scenario,
using NetFlow records offered by a major ISP from Luxembourg. Aditionally, we also conducted
experiments to validate our performance estimations in terms of computing time and resources.

The remaining sections of this chapter introduce the validation of the metrics on aggregated tress
for the detection of anomalies and malicious activities. As introduced in Chapter 6, we include three
main case studies where we validated our approach: TCP/IP Networks using NetFlow records, Domain
Name System studying the match between domain names and IP addresses, and postion-based crowd-
source applications for vehicle routing and personal navigation.

7.2 IP Traffic

7.2.1 Introduction

In this Section we evaluate the following main aspects of the proposed method:

• Validate the aggregation process including multiple dimensions from NetFlow records

• Performance of the proposed strategies of online aggregation

• Order of data impact on aggregation accuracy

For sake of clarity, only partial trees are shown in Figures. Except when mentioned, LRU strategy
is applied.
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7.2.2 NetFlow-based Metrics

NetFlow [75] was developed by Cisco Systems and is supported by many device vendors. Thus,
NetFlow or other flow-based approaches are now considered as a standard for IP monitoring. A flow
record groups multiple packets sharing similar properties and in particular source and destination
addresses, protocols and ports. Available information includes useful information like a time stamp,
number of packets or bytes exchanged.

In Section 6.3 we introduced a metric for evaluating the similarity of NetFlow-based aggregated
trees. This notion of similarity we used for the validation of the aggregation process is as follow:

Dist(x, y) = α× IP sim(xsrc, ysrc) + β × IP sim(xdst, ydst) + γ × V ol(xvol, yvol)

To avoid giving preference to any parameter, α = β = γ = 1/3 in the precedent equation.

IP sim : Node×Node→ < ∈ [0, 1]]

IP sim(n1, n2) =


1−
|n1prefix len − n2prefix len|

32
if n1.address ⊂ n2.address

1−
|n2prefix len − n1prefix len|

32
if n2.address ⊂ n1.address

0 else

V ol : <× < → [0; 1]

V ol(n1, n2) = exp(−|n1− n2|2

φ
)

We compute the edit distance as defined in Section 6.2.2 between two trees to figure out the
similarity and point out the cases where anomalies may be present, using a sliding window metric
defined as follow:

z[n] = Dist(Tn, Tn+1) with n in 1 . . .m− 1 where m is the last time window

7.2.3 Data sets

Real NetFlow captures were provided by one major ISP in Luxembourg. As assumed to be free of
attacks, we also inject a realist attack in the same manner as in [14] for assessing the ability of our
approach to catch valuable information about anomalies.

The duration of the capture is 26 days from 01/30/2010 to 02/24/2010 with an average number of
flows around 60,000/sec. A total of 279815 unique IP addresses using 64470 different UDP and TCP
ports are represented.

The following information is extracted:

• Timestamp

• IPv4 Source Address

• IPv4 Destination Address
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Figure 7.1: Distance Function Evaluation for aggregated trees generated from Flow capture of a TCP
Flood attack

• TCP source port

• TCP destination port

• Traffic Volume in bytes is considered as the activity volume (vol)

7.2.4 Scenario

In order to evaluate the aggregation accuracy, several tests over the NetFlow dataset were conducted.
The evaluation consists in comparing similar and different traffic flows by observing the similarity
variation. From the dataset, 50 time windows (η = 5min) are randomly picked up from working days
between 01/30/2010 and 02/24/2010. Once the tree is built, it is compared with the tree associated
to data with a 24 hours or 36 hours offset. Activity at the same time between two working days (24hs
offset) is usually considered as similar and so should exhibit a higher similarity than activity at a
different times between two days (36hs offset). Figure 7.2 shows that the similarity with a 36hs offset
decreases higher than with the 24h offset, leading to an easier differentiation. Even if the average
similarity tends to be close between figures 7.2(a) and 7.2(b), the box plots clearly highlight a lower
stability with a 36h offset which leads to the same conclusion. With respect to experiments on the
data order (section 7.2.5), values are mainly lower than 0.6 for the 24h offset. Therefore, impact of
the data order is lower than the impact of activity variation at the same time between two consecutive
days. From this point of view, our approach is thus viable.

To evaluate the aggregation helpfulness in an malicious environment, the following experiment has
been conducted:

• injection of DDoS attack directed against web servers running on TCP port 80 with a repeated
sequence (3 packets and 128 bytes) sent by burst of 10 packets every 60-120 milliseconds. The
attack was injected in two periods of 2 minutes each.

• 60 trees were generated, T0 . . . T59, to summarize network activity (η = 25s, α = 0.05) by moni-
toring both the source and destination IP addresses meanwhile
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(a) 24 hours offset (b) 36 hours offset

Figure 7.2: Similarity - trees generated using NetFlow samples compared to trees generated after a
NetFlow capture from a offset using a 5 minutes window

In figure 7.1, the two attack occurrences are clearly distinguishable by observing peaks due the high
variation of the edit distance when the attacks start and end. Although more advance techniques, as
for example classification methods, can be leveraged and evaluated on other kinds of attacks (on DNS
and on position-based crowd-source applications), such a complete evaluation is explained further in
this chapter, in sections 7.3 and 7.4.4

7.2.5 Order of data impact

Since data order may impact the aggregation process order, the focus is set at analyzing the distortion
of the tree shape after altering the data order.

The evaluation was performed on 3 dimensions: source IPv4 addresses, destination IPv4 addresses
and TCP ports. For strengthen the evaluation, experiments are executed 1000 times with different
samples and percentiles (25th, 50th, 75th) as well as minimal and maximal values are then calculated
and represented in a box plot graph like Figure 7.3, in which we show the similarity of trees compared
to trees constructed with the same data but in different order. In these figures we presented the
distribution of values for the similarity calculated 1000 times for range of aggregation thresholds (α)
between 0 and 1.

• Normal Sample vs Reversed Sample: This test consists in comparing trees generated from a 5
minutes sample (η = 5min) of the NetFlow dataset and the same data, i.e. NetFlow records, in
the reverse order. In Figure 7.3(a), the similarity grows with aggregation ratio α except for small
values. This behaviour is due to the lower granularity, which keeps track of global phenomena
which are usually present in the whole sample, i.e. not at a specific time unlike local events,
and so less sensitive to the data order.

• Normal Sample vs Random Sample: this test is similar but data are not reversed but randomized.
The same observations can be made in Figure 7.3(b) even if the impact of α is less visible.
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(a) NetFlow samples compared to trees generated after a the
same NetFlow capture reversed

(b) NetFlow samples compared to trees generated after the
same randomized flows

Figure 7.3: Similarity - comparison of trees generated using NetFlow samples altering the data order
for a 5 minutes window

It is important to remind, that the similarity is a number between 0 and 1, with 1 when the
trees are identical. We can observe from our experiments that the data order has an impact on the
aggregation process itself since the value never reaches 1. However, it is important to verify that
the similarity value is lower when data differs. Therefore, we can assumed that in most of cases, a
similarity higher than 0.6 may reflect similar data but which may have been process in a different
order.

7.2.6 Performance

Several benchmarks have been done in a 8 core Intel(R) Xeon(R) CPU E5345@ 2.33GHz. They are
based on the running times regarding the number of nodes in a tree. The Netflow dataset was used
by considering source and destination addresses as well as destination ports. As introduced in Section
5.1.4, the worst case computational complexity of the LRU strategy is n × log(n). In figure 7.4(b),
the empirical results are quite lower. This behavior can be explained because the worst case scenario
is a pathological case that is not usually common found in the captures. Furthermore, this is coherent
with the average computational complexity (log2(n)) introduced in Section 5.1.4.

Figure 7.4(a) highlights similar results for the simple aggregation at the end of time windows.
Therefore, algorithms are equivalent from a computational power side. Applying the LRU strategy
does not entail any notable overhead. However, from a memory point of view, the LRU strategy saves
a lot of memory space since the tree size is bounded by MAX NODES.

7.2.7 Conclusion

In this section, we presented our experiments focused on sample scenarios where the aggregation
reveals important changes in the network activity. In this section we validated two main aspects
of our approach; the first related to the experimental validation of the ability to detect significant
changes in the volume of the network activity, that in our case given the data set provided lead to
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(a) Time performance for simple aggregation (b) Time performance for LRU aggregation

Figure 7.4: Time performance for different strategies

the detection of DDoS attacks. The latter, related to the impact of data order on the aggregation
process, in which we were able to observe that this phenomenon does not mask the events occurred
in the network. Additionally, we were able to analyze a information in a scalable way, including an
LRU aggregation approach for performing analysis with limited computing and memory resources.

Theoretical as well as practical complexities were studied, in particular to prove the efficiency of
using a LRU strategy for improving the scalability of our approach. Furthermore, the data order
problem due to such a process was evaluated and the results highlight a negligible impact.

7.3 Domain Name System

7.3.1 Introduction

In this section we outline the evaluation of the metrics used on our approach based on multidimensional
aggregated trees in the context of DNS monitoring for detecting anomalies. In this section we present
short and long term experiments to validate our hypothesis: the association between IP addresses and
domain names related to malicious activities have a relatively unsteady persistence in time, compared
to non-malicious related domain names and IP addresses.

The objectives of the experiments are:

• Check that steadiness is a feature that discriminates between malicious and normal domains

• To verify that it is possible to detect attacks, i.e. that the time series are highly steady for
normal domains compared to malicious ones

• Show how to extract suspect data that has has an abnormal effect on the steadiness

• Assess the dependency between detection accuracy and aggregation granularity

• Evaluate the performance of aggregation in terms of computing resources and memory.
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7.3.2 Metrics

The metrics validated in this section were introduced in Section 6.4.3 on page 84. The main idea behind
the metrics is to reflect the similitude of IP addresses and domain names associations in aggregated
data structures. This can be taken as a measure of the local steadiness of a node in a tree. It is also
possible to evaluate the global persistence of all nodes over a sequence of trees, and thus assess the
general steadiness of the mapping between IP and DNS space.

7.3.3 Data set and methodology

We built a dataset using DNS Records from a Passive DNS database provided by two major Internet
providers in Luxembourg in collaboration with the University of Luxembourg. The records give the
associations between domain names and IPv4 addresses. DNS records were collected from 2011-04-23
to 2012-06-30. Due to a non-disclosure agreement, the exact probe location cannot be revealed. To
establish the ground truth, two subsets were extracted from A records (IPv4 addresses):

• a malicious set by extracting DNS records related to domains obtained in the following malware
databases: MalwareDomains 1, Exposure 2 and FIRE 3.

• a normal set excluding domains from the previous set

Domains IP Address

Normal 661968 164559

Malicious 173066 174619

Total 835034 339178

(a) General information

Malware 45%

Phishing 30%

Harmful 13%

Malvertising 4%

Trojan 3%

Others 5%

(b) Malicious domains

Table 7.1: Datasets

As highlighted in Table 7.1(a), we considered that 662k normal domains would be representative.
In comparison, 173k malicious domains were represented. However, the number of distinct IP addresses
is similar, justifying steadiness of the mapping between domains and IP addresses as a relevant metric.

The blacklists constitute the ground truth in our experiments and correspond to malicious domains
(details in Table 7.1(b)). As the blacklists may contain errors, a bias may be introduced. Another
solution, largely leveraged in related work like [26, 105], is whitelisting using Alexa 4 which ranks the
top 1,000,000 websites by access count. However, this inevitably results in a strong bias as it represents
popular sites, which are highly constant by nature. To keep our evaluation valid, such an approach
was rejected.

1
http://www.malwaredomains.com/, accessed on 15/03/2015

2
http://exposure.iseclab.org/, accessed on 15/03/2015

3
www.maliciousnetworks.org/, accessed on 15/03/2015

4
http://www.alexa.com/topsites

http://www.malwaredomains.com/
http://exposure.iseclab.org/
www.maliciousnetworks.org/
http://www.alexa.com/topsites
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Figure 7.5: Cumulative distribution functions of nodes according to steadiness values

7.3.4 Steadiness Distribution

In this experiment, the validity of the proposed metric for evaluating the steadiness in Section 6.4.3
was verified.

For the complete dataset, the local steadiness of the nodes was computed using equation (6.5) over
the two disjoint datasets: malicious and normal domains gathered from the passive DNS database. For
each dataset, the aggregation relies on a time window (η) of one week and an aggregation threshold
of 2% (α). This tuning is the same for following subsections, unless otherwise mentioned, and was
determined at by running preliminary experiments over a small sample of data.

By considering every tree (and so every week), Figure 7.5 shows the cumulative distribution of
nodes regarding their steadiness (buckets of [i; i+ 0.1] have been constructed). In both distributions,
there is a significant increase on the highest values of steadiness. This phenomenon occurs because
some generic nodes qualified at the higher levels exhibit a high steadiness independently of the dataset.
For example, the .com domain and 0.0.0.0/0 are always present.

For normal domains, the curve continuously remains increasing beyond 0.75 unlike malicious do-
mains. This means that there is a significant proportion of nodes having a steadiness higher than 0.75
for normal domains.

Nevertheless, there is one intermediate high increase, at 0.5 for the malicious dataset and at 0.75
for the normal dataset. Therefore, the steadiness metric is able to reveal the differing impact of
malicious and normal domains in constructed trees.

7.3.5 Steadiness Evolution

While the previous experiment assessed the steadiness of nodes independently of time, the next ex-
periment considered macroscopic steadiness (equation (6.6)) of the trees over time. To conduct this
experiment, 10 consecutive weeks, from 2011-07-09 to 2011-09-24, were chosen, since they represent
the greatest number of records. The total size of the dataset for 10 weeks is 81806 DNS Records (both
malicious and normal domains).
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For this research, we were interested in observing how steadiness varies when different percentages
of malicious domains are present. Thus data sets were generated by injecting records of malicious
domains into the normal dataset. In this way, it was possible to create datasets with various propor-
tions (0.1%, 1%, 10%) of malicious domains, so strengthening the validation. It is important to note
that this was not a random injection since we mixed datasets by respecting the time scale, i.e. only
data of from the same week i from both malicious and normal datasets was mixed. Consequently, it
was not always possible to reach the desired proportion of malicious domains. However, this different
proportion of malicious does not variate significantly to cause bias. This is equivalent to evaluating
our approach in worst case conditions. In order to compare results to a baseline and contrast the
variation in steadiness, the steadiness evolutions for purely malicious and for normal domains were
calculated.

In Figure 7.6, the average steadiness is smoothed using a sliding window: the value at week i
is the average from week i − 2 to week i + 1. The chart represents the average steadiness of the
ten consecutive trees except for the first, since its steadiness cannot be calculated with respect to a
previous week (according to equation (6.5)). The results for pure datasets (normal and malicious)
are easy to distinguish. Although the normal dataset shows a fairly steady value around 0.85, the
malicious one reveals variations between 0.65 and 0.83. Generally, as expected, the steadiness of trees
constructed from malicious domains is lower and varies considerably, meaning that the steadiness of
malicious domains differs from one to another more that is observed for normal ones.

When both malicious and normal domains are mixed together, steadiness is impacted and the
values are logically lower than when only the normal dataset is used. Since data from malicious and
normal domains can be aggregated into shared nodes, there is however no clear ordering between
the curves, i.e. the curves may cross. But even with only 0.1% of malicious domains injected into
the normal database, steadiness is lower than for the normal domains. Therefore, this experiment
confirms the viability of steadiness, as we have defined it, as a discriminative feature for tracking
malicious domains.

7.3.6 Macroscopic Steadiness during attacks

In the previous experiment, malicious domains clearly impacted steadiness, but the differences could
be very low (see weeks 8,9 in Figure 7.6). However, a monitoring system should detect an anomaly
when it occurs, whereas the previous experiment focused on the continuous presence of malicious data.
Assuming a clean database to initialise the system (as we did with blacklists), this experiment shows
that steadiness drops in the presence of malicious data.

The dataset used in this experiment was made by first aggregating 40 consecutive weeks, then
every 5 weeks, malicious domains related DNS records were injected for the next 5 consecutive weeks.
The periods where malicious domains are included are annotated as Attack in Figure 7.7.

It can be seen that there is a drop in average steadiness correlated when malicious domains are
injected. At the right of Figure 7.7 the tail of the chart appears to remain stable, which seems to be
due to a steadiness that has remained low even without malicious data (weeks 30 - 34). This might
be interpreted as a false positive in the context of anomaly detection. It could be due to limited
knowledge provided by blacklists, which cannot guarantee 100% coverage of all malicious domains in
our passive DNS database.
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Figure 7.6: Comparision of average steadiness for 10 weeks period

Figure 7.7: Macroscopic evaluation of average steadiness for 40 weeks alternating DNS Records con-
taining malicious domains every 5 weeks
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7.3.7 Detection

Although the previous experiment allowed the detection of windows containing anomalies (malicious
domains), detecting the exact anomaly is more interesting. The goal of the next experiment is to
determinate an experimental threshold such that nodes having a steadiness lower than this threshold
can be identified as malicious, since Figure 7.5 shows that most of nodes related to malicious domains
are less steady than normal ones.

Due to the aggregation scheme, both abnormal domains and IP addresses can be detected. How-
ever, obtaining a representative blacklist of IP addresses is quite unfeasible as most of services offer
limited online checking 5 or simply block entire countries or regions. Therefore, our evaluation relies
on the blacklists we described in Section 7.3.3, which contain only DNS names.

As the blacklists only include the FQDNs of final hosts, there is no ground truth for entire domains.
Hence, any assessment of our detection scheme can only be based on the final domain nodes, i.e.
the nodes in the tree representing final names like $.*.ROOT. Such nodes mostly correspond to leaf
nodes, which are usually collapsed into their ancestors during aggregation. Hence, α is set to zero
to preserve entire trees and so track suspect domains at a specific time. Nevertheless, the steadiness
of corresponding final domain nodes still takes the tree of the previous time window into account,
possibly leading to computing the similarity in equation (6.1) with a non final domain node. Thus,
when evaluating steadiness at time i, the previous trees are still aggregated (α > 0). Therefore, the
steadiness metrics retain the advantage of aggregation and provide a richer comparison than with
either DNS names or IPv4 Addresses (as for example with pair-wise comparisons).

Figure 7.8 shows the cumulative distributions of final domain nodes according to the local steadi-
ness. Supposing a steadiness threshold, the curves representing malicious and normal domains can be
considered respectively as the True Positive Rate and False Positive Rate.

As shown in Figure 7.5, a steadiness of 0.5 seems to characterize malicious domains. Setting the
threshold to 0.5 is equivalent in Figure 7.8 to detecting 73% of malicious domains malicious domains
with fewer than 1.6% of false positives. While 1.6% may represent too high a number of false positives,
our approach can be considered as a means of selection suspicious domains for further checking with a
more in-depth investigation like to MalwareDomains 6. Furthermore, 0.45 is a better value according
to Figure 7.8 as the same true positive rate (73%) can be achieved with only 0.3% of false positives.
This represents a highly acceptable result.

7.3.8 Performance

To compute the steadiness of a node in a tree, the worst case may need to iterate over all nodes
of the previous tree following the process described in Section 6.4.3 (linear complexity), leading to a
quadratic complexity if the steadiness of every node is evaluated (equivalent to pair-wise comparisons).
Hence, the number of nodes is the main parameter which impacts on scalability and this depends on
the aggregation threshold α.

We can observe in Table 7.2 that the tree size decreases as α grows. Since the steadiness evaluation
is performed after aggregation and depends on the size of the tree (number of nodes), this helps in
improving scalability. If the scalability and memory consumption are critical factors, the tool is still

5As an example, the Spamhaus Project, www.spamhaus.org/
6
http://www.malwaredomains.com/

www.spamhaus.org/
http://www.malwaredomains.com/
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Figure 7.8: Cumulative distribution of local steadiness of final domain nodes equivalent to the true
positive and false positive rates assuming the x-axis as the threshold for considering a domain as
normal

Table 7.2: Average tree size

α 0% 2% 5% 10%

Average #nodes 84651 2238 1755 1525

usable, since the number of nodes after aggregation at the end of a time window is drastically reduced.
The average tree size is around 2200 nodes with the default parameter used in previous experiments
(α = 2%) which thus greatly limits the overhead when computing the steadiness, even though the
complexity is quadratic in the worst case. For reference, the average number of distinct IP addresses
and domains per week are respectively around 13000 and 5300.

Assuming now the previous case for detecting malicious domains (Section 7.3.7), the number of
comparisons is given by the number of leaf nodes (final domain names) multiplied by the number
of nodes in the previous aggregated tree, which corresponds to an average of around 14400 × 2200
comparisons considerably fewer than a pair-wise comparison of leaf nodes (140002).

7.3.9 Conclusion

In this section, we validated the efficiency of our approach based on aggregated multidimensional trees
to study the mapping between IP addresses and domain names. Thanks to the aggregation scheme,
the volume of data to analyze is reduced and distributed behaviours can be identified more easily,
which is helpful in the security context. It is useful in tracking entire harmful IP subnets or domain
names while keeping the computational overhead low. We have validated through short and long term
experiments the capability to outline anomalies by using a specific metric to study the steadiness
of time series of trees produced by MAM. The evaluation on real data has proven its efficiency for
detecting global abnormal changes (macroscopic steadiness) and for tracking specific domains and
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IP subnets which are responsible for them (local steadiness). We have observed that evaluating the
steadiness of domain names may become a major asset for characterizing malicious domain names.
In order to calibrate the threshold for our approach, we studied the steadiness distribution of both
malicious and normal domains. Simultaneously, we observed its variation while changing the malware
proportion in the dataset. We were able to classify malicious domains with a True Positive Rate of
around 0.75 while keeping a low False Positive Rate of 0.03.

Scalability has also been assessed, we have validated that aggregation reduces significantly the
volume of data, with a low information loose in terms of specificity. The size of aggregated trees was
in average an order of magnitude smaller than the size of non-aggregated trees. In particular, as the
aggregation threshold variates. Therefore, we validated that our methodology is efficient for analysis
and reducing the post processing time requirements.

7.4 Crowd-sourced location-based applications for vehicular routing

7.4.1 Introduction

In this section, we introduce the validation of our methodology for monitoring and analysis of crowd-
sourced position-based applications. Assuming the context of an application for vehicular routing and
personal navigation, we present experimental results for anomaly detection in reported geographical
positions. As introduced in Section 6.5.1, our methodology consists in monitoring the geographical
positions reported by users from a global scope. Aggregation allows us to keep track of global traffic
events such as congestion, or high vehicle density areas. We perform plausibility checks on the series
of aggregated trees generated by MAM to look after incoherent changes in traffic patterns, as for
example, sudden appearance or disappearance of clusters of vehicles. In our approach, the focus is set
on significant traffic changes caused by large vehicles groups, and not in checking individual vehicles
at a microscopic level.

The metrics used in our approach evaluate how stable or coherent is a given traffic state (aggregated
tree) within a window of time. Therefore, we use a metric based on the similarity of trees, which is
calculated pair-wise. We use a sliding window to compare consecutive trees, in order to detect unlikely
(unstable) changes.

For the experimental part, we first generated traces of normal traffic using simulated urban mobility
patterns. Then, we developed an attack model allowing to inject spoofed positions with parameters
such as frequency, radius or time length. We conducted a series of experiments to study the impact
of the attacks on the average stability metric on aggregated trees. Additionally, we validated our
approach to mitigate the impact of the attack, by removing the flowed positions which are identified
by the sudden changes of stability in the nodes of aggregated trees.

7.4.2 Scenario

Traffic Simulator

The simulator SUMO (Simulation of Urban MObility) [179] was used in order to generate vehicle
traffic flows in an urban environment. SUMO is an Open Source traffic simulator used in many
relevant research in the field [180–182].
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Urban Scenarios

Our evaluation is based on two scenarios to represent different possible urban topologies. A Manhattan
mobility model relies on a grid road topology and is representative of modern cities especially in North
America. In order to have a good trade-off between SUMO performances and representativeness,
the grid road topology is bounded to a 5 km × 5 km square containing regular 100 meters length
blocks. Because such a topology is not representative of old European cities. We included the city
of Luxembourg as a complementary approach for simulating traffic. For fairness, the Luxembourg
scenario is also bounded to a 5 km × 5 km which is centred in the city centre. This is obtained using
OpenStreetMap7.

7.4.3 Traffic Simulation

For simulating traffic in both scenarios, a random mobility pattern is used. It consists in defining,
for each normal vehicle, a random departure and an arrival street point. In addition, when the car
arrives at its destination, its location information is not provided any longer to mimic a real vehicle.
For both scenarios we generated traces for 10 consecutive hours. A total of normal 220,000 vehicles
were injected along the simulation. The number of misbehaved vehicles (spoofed locations) is then
dependent on the simulations as explained in next sections. For being realistic, the cars are not
injected simultaneously but also at a random number, every seconds. Around 20833 new cars are
injected every hour as highlighted in Table 7.3, which gives also some other characteristics of the
datasets. Moreover, each vehicle reports its position every second.

Manhattan Luxembourg

Total Cars 220,000 220,000

New cars per hour 20833.33 20833.33

Average Car per Block 8 11

Average Speed 15 17

Average Car Trip Time 12 min 8 min

Table 7.3: Simulation Performance in numbers

7.4.4 Malicious Traffic Data Generation & Injection

Malicious traffic was injected in order to extend each original dataset during our experiments. The
main principle consists into injecting faked reported positions of vehicles in a predefined area which
thus mimics spoofed vehicles in this area. Therefore, the following parameters are used:

• Time: the time interval to perform the data generation.

• Center: the center of the area where faked vehicles are injected

• Radius: the radius size of the area where faked vehicles are injected

7
http://www.openstreetmap.org/

http://www.openstreetmap.org/
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• Volume of cars: overall amount of injected vehicles.

• Frequency: proportion of vehicles per time unit to be injected regarding the number of normal
cars.

The injection takes in consideration the map topology for creating vehicles at valid locations.
Besides, the traffic injection models may generate spoofed location attacks against multiple areas. To
achieve that, several locations (center and radius) can be defined. In such a case, the volume of cars
and the frequency of data generation are global to all targeted locations. In our experiments, the
radius is fixed to 500 meters the number of targeted locations is 2 for the Luxembourg scenarios and 3
for the Manhattan scenario. We deliberately choose small values in order to strengthen our approach
by considering targeted attacks unlike global attacks that could impact all the map and so be highly
visible.

As highlighted in Section 6.5.1 in page 87, a unique identification of every vehicle would be helpful
but does not sound plausible as we are focusing on open crowd-sourced applications relying on a non
dedicated infrastructure. This eases the task of the attacker to create faked identity as many as he
desires. In addition, drivers and so vehicle identification is a major privacy issue. We implemented
the most general model without identifying vehicles but only targeted areas which thus conforms to
our detection approach.

7.4.5 Experimental Results

In this section, experimental results are presented. The first experiment was conducted to evaluate
the impact of the attacks on the stability and so to show that a threshold-based technique (θ) is
viable. The second experiment assesses the impact of injection within different topologies. The third
experiment is dedicated to the localization of the attack and its recovery. Then, this section also
highlights the gain of using the aggregated trees compared to individual vehicle positions.

Preliminary experiments help in identifying good parameter values for the aggregation threshold
α = 2% and the sliding window size S = 5 for computing stability.

Window size impact

In order to characterize regular traffic stability, Figure 7.9 compares the average stability when there
is no attack and when 10% of faked vehicles are injected. As mentioned before in this experiment we
aim to asses the impact of β (time aggregation window). This experiment considers a Manhattan grid
topology and the window size is successively fixed to 120, 300 or 600 seconds. The average stability
shown in Figure 7.9 is computed over ten independent simulations. Regardless the window size, the
average stability when an attack occurs is always different and so an attack could be easily detected.
Next section considers more stealthy attack with less faked vehicles. However, as illustrated in the
Figure 7.9 and especially in Figure 7.9(c), increasing the window size improves the separability of the
curves which thus will help in detecting the attacks. In fact, this discards local bias by merging much
position data. However, this will delay the attack detection until the time window ends. Assuming
a standard context of road traffic monitoring, 600 or 300 seconds seems reasonable and provides
good results in Figures 7.9(b) and Figure 7.9(c). Therefore, such values for β are used in the other
experiments.
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(c) β = 600 seconds

Figure 7.9: Average Stability for 10 hours simulation on a Manhattan Grid without attack or with
10% of injected data
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(b) Luxembourg topology

Figure 7.10: Average Stability with various attack level, β = 600 seconds

Initialization

Attack
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Figure 7.11: Attack injection with recovery phase, β = 300 seconds, Manhattan topology
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7.4.6 Attack Identification

In this experiment, β = 600 seconds and the objective is to assess the impact of the attack injection
level, between 0.5% and 20% of normal vehicles. In Figure 7.10, both the Luxembourg and the
Manhattan scenarios are considered. The curve on top of each graph represents the average stability
as defined in equation (6.8) when no attack occurs. In such a case values are between 0.85 and 0.95.
Logically, when the attack aggressiveness increases, the average stability drops in higher proportion.
However, considering 10% of spoofed vehicles, reaching a limit of disturbance for this experiments.
On a tiny scale with only 0.5% injection (the number of vehicles injected correspond to 0.5% of total
volume of cars), the average stability is lowered around 0.7 and so clearly distinguishable from normal
ones. Therefore, setting θ = 0.15 in algorithm 6 is enough to detect stealthy attacks independently of
the topology.

7.4.7 Recovery

Previous experiments show that establishing a threshold experimentally is viable. It can be easily
determined through learning and past observations of the stability when no attack occurs. Assuming
that an attack is detected thanks to this method, this section assesses the ability of our system to
recover to a safe state by sanitizing the data from spoofed reported locations. In algorithm 6, this
corresponds to remove unstable leaf nodes. Using θ = 0.15 as previously established, Figures 7.11
and 7.12 depict the average stability before the attack, during the attack and when the recovery is
performed. When the attack is launched starting from time window 40. Until the time window 75
the attack causes a massive drop of average stability and also produces a great oscillation. In the last
phase of the sequence, recovery phase is launched. Despite the attack continues, by removing nodes
responsible for the average stability decay, the stability is restored to acceptable values. In reality,
recovery phase should start earlier (when the attack is detected) and we voluntary delayed it in this
experiment to highlight the changes in the stability value. This experiment was performed using a
simulation for Manhattan Grid during 5 hours. α was set to 0.2 and the time window size to 300
seconds.

Initialization

Attack

Recovery

Figure 7.12: Attack injection with recovery phase, β = 300 seconds, Manhattan topology
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While restoring an acceptable stability is simple by removing leaves until the difference between the
past observed stability is under the variation threshold θ, it is important to evaluate if the discarded
data properly belongs to the attack (true positives) or not (false positives). This is evaluated in
Figure 7.13 by calculating the True Positive Rate (TPR) and False Positive Rate (FPR). FP are due
to random normal traffic which, at some high attack rates, can be interpreted as an alert.However,
most of them occur with excessively high attack rates.

Figure 7.13: Threshold detection for simulation containing attacks with up to 10% of increased traffic

The FP represents the real road traffic that will be discarded and so can have an hight impact on
monitoring, undetected traffic jam for example. Such examples can be more discussed to show how FP
may impact applications. Where we assess a “single” attack, it corresponds to test every individual
one separately, and then compute an average, but all are tested. The FPR and TPR are calculated
based on the stability value of the leaf nodes. For instance, assuming θ = 0.15 and a normal stability
around 0.9 as highlighted in the first phase of Figure 7.12, this means that we are considering an
absolute threshold of 0.75. In such a case, the TPR reaches 89% with less than 27% of false positives.
FPR can be drastically reduced using a smaller threshold like 0.4 which leads to a TPR equal 75%
and FPR equal 4%.

7.4.8 Performances

As discussed in Section 3.4, page 37, a simple approach could verify if two vehicles are at the same
position but this needs further refinement to be viable. However, considering that such a case is

possible, this entails to verify pair-wise vehicles. Hence, with V vehicles,
V (V − 1)

2
verifications have

to be done. For computing the stability of all nodes of a tree, detecting anomalies and recovering, it
has been shown that the complexity is O(n2) in section 6.5.3, assuming n as the number of nodes in
a tree. From a theoretical complexity point of view, this is similar to consider complexity assuming
individual vehicles (quadratic complexity in both cases) but, in practice, the tree size is highly lower
than the number of vehicles due to the aggregation process. Especially, Figure 7.14 highlights the
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Figure 7.14: Number of cars and size of the trees, 10 hours simulation, β = 600 seconds

number of individual vehicles and the size of the trees. The latter is at least 1760 and varies around
2000. In contrast, the number of cars is always around 20,000 which leads to around 200 millions
comparisons. This is ten times more than using our tree-based approach when S = 5 (5× 20002). In
addition, our process also includes the recovery mechanism and so is not only limited to the detection.

7.4.9 Conclusion

This section described the validation of our approach for monitoring position-based services, in partic-
ular targeting location spoofing attacks. We validated also a recovery mechanism that can be applied
in the context of services as those used in many vehicular applications. We first validated the efficiency
of our proposed metrics on multidimensional trees to discriminate between normal traffic and position
spoofing attacks. In our first experiments we observed that, the attacks have a significant impact on
the average stability of aggregated trees representing the traffic state. Also, we validated that using
a threshold-based technique was viable for detecting position spoofing attacks. Further experiments
were carried out removing the unstable elements from the trees as recovery technique to mitigate the
consequences of an attack.

Additionally, we validated our aggregation approach using various threshold values and window
sizes in order to observe and characterize changes in regular traffic stability. We observed that regard-
less the window size, the average stability always drops when an injection is carried out. In particular,
the changes in the average stability become more notorious as the window size increases. Also, we
observed that the stability drops, even with a small proportion of injected vehicles. We were able
to localize the attack by identifying the nodes in trees causing the stability to drop. Therefore, we
validated our approach to safely remove most of the anomalous data while discarding very few benign
data.

The scalability of our approach was also addressed in our experiments. Using several urban topolo-
gies for simulation and analysis, we were able to observe that the volume of data to analyze was greatly
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reduced by using aggregation.
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Chapter 8

Flow Management

8.1 Introduction

In this section we show and discuss the results of the evaluation of our approach to leverage network
awareness in a SDN cloud-based environment to apply flexible applications-based policies for security
requests, availability and performance. To evaluate our approach we first defined a Test bed to host
virtual machines and its applications, and evaluate the impact that different policies may have on
the performance of flows. We used system and network metrics to study performance changes in
terms of computing and networking in several scenarios. For the measurement of system (computing
and memory) performance we based our metrics on the native Linux benchmarking tools. For the
network performance measurement, we based our metrics in the real throughput obtained during the
experiments.

Our experimental validation was conducted in two main phases. Firstly, we have conducted a proof-
of-concept experiment to evaluate the feasibility our approach and therefore validate the viability of
application-level network awareness using the Augmented controller and the SNDS service. Secondly,
we studied its efficiency and the global impact on performance (in terms of CPU and memory , and
in terms of network). We set up a scenario for testing and benchmarking the implementation of
application-level policies. To avoid bias caused by any specific type of application, we performed our
evaluation with several types of applications.

8.2 Test Bed

In this section we describe the Test bed used for the experimental part. This test bed was built to
mimic the behaviour of a larger network, with a larger user base and applications running, however
the cost of building such a network either virtual or physical is very high. Despite its size and
restrictions, our test bed is able reflect how priority and access policies take effect and impact the flow
performance. It’s important to mention that our choice on software was based on the requirements of
the SDN Service. We developed a scalable virtual network using the following network configuration
for evaluation and benchmarking, as illustrated in Figure 8.1:
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OpenFlow	Switch

Mininet	Network	
Simulator

Floodlight	SDN	
Controller

Openflow	Switch

Virtual	Machines	
Network

Augmented	
Controller

Figure 8.1: Example of a configuration for our Test bed

• SDN Controller: We choose Floodlight Network Controller [173]1 as SDN Controller because of
its flexibility implementing rules and its external API.

• OpenFlow Switches: OVFSwitch [183] is an open source virtual switching software, to emulate
OpenFlow capable devices for packet forwarding.

• Virtual Machines Network: Based on Virtual Box2 Virtual Networking, where we plugged the
virtual hosts running the the SDN Service and the benchmark applications.

• Network Simulator: implemented using Mininet [184], we used Mininet Network Simulator to
emulate a large network of similar hosts running a reduced Linux version. We used this part of
the test bed to perform performance and overhead experiments.

• Augmented Controller: it was deployed on a virtual machine running Ubuntu 14.04 LTS (GNU/Linux
3.13.0-32-generic x86 64)

8.3 Methodology

The evaluation of our methodology is split into two main categories:

• Networking Performance: We collected data to evidence the network impact of the Augmented
Controller in terms of networking metrics, such as Bandwidth, TX Packets and Lost Packets.

1http://www.projectfloodlight.org/floodlight/
2http://www.oracle.com



Flow Management 121

• Host’s Computing Performance: We collected CPU and RAM consumptions, mainly to evaluate
the impact of the SDN Service in term of computing resources.

For evaluating the networking performance of our methodology, we decided to use diverse applications,
to represent a heterogeneous network usage. Among them: Iperf [185], Apache2 HTTP Server, Pidgin
and Links. The reason for choosing such applications, is to propose a set of applications to evaluate
and asses different and diverse network traffic patterns. However, the vast majority of the results
presented in this work correspond to those obtained using Iperf. Thus, the usage of Iperf allows to
quickly retrieve standard metrics. Therefore, our results are comparable with other results from other
existing work mentioned in Section 4.4.1.

For evaluating the Host’s system performance and the impact caused by the SDN Service (ie: Linux
Daemon), we decided to use the native operative system resources. We recorded the consumption of
CPU and RAM during the total length of the experiments. The tool used is the command ps.

In order to meter proposed work performance, we recorded CPU and memory consumption per
processes as a standard practice. Additionally, most of the results of CPU and memory that are
showed in this work are normalized. During this work, all the applications were run on a multi-core
architecture but without using a concurrent model. The reason behind of this decision is to keep the
results as representative as possible.

8.3.1 Scenarios

The following scenarios were used to evaluate our approach for application-level network awareness.
Since we are interested in showing results of the impact on for both system and network performance,
we have included scenarios recreating different situations. To evaluate the impact on system perfor-
mance we focused on recreating an heterogeneous use of the system, by running the following multiple
purposes applications

• a web browser and server, to recreate flows where multiple resources are downloaded initially.

• an Internet messenger to recreate flows of small packages in a stream-like pattern.

• Iperf application to recreate bandwidth intensive applications, to emulate large data transfers.

In addition, our scenario targeted at recreating a situation where multiple users make use of limited
resources of the network, in particular the available bandwidth and available links. We designed a
scenario with two users (User A and User B) and, a priority policy in favour of one of them. Despite
the scenario is succinct, it is representative enough. In particular to show how changing the priority
of a user application may affect its network performance in terms of bandwidth available, throughput
and packet loss. In the scenario, both users have the same hardware capabilities, therefore there
is no differences in terms of networking infrastructure. Both users also share the virtual network
infrastructure as peers, without any difference in terms of link capacity.

8.3.2 Metrics

Network Metrics

• Requested Bandwidth: We used as a performance metric the requested bandwidth, by increasing
the size of the data to transfer over time, implemented already in OVSwitch and Floodlight. In
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our experiments, we tested the requested bandwidth against the real bandwidth. This was
observed from the OVSwitch.

• Packet Loss: As a measure of network performance, but also of service degradation, we included
the percentage of packet loss for a given application. This includes all the flows that during the
execution of an application existed in the network.

• System’s Transmitted packets: As an hybrid metric for system and network performance, we
collected the number of transmitted packets per unit of time. This metric is highly versatile and
it can be collected either from the host system or the networking infrastructure.

System Metrics

• CPU Usage: We recorded the usage of CPU as a percentage from the native tools for bench-
marking. Since all the hosts used in our experiments were single core this percentage represents
the global usage of the CPU. Additionally, we computed the CPU usage per application and at
system level.

• Memory: We recorded the usage of RAM memory per application and its global usage while
using the SDNS service and while the service was deactivated.

8.4 Impact on Performance

Figure 8.2: Number of bytes transmitted using Iperf

During this section, we will present a set of results for both metric categories described in Section
8.3.2 (system and network performance). Those results come from running several applications, on a
variable network configuration environment using the metrics described in the section above.
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Figure 8.3: Example of the impact on performance
upon SDN Service usage

Figure 8.4: SDN Service resource consumption

8.4.1 SDN Service Overhead

In this section we target identifying the overall system’s performance impact (in terms of CPU and
RAM) of running the SDN Service in a end-user host associated to several applications. The aim, is
to identify any significant downgrade of system’s performance. This benchmark was performed in the
following method:

• Baseline benchmark: We chose several applications among the test set listed in Section 8.3.1.
We monitored the CPU and RAM consumptions of the applications running in an undisturbed
environment, with no other processes rather than basic system tasks running in background.

• SDN Service running attached to applications benchmark: In this case, we monitored and mea-
sured the CPU and RAM consumption of the SDN Service (running in the host). Additionally,
we conducted an experiment of running an increasing number of processes of the same applica-
tion (in this case iperf), an monitored the CPU and Memory consumption of the SDN Service.
The results are explained later in this Section and illustrated in Figure 8.4 and Figure 8.2.

In Figure 8.3, several applications were run with either the SDN Service enabled or disabled. In
case the SDN Service is enabled, these application’s flows are notified to the Augmented Controller in
order to raise network awareness to the SDN Controller. Thus, we monitored the overall impact on
CPU consumption as an aggregated value combining the CPU resources used by the application and
the SDN Service. As a result from this experiment, we observed a steady trend in CPU consumption
between the cases when the SDN Service is enabled and disabled. This steady trend is around an
increase of 2% in CPU consumption.

It is possible to observe in Figure 8.4, the impact of the SDN Service is almost neglected in terms of
the overall resource consumption. This result, allow us to claim that the SDN Service might not cause
a host system performance decay, even in the cases there is a bigger number of processes attached to
it and reporting its flows.
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8.4.2 Network Performance Impact

For evaluating the impact on the network traffic, we run a set of incremental tests using Iperf

Allocated Bandwidth vs Requested

(a) SDN Service Inactive (b) SDN Service Activated

Figure 8.5: Bandwidth Aimed vs Bandwidth Achieved

To recreate a context where different performance policies can be applied to evaluate the impact on
the flows throughput, we designed an scenario with two users (User A and User B), having exactly the
same hardware and software, and in connection with the Augmented Controller. A possible approach
is to establish two different user’s policies to grant a larger use of network resources to one of the
users. To evaluate the efficiency of this approach we first evaluated the throughput of the network
in normal conditions, and then we introduced the policy and meter the network performance using
metrics mentioned in Section 8.3.2. Our scenario, is still representative because is possible to observer
the impact of the policies on network performance from a flow perspective. Additionally, overcrowding
the scenario with more users may not show clearer neither better interpretable results.

The results presented in this section correspond to the metrics obtained by the following experi-
ment:

• In a similar topology as the one illustrated in Figure 8.1, two users (User A and User B) launch
IPerf establishing a bidirectional TCP flow between the host and a IPerf Server running in the
network.

• Initially, User A and User B are both using the network without any QoS, or priority system.
The network available bandwidth will be shared among both of them. This can be illustrated
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in Figure 8.5(a).

• In a next step, User A activates the SDN Service, and it makes a bandwidth allocation request
for the given flow. After this action, the Augmented Controller will interface with the Network
Controller, attempting to allocate the bandwidth resources requested by User A. The results of
this experiment can be seen in Figure 8.5(b).

As it can be observed in Figure 8.5(a) the network capacity is shared equally between User A and
User B. As long as both users increase their bandwidth requirements, the network capacity would
reach its limit and would not match the individual user’s bandwidth expectation. As it illustrated,
the maximum bandwidth achieved per user per flow is limited at 130 MB/s. The applications used in
these experiments are greedy in terms of throughput, an they will saturate the capacity besides the
Test bed capabilities. In part, this is explained by the virtualization technology used (since all the
network interfaces share the internal bus of the virtual host computer). In a bare metal installation
the users should be able to reach the theoretical maximum of the medium. Which, in case of a Gigabit
network will be significantly higher than in our test bed.

In Figure 8.5(b), is possible to observe the allocated bandwidth for the flows belonging to User
A Iperf. Since, for this experiment we introduced a rule to inform the controller to prioritize this
instances Iperf, this is implemented with a QoS queue in the SDN Floodlight controller, allowing
User A to achieve a better network performance than User B. As illustrated in Figure 8.5(b) User
A is still limited by the virtual network capacity but achieved a better network performance in terms
of throughput than User B, which only reaches to transfer at rates of 60 to 80 MB/s. Another
phenomenon observable in the results, is the stability of the transfer once the rules have been made
effective at the SDN Controller.

The implementation of QoS rules can be ported by implementing the rules at other SDN controllers
(such as NOX or POX [186]). Is is important to notice, that once a flow is out in the network there
are not efficient mechanisms for pausing it or halt the responsible applications. However, using the
SDNS Service is possible to synchronize the application (prior modification) in order to make a better
usage of the network resources.

Packet loss

Analogously, to observe how the Augmented Controller in addition with the SDN Service could affect
the Packet loss rate, we conducted a similar experiment as in Section 8.4.2. The topology used for
this experience is similar as the one showed in Figure 8.1. Also, in the same way the Iperf instances
belonging to User A, receive a higher priority, having as a result a lower rate of packet loss.

8.5 Conclusion

In this chapter we have validated of our approach to leverage network awareness in a SDN cloud-based
environment to apply flexible applications-based policies. We first conducted a proof-of-concept to
validate the feasibility of our approach. To validate our methodology and conduct the experiments
we developed a Test bed representing multiple scenarios, including representative applications such as
IPerf, Web Browsers and an Internet messenger.
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(a) SDN Service Inactive (b) SDN Service Activated

Figure 8.6: Bandwidth Aimed vs Packet loss

We were able to observe that the SDN Service and Augmented Controller do not cause a large
impact in terms of performance according to our measurement in network and system benchmarks.
Subsequently, we were able to validate that large performance gain in data transfer rate be achieved by
implementing QoS application-based policies available in our approach. This last result was observed
by measurements of requested throughput, achieved bandwidth and package loose rate. Our approach
consists in an architecture that can be developed into a data centre for optimizing data analytics and
Cloud-based applications. However, it is yet to be adopted by large industry players to see its full
potential.
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Chapter 9

Conclusions and Perspectives

Conclusion

Network Security The initial parts of this thesis described several methods and models to aggre-
gate multidimensional data. The importance of aggregation is highlighted by the growing volumes of
data needed to be analyzed in large networks such as at ISPs level. At such levels, diverse sources of
information are available to report the different types of events that can occur in a network. Hence,
analyzing and correlating the events observed at different levels of the infrastructure become of a
major importance. However, the scale of the volume of information and its diversity can bring strong
limitations to the existing approaches.

The first contribution made of this thesis consisted in methods for monitoring and analysis of
distributed applications combining multiple sources of information in a highly flexible manner, i.e.
the dynamic granularity and multidimensionality of data are deal automatically with few human
exper tuning. For example, to aggregate network traffic from using IP address, defining the size of
the subnet could be required. However, our approach allows the data to be aggregated with a flexible
granularity without pre partitioning the space a priori. A second advantage of our approach consists
in not considering any specific order among the features to aggregate. This is beneficial to network
administrator and data specialists because it eases the data collection process. As for example, a
network administrator could potentially use our approach to analyze traffic patterns without having
to specify if he wants to analyze first source and then destination IP addresses. A third aspect of our
approach is the ability to reduce the scale of data reducing the data loss, this becomes critical for post
processing, where scalability is crucial. With MAM we reduced the scale of large data sets for traffic
analysis and its further evaluation. In particular, we focused on three scenarios (TCP/IP networks,
DNS and crowd-sourced position-based applications for vehicular traffic).

As a first case study, we applied the spatial and temporal aggregation methods to analyze TCP/IP
network traffic in order to leverage anomaly detection. At ISP level, NetFlow-based approaches
for accounting and monitoring are widely used, this is explained by the volume of traffic present
at an ISP. For this case, we introduced a model for representing NetFlow records using several
fields such as IP addresses, port, and application-type, which we analyzed using a multidimensional
approach based on spatial and temporal aggregated tree distance. For this case study, we extended
the notion of edit distance of strings to multidimensional aggregated trees. By studying the dynamics
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of traffic patterns in TCP/IP networks using the tree distance, we developed our methodology for
anomaly detection, which we later validated during experiments using traces from a Luxembourg-based
ISP. The experiments results suggested that our methodology is efficient for detecting anomalies in
aggregated network traffic corresponding to DDoS attacks and TCP Flood. Additionally, during this
case study we validated that the order in which data is used for the tree construction and subsequent
aggregation process does not have a significant impact in the overall process. Our approach can
leverage detection techniques with multidimensional aggregation-based analysis on other domains.

As a second use case, we analyzed and evaluated the match between DNS and IP subnetworks to
find out potential malicious websites. Phishing is a prominent type of Internet-based attack targeting
individuals and used to carry out financial fraud. Simultaneously, FastFlux attacks are also of a
major security concern, since they are carried out to hide the control centre of botnets. Theses types
of attacks operate using a rapid changing set of IP addresses, which are associated one or more domain
names. Several limitations arise while monitoring these types of attacks. Initially, it is difficult to
manage the granularity for monitoring the rapid changing set of IP addresses associated to a suspected
domain name. Additionally, the volume of data to be analyzed can reach large proportions, therefore,
efficiency is of a major concern for detecting these attacks on time. In this scenario, we proposed
to apply multidimensional aggregation, which can cope efficiently with a large volume of data and
flexible granularity to leverage the analysis of DNS records and IP subnetworks. To carry out our
approach, we developed a set of metrics for assessing the persistence over time (steadiness) of the
match between domain names and subnetworks. Therefore, after conducting short-term and year-long
field experiments we were able to validate the efficiency of our metrics. The results of our experiments
suggested that our approach is valid for detecting malicious websites with an acceptable rate of false
positives for a given threshold of steadiness.

Last but not least, a third case study is to use multidimensional aggregation to leverage the
analysis and detection of anomalies on crowd-sourced position-based applications for vehicular traffic.
Nowadays, the high adoption rate of smart phones and GPS-enabled mobile devices has led to a vast
spectrum of mobile applications for vehicle routing and personal navigation. A large portion of these
applications has loose access restrictions; almost any user can subscribe to these applications without a
high cost neither strict identity control. However, in this scenario malicious users may create multiple
fake accounts (Sybil), and forge the theirs positions to alter the traffic estimations. Stricter access
policy can detract users from joining these applications and in some cases it can affect the privacy of
the users. Also, enforcing a plausibility model at the infrastructure level is not trivial, since usually
it is controlled by network operators and not by the application server-side. Additionally, performing
location verification at a mobile device level can be very costly in terms of computing and network
resources. Therefore, assuming a central repository of geo-locations our approach can be used to
analyze the distribution of traffic in an aggregated manner and leverage the detection of anomalies
including position spoofing attacks. To carry our detection approach, we developed and validated
experimentally metrics based on multidimensional aggregated trees. Additionally, we were able to
identify the anomalies and we proposed a method for recovering a portion of the data prior to be
injected with spoofed positions.

Our contributions to network monitoring and security of distributed applications gain relevance in
a context of exceptional increase of network requirements in terms of bandwidth and throughput, as it
was highlighted by many forecasts done recently. This increase also affects the security requirements,
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since more volume of data has to be analyzed and attacks become more complex. In this scenario,
efficient data analytic approaches are needed to leverage monitoring, analysis and evaluation of events,
as for example at an Intrusion Detection System level for forensics and detection. Recent advances in
distributed computing and cloud-based approaches have been proposed in the field of data analytics for
network security and monitoring. Therefore, our approach is to leverage cloud-based applications (in
particular, for data analytics) enabling application-level awareness for Software Defined Networking.

Network Management In recent years Cloud computing has emerged as a solution for centralized
computing and storage of private and personal information. Many cloud-based applications are hosted
in dedicated computing facilities (data centres), which have specific network topologies to match cer-
tain high bandwidth requirements. Simultaneously, distributed computing paradigms as for example
MapReduce have been widely used to maximize the performance of data analytic applications in data
centres. Software Defined Networks play an important role in this scenario by decoupling the control
plane from the data plane, allowing a greater flexibility for defining and applying flow-based policies.
However, an Software Defined Networks (SDN) controller is not able to take fully optimized decision
without knowing about the context of the flows. In this scenario our approach consists in a method
and its framework to leverage application-based policies with network awareness in a SDN-based cloud.
Our framework allows the SDN controller to learn about the flows context and take more optimized
decision. Implementing the framework has validated the feasibility of our approach. The context of
flows is related to the application or the users, which has been its initiator. Hence, we provide an
interface in the network control plane to distinguish between flows based on users and applications.
Our evaluation results also reveal that our proposed framework has very little footprint, while enabling
the network to take much optimized decision to meet QoS requirements of applications. We have also
shown through experimentation that our framework leaves very low compute, memory, and network
footprint.

Perspectives

This section outlines some possible research perspectives open by our contributions. In this thesis we
have introduced a methodology for multidimensional spatial and temporal aggregation. This technique
can be used in many fields for the analysis of events, as for example: accounting, provisioning, security,
forensics or other uses. Our aggregation method is based on a threshold regarding the activity volume
(aggregation α), thus the automatic estimation of the aggregation threshold is a challenging problem.
Additionally, since the multidimensional aggregation process combines multiple sources of information,
setting the threshold based on rules per activity source is also a possible direction for research.

Another research problem could be to carry out an aggregation process using a variable window,
which could be defined by rules on the events, as for example, until certain number of events is reached.
Another possible rule could be until a number of events of a given type or having a given attribute
occurs. For example, until certain number of network packets of a given protocol or host are on the
medium. A variable time window could put in evidence the rate of activity at which events take place,
which would be used to estimate consumption trends in various fields as social networks, distributed
Vehicular Ad Hoc Networks (VANETs) simulations or other computing process with a large number
of communication events.
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A fundamental part of this thesis was the research of data analytic techniques for detection of
anomalies and potentially malicious data. Research problems can be investigated towards more robust
metrics to lower the rate of false positives while performing detection. As for example, in the context of
spoofing position detection in crowd-sourced based applications, a possible improvement is to consider
also the speed. This can reinforce the plausibility checks.

In this thesis we validated our multidimensional aggregation approach in three case studies, which
in the short term they can be extended to not yet fully adopted protocols, such as IPv6 and DNSSEC.
Additionally, a legitimate research problem is to include as additional sources of information text
structure or human language, because it is extremely abundant in the Internet and reflects many
patterns in human behaviours (such as global events as civil events, natural catastrophes and cultural
activities). Additionally, human language could be also interpreted as hierarchical data. This dimen-
sion can be used together with network activity to study the propagation of content and viralization in
social media. Another possibility is to include as a dimension, traces from the applications’ execution
call stacks, which are also hierarchical and sometimes can reach very large volumes of data.

From the computational perspective, some of the algorithms require long run times to yield their
results. A possible optimization is to implement the multidimensional aggregation process in a dis-
tributed fashion. As for example using the framework Hadoop1 to implement it as a MapReduce tasks,
or using Storm2 in a queue-based solution for streaming data. Additionally, this implementation could
be hosted at a data centre using an SDN-based cloud, in which our proposed framework for application
awareness can be also deployed.

From a network management perspective, it is yet to be explored how to leverage application-
awareness in a multi-tenant virtualized data centre. One possible approach can be to establish a
virtual machine QoS policy using our proposed framework to implement it. Another challenging topic
is how to perform resource management to maximize the usage of the resources in compliance with
the application requirements. Using the contributions of this thesis, a promising field is to include at
the application-level the state of the network to orchestrate the launch of MapReduce-based tasks.

1http://www.hadoop.apache.org/
2http://www.storm.apache.org/
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