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Abstract. Leakage-resilient cryptography aims at capturing side-chan-
nel attacks within the provable security framework. Currently there exists
a plethora of schemes with provably secure guarantees against a variety
of side-channel attacks. However, meeting the strongest security levels
(resilience against continual leakage attacks) under the weakest assump-
tions leads currently to costly schemes. Additionally, recent results show
the impossibility to achieve the strongest leakage-resilient security levels
for cryptosystems whose secret key is uniquely determined by its public
key.
The above justi�es the use of stronger assumptions to achieve simpler,
more e�cient schemes, since most deployed and practical cryptosystems
satisfy the above-mentioned uniqueness of the secret key property. In
particular, the Schnorr-based leakage-resilient digital signature schemes
proposed up to now are built by gluing together `-copies of the basic
signature scheme, resulting in a public key that admits exponentially-
many secret keys. Furthermore, the space needed to store the secret key
material is proportional to the leakage tolerated by these schemes.
We aim at designing a leakage-resilient variant of the Schnorr signature
scheme whose secret key's storage space is constant, independently of the
amount of leakage that it can tolerate. We assume that at any given time
only the parts of the memory in use leak (split-state/only computation
leaks information model); we ease the problem of exhibiting a security
reduction by relying on generic groups (generic bilinear group model).
We proceed by �rst proposing a pairing analogue of the Schnorr signature
scheme, that we next transform to include split signing key updates. We
give a leakage-resilience lower bound in generic bilinear groups against
continual leakage attacks for the new scheme.

Keywords: Digital signatures, generic group model, leakage-resilient cryptog-
raphy, continual leakage, e�ciency, min-entropy.

1 Introduction

Over the last 30 years the theory of cryptography has been robustly built. It
started with the proposal of simple, elegant and sound de�nitions [19,13,20], it



was followed by plausibility results under the weakest assumptions, and currently
culminating in the practical constructions used nowadays by the information
security community [1].

Concurrently, the theory and practice of cryptanalysis has been no less suc-
cessful. In particular, the exploitation of the physical nature of the devices where
cryptographic primitives are run, pioneered from an academic perspective in
[24,25,9], has rendered many of the beautiful and theoretically robust construc-
tions broken. Typical examples of side channel information are the analysis of
primitives' running-time, power consumption or electromagnetic radiation leak,
to name just but the most well-known.

The area of provable security that provides security reductions even in the
presence of secret key leakage is called leakage-resilient cryptography and it has
been an increasingly active �eld in recent years. In this work we assume leakage
to be continual leakage, i.e. the useful leakage data per signature invocation
is bounded in length, but unbounded overall; and adhere to the independent
leakage/split-state model, meaning that the computation can be divided into
rounds, where each such round access independent parts of the memory that
leak independently.

The continual split-state leakage model has been previously used in the works
[15,31,23,16,18,26]. The �rst assumption is restrictive but overall reasonable; in
practice many side-channel attacks only exploit a polylogarithmic amount of
information. The second assumption allows us to divide the memory of a device,
at every computing step, into two parts - an active and a passive part. The part
of the memory being currently accessed by a computation is the active part, and
only the active part leaks information at any given time. We stress that even if
leakage is local with respect to each part of the memory, it still captures some
global functions of the secret key, for instance any a�ne leakage function. We
refer to the work by Dziembowski and Faust [14] and by Faust et al. [17] for a
discussion on the signi�cance and limitations of this leakage model.

In the last few years the interplay between provable security and side-channel
attacks has experienced great progress, as the works [22,16,8,11,27,7] bear wit-
ness for the case of digital signatures. However, the schemes that do not use
any idealized assumption (random oracle, generic groups), are much more in-
volved than their non-leakage counterparts and depart signi�cantly from the
schemes in the standard cryptography tool-box. Interestingly, recent work by
Wichs [38] seems to indicate that it might be impossible to achieve contin-
ual leakage-resilience for cryptosystems whose secret key is uniquely determined
by its public key, unless we weaken the security model. Furthermore, existing
strongly secure proposals are not yet e�cient enough. A rough estimation of the
e�ciency of current leakage-resilient schemes is that they are a linear number of
times in the security parameter slower than their non-leakage counterparts.

In this work we study a signature scheme secure against continual leakage in
the split-state model that builds on the Schnorr signature scheme [33]. Notice
that several works [21,3,16] have already built leakage-resilient signature schemes
based on Schnorr. All of these works con�rm the �nding by Wichs: they are



built by gluing together several copies of the basic Schnorr signature scheme (a
technique that was �rst used by Okamoto [30]), and thus given its public key
there are exponentially many possible secret keys. The works [21,3] only allow
a bounded leakage during the life-time of the protocol, although in their model
every part of the memory is susceptible to leak (as opposed to the split-state
model); the work [16] uses the split-state model and allows roughly 1/36 leakage
ratio at every signing step, but the number of signature queries is bounded in
advance. Our goal is to provide a Schnorr-like signature scheme where the secret
key material to be stored is constant at any time, since in the aforementioned
works the secret keys' storage is proportional to the leakage ratio allowed. In
particular we propose a scheme where the secret key is uniquely determined by
its public key, the secret key consists of only two group elements at any given
time and it is unforgeable even if the number of adversarial signature queries is
not known in advance.

Our positive results are of course far from the ideal achievement, that is,
to prove leakage-resilience of the original Schnorr scheme instantiated over any
cryptographic group G where the discrete logarithm problem is assumed to be
hard. However, this is presently out of reach using standard techniques [38]. This
is why we state our theorems with respect to a transposition of the modi�ed
Schnorr signature scheme to pairing groups, where the secret key is no longer
x ∈ Zp but X = gx ∈ G, where G is the base pairing group with e : G × G →
GT . This allows us to use an idealized model of computation called the generic
bilinear group (GBG) model that will ease our analysis. We proceed by �rst
showing that our transposition of the Schnorr signature scheme to pairing groups
is existentially unforgeable [20] in the GBG model. This is achieved by showing
that the security reduction in the generic group model [36] for elliptic-curve based
Schnorr signatures recently given by Neven, Smart and Warinschi [29] can be
translated to the GBG and allows to deal with data leakage. Secondly, we modify
the pairing-based Schnorr scheme by multiplicatively sharing X = X1 ·X2, where
X1, X2 ∈ G, and by breaking the signing scheme into two phases, each one using
the corresponding share X1 or X2. Again, at each new signature invocation a
fresh sharing (X ′1, X

′
2) of X is computed. Our main theorem (Theorem 2) states

that allowing λ bits of leakage at each phase of every round overall decreases the
security of the scheme by a factor of at most 22λ in our leakage model.

The GBG model has been previously used for stating leakage-resilience prop-
erties by Kiltz and Pietrzak [23], and Galindo and Vivek [18]. Kiltz and Pietrzak
propose a bilinear version of the ElGamal key encapsulation mechanism which
enjoys provable leakage-resilience in the presence of continual leakage. Their
scheme is very e�cient, less than a handful of times slower than standard El-
Gamal. Galindo and Vivek propose a leakage-resilient existentially unforgeable
signature scheme based on the Boneh-Boyen identity-based encryption scheme
[4]. Their scheme enjoys e�ciency and leakage-resilience properties similar to
the scheme by Kiltz and Pietrzak. Our Schnorr-like scheme has e�ciency com-
parable to that of Galindo and Vivek's scheme. Additionally it is so far the only
Schnorr-based leakage-resilient scheme whose secret key is uniquely determined



by its public key (thus bypassing the impossibility result by Wichs [38] at the
cost of the GBG assumption), and the secret key material storage is constant
and independent of the leakage rate (two elements in the pairing base group G).

Organization of the Paper. We start in Section 2 by recalling some basic
facts and de�nitions. In Section 3, we introduce a bilinear variant of the Schnorr
signature scheme and prove its security in the GBG model. In Section 4, we split
the secret state of the bilinear Schnorr scheme and prove its leakage resilience
under continual leakage in the GBG model. Finally, we conclude in Section 5 by
summarizing the achievements and limitations of our methodology.

2 De�nitions

In this section, we recollect some basic notions of security of signature schemes,
bilinear groups, and the generic bilinear group model. We also describe the model
of leakage we shall consider in this paper and formulate a de�nition of security
of signature schemes in the presence of continual leakage. We adapt the leakage
model speci�ed in [23] to signature schemes, exactly as done in [18].

Let Z denote the set of integers and Zp (p > 0) denote, depending upon
the context, either the set of integers {0, 1, . . . , p− 1} or the ring modulo p. We
denote a random sampling of an element a ∈ A from a set A, and also denote
a (possibly probabilistic) output of an algorithm A, by a ← A. If we want to
explicitly denote the randomness r used during the sampling/output, then we

do so by s
r← S. Unless otherwise mentioned or implicit from the context, any

sampling is from an uniform distribution. The symbol � :=� is used to de�ne a
notation in an expression, as in A := Z, or to explicitly indicate an output of a
deterministic algorithm or a function.

A signature scheme Π = (KeyGen,Sign,Verify) consists of three probabilistic
polynomial-time algorithms KeyGen, Sign, and Verify. Let κ denote the security
parameter. KeyGen(κ) on input κ produces a public- and secret-key pair (pk, sk)
along with other public parameters PP. The algorithm Sign(sk,m) on input a
secret key sk and a message m ∈ M , where M is the message space, outputs a
signature σ. Verify(pk,m, σ) on input a public key pk, a message m ∈ M and a
signature σ, outputs a bit b = 1 meaning valid, or b = 0 meaning invalid. We
require the following correctness requirement to be satis�ed by Π:

Pr[Verify(pk,m, Sign(sk,m)) = 1 : (pk, sk)← KeyGen(κ),m ∈M ] = 1.

The standard security notion for signature schemes is existential unforge-
ability under adaptive chosen-message attacks (EUF-CMA), and it is is de�ned
through the following experiment:



Sign-ForgeΠ(A, κ) Sign-Oracle Ωsk(m)
(pk, sk)← KeyGen(κ) w := w ∪m
w := ∅ σ ← Sign(sk,m)
(m,σ)← AΩsk(·)(pk) Return σ
If m ∈ w, then return b := 0
b← Verify(pk,m, σ)

De�nition 1. [Existential Unforgeability] A signature scheme Π is existentially
unforgeable under adaptive chosen-message attacks, in short �secure�, if Pr [b =
1] is negligible in Sign-ForgeΠ(A, κ) for any e�cient adversary A.

2.1 Leakage Model

We split the secret state into two parts that reside in di�erent parts of the
memory, and structure any computation that involves access to the secret state
into a sequence of steps. Any step accesses only one part of the secret state (active
part) and the other part (passive part) is assumed not to leak in the current step
of computation. For simplicity, we de�ne a security notion for leakage-resilient
signature schemes assuming that the signing process is carried out in two steps.
We also refer to a single invocation of the signature generation algorithm as a
round.

Let us consider the problem of achieving leakage resilience under continual
leakage even when a signi�cant fraction of the bits of the secret state are leaked
per round. Then it is necessary that the secret state must be stateful, i.e. the
secret state must be refreshed during every round [23]. Otherwise, after many
rounds the entire secret state will be completely leaked.

Formally, a stateful signature scheme Π∗ = (KeyGen∗,Sign∗1,Sign∗2,Verify∗)
consists of four probabilistic polynomial-time algorithms KeyGen∗, Sign∗1, Sign∗2
and Verify∗. KeyGen∗(κ) is same as the set-up phase KeyGen of Π except that
instead of a �single� secret key sk, it outputs two initial secret states (S0, S

′
0).

From the point of view of an adversary, the signing algorithm Sign of Π and
(Sign∗1,Sign∗2) have the same functionality. First, Sign∗1 is executed and later
Sign∗2 is executed. That is, the ith round of the signing process is carried out as:

(Si, wi)
ri← Sign∗1(Si−1,mi) ; (S

′
i, σi)

r′i← Sign∗2(S
′
i−1, wi). (1)

In the above expression, ri and r
′
i are the randomness used by Sign∗1 and Sign∗2,

respectively. The parameter wi is some state information passed onto Sign∗2 by
Sign∗1. The signature σi is generated for the message mi, and the internal state
is updated from (Si−1, S

′
i−1) to (Si, S

′
i).

We model the leakage during signature generation by giving an adversary A
access to a leakage oracle Ωleak

(Si−1,S′i−1)
(·). This oracle, in addition to giving A

signatures for the messages of its choice, also allows A to obtain leakage from
the computation used to generate signatures. More precisely, let λ be a leakage
parameter. During the ith signing round, A is allowed to specify two functions



fi and hi, each of range {0, 1}λ, that can be e�ciently computed. The outputs
of the leakage functions are

Λi = fi(Si−1, ri) ; Λ
′
i = hi(S

′
i−1, r

′
i, wi). (2)

Since the value of m can be included in the description of fi and hi, hence it is
not explicitly included as an input. Note that it also possible for A to specify
hi after obtaining Λi. But for simplicity of the exposition, we only describe here
the case where fi and hi are speci�ed along with the message mi to the oracle.
The security of the signature scheme Π∗ in the presence of (continual) leakage
is de�ned through the following experiment Sign-Forge-LeakΠ∗(A, κ, λ). In the
description below, |fi| refers to the length of the output of fi.

Sign-Forge-LeakΠ∗(A, κ, λ) Sign-Leak-Oracle Ωleak

(Si−1,S′i−1)
(mi, fi, hi)

(pk, (S0, S
′
0))← KeyGen∗(κ) If |fi| 6= λ or |hi| 6= λ, return ⊥

i := 1, w := ∅ (Si, wi)
ri← Sign∗1(Si−1,mi)

(m,σ)← A
Ωleak

(Si−1,S
′
i−1

)
(·)
(pk) (S′i, σi)

r′i← Sign∗2(S
′
i−1, wi)

If m ∈ w, then return b := 0 Λi := fi(Si−1, ri)
b← Verify∗(pk,m, σ) Λ′i := hi(S

′
i−1, r

′
i, wi)

i := i+ 1
w := w ∪mi

Return (σi, Λi, Λ
′
i)

De�nition 2. [Existential Unforgeability with Leakage] A signature scheme
Π∗ is existentially unforgeable under adaptive chosen-message attacks in the
presence of (continual) leakage if Pr [b = 1] is negligible in the Experiment
Sign-Forge-LeakΠ∗(A, κ, λ) for any e�cient adversary A.

2.2 Bilinear Groups

Let BGen(κ) be a probabilistic bilinear group generator that outputs (G,GT , p, e,
g) such that:

1. G = 〈g〉 and GT are (multiplicatively written) cyclic groups of prime order
p with binary operations · and ?, respectively. The size of p is κ bits.

2. e : G×G→ GT is a bilinear map that is:

(a) bilinear: ∀u, v ∈ G and ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab.

(b) non-degenerate: e(g, g) 6= 1.

Such a group G is said to be a bilinear group if the above properties hold and
the group operations in G and GT , and the map e are e�ciently computable.
The group G is called as base group and GT as target group.



2.3 Generic Bilinear Group Model

The generic bilinear group (GBG) model [6] is an extension of the generic group
model [36]. The encodings of the elements of G and GT are given by random
bijective maps ξ : Zp → Ξ and ξT : Zp → ΞT , respectively, where Ξ and ΞT
are sets of bit-strings. The group operations in G and GT , and evaluation of the
bilinear map e are performed by three public oracles O, OT and Oe, respectively,
de�ned as follows. For all a, b ∈ Zp
� O(ξ(a), ξ(b)) := ξ(a+ bmod p)
� OT (ξT (a), ξT (b)) := ξT (a+ bmod p)
� Oe(ξ(a), ξ(b)) := ξT (abmod p)

We assume that the (�xed) generator g of G satis�es g = ξ(1), and also the
(�xed) generator gT of GT satis�es gT = e(g, g) = ξT (1). The encoding of g is
provided to all users of the group oracles. The users can thus e�ciently sample
random elements in both G and GT .

We further assume that Ξ ∩ΞT = φ, |Ξ| = |ΞT | = p, and that the elements
of Ξ and ΞT are e�ciently recognizable. For instance, the encodings in Ξ can
comprise of the binary representation of the set {0, 1, . . . , p − 1}, where every
string begins with `0' and all are of uniform length. The encodings in ΞT are
similarly de�ned but instead begin with `1'. Since the encodings are e�ciently
recognizable, the queries to a group oracle with an invalid encoding can be
detected and an error can be raised. For simplicity, we assume that the users'
queries to the oracles are all valid.

2.4 Min-Entropy

Let X be a �nite random variable with probability distribution Pr. The min-

entropy ofX, denotedH∞(X), is de�ned asH∞(X) := − log2

(
max
x

Pr[X = x]
)

. Min-entropy is a standard measure of the worst-case predictability of a random
variable. Let Z be a random variable. The average conditional min-entropy of

X given Z, denoted H̃∞(X |Z), is de�ned as H̃∞(X |Z) := − log2

(
E

z←Z

[
max
x

Pr[X = x |Z = z]
])
. Average conditional min-entropy is a measure of the worst-

case predictability of a random variable given a correlated random variable.

Lemma 1. [[12]] Let f : X → {0, 1}λ′ be a function on X. Then H̃∞(X | f(X))
≥ H∞(X)− λ′.

The following result is a variant of the Schwartz-Zippel Lemma [34,39,18].

Lemma 2. [Schwartz-Zippel; min-entropy version] Let F ∈ Zp[X1, . . . ,Xn] be a
non-zero polynomial of (total) degree at most d. Let Pi (i = 1, . . . , n) be proba-
bility distributions on Zp such that H∞(Pi) ≥ log p − λ′, where 0 ≤ λ′ ≤ log p.

If xi
Pi← Zp (i = 1, . . . , n) are independent, then Pr[F(x1, . . . , xn) = 0] ≤ 2λ

′ d

p
.

Corollary 1. If λ′ < log p−ω (log log p) in Lemma 2, then Pr[F(x1, . . . , xn) = 0]
is negligible (in log p).



3 Basic Signature Scheme

We propose a bilinear variant of the Schnorr signature scheme [32,33].
Let H : {0, 1}∗ → Zp be a hash function. The signature scheme ΠSc =

(KeyGenSc,SignSc, VerifySc), de�ned on the message space {0, 1}∗, is as follows:

1. KeyGenSc(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose random
x ← Zp. Set X := gx, gT := e(g, g), and XT := e(g,X) = gxT . The public
key is pk := (PP, XT ,H) and the secret key is sk := X.

2. SignSc(sk,m): Choose a random t ← Zp. Set γ := H(gtT ||m), Y := gt · Xγ

and σ := (Y, γ). Output the signature σ.
3. VerifySc(pk,m, σ): Let σ = (Y, γ) ∈ G×Zp. Set ρ := e(Y, g)? (gxT )

−γ
. Output

the bit b = 1 (valid) if H(ρ||m) = γ. Otherwise output b = 0 (invalid).

We now prove the security of the above scheme in the GBG model relative
to two hardness assumptions about the hash function H that were introduced
in [29], and which are recalled below. These two assumptions are weaker than
collision-resistance [29]. We adapt the proof techniques of [29] to the bilinear
setting.

De�nition 3. [Random-Pre�x (Second-) Preimage problem [29]] The advan-
tage of an adversary A in solving the Random-Pre�x Preimage (RPP) prob-
lem (respectively, Random-Pre�x Second-Preimage (RPSP) problem) for a hash
function H : {0, 1}∗ → Zp, with pre�x in a set of bit-strings D, is given by

Adv
RPP[D]
H (A) = Pr [H(R||m) = γ : γ ← A, randomR← D, m← A(R)] ,

Adv
RPSP[D]
H (A) = Pr [H(R||m) = H(R||m′) : m← A, randomR← D,

m′ ← A(R), m′ 6= m] ,

where the probability is taken over R and the coins of A. The RPP problem
(respectively, RPSP problem) for H is said to be (t, ε) hard if no adversary A
with running time at most t has advantage greater than ε in solving it.

Theorem 1. The signature scheme ΠSc is EUF-CMA secure in the generic bi-
linear group model if the RPP[ΞT ] and RPSP[ΞT ] problems are hard for H.

Proof. Let A be a (Γ -time, q-query) adversary that can break the security of
ΠSc. Hence A can make totally at most q group oracle, pairing oracle and signing
oracle queries, and runs in time at most Γ . Let qO denote the total number of
calls to the oracles O, OT and Oe, and qΩ denote the number of calls to the
signing oracle ΩSc. Thus qO + qΩ ≤ q.

PrforgeA,ΠSc
denote the advantage of the adversary A in computing a forgery

against ΠSc. Also let RPP[ΞT ] and RPSP[ΞT ] problems be (Γ ′, εRPP)- and (Γ ′,
εRPSP)-hard for the hash function H. We show that

PrforgeA,ΠSc
≤ 2q · εRPSP + 36q2 · εRPP +

15q2

p
+

108q3

p



for any (Γ -time, q-query) adversary A in the GBG model, where Γ ′ ≈ Γ . More
precisely, Γ ′ is the sum of Γ and the time required by simulator to maintain the
environment.

The main idea is to use A to construct an adversary B that solves both the
RPP[ΞT ] and the RPSP[ΞT ] problems for the hash function H. B will simulate
EUF-CMA experiment for A in the naive way, through the game G that we later
describe below. In the game, B also simulates the generic bilinear group oracles
in the usual way by maintaining lists of pairs of encodings and polynomials that
represent the relation amongst group elements. Let C be a challenger trying to
prove the hardness of both the RPP[ΞT ] and the RPSP[ΞT ] problems for H
against B.

There are only two possibilities for A to output a forgery:

1. A uses a signature previously obtained to output a forgery (on a distinct
message).

2. A does not output a previously obtained signature as a forgery.

Note that in a forgery of type 1, the �random pre�x� for the hash function
input (during veri�cation) is the same as that for the corresponding previously
obtained signature. In this case B will attempt to solve the RPSP[ΞT ] problem
for H. There are two issues that B needs to address in this case to solve the
RPSP problem. First, it must correctly guess at the beginning of the simulation
when A outputs a forgery of type 1 (and accordingly inform C that it attempts
to solve the RPSP problem). Secondly, B needs to guess a priori which one of
the previous signatures will A use for the forgery. Then during that step B needs
to forward the corresponding message to the (now RPSP) challenger C to obtain
a random pre�x as part of its RPSP challenge. This random pre�x will be used
as the encoding of the corresponding element gtT during the above signing step.
B solves the RPSP problem by forwarding to its (now RPSP) challenger C the
forged message output by A. Note that the probability that B will succeed in
both the guesses is at least 1

2q .

In the case of forgery of type 2, B will attempt to solve the RPP[ΞT ] problem
for H. Again, B must �rst guess correctly when this type of forgery occurs (and
accordingly inform C that it attempts to solve the RPP problem). Secondly,
B must commit to a value γ to obtain a random pre�x R ∈ ΞT as part of a
RPP challenge. Eventually when A outputs a forgery on a (distinct) message
m, it must turn out that the encoding of the �corresponding gtT � must be R and
that H(R||m) = γ. The tricky question is how to commit to the value γ before
seeing R and m? We overcome this problem by assuming that A executes the
veri�cation algorithm VerifySc(·) before outputting its forgery (Y, γ), as done in
[29]. This is w.l.o.g. because for every adversary that does not verify its forgery,
we can build an adversary that has the same advantage but veri�es its attempted
forgery. This step guarantees that the elements Y ∈ G and gtT ∈ GT appears as
outputs of group oracles, with Y appearing before gtT . We bound the probability
that Y appears later than gtT to be εRPP.

Hence B simply needs to guess a priori which group oracle query outputs
gtT . During this step, B recovers the value of γ using the coe�cients of the



polynomials representing Y and gtT , as explained in (7) and proved in Lemma
3. Note that B also needs to guess a priori which element will be output as Y . B
forwards the value of γ to the (now RPP) challenger C and obtains the random
pre�x R, which it uses as the encoding of gtT . Note that the probability that
B will succeed in all the three guesses is at least 1

2(3q)2 , where we later show

that the number of elements to choose from is at most 3q in both the cases. We
would like to note that recovering γ in the proof of [29] (for the original Schnorr
signature scheme) is easier than in the bilinear setting. This is because in [29] it
involved guessing an element in only one list and the polynomials involved are
all binomials.

We now formally describe the game G. The description of the group oracles
is typical for proofs in the generic group model (see [36,28,5,18]).

Description of Game G: Initially, B will choose a random bit βC
$← {0, 1}. This

bit decides which of the two problems RPSP (if βC = 0) or RPP (if βC = 1) will
B attempt to solve using the forgery output by A. If βC = 0, then B randomly

chooses i∗
$← {1, . . . , q}, else it randomly chooses i∗, j∗

$← {1, . . . , 3q}. The
quantity i∗ indicates the step in which B interacts with C to obtain a random
pre�x ξT,i∗ ∈ ΞT . This step may be a signature query (if βC = 0) or a group oracle
query to OT (if βC = 1). More on this will be discussed later when describing
the simulation of signature queries and queries to the group oracle OT .

Let X, {Ti : i ≥ 1}, {Ui : i ≥ 1} and {Vi : i ≥ 1} be indeterminates, and
{mi : i ≥ 1} be bit-strings (messages) that are chosen by A. Intuitively, these
(or other) polynomials represent the relation amongst the group elements that
are output by a group oracle, or guessed by A. The indeterminate X corresponds
to the quantity x (discrete logarithm of the secret key), whereas Ti corresponds
to the parameter ti chosen in the ith signing step (1 ≤ i ≤ qΩ). Since A can query
the group oracles with representations (from Ξ and ΞT ) not previously obtained
from the group oracles, in order to accommodate this case, we introduce the
indeterminates Ui, Vi. The Ui correspond to the guessed elements of G, whereas
Vi correspond to the guessed elements of GT . We denote the lists {Ti : i ≥ 1},
{Ui : i ≥ 1} and {Vi : i ≥ 1} by {T}, {U} and {V}, respectively.
B maintains three lists of pairs

L = {(F1,i , ξ1,i) : 1 ≤ i ≤ τ1}, (3)

LT = {(FT,i , ξT,i) : 1 ≤ i ≤ τT }, (4)

LΩ = {(mi , ξΩ,i , γi) : 1 ≤ i ≤ τΩ}. (5)

The entries F1,i ∈ Zp[X, {U}, {T}], FT,i ∈ Zp[X, {U}, {V}, {T}] are multivariate
polynomials over Zp, whereas ξ1,i, ξΩ,i, and ξT,i are bit-strings in the encoding
sets Ξ (of G), Ξ, and ΞT (of GT ), respectively. We have mi ∈ {0, 1}∗ and
γi ∈ Zp. The polynomials in lists L and LT correspond to elements of G and
GT , respectively, that A will ever be able to compute or guess. The list LΩ
records the signatures obtained by A on the messages mi of its choice. The
values τ1, τT and τΩ denote the respective list counters.



Initially, τ1 = 1, τT = 1, τΩ = 0, L = { (1, ξ1,1) }, LT = { (X, ξT,1) }, and
LΩ = {}. The bit-strings ξ1,1, ξT,1 are set to random distinct strings from Ξ
and ΞT , respectively. We assume that there is some ordering among the strings
in the sets Ξ and ΞT (say, lexicographic ordering), so that given a string ξ1,i
or ξT,i, it is possible to e�ciently determine its index in the lists, if it exists.
The initial state of the lists L and LT correspond to the generator of G and the
public key, respectively.

The game begins by B providing A with the string ξ1,1 from L, and the string
ξT,1 from LT .

Signature Query: Signature queries by A are modeled as follows. A pro-
vides a message mτΩ ∈ {0, 1}∗ of its choice to B. In response B �rst increments
the counters τ1 := τ1 +1, τT := τT +1 and τΩ := τΩ +1, and sets FT,τT := TτΩ .

� (RPSP Challenge) If βC = 0 and i∗ = τΩ , then B passes on mτΩ to C to
obtain a random pre�x ξT,i∗ ∈ ΞT as part of an RPSP challenge. If ξT,i∗

is already present in LT , then B completes the RPSP challenge with C by
returning arbitrary values, after A terminates. Denote this event by Abort.
Else B sets ξT,τT := ξT,i∗ .

� Else if βC 6= 0 or i∗ 6= τΩ , then B sets ξT,τT to a random string distinct from
those already present in LT .

Append LT with (FT,τT , ξT,τT ). B computes γτΩ := H(ξT,τT ||mτΩ ), sets F1,τ1 :=
TτΩ + γτΩX, sets ξ1,τ1 to a random distinct string, appends L with (F1,τ1 , ξ1,τ1),
sets ξΩ,τΩ := ξ1,τ1 , and appends LΩ and provides A with (mτΩ , ξΩ,τΩ , γτΩ ).

Group Operation of G: The calls made by A to the group oracle O are
modeled as follows. For group operations in G, A provides B with two operands
(bit-strings) ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L and also speci�es whether to multiply or
divide them. B answers the query by �rst incrementing the counter τ1 := τ1 +1,
and computes the polynomial F1,τ1 := F1,i±F1,j . If F1,τ1 = F1,k for some k < τ1,
then B sets ξ1,τ1 := ξ1,k. Otherwise, ξ1,τ1 is set to a random string distinct from
those already present in L. The pair (F1,τ1 , ξ1,τ1) is appended to L and B provides
A with ξ1,τ1 . Note that the (total) degree of the polynomials F1,i in L is at most
one.

If A queries O with an encoding ξ not previously output by the oracle, then
A increments the counter τ1 := τ1 + 1, sets ξ1,τ1 := ξ, and sets F1,τ1 := Uτ1 .
The pair (F1,τ1 , ξ1,τ1) is appended to L. This step is carried out for each guessed
operand.

Group Operation of GT : The group oracle OT is modeled similar to O,
instead appropriately updating the counter τT , and appending the list LT with
the output (FT,τT , ξT,τT ). B provides A with ξT,τT . For guessed operands in GT ,
a new variable TτT is introduced instead.

Pairing Operation: For a pairing operation, A queries B with two operands
ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L. B �rst increments τT := τT +1, and then computes
the polynomial FT,τT := F1,i · F1,j . Again, if FT,τT = FT,k for some k < τT , then
B sets ξT,τT := ξT,k. Otherwise, ξT,τT is set to a random string distinct from
those already present in LT . The pair (FT,τT , ξT,τT ) is appended to LT , and B



provides A with ξT,τT . Note that the degree of the polynomials FT,i in LT is at
most two.

RPP Challenge: Recollect that B has earlier sampled i∗, j∗
$← {1, . . . , 3q}.

Since A makes at most qO < q group oracle queries and that in each query A can
guess at most two new elements, it is easy to see that lists L and LT together
have at most 3(qO + qΩ) ≤ 3q elements. Hence

|L|+ |LT | ≤ 3q. (6)

If βC = 1, then during each of the queries above the counter τT is checked while
adding an element to the list LT . If i∗ = τT , then B computes

γ∗ =

qΩ∑
i=1

aiγi − aX, (7)

where aX is the coe�cient of X in FT,i∗ , ai is the coe�cient of Ti in F1,j∗ (1 ≤ i ≤
qΩ), and γi is, as de�ned previously, the hash value in the ith signature query.

If F1,j∗ does not exist, or i
∗ > τT at the end of the game G, then B completes

the RPP challenge with C by returning arbitrary values. Else, B passes γ∗ ∈ Zp
to C to obtain a random pre�x ξT,i∗ ∈ ΞT , as part of an RPP challenge. If
FT,τT = FT,k for some k < τT and ξT,i∗ 6= ξT,k, then B completes the RPP
challenge with C by returning arbitrary values (Abort). Else, if there is no such
k but ξT,i∗ is already present in LT , then also Abort. Else B sets ξT,τT := ξT,i∗ .

If B has made right guesses for i∗ and j∗, then F1,j∗ and FT,i∗ corresponds
to the forgery and satisfy

FT,i∗ := F1,j∗ − γX, (8)

where γ is the hash value corresponding to the forgery. Note again that both
the polynomials exist (in case of successful forgery) because we assume that A
always veri�es its attempted forgery before it is output. Lemma 3 below proves
that indeed γ∗ = γ. Because A has access to the oracle OT , it is easy to see that
it is not possible to recover γ from FT,i∗ alone.

Lemma 3. Let FT,i∗ = F1,j∗ −γX, as computed in (8). Let aX be the coe�cient
of X in FT,i∗ , and ai be the coe�cient of Ti in F1,j∗ (1 ≤ i ≤ qΩ). Also let γi be
the hash value in the ith signature query. Then γ =

∑qΩ
i=1 aiγi − aX.

Proof. Any polynomial in L, in particular F1,j∗ , is of the form F1,j∗ = c1 +∑
i=1 c2,iUi +

∑qΩ
i=1 ai(Ti + γiX), where c1, c2,i, ai ∈ Zp are chosen by A. Hence

the lemma follows. ut

End of Game G: When A terminates it outputs (m, (ξ1,α , γ)) ∈ {0, 1}∗ ×
Ξ×Zp, where ξ1,α ∈ L and 1 ≤ α ≤ τ1. This corresponds to the �forgery� output
by A in the actual interaction. B simply forwards m to its challenger C.

Let Forge denote the event of successful forgery. Next, B chooses random val-
ues x, {u}, {v}, {t} ← Zp for the indeterminates X, {U}, {V}, {T}, respectively.
Then it evaluates the polynomials in lists L and LT . B will abort if:



1. F1,i(x, {u}, {t}) = F1,j(x, {u}, {t}) in Zp, for any F1,i 6= F1,j in L.
2. FT,i(x, {u}, {v}, {t}) = FT,j(x, {u}, {v}, {t}) in Zp, for any FT,i 6= FT,j in
LT .

Let Collide denote either of the above events, i.e. a collision occurring in lists L
and/or LT . This completes the description of game G and simulator B.
Analysis of PrforgeA,ΠSc

: The success probability PrforgeA,ΠSc
of A in the actual EUF-

CMA game satis�es

PrforgeA,ΠSc
≤ Pr[Forge |Collide] + Pr[Collide]. (9)

This is because the event Collide ensures that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable to cause
collisions among group elements. As long as the event Collide does not occur,
then the view of A is identical in the game G and the actual interaction. Hence if
A is unable to provoke collisions, then adaptive strategies are no more powerful
than non-adaptive ones (see [28, Lemma 2 on pp. 12], also [36]). This observation
allows us to choose group elements and their representations independently of
the strategy of A.

First we bound Pr[Collide]. The τ1 polynomials F1,i in L have degree at most
one. Note that F1,i 6= F1,j ⇔ F1,i − F1,j 6= 0 as polynomials. From Lemma 2
(with λ′ = 0), the probability that two distinct polynomials in L evaluate to the
same value for randomly and independently chosen values for the indeterminates
is at most 1

p . Summing up over at most
(
τ1
2

)
distinct pairs (i, j), the probability

that the condition 1 above holds is at most
(
τ1
2

)
· 2p . Similarly, the probability

that the condition 2 above holds is at most
(
τT
2

)
· 2p . Using (6) we obtain

Pr[Collide] ≤
(
τ1
2

)
· 1
p
+

(
τT
2

)
· 2
p
≤ 1

p
(τ1 + τT )

2 ≤ 9q2

p
. (10)

Next we bound Pr[Forge |Collide] in terms of the advantage of B against C.
Whenever A succeeds in outputting a forgery (m, (ξ1,α , γ)), there are only two
possibilities that can arise:

� (Solving RPSP Challenge) There exists an i (1 ≤ i ≤ qΩ) such that
(mi, (ξ1,α , γ)) ∈ LΩ . In other words, A uses a signature previously obtained
to output its forgery on a distinct message. Let Forge1 denote this event.
If βC = 0 and i∗ = i, then B can successfully use the forgery to solve the
RPSP[ΞT ] problem for H. This is because B will attempt to solve the RPSP
problem only when βC = 0, the probability of which is 1

2 . Since at the begin-
ning itself B will decide at which signing step (step i∗) it will interact with C
when βC = 0, the probability that i∗ = i is at least 1

qΩ
> 1

q . Hence the advan-

tage of B in solving RPSP problem is at least 1
2qPr[Forge1 |Collide]−

(
3q
p

)
,

where
(

3q
p

)
is an upper bound on the probability that B does not Abort

due to a repeated entry in LT during RPSP challenge step. It may be



noted that if B attempts to solve the RPP problem using this type of
forgery, then Abort will occur with overwhelming probability. Therefore,

Pr[Forge1 |Collide] ≤ 2q · εRPSP + 6q2

p .

� (Solving RPP Challenge) The complementary event of Forge1, Forge1.
That is, A does not use a signature previously obtained to output its forgery.
Since A veri�es its forgery before it is output, then there exists some ith

entry (FT,i, ξT,i) in the list LT such that H(ξT,i||m) = γ. Also let this entry
be the �rst occurrence of this pair in LT . If βC = 1, i∗ = i and j∗ =
α, then B can successfully use the forgery to solve the RPP[ΞT ] problem
for H. Hence the advantage of B in solving the RPP problem is at least

1
2(3q)2Pr[Forge1 |Collide]−

(
3q
p + εRPP

)
, where again

(
3q
p

)
is an upper bound

on the probability that B does not Abort due to a repeated entry in LT during
RPP challenge step.

The quantity εRPP appearing above is an upper bound on the probability
that the entry (FT,i, ξT,i) does not appear before (F1,α, ξ1,α). Because FT,i =
F1,α − γX (c.f. (8)) and that encodings are random, this means that A is
able to compute the value γ even before getting an encoding ξT,i such that
H(ξT,i||m) = γ. In other words, A has solved the RPP[ΞT ] problem for H.

Therefore, Pr[Forge1 |Collide] ≤ 36q2 · εRPP + 108q3

p .

Since Pr[Forge |Collide] = Pr[Forge1 |Collide] + Pr[Forge1 |Collide], we obtain

Pr[Forge |Collide] ≤ 2q · εRPSP + 36q2 · εRPP +
6q2

p
+

108q3

p
. (11)

From (9), (10) and (11), we have PrforgeA,ΠSc
≤ 2q ·εRPSP+36q2 ·εRPP+ 15q2

p + 108q3

p .

Hence if q = poly(log p), then PrforgeA,ΠSc
is negligible provided (εRPSP + εRPP) is

negligible. This completes the proof of Theorem 1. ut

4 A Leakage-Resilient Signature Scheme

In this section, we describe a leakage-resilient variant Π∗Sc of the scheme ΠSc. We
use the techniques of [23] to transform ΠSc to Π∗Sc. A major di�erence between
the two variants is that the secret keyX = gx of ΠSc is now split into two parts as
(S0 := gl0 , S′0 := gx−l0) for a random l0 ← Zp. The two shares reside in di�erent
parts of the memory. The key generation step KeyGen∗Sc of Π∗Sc is obtained by
suitably modifying the KeyGenSc step of ΠSc. The signing step of Π∗Sc is also split
into two steps Sign∗Sc1 and Sign∗Sc2. After every signature query, the two shares
of the secret key are randomly refreshed. This is required because, as seen in
Section 2.1, if the secret state is not stateful, then the scheme cannot be secure
in the presence of continual leakage.

Let H : {0, 1}∗ → Zp be a hash function. The stateful signature scheme
Π∗Sc = (KeyGen∗Sc, Sign∗Sc1, Sign∗Sc2,Verify∗Sc), de�ned on {0, 1}∗, is as follows:



1. KeyGen∗Sc(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose random
x, l0 ← Zp. Set X := gx and XT := e(g,X) = e(g, g)x. The public key is
pk := (PP, XT ,H) and the secret key is sk∗ := (S0 := gl0 , S′0 := gx−l0 =
X · g−l0) ∈ G2.

2. Sign∗Sc1(Si−1,mi): Choose random ti, li ← Zp. Set Si := Si−1 · gli , γi :=
H(gtiT ||mi), and Y

′
i := gti · Sγii .

3. Sign∗Sc2(S
′
i−1, (Y

′
i , γi, li)): Set S

′
i := S′i−1 · g−li , Yi := Y ′i · (S′i)γi , and σi :=

(Yi, γi). Output the signature σi. .
4. Verify∗Sc(pk,m, σ): Let σ = (Y, γ) ∈ G×Zp. Set ρ := e(Y, g)? (gxT )

−γ
. Output

the bit b = 1 (valid) if H(ρ||m) = γ. Otherwise output b = 0 (invalid).

The index i used above refers to the number of times the signing algorithm has
been invoked. For i ≥ 1, let Zi :=

∑i
j=0 lj . The correctness property of Π∗Sc

follows from ΠSc since Si · S′i = gZi · gx−Zi = X. The leakage functions fi()
and hi() that the adversary speci�es to the signing oracle would take the form
f i(Si−1, (li, ti)) and hi(S

′
i−1, (Y

′
i , γi, li)) (cf. (1) and (2)).

The signing step of Π∗Sc requires totally six exponentiations - four for Sign∗Sc1

and two for Sign∗Sc2. This quantity can be reduced to �ve if gli is also passed
on from Sign∗Sc1 to Sign∗Sc2. Note that the SignSc step of ΠSc requires only three
exponentiations.

Since the input/output behaviour of Π∗Sc and ΠSc is identical, from Theorem
1 we obtain that Π∗Sc is secure in the GBG model in a non-leakage setting.

Lemma 4. The signature scheme Π∗Sc is EUF-CMA secure in the generic bilin-
ear group model if the RPP[ΞT ] and RPSP[ΞT ] problems are hard for H.

The following theorem shows that Π∗Sc is resilient to continual leakage in the
GBG model if RPP[ΞT ] and RPSP[ΞT ] problems are hard for the hash function
H, and λ < log p

2 − ω (log log p), where λ is the leakage parameter.

Theorem 2. The signature scheme Π∗Sc is secure with leakage w.r.t. De�nition
2 in the generic bilinear group model relative to the hardness of RPP[ΞT ] and
RPSP[ΞT ] problems for H. Let the RPP and RPSP problems be (Γ, εRPP) and
(Γ, εRPSP)-hard, respectively. Then the advantage of a (Γ -time, q-query) adver-
sary who gets at most λ bits of leakage per each invocation of Sign∗Sc1 or Sign∗Sc2

is O
(
q2 εRPP + q εRPSP + q3

p + q2

p 2
2λ
)
.

Let us brie�y sketch the main ideas of the proof. Working on the lines of (9),
the advantage of A is bounded by its success probabilities conditioned on the
event whether or not a collision has occurred in the lists consisting of elements
of G and GT . It is important to note that the proofs for the non-leakage setting
(i.e. proof of Theorem 1) and the leakage setting would be the same conditioned
on the fact that a collision has not occurred. The reason is that in the event of no
collision, the adversary must either solve the RPP or the RPSP problem for the
hash function in order to output a forgery (let us recall that a solution to either
the RPP or the RPSP problem implies a collision for the hash function). Hence
leakage on the secret state will not be useful in this case. Hence the success



probability of A against ΠSc and Π∗Sc is the same in the event of no collision
(that includes the event of guessing the representations of group elements using
partial information about them).

However the probability that a collision occurs in the leakage setting is in-
creased by a factor of at most 22λ. This is because when A has access to leakage
output f i(Si−1, (li, ti)) and hi(S

′
i−1, (Y

′
i , γi, li)) during i

th signature query, then
in adversary's view the parameters ti, li (i ≥ 1) are no longer uniformly dis-
tributed even though they are still independent. HenceA can now cause collisions
among polynomials (in Conditions 1-2 on page 12) with increased probability.
Each value ti can only be leaked by fi, hence at most λ bits of ti can be leaked.
Since li appears in both f i() and hi(), at most 2λ bits of li can be leaked.

The only useful information that the leakage functions can provide to A
is about the secret key X and the values ti. This is because the values li are
independent of the signatures generated. However A can use the leakages of li
to eventually leak X. If A is able to compute X, then it can trivially forge a
signature on a distinct message. The event of no collision, and the fact that X
is not a �linear combination� of the inputs to the leakage functions, guarantees
that A is unable to compute X.

Proof. Let A be a (Γ -time, q-query) adversary that can break the security of
Π∗Sc. Hence A can make totally at most q group oracle, pairing oracle and signing
oracle queries, and runs in time at most Γ . In the count of q, even group oracle
queries by leakage functions f i, hi (i ≥ 1) speci�ed by A are also included. Let
the adversary A play the game G′ described below. This game is an extension
of game G described in the proof of Theorem 1. To avoid repetition, we only
describe here the extensions that are not part of game G. Let {L} denote the
list of indeterminates {Li : 1 ≤ i ≤ qΩ} that correspond to the values li in Π∗Sc.

Game G′: For each leakage function f i(Si−1, (li, ti)) and hi(S
′
i−1, (Y

′
i , γi, li)),

A maintains a pair of lists
(
Lfi , LfiT

)
and

(
Lhi , LhiT

)
, respectively. These lists

contain polynomial and bit-string pairs. The polynomials in Lfi and Lhi be-
long to Zp[X, {U}, {T}, {L}], and the corresponding bit-strings are from the

encoding set Ξ of group G. The polynomials in LfiT and LhiT are in the ring
Zp[X, {U}, {V}, {T}, {L}], and the corresponding bit-strings are from the en-
coding set ΞT of group GT . Intuitively, the polynomials in lists Lfi and Lhi
correspond to the elements of group G that can be computed by fi and hi,
respectively, whereas the lists LfiT and LhiT correspond to the elements of GT .

Every polynomial in Lfi is of the form c1,iLi + c2,i
i−1∑
j=0

Lj + c3,iDi, where

c1,i, c2,i, c3,i ∈ Zp are chosen by A and Di ∈ Zp[X, {U}, {T}] is in L (cf. (3)).
Every polynomial in Lhi is of the form

d1,iLi + d2,i

X−
i−1∑
j=0

Lj

+ d3,i

Ti + γi

 i∑
j=0

Lj

+ d4,iWi, (12)



where d1,i, d2,i, d3,i, d4,i ∈ Zp are also chosen by A and Wi ∈ Zp [X,X0,X1, {U},
{T}] is in the list L. Note that the polynomials in lists Lfi and Lhi are of degree
at most one, and that they do not contain the monomial X. The polynomials in
lists LfiT and LhiT are of degree at most two.

The game G′ proceeds exactly as game G except that A can also obtain leak-
age through functions f i and hi in the ith signature query. In particular, when
A terminates it outputs (m, (ξ1,α , γ)) ∈ {0, 1}∗ × Ξ × Zp, where ξ1,α ∈ L and
1 ≤ α ≤ τ1. Let us denote by Forge∗ the event of successful forgery by A. Let
Collide∗ denote the event of a collision occurring in lists L, LT , Lfi , Lhi , LfiT ,
LhiT (1 ≤ i ≤ qΩ). The polynomials are now evaluated with values chosen from
independent distributions with min-entropy log p − 2λ, not necessarily from an
uniform distribution. The exact distribution depends on the leakage functions
chosen by A. Since we are only interested to upper bound the collision probabil-
ity, we can safely assume that the simulator chooses the right distribution. Note
that even in the leakage setting, adaptive strategies are no more powerful than
non-adaptive ones, as observed in [2, pp. 691]. This completes the description of
the game G′.

Let PrforgeA,Π∗Sc
denote the advantage of A in computing a forgery against Π∗Sc.

On the lines of (9), we can write

PrforgeA,Π∗Sc
≤ Pr[Forge∗ |Collide∗] + Pr[Collide∗]. (13)

As mentioned before, conditioned on the event Collide∗, the view of the adversary
A will be same in both the games G′ and G. This is because in both the cases A
will get to see only distinct group elements. Hence, from (11), we have

Pr[Forge∗ |Collide∗] ≤ O

(
q2 εRPP + q εRPSP +

q3

p

)
. (14)

Lemma 5. Pr[Collide∗] ≤ O
(
q2

p 2
2λ
)
.

Proof. To compute the required probability, the polynomials in lists L, LT , Lfi ,
Lhi , LfiT , L

hi
T (1 ≤ i ≤ qΩ) are evaluated by choosing values from Zp according to

(independent) distributions with min-entropy at least log p−2λ. This is because
A can obtain at most 2λ bits of leakage about li (i = 0, . . . , qΩ), and at most
λ bits of ti (i = 1, . . . , qΩ). According to Lemma 1, the values li, ti have min-
entropy at least log p − 2λ in the view of A. The total length of all the lists is
at most O(qΩ + qO) = O(q). Hence there can be at most O(q2) pairs of distinct
polynomials (of degree at most two) evaluating to the same value. From Lemma

2 (with λ′ = 2λ), we obtain Pr[Collide∗] ≤ O
(
q2

p 2
2λ
)
. ut

From (13), (14) and Lemma 5, we have PrforgeA,Π∗Sc
≤ O

(
q2 εRPP + q εRPSP+

q3

p + q2

p 2
2λ
)
. This completes the proof of Theorem 2. ut



5 Conclusions

In this work we presented the pairing-based split Schnorr scheme and quanti�ed
its security against independent and continual leakage in the generic bilinear
group model. In particular, we showed that allowing λ bits of leakage at each
of the two phases of every round in the proposed scheme can be compared to
decreasing the security of the pairing-based Schnorr scheme (without leakage)
by a factor of at most 22λ in our leakage model.

Undoubtedly, the main advantage of our approach lies on its practicality:
signing takes at most 5 exponentiations in G plus 1 exponentiation in GT ; ver-
i�cation takes 1 pairing plus 1 exponentiation in GT . A suitable bilinear pair-
ing group to implement our modi�cation of the Schnorr scheme is the pairing-
friendly curve BN-128 studied by Scott in [35]. Thus while our scheme o�ers con-
tinual leakage-resilience, its e�ciency is comparable to that of standard pairing-
based signature schemes [37]. This is currently out of reach for schemes that
o�er EUF-CMA security against continual leakage and dispense with the generic
group model, be it in the standard or the random oracle models.

It is interesting to compare the relative e�ciency and strength of our scheme
and the FKPR scheme by Faust et al. [16]. The latter has a weak form of
EUF-CMA security against continual independent leakages in the random oracle
model, where the adversary can ask at most for D signatures queries, for D �xed
before the key generation phase. The main advantage of that construction with
respect to ours is that it can be implemented over any group G where the DL
problem is conjectured to be hard (our scheme needs pairing-based groups). Let
us now examine its disadvantages against our scheme, which are all related to its
practicality. The signer in the FKPR scheme needs to maintain a state consist-
ing on roughly d Schnorr signatures and d public and corresponding secret keys,
with the length of a signature being proportional to d and D = 2d+1−2; signing
takes 9 exponentiations in the group G, while veri�cation time is proportional
to d. FPKR only tolerates a leakage rate of roughly 1/36. Thus, for reasonable
values of d, e.g. d = 20, our scheme is more e�cient in storage, computing time
and leakage ratio than the FPKR scheme, while o�ering standard existential
unforgeability against continual leakage in the split-state model. Finally both
our scheme and the FPKR scheme use an idealized model of computation to
prove security, namely the former uses the random oracle model, while ours uses
generic groups.
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