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Motivation: fracture of engineering structures and materials
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Motivation: multiscale fracture of engineering structures and materials
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Motivation: multiscale fracture of engineering structures and materials
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» Reduce the problem size while controlling the error (in Qol)
when solving very large (multiscale) mechanics problems 6
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MATERIAL MODELS
Phenomenological
Elasticity/Plasticity
Crack growth law (Paris...)
Fracture energy
Maximum tensile strength
Multi-scale
Debonding,Fibre pull-out
Fibre breakage, interface
rains,

Validation & par er identification

CONVENTIONAL APPROACH



When the material model is not known, this conventional
approach is inadequate

Deep-brain stimulation

Courtesy Alexandre Bilger, PhD thesis, Inria, 2014
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e Ways to reduce the models

CARDYD

Homogenisation (FE*2, etc.) - Hierarchical

Concurrent and hybrid (bridging domain, ARLEQUIN, etc.)
Enrichment (PUFEM, XFEM, GFEM)

Model reduction (algebraic)

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Localisation

Definition of an RVE
1€ 17> 19

Coupling of macroscopic and microscopic levels

The volume averaging theorem is postulated for:
1) Strain tensor:

1 / f
€€ u’ ®sndl’
2(x°)| Joq(xe)
2) Virtual work (Hill-Mandel condition): oC : 5t — . tf . sul dar
[2(x)] Joa(xe)
3) Stress tensor: c !
g —

t/ @ x/ dr
Q2(x€)| /ag(xc>

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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e Hierarchical multi-scale approaches (FEA2) IIIII|II
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Macro-level Micro-level

Advantages and abilities: Drawbacks:

The macroscopic constitutive law 1s not
required

Non-linear material behaviour can be simulated
Microscale behaviour of material is monitored
at each load step

In softening regime:
. Lack of scale separation
. Macroscale mesh dependence

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu Reachut
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A limit point

load

displacement

Details in Phil. Magazine, 2015, Akbari, Kerfriden, Bordas
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Reduction methods based on algebraic reduction
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Ol = sin(0.01 2)

(V1)

100
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! : siné(O.'Ol x)

1000

100

Very rich approximations!

bordasS@cardiff.ac.uk
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nc=1

(i, yi) = Z Ci (i) C, (vi)

=1
(CL, Cl)icin.g = argmin ¥ Y (u(wy, y;) — (i, y5))”
s yj
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Got the nose
(rectangle,
approximation
of order 2 is
enough)

Neg = 1 Ne¢ = 2

L ; g . i ki) h 1y i
50 100 150 200 250 300 350 400 450 500

(s, y;) = Z Ci(@:) Cy (yi)

(Ciu C )1,6[1 ne] — argmln Z Z x’w yj (:U’b yj))2
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Got the nose

(rectangle,
approximation
of order 2 is
enough)

1 . . .
450 500 50 100 150 200 250 300 350 400 450 500

nc=2

Converges
slowly locally
(idem fracture)
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® Search for the solution in space / time / parameter in a product space:

U: Uep=R"xTxPR" C'eR"
¥ . .
B BZ:T%R, VzE[[l,nc]],
Ut,p) =Y C;Bilt)vi(n), vi:P SR, Vie[l,nc],
1=1

® Optimality of an expansion of order n. with respect to a particular metric defined
on Usep

VvV vV vV Vv

Data compression: POD (Proper Orthogonal Decomposition) is a classical
choice in dimension 2

Data compression in many dimensions: multilinear POD

Solver in many dimensions without a priori knowledge of the solution: PGD
Model order reduction: Snapshot POD, Snapshot PGD

Initialiser, preconditioners: low-order POD, low-order PGD, Snapshot POD

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu Reaﬂ'c UJ[
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® One writes the classical POD problem:

find an orthonormal basis  C € R™*"<, QT C = Id minimising the POD functional:

Jron(C) = / _Iu) - ecTu|ar

® Equivalently, look for a maximum of Jrop(C) = H(t)ngTH(t) dt = Tr(ngg)
teT

P Correlation operator: g = U(t) H(t) dt

®| Solution: eigenvalue problem K ¢" = \ig" where  (A)kefon]  in decreasing order

C=(¢" ¢ .. o™

/ Cki Ozj dt = 5ij )\Z
teT

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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CarDYp  linear combination of a set of pre-calculated representative solutions CNERSTE o
ng loads (1) Solve FINE for n_S parameters (EXPENSIVE!)
Fpy i Fp, | B
_ : _ 1 2 n
l v v v Y S=(s8 s .. 8%)
g! (2) Singular value decomposition
=8 ns
S=UZV'=) stutvH
Up

Initial set of equations

F i Q)+ Fpy = 0

(4) Galerkin orthogonality

T T
C' Fint (QQ) +C Feyy =0
Approximation of the
solution in a space of
small dimension (nc)

bordasS@cardiff.ac.uk

‘/representative solutions

0

Solution

(3) Trutreation

Family of

Ca

T

Coefficients

ng solutions, sorted by relevance

where (Ek>ke[[1 ns] in decreasing order

Reduced basis: family of representative
solutions

stephane.bordas@alum.northwestern.edu
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Reduced Ritz basis

0.07 1

0.06 I

0.05

0.04

0.03

Error
Maximum damage /20

0.02

0.01

® P. Kerfriden, P. Gosselet, S. Adhikari, and
S. Bordas. Bridging proper orthogonal
decomposition methods and augmented
Newton-Krylov algorithms: an adaptive
model order reduction for highly
nonlinear mechanical problems.

20

Time step

bordasS@cardiff.ac.uk

L L
25 30 35 40 45 50

Computer Methods in Applied
Mechanics and Engineering, 200(5-8):
850-866, 2011.

stephane.bordas@alum.northwestern.edu
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Initial crack

ASARARRRARRRARARRARRRANY

w 0 € [15°,45°
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Application to a parametric fracture problem il

‘ Reduced basis
Compute particular

realisations (snapshots)

» The POD solution is
not able to reproduce

6 = 15°, 10*" (last) time step
: the solution in the

w0 S .

S —

= = cracked area

3 :

2 — P Due to lack of

— ~— POD correlation introduced
ﬁ

by crack growth

P Leads to alocal
projection error

10 solutions
NANNNNNNNNNNNAN

Nvaaa

Solution at arbitrary angle using the reduced model

v

— 2n° th 4: \
?f 30°, 10 time step Solution of the ROM

RS — P2

Solution to the
full, unreduced,

model Q@

S,

q borea: m RealTout
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Highly correlated solution fields

First realisation Second realisation

0 5 15 20

Localisation of fracture, uncorrelated

m» Direct numerical simulation: efficient preconditioner? B Reduced order modelling?

B Adaptive coupling?

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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THE RETURN OF THE MONKEY!
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What can we do to address this lack of separation

of scales/reducibility?
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P. Kerfriden, P. Gosselet, S. Adhikari, and S. Bordas. Bridging proper orthogonal decomposition
methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly

nonlinear mechanical problems. Computer Methods in Applied Mechanics and Engineering, 200(5-
8):850-866, 2011.
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Snapshot POD (snapshot space is spanned by 10r
the ensemble of solutions at all time steps) Al POD order 1
6,
4_
10 « ” . : ol Gl
Exact” solution .l g wé % s ¥a
8 ® gé 0 ® amya
6 °r m Q? t* pﬁ?
Dile
4r 2 & ?@
e o — = 2
ol gﬁg 36':?&6 g*é )
S&“$Q$ﬁﬁ Qs‘@@ -0
| @ 22s° rvﬁ e ®xtee®
% - 3 1@“? o @ 8 ‘na.; - 8l
<Dils
6l
i W POD order 3
S
6 ol : Qﬁiia”:‘?g
1 L L | | Q e 3
0 5 10 15 20 5k &g*@ e?® ¥ &
® . @ 19“? S &8
2k
4L
6
0 5 10 5 20
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Partitioned reduced basis

Compute particular realisations

P Decompose the structure into
subdomains

» Perform a reduction in the
highly correlated region

P Couple the reduced to the non-
reduced region by a primal

@ Schur complement

(cost intensive) using domain
decomposition (snapshots)

10" (last) timestep

P SINNNISSSSY

>\;,\\\\\\\\\\\\

Locally non correlated:
no reduction

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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10 ¢
O subdomain 6
O subdomain 4
(0] -1 .
"('U' 10 ¢ X  subdomain 2
e A subdomain 7
3 1077}
—_
[e)
s 3
® 10
C
.0
S 107
g
i -5
@ 107
5
-6
10 ¢
1 0_7 1 L 1 )
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n(®

= (e),(m) T
(trs ) Z (Qi,j U

j=1

>, 2 |lu

2

snap

2 s h
(V(e) ) _ HEPS t, €T

D > Uit w3

t,€Th pepPs

Choice of the reduced subdomains: local error estimation
by “leave one out cross-validation” (LOOCV)

® Reduced subspaces are independent and we assume a

UNIVERSITE DU
LUXEMBOURG

snapshot is a priori available

4
4

(1) Dimension of the local space for each subdomain?
(2) Is a given subdomain is reducible?

(1) and (2) will be treated by cross-validation (e.g. W. J.
Krzanowski. Cross-validation in principal component
analysis. Biometrics, 43(3):575-584, 1987.)

>

vV VvV Vv

»

Training set: snapshot

Validation set: set of additional finescale solutions
Independent training/validation avoids overfitting
Cross validation emulates independence. Error
calculated using the local reduced basis obtained by a
snapshot POD transform of all the available snapshot
solutions except the one corresponding to the value of
the summation variable.

® NOTE: If the snapshot is not assumed a priori then

Assess whether the snapshot contains sufficient information, and
generate additional, suitable, data if required

Most analysis (mostly by statisticians) assume the snapshot is
known a priori. Recent review: Hervé Abdi and Lynne J. Williams.
Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433{459, 2010.
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Cross-validation error estimate
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® Relative error

a ex 2
> UPP (b, 1) — U (. p)l3
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tn€THh
40° 27°
107 ¢ _ 1072
—w— Partitioned POD + SA —#— Partitioned POD + SA
=== Partitioned POD === Partitioned POD
=© =Full Scale Inexact = @ = Full Scale Inexact
1072}
3 o
2 2 10
E e
= 107°F =
-~ -~ ~0
A Y
A Y
\
-4 1 ! 1 1 LY J -4
10 1 1 1 1 Sl
10 0 20 40 60 80 100 0 20 40 60 80 100
runtime runtime

(a) Relative error for the different models using 121 nodes (a) Relative error for the different models using 121 no

per subdomain per subdomain
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® Relative error

a ex 2
> UPP (b, 1) — U (. p)l3

h
,/app,(u)(Uapp)2 _ €T
L9} ox 2
E U (tn, 1) I3
tn€Th
o [0)
10° 27°
3 o0 10 _
—— Partitioned POD + SA =
—8— Partitioned POD T Do bOD
=© =Full Scale Inexact =@ =Full Scale Inexact
1072} .
() bt -3
10°°F
: :
= =
= % .
107 N
A Y
-
Y
A Y
Y
Y
Y
\\ 10_4 1 1 L1 )
107* ) , , . o | 0 50 100 150 200
0 50 100 150 200 250 runtime

runtime
(b) Relative error for the different models using 256 nodes

(b) Relative error for the different models using 256 nodes  per subdomain
per subdomain
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® Relative error

a ex 2
> UPP (b, 1) — U (. p)l3
1,2PP, (1) (gapp)2 _ ta€TH

ex 2
> U (b )l

tn€THh
40° 27°

107 '¢ _

—u—gartltlong ggg + SA 10-2
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runtime runtime

(c) Relative error for the different models using 441 nodes (c) Relative error for the different models using 441 nodes
per subdomain per subdomain
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® Relative error

a ex 2
E |UPP (t,, pt) — U (tr, 1) |5
2 t,€Th

1/2PPs(1) (U?PP)

ex 2
> U (o ) l3

tn€TH

40 107

270 10‘2:—

—— Partitioned POD + SA
=8 Partitioned POD
=@ =Full Scale Inexact
1072k
(5] ) =
2 2107}
1073} =
—#— Partitioned POD + SA AR
== Partitioned POD )
1o-* = = Full Scale Inexact . N i .
0 100 200 300 400 500 600 700 10 0 200 400 600 8|
runtime (seconds) runtime (seconds)

(d) Relative error for the different models using 961 nodes (d) Relative error for the different models using 961
per subdomain per subdomain
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® Domain coupling using the primal Schur-complement domain decomposition method.

® Local subproblems have been reduced by projection in low-dimensional subspaces
obtained by the snapshot POD.

® This approach permits to flexibly reduce the computational cost associated with highly
nonlinear problems. In particular:

» the local reduced spaces are generated independently, and have independent
dimensions, which allows us to focus the numerical effort where it is most needed.

» subdomains that are close to highly damaged zones need a richer model to account
for the effect of topological changes. The local POD transforms automatically
generate local reduced spaces of larger dimension in these zones.

» the domain decomposition framework enables us to switch from reduced local
solvers to full local solvers in a transparent manner. This is particularly useful for the
subdomains that contain process zones, as a solution obtained by projection would
be more expensive than a direct solution for a desirable accuracy.

P the transition between “offline" and “online" computations becomes flexible. The
reduced models can be used in the zones where the local reduced spaces converge
quickly when enriching the snapshot space, while still computing snapshots and
refining the reduced models via a direct local solver in the remaining subdomains.

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu Reaﬂ'c UJ[
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® Further work related to domain decomposition

P load balancing mismatch would occur when using such a strategy in parallel. CPUs which
support domains that are not reduced, or domains for which the corresponding
subproblems need to be projected in a space of relatively high dimension, would require
to perform more operations. The domain partitioning itself should be performed jointly
with the model reduction in order to distribute the load evenly.

P the interface problem itself was not reduced here, to guarantee the interface kinematic
compatibility.

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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 When the standard finite element method is unable to
efficiently reproduce certain features of the sought solution:

1. Discontinuities - cracks, material interfaces
2. Large gradients - yield lines, shock waves

3. Singularities - notches, cracks, corners
4. Boundary layers - fluid-fluid, fluid-solid

5. Oscillatory behavior - vibrations, impact

 The approximation space can be extended by introducing of an
a priori knowledge about the sought solution, and thereby:

1. Rendering the mesh independent of any phenomena
2. reducing error of the approximation locally and globally
3. improving convergence rates




Classification of discontinuities

Strong discontinuities

 The primal field of the solution is discontinuous, e.g. cracks
lead to strong discontinuities in the displacement field.

| S

Weak discontinuities

e The first derivative of the solution is discontinuous, e.g.
discontinuities in the strain field through a material interface.

'//\




Classification of enrichments

Global enrichment

 The enrichment is employed on the global level, over the entire domain.
e Useful for problems that can be considered as globally non-smooth e.g.
high-frequency solutions (Helmholtz equation)

Local enrichment

 This enrichment scheme is adopted locally, over a local subdomain.
e Useful for problems that only involve locally non-smooth phenomena, e.g.
solutions with discontinuities.




Classification of enrichments

-

Extrinsic enrichment

* Associated with additional degrees of freedom and additional shape
functions to augment the standard approximation basis.

1. Extended finite element method (XFEM) - Moés et al. (1999)
2. Generalised finite element method (GFEM) - Strouboulis et al. (2000a)
3. Enriched element free Galerkin - Ventura et al. (2002)
4 hp — clouds (Meshless/Hybrid) - Duarte and Oden (1996)

Intrinsic enrichment

 Not accompanied by additional degrees of freedom. Instead, some
standard functions are replaced with special (problem specific) functions.

1. Enriched moving least squares (Meshless) - Fleming et al. (1997)
2. Enriched weight function (Meshless) - Duflot et al. (2004b)
3. Intrinsic partition of unity methods - Fries, Belytschko (2006)
4. Elements with embedded discontinuities




Singular elements (Barsoum, 1974)

T

For simulating the crack tip singular field in LEFM

* Asimple way how to introduce a singularity of 1/+/7 in
isoperimetric finite elements is by displacing the mid-side
nodes of two adjacent edges to one quarter of the element
edge length from the node where the singularity is desired.

crack surfaces

guarter nodes

regular nodes




Partition of unity finite element method (PUFEM)

Partition of unity (PU)

* Asetof functions ¢; whose sum at any point x inside a domain () is
equal to unity:

Vx € ), x : Zgb;(x) =1
=1

 Example PU functions are the finite element “hat” functions:

To — T T — T
Nl(fE) - , T € (X1, X2 NZ(fU) = , T € [x1, X2
A ‘$2—SE1 ng—xl

L
>




Partition of unity finite element method (PUFEM)

Reproducibility of PU

* Any function p(x) can be reproduced by a product of that
function and the partition of unity functions:

> ¢1(x)p(x) = p(x)

* The function can be adjusted if the sum is modified by
introducing parameters q;:

S 61(x)p(x)ar = plx)

 Reproducibility of p(x) can be controlled and localised to
arbitrary regions where q; # 0




Partition of unity finite element method (PUFEM)

Formulation of PUFEM (example)

Find the solution to the following 1D boundary value problem (BVP):

&

da?

with BC : u(0) =0, u(l) =,

Vo € (0,1 : +f=0

If we define two bilinear forms:

"dw du :
a(w,u):/O @@dx (w,f):/()wfdx

The discrete variational problem can be stated as:

find uh € U" satisfying the BC such that for all w* € W

a(w", u") = (w", f)




Partition of unity finite element method (PUFEM)

T

Formulation of PUFEM (example)
* The approximation/trial function in PUFEM:

uM(w) =Y Ni(@)ur + ) ds(@)i(x)q,

standard FE PU enriched
« By choosing w" = §u”, leads to the discrete system of equations:

a(du”, u") = (ou”, f)

K — /Ol dN; d(¢;¢) ﬂ : N, da

d
Az dz ¢ l l—f;: Z.
0_

dN; dN;

f;:/od_xld_xjdx I—>[KSS Kse] {us} B {fs}
Kt / dew)an; > [K® K| (q £

dr dx

g - [ Ao o) dxj

dx dx y




Partition of unity finite element method (PUFEM)

Remarks
* Allows to introduce an arbitrary function ¥ (x) in the

approximation space by splitting the approximation into a
standard and enriched parts.

* Enrichment can be localised to a small region around the
features of interest — computationally advantageous.

* Provides a systematic means of introducing multiple
enrichments.

N
References:
 Melenk and Babuska (1996)
* Duarte and Oden (1996)




The Generalised Finite Element Method (GFEM)

...
GFEM

* Originally associated with global PU enrichment

e Shape functions in the enriched part are usually different from
the shape functions in the standard parti.e. ¢;(x) # N;(x)

* Introduced numerically generated enrichment functions, e.g. a
L solution in the vicinity of a bifurcated crack as enrichment

J
4 )
References:
* Melenk (1995)
 Melenk and Babuska (1996)
N Strouboulis et al. (2000) )




The Extended Finite Element Method (XFEM)

7

N

XFEM

* Associated with local discontinuous PU enrichment e.g.:

a. propagation of cracks
b. evolution of dislocations
c. phase boundaries

« Both GFEM and XFEM are essentially identical in their
application, i.e. extrinsic PU enrichment

4 )
References:
* Belytschko and Black (1999)

* Moés et. al. (1999)

N Dolbow (1999) )




GFEM/XFEM

4 N
Formulation for crack growth:

u'(x) = > Nyx)u'+ Y Nyx)H(x)a'+ Y Ng(x)>  fax)b

IeNT JEN 7 KeNk
(g J U J U J
Y Y Y
standard part discontinuous singular tip
enrichment enrichment
r
+1 if x above crack 0 0 0 0
H(x) = . {fa(r,0),a =1,4} = < \/rsin =, /7 cos —, /7 sin = sin 6, /7 cos = sin f
—1 if x below crack 2 2 2 2
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Extended finite element method (XFEM)

uih (x) = E N, (X)u,;+ E N, (X)aijl;[(x) + E Ox (X)biKlIi(g

. enriched
classical

l.](‘ X Clb 0V «—— Heaviside function

if Xbelow

P (r,0) = \/;cos%, \/;sme s1n \/;sme cos%

http://www.researcherid.com/rid/A-1858-2009 Institute of Mechanics and Advanced Materials -

Asymptotic fields
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Selection of enriched nodes
CARDYP

uih (x) = E N, (X)u,;+ E N, (x)a;, H(X)+ E by (X)bquAj(X)

n,; CN° ng CN/ ’
enriched
N N\
‘ Asymptotic fields
R N\
\ J
7 Heaviside function
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Part I. Streamlining the CAD-analysis transition

Part Il. Some advances in enriched FEM

Part lll. Application to H cutting of Si wafers
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Motivation: free boundary problems - mesh burden
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Reduce the mesh burden

[Decouple geometry and analysis
* Meshfree methods (Monaghan, 1977, Belytschko, et al. 1994)

* Immersed boundary method (Mittal, et al. 2005)
.

e PU enrichment (Melenk & Babuska, 1996; Belytschko, et al. 1999)

J

ﬁmprove element formulations (use simplex elements)
e Smoothed FEM (Liu, et al. 2006), smoothed XFEM (Bordas,...)
e Polygonal FEM (Alwood, et al. 1969)

\.

(Boundary discretisation
e Boundary element method (Rizzo, 1967 )
* Scaled boundary FEM (Song, et al. 1997)

(Couple geometry and analysis: Isogeometric analysis (Hughes,
2005), Isogeometric BEM (Simpson, et al. 2012)

\
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Separate field and boundary discretisation

(e Immersed boundary method (Mittal, et al. 2005) VA VAVAVAVA! :\
e Fictitious domain (Glowinski, et al. 1994) SURISEARL
e Embedded boundary method (Johansen, et al. 1998) ) Q J |
e Virtual boundary method (Saiki, et al. 1996) % {¥ﬁ .' |

. e Cartesian grid method (Ye, et al. 1999, Nadal, 2013) - - - VavAV; y

v' Easy adaptive refinement + error estimation (Nadal, 2013)
v Flexibility of choosing basis functions
e Accuracy for complicated geometries? BCs on implicit surfaces?

= An accurate and implicitly-defined geometry from arbitrary
parametric surfaces including corners and sharp edges
(Moumnassi, et al. 2011)
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Moumnassi et al, CMAME DOI:10.1016/j.cma.2010.10.002

® (Objectives ~| )
» insert surfaces in a structured mesh [ ;
= without meshing the surfaces (boundary, cracks, holes, \\\ /

inclusions, etc.)
= directly from the underlying CAD model
= model arbitrary solids, including sharp edges and vertices

P keep as much as possible of the mesh as the CAD model
evolves, i.e. reduce mesh dependence of the implicit
boundary representation

» maintain the convergence rates and implementation simplicity of the FEM

Advance by CRP Henri Tudor in 2011
(Moumnassi et al, CMAME DOI: 10.1016/
j.cma.2010.10.002

: /Singl’é Multiple level sets
75

Level Set representation of a surface defined by a para
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® multiple level sets

® single (left) versus multiple (right)
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Three-dimensional model problem

® Laplace equation on a cube

convergence rates

u- error
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Girovs Pixel/Voxel-based FEA on Cartesian grids (Valencia)

H-adaptive refinement based on error estimation
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Girovs Pixel/Voxel-based FEA on Cartesian grids (Valencia)
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Isogeometric analysis

* P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-Spline Finite
Element approach for geometrical design and mechanical
analysis. INME, 41(3):435-458, 1998.

e [, Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: a new
paradigm for thin-shell finite-element analysis. INME, 47(12):
2039-2072, 2000.

e Constructive solid analysis: a hierarchical, geometry-based
meshless analysis procedure for integrated design and analysis.
D. Natekar, S. Zhang,and G. Subbarayan. CAD, 36(5): 473--486,
2004.

* T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and mesh
refinement. CMAME, 194(39-41):4135-4195, 2005.

). A. Cottrell, T. J.R. Hughes, and Y. Bazilevs. Isogeometric
Analysis: Toward Integration of CAD and FEA. Wiley, 2009.




Isogeometric analysis

* P. Kagan, A. Fischer, and P. Z. Bar-Yoseph. New B-Spline Finite
Element approach for geometrical design and mechanical
analysis. INME, 41(3):435-458, 1998.

e [, Cirak, M. Ortiz, and P. Schroder. Subdivision surfaces: a new
paradigm for thin-shell finite-element analysis. INME, 47(12):
2039-2072, 2000.

* Constructive solid analysis: a hierarchical, geometry-based
meshless analysis procedure for integrated design and analysis.
D. Natekar, S. Zhang,and G. Subbarayan. CAD, 36(5): 473--486,
2004.

* T.J.R. Hughes, J.A. Cottrell, and Y. Bazilevs. Isogeometric
analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement. CMAME, 194(39-41):4135-4195, 2005.

). A. Cottrell, T. J.R. Hughes, and Y. Bazilevs. Isogeometric
Analysis: Toward Integration of CAD and FEA. Wiley, 2009.




Non-uniform rational B-splines

- N
Knot vector
a non-decreasing set of coordinates in the parametric space.

E={§1, E.sza T €n+p+1}

Knot Parametric mesh

\
B-spline basis function 5050 . CO 44'4§
(]\7 (f) _ 17 lf ga S g < fa-l—l h
a,0 0, otherwise.
Na,p(g) — f__ga Na,p—l(&)"‘ €a+p+1__§ Na—i—l,p—l(f)'
£a+p 'ga fa—l—p—l—l £a+1
\_ _J
NURBS basis function
R (6) _ Na,p<€>wa _ Na,p(ﬁ)wa Contk)l point
" W(S) ZZZ1N&,pwd 7




Properties of NURBS

o Partition of Unity

[ iRi,p(E.)):]‘ ]

-

\_

e /O
e Non-negative ol
e p-1 continuous derivatives -
e Tensor product property
n m \
S (E; sT ): Zlei,p (E; )sz,q (T] )Bi,j
i=l j=1
A LHOLRUSPURG) bLA]
i=1 j=1 i= j=

J




NURBS to T-splines
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(NURBS geometry) (T-splines geometry)
~ N [ N

NURBS T-splines

e No watertight geometry ° g—gscjé E’;ﬂt}‘e/i)cmr (as Point-

e No local refinement scheme
e Global topology
_ J U Y

Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, and T.W.
Sederberg. Isogeometric analysis using T-splines. CMAME, 199(5-8):229-263, 2010.

-
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Isogeometric Analysis with BEM

(" N

Boundary C\zi .
representation <
-
1. IGABEM with NURBS for 2D elastic problems (Simpson, et al.
CMAME, 2011).

2. IGABEM with T-splines for 3D elastic problems (Scott, et al.
CMAME, 2012).

3. IGABEM with T-splines for 3D acoustic problems (Simpson, et al.
2013 - MAFELAP2013 TH1515).

- /

Domain
representation

Difficulties in dealing with nonlinear problems and non-homogeneous

materials.
_ y




IGABEM formulation

4 )
Regularised form of boundary integral equation for 2D linear elasticity

/ T(s, x)[u(x) — us)] d0(x) = / U(s, x)t(x) dT(x) ]
r r

where x and g are field point and source point respectively, u and
t are displacement and traction around the boundary, T and {Jj are
fundamental solutions.

Discretise the geometry and solution field using NURBS

4 na )
x =Y Na(§)Ba=Na({)By
A=1
u=>» Na(§us = Na(ua
A=1
t=>» Np(ts=Np(ts

7 J




-

(

Isogeometric analysis with BEM Q—_
)

Approximate the unknown fields with the same basis functions
NURBS, T-splines ... ) as that used to generate the CAD model

-

e Exact geometry.
e High order continuity.
e hpk-refinement

-




Nuclear reactor

NURBS curve
o |
(45, 100) (100, 100) x Z::m:":m
O Elementedges
(25, 75) (45, 75)
E=207x10° 120

v =0.15
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(0, 15)

(0, 0)
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—_— FEM
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i

—— NURBS curve

IGABEM
FEM

Control points
X Collocation points
O Element edges

=)
=)

Stress analysis without meshing: isogeometric boundary-element method
9 ICE Proceeding, 2013, H Lian, RN Simpson, SPA Bordas



http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=xhdGcjkAAAAJ&citation_for_view=xhdGcjkAAAAJ:ufrVoPGSRksC

Propeller: NURBS would require several patches - single patch T-splines

4 )
Displacement Magnitude
623.9811
EéOO
400
2200
0

von Mises stress

1.54e+06 von Mises stress
E] .00e+06 1.54e+06

_;] 006405 E1.00e+06

e 1 .Jue -1.00e+05
E] .00e+04 E] 00e+04
E—'1 .00e+03 1.00e+03
L 100.

Isogeometric boundary element analysis using unstructured T-splines
MA Scott, RN Simpson, JA Evans, S Lipton, SPA Bordas, TIR Hughes, TW Sederberg
CMAME, 2013. )

\_
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IGABEM sensitivity analysis formulation

Governing equations in parametric space, which can be viewed as material
coordinate system

/FT(S(C),X(ﬁ))[u(X(f))—u(S(C))]J(S)dS=/FU(S(C),X(ﬁ))t(X(é))J(S)dé

Differentiate the equation w.r.t. design variables (implicit differentiation)

4 N
[T + T )= )+ [ () )
I I
_ / (U + U )tde + / (Ut mde
\_ I I _J

Discretise the derivatives of displacement and traction using NURBS basis

r - N
U, =Y Na(&u), = Na(§u,
A=1
npg
tm = Z Np(&)th, = Np(&)th,
\ B=1 y,

L Finally H,,u+ Hu,, = G,,t + Gt,,




Pressure cylinder problem

o

analytical
IGABEM

Design variable is outer circle radius b




Infinite plate with a hole

€0 T T T T T

4 |

exact traction analytical
_____ — ©  IGABEM 9
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Design variable is radius R




3D Lamé problem

Displacement Error
E.003422

0.003
. ' -0.002

-0.001

i

0

Displacement Sensitivity Error

t = exact 013089298
0012
-0.008
-0.004
Design parameter: b "
0




Design curve is ED.
Minimise the area without

violating von Mises stress

criterion.

Optimal geometry

@ Optimal control points

25
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e Shape optimisation directly from CAD .l
(CARRDY® LUXEMBOURG
® |GA
® BEM
® T-splines
® Control points and weights as design variables
o

Maximize stiffness, minimise volume
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>Fatigue Fracture Failure of Structure

*[nitiation: micro defects

eLoading : cyclic stress state
(temperature, corrosion)

>Numerical methods for crack growth

*VVolume methods:
FEM, XFEM/GFEM, Meshfree
*Boundary methods: BEM

-~

o Assumed val
Bordas & Moran, 2006 " . shape of rack in

fitting

XFEM+LEVEL SET /-

) intact

z
X’LY

Z- compenent of the
reaction force on fitting
10,00Cpsi if stops are all

13,000psi if one stop s
‘severed

R

Circumferential® -
Crack -

‘% .
V\‘\"

Multiple Origins

Fatigue cracking of nozzle sleeve
http://met-tech.com/

R Initial location
b S S of the quarter

] e S penny crack
. S

’:1.-‘ 1 ~v"}'b,"‘;'l‘

| e RN X )
' I:'}I b Refined region
Sy Nl Element size 0.5mm
SN
SR
T -«’w?'ti::’i

R

R Coarser region

X0V Ap Element size 1.0mm



Motivation

> Challenges in volume-based methods

e Remeshing (FEM)
e Local mesh refinement

Efficiency & Accuracy

XFEM
adaptive refinement

ATTART)
i u‘_’w{'\‘

IGABEM
Direct CAD used




Weighted residual method, collocation

Linear elasticity problem:
Z(u)=V-(CV°u)=1f, inQ

u=1u, onl),
t=(CV°u)-n=t, onl}

Approximation of u:
u'=1u+ ZN[(X)UI
I=1

Weighted residual form:

/(V-(CV‘M)—f)-VdQ—F/(t—t)-VdF—O

I'y

Collocation method: v(z) =) v'd(s;,2)
=1
sifting property: /Qg(Z)<5(S,Z)dQ = g(s)
Galerkin method (variational principle): v(z) = Y " N;(z)v’

/(VV:CVSu—f-V)dQ—i—/ t-vdl'=0
Q

I'y



Kelvin fundamental solution

Navier equation: Va4 (p+NV(V-u)=f

Kelvin solution: assuming a unit concentrated force applied on
a point s in the infinite domainf(z) = ed(s,z) , we seeku(z)
and t(z) for any point z

* * b— . . .
u; = Ujje; t; = Tije;

for 3D problems, the expressions are:

1
Uij(S, Z) = 167‘(‘“(1 — V)?“ [(3 — 4V)5ij + ’I“,Z"I“’j]
1 or
Tii(s,z) = _87r(1 —2) [872((1 — 2v)0;5 + 3r,r) — (1 —2v)(nr,; — nir,j)}



Boundary integral equations (BIEs) and IGABEM crack modeling

*Displacement BIE ¢i;(s)u;(s) +][

*Traction BIE cij(s)t

*NURBS approximation

= Z Rap(€)d;
An:1

= Z Ray (5)6124
A=1

T35, (AT (x) = [ Uy, x)8,(x) A0 (x)

%Smsxu] )dI'(x

*Collocation: Greville Abscissae

STEIE S T

fs:
p

I1(;' s
e S ——
! S

]-c— Il+

traction BIE for s

= K

displacement BIE for s™

Wo—o o } o } o—o
]
o collocation point
_: = ¢lement boundary
J
:
e e EEmCemm mme |
]
]
, NURBS(B-Spline)
, p=2
o]

x)dI'(x)

Discontinous Lagrange
p=2

3
L S IS NN A S - S Y

OO OO O OO




Treatment of crack tip singularity

*Partition of unity enrichment (2D)

w(x) = S Nd + 3 Nixéx)al g

Ie; JeN;
l—_o._& M —— .
‘9__ L
\ Crack tip enrichment
—— " o U
DU SN Uniform mesh
PO O
o Original collocation point Crack tip mesh refinement
° Addtional collocation point
1 0
L & %0

*Consecutive knot insertion at crack tip (2D) or
along crack front (3D)



Edge crack 11/18

Crack tip refinement VS enrichment

1.4 T 1

T 10 T
Analytical —#— Uniform mesh

12 < Enrichment c —©— Crack tip refinement
< #*  Uniform mesh i £ —<— Enrichment
5 nrichmen
O  Crack tip refinement <
1@ 3
B =
‘\‘\ g 102k
[
08} 3
Q
> k2
= o
o
06 <
c
T R1
5 107}
04 o R2
=
= R3
+ J © R4
02 * o
0 ) L | ) g? 10_40 n " ‘...‘.11 n n ...‘..2
0 0.1 0.2 03 04 05 10 10 10

Number of elements on the crack surface

Crack opening Xdisplacement Error in displacement L2 norm

NURBS VS Lagrange: convergence in SIFs, no crack tip treatment

—6— NURBS, Mode | =—@== NURBS, Mode |
=== NURBS, Mode II === NURBS, Mode Il
0 = © = Lagrange, Mode | | | 10° | = © = Lagrange, Mode || |
10 = € = Lagrange, Mode Il |] - = & =lagrange, Mode II

» ik - i
% ~ 0-0 5

~ £
€ [N s
g 5
o Iy
(] =
2 5
@ [}
o o
o

-1
10
107
L1 L L N . M 1 15 25 35
102 103 Number of elements

DOFs



Inclined centre crack (SGBEM, Lagrange BEM, IGABEM)

(S B N K; = ov/ma(cos?B + Asin?f3)
K = ovma(l — X)cosfsin
Ll » =7/6, o=1, A=0.5

*IGABEM(r) :Uniform mesh (refined tip element)
-~ | l l | — ¢ BEM: discontinuous Lagrange BEM
*SGBEM: symmetric Galerkin BEM, Sutrahar&Paulino (2004)

m: number of elements in uniform mesh along the crack surface

1\'1 I\';Iad K 11/ I\ eract
m | SGBEM | LBEM | IGABEM | IGABEM(r) m | SGBEM | LBEM I(,ABEZ\I IGABEM(r)
3 | 0.9913 | 1.00451 | 1.00982 1.00120 3 | 1.0075 | 1.00104 | 1.00647 1.00146
4 | 1.0002 | 1.00333 | 1.00769 1.00105 4 | 1.0009 | 1.00129 [ 1.00656 1.00129
5 | 10001 | 1.00268 | 1.00633 1.00090 5 | 1.0010 [ 1.00158 | 1.00607 1.00113
6 | 1.0002 | 1.00230 | 1.00539 1.00080 6 | 1.0009 | 1.00160 | 1.00550 1.00102
7 | 1.0003 ] 1.00206 | 1.00474 1.00074 7 | 1.0014 | 1.00153 | 1.00500 1.00096
8 | 1.0003 | 1.00190 | 1.00426 1.00070 & | 1.0005 | 1.00143 | 1.00458 1.00091
9 1.0003 | 1.00177 | 1.003%9 1.00066 9 [ 09997 [ 1.00134 | 1.00424 1.00087
10 | 1.0003 | 1.00167 | 1.00359 1.00064 10 [ 1.0009 [ 1.00126 [ 1.00396 1.00085
11| 1.0003 | 1.00159 | 1.00336 1.00062 11| 0.9992 | 1.00119 | 1.00373 1.00083
12| 10003 | 1.00152 | 1.00316 1.00060 12| 10013 | 1.00112 | 1.00353 1.00081
14| 1.0003 | 1.00142 | 1.00285 1.00058 14 | 1.0004 | 1.00102 [ 1.00322 1.00079




Arc crack (M integral, J integral)

-——

—

oo

*Uniform mesh + refined tip element

*Splitting parameter in J integral: 7spuit = 0.03R;,0.04R;,0.05R;,0.06R;,0.07R,;

m: number of elements in uniform mesh along the crack surface

Ky K§ract K/ Kgpoect
m | M integral | J; integral | M integral | .J,. integral
10 1.00045 0.99972 0.97506 1.00309
14 1.00014 0.99979 0.98621 1.00248
17 1.00011 0.99982 0.98642 1.00217
20 1.00009 0.99985 0.98657 1.00195
23 1.00002 0.99987 0.99407 1.00176
26 1.00002 0.99989 0.99413 1.00163




Crack growth from rivet holes

—@— IGABEM, K,
3f| = @ = XFEM, K,

l l j l = IGABEM, K
25} | = @ =XFEM, K,

<i> — A, 2:
) XF
/’\

EM by Mées et al (1999) @

N M/

(b) IGABEM

_/

1 1 1 1 1 1 1
2 4 6 8 10 12 14 16
Number of steps



Crack growth through rivet holes

1.25

N M
0O,
\

10. ()

20.

2.5 T T T T T T
—e— IGABEM, K[

— o —IGABEM, K,
|| —e— XFEM, K,
— « — XFEM.K_

1.5

SIFs

Experiment

0.5

IGABEM

10 20 30 40 50 60 70
Number of steps






Penny-shaped crack under remote tension

IR

10
KI
— Analytical
8 b | O Mintegral
O ﬁ\%\“\m\ % VCCI
g ) \“\"“'"*\-\4 %
S o107t o | -
2 : -
_lc\I _-€:
0 : : é | | |
_ 8 (rad)
107 I I I
N = 1025 . .
Degrees of freedom stress intensity factors for penny crack

Lo norm error of COD for penny-shaped crack with o =7 / G



error error
0.2I 0.2
0.16 l0.16
1012 - 0.12
IOOB lo.oa
|0~0“ Io.oa
0.000258 0.0079
(a) original SST, ngp s=30, er, =3.344418e-2 (b) improved SST, ngp s=30, e, =3.844282¢-2
o error error
O.5| 0.5I
04 0.4
0.3 0.3
l0.2 I.O.2
IO.] IO.]
0 0.000225 0.0079
(c) original SST, ngp s=18, er, =1.467716e-1 (d) improved SST, ngp s=18, er,=3.844282¢-2

Figure 5: Error in crack opening displacement for penny crack



Penny crack under remote tension (embeded crack)

O.S?ror O_S?rror

0.4 0.4

0.3 0.3

.-0.2 '—0.2

IO.] IO.I
0.00607 0.00178

(b) improved SST, ngp s=30, er,—1.755681e-2

05:"0[

0.4
.0.3
0.2

0.1
0.00178I

(c) original SST, ngp s=18, er,=7.110011e-1 (d) improved SST, ngp s=18, er,=1.75567%¢-002



IO.]
0.00554
(a) original SST, ngp s=18, e, =4.603473e-1

L2 norm error in COD
SIFs

— Analytical

O Mintegral

x VCCI

Degrees of freedom

I 0.1
0.00843
(b) improved SST, ngp s=18, e,,=3.798002e¢-2




Difficulties in 3D application

>How far are we from non-trivial 3D workpieces?

trimmed surface

Input from Rhino, untrimmed multiple
ProE, UG,... patches & T-Splines

CAD model > Analysis-suitable %CStress Anal sis)
(trimmed NURBS) Splines Y

[]

crack evolution Gracture analysia
description
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Conclusions

® Dual boundary integral equations combined with isogeometric
analysis are used to model fracture (2D & 3D) and crack growth (2D)

® Partition of unity enrichment (2D) and graded mesh refinement (2D
& 3D) are used to improve accuracy near the crack tip or crack front

® Stable quadrature scheme is proposed for singular integration in 3D.
This makes the method non-sensitive to mesh distortion

® Different ways to extract stress intensity factors based on the
framework of IGABEM

= Questions
® Geometry-independent field approximation (GIFT)
® Independent displacement and traction approximations
® |ndependent geometry and field approximations
® Contact (BETI)

® BEM Acceleration
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Handling discontinuities in isogeometric

formulations

with Nguyen Vinh Phu, Marie Curie Fellow
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Discontinuities modeling

(PUM enriched methods

o

4 ) s ™

e IGA: link to CAD and e IGA: link to CAD and
accurate stress fields accurate stress fields

e XFEM: no remeshing e Apps: delamination

L\ J \ J




PUM enriched methods (XIGA)

. N
h . \
u’(x) = E Rr(x)us + g Rj(x)®P(x)ay
IeS JeSe
NURBS basis functions enrichment functions
- N

1. E. De Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, and M. C. Hsu. X-FEM
iznOisogeometric analysis for linear fracture mechanics. IJINME, 87(6):541-565,
11.

2. S.S. Ghorashi, N. Valizadeh, and S. Mohammadi. Extended isogeometric
analysis for simulation of stationary and propagating cracks. JNME, 89(9):
1069-1101, 2012.

3. D.J. Benson, Y. Bazilevs, E. De Lchker, M.-C. Hsu, M. Scott, T. J. R. Hughes,
and T. Belytschko. A generalized Tinite element formulation for arbitrary basis
functions: From isogeometric analysis to XFEM. IJNME, 83(6):765-785, 2010.

4. A. Tambat and G. Subbarayan. Isogeometric enriched field approximations.
CMAME, 245-246:1 - 21, 2012.

O\ iy,




Delamination analysis with cohesive elements (standard approach)

(

continuum element /

Y\

N /
/:rack path

e No link to CAD
e Long preprocessing

° Refined meshes

AD

\_

/ ou-bdQ)+ | du-tdly = / de : o(u)dQ) +
Q T Q

: tC(Iu]])dFd




Isogeometric cohesive elements

4 N
1 1
09 . 0.9 /L//
g:: qu ad ratic bas 3?; solid elements
0.6 0.6 6 .
_ N , . . 5 8
on " > ° ® PS ®
03 0.3 CP~! interface elements
o o] 2 ¢ ¢
% 0.1 02 03 04 0506070809 1 % 010203040506 070809 1 ) /L
(a) E = {0,0,0,1,1,1} (b) = = {0,0,0,0.5,0.5,0.5,1,1,1} \
ool \ M1(6) Na(€)
0.25 - 0.25} NZ(f) N3(§)
: 0.7} S
02 0.2 2:2: /// N\
0.4r \\
0.15 0.15} 0.3 / \
0.2} \ \\.\
0.1 0.1 0.1} pd
% o2 0.4 0.6 0.8 1
0.05 0.08}
% 01 02 03 04 05 06 07 0809 1 0 01 02 03 04 05 06 07 08 09 KI"IOt insertion
(1. C. V. Verhoosel, M. A. Scott, R. de Borst, and T. J. R. Hughes. An h
isogeometric approach to cohesive zone modeling. IJINME, 87(15):336—360,
2011.

2. V.P. Nguyen, P. Kerfriden, S. Bordas. Isogeometric cohesive elements for two
and three dimensional composite delamination analysis, 2013, Arxiv.

s D,




Isogeometric cohesive elements: advantages

(f N )

e Direct link to CAD

e Exact geometry

e Fast/straightforward generation
of interface elements

e Accurate stress field

e Computationally cheaper
- y,

~ N
e 2D Mixed mode bending test (MMB)
e 2 x 70 quartic-linear B-spline elements NN

® Run time on a laptop 4GBi7: 6 s _/\»¥
: Energy arc-length control )

V. P. Nguyen and H. Nguyen-Xuan. High-order B-splines based finite elements for
delamination analysis of laminated composites. Composite Structures, 102:261-275, 2013




Isogeometric cohesive elements: 2D example

O\

e Exact geometry by NURBS + direct link to CAD

e It is straightforward to vary
1) the number of plies and
2) # of interface elements:
e Suitable for parameter studies/design
e Solver: energy-based arc-length method (Gutierrez, 2007)

[
U
- — 30
25 +
[0/90/0/90/...] =
= 20
<
© 15 |
__________ + 10 |
[ Ten]
2 5t no initial crack
Y small initial crack
Y A 0 1 1 A large initial crack :
g 0 0.2 0.4 0.6 0.8 1 1.2 1.4
L» : Y displacement u [mm
z /)77 P [mm]
r )




reaction [N]

30

25

20

15

10

| | ' I | |

no initial crack
small !n!t!al crack
large initial crack 1

1 '

1

0.2

04 06 0.8 1 12 14
displacement u [mm]



Isogeometric cohesive elements: 2D example

reaction [N]

I http:/ /www.frontiersin.org/people/ —n L |
NguyenPhu/94150/video

0 02 04 06 0.8 1 T2 14
displacement u [mm]




Isogeometric cohesive elements: 3D example with shells

<3
2
SR
AT
SRR S !
SRR e
R R e Sen
X AT E
RS
R
SRR

e
s
O

o :“

4 )

e Rotation free B-splines shell elements (Kiend| et al. CMAME)
e Two shells, one for each lamina
e Bivariate B-splines cohesive interface elements in between

- Y




Isogeometric cohesive elements: 3D examples

(" N\

e cohesive elements for 3D
meshes the same as 2D
e |arge deformations




Isogeometric cohesive elements

4 )

4 )

® singly curved thick-wall laminates

e geometry/displacements: NURBS

e trivariate NURBS from NURBS surface(*)
® cohesive surface interface elements

\_ J

damage

0.25 0.75

M ||||1||(|)|'§||1||| N

0 ]
(*)V. P. Nguyen, P. Kerfriden, S.P.A. Bordas, and T. Rabczuk. An integrated design-analysis
framework for three dimensional composite panels. Computer Aided Design, 2013. submitte-)c.




Future work: model selection (continuum, plate, beam, shell?)

( Model selection ( eNitsche coupling - NURBS-NURBS
® Model with shells

e |dentify “hot spots” - dual
® Couple with continuum

(wr, Br1, Bar)

® Coarse-grain

\_ J \_
load
/2 concurrent

ST
O O
> O
LONNS)

thesis A. Akbari 8

thesis O. Goury @ e 134




Thank you for your attention!

International Centre
for Mechanical Sciences

CISM-ECCOMAS International Summer School on “Modelling,
Simulation and Characterization of Multi-Scale Heterogeneous
Materials” September 28, 2015 — October 2, 2015

OPEN SOURCE CODES

PERMIX: Multiscale, XFEM, large deformation, coupled 2 LAMMPS, ABAQUS, OpenMP -

MATLAB Codes: XFEM, 3D ISOGEOMETRIC XFEM, 2D ISOGEOMETRIC BEM, 2D MESHLESS
DOWNLOAD @ http://cmechanicsos.users.sourceforge.net/

COMPUTATIONAL MECHANICS DISCUSSION GROUP Request membership @
http://sroups.google.com/group/computational mechanics discussion/about

135
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Part lll. Application to multi-crack propagation
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Numerical Modeling o
SOl Wafer Splitting




Physical process m

Manufacturing process: SmartCut™ <
* H*ionization of a thin surface of Si | A,
_
* Bonding to a handle-wafer (stiffener) y o
i Y Y Y oy

 High temperature thermal annealing

re-use

« Nucleation and growth of cavities filled with H, ¥ Fondern

* Pressure driven micro crack growth

e Coalescence and post-split fracture roughness

(0011 [1-10] cSCIAQ




Objectives m

4 ™
Determine:
micro crack nucleation points and direction

multiple crack paths until coalescence

time to complete fracture

final surface roughness




Model m

f p
Modeling cavities by zero thickness surfaces
e discontinuities in the displacement field
Linear elastic fracture mechanics (LEFM)

 infinite stress at crack tip, i.e. singularity
. y,

(" )

SiO2 (linear isotropic)

Si (inear isotropic) Cohesive interface with
variation in surface energy

Si (inearisotropicy | .

A
—— 0 1 . .
B m | R < [fracture criterion at the]

........................................... disconﬁnUity tip

statistically distributed discontinuity subjected ]
discontinuities to H, pressure } J




XFEM formulation m

\
\
-
1

H(x) +1 if x above crack
X =
—1 if x below crack

4 )
Approximation function:
=D Nilu'+ ) Nulx + Y N(x Zfa b
IeNT JEN KeNgk
(. J \\ J \U J
Y Y Y
standard part discontinuous singular tip
enrichment enrichment )
\

)

2 2

Ea(r,e),a = 1,4} = {\/Fsine,ﬁcosg,ﬁsinzsin@,\/FcosgsiHOD

e R .
I 1
- [N - -
i mtm m
= [N N [NN]
|
I [ A—l/ \
U =7 1
\ . = :
O 0/643 =Rl D
IPZORW
= J hd i N ? [
Enriched nodes o
O- “Heaviside” k -
- "crack tip” L 2 o ‘ .‘ .
— __J




Hix,y)

H(x) :{
-1 if 1 k
L if x below crac Y,

XFEM formulation

+1 1if x above crack

qB(r,G):{\/;cos% \/;sin% \/;sinesin% x/;sinecos%D

L

©

/
/

m|

[ ]

[T1 g
[

O\P




Discretization: XFEM m

f N
Extended Finite Element Method (XFEM)

* Introduced by Ted Belytschko (1999) for elastic problems
. y,

e
4 L Fracture of “XFEM” using XFEM J

2.4
22
2

F 418
16

08

06

04

02

= 0
-0.2
-0.4
-06
-0.8







Example #1 m
4 )

Vertical extension of a plate with 300 cracks
[ Post-split roughness )

40

301

20+

10+

a
_10 L —
_20 s 4
_30 o |
—Y, (RO| =2.195e+01)
. ymean |
1 Cl)O 2(|)O 3C|)0 4C|)0 5(|)O 6C|)0 7(IJO 8(|)O 9C|)0
\ Position, x j




Example #2 m

4 ™
Mechanical splitting of a wafer sample
* Post-split roughness as a function of micro crack distribution

1000—
=T damaged zone
(studied area)

-500—

-1000

-2000 -1500 -1000 -500 0 500 1000 1500 2000




Example #2

4 N
Mechanical splitting of a wafer sample
o Discretisation (x1mlIn. DOF, h,= 150 nm)

| Fracture control parameters
| -initial cracked length: p., ={10,30,50,70} (%)
| - damage thickness: ={100,300,500} (nm)




Example #2 m

4 N\
o A
Fracturer Roughness vs. Percentage cracked
(mechanical splitting)
* (Case exa 0.8 . . . . . . .
| * tdmg =100 (nm)
1 0.7} . %ty =300 (M) |
s D5 € + tdmg =500 (nm)
i) ok 3 06 + + i
° o°
“ _osk .
>~ & o5} - + '
= ©
1 5 . *
50 S 04+ X X -
2
T\
e Caseexd £ o, = x <
()] . X
-}
F o
0 5 I (é) 02 I~ * n
' o
> *
L o V. ¥ ’*
IS 0.1F % .
o
~0.5}
0 | | | 1 | 1 |
1k 0 10 20 30 40 50 60 70 80
Percentage cracked, Pk (%)
g
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Part IV. Application to surgical simulation

with INRIA, France; Karol Miller, UWA.

°
° o e
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Real lcut

Interactive multiscale MAM

Institute of Mechanics

Cutting SimUIationS & Advanced Materials



Discretise

oy |
P Reduce the problem size while controlling error in solving

very large multiscale mechanics problems
Courtecuisse et al. PBMB 2011

7

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Approach

r . : )
Concrete objective: compute the response of organs during surgica
procedures (including cuts) in real time (50-500 solutions per second)

e )
Two schools of Tchought First implicit, interactive method
» constant time

for cutting with contact
B accuracy often controlled
visually only

» model reduction or “learning”

) scarce development for
biomedical problems

B no results available for
cutting

[Courtecuisse et al., MICCAI, 2013]
Collaboration INRIA

Proposed approach: maximize accuracy \_ )
for given computational time. Error control

\_ 151)




Four main difficulties

Complex geometries from
‘medical images

- S

: . \ !‘ {
segmentatlon

Region of interest (Rol)

Error control

e interactivity

espace-time discretization?
e optimize use of compute
resources
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Topological changes & contact

Model
reduction

I Advanced
L discretization

Validation
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