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APPLICATIONS

PERSONALISED	
  MEDICINE ENGINEERING

Computer-­‐aided	
  
surgery

Durability	
  &	
  
Sustainability Energy AerospaceComputer-­‐aided	
  

diagnosBcs	
  

Computational mechanics & computational 
materials sciences Multiscale/field interface problems

COMPETENCES

MULTI-­‐SCALE	
  FRACTURE	
  
aerospace	
  composites,	
  
polycrystalline	
  materials 

COUPLED	
  PROBLEMS	
  
biofilms,	
  liquid	
  crystals,	
  
fluid-­‐structure,	
  baLeries 

QUALITY	
  &	
  ERROR	
  
CONTROL	
  
opMmise	
  

computaMonal	
  Mme	
  
given	
  an	
  accuracy	
  level

INTERACTIVITY	
  
Reduce	
  

computaMonal	
  costs	
  
by	
  several	
  orders	
  of	
  

magnitude

DISCRETISATION	
  
discrete	
  and	
  conMnuum	
  

approaches
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Real-time simulation of cutting during brain surgery

http://legato-team.eu  —  stephane.bordas@uni.lu S. Bordas, B. Peters, A. Zilian and S. Belouettar (LIST)

http://legato-team.eu
mailto:stephane.bordas@uni.lu


APPLICATIONS

Personalised	
  Medicine Engineering

Fracture	
  over	
  mul$ple	
  scales	
   Coupled	
  
problems

Quality	
  and	
  error	
  control Interac$vity	
  and	
  model	
  order	
  reduc$on

Computer-­‐aided	
  
surgery

Durability	
  &	
  
Sustainability Energy AerospaceComputer-­‐aided	
  

diagnosBcs	
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Durability of Pb-free solders

Mesh-free and discrete approaches 
to fracture 

Discre$sa$on

Biofilm growthAdaptive multi-scale methods

Error estimates for fracture



Mo$va$on:	
  fracture	
  of	
  engineering	
  structures	
  and	
  materials

14

quasi-­‐staMc/cohesive

linear	
  elasMc	
  
fracture	
  &	
  faMgue

dynamics	
  
ducMle

dynamics/briLle

EPSRC	
  project	
  2011-­‐2012

(a) (b)

)LJ���&RPSDULVRQ�RI�QXPHULFDO�VLPXODWLRQ�DQG�H[SHULPHQW

X

σh

σH

Y

)LJ���%RXQGDU\�FRQGLWLRQV�ZLWK�LQLWLDO�FUDFN����
GHJUHH�LQFOLQDWLRQ

 1XPHULFDO�UHVXOW�KDV�D�JRRG�
DJUHHPHQW�ZLWK�H[SHULPHQWDO�UHVXOW

 ([SHULPHQWDO�UHVXOW�VKRZV�WKDW�WZR�
ZLQJ�FUDFN�LV�QRW�VWULFWO\�V\PPHWULFDO�
DORQJ�FHQWUDO�<�GLUHFWLRQ

 7KLV�SKHQRPHQRQ�LV�FDSWXUHG�E\�
QXPHULFDO�VLPXODWLRQ�RI�FUDFN�
SURSDJDWLRQ�

thesis	
  M.	
  Sheng,	
  USA,	
  China,	
  2016

‣ China/USA:	
  hydraulic	
  fracturing	
  (shale	
  gas)	
  

‣ Limerick:	
  unidirecMonal	
  composites

num exp

thesis	
  L.	
  Cahill,	
  
2014

exp
num



Mo$va$on:	
  mulMscale	
  fracture	
  of	
  engineering	
  structures	
  and	
  materials
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Solder joint durability (microelectronics), Bosch GmbH



Mo$va$on:	
  mulMscale	
  fracture	
  of	
  engineering	
  structures	
  and	
  materials
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Prac$cal	
  early-­‐stage	
  design	
  simula$ons	
  (interac$ve)

[Allix, Kerfriden, Gosselet 2010]
Discretise

0.125 mm
50 mm

100 plies

courtesy: EADS

‣Reduce the problem size while controlling the error (in QoI) 
when solving very large (multiscale) mechanics problems  

Discretise

Surgical	
  simula$on	
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NUMERICAL	
  SOLUTION

GEOMETRICAL	
  MODEL	
   DISCRETISATION

MATERIAL	
  MODELS	
  
Phenomenological	
  	
  
Elasticity/Plasticity	
  

Crack	
  growth	
  law	
  (Paris…)	
  
Fracture	
  energy	
  

Maximum	
  tensile	
  strength	
  
Multi-­‐scale	
  

Debonding,Fibre	
  pull-­‐out	
  
Fibre	
  breakage,	
  interface	
  

fracture,	
  grains,	
  

A	
  
POSTERIORI	
  

ERROR	
  	
  

EXPERIMENTS

Validation & parameter identification

Verification

CONVENTIONAL	
  APPROACH	
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When the material model is not known, this conventional 
approach is inadequate

Deep-­‐brain	
  sMmulaMon
Courtesy Alexandre Bilger, PhD thesis, Inria, 2014
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NUMERICAL	
  
SOLUTION

GEOMETRICAL	
  
MODEL	
  

DISCRETISATION

LEARN	
  MATERIAL	
  
MODELS	
  

which scales?
what models?

what parameters?
what scale transition?
what data is missing?

A	
  
POSTERIORI	
  

REAL	
  SYSTEM

DIGITAL	
  TWIN	
  OF	
  THE	
  SYSTEM

DATA	
  

INFORMATION	
  

Strain

Structural 
Health

Cracks

Environment
Conditions

Scales of 
interest

Crack 
growth 

rate

Worst load 
combination

Inspection 
interval Mission

?



Discre$za$on	
  

➡parMMon	
  of	
  unity	
  enrichment	
  
✓(enriched)	
  meshless	
  methods	
  
✓level	
  sets	
  

➡isogeometric	
  analysis	
  
➡implicit	
  boundaries

Model	
  reduc$
on	
  

✓mulM-­‐scale	
  &	
  
homogenisaMon

	
  

✓algebraic	
  m
odel	
  reducM

on	
  (using	
  PO
D)	
  

✓Newton-­‐Kry
lov,	
  “local/g

lobal”,	
  domain	
  

decomposiMon	
  

10

Error	
  control	
  

✓XFEM:	
  goal-­‐oriented	
  error	
  esMmates	
  	
  
‣	
  used	
  by	
  CENAERO	
  (Morfeo	
  XFEM)	
  

✓meshless	
  methods	
  for	
  fracture	
  
✓error	
  esMmaMon	
  for	
  reduced	
  models
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Ways to reduce the models

• HomogenisaMon	
  (FE^2,	
  etc.)	
  -­‐	
  Hierarchical	
  	
  

• Concurrent	
  and	
  hybrid	
  (bridging	
  domain,	
  ARLEQUIN,	
  etc.)	
  

• Enrichment	
  (PUFEM,	
  XFEM,	
  GFEM)	
  

• Model	
  reducMon	
  (algebraic)

11
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Reduction methods based on homogenisation

12
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Coupling of macroscopic and microscopic levels 
The volume averaging theorem is postulated for: 
  1) Strain tensor: 
  
  2) Virtual work  (Hill-Mandel condition): 
 
  3) Stress tensor: 

Definition of  an RVE 

mailto:email@cardiff.ac.uk
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Hierarchical multi-scale approaches (FE^2)

14

In softening regime: 
•  Lack of scale separation 
•  Macroscale mesh dependence 

The macroscopic constitutive law is not 
required 
Non-linear material behaviour can be simulated 
Microscale behaviour of material is monitored 
at each load step 
 
 

Advantages and abilities: Drawbacks: 

mailto:email@cardiff.ac.uk
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Details in Phil. Magazine, 2015, Akbari, Kerfriden, Bordas

mailto:email@cardiff.ac.uk


Reduction methods based on algebraic reduction

18
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Illustration of the method of separated representation
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Illustration of the method of separated representation

20

C

1 = sin(0.01x)

C

2 = (x� 500)3

↵1 = e�0.02 t

↵2
= cos(

p
t)
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Illustration of the method of separated representation

21

+

=

C

1 = sin(0.01x)

C

2 = (x� 500)3

↵1 = e�0.02 t

↵2
= cos(

p
t)

C1↵1 + C2↵2

Very rich approximations!

mailto:email@cardiff.ac.uk
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Data compression: get the nose with the POD!
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Data compression: get the nose with the POD!
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approximation 
of order 2 is 
enough)
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Data compression: get the nose with the POD!
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(idem fracture)
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of order 2 is 
enough)
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Method of separated representation

• Search	
  for	
  the	
  soluMon	
  in	
  space	
  /	
  Mme	
  /	
  parameter	
  in	
  a	
  product	
  space:	
  

• OpMmality	
  of	
  an	
  expansion	
  of	
  order	
  nc	
  with	
  respect	
  to	
  a	
  parMcular	
  metric	
  defined	
  
on	
  	
  

➡ different	
  metrics	
  lead	
  to	
  different	
  methods,	
  which	
  have	
  their	
  pro/cons	
  

➡ Choice	
  strongly	
  dependent	
  on	
  the	
  context	
  

‣ Data	
  compression:	
  POD	
  (Proper	
  Orthogonal	
  DecomposiMon)	
  is	
  a	
  classical	
  
choice	
  in	
  dimension	
  2	
  

‣ Data	
  compression	
  in	
  many	
  dimensions:	
  mul$linear	
  POD	
  
‣ Solver	
  in	
  many	
  dimensions	
  without	
  a	
  priori	
  knowledge	
  of	
  the	
  soluMon:	
  PGD	
  
‣ Model	
  order	
  reducMon:	
  Snapshot	
  POD,	
  Snapshot	
  PGD	
  
‣ IniMaliser,	
  precondiMoners:	
  low-­‐order	
  POD,	
  low-­‐order	
  PGD,	
  Snapshot	
  POD

25

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

Ci 2 Rn

�i : T ! R, 8i 2 J1, nCK ,
�i : P ! R, 8i 2 J1, nCK ,

Usep
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Proper Orthogonal Decomposition (POD)

• One	
  writes	
  the	
  classical	
  POD	
  problem: 
 
	
  	
  	
  	
  	
  find	
  an	
  orthonormal	
  basis	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  minimising	
  the	
  POD	
  func8onal:	
  

• Equivalently,	
  look	
  for	
  a	
  maximum	
  of	
  	
  

‣ CorrelaMon	
  operator:	
  

• SoluMon:	
  eigenvalue	
  problem	
  

➡ 	
  	
  

➡ 	
  	
  

• 	
  	
  	
  	
  	
  	
  Error

26

JPOD(C) =

Z

t2T
kU(t)�CCTU(t)k22 dt

C 2 Rn⇥nc , CT C = I
d

J̄POD(C) =

Z

t2T
U(t)TCCTU(t) dt = Tr(CTKC)

K =

Z

t2T
U(t)U(t) dt

K�k = �k�k

C =
�
�1 �2 ... �nc

�
(�k)k2J0,nKwhere                           in decreasing order

JPOD(C) =
nX

k=nc+1

�k

Z

t2T
↵i ↵j dt = �ij �

i
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a posteriori model order reduction. Idea: search for the solution as a 
linear combination of a set of pre-calculated representative solutions 

27

−5 0 5 10 15 20 25
−3

−2

−1

0

1

2

3

4

5

6

UD

FD1 FD2

S1

nS loads

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

Reduced basis: family of representative 
solutions

C1

C2

C3

C =
�
U1 U2 ... UnC

�

(1)	
  Solve	
  FINE	
  for	
  n_S	
  parameters	
  (EXPENSIVE!)	
  

S =
�
S1 S2 ... SnS

�

(3)	
  TruncaMon	
  

Solution
Coefficients

Family of  
representative solutions

Approximation of the 
solution in a space of 
small dimension (nc)

F
Int

(U) + F
Ext

= 0

Initial set of equations

(4)	
  Galerkin	
  orthogonality	
  

S = U⌃VT =
nSX

k=1

⌃k Uk VkT

(⌃k)k2J1 nSKwhere                           in decreasing order

nS solutions, sorted by relevance

(2)	
  Singular	
  value	
  decomposiMon	
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• P.	
  Kerfriden,	
  P.	
  Gosselet,	
  S.	
  Adhikari,	
  and	
  
S.	
  Bordas.	
  Bridging	
  proper	
  orthogonal	
  
decomposi8on	
  methods	
  and	
  augmented	
  
Newton-­‐Krylov	
  algorithms:	
  an	
  adap8ve	
  
model	
  order	
  reduc8on	
  for	
  highly	
  
nonlinear	
  mechanical	
  problems.	
  
Computer	
  Methods	
  in	
  Applied	
  
Mechanics	
  and	
  Engineering,	
  200(5-­‐8):
850-­‐866,	
  2011.

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

Limitations: case of highly non-linear fracture mechanics 

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

−5 0 5 10 15 20 25

−2

0

2

4

6

8

10

Reduced Ritz basis

C1

C2

C3

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Er
ro

r

Time step

M
ax

im
um

 d
am

ag
e 

/2
0

−5 0 5 10 15 20 25
−3

−2

−1

0

1

2

3

4

5

6

FD

UD

28

This solution is not 
in the snapshot !

mailto:email@cardiff.ac.uk
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Application to a parametric fracture problem

29
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Application to a parametric fracture problem

30

‣ The	
  POD	
  soluMon	
  is	
  
not	
  able	
  to	
  reproduce	
  
the	
  soluMon	
  in	
  the	
  
cracked	
  area	
  

‣ Due	
  to	
  lack	
  of	
  
correlaMon	
  introduced	
  
by	
  crack	
  growth	
  

‣ Leads	
  to	
  a	
  local	
  
projecMon	
  error

mailto:email@cardiff.ac.uk
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Parametric / stochastic multiscale fracture mechanics

31

➡ Reduced order modelling?➡ Direct numerical simulation: efficient preconditioner?

➡ Adaptive coupling?

First realisation Second realisation

Highly correlated solution fields

Localisation of fracture, uncorrelated

mailto:email@cardiff.ac.uk


THE RETURN OF THE MONKEY! 
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What can we do to address this lack of separation 
of scales/reducibility? 

33
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How we got to this point...

34
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Data compression: fracture

35

POD order 1

POD order 3

“Exact” solution

Snapshot POD (snapshot space is spanned by 
the ensemble of solutions at all time steps)

mailto:email@cardiff.ac.uk
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Partitioned POD/DDM

36
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Reduced DDM-POD

37

‣ Decompose	
  the	
  structure	
  into	
  
subdomains	
  

‣ Perform	
  a	
  reducMon	
  in	
  the	
  
highly	
  correlated	
  region	
  

‣ Couple	
  the	
  reduced	
  to	
  the	
  non-­‐
reduced	
  region	
  by	
  a	
  primal	
  
Schur	
  complement

mailto:email@cardiff.ac.uk


Order of the POD transforms
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Choice of the reduced subdomains: local error estimation 
by “leave one out cross-validation” (LOOCV)

• Reduced	
  subspaces	
  are	
  independent	
  and	
  we	
  assume	
  a	
  
snapshot	
  is	
  a	
  priori	
  available	
  
‣ (1)	
  Dimension	
  of	
  the	
  local	
  space	
  for	
  each	
  subdomain?	
  
‣ (2)	
  Is	
  a	
  given	
  subdomain	
  is	
  reducible?	
  

• (1)	
  and	
  (2)	
  will	
  be	
  treated	
  by	
  cross-­‐validaMon	
  (e.g.	
  W.	
  J.	
  
Krzanowski.	
  Cross-­‐validaMon	
  in	
  principal	
  component	
  
analysis.	
  Biometrics,	
  43(3):575-­‐584,	
  1987.)	
  
‣ Training	
  set:	
  snapshot	
  
‣ Valida$on	
  set:	
  set	
  of	
  addiMonal	
  finescale	
  soluMons	
  
‣ Independent	
  training/validaMon	
  avoids	
  overfitng	
  	
  
‣ Cross	
  validaMon	
  emulates	
  independence.	
  Error	
  

calculated	
  using	
  the	
  local	
  reduced	
  basis	
  obtained	
  by	
  a	
  
snapshot	
  POD	
  transform	
  of	
  all	
  the	
  available	
  snapshot	
  
soluMons	
  except	
  the	
  one	
  corresponding	
  to	
  the	
  value	
  of	
  
the	
  summaMon	
  variable.	
  

• NOTE:	
  If	
  the	
  snapshot	
  is	
  not	
  assumed	
  a	
  priori	
  then	
  
‣ Assess	
  whether	
  the	
  snapshot	
  contains	
  sufficient	
  informaMon,	
  and	
  

generate	
  addiMonal,	
  suitable,	
  data	
  if	
  required	
  
‣ Most	
  analysis	
  (mostly	
  by	
  staMsMcians)	
  assume	
  the	
  snapshot	
  is	
  

known	
  a	
  priori.	
  Recent	
  review:	
  Hervé	
  Abdi	
  and	
  Lynne	
  J.	
  Williams.	
  
Principal	
  component	
  analysis.	
  Wiley	
  Interdisciplinary	
  Reviews:	
  
ComputaMonal	
  StaMsMcs,	
  2(4):433{459,	
  2010.
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Order of the POD transforms
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Performance: load angle 40 | 27 - 121 nodes

• RelaMve	
  error

40

40o 27o
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Performance: load angle 40 | 27 - 256 nodes

41

40o 27o

• RelaMve	
  error
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Performance: load angle 40 | 27 - 441 nodes

• RelaMve	
  error
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Performance: load angle 40 | 27 - 961 nodes
• RelaMve	
  error
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Conclusions and perspectives

• Domain	
  coupling	
  using	
  the	
  primal	
  Schur-­‐complement	
  domain	
  decomposiMon	
  method.	
  	
  

• Local	
  subproblems	
  have	
  been	
  reduced	
  by	
  projecMon	
  in	
  low-­‐dimensional	
  subspaces	
  
obtained	
  by	
  the	
  snapshot	
  POD.	
  	
  

• This	
  approach	
  permits	
  to	
  flexibly	
  reduce	
  the	
  computaMonal	
  cost	
  associated	
  with	
  highly	
  
nonlinear	
  problems.	
  In	
  parMcular:	
  
‣ the	
  local	
  reduced	
  spaces	
  are	
  generated	
  independently,	
  and	
  have	
  independent	
  

dimensions,	
  which	
  allows	
  us	
  to	
  focus	
  the	
  numerical	
  effort	
  where	
  it	
  is	
  most	
  needed.	
  	
  
‣ subdomains	
  that	
  are	
  close	
  to	
  highly	
  damaged	
  zones	
  need	
  a	
  richer	
  model	
  to	
  account	
  

for	
  the	
  effect	
  of	
  topological	
  changes.	
  The	
  local	
  POD	
  transforms	
  automa$cally	
  
generate	
  local	
  reduced	
  spaces	
  of	
  larger	
  dimension	
  in	
  these	
  zones.	
  

‣ the	
  domain	
  decomposiMon	
  framework	
  enables	
  us	
  to	
  switch	
  from	
  reduced	
  local	
  
solvers	
  to	
  full	
  local	
  solvers	
  in	
  a	
  transparent	
  manner.	
  This	
  is	
  parMcularly	
  useful	
  for	
  the	
  
subdomains	
  that	
  contain	
  process	
  zones,	
  as	
  a	
  soluMon	
  obtained	
  by	
  projecMon	
  would	
  
be	
  more	
  expensive	
  than	
  a	
  direct	
  soluMon	
  for	
  a	
  desirable	
  accuracy.	
  

‣ the	
  transiMon	
  between	
  ``offline''	
  and	
  ``online''	
  computaMons	
  becomes	
  flexible.	
  The	
  
reduced	
  models	
  can	
  be	
  used	
  in	
  the	
  zones	
  where	
  the	
  local	
  reduced	
  spaces	
  converge	
  
quickly	
  when	
  enriching	
  the	
  snapshot	
  space,	
  while	
  sMll	
  compuMng	
  snapshots	
  and	
  
refining	
  the	
  reduced	
  models	
  via	
  a	
  direct	
  local	
  solver	
  in	
  the	
  remaining	
  subdomains.

44
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Perspectives 

• Further	
  work	
  related	
  to	
  domain	
  decomposiMon	
  
‣ load	
  balancing	
  mismatch	
  would	
  occur	
  when	
  using	
  such	
  a	
  strategy	
  in	
  parallel.	
  CPUs	
  which	
  

support	
  domains	
  that	
  are	
  not	
  reduced,	
  or	
  domains	
  for	
  which	
  the	
  corresponding	
  
subproblems	
  need	
  to	
  be	
  projected	
  in	
  a	
  space	
  of	
  relaMvely	
  high	
  dimension,	
  would	
  require	
  
to	
  perform	
  more	
  operaMons.	
  The	
  domain	
  parMMoning	
  itself	
  should	
  be	
  performed	
  jointly	
  
with	
  the	
  model	
  reducMon	
  in	
  order	
  to	
  distribute	
  the	
  load	
  evenly.	
  

‣ the	
  interface	
  problem	
  itself	
  was	
  not	
  reduced	
  here,	
  to	
  guarantee	
  the	
  interface	
  kinemaMc	
  
compaMbility.	
  

➡ SubopMmal	
  reduced	
  order	
  model.	
  Would	
  generate	
  expensive	
  communicaMons	
  
in	
  parallel	
  

➡ A	
  reducMon	
  of	
  the	
  interface	
  problem	
  using	
  the	
  POD	
  can	
  be	
  done	
  but	
  is	
  neither	
  
elegant	
  nor	
  easy	
  

➡ Dual	
  Schur-­‐complement	
  domain	
  decomposiMon	
  method	
  would	
  allow	
  the	
  
kinemaMc	
  approximaMon	
  of	
  the	
  subproblems	
  to	
  include	
  the	
  interface.	
  However,	
  
this	
  would	
  only	
  deflect	
  the	
  difficulty	
  to	
  the	
  necessary	
  reducMon	
  of	
  the	
  interface	
  
Lagrange	
  mulMplier	
  space.	
  This	
  issue	
  is	
  our	
  current	
  direcMon	
  of	
  research.

45

mailto:email@cardiff.ac.uk


46

NUMERICAL	
  
SOLUTION

GEOMETRICAL	
  
MODEL	
  

DISCRETISATION

LEARN	
  MATERIAL	
  
MODELS	
  

which scales?
what models?

what parameters?
what scale transition?
what data is missing?

A	
  
POSTERIORI	
  

REAL	
  SYSTEM

DIGITAL	
  TWIN	
  OF	
  THE	
  SYSTEM

DATA	
  

INFORMATION	
  

Strain

Structural 
Health

Cracks

Environment
Conditions

Scales of 
interest

Crack 
growth 

rate

Worst load 
combination

Inspection 
interval Mission

?



M A M 
Institute of Mechanics  
& Advanced MaterialsI

47

Reducing	
  the	
  mesh	
  burden	
  in	
  computa$onal	
  
fracture	
  mechanics  
 

1
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Part	
  0.	
  Enrichment	
  of	
  the	
  finite	
  element	
  method	
  

Skip  

1



Enrichment

• When	
  the	
  standard	
  finite	
  element	
  method	
  is	
  unable	
  to	
  
efficiently	
  reproduce	
  certain	
  features	
  of	
  the	
  sought	
  soluMon:	
  

1. DisconMnuiMes	
   	
   -­‐	
  	
   cracks,	
  material	
  interfaces	
  
2. Large	
  gradients	
   	
   -­‐	
  	
   yield	
  lines,	
  shock	
  waves	
  
3. SingulariMes	
   	
   -­‐	
  	
   notches,	
  cracks,	
  corners	
  
4. Boundary	
  layers	
   	
   -­‐	
  	
   fluid-­‐fluid,	
  fluid-­‐solid	
  
5. Oscillatory	
  behavior	
   -­‐	
  	
   vibra8ons,	
  impact	
  

• The	
  approximaMon	
  space	
  can	
  be	
  extended	
  by	
  introducing	
  of	
  an	
  
a	
  priori	
  knowledge	
  about	
  the	
  sought	
  soluMon,	
  and	
  thereby:	
  

1. Rendering	
  the	
  mesh	
  independent	
  of	
  any	
  phenomena	
  
2. reducing	
  error	
  of	
  the	
  approximaMon	
  locally	
  and	
  globally	
  
3. improving	
  convergence	
  rates



Strong	
  discon$nui$es	
  

• The	
  primal	
  field	
  of	
  the	
  soluMon	
  is	
  disconMnuous,	
  e.g.	
  cracks	
  
lead	
  to	
  strong	
  disconMnuiMes	
  in	
  the	
  displacement	
  field.	
  

Weak	
  discon$nui$es	
  

• The	
  first	
  derivaMve	
  of	
  the	
  soluMon	
  is	
  disconMnuous,	
  e.g.	
  
disconMnuiMes	
  in	
  the	
  strain	
  field	
  through	
  a	
  material	
  interface.

Classifica$on	
  of	
  discon$nui$es



Global	
  enrichment	
  

• The	
  enrichment	
  is	
  employed	
  on	
  the	
  global	
  level,	
  over	
  the	
  en$re	
  domain.	
  	
  
• Useful	
  for	
  problems	
  that	
  can	
  be	
  considered	
  as	
  globally	
  non-­‐smooth	
  e.g.	
  

high-­‐frequency	
  soluMons	
  (Helmholtz	
  equaMon)	
  

Local	
  enrichment	
  

• This	
  enrichment	
  scheme	
  is	
  adopted	
  locally,	
  over	
  a	
  local	
  subdomain.	
  
• Useful	
  for	
  problems	
  that	
  only	
  involve	
  locally	
  non-­‐smooth	
  phenomena,	
  e.g.	
  

soluMons	
  with	
  disconMnuiMes.	
  

Classifica$on	
  of	
  enrichments



Extrinsic	
  enrichment	
  

• Associated	
  with	
  addiMonal	
  	
  degrees	
  of	
  freedom	
  and	
  addiMonal	
  shape	
  
funcMons	
  to	
  augment	
  the	
  standard	
  approximaMon	
  basis.	
  

1. Extended	
  finite	
  element	
  method	
  (XFEM)	
  	
   -­‐	
  Moës	
  et	
  al.	
  	
   (1999)	
  
2. Generalised	
  finite	
  element	
  method	
  (GFEM)	
  	
   -­‐	
  Strouboulis	
  et	
  al.	
  	
   (2000a)	
  
3. Enriched	
  element	
  free	
  Galerkin	
   	
   -­‐	
  Ventura	
  et	
  al.	
  	
   (2002)	
  	
  	
  
4. 	
  hp	
  –	
  clouds	
  (Meshless/Hybrid)	
   	
   -­‐	
  Duarte	
  and	
  Oden	
  	
  (1996)	
  

Intrinsic	
  enrichment	
  	
  

• Not	
  accompanied	
  by	
  addiMonal	
  degrees	
  of	
  freedom.	
  Instead,	
  some	
  
standard	
  funcMons	
  are	
  replaced	
  with	
  special	
  (problem	
  specific)	
  funcMons.	
  

1. Enriched	
  moving	
  least	
  squares	
  (Meshless)	
   -­‐	
  Fleming	
  et	
  al.	
  	
   (1997)	
  
2. Enriched	
  weight	
  funcMon	
  (Meshless)	
   	
   -­‐	
  Duflot	
  et	
  al.	
   (2004b)	
  
3. Intrinsic	
  parMMon	
  of	
  unity	
  methods	
   	
  	
   -­‐	
  Fries,	
  Belytschko	
   (2006)	
  
4. Elements	
  with	
  embedded	
  disconMnuiMes	
   	
   	
  

Classifica$on	
  of	
  enrichments



Singular	
  elements	
  (Barsoum,	
  1974)

	
  

regular	
  nodesquarter	
  nodes

crack	
  surfaces



	
  

Par$$on	
  of	
  unity	
  finite	
  element	
  method	
  (PUFEM)



	
  

Par$$on	
  of	
  unity	
  finite	
  element	
  method	
  (PUFEM)



	
  

Par$$on	
  of	
  unity	
  finite	
  element	
  method	
  (PUFEM)



	
  

standard	
  FE PU	
  enriched

Par$$on	
  of	
  unity	
  finite	
  element	
  method	
  (PUFEM)



Par$$on	
  of	
  unity	
  finite	
  element	
  method	
  (PUFEM)



The	
  Generalised	
  Finite	
  Element	
  Method	
  (GFEM)

References:	
  

• Melenk	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (1995)	
  
• Melenk	
  and	
  Babuška	
  	
  	
   (1996)	
  
• Strouboulis	
  et	
  al.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   (2000)

	
  



The	
  Extended	
  Finite	
  Element	
  Method	
  (XFEM)

References:	
  

• Belytschko	
  and	
  Black	
   (1999)	
  
• Moës	
  et.	
  al.	
   	
  	
   (1999)	
  
• Dolbow	
   	
  	
  	
  	
  	
  	
  	
  	
  	
   (1999)

XFEM	
  

• Associated	
  with	
  local	
  disconMnuous	
  PU	
  enrichment	
  e.g.:	
  

a. propagaMon	
  of	
  cracks	
  
b. evoluMon	
  of	
  dislocaMons	
  
c. phase	
  boundaries	
  

• Both	
  GFEM	
  and	
  XFEM	
  are	
  essenMally	
  idenMcal	
  in	
  their	
  
applicaMon,	
  i.e.	
  extrinsic	
  PU	
  enrichment



GFEM/XFEM

Formula$on	
  for	
  crack	
  growth:

singular	
  Mp	
  
enrichment

disconMnuous	
  
enrichment

standard	
  part

Enriched nodes 
     - discontinuous 
     - singular
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http://www.researcherid.com/rid/A-1858-2009
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Part	
  I.	
  Streamlining	
  the	
  CAD-­‐analysis	
  transiMon  
Coupling,	
  or	
  decoupling? 
 

1



1

Decouple	
  geometry	
  and	
  analysis	
  
•	
  Meshfree	
  methods	
  (Monaghan,	
  1977,	
  Belytschko,	
  et	
  al.	
  	
  1994)	
  	
  
•	
  PU	
  enrichment	
  (Melenk	
  &	
  Babuška,	
  1996;	
  Belytschko,	
  et	
  al.	
  1999)	
  
•	
  Immersed	
  boundary	
  method	
  (MiLal,	
  et	
  al.	
  2005)

Improve	
  element	
  formula$ons	
  (use	
  simplex	
  elements)	
  
•	
  Smoothed	
  FEM	
  (Liu,	
  et	
  al.	
  2006),	
  smoothed	
  XFEM	
  (Bordas,...)	
  
•	
  Polygonal	
  FEM	
  (Alwood,	
  et	
  al.	
  1969)

Boundary	
  discre$sa$on	
  
•	
  Boundary	
  element	
  method	
  (Rizzo,	
  1967	
  )	
  
•	
  Scaled	
  boundary	
  FEM	
  (Song,	
  et	
  al.	
  1997)

Couple	
  geometry	
  and	
  analysis:	
  Isogeometric	
  analysis	
  (Hughes,	
  
2005),	
  Isogeometric	
  BEM	
  (Simpson,	
  et	
  al.	
  2012)	
  

Reduce	
  the	
  mesh	
  burden
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Part	
  I.a.	
  	
  Decoupling	
  CAD	
  and	
  Analysis.  
 

1



Implicit	
  boundary	
  method

• Immersed	
  boundary	
  method	
  (MiLal,	
  et	
  al.	
  2005)	
  
• FicMMous	
  domain	
  (Glowinski,	
  et	
  al.	
  1994)	
  
• Embedded	
  boundary	
  method	
  (Johansen,	
  et	
  al.	
  1998)	
  
• Virtual	
  boundary	
  method	
  (Saiki,	
  et	
  al.	
  1996)	
  
• Cartesian	
  grid	
  method	
  (Ye,	
  et	
  al.	
  1999,	
  Nadal,	
  2013)	
  

Separate	
  field	
  and	
  boundary	
  discreMsaMon	
  

✓ Easy	
  adapMve	
  refinement	
  +	
  error	
  esMmaMon	
  (Nadal,	
  2013)	
  
✓ Flexibility	
  of	
  choosing	
  basis	
  funcMons	
  
• Accuracy	
  for	
  complicated	
  geometries?	
  BCs	
  on	
  implicit	
  surfaces?	
  
➡ An	
  accurate	
  and	
  implicitly-­‐defined	
  geometry	
  from	
  arbitrary	
  

parametric	
  surfaces	
  including	
  corners	
  and	
  sharp	
  edges	
  
(Moumnassi,	
  et	
  al.	
  2011)

5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

Figure 5.28 – Champs de contraintes (a) et de déplacements (b).

Figure 5.29 – Approximation géométrique d’une microstructure contenant des inclusions
en forme de tore indépendamment de la taille du maillage ÉF.
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5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

(c)

Figure 5.27 – Approximation géométrique d’une microstructure contenant des inclusions
lenticulaires. (a) maillage grossier de l’approximation ÉF. (b) raffinement par un sous-
maillage gradué (SMG) de niveau (n = 7) à l’intérieur de chaque élément de frontière EB.
(c) approximation de la géométrie indépendamment de la taille h du maillage.
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Figure 5.28 – Champs de contraintes (a) et de déplacements (b).

Figure 5.29 – Approximation géométrique d’une microstructure contenant des inclusions
en forme de tore indépendamment de la taille du maillage ÉF.
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requires one 
single global 
search

Level Set representation of a surface defined by a parametric function

• Objectives 
‣ insert surfaces in a structured mesh  

- without meshing the surfaces (boundary, cracks, holes,  
inclusions, etc.) 

- directly from the underlying CAD model 
- model arbitrary solids, including sharp edges and vertices 
‣ keep as much as possible of the mesh as the CAD model  

evolves, i.e. reduce mesh dependence of the implicit  
boundary representation 

‣ maintain the convergence rates and implementation simplicity of the FEM

• In order to reproduce the geometry accurately, significant mesh refinement is typi-

cally needed;

• Because the whole boundary is defined using one single function, it is not straight-

forward to locate and separate different regions on ∂Ωh for attribution of appropriate

boundary conditions;

• To efficiently approximate a curved domain, one generates a discrete approxima-

tion of the scalar distance field φ by evaluating the function on a sufficiently fine

mesh, or by adaptive schemes like octree techniques to capture details of the domain

boundary ∂Ωh. However, linear interpolation of the mesh values to approximate the

boundary is insufficient for higher order analysis.

Figure 3: Approximation of an object with convex and concave boundaries with the

same background mesh, resulting from Boolean combinations of half-spaces defined using

analytically defined level set functions (8-planes and 3-cylinders). (a) The object is con-

structed by a single level set resultant from Boolean operations (one scalar distance value

is stored at each node). (b) shows the approximation by our new approach that preserves

sharp features (eleven scalar distance values are stored at each node).

In the following section, we present a new approach to represent arbitrary regions

using level set functions, which alleviates the pitfalls of the “single-level-set-description”.

11

Single Multiple level sets

Advance by CRP Henri Tudor in 2011 
(Moumnassi et al, CMAME DOI: 10.1016/
j.cma.2010.10.002
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(a) (b) (c)

Figure 12: (a) Conversion of four parametric functions into zero level sets. (b) Polygonal

meshes extraction for the cutting method. (c) Approximated domain with sharp features.

it.

To obtain an accurate geometry description for domains with curved boundaries, we

present in the following section two different techniques: degenerated and graded sub-

meshes which we shall name DSM and GSM, respectively.

5.4.1. Mesh refinement with degenerated sub-mesh (DSM)

We use the parametric information to generate the desired number of cut edges on the

surface inside a boundary element EB which are tangent to this parametric surface (see

Figure 13). These cut edges are created by the corresponding zero level sets such that they

are generated by a succession of analytically known level set planes p (x) = (x− x0) · n

that pass through the point x0 on the surface and defined by the normal n at this point.

Then we apply the cutting method to each boundary element EB by using these zero

level sets to create the sub-elements E∆. The next step is the classification of the sub-

elements into the interior boundary IB and exterior boundary OB to define the part of

the approximate domain Ωh on the boundary B and the part of its boundary Γh (see

Figure 14).

5.4.2. Mesh refinement with graded sub-mesh (GSM)

The marching algorithm (cf. Section 4.3) benefit of a natural strategy to locate the

narrow band from the all elements mesh, in which only the selected elements (i.e. ωi)

need to be used for refinement if desired. This is an attractive strategy to restrict local

mesh refinement to boundary elements EB. This strategy will be used locally in EB and
27

Figure 17: A three-dimensional graded sub-mesh refinement of level (n = 6) inside a

boundary element EB.

1. Subdividing EB based on a linear (as in [23, 54]) or higher order (as in [40, 41])

description of the boundary.

2. Without subdividing EB as proposed in Ventura [55] using equivalent poly-

nomials. It is also possible to use the approach of Natarajan et al.[24, 25]

based on the Schwarz Christoffel (SC) mapping of the interior/exterior polyg-

onal areas to the unit disk. Another alternative is strain smoothing where

domain integration is transformed into boundary integration as in [26]. The

advantage of the latter is that it has the potential to be amenable to three

dimensional cases, whereas the SC mapping technique remains restricted to

two-dimensional problems. To use the SC mapping in 3D, the interior and

outer parts of a boundary element could be integrated using strain smoothing

and the SC mapping subsequently used to integrate along the boundary of the

interior and exterior subregions. Since each of those boundaries is composed

of the union of polygons, the SC mapping (or any other method to integrate

numerically on polygons) can be used to compute the integral on each poly-

gon. Note that strain smoothing modifies the variational principle so that the

resulting stiffness matrix is usually not as stiff as that of the original finite

32
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(a) (b)

Figure 29: Finite element solution of 3D Laplace model problem using implicit computa-

tional domain. (a) implicit representation of the domain with sharp features, (b) illustrate

the cut view of the solution uh.

XFEM representation. These comparisons are shown in Figure 31. As can be seen,

the analysis with conforming and non-conforming mesh yield nearly the same accuracy

and convergence rates in the approximated energy and Lagrange multipliers. As to the

enforcement of the Dirichlet boundary conditions, the accuracy and convergence rate are

governed by the choice of the Lagrange multiplier space L ∗

h . It is interesting to note that

all these numerical results for the case of non-conforming mesh are superior to the standard

mixed method (naive approach), which yields oscillations of the Lagrange multipliers on

the boundary.

8. Conclusions

We presented and validated a general method to carry out finite element analysis on

arbitrary implicitly defined domains obtained from parametric surfaces. The input to the

algorithm is the parametric description of the boundary of the object which is converted

automatically and efficiently into implicit level set representations. The computational

domain is then obtained by Boolean operations on those level set functions. A special

adaptive numerical integration technique which uses the parametric description to increase
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Figure 30: Convergence study results for the mixed formulation on unstructured tetra-

hedral mesh: (a) analysis with a conforming mesh and FEM, (b) analysis with a non-

conforming mesh and XFEM using the reduced Lagrange multiplier space.

 0.001

 0.01

 0.1

 1

 0.01  0.1  1

R
el

at
iv

e 
Er

ro
r

h

Energy error FEM (R=0.75)
uh error FEM (R=1.83)

Energy error XFEM (R=0.75/1.15)
uh error XFEM (R=1.42/2.09)

 0.001

 0.01

 0.1

 1

 0.01  0.1  1

R
el

at
iv

e 
Er

ro
r

h

LM error FEM (R=0.85)
uh error FEM (R=1.83)

LM error XFEM (R=0.92/1.44)
uh error XFEM (R=1.42/2.09)

Figure 31: Comparison study between analysis with conforming mesh (Figure 30a) and

non-conforming mesh (Figure 30b).

the geometrical faithfulness (thus decrease mesh dependence) was proposed. We showed

that the resulting algorithm is adequate to describe objects with sharp features such as

edges and corners.

The above paradigm required several contributions:
52
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http://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=xhdGcjkAAAAJ&citation_for_view=xhdGcjkAAAAJ:WF5omc3nYNoC
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Part	
  I.b.1	
  	
  

Shape	
  op$misa$on	
  directly	
  from	
  CAD	
  

 
 

Stéphane	
  P.A.	
  Bordas,	
  Pierre	
  Kerfriden,	
  Elena	
  Atroshchenko,	
  Xuan	
  Peng,	
  Haojie	
  Lian	
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  Governing	
  equaMons	
  in	
  parametric	
  space,	
  which	
  can	
  be	
  viewed	
  as	
  material	
  
coordinate	
  system	
  

	
  DifferenMate	
  the	
  equaMon	
  w.r.t.	
  design	
  variables	
  (implicit	
  differenMaMon)	
  

	
  DiscreMse	
  the	
  derivaMves	
  of	
  displacement	
  and	
  tracMon	
  using	
  NURBS	
  basis	
  	
  

	
  	
  Finally

IGABEM sensitivity analysisIGABEM	
  sensiMvity	
  analysis	
  formulaMon



Pressure cylinder problem

Design	
  variable	
  is	
  outer	
  circle	
  radius	
  b

Pressure	
  cylinder	
  problem



Infinite plate with a hole

Design	
  variable	
  is	
  radius	
  R

Infinite	
  plate	
  with	
  a	
  hole



Example 3:      3D Lamé problem

Design	
  parameter:	
  	
  b

3D	
  Lamé	
  problem



Fillet

Design	
  curve	
  is	
  ED.	
  

Minimise	
  the	
  area	
  without	
  	
  

viola$ng	
  von	
  Mises	
  stress	
  	
  

criterion.

Fillet
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Shape	
  optimisation	
  directly	
  from	
  CAD

• IGA	
  

• BEM	
  

• T-­‐splines	
  

• Control	
  points	
  and	
  weights	
  as	
  design	
  variables	
  

• Maximize	
  stiffness,	
  minimise	
  volume

98

mailto:email@cardiff.ac.uk


bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

Shape	
  optimisation	
  directly	
  from	
  CAD

99
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Part	
  I.b.2	
  Isogeometric	
  Boundary	
  Element	
  
Method	
  for	
  Damage	
  Tolerance	
  Assessment	
  

directly	
  from	
  CAD 

 
 

1
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2/18

http://met-tech.com/
Fatigue cracking of nozzle sleeve

➢Fatigue	
  Fracture	
  Failure	
  of	
  Structure	
  
•Initiation:	
  micro	
  defects 

•Loading	
  :	
  cyclic	
  	
  stress	
  state	
  
(temperature,	
  	
  corrosion)
➢Numerical	
  methods	
  for	
  crack	
  growth

•Volume	
  	
  methods:	
   
	
  	
  FEM,	
  XFEM/GFEM,	
  Meshfree 
•Boundary	
  methods:	
  	
  	
  BEM	
  

Bordas & Moran, 2006

XFEM+LEVEL SET
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Motivation

➢Challenges	
  in	
  volume-­‐based	
  methods

3/18

Efficiency &	
  Accuracy

XFEM 

adaptive	
  refinement

IGABEM 

Direct	
  CAD	
  used

crack

crack

direct	
  calculation 

calculation
stress analysis

mesh● Remeshing	
  (FEM) 

● Local	
  mesh	
  refinement IGA



Weighted	
  residual	
  method,	
  collocation

Linear	
  elasticity	
  problem:	
  

Approximation	
  of	
  	
  	
  	
  	
  :	
  

Weighted	
  residual	
  form:

Collocation	
  method:

sifting	
  property:	
  	
  

Galerkin	
  method	
  (variational	
  principle):



Kelvin	
  fundamental	
  solution

Navier	
  equation:	
  

Kelvin	
  solution:	
  	
  assuming	
  a	
  unit	
  concentrated	
  force	
  applied	
  on	
  
a	
  point	
  	
  	
  	
  	
  	
  in	
  the	
  infinite	
  domain	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  we	
  seek	
  	
  
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  any	
  point	
  

for	
  3D	
  problems,	
  the	
  expressions	
  are:
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Boundary	
  integral	
  equations	
  (BIEs)	
  and	
  IGABEM	
  crack	
  modeling

NURBS(B-­‐Spline) 
p=2

Discontinous	
  Lagrange 
p=2

•Collocation:	
  Greville	
  Abscissae

•Displacement	
  BIE

•Traction	
  BIE

•NURBS	
  approximation
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Treatment	
  of	
  crack	
  tip	
  singularity	
  

•Partition	
  of	
  unity	
  enrichment	
  (2D)

•Consecutive	
  knot	
  insertion	
  at	
  crack	
  tip	
  (2D)	
  or	
  
along	
  	
  crack	
  front	
  (3D)
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Edge	
  crack	
   11/18
Crack	
  tip	
  refinement	
  VS	
  enrichment

Crack	
  opening	
  displacement Error	
  in	
  displacement	
  L2	
  norm

NURBS	
  VS	
  Lagrange:	
  convergence	
  in	
  SIFs,	
  no	
  crack	
  tip	
  treatment
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Inclined	
  centre	
  crack	
  (SGBEM,	
  Lagrange	
  	
  BEM,	
  IGABEM)

•IGABEM(r)	
  :Uniform	
  mesh	
  (refined	
  tip	
  element) 
•LBEM:	
  discontinuous	
  Lagrange	
  BEM 

•SGBEM:	
  symmetric	
  Galerkin	
  BEM,	
  Sutrahar&Paulino	
  (2004)

m:	
  number	
  of	
  elements	
  in	
  uniform	
  mesh	
  along	
  the	
  crack	
  surface

12/18
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Arc	
  crack	
  (M	
  integral,	
  J	
  integral)

•Uniform	
  mesh	
  +	
  refined	
  tip	
  element 
•Splitting	
  parameter	
  in	
  J	
  integral:

13/18

m:	
  number	
  of	
  elements	
  in	
  uniform	
  mesh	
  along	
  the	
  crack	
  surface



113

Crack	
  growth	
  from	
  rivet	
  holes

•12	
  elements	
  for	
  each	
  circle 

•3	
  elements	
  for	
  initial	
  cracks	
  with	
  tip	
  refinement

14/18
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Crack	
  growth	
  through	
  rivet	
  holes 15/18
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116

Penny-­‐shaped	
  crack	
  under	
  remote	
  tension
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Penny	
  crack	
  under	
  remote	
  tesion	
  (embeded	
  crack)
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Penny	
  crack	
  under	
  remote	
  tension	
  (embeded	
  crack)
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Difficulties	
  in	
  3D	
  application

crack trimmed	
  surface

CAD	
  model 
(trimmed	
  NURBS)	
  

Analysis-­‐suitable	
  
Splines

➢How	
  far	
  are	
  we	
  from	
  non-­‐trivial	
  3D	
  workpieces?

crack	
  evolution	
  
description

Stress	
  analysis

fracture	
  analysis

untrimmed	
  multiple	
  
patches	
  &	
  T-­‐Splines

Input	
  from	
  Rhino,	
  
ProE,	
  UG,…
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Conclusions

• Dual boundary integral equations combined with isogeometric 
analysis are used to model fracture (2D & 3D) and crack growth (2D) 

• Partition of unity enrichment (2D) and graded mesh refinement (2D 
& 3D) are used to improve accuracy near the crack tip or crack front 

• Stable quadrature scheme is proposed for singular integration in 3D. 
This makes the method non-sensitive to mesh distortion 

• Different ways to extract stress intensity factors based on the 
framework of IGABEM   

➡ Questions  

• Geometry-independent field approximation (GIFT) 

• Independent displacement and traction approximations 

• Independent geometry and field approximations 

• Contact (BETI) 

• BEM Acceleration 
121
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Handling	
  discon$nui$es	
  in	
  isogeometric	
  
formula$ons 

with	
  Nguyen	
  Vinh	
  Phu,	
  Marie	
  Curie	
  Fellow 

 
  1



PUM	
  enriched	
  methods	
  

Discon$nui$es	
  modeling	
  

• IGA:	
  link	
  to	
  CAD	
  and	
  
accurate	
  stress	
  fields	
  

•XFEM:	
  no	
  remeshing
123

Mesh	
  conforming	
  methods	
  

• IGA:	
  link	
  to	
  CAD	
  and	
  
accurate	
  stress	
  fields	
  

•Apps:	
  delaminaMon



PUM	
  enriched	
  methods	
  (XIGA)	
  

1. E.	
  De	
  Luycker,	
  D.	
  J.	
  Benson,	
  T.	
  Belytschko,	
  Y.	
  Bazilevs,	
  and	
  M.	
  C.	
  Hsu.	
  X-­‐FEM	
  
in	
  isogeometric	
  analysis	
  for	
  linear	
  fracture	
  mechanics.	
  IJNME,	
  87(6):541–565,	
  
2011.	
  	
  

2. S.	
  S.	
  Ghorashi,	
  N.	
  Valizadeh,	
  and	
  S.	
  Mohammadi.	
  Extended	
  isogeometric	
  
analysis	
  for	
  simulaMon	
  of	
  staMonary	
  and	
  propagaMng	
  cracks.	
  IJNME,	
  89(9):
1069–1101,	
  2012.	
  	
  

3. D.	
  J.	
  Benson,	
  Y.	
  Bazilevs,	
  E.	
  De	
  Luycker,	
  M.-­‐C.	
  Hsu,	
  M.	
  ScoL,	
  T.	
  J.	
  R.	
  Hughes,	
  
and	
  T.	
  Belytschko.	
  A	
  generalized	
  finite	
  element	
  formulaMon	
  for	
  arbitrary	
  basis	
  
funcMons:	
  From	
  isogeometric	
  analysis	
  to	
  XFEM.	
  IJNME,	
  83(6):765–785,	
  2010.	
  	
  

4. A.	
  Tambat	
  and	
  G.	
  Subbarayan.	
  Isogeometric	
  enriched	
  field	
  approximaMons.	
  
CMAME,	
  245–246:1	
  –	
  21,	
  2012.	
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NURBS	
  basis	
  funcMons enrichment	
  funcMons



Delamina$on	
  analysis	
  with	
  cohesive	
  elements	
  (standard	
  approach)

Z

⌦
�u · bd⌦+

Z

�t

�u · t̄d�t =

Z

⌦
�✏ : �(u)d⌦+

Z

�d

�JuK · tc([[u]])d�d

• No link to CAD
• Long preprocessing
• Refined meshes 



Isogeometric	
  cohesive	
  elements

1. C.	
  V.	
  Verhoosel,	
  M.	
  A.	
  ScoL,	
  R.	
  de	
  Borst,	
  and	
  T.	
  J.	
  R.	
  Hughes.	
  An	
  
isogeometric	
  approach	
  to	
  cohesive	
  zone	
  modeling.	
  IJNME,	
  87(15):336–360,	
  
2011.	
  	
  

2. V.P.	
  Nguyen,	
  P.	
  Kerfriden,	
  S.	
  Bordas.	
  Isogeometric	
  cohesive	
  elements	
  for	
  two	
  
and	
  three	
  dimensional	
  composite	
  delaminaMon	
  analysis,	
  2013,	
  Arxiv.

Knot	
  inser$on

quadratic basis



Isogeometric	
  cohesive	
  elements:	
  advantages

•	
  Direct	
  link	
  to	
  CAD	
  
•	
  Exact	
  geometry	
  
•	
  Fast/straigh�orward	
  generaMon	
    
	
  	
  	
  	
  of	
  interface	
  elements	
  
•	
  Accurate	
  stress	
  field	
  
•	
  ComputaMonally	
  cheaper

•	
  2D	
  Mixed	
  mode	
  bending	
  test	
  (MMB)	
  	
  
•	
  2	
  x	
  70	
  quarMc-­‐linear	
  B-­‐spline	
  elements	
  
•	
  Run	
  Mme	
  on	
  a	
  laptop	
  4GBi7:	
  6	
  s	
  
•	
  Energy	
  arc-­‐length	
  control	
  

V.	
  P.	
  Nguyen	
  and	
  H.	
  Nguyen-­‐Xuan.	
  High-­‐order	
  B-­‐splines	
  based	
  finite	
  elements	
  for	
  
delaminaMon	
  	
  analysis	
  of	
  laminated	
  composites.	
  	
  Composite	
  Structures,	
  102:261–275,	
  2013.	
  



Isogeometric	
  cohesive	
  elements:	
  2D	
  example

•Exact	
  geometry	
  by	
  NURBS	
  +	
  direct	
  link	
  to	
  CAD	
  
• It	
  is	
  straigh�orward	
  to	
  vary	
  
	
  	
  	
  	
  (1)	
  the	
  number	
  of	
  plies	
  and	
  
	
  	
  	
  	
  (2)	
  #	
  of	
  interface	
  elements:	
  
•	
  Suitable	
  for	
  parameter	
  studies/design	
  	
  
•	
  Solver:	
  energy-­‐based	
  arc-­‐length	
  method	
  (GuMerrez,	
  2007)	
  



129



Isogeometric	
  cohesive	
  elements:	
  2D	
  example

130



Isogeometric	
  cohesive	
  elements:	
  3D	
  example	
  with	
  shells

•RotaMon	
  free	
  B-­‐splines	
  shell	
  elements	
  (Kiendl	
  et	
  al.	
  CMAME)	
  
•	
  Two	
  shells,	
  one	
  for	
  each	
  lamina	
  
•	
  Bivariate	
  B-­‐splines	
  cohesive	
  interface	
  elements	
  in	
  between	
  



Isogeometric	
  cohesive	
  elements:	
  3D	
  examples

•	
  cohesive	
  elements	
  for	
  3D	
  
meshes	
  the	
  same	
  as	
  2D	
  
•	
  large	
  deformaMons	
  



Isogeometric	
  cohesive	
  elements

•	
  singly	
  curved	
  thick-­‐wall	
  laminates	
  
•	
  geometry/displacements:	
  NURBS	
  
•	
  trivariate	
  NURBS	
  from	
  NURBS	
  surface(*)	
  
•	
  cohesive	
  surface	
  interface	
  elements

(*)V. P. Nguyen, P. Kerfriden, S.P.A. Bordas, and T. Rabczuk. An integrated design-analysis 
framework for three dimensional composite panels. Computer Aided Design, 2013. submitted.



•Nitsche	
  coupling	
  -­‐	
  NURBS-­‐NURBS

Future	
  work:	
  model	
  selecMon	
  (conMnuum,	
  plate,	
  beam,	
  shell?)

134

Model	
  selec$on	
  	
  
•	
  Model	
  with	
  shells	
  
•	
  IdenMfy	
  “hot	
  spots”	
  -­‐	
  dual	
  	
  
•	
  Couple	
  with	
  conMnuum	
  	
  
•	
  Coarse-­‐grain	
  

le
ve

l 0
 

gl
ob

al
le

ve
l 1

 
lo

ca
l 

RVE

load

thesis A. Akbari 
thesis O. Goury 

1/2 concurrent

concurrent



Thank	
  you	
  for	
  your	
  aLenMon!	
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CISM-­‐ECCOMAS	
  InternaMonal	
  Summer	
  School	
  on	
  “Modelling,	
  
SimulaMon	
  and	
  CharacterizaMon	
  of	
  MulM-­‐Scale	
  Heterogeneous	
  
Materials”	
  September	
  28,	
  2015	
  —	
  October	
  2,	
  2015	
  

OPEN	
  SOURCE	
  CODES	
  

PERMIX:	
  MulMscale,	
  XFEM,	
  large	
  deformaMon,	
  coupled	
  2	
  LAMMPS,	
  ABAQUS,	
  OpenMP	
  -­‐	
  

MATLAB	
  Codes:	
  XFEM,	
  3D	
  ISOGEOMETRIC	
  XFEM,	
  2D	
  ISOGEOMETRIC	
  BEM,	
  2D	
  MESHLESS	
  
DOWNLOAD	
  @	
  hhp://cmechanicsos.users.sourceforge.net/ 

 
COMPUTATIONAL	
  MECHANICS	
  DISCUSSION	
  GROUP	
  Request	
  membership	
  @	
  	
  
hLp://groups.google.com/group/computaMonal_mechanics_discussion/about	
  

http://cmechanicsos.users.sourceforge.net
http://groups.google.com/group/computational_mechanics_discussion/about
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Part	
  III.	
  ApplicaMon	
  to	
  mulM-­‐crack	
  propagaMon	
  
with	
  Danas	
  Sutula,	
  President	
  Scholar 

 
 

1



Numerical	
  Modeling	
  of	
  	
  
SOI	
  Wafer	
  Splitng



Physical	
  process

Manufacturing	
  process:	
  SmartCutTM	
  
• H+	
  ionizaMon	
  of	
  a	
  thin	
  surface	
  of	
  Si	
  

• Bonding	
  to	
  a	
  handle-­‐wafer	
  (sMffener)	
  

• High	
  temperature	
  thermal	
  annealing	
  

• NucleaMon	
  and	
  growth	
  of	
  caviMes	
  filled	
  with	
  H2	
  

• Pressure	
  driven	
  micro	
  crack	
  growth	
  

• Coalescence	
  and	
  post-­‐split	
  fracture	
  roughness

re
-­‐u
se

A

B

A

A

B

B

B

A

A

A
concerned	
  with

Si	
  wafer



Objec$ves

Determine:	
  
• micro	
  crack	
  nucleaMon	
  points	
  and	
  direcMon	
  

• mulMple	
  crack	
  paths	
  unMl	
  coalescence	
  

• Mme	
  to	
  complete	
  fracture	
  

• final	
  surface	
  roughness



Model

Modeling	
  cavi$es	
  by	
  zero	
  thickness	
  surfaces	
  
• disconMnuiMes	
  in	
  the	
  displacement	
  field	
  
Linear	
  elas$c	
  fracture	
  mechanics	
  (LEFM)	
  
• infinite	
  stress	
  at	
  crack	
  Mp,	
  i.e.	
  singularity

staMsMcally	
  distributed	
  
disconMnuiMes

Cohesive	
  interface	
  with	
  
variaMon	
  in	
  surface	
  energy

fracture	
  criterion	
  at	
  the	
  
disconMnuity	
  Mp	
  

disconMnuity	
  subjected	
  
to	
  H2	
  pressure



XFEM	
  formula$on

Approxima$on	
  func$on:

singular	
  Mp	
  
enrichment

disconMnuous	
  
enrichment

standard	
  part

Enriched nodes 
         - “Heaviside” 
         - ”crack tip”



XFEM	
  formula$on



Discre$za$on:	
  XFEM

Extended	
  Finite	
  Element	
  Method	
  (XFEM)	
  
• Introduced	
  by	
  Ted	
  Belytschko	
  (1999)	
  for	
  elasMc	
  problems

Fracture	
  of	
  “XFEM”	
  using	
  XFEM



Plate	
  with	
  300	
  cracks	
  -­‐	
  ver$cal	
  extension	
  BCs

	
  

	
  

Fracture	
  process



Ver$cal	
  extension	
  of	
  a	
  plate	
  with	
  300	
  cracks

Example	
  #1

Post-­‐split	
  roughness



Example	
  #2

Mechanical	
  spliong	
  of	
  a	
  wafer	
  sample	
  
• Post-­‐split	
  roughness	
  as	
  a	
  funcMon	
  of	
  micro	
  crack	
  distribuMon	
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5 

(m
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damaged	
  zone	
  
(studied	
  area)



Example	
  #2

Mechanical	
  spliong	
  of	
  a	
  wafer	
  sample	
  
• DiscreMsaMon	
  (≈1mln.	
  DOF,	
  he	
  =	
  150	
  nm)

	
  

Fracture	
  control	
  parameters	
  
-­‐	
  iniMal	
  cracked	
  length:	
  
-­‐	
  damage	
  thickness:



Fracture	
  roughness	
  results	
  
• Case	
  example:	
   	
   ,	
  

• Case	
  example:	
   	
   ,

Example	
  #2

more	
  rough

less	
  rough
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Part	
  IV.	
  ApplicaMon	
  to	
  surgical	
  simulaMon	
  
with	
  INRIA,	
  France;	
  Karol	
  Miller,	
  UWA. 

 
 

1RealTcut  
Interactive multiscale 
cutting simulations 



Surgical simulation (real time/interactivity)

SimLearning AssistancePlanning

PrecisionRealTcut  

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

iMAMThe ERC RealTcut project

‣ Reduce the problem size while controlling error in solving 
very large multiscale mechanics problems  

complex 
microstructure

Courtecuisse et al. PBMB 2011

Discretise

150

mailto:email@cardiff.ac.uk


Approach

Concrete	
  objec$ve:	
  compute	
  the	
  response	
  of	
  organs	
  during	
  surgical	
  
procedures	
  (including	
  cuts)	
  in	
  real	
  Mme	
  (50-­‐500	
  soluMons	
  per	
  second)
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Two	
  schools	
  of	
  thought	
  
‣ constant	
  Mme	
  

➡accuracy	
  o�en	
  controlled	
  
visually	
  only	
  

‣ model	
  reducMon	
  or	
  “learning”	
  

➡scarce	
  development	
  for	
  
biomedical	
  problems	
  

➡no	
  results	
  available	
  for	
  
cutng	
  

Proposed	
  approach:	
  maximize	
  accuracy 
for	
  given	
  computaMonal	
  Mme.	
  Error	
  control

A
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[Courtecuisse	
  et	
  al.,	
  MICCAI,	
  2013]	
  
CollaboraMon	
  INRIA	
  

First	
  implicit,	
  interac$ve	
  method	
   
for	
  cuong	
  with	
  contact	
  

Model	
  
reduc$on



Error	
  control	
  

•interacMvity	
  
•space-­‐Mme	
  discreMzaMon?	
  
•opMmize	
  use	
  of	
  compute	
  
resources	
  

Complex	
  geometries	
  from	
  
medical	
  images	
  

Topological	
  changes	
  &	
  contact	
  

Verifica$on	
  &	
  Valida$on	
  

Four	
  main	
  difficulMes

RoI
MRI

RoI

segmenta$on
-

RdI

Region of interest (RoI)

in
té
gr
aM

on
	
  e
n	
  
te
m
ps
,	
  e
rr
eu

r	
  

discre$za$on

ad
ap
$v
ité
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Model	
  
reduc$on

Advanced	
  
discre$za$on	
  



Results	
  -­‐	
  Dr	
  Hadrien	
  Courtecuisse,	
  PhD	
  INRIA
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OPEN	
  SOURCE	
  CODES	
  
PERMIX:	
  MulMscale,	
  XFEM,	
  large	
  deformaMon,	
  coupled	
  2	
  LAMMPS,	
  ABAQUS,	
  OpenMP	
  -­‐	
  

Fortran	
  2003,	
  C++	
  

MATLAB	
  Codes:	
  XFEM,	
  3D	
  ISOGEOMETRIC	
  XFEM,	
  2D	
  ISOGEOMETRIC	
  BEM,	
  2D	
  MESHLESS	
  
DOWNLOAD	
  @	
  hhp://cmechanicsos.users.sourceforge.net/	
  

COMPUTATIONAL	
  MECHANICS	
  DISCUSSION	
  GROUP	
  	
  
Request	
  membership	
  @	
  	
  

hLp://groups.google.com/group/computaMonal_mechanics_discussion/about	
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TWO	
  POST	
  DOCS  
TWO	
  FACULTY	
  POSITIONS	
  AVAILABLE	
  	
  

http://cmechanicsos.users.sourceforge.net
http://groups.google.com/group/computational_mechanics_discussion/about

