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Abstract 

Essays on Benchmarking Credit Performance 

By DIMITRA MICHALA 

 

Dissertation Supervisor: Professor Theoharry Grammatikos 

 

The first essay examines idiosyncratic and systematic distress predictors for small and medium 

sized enterprises (SMEs) using a dataset from eight European countries over the period 2000-

2009. In the European Union, small and medium sized enterprises (SMEs) represent 99% of all 

businesses and contribute to more than half of total value-added. In this essay, we find that SMEs 

across Europe are vulnerable to common idiosyncratic factors but the relevant systematic factors 

vary across regions. This indicates the superiority of regional distress models. We also find that 

systematic factors move average distress rates in the economy and that small SMEs are more 

vulnerable to these factors compared to large SMEs. By including many very small companies in 

the sample, this essay offers unique insights into the European small business sector. By 

exploring distress in a multi-country setting, our models uncover regional vulnerabilities and 

allow for regional comparisons. Finally, by incorporating systematic dependencies, they capture 

distress co-movements and clustering. 

The second essay provides an explanation of the default anomaly documented in the 

empirical asset pricing literature. While empirical literature has documented a negative relation 

between default risk and stock returns, theory suggests that default risk should be positively 

priced. In this essay, we calculate monthly probabilities of default (PDs) for a large sample of 

European firms and break them down into systematic and idiosyncratic components. The 
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approach that we follow does not require data on credit spreads, thus it can also be applied to 

small firms that do not have such data available. In accordance with theory, we find that the 

systematic part, measured as the PD sensitivity to aggregate default risk, is positively related to 

stock returns. We show that stocks with higher PDs underperform because they have, on 

average, lower exposure to aggregate default risk. Moreover, their idiosyncratic risk is a hedge 

against downside market conditions. Finally, small and value stocks are quite heterogeneous with 

respect to such exposure. 

The third essay compares private equity-backed IPOs with IPOs of stand-alone companies in 

a matching framework. The literature suggests that the IPO market may involve higher 

information asymmetries than acquisitions. Such a setting can influence the behavior of private 

equity (PE) sponsors as professional insiders. In most cases, I do not find significant differences 

between these IPOs and comparable IPOs of stand-alone companies. The financial situation of 

PE-backed companies in the pre-IPO year is similar to that of their peers. PE sponsors do not 

target their IPOs in “hot” periods any more than would managers of stand-alone companies, nor 

are they more prone to rush their companies into premature IPOs. They also do not inflate 

valuations and are not more likely to seek to sell firms with poor prospects (“unload lemons”) 

onto the market. Finally, I find that IPOs that take place in hot periods are significantly more 

likely to delist due to default, but this result is not any stronger for PE-backed IPOs. This essay 

provides evidence to contradict media criticism of PE sponsors. This can also have important 

policy implications regarding the PE regulatory framework related to PE. This work comes as a 

timely contribution given the increasing importance of PE in the IPO market. 

JEL Codes: C13, C41, C53, G11, G12, G15, G23, G24, G32; G33 

Keywords: buyout; credit risk; default risk; default anomaly; distress; forecasting; idiosyncratic 

risk; IPO; logit; Merton model; private equity; SMEs; venture capital  
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Chapter 1 Introduction 

 

Identifying the determinants of corporate credit performance and measuring it correctly is of 

crucial importance for banks, investors and policy makers. This work focuses on default risk in 

particular. It explores default risk in private firms (SMEs), listed firms (especially mid and small-

caps), and companies that are in the transition phase between private and public ownership 

(IPOs). The work contributes to the existing literature by (i) uncovering regional corporate 

default risk vulnerabilities, (ii) explaining the observed anomalous pricing of default risk in the 

stock market, and (iii) exploring the impact of alternative investment funds such as private equity 

and venture capital on the default risk of their portfolio companies. In the paragraphs that follow, 

a summary of the chapters together with the main findings is presented. 

Chapter 2 explores the performance of distress prediction hazard models for non-financial 

SMEs using a dataset from eight European countries over the ten-year period 2000-2009. The 

panel structure of the dataset allows us to: exploit both the time-series and the cross-sectional 

dimension; and differentiate between firm-specific, macroeconomic and industry effects. 

We find that, in addition to financial indicators (whose importance is noted in past studies) 

the location and number of shareholders are important determinants of SMEs’ distress 

probabilities. We validate the superiority of models that incorporate macroeconomic 

dependencies (as suggested by previous research) also in the case of SMEs. However, we do not 

find strong evidence that industry-effects improve prediction accuracy significantly. We also 

examine interaction effects between the size of SMEs and systematic variables. We find that as 

SMEs become larger, they are less vulnerable to macroeconomic changes, contrary to the 

assumptions inherent in the Basel regulations. Interestingly, when we split our sample into 
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regional sub-samples, we show that SMEs across Europe are sensitive to the same firm-specific 

factors, but we identify significant regional variations in the selection and importance of macro 

variables. Specifically, macro variables differ among European regions based on region-specific 

conditions and characteristics. Since our regional distress models always perform better than a 

generic model estimated for the regional sub-samples, we conclude that using these models can 

lead to performance improvements in the risk management of international SME portfolios. 

Finally, we perform a variety of tests and show that our results remain robust to different distress 

definitions, estimation techniques and time periods. 

Chapter 3 sheds more light on the recent contradictory literature that explores the relationship 

between default risk and stock returns. We follow a simple and intuitive approach to break down 

physical PDs into systematic and idiosyncratic components, use the VIX index as a measure of 

aggregate default risk, and provide European evidence to study the default anomaly. 

Initially, we sort stocks into quintile portfolios based on their physical PDs and (in line with 

the literature that documents a default anomaly) we find that the difference in returns between 

high and low PD stocks is negative, and that the returns almost monotonically decrease as the PD 

increases. However, a closer look shows that physical PD is usually a poor measure of exposure 

to aggregate default risk; in accordance with George and Hwang (2010), we find that stocks in 

the highest PD quintile have relatively low systematic default risk (SDR) exposure. We then sort 

stocks into quintile portfolios based on their SDR betas instead.  As expected, we find a positive 

and significant relationship between this measure of default risk and returns. In other words, 

investors do indeed require a premium to hold stocks that are riskier when aggregate default risk 

is higher. Interestingly, there are non-monotonic patterns across the SDR beta portfolios. On 

average, the firms in the low and high SDR beta portfolios are smaller, have a higher level of 
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book-to-market (BM), and higher physical PDs than the firms in medium SDR beta portfolios. 

We find that the SDR betas are negatively related to the idiosyncratic default risk (IDR) 

exposures (measured by IDR alphas). Therefore it is the idiosyncratic, not the systematic factors 

that drive the default anomaly. We confirm this conjecture by showing that stocks sorted on IDR 

alphas have on average lower returns. Investors do not require compensation to hold stocks with 

high firm-specific risk because these stocks are a source of portfolio risk diversification. Further 

analysis with double-sorted portfolios helps us confirm these statements. 

Our results suggest that riskier stocks, as measured by the physical PDs, will tend to 

underperform because they have, on average, lower exposure to aggregate default risk. Their 

riskiness is mostly idiosyncratic and can be diversified away, thus providing an explanation for 

the default anomaly typically found in the literature. On the contrary, it is the systematic 

component of default risk (measured by the SDR betas) that requires a return premium. 

Chapter 4 studies the role of both buy out (BO) and venture capital (VC) sponsors in a setting 

of high information asymmetry, such as the IPO market. These professional insiders may be 

more capable of taking advantage of such asymmetries compared to insiders of stand-alone 

companies. But, when the market eventually becomes aware there is then increased risk to  

reputational capital. BO and VC sponsors may also behave differently from each other. Thus, I 

differentiate my analysis for each type of PE sponsor and compare BO and VC-backed IPOs 

with IPOs of stand-alone companies in a matching framework. 

I do not find significant differences between these IPOs and matched IPOs of stand-alone 

companies. The financial situation of both BO and VC-backed companies in the pre-IPO year, as 

measured by their default risk, is similar to that of their peers. Moreover, PE sponsors do not 

target their IPOs in “hot” periods more than would managers of stand-alone companies. They 
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also are not more prone to rush their companies into a premature IPO and do not inflate 

valuations. Finally, PE-backed companies do not default more often post-IPO. This is evidence 

that PE sponsors are not more likely to seek to sell firms with poor prospects (“unload lemons” 

in the IPO market. 

Chapter 4 provides evidence against media criticism of PE sponsors (e.g. “Rush to get to the 

front of the IPO queue”, Financial Times, 18 February 2014). It can also have important policy 

implications for the regulatory framework related to PE, such as the Dodd-Frank Act (signed by 

US President Obama in July 2010). Finally, this paper comes as a timely contribution given the 

increasing importance of PE-backed IPOs in the market (“Private equity-backed IPOs could hit 

seven-year high”, Financial Times, 29 September 2014). 
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Chapter 2 Forecasting Distress in European SME Portfolios 

 

2.1 Introduction 

SMEs play a crucial role in most economies. In the Organization for Economic Cooperation and 

Development (OECD) countries, SMEs account for 95% of all enterprises and generate two-

thirds of employment. In the European Union (EU) in particular, SMEs represent 99% of all 

enterprises and contribute to more than half of all value-added created by businesses. Despite 

their importance, SME credit risk remains largely unexplored by the academic literature, mainly 

due to the lack of appropriate data. 

In this paper, we explore a dataset that is representative of the European SME sector because 

it includes a high number of very small companies. This is important for Europe, where nine out 

of ten SMEs have fewer than 10 employees and turnover of €2million. To our knowledge, we are 

the first to examine distress in a multi-country setting, since earlier studies always focus on a 

single economy. Hence, we are able to uncover regional vulnerabilities, perform comparisons 

and study the need of regional models in international SME portfolios. In addition to 

idiosyncratic distress determinants, we consider systematic factors, such as the macroeconomy, 

bank lending conditions, and legal aspects. Therefore, we are able not only to compute individual 

distress probabilities, but also to estimate average distress rates in the economy and capture 

distress co-movements. 

Our paper contributes to the overall literature on corporate credit risk, and on SME risk in 

particular. It is well known that, unlike larger corporations with easier access to capital markets, 

SMEs face more challenges in their credit risk modeling. In fact, widely used structural market-

based models, such as the distance-to-default (DD) measure inspired by Merton (1974), cannot 
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be applied in the non-listed SME setting due to the unavailability of market data. Instead, 

empirical predictive models such as credit scoring approaches (i.e. Altman, 1968; Edminster, 

1972) are most commonly use. Many authors, such as Dietsch and Petey (2004), Berger and 

Udell (2006), and Beck et al. (2008), note the need for SME specific research. In line with their 

concerns, Altman and Sabato (2007) (in an early SME study) develop a one-year default 

prediction model using only accounting information. They apply panel logit estimation on a 

sample of around 2,000 US SMEs over the period 1994-2002. They find that their model 

outperforms generic corporate models such as Altman’s Z”-score (Altman and Hotchkiss, 2005). 

Stein (2002), Grunert et al. (2005) and other authors note the possibility of using qualitative 

variables in default prediction models to improve discrimination. In the specific case of SMEs 

(where there is usually a problem of scarcity of reliable “hard” financial information) such non-

financial elements can be very useful when trying to predict distress. Altman et al. (2010) 

combine both qualitative and financial information in a default prediction model for SMEs in the 

UK. They find that data relating to legal action by creditors, company filings and audit 

reports/opinions significantly increases the performance of their model. However, such 

information is not always available sufficiently in advance to facilitate timely predictions. 

Another strand of literature (though not focusing on SMEs) analyzes the additional benefit of 

using macroeconomic variables to forecast distress. Two influential US studies of this nature are 

Duffie et al. (2007) and Campbell et al. (2008). International studies always focus on specific 

countries, such as Jacobson et al (2005), Carling et al. (2007) and Jacobson et al. (2013) on 

Sweden, Bonfim (2009) on Portugal, Bruneau et al. (2012) on France, and Nam et al. (2008) on 

Korea. The above articles find that macroeconomic variables are important for explaining the 

time-varying default likelihoods, but they examine relatively larger (and, in the case of US, 
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listed) corporates. The authors also note the importance of industry effects. For instance, Chava 

and Jarrow (2004) observe improving forecasting performance by including industry groupings 

in their models. 

Our paper is related to the studies of Glennon and Nigro (2005), Altman et al. (2010), 

Jacobson et al. (2013) and Laekholm-Jensen et al. (2013), who, respectively, examine business 

cycle effects on SMEs defaults in the US, the UK, Sweden, and Denmark. Glennon and Nigro 

(2005), using a dataset of US small loans, include business cycle dummy variables,  industrial 

production index growth and rates of regional business bankruptcies. They find that the failure of 

a small loan is closely related to both regional and industrial economic conditions. Altman et al. 

(2010) use sector-level failure rates of SMEs in the UK and also report a significant relationship 

with failure probability. Jacobson et al. (2013) consider both idiosyncratic and macroeconomic 

factors for the entire Swedish corporate sector and perform a careful cross-industry comparison. 

Finally, in a recent working paper, Laekholm-Jensen et al. (2013) find that macro variables play 

the most important role in default prediction over time for their Danish sample. Our paper 

extends the above studies by using a wider sample that includes SMEs from different European 

countries, by allowing for regional models and comparisons, and also by examining a larger 

variety of systematic factors (ranging from exchange rates to bank lending conditions). Europe 

offers a unique setting for such a study compared to the US due to the higher level of variation 

between economic and legal environments faced by SMEs. Another slight complication of the 

US studies is that they often use the average sample default rate as an explanatory variable in 

their models in order to capture business cycle effects. This technique can introduce bias and 

may result in opposite coefficient signs (Gormley and Matsa, 2014). 
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In our study, we find that, in addition to indicators of profitability, coverage, leverage and 

cash flow, the location and the number of shareholders are important distress determinants for 

SMEs. We also confirm that systematic factors significantly affect average distress rates in the 

European economy, a finding that is well-documented in previous US and international literature 

(Duffie, 2005; Carling et al., 2007; Altman et al., 2012; Jacobson et al., 2013; Laekholm-Jensen 

et al., 2013). Nevertheless, industry effects often do not demonstrate significance. Moreover, we 

examine interaction effects between SMEs’ size and systematic variables. We find that as SMEs 

become larger, they are less vulnerable to systematic factors, a finding that is particularly 

important in light of the current Basel regulations. 

Our most interesting results appear when we split our sample into regional sub-samples. We 

find that SMEs in different regions are vulnerable to the same idiosyncratic factors but 

coefficient levels differ among these regions. Most importantly, SMEs in different regions are 

exposed to different systematic factors, according to region-specific conditions and 

characteristics. Our regional distress models always perform better than a generic model 

estimated for each regional sub-sample. These findings indicate the importance of using regional 

models for distress prediction in international SME portfolios. Finally, our results remain robust 

to different distress definitions, estimation techniques and time periods. 

The paper is organized as follows: Section 2.2 describes the methodology and the reasons for 

its selection. Section 2.3 describes the dataset, discusses the choice of variables and presents 

summary statistics. Section 2.4 presents the models and discusses the results, Section 2.5 

presents the robustness tests, and Section 2.6 concludes. 
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2.2 The Methodology 

We follow Shumway (2001) and estimate the probability of distress over the next year using a 

multi-period logit model. We assume that the marginal probability of distress (or hazard rate) 

over the next year follows a logistic distribution and is given by: 

ℎ(𝑡|𝑥𝑖,𝑡−1) = 𝑃(𝑌𝑖,𝑡 = 1|𝑥𝑖,𝑡−1) =
1

1 + exp(−𝛽𝑥𝑖,𝑡−1−𝛾𝑦𝑡−1)
, (1) 

where 𝑌𝑖,𝑡 is an indicator that equals one if the firm 𝑖 is distressed in year 𝑡, 𝛽𝑥𝑖,𝑡−1 is a function 

of firm-specific characteristics that includes a vector of firm-specific variables 𝑥𝑖,𝑡−1 known at 

the end of the previous year and 𝛾𝑦𝑡−1 is the baseline hazard function that includes some other 

time-dependent variables 𝑦𝑡−1. The baseline hazard influences similarly all firms in the economy 

and expresses the hazard rate in the absence of the firm-specific covariates 𝑥𝑖,𝑡−1. In this paper, 

we follow Duffie et al. (2007), Campbell et al. (2008) and other authors and specify the baseline 

hazard using macroeconomic variables. 

Shumway (2001) proves that, for a discrete random variable 𝑡, a multi-period logit model is 

equivalent to a discrete-time hazard model with an adjusted standard error structure. We need to 

adjust the standard errors because test statistics produced by the logit program assume that the 

number of independent observations is the number of firm-years and they also ignore the panel 

structure of the data. Calculating correct test statistics requires the adjustment of the sample size 

to account for dependence among firm-year observations. The firm-year observations of a 

particular firm cannot be independent, since a firm cannot fail in period 𝑡 if it failed in period 

𝑡 − 1. Likewise, a firm that survives to period 𝑡 cannot have failed in period 𝑡 − 1. Thus, the 

correct value of 𝑛 for test statistics is the number of firms in the data, not the number of firm-

years. The 𝜒2 test statistics produced by the logit program are of the form: 

1

𝑛
(μ̂𝑘 − μ0)′Σ−1(μ̂𝑘 − μ0)~χ2(𝑘),       (2) 
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where there are 𝑘 estimated moments being tested against 𝑘 null hypotheses, μ0. Dividing these 

test statistics by the average number of firm-years per firm makes the logit program’s statistics 

correct. This is equivalent to calculating firm clustered-corrected standard errors to adjust for the 

number of firms in our samples. Specifically we use Huber/White standard errors (calculated 

from Huber/White sandwich covariance matrix, see Froot, 1989; White, 1994; and Wooldridge, 

2002). 

Finally, we account for the survivorship bias, which is the risk that SMEs are more likely to 

be in our sample if they are survivors and consequently, have lower distress probabilities. 

Particularly in 2000 (, which is the first year of our sample period), all firms that are present in 

the database are survivors. This happens because 2000 is the year that our database becomes 

more complete. As firms enter the database later on, they are always survivors in the first year of 

their existence in the sample (firms that fail quickly simply are never included in the sample). 

Thus, we follow a technique similar to Carling et al. (2007) and introduce one more factor, the 

“duration” variable that accounts for the “time-at-risk” of firms only during the sample period, 

(i.e. the number of years that a firm stays in the sample). The value of this variable is given by 

the formula duration=t and is measured in discrete time units. (iI.e., if an SME appears in the 

sample for three years in total, the value of this variable in the first year is one, in the second year 

two and in the third year three). By censoring the number of years that a firm existed before it 

joined the sample, we weight all firms on equal terms and account for duration dependence. This 

is because, since we allow the time a firm remains in the sample to directly affect the probability 

of distress, over and above its accounting data and the systematic factors.
1
  

                                                           
1
 However, the “duration” variable is still an imperfect measure. This is because we can underestimate the lifespan 

of firms that default in the beginning of the sample period. 
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2.3 The Data 

In order to estimate the multi-period logit model, we need an indicator of distress (dependent 

variable) and a set of predictors (independent variables). We use the Amadeus and Orbis Europe 

databases (both available from Bureau Van Dijk) to detect the status of each firm in each year 

and to extract the raw data that include financial and qualitative information. Finally, we use the 

European Statistical Service’s (Eurostat), the European Central Bank’s (ECB), the World Bank 

and Datastream databases for the systematic variables. 

In this part, we first discuss the definition of distress that we adopt, we then explain what 

criteria need to be met for a company to be included in the sample and, finally, we describe the 

examined predictive variables and the procedure we follow to select the best among them. 

 

2.3.1 Definition of Distress 

We classify firm-years into two mutually exclusive categories: “distressed” and “healthy”. A 

firm-year is distressed if the following two conditions are both met: (i) it is the last firm-year for 

which we have available financial statements before the firm leaves the sample; (ii) the firm (a) 

either appears with one of the statuses defaulted, in receivership, bankrupt, in liquidation or (b) it 

has no updated status information and disappears from the sample before 2010 with negative 

equity in the last year. A firm-year is healthy in all other cases. Specifically, we consider as 

healthy: (i) firm-years of distressed companies before the last available firm-year; (ii) all firm-

years of firms that disappear from the sample for a specified reason other than distress (i.e. 

merger or acquisition); (ii) all firm-years of firms that have no updated status information and 

disappear from the sample before 2010 without negative equity in the last year; (iv) all firm-

years of firms that remain active until 2010. 
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Let us elaborate further on the above. Firms enter the sample anytime during the years 1999-

2008. We track them until 2010 and use financial statements from the years 1999-2008 to predict 

distress on a one-year horizon for the period 2000-2009.
2
 There are two cases: 

Case 1: Firms that remain active in the sample until 2010 (in the sense that they report financial 

statements until 2010). All firm-year observations for these firms for the estimation period 2000-

2009 are classified as healthy. 

Case 2: Firms that disappear from the sample (in the sense that they no longer report financial 

statements) earlier than 2010. For these firms either we consult the available status information 

to find out why they disappeared or, when no updated status information is available, we 

consider as distressed the last available firm-year when the disappearing firm has negative equity 

in this particular year. 

It is important to note that the negative equity condition is not used for any of the firm-years 

of case 1. Now we explain the reason why we add this condition. Our intention in this study is to 

proxy for distress and not only failure. Thus, we are not only interested in incidents that are 

strictly determined by legal insolvency procedures. The extended indicator that we use is more 

appropriate for SMEs because these companies often do not follow such legal procedures at all. 

A characteristic example is Italy, where there is no clear framework for SMEs to file for 

insolvency. Even in cases where there is such a framework, filings are not mandatory or they 

                                                           
2 Although we have financial statements data for 2009 and 2010, we do not use them to predict distress for 2010 and 

2011 because we do not know which SMEs become distressed during these years. The negative equity condition 

does not help in this case, since the last available year of our sample is 2010 and we do not know which SMEs 

disappear the following year, thus we cannot construct our distress indicator for 2010. In Section 2.4, we calculate 

average distress rates for 2010 and 2011 based on coefficient estimates of the previous years and in Figure 2.1, we 

plot them together with realized distress rates obtained from an external source. 
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take a long period of time (e.g. Gilson and Vetsuypens (1993) show in a US study that many 

filings are missing for bankrupt firms). When these procedures are mandatory, legal insolvency 

is often related to negative equity. For example, in Germany, firms are obliged to file for 

bankruptcy once their equity turns negative (Davydenko and Frank, 2008) and in France even 

earlier, when their equity drops below a certain threshold (LaPorta et al., 1998). 

As a result, the proper tracking of the status of SMEs and their distress rates is a very 

challenging task. There are many different reasons for which an SME can go out of business but 

owners rarely report these reasons and authorities rarely document them. Watson and Everett 

(1996) find that small businesses often close for reasons other than distress. For example, a small 

business can be successful but the owner may still close it voluntarily to accept employment with 

another company or retire. Headd (2003) finds that only one out of three of start-ups close under 

conditions that the owners consider unsuccessful. The Amadeus and Orbis databases cooperate 

in different countries with credit bureaus which provide firm status information. In around 40% 

of cases though, a firm disappears from the database but the status information remains outdated. 

In order to separate the cases of closure from the ones of distress for these firms, we need to 

make a reasonable assumption. This is why we add the negative equity condition. 

This condition is well-rooted in various academic studies. A large strand of literature links 

equity values with firm distress. For example, Davydenko (2012) describes as economic default 

the point when a firm’s equity turns negative and characterizes this as a distress-triggering event. 

The definition in Chapter 7 of the US Bankruptcy Law is very similar. Davydenko (2012) finds 

support for models in which the default timing is chosen endogenously such as Merton’s DD. 

Ross et al. (2010) point out that a stock-based insolvency occurs when a company has negative 

equity. 
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In our sample, we observe that negative equity is 200% more likely for firms that disappear 

from the sample at some point before 2010 than for firms that remain active. From an accounting 

perspective, negative equity is almost always connected with accumulation of past losses. From a 

capital structure point of view, negative equity means that the company's total liabilities are 

higher than its total assets. In both cases, a negative value for equity is a flag that the company is 

undergoing serious financial difficulties and it is a good proxy for distress (and not only failure). 

To verify our point, in Section 2.5 we perform a robustness test where we exclude all firms 

that disappear from the sample before 2010 without updated status situation. These are the firms 

that, under our main distress definition described above, are classified as distressed if their equity 

is negative in the last year. By excluding these firms, the distress definition in the resulting 

restricted sample is strictly linked to a legal insolvency procedure. Despite the fact that our 

sample size decreases significantly, our results remain robust to this alternative distress 

definition. In Section 2.5 and Appendix 2.3, we report the estimation results as well as 

comparative statistics between the two distress definitions and samples used. Finally, in 

unreported results, we replace the negative equity condition with one for negative earnings 

before interest, taxes, depreciation and amortization (EBITDA). EBITDA is often used in the 

academic literature as a proxy for operating cashflow. In our sample, 67% of SMEs that have 

negative equity also report negative EBITDA in the same year. Our results also remain 

substantially similar under this distress definition. 

 

2.3.2 Sample Selection 

In our sample SMEs come from eight European countries, namely Czech Republic, France, 

Germany, Italy, Poland, Portugal, Spain and the United Kingdom. We select these countries for 

two reasons: (i) our version of Amadeus and Orbis Europe databases has only European 
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coverage but data are not of the same quality for all countries. (For Scandinavian countries there 

are very few distress cases for estimation purposes and for most eastern European countries there 

are very few firms with complete information); (ii) this particular set of countries creates a 

combination that reflects the variability of SMEs across the EU. This is obvious from Table 2.1, 

which provides an overview of the key indicators for SMEs in the EU27 and in the countries of 

our sample. In Italy, Portugal and Spain, SMEs account for larger than EU-average shares of 

total employment and value added, and present in higher density. This suggests that SMEs in 

these economies have a greater role than in most EU countries. On the other hand, for France, 

Germany and the UK, these figures are consistently lower than the EU average. For the Czech 

Republic and Poland, the share of employment and value added for SMEs is similar. 

To study whether the distress determinants differ across Europe and in order to perform 

comparisons, we split our sample in regional sub-samples. We select the groups based on the 

following criteria: (ii) the importance of SMEs in the local economies, reflected in Table 2.1; (ii) 

geography, i.e. west, south, east; (iii) the similarity of the macroeconomic environment, i.e. 

correlations of macroeconomic variables, currency etc; and lastly, (iv) previous literature. Thus, 

we form three groups. Group 1 includes the relatively stronger economies of western Europe, 

namely France, Germany and the UK, group 2 includes the peripheral economies of southern 

Europe, namely Italy, Portugal and Spain, and group 3 includes two economies from eastern 

Europe, namely the Czech Republic and Poland. We discuss criterion (i) above and criterion (ii) 

is clear. Concerning criterion (iii), when we calculate correlations of macroeconomic variables 

between all country combinations, we find a clear division along the regions. Finally, on 

criterion (iv), these countries are often bundled together in existing studies (Jaumotte and 

Sodsriwiboon, 2010; Grammatikos and Vermeulen, 2012; Perego and Vermeulen, 2013). 
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Because of the European focus of the study, we adopt the European Commission’s definition 

for SMEs, instead of the more generic one of the Basel Committee previously applied by Altman 

et al. (2010). We extract companies that meet the following requirements: (i) they have fewer 

than 250 employees and, either, annual turnover up to €50 million, or total assets up to €43 

million; (ii) no single company holds more than 25% of their equity; (iii) they do not have 

subsidiaries; (iv) they have up to ten shareholders; (v) they have at least two years of data 

available; (vi) they are not firms in the financial sector. 

We need criteria (ii)-(iv) to ensure that the companies are independent.
3
 Specifically, since 

we cannot track the subsidiaries and check if the companies still satisfy the criteria to be 

classified as SMEs once they become subsidiaries, we need to exclude companies that have 

subsidiaries. Concerning criterion (iv), since the average number of shareholders in our sample is 

two, we exclude companies with more than ten shareholders as they are possibly outliers. As to 

criterion (v), we keep companies with at least two years of data in order to be able to lag 

variables, calculate growth ratios and study the evolution of distress risk. Finally, on criterion 

(vi), we follow Shumway (2001) and other authors and exclude financial firms from the sample 

                                                           
3
 Altman et al. (2010) do not take into account the independence requirement when selecting their sample, but try to 

control for it using a subsidiary dummy. They find that subsidiaries are less risky than non-subsidiaries. Small 

entities which are subsidiaries of large groups, though, can be very different from SMEs, especially when assessing 

their probability of distress. For example, Becchetti and Sierra (2003) find that group membership is inversely 

related to the probability of distress. Subsidiaries have access to financial and other resources of the group, and can 

survive during periods of poor financial performance. Moreover, the group may have reasons to support a subsidiary 

other than for financial reasons. Finally a subsidiary may be in distress as a result of group-wide distress. 
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(NACE
4
 rev.2 codes from 64 to 68) due to financial firms having reporting practices that 

preclude combining them with other firms in models using financial information. 

After the initial extraction, we apply standard filtering and data cleaning techniques. We first 

check if missing values can be deduced from other items (i.e. if total assets are missing but fixed 

and current assets are available, we simply replace total assets with their sum). If the above 

method does not work, we exclude companies with missing values. We also exclude companies 

with errors in the data entered (i.e. companies that violate accounting identities). These 

constrains limit our initial dataset by around 25%. 

Our estimation sample consists of 2,721,861 firm-years observations (644,234 firms) out of 

which 49,355 are distressed. We additionally keep a random one-tenth of the firms from each 

country as a hold-out sample. The hold-out sample consists of 304,037 firm-year observations 

(71,823 firms) out of which 5,487 are distressed. Table 2.2 summarizes the properties of our 

distress indicator for the overall sample and for the regional subsamples. As already mentioned, 

there is a bias due to the fact that in the beginning of the period (2000-2001), most firms in the 

database are survivors. It is immediately apparent that Eurozone distress rates are relatively high 

in 2002-2003, are lower in 2004-2006 and are elevated again from 2007 onwards. This evidence 

is in accordance with the gloomy business climate in the early years of the last decade, which 

was followed by an impressive boom of the European economy in 2004-2006 and the subsequent 

slowdown that started in 2007. The figures are somewhat different for group 3, which consists of 

two non-Eurozone members. This may be attributed to the fact that the credit supply by banks 

did not shrink in these countries in the years 2002-2003, as it did in most of the Eurozone. The 

                                                           
4
 NACE stands for “Nomenclature statistique des Nomenclature statistique des activités économiques dans la 

Communauté européenne”. 
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distressed SMEs are 1.81% of all observations in the overall sample. Group 3 has the highest 

distress rate (2.4% of all firm-years). 

 

2.3.3 Variables Selection 

The factors that can lead SMEs to distress vary from firm-specific characteristics (such as high 

debt) to industry specific characteristics and macroeconomic effects (such as high interest rates). 

To select among these factors, we take into account the models’ stability, fit and parsimony as 

well as economic and statistical significance. 

 

2.3.3.1 Idiosyncratic Variables 

Concerning the accounting data, we calculate financial ratios from nine categories: liquidity, 

profitability, interest coverage, leverage, activity, cash flow, growth (i.e. in sales or profits), asset 

utilization and employee efficiency.
5
 We choose the ratios mainly based on economic intuition 

and suggestions from past literature. A list of the ratios examined is available upon request. As 

economic intuition suggests, we expect the probability of distress to be positively related to 

leverage and negatively related to all other ratio categories. 

For the calculations, when denominators have zero values, we replace them with low values 

of €10 so that the ratios maintain their interpretation. Additionally, to ensure that statistical 

results are not heavily influenced by outliers, we set the bottom one percent to the first percentile 

                                                           
5 We do not examine ratios that have equity as one component because we characterize firms with negative equity 

that drop from the sample as distressed and in some cases such ratios have no economic meaning (i.e. equity to 

profits, when both equity and profits are negative). We need to note though that a distressed firm has negative equity 

in its latest balance sheet before leaving the sample, whereas in our models, we use accounting data lagged by one 

year. 
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and the top one percent to the ninety-ninth percentile, a popular technique known as winsorizing. 

Finally, because annual reports for SMEs become available with a significant time delay, we lag 

all ratios in the estimations by 12 months. This means that we assume that data for year 𝑡 − 1 

become available at the end of year 𝑡. 

After we calculate the candidate ratios, we follow a standard three-step procedure to select 

the best for our models. First, we follow Altman and Sabato’s (2007) approach and apply the 

area under the curve (AUC) criterion. The AUC is constructed from the estimated distress 

probabilities versus the actual status of the firms in each year for all possible cut-off probability 

values. Thus, we find the AUC for each ratio, applying univariate analysis and keeping those 

with an AUC above 0.65. Second, we perform correlation analysis to avoid multi-collinearity 

problems. When the correlation between two ratios is above 0.6, we keep the ratio with the 

highest AUC. If the difference in the AUC is small, we keep the ratio that was found to be 

significant in previous studies. Finally, we apply a forward stepwise selection procedure of the 

remaining ratios, setting the significance level at 10% and performing the likelihood ratio test 

which is more accurate than the standard Wald test. 

Table 2.3 reports summary statistics for the five ratios that are found to be the most effective 

in predicting distress. A comparison of Panels B and C in Table 2.3 reveals the differences 

between distressed SMEs. Earnings before taxes to total assets differ substantially across the two 

groups, suggesting the dominance of unprofitable SMEs in the distressed group. Another striking 

difference is that the distressed firm-years have, on average, around 130 times lower interest 

coverage compared to healthy firm-years. Short-term borrowing is also much higher in the case 

of distressed SMEs. Similarly, turnover to total liabilities ratio is around 180% higher in the 



20 

healthy firm-years. Finally, the gap between distressed and healthy firm-years in the cash flow 

ratios indicates the importance of having high cash flows relative to current liabilities. 

We do not expect large variations in the identified ratios when we repeat the selection 

exercise for different regions, since several past studies also note their importance. We do expect 

differences in their coefficients though, since when we look at Panels D, E and F, we notice 

differences in the ratios’ sizes depending on the region. 

We also account for size, industry type, number of shareholders, location, legal form and age. 

The European Commission classifies SMEs into three groups based on their number of 

employees and turnover or total assets: medium-sized enterprises, small enterprises, and micro 

enterprises. As indicated in Panel A of Table 2.4, our sample is dominated by micro enterprises. 

In the sixth column of Panel A, the relationship between size and distress risk appears to be non-

monotonic, with distress risk relatively stable for medium and small companies and higher for 

micro companies. This finding is consistent with other studies such as Dietsch and Petey (2004) 

and is also in line with the argument that smaller companies are more vulnerable to economic 

fluctuations. To test these predictions, we follow Altman et al. (2010) and employ the natural 

logarithm of total assets as a proxy for firm size. We also test for other specifications of size, 

such as total turnover and the number of employees. Additionally, we examine interaction effects 

between size and the systematic variables that we introduce in the next subsection. For this 

purpose we use three size dummies (medium, small, micro) and combine them with the 

systematic variables to test the impact of the macroeconomy on different size groups. 

We also control for industry conditions using sector dummies to catch concentration effects. 

To construct our dummies we use the NACE codes which group industries into 21 major sectors. 

For estimation purposes though, this classification is too fine. The difficulty here relates to the 
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grouping of sectors into wide sector classes in order to achieve an appropriate degree of 

homogeneity. It is true that such groupings can always be subject to a certain degree of 

arbitrariness. In our case, we follow an approach similar to Chava and Jarrow (2004) and form 

six wide sectors: (i) Sector 1: Agriculture, Mining and Manufacturing, (ii) Sector 2: 

Transportation, Communication and Utilities, (iii) Sector 3: Construction, (iv) Sector 4: Trade, 

(v) Sector 5: Accommodation and Food, and (vi) Sector 6: Other services. We select these wide 

sectors based on different regulatory environments, competition levels and product structures. 

We also test for alternative groupings but mostly we get insignificant results for more detailed 

industry classifications. Panel B of Table 2.4 shows the way these broad sectors are partitioned. 

This initial evidence shows that Accommodation and Food has the highest distress rate and 

Transportation, Communication and Utilities the lowest. 

Finally, we include a dummy for shareholders (equal to one if the shareholders are more than 

two), a location dummy (equal to one if the SME is located in an urban area) and three legal 

form dummies in our models (for limited, unlimited and other legal forms). The average number 

of shareholders in our sample is two, but 24% of SMEs have between three and ten shareholders. 

14% of SMEs are located in big cities. 92% of SMEs have limited legal forms and few SMEs are 

cooperatives or partnerships. Generally, we expect SMEs with more shareholders to receive 

more injections of capital in difficult times, thus will have lower distress probabilities. Moreover, 

we expect SMEs in urban areas to be riskier due to higher competition among them. The 

intuition behind testing for the legal form of SMEs is that limited partners may be less interested 

in monitoring firm performance compared to unlimited partners, leading limited SMEs to 

distress more frequently. Whereas, (as we show in the “results” section) we find support for our 

hypotheses concerning the number of shareholders and the location of SMEs, the coefficients of 
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the legal dummies are statistically insignificant. Thus, we do not include them when reporting 

the results. 

Lastly we examine the age of a smaller sample of firms for which we have the date of 

establishment. Hudson (1987) finds that companies which are less than ten years old make up the 

highest proportion of distressed firms. In our sample, the average age at the time of distress is 

11.9 years, whereas the average age for healthy firm-years is 15 years. Thus, we expect age to be 

negatively (but not monotonically) related to distress. 

 

2.3.3.2 Systematic Variables 

In order to construct the systematic variables, we use data from Eurostat, the ECB, the World 

Bank and Datastream. Since these variables are often reported with a higher than annual 

frequency (quarterly, monthly or daily), we often need to annualize or calculate averages. We 

also usually lag them in order to avoid causality considerations and because they are available 

for forecasting with a time delay. So, we always use past realizations rather than expected values, 

assuming that these realizations are the best prediction we can have for the future. This is more 

appropriate for forecasting purposes since our objective is to predict distress at a certain point in 

time (given the definite information that we have available at this point) and because it is 

difficult to get reliable estimations for some systematic variables (i.e. FX rate or credit supply). 

In our models, we use country-specific values and examine systematic variables from three 

categories: business cycle, credit conditions, and insolvency codes. In Appendix 2.1 we present 

the variables examined, their expected signs, calculation methods and number of lags, when 

applied. 
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Basing our predictions on economic rationale, we expect the probability of distress to be 

negatively related to business cycle variables such as the appreciation of the local currency, 

disposable income, GDP growth, and economic sentiment indicators. On the other hand, we 

expect it to be positively related to other business cycle variables such as country debt, inflation, 

oil price, unemployment and exchange rate volatility. European SMEs are mainly local market 

players and most often import raw materials and other supplies instead of exporting. Thus, an 

appreciation of the local currency makes these imports cheaper and lowers distress rates. 

Concerning disposable income, GDP, and economic sentiment, an increase in their values means 

a better economic climate, thus it should be negatively related to distress. On the contrary, an 

increase in country debt, inflation, oil price, unemployment and exchange rate volatility signals 

uncertainty about future economic conditions and should be positively related to distress. 

Concerning credit conditions, we expect the level of interest rates to be positively related to 

distress and bank lending to be negatively related to distress. An increase in interest rates makes 

it harder for SMEs to borrow, whereas higher bank lending growth results in greater access to 

finance. 

Finally, at this point, we need to elaborate on the effect of bankruptcy laws on distress risk. 

Davydenko and Franks (2008) examine defaults in three European countries and find differences 

in insolvency codes among these countries to be important determinants of default outcomes. 

The World Bank measures the efficiency of insolvency codes in different countries based on the 

achieved recovery rate, which is the average percentage that claimants recover from an insolvent 

firm. The recovery rate depends on many factors, such as the time it takes to resolve insolvency 

proceedings, costs and the outcome of the process. In general, fast, low-cost proceedings and 

stronger creditor rights characterize the economies with high recovery rates. On the contrary, the 
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more years to resolve an insolvency case, the less friendly the code is and the less likely for the 

firm to survive during this process. This is also obvious in Appendix 2.2. Countries where the 

insolvency procedure takes longer (such as the Czech Republic and Poland) score very low as 

regards the percentage of recoveries. The opposite is true for countries with swift procedures, 

such as UK and Germany. Thus, we expect distress rates to be negatively related to recovery 

rates and positively related to the time it takes to resolve insolvency proceedings. The above is 

also consistent with Acharya et al. (2011), who show that firms in countries with stronger 

creditor rights (thus higher recoveries) are more conservatively financed (i.e. have less debt). 

In order to find among the systematic variables, those which significantly influence the 

probability of distress for SMEs, we follow a standard procedure. First, we fit the models using 

only accounting information. Then, we run models that include the ratios and only one 

systematic variable at a time. We calculate the AUC for each of these models for the overall 

sample and for the sub-samples, and keep the systematic variables that result to models with the 

highest AUCs. At this point, we need to account for correlation between the systematic variables. 

Correlations in this kind of variable are often high, lead to unreasonable signs of the estimated 

coefficients, and create large changes in the values of these coefficients in response to small 

changes in the models’ specifications. For this reason, between two systematic variables that 

have a correlation higher than 0.6, we keep the one that results in the model with the highest 

AUC. 

When we fit our models using the regional sub-samples, we anticipate that systematic 

variables will vary across regions. Based on economic intuition, we suspect that group 2 (Italy, 

Portugal, Spain- the peripheral economies of south Europe) is more exposed to the 

macroeconomic situation compared to group 1 (France, Germany, United Kingdom - more stable 
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economies). Also, we suspect that group 3 (Czech Republic, Poland) is exposed to additional 

currency risk since these countries are not members of the Eurozone. 

Finally, we also examine interaction effects between industry dummies and systematic 

variables and firms' size and systematic variables. Generally, we predict that industries such as 

construction and smaller SMEs are more vulnerable to the macroeconomic situation. 

 

2.4 The Results 

In this section, we present results of models fitted and estimated using the overall sample, 

models fitted and estimated using the regional sub-samples, and models fitted using the overall 

sample and estimated using the regional sub-samples. We refer to the models fitted using the 

overall sample as generic models, and to those fitted using the regional sub-samples as regional 

models. We identify interesting differences among the European regions, and we show that 

regional distress models always perform better compared to a generic model estimated using the 

regional sub-samples. 

 

2.4.1 Generic Models Estimated for the Overall Sample 

We estimate five models for the period 2000-2009. Model I includes only the idiosyncratic 

variables (accounting ratios, size, dummy for SMEs with more than two shareholders, and a 

dummy for SMEs in urban areas), model II includes both the idiosyncratic and the systematic 

variables, model III also includes the industry dummies, model IV includes some interaction 

terms, and finally, model V includes age (available for a smaller sample). All models control for 

the duration effect, which is the “time at risk” of each firm in the sample. 
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Panel A of Table 2.5 presents the estimated coefficients and chi-square values for the five 

alternative model specifications. In model I, all firm-specific variables are significant and have 

the expected signs. Specifically, the probability of distress is negatively related to profitability 

(earnings before taxes to total assets), coverage (EBITDA to interest expenses), cash flow (cash 

flow to current liabilities) and activity (turnover to total liabilities) and is positively related to 

leverage (current liabilities to total assets). Surprisingly, we do not find liquidity ratios as 

significant in the models. An explanation is that information contained in these ratios is proxied 

by others. That is, the significance of current liabilities to total assets may indicate that SMEs 

rely more on short-term borrowing than cash holdings to finance their operational needs. The 

probability of distress is a decreasing function of the firm size (natural logarithm of total assets), 

indicating that as the firms become larger, they are less likely to undergo distress (see also 

Carling et al., 2007). In unreported results, we also test for the non-linear effects of size, by 

introducing the natural logarithm of squared total assets. We find a positive coefficient, 

indicating that for the largest SMEs distress risk starts to increase, probably because these 

companies are more likely to be pursued in liquidation process by their creditors. Two additional 

interesting findings in accordance with our predictions are that SMEs with less than three 

shareholders and SMEs in urban areas on average face higher risks. It seems that SMEs with 

more shareholders receive higher capital support in difficult times. This effect dominates the 

higher administrative costs that the existence of more shareholders may entail. A possible 

explanation for the higher risks faced by SMEs in urban areas is that these companies face higher 

competition (due to geographical proximity) and pay higher rent than their counterparts in non-

urban areas. Another reason may be that owners of urban SMEs are less willing to support their 

enterprises in times of difficulties. This strategic distress caused because it is a more often a 
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viable option for business owners to close the business and find employment elsewhere. 
 6

 These 

effects seem to out-weigh the fact that there is a larger customer base available for urban SMEs. 

In model II, the firm-specific variables retain their significance and signs once the systematic 

variables are added. We identify five systematic variables as doing the best overall job in 

predicting distress, namely the FX rate change, the unemployment, the economic sentiment 

indicator, and the change in bank lending. As we hypothesized, an appreciation of the currency, 

an increase in the economic sentiment indicator and an increase in lending by banks result in 

lower distress rates. Conversely, an increase in unemployment and a greater number of years to 

achieve insolvency resolution result in higher distress rates. To assess the usefulness of the 

systematic variables, we perform a likelihood ratio test for the nested models I and II. The null 

hypothesis that the coefficients of these variables are jointly equal to zero is strongly rejected, as 

indicated in Table 2.5. 

Moving to model III, the firm-specific and systematic variables retain both their signs and 

significance and all industry dummies, except for industry 1 (Agriculture, Mining, 

Manufacturing) enter with significant coefficients. Concerning the signs of the industry dummy 

coefficients, industries 2 (Utilities, Transportation, Communication) and 4 (Trade) are negatively 

related to distress and industry 3 (Construction) and 5 (Accommodation and Food) positively 

related to distress. To assess the usefulness of the industry dummies, we perform a likelihood 

ratio test for the nested models II and III. The null hypothesis is again rejected. 

In model IV, we report results with interaction effects, in addition to the variables of model 

III. Specifically, we first test interaction effects between systematic variables and industry 

                                                           
6
 Dietsch and Petey (2006) show something similar. Specifically, they find evidence from French SMEs that more 

attractive and wealthy regions demonstrate higher distress rates on average. 
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dummies, between systematic variables and size, and finally, between industry dummies and 

size. We find that the interaction effects that are most important in terms of performance 

improvement are between systematic variables and size dummies and we report only these 

results for reasons of parsimony. From the coefficients of the interaction effects it is obvious that 

the distress probability of relatively larger SMEs (small and medium firms) is less sensitive to 

the systematic factors than the distress probability of the smallest SMEs (micro firms). For 

example, let us look how the effect of a bank lending change differs for the small and medium 

firms compared to micro firms. When we introduce interaction effects, the negative coefficient 

of the bank lending change increases in absolute size, demonstrating the increased sensitivity of 

micro firms to such a change. On the other hand, the additional effect of the bank lending change 

for small firms is positive (but still lower in absolute terms), and even more positive for medium 

firms. Thus, for the relatively larger SMEs, the same change in bank lending has less influence 

on their distress probability (but to the same direction) compared to micro firms. There are 

similar patterns with all other interaction effects with the exception of unemployment. 

Interestingly, the additional effect of unemployment for small and medium firms is of a higher 

magnitude (-10.495 and -11.241 respectively) in absolute terms than the coefficient for 

unemployment (4.802). Thus, an increase in unemployment is positively related to the distress 

probability of micro firms, but negatively related to the distress probability of small and medium 

firms. This may be due to the fact that in times of difficulty larger SMEs are more likely to fire 

employees in order to avoid bankruptcy and still be operational with fewer employees. Micro 

firms may not have such flexibility. 

In model V, we introduce firm age and test its effect on distress probability for the slightly 

smaller sample for which we have available data on age. We find, in accordance with previous 
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literature, that older firms are safer. We also follow Altman et al. (2010) and check for non-linear 

effects of age. As in their study, we find a positive and statistically significant coefficient for a 

dummy variable equal to one if SMEs are between three and nine years old. 

We notice that the pseudo-R
2
 (McFadden’s R

2
) is increasing along the different model 

specifications, indicating a better fit as we add more variables. The pseudo-R
2 values may look 

low when compared to R
2 

values of linear regression models, but such low values are normal in 

logistic regression (Hosmer and Lemeshow; 2000). In order to evaluate more closely the 

performance of our models, we perform in-sample and out-of-sample testing. We employ two 

widely used measures, the Hosmer and Lemeshow grouping based on estimated distress 

probabilities and the area under the curve (AUC). 

According to the Hosmer and Lemeshow method, the estimated distress probabilities for 

each year are ranked and divided into deciles. Out of the ten groups created (each one containing 

the 1/10 of the firms in that year), the first group has the smallest average estimated distress 

probability and the last the largest. Next, we aggregate the number of distressed firms in each 

decile for each year over the 2000-2009 period and calculate the corresponding percentages of 

the distressed firms in each decile. 

The AUC is constructed from the estimated distress probabilities versus the actual status of 

the firms in each year for all possible cut-off probability values. Specifically, the curve plots the 

ratio of correctly classified distressed firms to actual distressed firms (sensitivity) and the ratio of 

wrongly classified healthy firms to actual healthy firms (1 - specificity) for all possible cut-offs. 

The AUC ranges from zero to one. A model with an AUC close to 0.5 is considered a random 

model with no discriminatory power. An AUC of 0.7 to 0.8 represents good discriminatory 

power, an AUC of 0.8 to 0.9 very good discriminatory power and an AUC over 0.9 is 
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exceptional and extremely unusual. The AUC criterion is an improvement to the traditional 

classification tables that rely on a single cut-off point to classify distressed and healthy firms. 

Several statistics are equivalent to the AUC, such as the accuracy ratio, the Gini coefficient and 

the Mann-Whitney-Wilcoxon test (Engelmann et al., 2003). While the Hosmer and Lemeshow 

method assesses mainly calibration, the AUC assesses discrimination. 

Panel B of Table 2.5 presents the results of the in-sample tests. According to the Hosmer - 

Lemeshow grouping, the percentage of distressed firms in the last three deciles increases from 

model I to model II (75.83% to 76.59%). Also, the percentage of distressed firms in the first five 

deciles drops (11.38% to 11.09%). These show that adding the systematic variables improves 

performance both in terms of an increase in the correct classification of distressed firms and a 

decrease in the incorrect classification of healthy firms. AUC also increases from 0.824 to 0.838. 

This result is stronger than those achieved by previous studies in the literature. Specifically in 

Altman et al. (2010) this figure ranges between 0.78 and 0.80. When it comes to model III, it 

only modestly outperforms model II. Specifically, by taking industry effects into account, the 

AUC remains almost the same and the percentage of distressed firms in the last three deciles 

increases slightly (76.59% to 76.66%). Given these results, controlling for industry effects 

improves performance only marginally, once we have already accounted for systematic factors. 

When we add interaction effects between size and systematic factors, we notice a further 

increase in the percentage of distressed firms in the last three deciles (76.66% to 77.06%). AUC 

also increases from 0.839 to 0.843. Moving to model V, it seems that age also helps slightly. 

However, we cannot directly compare model IV to model V since model V is estimated with a 

smaller sample. 

Panel C of Table 2.5 presents the results of the out-of-sample tests. Out-of-sample testing is 
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challenging since improvements in the in-sample fit can be a result of over-fitting of the original 

data. As seen, all results follow the same patterns as for the in-sample tests. 

The in-sample and out-of-sample tests provide evidence that distress is captured more 

successfully with systematic variables and their interaction effects than with industry effects 

(which help only marginally). In unreported results, we also run a model where we include only 

firm-specific information (model I) and the industry dummies. As expected, this model performs 

worse than model II, which includes firm-specific information and the systematic factors. 

The importance of systematic variables in distress prediction is also demonstrated in Figure 

2.1, where we plot the predicted and observed distress rate for the period 2000 to 2011. The 

predicted distress rate is the simple average of the probabilities of distress of all firms in each 

period. Since we have financial but not distress information for 2010 and for only a few 

companies in 2011, we do the following: (i) we use the estimated coefficients from 2000-2009 to 

predict the distress rate for 2000-2011; (ii) we use the in-sample observed distress rate for 2000-

2009 and we obtain the observed distress rate for 2010-2011 from Creditreform, the largest 

private credit bureau in Germany that gathers statistics on insolvencies in Europe. Thus years 

2010 and 2011 provide out-of-sample evidence. The columns denote recession periods in the 

Eurozone as indicated by the OECD. The graph shows that in model I, where only firm-specific 

variables are included, the predicted distress rates follow a smooth upward trend, but do not co-

vary with the observed distress rates. It is the systematic variables (present in models II, III and 

IV) that shift the mean of the distress distribution and are able to capture distress-clustering 

during recessions. When systematic variables are included, predicted distress rates move together 

with observed ones and vary greatly with the business cycle, increasing with downturns and 

lowering with upturns. Once again, industry effects do not seem to provide additional 
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improvements. These findings are in accordance with previous literature (Carling et al., 2007; 

Jacobson et al., 2005, 2013; Laekholm-Jensen et al., 2014). 

 

2.4.2 Generic and Regional Models Estimated for the Regional Subsamples 

Now, we turn our analysis to the regional sub-samples presented in Section 2.3. First, we use the 

generic specifications of subsection 2.4.1 and estimate the generic models for the regional 

subsamples. Our preferred model is model II of Table 2.5, because it considers both idiosyncratic 

and systematic variables, performs very well (AUC of 0.8382 and 65.44% of distressed SMEs in 

the last three Hosmer Lemeshow deciles) and, at the same time, has a simple specification. We 

ignore industry effects (model III) because they do not add much in terms of performance 

improvements. We also ignore interaction effects (model IV) and age (model V) for reasons of 

parsimony. Later, we fit idiosyncratic and systematic variables for the regional sub-samples and 

estimate three regional models. Lastly, we compare the generic models estimated for the regional 

sub-samples with the regional models.
7
 

Table 2.6 presents the results. In accordance with our hypothesis, we document performance 

improvements when we switch to the regional models. Interestingly, we find that the firm-

specific variables identified as the most important in predicting distress in the regional models 

are exactly the same as in the generic models. This is evidence that SMEs across Europe are 

sensitive to the same idiosyncratic factors. This does not hold in the case of systematic factors. 

Specifically, we document regional variations in the vulnerabilities to systematic factors, 

                                                           
7
 We also fit and estimate country models. Altman et al. (2014) show that the classification accuracy of the Z’’-score 

(that uses only accounting data) can be considerably improved with country specific estimation. Findings are similar 

for countries of the same group, but country sub-samples often suffer from small size bias. Thus, in the sake of 

brevity and efficiency, we stick to regions instead of countries. 
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according to region-specific conditions and characteristics. Moreover, we do not find that the 

years taken to resolve insolvency variable adds predictive power in the regional models. This can 

partly be due to regional groups being relatively homogeneous with respect to their insolvency 

regimes. 

For group 1 (France, Germany, U.K.), the models are estimated from a sample of 165,786 

SMEs (801,536 firm-year observations), which include 14,177 distressed SMEs. When we move 

from the generic to the regional model, we document small changes in the coefficient sizes of the 

idiosyncratic variables. We also find that we need only two (instead of five) systematic variables 

to predict distress. These variables are the bank lending and the GDP growth criteria. Both bank 

lending and GDP growth have significant coefficients and are, as expected, negatively related to 

the distress rate. Lower GDP growth means lower growth in sales by firms and thus an increased 

distress probability. Interestingly, even with less systematic variables, the regional model 

achieves higher performance than the generic one. Specifically, the percentage of distressed 

firms in the last three deciles increases from the generic to the regional model (72.94% to 

74.16%) and the AUC increases (0.806 to 0.825). Out-of-sample performance improvements are 

similar as in the case of in-sample results. The above provides evidence that SMEs in the 

countries of group 1, which consists of some of the strongest EU economies, are less sensitive to 

the macroeconomic situation. This is in accordance with the finding in subsection 2.4.1, that 

large SMEs are less vulnerable to the macro-economic situation compared to small SMEs, since 

SMEs in group 1 are, on average, larger. 

For group 2 (Italy, Portugal, Spain), the models are estimated from a sample of 429,978 

SMEs (1,741,707 firm-year observations), which include 30,900 distressed SMEs. When we 

move from the generic to the regional model, we identify almost the same systematic factors as 
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being the most useful for predicting distress. The years to resolve insolvency variable is replaced 

by the balance of payments variable, since these countries often suffer from current account 

deficits. It is interesting to note that, in accordance with our predictions, group 2 is vulnerable to 

more macroeconomic factors compared to group 1. The reason for this can be the generally less 

favourable economic climate in the economies of group 2 during the years of this study. Here, 

the regional and generic models have a very similar performance. Specifically, the regional 

model only modestly outperforms the generic one (a 0.05% improvement in the correct 

classification for distressed firms and a 0.07 improvement in AUC). This happens because group 

2 represents 64% of the overall sample, thus, it mainly drives the results of the generic model. 

For group 3 (Czech Republic, Poland), the models are estimated from a sample of 48,470 

SMEs (178,618 firm-year observations), which include 4,278 distressed SMEs. When we move 

from the generic to the regional model, coefficient sizes of the idiosyncratic variables differ 

slightly and we observe an interesting new set of systematic variables. We find the FX volatility, 

the 10-year government bond yield and the GDP growth variables as the most useful systematic 

variables in predicting distress. With respect to the volatility of the exchange rate, higher 

volatility is positively related to distress (see also Nam et al., 2008). Interestingly, as we 

hypothesized, it seems that, for the non-Eurozone countries of group 3, the stability of their 

national currencies plays a crucial role in the solvency of SMEs. This is presumably due to the 

fact that a very volatile FX rate in these economies increases instability and thus creates 

uncertainty about future economic conditions. Concerning the 10-year government bond yield 

variable, it enters with a positive coefficient. Thus, a higher interest rate is positively related to 

distress. Government bond yields are systematically higher in the countries of group 3 compared 

to the rest of the sample for the years of the study, indicating the higher sovereign risk (country 



35 

premium) for these economies. As before, GDP growth is negatively related to distress. 

According to the Hosmer-Lemeshow grouping, the percentage of distressed firms in the last 

three deciles increases from the generic to the regional model (81.79% to 82.54%). AUC also 

increases (0.853 to 0.875). Clearly, the specific set of systematic variables helps in better 

capturing distress risk. The out-of-sample results give the same picture. 

The above evidence shows that the fit is improved when we change some of the 

macroeconomic co-variates as we move from the generic to the regional models. This indicates 

that regional models are better able to capture the systematic effects. Although the improvements 

might seem small, Figures 2.2 and 2.3 give a better sense of the comparative performance. 

Figure 2.2 plots the predicted distress rate based on the regional and generic models of Table 

2.6, along with the observed distress rate for each group. It is obvious that the predicted distress 

rates from the three regional models match better the observed values, compared to the predicted 

distress rate from the generic models. For group 1, the generic model underestimates the distress 

rate for the early years of our study (before 2004) and overestimates it later on (from 2008 

onwards). In the case of group 2, the two time-series are very similar. This is probably due to the 

vast majority of companies in our sample belonging to group 2, thus the regional and generic 

model for this group include almost the same co-variates and give almost identical predictions. 

Finally, for group 3, the generic model overestimates the distress rates for the years 2003-2004 

and co-moves with the regional model (and the observed values) in later years. The years 2010-

2011 provide out-of-sample evidence for group 1 and 2. The predicted distress rate closely 

follows the pattern of the observed one, specifically the falling trend in 2010-2011. Please note 

that for group 3, we lack distress information for 2010-2011, thus the extension is not possible. 

Figure 2.3 plots the aggregate time series for four macroeconomic variables. They are 
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economic sentiment, unemployment (in percentage terms), the balance of payments (as a 

percentage of the GDP), and foreign exchange rate volatility. The economic sentiment, the 

unemployment and the balance of payments variables are average values for the countries in 

each group. The foreign exchange rate is in relation to the US dollar. We report volatility for 

each currency separately (euro, British pound, Czech koruna and Polish zloty). 

The economic sentiment indicator clearly captures the deep recession in 2008-2009. We find 

this variable to be an important distress determinant in the generic model for the overall sample 

and also in the regional model for group 2. We can see that from 2006 onwards, values of the 

economic sentiment indicator for group 2 are systematically lower than for groups 1 and 3, 

capturing the higher sensitivity of the distress rate for group 2 to the values of this indicator. 

The same situation holds for unemployment as well. Specifically, unemployment is relatively 

stable during the years of the study for group 1. For groups 2, it is increasing substantially from 

the economic slowdown of 2008 onwards. Group 3 experiences a substantial decrease for 2004-

2009 and a moderate increase later. Not surprisingly, we find unemployment to be an important 

distress determinant in the regional model for group 2. 

The balance of payments as a percentage of GDP is also relatively stable (values around 

zero) during the years of this study for group 1. For groups 2, values are always negative and 

usually much lower than for group 3. Again, not surprisingly, it has a significant impact in the 

regional model for group 2, but not for the regional models of the other groups. This is evidence 

that SME distress rates in the countries of group 2 are particularly sensitive to the high current 

account deficits of their economies. 

Finally, the volatility of foreign exchange rates against the dollar follow similar trends for all 

currencies, but it is the Czech koruna and Polish zloty that have the highest volatility values. 
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Thus, in the regional model for group 3, we identify this variable as a significant determinant of 

the SME distress rate. 

 

2.5 Robustness Tests 

2.5.1 Definition of Distress 

In Section 2.3, we discuss that in around 40% of our sample (254,887 out of 644,234 firms), a 

firm disappears from the database before 2010 but the status information remains outdated. We 

also extensively discuss the challenges in tracking properly the status of SMEs that lead us to 

adopt an assumption for this 40% of firms. Thus, under our main distress definition, in order to 

separate the cases of closure from the ones of distress, we assume that the last available firm-

year of these firms is distressed if equity is negative in this last year. Because this assumption 

influences a large percentage of our sample, the estimation results can be sensitive to it. 

Therefore, in this section, we perform a robustness test where we exclude the 254,887 firms 

(1,127,428 firm-years) that disappear from the sample before 2010 without updated status 

situation. So, under this alternative distress definition, distress is strictly linked to only a legal 

insolvency procedure. The remaining sample includes 1,594,433 firm-years (389,374 firms) out 

of which 12,362 are distressed. Appendix 2.3 reports comparative statistics between the two 

distress definitions and samples used. 

Table 2.7 reports the estimation results for all countries and for the regional groups under 

both definitions for comparison purposes. Despite the fact that our sample size decreases 

significantly and distress rates are much lower, our results remain robust. Almost all variables 

retain their signs and significance. In a few cases that the sign flips, coefficients do not 

demonstrate significance. The exception is size, which has a significantly negative coefficient 

under the main distress definition and a significantly positive coefficient for the overall sample 
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(as well as groups 1 and 2) under the alternative distress definition. An explanation for this can 

be its non-linear effect. Specifically, in page 23, we mention that we find a positive coefficient 

for squared size, indicating that for very large SMEs, distress risk starts to increase, probably 

because these companies are more likely to be pursued by their creditors in liquidation 

procedures. Further supporting this argument, we find that the 12,362 distressed cases under the 

alternative distress definition come from 200% larger companies than the 49,355 distressed cases 

under the main definition. 

Regarding the performance of the models, we report the pseudo R
2
 and AUC. We find them 

to be always higher under the main distress definition than under the alternative definition. 

 

2.5.2 Estimation Technique 

In addition to the multi-period logit model developed by Shumway (2001), we apply the Cox 

proportional hazard model (Cox, 1975) that makes different assumptions about the hazard 

function. A hazard model is a type of survival model, in which the co-variates are related to the 

time that passes before some event occurs (in this case distress). Specifically, we follow 

Laerkholm-Jensen et al. (2013) and estimate a fully parametric model with a constant baseline 

intensity, since the usual Cox semi-parametric model does not allow us to simultaneously 

identify the vector of macroeconomic coefficients as well as the time-varying baseline intensity. 

Table 2.8 reports the estimation results for the overall sample and for the regional sub-

samples under both techniques for comparison purposes. All our results remain robust when we 

instead apply the Cox model. Specifically, all regression coefficients retain their sign and 

significance. The sizes of the coefficients are very similar as well. 
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2.5.3 Time Periods 

We also split our sample into four rolling window periods (each one lasting five years). We find 

that whereas sensitivities to idiosyncratic factors remain relatively stable over time, coefficients 

of systematic variables are more volatile, responding to changes in the prevailing 

macroeconomic conditions. 

In this section, we estimate the generic model for the overall sample over four rolling 

windows, each five years long during the period 2002-2009. We perform this analysis for two 

reasons: first, in order to examine the stability of coefficients through time; and secondly, to 

further test performance. This time, we evaluate predictive power over exactly the next year 

following each model’s estimation period as well as over the last year of our sample (2009). 

Panel A of Table 2.9 presents the estimation results of the four rolling windows over the 

period 2002-2009, as well as of the overall sample (period 2000-2009) for comparison purposes. 

Coefficients of firm-specific variables are always significant and keep the same signs along the 

different windows, but there is relative variation in their magnitudes. The only puzzling result is 

the positive coefficient of size in the 2004-2008 window, but it seems that this result is sample 

specific. Coefficients of systematic variables follow the same patterns but display higher 

volatility, presumably as a result of the changing economic conditions during the period of the 

study. The years to resolve insolvency are negatively related to distress in the 2002-2006 

window but this is probably also sample specific since distress rates are increasing quite strongly 

from 2002 to 2003 (Table 2.2) but insolvency regimes remain stable or improve. 

Panels B and C of Table 2.9 present the out-of-the-sample performance of the estimated 

rolling windows. Specifically, Panel B presents performance over the next year following the 

estimation period and Panel C presents performance over the last sample year (2009). In Panel 
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A, the percentage of distressed SMEs in the last three deciles ranges from 72.93% - 78.15% and 

AUC ranges from 0.7825 – 0.8177. Similarly, in Panel B, the percentage of distressed SMEs in 

the last three deciles ranges from 71.93% - 72.93% and AUC ranges from 0.7795 – 0.7963. 

 

2.6 Concluding Remarks 

The paper explores the performance of distress prediction hazard models for non-financial SMEs 

using a dataset from eight European countries over the ten-year period 2000-2009. We find that 

(in addition to financial indicators whose importance is noted in past studies) the location and 

number of shareholders are important determinants of SMEs’ distress probabilities. We validate 

the superiority of models that incorporate macroeconomic dependencies, suggested by previous 

research, also in the case of SMEs but do not find strong evidence that industry effects 

significantly improve prediction accuracy. We also examine interaction effects between SMEs’ 

size and systematic variables. We find that as SMEs become larger, they are less vulnerable to 

the macroeconomic situation, contrary to what Basel regulations assume. Interestingly, when we 

split our sample in regional sub-samples, we show that SMEs across Europe are sensitive to the 

same firm-specific factors, but we identify significant regional variations in the selection and 

importance of macro variables. Specifically, macro variables differ among European regions 

based on region-specific conditions and characteristics. Since our regional distress models 

always perform better than a generic model estimated for the regional sub-samples, we conclude 

that their use can lead to performance improvements in the risk management of international 

SME portfolios. Finally, we perform a variety of tests and show that our results remain robust to 

different distress definitions, estimation techniques and time periods. 
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2.7 Tables of Chapter 2 

 

Table 2.1 

Key Indicators  

The economic and social contribution of SMEs varies substantially across the EU. The table 

gives an overview of SMEs in the EU27 and in the countries of our specific interest. The first 

column gives the contribution of SMEs to employment, the second the contribution to the value-

added in the economy and the third the density of SMEs per 1,000 inhabitants. 

 
(%) of 

employment 

(%) of 

value added 

Number per 

1000 inhabitants 

EU27 67.1 57.6 39.9 

Italy 81.3 70.9 65.3 

Portugal 82.0 67.8 80.5 

Spain 78.7 68.5 59.1 

France 61.4 54.2 36.3 

Germany 60.6 53.2 20.0 

United Kingdom 54.0 51.0 25.6 

Czech Republic 68.9 56.7 86.0 

Poland 69.8 48.4 36.8 
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Table 2.2 

Distressed SMEs as Percentage of Total SMEs 

 
The table summarizes the properties of our distress indicator for the overall sample and for the regional sub-samples. It gives the total number 

of SMEs at the beginning of the year, the number of distressed SMEs during the year and the distress rate per year. 

 Overall   Group 1   Group 2   Group 3  

Year Total Distressed (%) Total Distressed (%) Total Distressed (%) Total Distressed (%) 

2000 149,023 0 0.00 82,666 0 0.00 65,576 0 0.00 781 0 0.00 

2001 176,351 192 0.11 92,348 185 0.20 81,782 6 0.01 2,221 1 0.05 

2002 204,531 3,802 1.86 99,815 2,125 2.13 100,466 1,649 1.64 4,250 28 0.66 

2003 194,768 5,961 3.06 91,761 4,003 4.36 94,857 1,935 2.04 8,150 23 0.28 

2004 146,877 1,250 0.85 52,031 865 1.66 81,727 331 0.41 13,119 54 0.41 

2005 167,837 1,403 0.84 53,609 822 1.53 99,053 377 0.38 15,175 204 1.34 

2006 256,732 1,873 0.73 70,242 902 1.28 164,105 734 0.45 22,385 237 1.06 

2007 463,732 8,134 1.75 95,393 1,600 1.68 331,731 5,932 1.79 36,608 602 1.64 

2008 498,358 9,194 1.84 88,606 1,427 1.61 369,487 6,977 1.89 40,265 790 1.96 

2009 463,652 17,546 3.78 75,065 2,248 2.99 352,923 12,959 3.67 35,664 2,339 6.56 

Obser. 2,721,861 49,355 1.81 801,536 14,177 1.77 1,741,707 30,900 1.77 178,618 4,278 2.40 



43 

Table 2.3 

 Summary Statistics 
The table reports summary statistics for all of the accounting ratios used to forecast distress. Each 

observation represents a particular firm in a particular year. Panel A describes the distributions of 

the ratios in all firm-years, Panel B describes the sample of healthy years, and Panel C describes 

the distressed years. Panels D, E and F describe the distributions for Groups 1, 2 and 3 

respectively. The sample period is from 2000 to 2009. All ratios are winsorized at the ninety-ninth 

and first percentiles. 

 
Earnings before taxes 

to total assets 

EBITDA to 

interest expenses 

Current liabilities 

to total assets 

Cash flow to 

current liabilities 

Turnover to 

total liabilities 

Panel A. Entire data set 

Mean 0.05 687.28 0.61 0.31 3.60 

Median 0.04 7.00 0.59 0.12 2.57 

Std.Dev. 0.17 2,927.14 0.34 0.86 4.13 

Min -0.85 -2,600.00 0.00 -1.17 0.09 

Max 0.63 21,200.00 2.27 7.00 30.59 

N: 2,721,861      

Panel B. Healthy Group 

Mean 0.05 699.87 0.60 0.31 3.63 

Median 0.04 7.29 0.59 0.13 2.59 

Std.Dev. 0.17 2,945.99 0.33 0.86 4.15 

N: 2,672,506      

Panel C. Distressed Group 

Mean -0.13 5.39 1.02 -0.01 2.04 

Median -0.04 0.65 0.92 0.00 1.42 

Std.Dev. 0.29 1,448.37 0.56 0.59 2.50 

N: 49,355      

Panel D. Group 1 

Mean 0.08 1,064.80 0.61 0.32 3.76 

Median 0.06 12.75 0.60 0.16 3.18 

Std.Dev. 0.17 3,682.35 0.29 0.79 2.86 

N: 801,536      

Panel E. Group 2 

Mean 0.03 493.67 0.61 0.28 3.25 

Median 0.03 5.18 0.60 0.10 2.10 

Std.Dev. 0.17 2,426.19 0.35 0.85 4.22 

N: 1,741,707      

Panel F. Group 3 

Mean 0.09 881.04 0.58 0.55 6.32 

Median 0.07 13.00 0.53 0.20 4.31 

Std.Dev. 0.23 3,357.95 0.41 1.19 6.39 

N: 178,618      
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Table 2.4 

SMEs by Size and Industry 

Panel A. Size classification 

The panel shows the classification of SMEs by size. The first column shows the size classes. 

The second column shows the firm data available in each class, the third column shows the 

percentage of firm data available in each class, the fourth column shows the number of firm-

years data available in each class and the fifth column shows the distressed firm-years data 

available in each class. Finally the sixth column shows the distress rate as a percentage of 

total firm-years in each class. 

Size Firms (%) firms Firm-years Distressed (%) distressed 

Cat. Employees Turnover or Assets      

Medium < 250 ≤ € 50 m  ≤ € 43 m 21,408 3.32 123,123 1,815 1.47 

Small < 50 ≤ € 10 m  ≤ € 10 m 167,381 25.98 906,392 13,183 1.45 

Micro < 10 ≤ € 2 m  ≤ € 2 m 455,445 70.70 1,692,346 34,357 2.03 

Total 644,234 100.00 2,721,861 49,355 1.81 

Panel B. Industry classification (wide sectors) 

The panel shows the classification of SMEs by wide industry sectors. The first column 

shows the sectors. The second column shows the firm data available in each sector, the 

third column shows the percentage of firm data available in each sector, the fourth column 

shows the number of firm-years data available in each sector and the fifth column shows 

the distressed firm-years data available in each sector. Finally the sixth column shows the 

distress rate as a percentage of total firm-years in each sector. 

Sector Firms (%) firms Firm-years Distressed (%) distressed 

1. Agriculture, Mining and Manufacturing 133,746 20.76 608,696 9,815 1.61 

2. Transportation, Communication and Utilities 45,413 7.05 182,180 2,827 1.55 

3. Construction 113,147 17.56 482,031 9,170 1.90 

4. Trade 214,061 33.23 946,368 16,291 1.72 

5. Accommodation and Food 36,235 5.62 128,225 3,691 2.88 

6. Other services 101,632 15.78 374,361 7,561 2.02 

Total 644,234 100.00 2,721,861 49,355 1.81 
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Table 2.5 

Generic Models Estimated for the Overall Sample 

Panel A. Estimation results 

The models are estimated for 2000-2009 with lagged yearly observations using the multi-period logit technique. The data-set includes non-financial SMEs from eight European economies. 

Parameter estimates are given first followed by chi-square values in parentheses. There are 644,234 firms in the sample (2,721,861 firm-year observations) out of which 49,355 distressed. 

 Model I Model II Model III Model IV Model V 

Earnings before taxes to total assets -0.755*** (-15.65) -0.770*** (-15.89) -0.763*** (-15.53) -0.779*** (-15.99) -0.777*** (-14.92) 

EBITDA to interest expenses -0.0000453*** (-14.98) -0.0000450*** (-14.49) -0.0000451*** (-14.58) -0.0000441*** (-14.38) -0.000045*** (-14.20) 

Current liabilities to total assets 1.381*** (101.27) 1.420*** (103.81) 1.417*** (102.97) 1.409*** (101.04) 1.38*** (95.92) 

Cash flow to current liabilities -0.480*** (-8.99) -0.485*** (-9.14) -0.491*** (-9.16) -0.475*** (-9.00) -0.517*** (-9.22) 

Turnover to total liabilities -0.182*** (-36.96) -0.177*** (-36.08) -0.176*** (-35.56) -0.182*** (-35.56) -0.187*** (-35.64) 

Size (ln(totals assets)) -0.127*** (-30.88) -0.0940*** (-22.95) -0.0913*** (-22.14) -0.109*** (-23.13) -0.097*** (-20.18) 

Dummy equal to 1 if shareholders are more than 2 -0.291*** (-23.53) -0.274*** (-21.99) -0.272*** (-21.76) -0.270*** (-21.50) -0.225*** (-17.54) 

Dummy equal to 1 if SME is located in an urban area 0.132*** (10.24) 0.141*** (10.85) 0.144*** (11.01) 0.153*** (11.54) 0.175*** (13.01) 

FX rate (% change)   -1,686.8*** (-59.04) -1,689.9*** (-59.01) -2,627.20*** (-68.63) -2,695.82*** (-69.51) 

Unemployment   1.883*** (12.39) 1.914*** (12.58) 4.802*** (28.84) 4.345*** (25.82) 

Economic sentiment indicator   -0.0259*** (-35.03) -0.0258*** (-34.90) -0.0388*** (-48.72) -0.0386*** (-46.76) 

Loans granted to non-financial sector (% change)   -4.414*** (-58.29) -4.407*** (-58.07) -5.246*** (-53.94) -5.226*** (-54.84) 

Years to resolve insolvency proceedings   0.0949*** (27.40) 0.0958*** (27.57) 0.1211*** (25.80) 0.1209*** (25.75) 

Industry 1 (Agriculture, Mining, Manufacturing)       0.0442*** (3.48) 0.0938*** (7.26) 

Industry 2 (Utilities, Transportation, Communication)     -0.0762*** (-3.56)     

Industry 3 (Construction)     0.0798*** (5.84) 0.1035*** (8.06) 0.0782*** (6.01) 

Industry 4 (Trade)     -0.0295* (-2.50)     

Industry 5 (Accommodation and Food)     0.212*** (10.18) 0.251*** (12.25) 0.3169*** (15.49) 

Small firm* FX rate (% change)       1,796.63*** (35.16) 1,737.00*** (33.17) 

Small firm* unemployment       -10.495*** (-37.76) -10.591*** (-37.41) 

Small firm* economic sentiment indicator       0.0146*** (30.15) 0.0151*** (30.47) 

Small firm* loans to non-financial sector (% ch.)       1.771*** (10.93) 1.639*** (10.24) 

Small firm* years to resolve insolvency proceedings       -0.0493*** (-6.79) -0.0673*** (-8.95) 

Medium firm* FX rate (% change)       1,936.71*** (20.51) 1,975.46*** (19.98) 

Medium firm* unemployment       -11.241*** (-15.40) -12.091*** (-15.97) 

Medium firm* economic sentiment indicator       0.0174*** (16.96) 0.0196*** (18.36) 

Medium firm* loans to non-financial sector (% ch.)       4.084*** (14.02) 3.766*** (12.94) 

Medium firm* years to resolve insolvency proceedings       -0.1392*** (-9.81) -0.1605*** (-10.94) 

Age         -0.0133*** (-17.30) 

Age (3-9)         0.5501*** (43.76) 

Constant Yes  Yes  Yes  Yes  Yes  

Duration Yes  Yes  Yes  Yes  Yes  



46 

Table 2.5. Cont.           

 Model I  Model II  Model III  Model IV  Model V  

Firm-year observations 2,721,861  2,721,861  2,721,861  2,721,861  2,652,157  

Firms 644,234  644,234  644,234  644,234  620,872  

Distressed firms 49,355  49,355  49,355  49,355  47,841  

Pseudo R-squared 0.147  0.171  0.171  0.178  0.187  

Log likelihood -210,601.30  -204,638.50  -204,538.30  202,880.11  194,837.44  

Wald test 78,110.8***  84,259.5***  84,526.8***  85,305.9  81,789.3***  

Likelihood ratio test   11,925.57***  200.45***  3,316.36  16,085.34***  

* p<0.05, ** p<0.01, *** p<0.001           

Panel B. In-sample prediction tests 

Hosmer-Lemeshow decile 

1 to 5 11.38%  11.09%  10.96%  10.67%  10.24%  

8 11.20%  11.16%  11.25%  10.91%  10.33%  

9 17.46%  17.86%  17.84%  17.83%  17.34%  

10 47.17%  47.58%  47.57%  48.32%  49.49%  

8 to 10 75.83%  76.59%  76.66%  77.06%  77.16%  

Area under the ROC curve 0.824  0.838  0.839  0.843  0.857  

Panel C. Out-of-sample prediction tests 

 A hold-out sample of 71,823 European SMEs (304,037 firm-year observations) is used. 

Hosmer-Lemeshow decile 

1 to 5 11.46%  11.35%  11.26%  10.30%  10.15%  

8 11.24%  10.53%  10.66%  11.45%  10.71%  

9 17.51%  18.70%  18.53%  18.15%  17.16%  

10 46.78%  47.04%  47.04%  47.95%  48.95%  

8 to 10 75.54%  76.27%  76.23%  77.55%  76.82%  

Area under the ROC curve 0.823  0.837  0.837  0.844  0.847  
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Table 2.6 

Generic and Regional Models Estimated for the Regional Subsamples  

Panel A. Estimation results 

The models are estimated for 2000-2009 data with lagged yearly observations using the multi-period logit technique. The data-set is limited to non-financial SMEs. Parameter estimates are given first followed 

by chi-square values in parentheses. Group 1 has 165,786 French, German and British SMEs (801,536 firm-year observations) out of which 14,177 distressed. Group 2 has 429,978 Italian, Portuguese and 

Spanish SMEs (1,741,707 firm-year observations) out of which 30,900 distressed. Group 3 has 48,470 Czech and Polish SMEs (178,618 firm-year observations) out of which 4,278 distressed. 

  Group 1 Group 2 Group 3 

  Generic Model Regional Model Generic Model Regional Model Generic Model Regional Model 

Earnings before taxes to total 

assets 
-1.0667*** (-15.97) -1.077*** (-15.54) -0.681*** (-10.67) -0.677*** (-10.61) -0.534*** (-4.50) -0.547*** (-4.68) 

EBITDA to interest expenses -0.0000470*** (-11.10) -0.0000483*** (-11.31) -0.0000472*** (-9.80) -0.0000468*** (-9.82) -0.0000507*** (-4.62) -0.0000509*** (-4.55) 

Current liabilities to total 

assets 
1.908*** (71.61) 1.916*** (72.99) 1.216*** (69.49) 1.217*** (69.66) 1.415*** (33.07) 1.397*** (32.84) 

Cash flow to current 

liabilities 
-0.236*** (-4.15) -0.196** (-3.16) -0.654*** (-9.51) -0.650*** (-9.43) -0.336*** (-2.75) -0.314** (-2.64) 

Turnover to total liabilities -0.106*** (-14.72) -0.101*** (-14.07) -0.245*** (-30.10) -0.249*** (-30.41) -0.171*** (-13.05) -0.175*** (-13.28) 

Size (ln(totals assets)) -0.0226*** (-3.05) -0.00559 (-0.75) -0.101*** (-16.95) -0.107*** (-17.72) -0.0587*** (-4.60) -0.0754*** (-6.04) 

Dummy equal to 1 if 

shareholders are more than 2 
-0.0781*** (-3.44) -0.0812*** (-3.62) -0.334*** (-20.51) -0.324*** (-19.96) -0.344*** (-7.49) -0.347*** (-7.53) 

Dummy equal to 1 if SME is 

located in urban area 
0.151*** (4.82) 0.174*** (5.68) 0.103*** (6.50) 0.101*** (6.43) 0.351*** (9.75) 0.358*** (9.92) 

Loans granted to non-

financial sector (% change) 
-2.388*** (-14.95) -4.611*** (-25.53) -0.268 (-1.29) -3.378*** (-30.14) -6.203*** (-21.64) 

  
Years to resolve insolvency 

proceedings 
-1.206*** (-21.27) 

  
1.171*** (18.92) 

  
-0.237*** (-20.25) 

  

GDP growth (% change) 
  

-5.595*** (-9.44) 
      

-11.62*** (-22.52) 

FX rate (% change) -2,052.2*** (-49.78) 
  

-2,403.5*** (-46.89) -2276.6*** (-44.99) 340.15*** (3.06) 
  

Unemployment 19.425*** (13.59) 
  

13.441*** (27.02) 6.176*** (24.91) -22.213*** (-15.94) 
  

Economic sentiment -0.0206*** (-15.16) 
  

-0.0279*** (-23.62) -0.0256*** (-21.08) -0.0031 (-0.93) 
  

Balance of Payments (% 

GDP)       
-42.082*** (-16.28) 

    

FX rate volatility 
          

122.6*** (12.11) 

10-year government bond 

yield           
25.43*** (14.63) 

Constant Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Duration Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
 

Yes 
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Table 2.6. Cont.      

 Group 1  Group 2  Group 3 

 Generic Model  Regional Model Generic Model  Regional Model Generic Model  Regional Model 

Firm-year observations 801,536 
 

801,536 
 

1,741,707 
 

1,741,707 
 

178,618 
 

178,618 
 

Firms 165,786 
 

165,786 
 

429,978 
 

429,978 
 

48,470 
 

48,470 
 

Distressed firms 14,177 
 

14,177 
 

30,900 
 

30,900 
 

4,278 
 

4,278 
 

Pseudo R-squared 0.150 
 

0.150 
 

0.170 
 

0.177 
 

0.214 
 

0.250 
 

Log likelihood -61,573.50 
 

-60,538.70 
 

-131,451.70 
 

-127,673.50 
 

-15,878.40 
 

-15,147.90 
 

Wald test 19,302.49*** 
 

20,225.9*** 
 

55,513.51*** 
 

55,783.8*** 
 

8,099.98*** 
 

8,083.9*** 
 

* p<0.05, ** p<0.01, *** p<0.001 

Panel B. In-sample prediction tests 

Hosmer-Lemeshow decile 

1 to 5 14.16% 
 

13.85% 
 

9.50% 
 

9.17% 
 

7.25% 
 

7.22% 
 

8 9.85% 
 

9.47% 
 

11.42% 
 

11.86% 
 

8.86% 
 

9.70% 
 

9 14.14% 
 

14.02% 
 

18.90% 
 

18.67% 
 

17.58% 
 

17.16% 
 

10 48.95% 
 

50.67% 
 

47.17% 
 

47.01% 
 

55.35% 
 

55.68% 
 

8 to 10 72.94% 
 

74.16% 
 

77.49% 
 

77.54% 
 

81.79% 
 

82.54% 
 

Area under the ROC curve 0.806   0.825   0.841   0.848   0.853   0.875   

Panel C. Out-of-sample prediction tests 

For Group 1, a hold-out sample of 18,449 French, German and British SMEs (88,957 firm-year observations) is used. For Group 2, a hold-out sample of 48,034 Italian, Portuguese and Spanish SMEs (195,236 

firm-year observations) is used. For Group 3, a hold-out sample of 5,340 Czech and Polish SMEs (19,844 firm-year observations) is used. 

Hosmer-Lemeshow decile 

1 to 5 13.84% 
 

13.47% 
 

9.23% 
 

9.11% 
 

7.49% 
 

7.73% 
 

8 9.47% 
 

8.79% 
 

11.06% 
 

10.80% 
 

9.37% 
 

8.90% 
 

9 13.22% 
 

15.01% 
 

19.02% 
 

19.57% 
 

16.86% 
 

16.63% 
 

10 47.79% 
 

48.95% 
 

47.66% 
 

47.38% 
 

57.61% 
 

58.08% 
 

8 to 10 70.48% 
 

72.76% 
 

77.73% 
 

77.75% 
 

81.26% 
 

83.61% 
 

Area under the ROC curve 0.805   0.824   0.843   0.850   0.841   0.868   
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Table 2.7 

Robustness Test with Different Distress Definitions 

The models are estimated for 2000-2009 data with lagged yearly observations using the multi-period logit technique. The data-set is limited to non-financial 

SMEs. Parameter estimates are given first followed by chi-square values in parentheses. According to the main distress definition, a firm-year is distressed if 

the following two conditions are both met: (i) it is the last firm-year for which we have available financial statements before the firm leaves the sample; (ii) 

the firm (a) either appears with one of the statuses defaulted, in receivership, bankrupt, in liquidation or (b) it has no updated status information and 

disappears from the sample before 2010 with negative equity in the last year. In the alternative distress definition, we exclude all firms that disappear from 

the sample before 2010 without updated status situation. These include firms that, under the main distress definition are classified as distressed if their 

equity is negative in the last year. Thus, the alternative distress definition is strictly linked to a legal insolvency procedure.  

 
Overall Sample - Generic Model Group 1 - Regional Model 

  Main definition Alternative definition Main definition Alternative definition 

Earnings before taxes to total 

assets 
-0.770*** (-15.89) -0.699*** (-5.43) -1.077*** (-15.54) -0.525*** (-3.36) 

EBITDA to interest expenses -0.0000450*** (-14.49) -0.0000289*** (-6.33) -0.0000483*** (-11.31) -0.0000333*** (-6.15) 

Current liabilities to total assets 1.420*** (103.81) 1.536*** (49.76) 1.916*** (72.99) 2.007*** (44.26) 

Cash flow to current liabilities -0.485*** (-9.14) -1.277*** (-11.35) -0.196** (-3.16) -1.149*** (-8.13) 

Turnover to total liabilities -0.177*** (-36.08) -0.035*** (-5.67) -0.101*** (-14.07) -0.017* (-2.17) 

Size (ln(totals assets)) -0.0940*** (-22.95) 0.376*** (45.80) -0.00559 (-0.75) 0.308*** (27.33) 

Dummy equal to 1 if shareholders 

are more than 2 
-0.274*** (-21.99) -0.214*** (-9.48) -0.0812*** (-3.62) -0.0585 (-1.79) 

Dummy equal to 1 if SME is 

located in an urban area 
0.141*** (10.85) 0.0341 (1.15) 0.174*** (5.68) 0.239*** (5.05) 

FX rate (% change) -1,686.8*** (-59.04) -1,357.1*** (-27.83) 
    

Unemployment 1.883*** (12.39) 1.502*** (28.97) 
    

Economic sentiment indicator -0.0259*** (-35.03) -0.0047*** (-3.22) 
    

Loans granted to non-financial 

sector (% change) 
-4.414*** (-58.29) -5.194*** (-34.27) -4.611*** (-25.53) -6.404*** (-20.77) 

Years to resolve insolvency 

proceedings 
0.0949*** (27.40) 0.732*** (21.49) 

    

GDP growth (% change) 
    

-5.595*** (-9.44) 0.963 (0.00) 

Constant Yes 
 

Yes 
 

Yes 
 

Yes 
 

Duration Yes   Yes   Yes   Yes   

Firm-year observations 2,721,861 
 

1,594,433 
 

801,536 
 

332,547 
 

Firms 644,234 
 

389,347 
 

165,786 
 

66,306 
 

Distressed firms 49,355 
 

12,362 
 

14,177 
 

5,646 
 

Pseudo R-squared 0.171 
 

0.115 
 

0.150 
 

0.098 
 

Log likelihood -204,638.50 
 

-60,050.11 
 

-60,538.70 
 

-25,683.62 
 

Wald test 84,259.5*** 
 

16,563.99*** 
 

20,225.9*** 
 

5,359.19*** 
 

* p<0.05, ** p<0.01, *** p<0.001 

Area under the ROC curve 0.838   0.794   0.825   0.776   
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Table 2.7. Cont.    

 
Group 2 - Regional Model Group 3 - Regional Model   

  Main definition Alternative definition Main definition Alternative definition 

Earnings before taxes to total 

assets 
-0.677*** (-10.61) -1.248*** (-6.63) -0.547*** (-4.68) -3.092*** (-4.45) 

EBITDA to interest expenses -0.0000468*** (-9.82) -0.0000507*** (-5.21) -0.0000509*** (-4.55) 0.0000009 (0.03) 

Current liabilities to total assets 1.217*** (69.66) 1.126*** (26.39) 1.397*** (32.84) 1.204*** (3.21) 

Cash flow to current liabilities -0.650*** (-9.43) -1.111*** (-7.27) -0.314** (-2.64) -0.149*** (-0.68) 

Turnover to total liabilities -0.249*** (-30.41) -0.0925*** (-7.25) -0.175*** (-13.28) -0.0195 (-0.86) 

Size (ln(totals assets)) -0.107*** (-17.72) 0.462*** (35.44) -0.0754*** (-6.04) -0.1228 (-1.16) 

Dummy equal to 1 if shareholders 

are more than 2 
-0.324*** (-19.96) -0.368*** (-11.36) -0.347*** (-7.53) -0.229 (-1.15) 

Dummy equal to 1 if SME is 

located in urban area 
0.101*** (6.43) 0.0037 (0.10) 0.358*** (9.92) 0.354 (1.20) 

Loans granted to non-financial 

sector (% change) 
-3.378*** (-30.14) -4.482*** (-20.47) 

    

GDP growth (% change) 
    

-11.62*** (-22.52) 0.700 (0.11) 

FX rate (% change) -2276.6*** (-44.99) -808.86*** (-11.98) 
    

Unemployment 6.176*** (24.91) 6.709*** (9.16) 
    

Economic sentiment -0.0256*** (-21.08) -0.01888*** (-6.56) 
    

Balance of Payments (% GDP) -42.082*** (-16.28) -30.575*** (-35.61) 
    

FX rate volatility 
    

122.6*** (12.11) 308.32*** (4.85) 

10-year government bond yield 
    

25.43*** (14.63) 57.14* (2.85) 

Constant Yes 
 

Yes 
 

Yes 
 

Yes 
 

Duration Yes   Yes   Yes   Yes   

Firm-year observations 1,741,707 
 

1,185,258 
 

178,618 
 

76,628 
 

Firms 429,978 
 

302,959 
 

48,470 
 

20,082 
 

Distressed firms 30,900 
 

6,338 
 

4,278 
 

378 
 

Pseudo R-squared 0.177 
 

0.127 
 

0.250 
 

0.214 
 

Log likelihood -127,673.50 
 

-32,418.66 
 

-15,147.90 
 

-1,247.08 
 

Wald test 55,783.8*** 
 

9,052.84*** 
 

8,083.9*** 
 

611.51 
 

* p<0.05, ** p<0.01, *** p<0.001 

Area under the ROC curve 0.848   0.847   0.879   0.816   
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Table 2.8 

Robustness Test with Different Estimation Techniques 

The models are estimated for 2000-2009 data with lagged yearly observations using the multi-period logit and Cox proportional hazard techniques. The 

data-set is limited to non-financial SMEs. Parameter estimates are given first followed by chi-square values in parentheses. The Cox proportional hazard 

model makes different assumptions about the hazard function. We follow Laerkholm-Jensen et al. (2013) and estimate a fully parametric model with a 

constant baseline intensity, since the usual Cox semi-parametric model does not allow us to simultaneously identify the vector of macroeconomic 

coefficients as well as the time-varying baseline intensity. 

 
Overall Sample - Generic Model Group 1 - Regional Model 

  Logit Cox Logit Cox 

Earnings before taxes to total 

assets 
-0.770*** (-15.89) -0.496*** (-11.30) -1.077*** (-15.54) -0.719*** (-10.21) 

EBITDA to interest expenses -0.0000450*** (-14.49) -0.0000413*** (-13.79) -0.0000483*** (-11.31) -0.0000463*** (-11.11) 

Current liabilities to total assets 1.420*** (103.81) 1.197*** (94.38) 1.916*** (72.99) 1.653*** (69.97) 

Cash flow to current liabilities -0.485*** (-9.14) -0.667*** (-13.15) -0.196** (-3.16) -0.367*** (-4.69) 

Turnover to total liabilities -0.177*** (-36.08) -0.183*** (-37.28) -0.101*** (-14.07) -0.088*** (-12.91) 

Size (ln(totals assets)) -0.0940*** (-22.95) -0.084*** (-21.64) -0.00559 (-0.75) 0.01882** (2.95) 

Dummy equal to 1 if shareholders 

are more than 2 
-0.274*** (-21.99) -0.239*** (-20.17) -0.0812*** (-3.62) -0.0635** (-2.98) 

Dummy equal to 1 if SME is 

located in an urban area 
0.141*** (10.85) 0.096*** (7.95) 0.174*** (5.68) 0.122*** (4.24) 

FX rate (% change) -1,686.8 (-59.04) -1,445.2*** (-52.53) 
    

Unemployment 1.883*** (12.39) 3.084*** (21.66) 
    

Economic sentiment indicator -0.0259*** (-35.03) -0.0066*** (-8.46) 
    

Loans granted to non-financial 

sector (% change) 
-4.414*** (-58.29) -3.624*** (-53.55) -4.611*** (-25.53) -2.713*** (-19.34) 

Years to resolve insolvency 

proceedings 
0.0949*** (27.40) 0.0993*** (30.72) 

    

GDP growth (% change) 
    

-5.595*** (-9.44) -3.844*** (-7.45) 

Constant Yes 
 

Yes 
 

Yes 
 

Yes 
 

Duration Yes   Yes   Yes   Yes   

Firm-year observations 2,721,861 
 

2,721,861 
 

801,536 
 

801,536 
 

Firms 644,234 
 

644,234 
 

165,786 
 

165,786 
 

Distressed firms 49,355 
 

49,355 
 

14,177 
 

14,177 
 

Log likelihood -204,638.50 
 

-91,145.41 
 

-60,538.70 
 

-25,643.69 
 

Wald test 84,259.5*** 
 97,333.98***  

20,225.9*** 
 

26,984.78***   

* p<0.05, ** p<0.01, *** p<0.001 
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Table 2.8. Cont. 

 
Group 2 - Regional Model Group 3 - Regional Model   

  Logit Cox Logit Cox 

Earnings before taxes to total 

assets 
-0.677*** (-10.61) -0.421*** (-7.54) -0.547*** (-4.68) -0.304** (-2.86) 

EBITDA to interest expenses -0.0000468*** (-9.82) -0.0000413*** (-9.20) -0.0000509*** (-4.55) -0.0000451*** (-3.74) 

Current liabilities to total assets 1.217*** (69.66) 1.026*** (63.38) 1.397*** (32.84) 1.135*** (27.85) 

Cash flow to current liabilities -0.650*** (-9.43) -0.803*** (-13.08) -0.314** (-2.64) -0.416** (-3.26) 

Turnover to total liabilities -0.249*** (-30.41) -0.239*** (-30.81) -0.175*** (-13.28) -0.171*** (-12.25) 

Size (ln(totals assets)) -0.107*** (-17.72) -0.097*** (-17.41) -0.0754*** (-6.04) -0.0355** (-3.17) 

Dummy equal to 1 if shareholders 

are more than 2 
-0.324*** (-19.96) -0.302*** (-19.71) -0.347*** (-7.53) -0.283*** (-6.28) 

Dummy equal to 1 if SME is 

located in urban area 
0.101*** (6.43) 0.079*** (5.47) 0.358*** (9.92) 0.276*** (8.10) 

Loans granted to non-financial 

sector (% change) 
-3.378*** (-30.14) -4.178*** (-40.2) 

  
-10.25*** (-17.42) 

GDP growth (% change) 
    

-11.62*** (-22.52) -10.25*** (-17.42) 

FX rate (% change) -2276.6*** (-44.99) -2083.1*** (-42.22) 
    

Unemployment 6.176*** (24.91) 5.488*** (24.11) 
    

Economic sentiment -0.0256*** (-21.08) -0.0056*** (-4.15) 
    

Balance of Payments (% GDP) -42.082*** (-16.28) -7.644*** (-28.39) 
    

FX rate volatility 
    

122.6*** (12.11) 36.8** (2.97) 

10-year government bond yield 
    

25.43*** (14.63) 2.31 (0.92) 

Constant Yes 
 

Yes 
 

Yes 
 

Yes 
 

Duration Yes   Yes   Yes   Yes   

Firm-year observations 1,741,707 
 

1,741,707 
 

178,618 
 

178,618 
 

Firms 429,978 
 

429,978 
 

48,470 
 

48,470 
 

Distressed firms 30,900 
 

30,900 
 

4,278 
 

4,278 
 

Log likelihood -127,673.50 
 

-59,226.49 
 

-15,147.90 
 

-5,004.10 
 

Wald test 55,783.8*** 
 

57,385.55*** 
 

8,083.9*** 
 

9,835.47*** 
 

* p<0.05, ** p<0.01, *** p<0.001                 
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Table 2.9 

Sub-periods’ Analysis (8 countries) 

Panel A. Estimation results 

The models are estimated over different sub-periods (five-year rolling windows for 2002-2009 data) with lagged yearly observations using the multi-period logit technique. Estimation results for the overall 

sample are also provided in the last two columns for comparison purposes (2000-2009 data). The data set includes non-financial SMEs from eight European economies. Parameter estimates are given first 

followed by chi-square values in parentheses. 

 2002-2006 2003-2007 2004-2008 2005-2009 2000-2009 

Earnings before taxes to total assets -0.819*** (-9.21) -0.764*** (-9.02) -0.824*** (-11.07) -0.757*** (-14.16) -0.763*** (-15.53) 

EBITDA to interest expenses -0.0000248*** (-5.91) -0.0000390*** (-9.78) -0.0000477*** (-12.25) -0.0000544*** (-15.24) -0.0000451*** (-14.58) 

Current liabilities to total assets 1.789*** (68.72) 1.684*** (74.63) 1.530*** (75.25) 1.379*** (92.63) 1.417*** (102.97) 

Cash flow to current liabilities -0.557*** (-5.66) -0.635*** (-6.49) -0.493*** (-5.87) -0.523*** (-9.10) -0.491*** (-9.16) 

Turnover to total liabilities -0.0900*** (-13.08) -0.0983*** (-14.83) -0.118*** (-18.17) -0.169*** (-31.22) -0.176*** (-35.56) 

Size (ln(totals assets)) -0.0980*** (-13.25) -0.0316*** (-4.85) 0.0446*** (7.34) -0.0188*** (-4.01) -0.0913*** (-22.14) 

Dummy equal to 1 if shareholders are more than 2 -0.245*** (-11.31) -0.279*** (-15.03) -0.246*** (-14.68) -0.277*** (-20.73) -0.272*** (-21.76) 

Dummy equal to 1 if SME is located in an urban area 0.125*** (4.93) 0.0757*** (3.53) 0.0959*** (5.24) 0.141*** (10.26) 0.144*** (11.01) 

FX rate (% change) -1,421.8*** (-29.32) -1,452.5*** (-33.02) -478.9*** (-13.02) -541.8*** (-14.16) -1,689.9*** (-59.01) 

Unemployment 2.117*** (4.38) -0.462 (-0.97) 2.082*** (6.89) 4.423*** (28.04) 1.914*** (12.58) 

Economic sentiment indicator -0.0169*** (-7.70) -0.0368*** (-20.08) -0.0106*** (-10.39) -0.00570*** (-6.75) -0.0258*** (-34.90) 

Loans granted to non-financial sector (% change) -6.238*** (-50.60) -5.288*** (-48.89) -2.347*** (-20.75) -4.202*** (-49.85) -4.407*** (-58.07) 

Years to resolve insolvency proceedings -0.0497*** (-5.03) 0.0520*** (8.94) 0.0981*** (23.87) 0.157*** (46.05) 0.0958*** (27.57) 

Industry 1 (Agriculture, Mining, Manufacturing) 0.0628* (2.06) 0.0211 (0.80) 0.0915*** (3.75) 0.0712*** (3.82)   

Industry 2 (Utilities, Transportation, Communication) -0.186*** (-4.13) -0.0976** (-2.65) 0.0245 (0.75) 0.0112 (0.46) -0.0762*** (-3.56) 

Industry 3 (Construction) -0.193*** (-6.07) -0.0267 (-0.99) 0.179*** (7.32) 0.218*** (11.78) 0.0798*** (5.84) 

Industry 4 (Trade) -0.0571* (-1.99) -0.113*** (-4.56) -0.0202 (-0.88) 0.0265 (1.56) -0.0295* (-2.50) 

Industry 5 (Accommodation and Food) 0.264*** (5.57) 0.156*** (4.06) 0.190*** (5.82) 0.226*** (9.57) 0.212*** (10.18) 

Constant Yes  Yes  Yes  Yes  Yes  

Duration Yes  Yes  Yes  Yes  Yes  

Firm-year observations 1,079,429  1,367,406  1,704,810  2,056,890  2,721,861  

Firms 385,546  637,299  646,812  636,008  644,234  

Distressed firms 15,914  20,665  24,276  42,351  49,355  

Pseudo R-squared 0.200  0.158  0.150  0.125  0.171  

Log likelihood -58,989.5  -69,826.7  -91,025.0  -111,420.9  -204,538.30  

Wald test 23,784.5***  31,818.7***  39,646.7***  68,451.6***  84,526.8***  

* p<0.05, ** p<0.01, *** p<0.001           
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Table 2.9. Cont.           

 2002-2006  2003-2007  2004-2008  2005-2009  2000-2009  

Panel B. Performance over next year 

Hosmer-Lemeshow decile 

1 to 5 8.05%  11.84%  11.94%  -  -  

8 14.43%  17.56%  13.18%  -  -  

9 19.67%  20.34%  18.99%  -  -  

10 44.06%  36.30%  40.75%  -  -  

8 to 10 78.15%  74.20%  72.93%  -  -  

Area under the ROC curve 0.818  0.783  0.796  -  -  

Panel C. Performance over last year (2009) 

Hosmer-Lemeshow decile 

1 to 5 12.80%  12.25%  11.94%  -  -  

8 16.34%  16.19%  13.18%  -  -  

9 18.45%  18.91%  18.99%  -  -  

10 35.86%  36.82%  40.75%  -  -  

8 to 10 70.65%  71.93%  72.93%  -  -  

Area under the ROC curve 0.780  0.783  0.796  -  -  
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2.8 Figures of Chapter 2 

 

Figure 2.1. Predicted and Observed Distress Rate. The figure plots the predicted distress rate 

based on models I to IV of Table 2.5, along with the observed distress rate, for the period 2000 to 

2011. Since we have financial but not distress information for year 2010 and for only a few firms 

for 2011, we do the following: (i) we use the estimated coefficients from 2000-2009 to predict 

the distress rate for 2000-2011; (ii) we use the in-sample observed distress rate for 2000-2009 

and we obtain the observed distress rate for 2010-2011 from Creditreform. The columns denote 

recession periods in the euro area, as indicated by OECD. The vertical dashed line separates in-

sample (2000-2009) and out-of-sample (2010-2011) periods. 
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Figure 2.2. Predicted and Observed Distress Rates for the 3 groups. The figure plots the 

predicted distress rates based on the regional and generic models of Table 2.6, along with the 

observed distress rate for each group. The predicted distress rate is the simple average of the 

probabilities of distress of all firms in each group and period. Since we have financial but not 
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distress information for 2010 and for only a few firms for 2011, we do the following: (i) use the 

estimated coefficients from 2000-2009 to predict the distress rate for 2000-2011; (ii)  use the in-

sample observed distress rate for 2000-2009 and obtain the observed distress rate for 2010-2011 

from Creditreform. Creditreform does not provide distress information for group 3. For groups 1 

and 2, the columns denote recession periods in the euro area, and for group 3, recession periods 

in the Czech Republic and Poland, as indicated by OECD. When present, the vertical dashed line 

separates in-sample (2000-2009) and out-of-sample (2010-2011) periods. 
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Figure 2.3. Macroeconomic variables 2000-2011. The figure plots the aggregate time series for 

four macroeconomic variables. The economic sentiment indicator and unemployment values are 

rolling annual averages at monthly frequency. Balance of payments values are rolling annual 

averages at quarterly frequency. Foreign exchange rate volatility values are rolling annual 

averages at daily frequency. 

  

5

6

7

8

9

10

11

12

13

14

15

Unemployment (%) 

Group 1 Group 2 Group 3

0,002

0,004

0,006

0,008

0,010

0,012

0,014

FX Volatility 

USD/EUR USD/GBP

USD/CZK USD/PLN



59 

2.9 Appendices of Chapter 2 

 

Appendix 2.1. List of Systematic Variables 

The appendix provides a list of the systematic variables that we examine, and their expected 

signs, calculation methods, lags and data sources. 

Business cycle  

Change of the exchange rate (-) Raw data are daily. We calculate the average daily change of the USD/EURO (for 

Eurozone members) and of USD/national currency (for non-Eurozone members) for the year 

before the closing. We do not lag this variable as data are accessible on real time. Source: 

European Central Bank. 

Debt as a percentage of the 

GDP 

(+) Raw data are quarterly. We take the average percentage over a four quarter period before 

the closing. We lag this variable by two quarters. Source: Eurostat. 

Disposable income growth (-) Raw data are quarterly. We take the disposable income change between the four quarters 

before the closing and the corresponding four quarters of the previous year. We lag this 

variable by one quarter. In the Eurostat data, 2005 is used as the reference to measure 

disposable income at constant prices. Figures are also seasonally adjusted and adjusted by 

working days. Source: Eurostat. 

Economic sentiment (-) Raw data are monthly. This indicator is calculated by the Directorate General of 

Financial Affairs of the European Commission. It is calculated as an index with a mean 

value of 100, from answers to surveys conducted under the Joint Harmonized EU Program. 

We take the average of the twelve months before the closing. We lag this variable by one 

month. Source: Eurostat. 

GDP growth (-) Raw data are quarterly. We take the GDP percentage change between the four quarters 

before the closing and the corresponding four quarters of the previous year. We lag this 

variable by one quarter. In the Eurostat data, year 2005 is used as the reference to measure 

GDP at constant prices. Figures are also seasonally adjusted and adjusted by working days. 

Source: Eurostat. 

Inflation (+) Raw data are monthly. We take the annual rate of change of the Harmonized Index of 

Consumer Prices (HICP). Specifically, we calculate the change of the index between the 

closing month and the corresponding month of the previous year. We lag this variable by 

one month. Source: Eurostat 

Oil price (+) Raw data are monthly (historical close). We take the average of the one month forward 

prices of Brent crude oil for the twelve months before the closing. We do not lag this 
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variable as data are accessible on real time. Source: European Central Bank. 

Surplus/deficit as a 

percentage of the GDP 

(-) Raw data are quarterly. We take the average percentage over a four quarter period before 

the closing. We lag this variable by two quarters. Source: Eurostat. 

Unemployment (+) Raw data are monthly. We take the average harmonized unemployment rate 

(International Labor Organization definition) over a twelve month period before the closing. 

We lag this variable by one month. Source: Eurostat. 

Volatility of the exchange 

rate 

(+) Raw data are daily. We calculate the volatility of the daily change of the USD/EUR (for 

Eurozone members) and of USD/national currency (for non-Eurozone members) for the year 

before the closing. We do not lag this variable as data are accessible on real time. Source: 

European Central Bank. 

Credit conditions  

10-year government bond 

yield change 

(+) Raw data are monthly. We take the annualized 10-year government bond yield 

(Maastricht definition) of the closing month. We do not lag this variable as data are 

accessible on real time. Source: Eurostat. 

Bank lending to the non-

financial sector 

(-) Raw data are monthly. We take the percentage change between the closing month and the 

corresponding month of the previous year. We lag this variable by one month. Source: 

Datastream. 

Financial market  

Stock index return (-) Raw data are monthly. We take the one year return of the national stock market index 

(change between the closing month and the corresponding month of the previous year). We 

do not lag this variable as data are accessible in real time. Source: Eurostat. 

Insolvency codes  

Recovery rate (-) Raw data are annual. This indicator is calculated by the World Bank under the “Doing 

Business” project and measures the percentage that claimants (creditors, tax authorities, and 

employees) recover from an insolvent firm for each country. We lag this variable by one 

year. Source: World Bank. 

Time to resolve insolvency 

proceedings 

(+) Raw data are annual. This indicator is calculated by the World Bank under the “Doing 

Business” project and measures the number of years from the filing for insolvency in court 

until the resolution of distressed assets for each country. We lag this variable by one year. 

Source: World Bank. 
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Appendix 2.2. Insolvency Regimes 

The appendix provides an overview of the insolvency regimes in the countries of our study. 

The first column gives the average percentage that claimants recover form an insolvent firm 

in the 2000-2009 period, the second column measures the average years from the insolvency 

filing until the resolution of assets and the third column is the ratio of the two previous 

columns. Data are from the World Bank and the authors’ calculations. 

 Recovery rate 

(%) 

Years to resolve insolvency Recovery rate per year 

(%) 

Italy 48.22 1.80 26.79 

Portugal 73.23 2.00 36.62 

Spain 72.90 1.50 48.60 

France 46.19 1.90 24.31 

Germany 82.32 1.20 68.60 

United Kingdom 85.31 1.00 85.31 

Czech Republic 17.23 8.39 2.05 

Poland 32.31 3.00 10.77 
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Appendix 2.3 

Distress Statistics using Main and Alternative Distress Definitions 

The appendix summarizes the properties of our main and alternative distress indicators for the overall sample, the three regional sub-samples and the 

eight countries. It gives the number of total SMEs and distressed SMEs and the distress rate. According to our main distress definition, a firm-year is 

distressed if the following two conditions are both met: (i) it is the last firm-year for which we have available financial statements before the firm 

leaves the sample; (ii) the firm (a) is either in default, in receivership, bankrupt, or in liquidation or (b) it has no updated status information and 

disappears from the sample before 2010 with negative equity in the last year. In our alternative distress definition, we exclude all firms that 

disappear from the sample before 2010 without updated status situation. Under our alternative distress definition, the sample decreases by 41% and 

includes only distress incidents that are strictly linked with a legal insolvency procedure. 

 
Firm-years Firms Distressed (%) firm-years (%) firms 

  Main Alternative Main Alternative Main Alternative Main Alternative Main Alternative 

Panel A. Overall sample and regional subsamples                

Overall sample 2,721,861 1,594,433 644,234 389,347 49,355 12,362 1.81 0.78 7.66 3.18 

Group 1 801,536 332,547 165,786 66,306 14,177 5,646 1.77 1.70 8.55 8.52 

Group 2 1,741,707 1,185,258 429,978 302,959 30,900 6,338 1.77 0.53 7.19 2.09 

Group 3 178,618 76,628 48,470 20,082 4,278 378 2.40 0.49 8.83 1.88 

Panel B. Countries                     

Germany 21,681 5,322 5,954 1,326 319 8 1.47 0.15 5.36 0.60 

France 724,060 309,230 145,918 61,030 12,222 5,353 1.69 1.73 8.38 8.77 

United Kingdom 55,795 17,995 13,914 3,950 1,636 285 2.93 1.58 11.76 7.22 

Italy 278,630 209,924 89,666 71,348 2,257 219 0.81 0.10 2.52 0.31 

Portugal 487,664 402,898 148,645 123,193 10,396 3,702 2.13 0.92 6.99 3.01 

Spain 975,413 572,436 191,667 108,418 18,247 2,417 1.87 0.42 9.52 2.23 

Czech Republic 119,677 59,856 33,305 16,804 3,014 244 2.52 0.41 9.05 1.45 

Poland 58,941 16,772 15,165 3,278 1,264 134 2.14 0.80 8.33 4.09 
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Chapter 3 Pricing Default Risk: The Good, The Bad, and The Anomaly 

 

3.1 Introduction 

Finance theory suggests that if default risk is systematic (and thus non-diversifiable) it should be 

positively correlated with stock returns in the cross-section of firms. However, in the empirical 

literature there are two main strands that deliver contradictory findings regarding the sign and 

significance of this relationship. On the one hand, Vassalou and Xing (2004) and Chava and 

Purnanandam (2010) document a positive relationship between default risk and stock returns in 

the US and Aretz, Florackis and Kostakis (2014), in a recent working paper, report similar 

findings using an international sample. On the other hand, several studies find a negative 

relationship between default risk and returns, the so-called “default anomaly”. Examples are 

Dichev (1998), Griffin and Lemmon (2002), Campbell, Hilscher and Szilagyi (2008), Garlappi, 

Shu and Yan (2008), Avramov et al. (2009), Da and Gao (2010), Garlappi and Yan (2011), and 

Conrad, Kapadia, and Xing (2012) in the US, Bauer and Agarwal (2014) in the UK and Gao, 

Parsons and Shen (2013) internationally.
8
 

                                                           
8
 Some of the explanations offered for this puzzling evidence are: (i) violations of the absolute priority rule 

(Garlappi, Shu and Yan, 2008; Garlappi and Yan, 2011): higher shareholder bargaining power reduces the risk of 

the shareholders’ residual claim, thus returns close to default; (ii) long-run risk (Avramov, Cederburg, and Hore, 

2011): firms close to default are less exposed to long-run risk because they are not expected to survive for  long, and 

hence have lower returns; (iii) glory (Conrad, Kapadia, and Xing, 2012): firms with high default risk are glory 

stocks that realize high returns in the future, so their current low returns are not a good estimate of their future 

returns. (iv) psychological reasons (Gao, Parsons and Shen, 2013): investors are overconfident about high default 

risk stocks, keeping their prices high and subsequently leading to sudden corrections and low returns; (v) neglected 
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These literature strands focus on the firm’s physical probability of default (PD) as a measure 

of default risk. In most cases, they use either market-based PDs (calculated under Merton’s 

(1974) framework) or accounting-based PDs (such as Altman’s Z-score, Ohlson’s O-score, and 

the popular measure used by Campbell, Hilscher and Szilagyi (2008)). Hence, these studies 

implicitly assume that physical PDs are monotonically related to risk-neutral PDs and that, as 

physical PDs increase, so does the exposure to aggregate default risk. However, George and 

Hwang (2010) argue that a firm’s physical PD does not necessarily reflect its systematic risk. In 

a theoretical model, they show that firms with high SDR exposure choose low leverage levels, 

which in turn lowers their physical PDs, therefore creating a negative relationship between PDs 

and returns. In the same spirit, Kapadia (2011) finds that firms with high physical PDs do not co-

vary with aggregate distress, suggesting that the low returns of high PD stocks are not due to 

exposure to aggregate distress. Similarly, Avramov, Cederburg and Hore (2011) show that firms 

with high idiosyncratic volatility (often identified as firms with high PDs) have low SDR 

exposure and low returns, thus suggesting a link between idiosyncratic volatility and default 

anomalies.
9
 

Following George and Hwang’s (2010) and Kapadia’s (2011) influential work, many recent 

working papers use proxies of risk-neutral PDs instead of physical PDs to measure default risk, 

and most document a positive relationship between default risk and returns. Examples are Chan-

Lau (2006), Nielsen (2013) and Friedwald, Wagner and Zechner (2014), who use credit default 

swap (CDS) spreads, and Anginer and Yildizhan (2014), who calculate credit risk premia from 

                                                                                                                                                                                           
profitability (Bauer and Agarwal, 2014): distress risk without profitability related information is not relevant in 

pricing. 

9
 Other studies that document a negative relationship between idiosyncratic volatility and stock returns (the IV 

anomaly) include Ang et al. (2006) and Barinov (2012). 
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corporate bond spreads to proxy for risk-neutral PDs. The disadvantage of these studies is that 

they can only calculate risk-neutral PDs for firms that have CDS or bond information available. 

These firms constitute a small fraction of total firms and are usually the largest ones. For 

example, Ozdagli (2013) argues that CDS data are available for only about 20% of US public 

firms (and are reliable only after 2004). 

Of the above studies that focus either on CDS or bond data, only Anginer and Yildizhan 

(2014) extend their analysis to a larger sample of firms for robustness purposes. To do this, they 

use physical PDs of US firms with CRSP-COMPUSTAT data available and calculate 

sensitivities of these PDs to the median PD in their sample, which they use as a proxy for 

aggregate default risk. Interestingly, they document a positive relationship between these 

sensitivities and stock returns. Our study is close to their analysis. Specifically, we build on this 

methodology, which was introduced by Hilscher and Wilson (2013), and extend Anginer and 

Yildizhan (2014) in three ways that we describe below. 

First, we use as a measure for aggregate default risk the CBOE Volatility Index (VIX) 

instead of the median PD. VIX is a good proxy for aggregate default risk since it is positively 

correlated with credit spreads, as documented in the literature on CDS (Pan and Singleton, 2008 

(distress risk premium)) and corporate bonds (Collin-Dufresne, Goldstein, and Martin, 2001; 

Schaefer and Strebulaev, 2008). Moreover, VIX is strongly correlated with European volatility 

indices (correlations higher than 0.90), which are generally available only from 2000 onwards. 

Several studies also connect VIX with stock returns. Ang et al. (2006) calculate the sensitivity of 

individual returns to changes in VIX, and show that firms that perform well when VIX increases 

experience low average returns because they are a hedge against market downside risk. Barinov 

(2012) additionally shows that both firms with very negative and very positive return 



66 

sensitivities to VIX changes are smaller and have higher BM ratios. In unreported results, we 

also use the median PD as an alternative proxy for aggregate default risk and all our results 

remain robust. However, in our large sample of very heterogeneous countries, the median PD is a 

rather noisy measure and demonstrates higher auto-correlation than monthly VIX. Thus, we 

believe VIX is a more appropriate measure and further motivates its use in Section 3.4. 

Second, instead of focusing on the US market, which has already been largely explored, we 

study a comprehensive sample of European firms from 22 countries, which notably also includes 

smaller firms. These firms are often neglected, but constitute the vast majority of firms listed on 

European exchanges. This heterogeneity is important as previous work has often associated 

default risk to other firm characteristics (such as size and book-to-market ratios). Thus, the 

inclusion of small stocks allows us to reconcile our findings with these earlier results. 

Finally, we break down the physical PDs into systematic and idiosyncratic components and 

study the relationship between returns and the two components of physical PD separately. This 

enables us to detect the origin of the default anomaly. We refer to the systematic component as 

systematic default risk (SDR) beta and to the idiosyncratic component as idiosyncratic default 

risk (IDR) alpha. Specifically, we sort the stocks in our sample on both SDR betas and IDR 

alphas instead of only SDR betas (as Anginer and Yildizhan do) and perform several double-

sorts in order to better identify the source of the anomaly and enforce our statements. 

Our study is also close to Gao, Parson and Shen (2013) and Aretz, Florackis and Kostakis 

(2014), who study the relationship between default risk and stock returns in international 

samples. Gao, Parson and Shen (2013) study 39 countries and document a negative relationship 

between stock returns and default risk, as measured by Moody’s Expected Default Frequency 

(EDF) measure. They provide a behavioral explanation for the anomaly that sees investors being 
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overconfident about high default risk stocks, keeping their prices high and subsequently leading 

to sudden corrections and low returns. Contrary to their findings, Aretz, Florackis and Kostakis 

(2014) study 14 developed markets using the accounting-based measure of Campbell, Hilsher 

and Szilagy (2008) and document a positive relationship between stock returns and default risk. 

Thus, Gao, Parson and Shen (2013) use market-based PDs and Aretz, Florackis and Kostakis 

(2014) use accounting-based PDs to proxy for SDR exposure. But, as we already discuss above, 

these physical PDs are not necessarily good measures of such exposure. Our study differs from 

the these two as we use the simple and intuitive method described above to break these physical 

PDs down into systematic and idiosyncratic components. We then study the relationship between 

returns and these two components separately in order to better capture how exposure to 

aggregate default risk is priced. 

Our main hypothesis, which we confirm empirically, is that stocks with high sensitivities of 

their PDs to VIX (not necessarily high PDs per se) will have higher average returns, because 

investors will require a premium for holding such stocks. Therefore, the documented default 

anomaly in the literature is only the result of incorrect measurement of the exposure to aggregate 

default risk. 

The remainder of the study is organized as follows. Section 3.2 describes the data. Section 

3.3 studies the relationship between the physical PDs and stock returns. Section 3.4 first 

describes the method to break down the physical PDs into systematic and idiosyncratic 

components, and then discusses the relationship between these different components and stock 

returns. Section 3.5 performs further tests to support the explanation of the default anomaly. 

Finally, Section 3.6 concludes. 
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3.2 The Data 

Our study covers publicly listed firms from 22 European countries, during the period January 

1990 to December 2012. We use Thomson Reuters' Datastream for market data and Thomson 

Reuters’ Worldscope database for the firms’ accounting information. 

To guarantee a certain level of market exchange activity, we include in our analysis only the 

22 European countries that had established exchanges on or before 1980 (for a total of 34 

exchanges). We exclude years 1980-1989 due to the limited number of companies with available 

data. We also follow previous studies in the field and exclude financial firms (ICB
10

 8000 

Financials) and firms with negative BM ratios. To reduce the influence of outliers and account 

for measurement errors, we exclude firms with a market capitalization below the 1
st
 percentile 

for all observations. This essentially leaves in our sample firms with a market capitalization 

above roughly one million euros.
11

 Moreover we only retain firms that have at least two years of 

data available, that is sufficient historical data for the calculation of physical PDs. To avoid 

duplicate observations, we do the following: for firms that are traded on more than one European 

exchange, we keep data from the market where the firm has been traded for the longest period, 

this is almost always the home market, and; if a firm has issued more than one type of common 

share, we use data of the share type that constitutes the majority of common equity. 

An important feature of our database is the compiled information on default events. As the 

reason for delisting is not usually available in Datastream, we manually track the status of the 

delisted firms from other sources (such as Amadeus and Orbis Europe databases), as well as 

                                                           
10

 The Industry Classification Benchmark (ICB) is an industry classification taxonomy launched by Dow Jones and 

FTSE in 2005. 

11 US studies usually exclude stocks with prices below 5 USD, but such a condition is inappropriate for our 

European sample (i.e. in Europe, the median stock price is approximately 5 EUR). 
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various public internet sources. Therefore, we are able to identify if the delisting of a security is 

due to default (bankruptcy or liquidation) or other reasons (i.e. mergers). To illustrate this point, 

Table 3.1 reports the average number of active firms per year, as well as the number of firms that 

were delisted due to default each year. 

Nonetheless, information on delisting is also not available in Datastream. Thus we follow 

Campbell, Hilscher and Szilagyi (2008) and use the last available full-month return, assuming 

that our portfolios sell stocks that are delisted at the end of the month before delisting. This 

approach gives a conservative estimate of the default anomaly. Results are qualitatively the same 

if we follow Vassalou and Xing (2004) and set delisting returns for stocks that default equal to -

100 percent (assuming a zero recovery rate). 

After applying the filters described above and merging different data sources, we are able to 

calculate physical PDs and draw results for a final sample of 806,157 firm-months 

(corresponding to 8,439 firms) across the 22 European countries. Table 3.2 characterizes this 

final sample with respect to the distribution of firms across size classes and countries. The 

average size in our sample is lower than previous US studies, because small stocks constitute the 

majority of traded firms in European exchanges. In terms of international breakdown, the 

representativeness of the different countries in our sample seems to be in line with the literature 

(e.g. Gao, Parsons, and Shen, 2013). Unsurprisingly, more developed markets contribute a 

greater share of observations to the sample, with the U.K. (32.54%), France (13.34%) and 

Germany (13.08%) collectively comprising more than half. 

We also resort to various other public data sources. Regarding aggregate default risk proxies, 

we use the CBOE VIX, as well as the European volatility indices VSTOXX, VFTSE and VDAX 

(for EUROSTOXX 50, FTSE 100 and DAX respectively) and the European credit default swap 
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index iTraxx. We focus on VIX in the main analysis, as it is the only index available from 

January 1990 onwards. The Fama-French factors SMB and HML and the market factor EMKT 

for Europe are obtained from Kenneth French’s web page. For the risk-free rate, we use monthly 

observations of the 1-year T-bill, available from the Federal Reserve Board Statistics.
12

 

 

3.3 The Physical Probabilities of Default and Stock Returns 

3.3.1 Calculating Physical PDs 

We follow Vassalou and Xing (2004) in calculating our main physical PD measure. As their 

methodology is based on the Merton model, we also refer to the estimated physical PD as the 

Merton measure. In order to calculate monthly PDs under this approach, we use data on current 

and long-term debt, as well as market capitalization for all the firms in our sample. We perform 

all calculations for the individual monthly PDs in local currency to minimize the effect of 

exchange rate volatility. Appendix 3.1 presents more details on the Merton measure, its 

calculation and overall performance. 

Table 3.3 shows descriptive statistics for the estimated Merton measure by country. Since 

other firm characteristics (such as size and BM ratios) have been associated with default risk in 

the literature, Table 3.3 also includes descriptive statistics for these variables (along with raw 

average returns). Overall the results show that there is significant heterogeneity among European 

countries in terms of PDs, size, and BM. Markets such as Romania (16.69%) and Bulgaria 

(14.29%) have the highest average PDs, while other countries such as Switzerland (3.13%) and 

the Netherlands (3.42%) have very low average PDs. 

                                                           
12

 We use a US risk-free rate since we do not have a sufficiently long time series of data for the German equivalent. 

Similarly, Kenneth French calculates the European factors using a US risk-free rate. 
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Although the performance results in Appendix 3.1 suggest that the Merton measure is indeed 

a good default predictor, we also calculate an alternative default measure for robustness 

purposes. In particular, we follow Campbell, Hilscher and Szilagyi (2008) in calculating a 

physical PD measure using a multi-period logit regression framework. We refer to this 

alternative PD as the CHS measure. We are able to calculate the CHS measure for 755,243 firm-

months (7,980 firms). For more details on the methodology, please refer to Appendix 3.2. 

Figure 3.1 summarizes the results. In Panel A, we plot the monthly aggregate Merton and 

CHS measures for firms in the overall sample (defined as simple averages of the values of all 

firms). The two PD measures have a very high correlation of 0.92, but their magnitude is 

different since the CHS measure produces lower PDs than the Merton measure. The columns in 

the plot denote recession periods in the euro area (as indicated by the OECD), so we can also 

observe that both measures vary greatly with the business cycle and increase during downturns. 

Panel B plots the monthly aggregate Merton measure and values of the volatility index VIX at 

the end of each month. It is again apparent that Merton PDs and VIX co-move closely together 

throughout the economic cycle. Both are higher during recessions, when economic theory 

suggests that the stochastic discount factor is high. This finding provides initial evidence that 

VIX captures aggregate default risk information. 

For reasons of brevity and given the high time-series and cross-sectional correlations 

between the two PD measures, we present results only with the estimated Merton measure. We 

justify this choice in two ways. Firstly, the CHS measure may suffer from an in-sample bias, 

since we use data from the whole sample period to estimate PDs. Secondly, we are able to 

estimate the CHS measure for a smaller sample of firms compared to the Merton case. 

Nonetheless, all our results are robust to the choice of physical PD measure. 
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3.3.2 The Default Anomaly: Physical PDs and Stock Returns 

As a first part of our analysis, we study the possible existence of a default anomaly in Europe. In 

particular, we explore the cross-sectional relationship between stock returns and default risk by 

conducting portfolio sorts on the physical PDs. 

Each month, from January 1990 to December 2012, we use the most recent PD for each firm 

and sort the stocks into five portfolios.
 13

 To account for possible country effects (concentration 

of risky stocks in certain countries and/or accounting differences), we follow an approach similar 

to Lewellen (1999) and Barry et al. (2002): at the beginning of each month, we adjust the 

available PDs from stocks in the overall sample by the average country PD for this month. Then 

we sort all stocks into portfolios based on the adjusted PDs. We perform similar adjustments for 

all the tests that follow but our results remain robust if we do not adjust for country averages. If 

the integration amongst European markets is high, it is not necessary to perform such 

adjustments. Nevertheless, our sample consists of 22 European countries, of which three are not 

members of the European Union, thus it is not very plausible to assume a very high degree of 

integration. 

Table 3.4 displays the results. In Panel A, we report both equally and value-weighted 

monthly raw returns and alphas (excess risk-adjusted returns) of the five portfolios. We also 

construct high-low portfolios (which are long the highest PD stock quintile and short the lowest 

PD stock quintile) and report raw returns and alphas for these portfolios (the alphas are obtained 

using the factor-mimicking portfolios for Europe available on Kenneth French’s website). The 

results show that the difference in returns between high and low PD stocks is almost always 

                                                           
13 All results are qualitatively similar using ten portfolios instead of five. 
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negative, in line with the literature that documents a possible default anomaly. This relationship 

is almost monotonic, but differences are not always significant. Thus, there is weak evidence that 

the high PD stocks earn on average lower returns than the low PD stocks, though this under-

performance does not demonstrate significance. 

In Panel B of Table 3.4, we report the estimated factor loadings for excess, equally and 

value-weighted returns on the four Fama-French-Carhart factors. We find that high PD portfolios 

have higher loadings on the market factor (EMKT), the size factor (SMB) and the value factor 

(HML). This shows the prevalence of small and value stocks in the high PD portfolios. To 

complement this analysis, in Panel C we report some relevant characteristics of the five 

portfolios. Average size decreases monotonically across the portfolios, and average BM 

increases monotonically, again reflecting the dominance of small and high BM firms among the 

high PD stocks. The high PD stocks also have high leverage ratios (LRs) and, in accordance with 

Chen and Zhang (2010), low return on assets (ROAs) ratios. 

 

3.4 Understanding Default Effects 

3.4.1 Decomposing the Physical PDs into Systematic and Idiosyncratic Components 

Our findings in the previous section appear to support the existence of a default anomaly, since 

an investing strategy that buys the highest PD stocks and shorts the lowest PD stocks has, on 

average, negative returns. At first glance, these results suggest that default risk is, at best, not 

priced into the cross-section of stock returns. However finance theory suggests that, only if 

default risk is systematic and thus non-diversifiable, it should be positively correlated with 

expected stock returns. In other words, investors demand a premium to hold the stocks of firms 

with high exposure to aggregate default risk, not necessarily firms with high physical PDs. In 
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fact, George and Hwang (2010) argue that a firm’s physical PD does not necessarily reflect its 

SDR exposure. Therefore in this part, we break down the physical PDs into systematic and 

idiosyncratic components, and investigate empirically if the physical PDs are a good measure of 

firm exposure to aggregate default risk. 

 

3.4.2 The Methodology 

To calculate SDR exposure, we follow an approach similar to Hilscher and Wilson (2013) and 

Anginer and Yildizhan (2014), by assuming that a firm’s PD is exposed to a single common 

factor. This factor is the aggregate default risk. Therefore the firm’s SDR exposure is measured 

as the sensitivity of its PD to this factor (we refer to this sensitivity as the SDR beta). To 

compute monthly SDR betas for all firms in our sample we estimate the following regression for 

each firm over 24-months rolling windows: 

𝑃𝐷𝑖,𝑡 = 𝛼𝑖
𝐼𝐷𝑅 + 𝛽𝑖

𝑆𝐷𝑅𝑋𝑡 + 𝜀𝑖,𝑡 ,        (1) 

where 𝑃𝐷𝑖,𝑡 is the physical PD for firm 𝑖 in month 𝑡, 𝑋𝑡 is the aggregate default risk measure, 

𝛼𝑖
𝐼𝐷𝑅 is the IDR alpha and 𝛽𝑖

𝑆𝐷𝑅 is the SDR beta for firm 𝑖 in month 𝑡, obtained from the rolling 

regressions method.
14

 To avoid auto-correlation concerns we estimate our regressions using both 

changes and levels, and results remain robust. We are able to calculate SDR betas and IDR 

alphas for 624,084 firm-months (7,140 firms) for the period from January 1992 to December 

                                                           
14 

The specification in (1) does not of itself constrain the PD to lie between zero and one. Hilscher and Wilson 

(2013) argue that this is not a problem, as long as most of the estimated PDs are small (so that 𝑃(1 − 𝑃) ≈ 𝑃). Our 

estimated PDs satisfy this condition. Also, since the percentage of the variability explained by the residuals in our 

regressions is small, our results do not change if we include the error term in the idiosyncratic component of default 

risk. 
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2012. The sample is smaller than before because we need two years of PD history for the 

estimation. Essentially, we cannot calculate SDR betas for January 1990 to December 1991. 

 

3.4.3 VIX and Aggregate Default Risk 

As a proxy for aggregate default risk, we use the volatility index VIX. Several authors study the 

relationship of equity returns and VIX (Chira et al., 2013). We are also not the first to link 

default risk with VIX. Numerous studies find VIX to be an important indicator of credit spreads, 

as shown in the literature on CDS (Pan and Singleton, 2008) and on corporate bonds (Collin-

Dufresne, Goldstein, and Martin, 2001; Schaefer and Strebulaev, 2008). Table 3.5 motivates 

further the use of VIX in our empirical analysis. Panel A presents summary statistics for VIX 

and its monthly change, ∆mVIX. Panel B reports the highly positive correlation coefficients 

between VIX and three European volatility indices, which suggests that VIX successfully 

captures aggregate volatility in Europe. Panel C reports the negative correlation coefficients 

between ∆mVIX and the monthly change of two widely used European stock indices, 

EUROSTOXX 50 and MSCI Europe. This finding is in line with the theoretical model of Bansal 

et al. (2014), according to which stock returns have, on average, negative volatility betas. Panel 

D reports the negative correlation coefficients of ∆mVIX with EMKT and SMB, which is in 

accordance with Ang et al. (2006). For HML, the correlation is very low. Lastly, the regression 

results of Panel E show that VIX can explain a substantial portion of time-variation in both the 

aggregate and the median physical PD. In unreported results, we follow the US studies of 

Hilscher and Wilson (2013) and Anginer and Yıldızhan (2014) and use the median PD as an 

alternative proxy for aggregate default risk. Hilscher and Wilson (2013) find that the median PD 

is highly correlated with the first principal component which explains the majority of variation in 



76 

PDs across ratings. All results remain robust, however, in our large sample of very 

heterogeneous countries, the median PD is a rather noisy measure. It also demonstrates higher 

auto-correlation than monthly VIX. 

 

3.4.4 Physical PDs, Systematic Betas, and Idiosyncratic Alphas 

In Panel C of Table 3.4, we show that stocks in the highest PD quintile have relatively low SDR 

betas, whereas their IDR alphas are very high. This empirical finding is in accordance with the 

theoretical model of George and Hwang (2010) and suggests that the physical PDs may not be a 

good measure of firm exposure to aggregate default risk. We now turn to the analysis of the 

relationships between stocks returns and the two components of the PD separately. 

 

3.4.4.1 SDR Betas and Stock Returns: A Premium on Exposure to Aggregate Default Risk  

To examine if exposure to aggregate default risk are rewarded in the cross-section of stock 

returns, we repeat the portfolio analysis of Section 3.3. using the SDR betas as the sorting 

variable. Each month, from January 1992 to December 2012, we use the most recent SDR beta 

for each firm and sort the stocks into five portfolios. As before, we adjust monthly SDR betas by 

their monthly country average. Table 3.6 reports the results. 

Panel A shows that the difference in returns between high and low SDR beta stocks is now 

always positive for both equally and value-weighted returns and significant in the case of 

equally-weighted returns. A portfolio strategy buying the highest SDR beta quintile and shorting 

the lowest SDR beta quintile of stocks gives an equally-weighted four-factor alpha of 0.33 

percent monthly (4.01 percent annually), significant at a five percent level. The positive 

relationship between returns and SDR betas is almost always monotonic. Thus, when we use an 
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SDR measure to sort the stocks, there is evidence of a positive relationship between default risk 

and returns, in line with theoretical models. 

In Panel B, we see that factor loadings on the market factor (EMKT) and the size factor 

(SMB) do not decrease monotonically along the SDR beta portfolios. Specifically, both high and 

low SDR beta stocks have higher loadings than medium SDR beta stocks. This indicates that 

small stocks are not homogeneous with respect to their SDR exposure. The factor loadings on the 

value factor (HML) are mostly insignificant. These results suggest that our SDR measure 

conveys information that is not captured by traditional risk factors. 

Panel C reports some characteristics of the portfolios. First, SDR betas exhibit large cross-

sectional dispersion, ranging from -0.62 to 0.89, indicating that the effect of aggregate default 

risk varies substantially across stocks. In accordance with Barinov (2012), negative SDR betas 

indicate that these portfolios are indeed a hedge against increases in VIX, which justifies their 

low returns. Second, we find interesting non-monotonic patterns across the beta portfolios: (i) 

both high and low SDR beta stocks have higher PDs than medium SDR beta stocks; (ii) they also 

have higher LRs and lower ROAs; (iii) they are also, on average, smaller in size and have higher 

BM ratios (which is consistent with the results from portfolio sorts on credit risk premia 

estimated from CDS spreads by Friedwald, Wagner and Zechner, 2014). Therefore the SDR beta 

conveys information that is different from that incorporated in other common default risk 

measures and stock characteristics. Finally, we find a negative relationship between SDR betas 

and IDR alphas, as the idiosyncratic component of the PD increases almost monotonically across 

the SDR beta portfolios. This is in accordance with Avramov et al. (2013), who document a 

negative cross-sectional relationship between exposure to systematic and firm-specific risks. 
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In unreported results, we also test for return persistence in our SDR beta sorted portfolios. Da 

and Gao (2010) argue that the high returns of risky stocks do not compensate for SDR, but the 

result of short-term return reversal caused by price pressure in the month of portfolio formation. 

Thus, in accordance with the default anomaly literature, they find that risky stocks deliver low 

returns if the second month after portfolio formation is used instead. We find no evidence of 

return reversal: the return of the highest and lowest SDR beta quintiles differ 8 months before 

portfolio formation, the difference is maximized in the portfolio formation month, and persists 

for almost 8 months after portfolio formation (even if we assume zero recovery of firms 

suffering default). 

To conclude, the findings in this section show that SDR betas, measured as sensitivities of 

the physical PDs to a common aggregate default risk factor (here VIX) are positively related to 

stock returns and that high PD stocks can have quite different SDR betas among them. 

 

3.4.4.2 IDR Alphas and Stock Returns: A negative relationship  

We now sort stocks based on the IDR alphas.
15

 Each month, from January 1992 to December 

2012, we use the most recent IDR alpha for each firm and sort the stocks into five portfolios. As 

before, we adjust monthly IDR alphas by their monthly country average. Table 3.7 reports the 

results. 

Panel A shows that the difference in returns between high and low IDR alpha stocks is 

negative for both equally and value-weighted returns, as in the case of PDs. It is also significant 

at a five percent level for value-weighted returns and CAPM alphas. In Panel B, we see that 

                                                           
15

 Our results are robust if we measure the idiosyncratic component of default risk as the sum of IDR alphas and 

residuals from regression (1). 
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factor loadings on the market factor (EMKT) and the size factor (SMB) do not decrease 

monotonically along the IDR alpha portfolios, but they follow the same patterns as for SDR beta 

portfolios. Specifically, both high and low IDR alpha stocks have higher loadings than medium 

IDR alpha stocks. As before, the factor loadings on the value factor (HML) are not significant. 

Panel C reports some characteristics of the portfolios. IDR alphas exhibit large cross-sectional 

dispersion, ranging from -8.5594 to 22.5424. In accordance with our previous findings on SDR 

beta portfolios, both high and low IDR alpha stocks have higher PDs, are smaller, have higher 

BM and LRs, and lower ROA than medium IDR alpha stocks. As before, we document a 

negative relationship between SDR betas and IDR alphas. Therefore, stocks that have low 

exposure to aggregate default risk are associated with high firm-specific risks. These results are 

initial evidence that the default anomaly can be explained by the non-monotonic relationship 

between the physical PD and its systematic and idiosyncratic components. 

In Tables 3.6 and 3.7, we notice that for stocks sorted on SDR betas, the equally-weighted 

positive returns are significant, whereas for stocks sorted on IDR alphas, the value-weighted 

negative returns are significant. In the case of SDR beta sorted portfolios (Table 3.6), the smaller 

stocks in the highest SDR beta quintile have, on average, higher returns and SDR betas, 

compared to the relatively larger stocks in the same portfolio. In the case of IDR alpha sorted 

portfolios, the smaller stocks in the highest IDR alpha portfolio have, on average, higher returns 

and lower IDR alphas, compared to the relatively larger stocks in this portfolio. These findings 

are consistent with the notion that the size effect is a proxy for default risk. They can also 

provide some evidence why Campbell, Hilscher and Szilagyi (2008) and other studies that have 

relatively larger stocks in their samples and calculate only value-weighted returns document a 

significant default anomaly.  
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3.5 Explaining the Default Anomaly 

This section sheds more light on the relationship between default risk and stock returns. Our 

main focus is to understand what the main drivers of the default anomaly are, and therefore we 

apply a sequential two-sort procedure to investigate it. We use tertiles instead of quintiles to 

guarantee an adequate number of stocks in each portfolio (at least twenty each month). For 

brevity, we report value-weighted returns but results remain qualitatively similar for equally-

weighted returns. 

Table 3.8 examines the default anomaly in SDR beta-sorted portfolios. Specifically, each 

month, we first sort stocks into three portfolios based on their country-adjusted SDR beta and, 

within each SDR beta portfolio, we further sort stocks in three portfolios, based on the country-

adjusted PD. Panel A shows the time-series monthly average of the value-weighted returns and 

alphas, as well as average monthly returns and alphas for portfolios that are long the highest PD 

tertile and short the lowest PD tertile of stocks. As expected, the default anomaly is no longer 

significant when we control for exposure to aggregate default risk. Panel B reports various 

characteristics of each portfolio. Both stocks in the highest and lowest SDR beta tertiles have 

higher PDs than stocks in the medium SDR beta tertiles. Still, low SDR beta stocks have lower 

PD levels than high SDR beta stocks. They also differ in terms of their IDR alphas. While stocks 

in the highest SDR beta tertiles have, on average, negative IDR alphas, stocks in the lowest SDR 

beta tertiles have high IDR alphas. These stocks are a hedge against aggregate default risk 

(which explains their low returns). Finally, size and ROA decrease and BM and LR increase 

monotonically as PD increases in all three SDR beta tertiles, indicating that stocks with high PDs 

are, on average small, value stocks, with high leverage and low profitability. 
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Table 3.9 examines the default anomaly in IDR alpha-sorted portfolios. The double-sorting 

procedure is similar to the one we describe above. Interestingly, Panel A shows that the default 

anomaly is significant only for stocks in the highest IDR alpha tertile, but it is absent in the other 

two IDR alpha tertiles. Thus, the difference in returns between high and low PD portfolios is 

negative and significant only when the idiosyncratic component of the PD is very high. Panel B 

of Table 3.9 shows very similar patterns to Table 3.8. High IDR alpha stocks have, on average, 

negative exposure to aggregate default risk, thus constituting a hedge against bad market 

conditions. Moreover, among high IDR alpha stocks, this hedging ability increases as PD 

increases (i.e. the SDR betas become more negative). Another interesting finding is that, in the 

lowest IDR alpha tertile, as PD increases, SDR betas rise and IDR alphas fall. This shows that, 

for stocks with low idiosyncratic risk, the physical PD is a better proxy than exposure to 

aggregate default risk. 

Overall, the results above show that (i) the so-called “default anomaly” loses its significance 

when we control for exposure to aggregate default risk (SDR beta), (ii) it is only found in firms 

with high idiosyncratic risk when we control for IDR alpha, and (iii) it is not an “anomaly”, in 

the sense that the negative returns on the High-Low PD portfolios are compensated for by their 

ability to hedge. 

Finally, Table 3.10 examines the relationship between SDR betas and returns in PD sorted 

portfolios. Each month, we first sort stocks into three portfolios based on their country-adjusted 

PD and, within each PD portfolio, we further sort stocks into three portfolios, based on the 

country-adjusted SDR beta. As mentioned above, there is a link between the negative PD - return 

relationship and the negative IDR alpha - return relationship. Therefore, controlling for the PD, 

helps uncovering the positive relationship between SDR betas and returns and illustrates better 
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the difference between SDR betas and PDs. In Panel A of Table 3.10, we find that the difference 

in returns between high and low SDR beta stocks is positive and significant in the tertile of 

stocks with the lowest PD. In the other two PD tertiles, there is no particular relationship 

between SDR beta and returns. This may happen because stocks with very high PDs are subject 

to market imperfections that can influence their returns, such as large arbitrage costs (Cambell, 

Hilsher and Svilagyi, 2008) and the divergence of opinions (Miller, 1977). Thus, exposure to 

aggregate default risk is significantly rewarded for stocks with low PDs, which are stocks with 

low market imperfections. In Panel B, we see that stocks in the lowest PD tertile (where 

exposure to aggregate default risk is significantly rewarded) have lower IDR alphas, are larger, 

have lower BM and LRs (in accordance with George and Hwang, 2010) and higher ROAs (in 

accordance with Chen and Zhang, 2010) compared to stocks in the other two PD tertiles. 

 

3.6 Concluding Remarks 

In this paper, we shed more light on the recent contradictory literature that explores the 

relationship between default risk and stock returns. We follow a simple and intuitive approach to 

break down physical PDs into systematic and idiosyncratic components, use the VIX as a 

measure of aggregate default risk and provide European evidence to study the default anomaly. 

Initially, we sort stocks into quintile portfolios based on their physical PDs and, in line with 

the literature that documents a default anomaly, we find that the difference in returns between 

high and low PD stocks is negative and that the returns almost monotonically decrease as the PD 

increases. However, a closer look shows that the physical PD is usually a poor measure of 

exposure to aggregate default risk. In accordance with George and Hwang (2010), we find that 

stocks in the highest PD quintile have relatively low SDR exposure. We then sort stocks into 
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quintile portfolios based on their SDR betas instead; as expected, we find a positive and 

significant relationship between this measure of default risk and returns. In other words, 

investors indeed require a premium to hold stocks that are riskier when aggregate default risk is 

higher. Interestingly, there are non-monotonic patterns across the SDR beta portfolios. On 

average, the firms in the low and high SDR beta portfolios are smaller, have higher BM, and 

higher physical PDs than the firms in medium SDR beta portfolios. We find that the SDR betas 

are negatively related to the idiosyncratic component (measured by the IDR alphas). Therefore it 

is the idiosyncratic (not the systematic part) driving the default anomaly. We confirm this 

conjecture by showing that stocks sorted on IDR alphas have, on average, lower returns. 

Investors do not require compensation to hold stocks with high firm-specific risk because these 

stocks are a source of portfolio risk diversification. Further analysis with double-sorted portfolios 

helps us confirm these statements. 

Our results suggest that riskier stocks, as measured by the physical PDs, will tend to under-

perform because they have, on average, lower exposure to aggregate default risk. Their riskiness 

is mostly idiosyncratic and can be diversified away, thus providing an explanation for the default 

anomaly typically found in the literature. On the contrary, it is the systematic component of 

default risk, measured by the SDR betas, that requires a return premium. 
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3.7 Tables of Chapter 3 

 

Table 3.1 

Defaulted Firms as a Percentage of Total Firms 

The table lists the total number of active firms and delistings due to default 

(bankruptcy or liquidation) for every year of our sample period. The number of 

active firms is the average number of firms across all months of the year. The 

number of firms that were delisted due to default is hand-collected data from 

various public sources. 

Year Active Firms Defaults (%) 

1990 1,244 1 0.08 

1991 1,681 4 0.24 

1992 2,072 12 0.58 

1993 2,242 6 0.27 

1994 2,322 9 0.39 

1995 2,374 11 0.46 

1996 2,398 14 0.58 

1997 2,471 10 0.40 

1998 2,526 19 0.75 

1999 2,815 20 0.71 

2000 2,912 20 0.69 

2001 2,985 41 1.37 

2002 3,150 41 1.30 

2003 3,434 37 1.08 

2004 3,548 34 0.96 

2005 3,487 39 1.12 

2006 3,378 24 0.71 

2007 3,406 26 0.76 

2008 3,521 83 2.36 

2009 3,700 55 1.49 

2010 3,906 42 1.08 

2011 3,904 39 1.00 

2012 3,705 11 0.30 
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Table 3.2 

Characteristics of the Final Sample: Breakdown by Size and Country 

This table presents details on the characteristics of our final sample. Panel A shows descriptive statistics for the 

distribution of firms and firm-months across size classes. # of firms is the available number of firms for all years. # of 

firm-months is the number of observations. We provide also the relative fractions of total firms and firm-months that 

each size class represents. Finally, the column "Total MC" shows the total market capitalization of each size class 

averaged across the years of the study. We measure market capitalization in millions of euros. Panel B presents the 

breakdown of firms and firm-months by country, with corresponding percentages. Start date is the date at which the 

information on firms of a given country starts to be available; the end date in our sample, December 2012, is the same 

for all countries. 

Panel A. Breakdown by Size 

Segment Size # of firms (%) # of firm-months (%) Total MC (%) 

Nano cap < 10 mio 1,419 16.81 106,570 13.22 7,401 0.11 

Micro cap < 50 mio 2,631 31.18 219,273 27.20 68,153 1.03 

Small cap < 150 mio 1,678 19.88 158,265 19.63 150,178 2.27 

Mid cap < 1 bio 1,855 21.98 205,855 25.54 735,025 11.11 

Large cap < 50 bio 839 9.94 112,526 13.96 4,239,777 64.07 

Mega cap ≥ 50 bio 17 0.20 3,668 0.45 1,417,300 21.42 

Overall sample 
 

8,439 
 

806,157 
 

6,617,834 
 

Panel B. Breakdown by Country 

Country  Start date # of firms (%) # of firm-months (%)   

Austria Jan-90 112 1.33 11,676 1.45   

Belgium Jan-90 151 1.79 17,842 2.21   

Bulgaria Mar-08 130 1.54 4,009 0.50   

Czech Republic Mar-98 71 0.84 3,679 0.46   

Denmark Jan-90 195 2.31 24,151 3.00   

Finland Jan-90 146 1.73 18,589 2.31   

France Jan-90 1,126 13.34 111,829 13.87   

Germany Jan-90 1,104 13.08 112,428 13.95   

Greece Oct-90 315 3.73 35,558 4.41   

Hungary Mar-95 45 0.53 3,558 0.44   

Ireland Jan-90 68 0.81 8,549 1.06   

Italy Jan-90 340 4.03 37,353 4.63   

Netherlands Jan-90 213 2.52 28,940 3.59   

Norway Jan-90 290 3.44 24,632 3.06   

Poland Mar-95 249 2.95 10,620 1.32   

Portugal Oct-90 94 1.11 10,002 1.24   

Romania Mar-02 65 0.77 2,690 0.33   

Serbia Jan-12 47 0.56 445 0.06   

Spain Jan-90 175 2.07 22,619 2.81   

Sweden Jan-90 525 6.22 42,856 5.32   

Switzerland Jan-90 232 2.75 31,695 3.93   

United Kingdom Jan-90 2,746 32.54 242,437 30.07   

Overall Sample   8,439 100.00 806,157 100.00   
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Table 3.3 

The Merton Measure and Other Firm Characteristics 

The table presents descriptive statistics for the average Merton measure, monthly returns, size and BM ratio over the period January 1990 to December 2012. The sample spans 22 European countries. Monthly return is the 

time-series average of the cross-sectional average returns within each country. We measure returns in euros and express them in percent. Merton measure, size and BM are the time-series averages of the cross-sectional 

average Merton measures, market capitalization and BM ratios. We express the Merton measure in percentage terms (as it is a probability) and market capitalization in millions of euros. 

       Merton measure                     Monthly Returns Size  BM  

Country  Mean Median St. Dev.  Mean Median St. Dev.  Mean Median St. Dev.  Mean Median St. Dev.  

Austria  4.36 3.08 3.42  0.55 0.58 5.21   541.11 313.22 389.08  0.80 0.78 0.27  

Belgium  4.70 3.96 2.88  0.63 0.90 4.16   963.20 889.92 492.07  0.84 0.81 0.18  

Bulgaria  14.29 12.99 8.46  -0.64 0.28 8.18   33.02 25.84 22.61  1.74 1.83 0.35  

Czech Republic  3.31 1.25 3.87  1.28 1.33 4.38   481.78 505.48 297.82  1.72 1.47 0.68  

Denmark  4.09 2.76 3.10  0.69 0.78 4.64   580.10 489.44 337.62  0.90 0.93 0.23  

Finland  4.11 2.63 4.63  0.95 0.52 6.22   1,247.22 1,129.59 848.93  0.74 0.69 0.25  

France  5.00 4.28 2.53  0.77 0.94 4.63   1,557.86 1,619.24 576.00  0.82 0.81 0.18  

Germany  4.67 3.76 3.07  0.55 0.79 3.93   1,457.07 1,443.94 431.23  0.70 0.64 0.23  

Greece  6.71 4.61 5.79  1.01 -0.04 10.71   197.65 176.01 137.97  1.12 0.83 0.81  

Hungary  9.14 8.76 5.24  1.62 1.15 9.39   82.84 83.77 39.55  1.33 1.33 0.48  

Ireland  5.56 4.64 3.13  1.09 1.21 6.48   784.02 799.62 512.20  0.93 0.82 0.35  

Italy  6.42 5.72 3.23  0.31 0.22 6.40   1,492.03 1,476.92 930.09  1.00 0.98 0.30  

Netherlands  3.42 2.91 2.21  0.58 0.86 4.93   1,832.05 1,866.32 920.79  0.75 0.72 0.21  

Norway  7.37 6.85 4.23  1.11 1.43 6.83   508.20 426.60 262.46  0.89 0.86 0.32  

Poland  10.27 8.57 9.51  1.31 0.69 10.82   69.94 38.80 58.53  1.27 1.04 0.76  

Portugal  7.31 6.69 4.04  0.85 0.20 5.70   659.05 635.25 453.15  1.15 1.11 0.30  

Romania  16.69 13.03 10.09  2.02 1.33 9.11   87.34 39.06 87.19  2.15 2.12 0.53  

Serbia  12.89 13.26 3.19  0.59 0.45 5.02   17.20 16.96 2.34  3.21 3.19 0.19  

Spain  4.16 3.96 2.65  0.68 0.78 5.81   2,142.53 1,995.74 1,246.68  0.89 0.84 0.36  

Sweden  6.64 6.21 4.13  1.02 0.91 7.05   1,084.76 886.09 681.68  0.77 0.74 0.28  

Switzerland  3.13 2.34 2.41  0.75 0.95 4.54   2,187.33 2,356.76 961.16  0.88 0.83 0.26  

United Kingdom  4.27 3.88 2.00  0.81 1.15 5.54   1,288.24 1,367.40 559.96  0.86 0.82 0.23  

Overall Sample  5.84 4.44 5.10  0.86 0.82 6.50   1,006.23 765.26 896.78  0.99 0.86 0.50  

 



87 

Table 3.4 

Portfolios sorted on the Physical PD 

From January 1990 to December 2012, at the beginning of each month, we sort stocks into quintile portfolios based on 

their adjusted physical PD in the previous month. We adjust by dividing the physical PDs by the country average for this 

month. We report results with the Merton measure as a measure of physical PDs. Portfolio 1 is the portfolio with the 

lowest physical PD and portfolio 5 is the portfolio with the highest physical PD. The portfolios are held for one month and 

are then rebalanced. Panel A shows the time-series monthly average of the equally and value-weighted portfolio returns 

and alphas. EMKT is the excess market return, SMB is the return difference between small stocks and big stocks, HML is 

the return difference between value stocks and growth stocks, and WML is the return difference between winning stocks 

and losing stocks. The column "High-Low" shows average monthly raw returns and alphas (excess risk-adjusted returns) 

for portfolios that are long the highest physical PD stock quintile and short the lowest physical PD stock quintile. We 

denominate returns in euros and express them in percentage terms. Panel B shows loadings on the four factors from 

regressions of the equally and value-weighted excess returns. We calculate the t-statistics in parentheses from Newey-

West (1987) standard errors. ** denotes significance at a 5% level and * at a 10% level. Panel C reports PDs, size (in 

millions of euros), book-to-market ratios (BM), leverage ratios (LR) and return-on-assets (ROA) for each portfolio. SDR 

betas and IDR alphas are also reported and will be analyzed in further detail in the following tables. 

Portfolios High PD 5 4 3 2 Low PD 1 High-Low t-stat 

Panel A. Portfolio Returns 

Equally-weighted 
       

Return 0.5776 0.5195 0.5985 0.6502 0.6436 -0.0660 (-0.25) 

CAPM α 0.2379 0.1644 0.2569 0.3290 0.3453 -0.1075 (-0.44) 

3-factor α 0.2269 0.1534 0.2386 0.3130 0.3296 -0.1027 (-0.48) 

4-factor α 0.3575 0.2195 0.2922 0.3219 0.3197 0.0378 (0.16) 

Value-weighted 
       

Return 0.2062 0.4758 0.4570 0.4597 0.6965 -0.4904 (-1.08) 

CAPM α -0.1955 0.0845 0.1014 0.1216 0.3982 -0.5936 (-1.40) 

3-factor α -0.2704 0.0450 0.1053 0.1518 0.4128 -0.6832 (-1.84)* 

4-factor α -0.1777 0.1973 0.1828 0.1890 0.4675 -0.6452 (-1.63)* 

Panel B. Four-Factor Regression Coefficients 

Equally-weighted   
      

EMKT 0.238 0.245 0.205 0.167 0.133 
  

 
(3.00)** (3.66)** (3.35)** (3.08)** (3.12)** 

  
SMB 1.036 0.961 0.848 0.699 0.524 

  

 
(6.51)** (6.60)** (7.00)** (6.57)** (6.25)** 

  
HML 0.121 0.132 0.143 0.134 0.115 

  

 
(0.86) (1.07) (1.33) (1.37) (1.46) 

  
WML -0.011 0.025 0.026 0.052 0.049 

  

 
(-0.14) (0.35) (0.41) (0.86) (1.02) 
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Value-weighted               

EMKT 0.286 0.296 0.248 0.177 0.090 
  

 
(3.28)** (3.56)** (2.91)** (2.52)** (2.09)** 

  
SMB 1.345 1.175 1.001 0.716 0.451 

  

 
(6.79)** (6.65)** (6.69)** (5.55)** (5.24)** 

  
HML 0.336 0.204 0.088 0.005 0.013 

  

 
(1.83) (1.31) (0.62) -0.05 -0.15 

  
WML 0.016 -0.034 0.008 0.035 0.021 

  
  -0.14 (-0.35) (0.09) (0.43) (0.31)     

Panel C. Portfolio Characteristics 

Average PD 22.5600 1.7749 0.1614 0.0096 0.0000 
  

Average Size 286.42 530.43 1,000.41 1,707.40 2,674.78 
  

Average BM 1.4545 1.0046 0.7706 0.6097 0.4949 
  

Average LR 4.0889 1.7436 1.0925 0.7103 0.4025 
  

Average ROA -0.0623 -0.0045 0.0177 0.0297 0.0369     

Average SDR β 0.0590 0.1574 0.0770 0.0327 0.0060   

Average IDR α 14.3208 0.7767 -0.0892 -0.0567 0.1510   
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Table 3.5 

Summary Statistics on VIX 

In this table, VIX is the CBOE volatility index and ∆mVIX is the monthly change in VIX. Mean, Std, Skew, and Kurt refer to 

the mean, standard deviation, skewness, and kurtosis, respectively. VSTOXX, VFTSE and VDAX are the EUROSTOXX 50, 

FTSE 100 and DAX volatility indices, which follow the VIX methodology for the European, UK, and German markets 

respectively. ∆mEurostoxx50 is the monthly change in EUROSTOXX 50 and ∆mMSCIEurope is the monthly change in MSCI 

Europe. EMKT is the value-weighted excess return on the European market portfolio over the risk-free rate and SMB and 

HML are the Fama-French factors for Europe. Aggregate PD is the monthly average and Median PD is the monthly median 

of the Merton measure values of all firms. We calculate the t-statistics from Newey-West (1987) standard errors (up to five 

lags). 

Panel A. Summary Statistics on VIX and VIX Monthly Changes (∆mVIX) 

  Mean Std Skew Kurt 

VIX 20.1978 8.0533 2.0133 10.1303 

∆mVIX -0.0267 4.2391 0.8229 8.1017 

Panel B. Correlation between VIX and Other Volatility Indices 

  VSTOXX VFTSE VDAX   

VIX 0.9100 0.9449 0.9492 
 

Panel C. Correlation between ∆mVIX and European Stock Indices 

  ∆mEUROSTOXX50 ∆mMSCIEurope     

∆mVIX -0.6335 -0.5835 
  

Panel D. Correlation between ∆mVIX and Other Factors 

  EMKT SMB HML   

∆mVIX -0.1743 -0.1670 -0.0623   

Panel E. Time-Series Regression of the Aggregate and Median Merton measure on VIX 

  Constant VIX R-squared  

Aggregate PD 1.8060 0.1534 0.2686  

 
(5.43) (10.07) 

 
 

Median PD -0.4676 0.0026 0.3112  

  (-8.30) (11.17)     
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Table 3.6 

Portfolios sorted on the SDR Beta 

From January 1992 to December 2012, at the beginning of each month, we sort stocks into quintile portfolios based on 

their adjusted SDR beta in the previous month. We adjust the SDR betas by dividing them by the country average for this 

month. We report results with the VIX SDR beta, which we measure as the coefficient (sensitivity) from 24-months 

rolling regressions of the PD on VIX. Portfolio 1 is the portfolio with the lowest SDR beta and portfolio 5 is the portfolio 

with the highest SDR beta. The portfolios are held for one month and are then rebalanced. Panel A shows the time-series 

monthly average of the equally and value-weighted portfolio returns and alphas. EMKT is the excess market return, SMB 

is the return difference between small stocks and big stocks, HML is the return difference between value stocks and 

growth stocks, and WML is the return difference between winning stocks and losing stocks. The column "High-Low" 

shows average monthly raw returns and alphas (excess risk-adjusted returns) for portfolios that are long the highest SDR 

beta stock quintile and short the lowest SDR beta stock quintile. We denominate returns in euros and express them in 

percentage terms. Panel B shows loadings on the four factors from regressions of the equally and value-weighted excess 

returns. We calculate the t-statistics in parentheses from Newey-West (1987) standard errors. ** denotes significance at a 

5% level and * at a 10% level. Panel C reports PDs, SDR betas, IDR alphas, sizes (in millions of euros), BM, LR and 

ROA ratios for each portfolio. 

Portfolios High β 5 4 3 2 Low β 1 High-Low t-stat 

Panel A. Portfolio Returns 

Equally-weighted 
       

Return 0.8924 0.7232 0.7175 0.7041 0.5985 0.2939 (1.80)* 

CAPM α 0.5249 0.3922 0.3889 0.3777 0.2700 0.2549 (1.80)* 

3-factor α 0.4577 0.3070 0.3014 0.3317 0.1835 0.2742 (1.89)* 

4-factor α 0.4460 0.2883 0.2750 0.2697 0.1117 0.3343 (1.97)** 

Value-weighted 
       

Return 0.8066 0.6384 0.5877 0.5687 0.4391 0.3675 (1.24) 

CAPM α 0.4162 0.3016 0.2814 0.2720 0.0859 0.3302 (1.14) 

3-factor α 0.3149 0.3152 0.2153 0.2297 0.0985 0.2164 (0.76) 

4-factor α 0.4035 0.3061 0.1989 0.1854 0.0527 0.3508 (1.19) 

Panel B. Four-Factor Regression Coefficients 

Equally-weighted 
       

EMKT 0.266 0.182 0.182 0.191 0.191 
  

 
(3.63)** (3.16)** (3.72)** (3.53)** (3.71)** 

  
SMB 0.979 0.715 0.767 0.726 0.771 

  

 
(6.28)** (5.66)** (7.02)** (6.67)** (6.30)** 

  
HML 0.148 0.197 0.204* 0.118 0.216 

  

 
(1.16) (1.86) (2.05)** (1.21) (2.16)** 

  
WML 0.009 0.015 0.021 0.050 0.058 

  

 
(0.13) (0.23) (0.37) (0.81) (0.91) 
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Value-weighted               

EMKT 0.287 0.214 0.137 0.133 0.250 
  

 
(3.60)** (3.82)** (2.54)** (2.45)** (2.38)** 

  
SMB 1.060 0.763 0.652 0.683 0.770 

  

 
(5.68)** (5.04)** (6.28)** (6.81)** (4.55)** 

  
HML 0.196 -0.040 0.152 0.104 -0.026 

  

 
(1.37) (-0.36) (1.47) (1.08) (-0.19) 

  
WML -0.071 0.007 0.013 0.036 0.037 

  
  (-0.72) (0.09) (0.17) (0.47) (0.43)     

Panel C. Portfolio Characteristics 

Average PD 10.7144 1.6788 0.5810 0.6172 8.7870 
  

Average SDR β 0.8881 0.0516 0.0081 -0.0025 -0.6166 
  

Average IDR α -5.9819 0.3573 0.3122 0.5973 18.7048 
  

Average size 708.81 1,691.08 1,957.37 1,964.43 1,044.72 
  

Average BM 1.1773 0.7985 0.6703 0.6806 1.0280 
  

Average LR 2.8791 1.2538 0.8418 0.8740 2.2675 
  

Average ROA -0.0251 0.0144 0.0272 0.0256 -0.0093     
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Table 3.7 

Portfolios sorted on the IDR Alpha 

From January 1992 to December 2012, at the beginning of each month, we sort stocks into quintile portfolios based on 

their adjusted IDR alpha in the previous month. We adjust the IDR alphas by dividing them by the country average for 

this month. We report results with the IDR alpha, which we measure as the constant from 24-months rolling regressions of 

the PD on VIX. Portfolio 1 is the portfolio with the lowest IDR alpha and portfolio 5 is the portfolio with the highest IDR 

alpha. The portfolios are held for one month and are then rebalanced. Panel A shows the time-series monthly average of 

the equally and value-weighted portfolio returns and alphas. EMKT is the excess market return, SMB is the return 

difference between small stocks and big stocks, HML is the return difference between value stocks and growth stocks, and 

WML is the return difference between winning stocks and losing stocks. The column "High-Low" shows average monthly 

raw returns and alphas (excess risk-adjusted returns) for portfolios that are long the highest IDR alpha stock quintile and 

short the lowest IDR alpha stock quintile. We denominate returns in euros and express them in percentage terms. Panel B 

shows loadings on the four factors from regressions of the equally and value-weighted excess returns. We calculate the t-

statistics in parentheses from Newey-West (1987) standard errors. ** denotes significance at a 5% level and * at a 10% 

level. Panel C reports PDs, SDR betas, IDR alphas, sizes (in millions of euros), BM, LR and ROA ratios for each 

portfolio. 

Portfolios High α 5 4 3 2 Low α 1 High-Low t-stat 

Panel A. Portfolio Returns 

Equally-weighted 
       

Return 0.6686 0.5484 0.7229 0.8372 0.8545 -0.1858 (-1.17) 

CAPM α 0.3437 0.2203 0.3940 0.5016 0.4904 -0.1467 (-1.04) 

3-factor α 0.2648 0.1605 0.3193 0.4281 0.4049 -0.1401 (-0.93) 

4-factor α 0.1907 0.0888 0.2933 0.3885 0.4263 -0.2357 (-1.32) 

Value-weighted 
       

Return 0.4450 0.4243 0.5613 0.6981 0.9573 -0.5124 (-1.97)** 

CAPM α 0.0847 0.1073 0.2678 0.3691 0.5894 -0.5046 (-2.00)** 

3-factor α 0.0675 0.0905 0.2106 0.3434 0.5682 -0.5007 (-1.86)* 

4-factor α 0.0504 0.0209 0.2197 0.3058 0.6456 -0.5952 (-1.81)* 

Panel B. Four-Factor Regression Coefficients 

Equally-weighted 
       

EMKT 0.192 0.192 0.184 0.199 0.245 
  

 
(3.53)** (4.10)** (3.25)** (3.65)** (3.35)** 

  
SMB 0.851 0.706 0.740 0.756 0.903 

  

 
(6.40)** (5.95)** (6.73)** (6.60)** (6.18)** 

  
HML 0.198 0.154 0.174 0.175 0.182 

  

 
(1.93) (1.68) (1.69) (1.69) (1.42) 

  
WML 0.060 0.058 0.021 0.032 -0.017 

  

 
(0.88) (1.02) (0.32) (0.52) (-0.24) 
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Value-weighted               

EMKT 0.265 0.174 0.110 0.196 0.260 
  

 
(2.51)** (3.51)** (2.01)** (3.33)** (3.27)** 

  
SMB 0.975 0.608 0.622 0.738 0.978 

  

 
(5.50)** (5.47)** (6.37)** (5.85)** (5.23)** 

  
HML 0.032 0.053 0.123 0.062 0.011 

  

 
(0.24) (0.52) (1.22) (0.61) (0.08) 

  
WML 0.014 0.056 -0.007 0.030 -0.062 

  
  (0.13) (0.79) (-0.10) (0.38) (-0.61)     

Panel C. Portfolio Characteristics 

Average PD 14.1359 0.9728 0.3755 0.9788 5.9189 
  

Average SDR β -0.5192 0.0186 0.0159 0.0586 0.7511 
  

Average IDR α 22.5424 0.4605 0.0017 -0.3840 -8.5594 
  

Average size 685.71 1,731.89 2,058.58 1,792.29 1,096.63 
  

Average BM 1.2175 0.7378 0.6510 0.7336 1.0144 
  

Average LR 3.3213 1.0551 0.7350 1.0685 1.9494 
  

Average ROA -0.0328 0.0195 0.0291 0.0203 -0.0036     
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Table 3.8 

Portfolios sorted on the Physical PD controlled by the SDR beta 

From January 1992 to December 2012, at the beginning of each month, we sort stocks into three portfolios based 

on their SDR beta in the previous month. Within each portfolio, we further sort the stocks into three portfolios, 

based on their past month's PD. We adjust both SDR betas and PDs by the country average for this month. The 

sequential two-sort procedure produces nine portfolios in total. The portfolios are held for one month and are then 

rebalanced. Panel A shows the time-series monthly average of the value-weighted returns for the nine portfolios 

as well as average monthly raw returns and alphas (excess risk-adjusted returns) for portfolios that are long the 

highest PD stock portfolio and short the lowest PD stock portfolio for all three SDR beta tertiles. We denominate 

returns in euros and express them in percentage terms. We calculate t-statistics in parentheses from Newey-West 

(1987) standard errors. ** denotes significance at a 5% level and * at a 10% level. Panel B reports PDs, SDR 

betas, IDR alphas, sizes (in millions of euros), BM, LR and ROA ratios for each portfolio. 

 
High PD Medium PD Low PD High-Low t-stat 

Panel A. Portfolio Returns 

Return      

High β 0.5417 0.5244 0.7706 -0.2289 (-0.52) 

Medium β 0.4619 0.5882 0.7573 -0.2954 (-0.92) 

Low β 0.3950 0.4577 0.5273 -0.1323 (-0.43) 

CAPM α      

High β 0.1583 0.1259 0.4206 -0.2622 (-0.60) 

Medium β 0.1106 0.2710 0.4666 -0.3560 (-1.19) 

Low β 0.0219 0.1123 0.2382 -0.2163 (-0.74) 

3-factor α      

High β -0.0891 0.0599 0.4366 -0.5256 (-1.52) 

Medium β 0.0302 0.2105 0.4493 -0.4191 (-1.63) 

Low β -0.1291 0.0557 0.2529 -0.3820 (-1.53) 

4-factor α      

High β -0.1206 0.1737 0.4320 -0.5525 (-1.56) 

Medium β 0.1028 0.1532 0.4304 -0.3276 (-1.14) 

Low β -0.2094 -0.0754 0.2392 -0.4486 (-1.54) 

Panel B. Portfolio Characteristics 

Average Probability of Default      
High β 19.1166 2.2405 0.3490   
Medium β 1.9067 0.0481 0.0016   
Low β 16.2516 0.3921 0.0012   

Average SDR Beta      

High β 1.0535 0.4216 0.2041   
Medium β 0.0176 0.0099 0.0023   
Low β -0.8949 -0.1651 -0.0532   

Average IDR Alpha      

High β -3.5759 -4.3234 -2.4638   
Medium β 1.1159 -0.0774 -0.0148   
Low β 28.3705 4.6544 1.4518   

Average Size      

High β 362.54 845.58 2,020.93   
Medium β 853.24 1,942.74 3,026.05   
Low β 396.84 1,126.23 2,683.99   
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Average Book-to-Market      

High β 1.4525 0.9930 0.6714   
Medium β 0.9187 0.6279 0.4913   
Low β 1.3291 0.8114 0.5432   

Average Leverage Ratio      

High β 4.2396 1.7275 0.8601   
Medium β 1.4752 0.7502 0.4095   
Low β 3.4413 1.2164 0.5498   

Average Return-on-Assets      
High β -0.0529 -0.0029 0.0236   
Medium β 0.0089 0.0308 0.0378   
Low β -0.0393 0.0164 0.0349   
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Table 3.9 

Portfolios sorted on the Physical PD controlled by the IDR alpha 

From January 1992 to December 2012, at the beginning of each month, we sort stocks into three portfolios based 

on their IDR alpha in the previous month. Within each portfolio, we further sort the stocks into three portfolios, 

based on their past month's PD. We adjust both IDR alphas and PDs by the country average for this month. The 

sequential two-sort procedure produces nine portfolios in total. The portfolios are held for one month and are then 

rebalanced. Panel A shows the time-series monthly average of the value-weighted returns for the nine portfolios 

as well as average monthly raw returns and alphas (excess risk-adjusted returns) for portfolios that are long the 

highest PD stock portfolio and short the lowest PD stock portfolio for all three IDR alpha tertiles. We denominate 

returns in euros and express them in percentage terms. We calculate t-statistics in parentheses from Newey-West 

(1987) standard errors. ** denotes significance at a 5% level and * at a 10% level. Panel B reports PDs, SDR 

betas, IDR alphas, sizes (in millions of euros), BM, LR and ROA ratios for each portfolio. 

  High PD Medium PD Low PD High-Low t-stat 

Panel A. Portfolio Returns 

Return           

High α -0.1105 0.2944 0.6686 -0.7791 (-1.90)* 

Medium α 0.6117 0.4217 0.6185 -0.0068 (-0.03) 

Low α 0.8658 0.8218 0.8121 0.0537 (0.15) 

CAPM α           

High α -0.4474 -0.0749 0.3600 -0.8074 (-2.03)** 

Medium α 0.2514 0.1110 0.3369 -0.0855 (-0.34) 

Low α 0.4839 0.4371 0.4807 0.0032 (0.01) 

3-factor α           

High α -0.5367 -0.2476 0.3854 -0.9221 (-2.45)** 

Medium α 0.1781 0.0852 0.3037 -0.1256 (-0.61) 

Low α 0.3494 0.3890 0.4682 -0.1188 (-0.43) 

4-factor α 
     

High α -0.6182 -0.3495 0.3408 -0.9591 (-2.36)** 

Medium α 0.2728 0.0637 0.2931 -0.0204 (-0.08) 

Low α 0.3286 0.4680 0.4682 -0.1397 (-0.51) 

Panel B. Portfolio Characteristics 

Average Probability of Default 
     

High α 24.7076 2.0970 0.0269 
  

Medium α 1.4230 0.0179 0.0002 
  

Low α 10.9104 0.9728 0.1867     

Average SDR Beta           

High α -0.6487 -0.1936 -0.0710 
  

Medium α 0.0488 0.0079 0.0017 
  

Low α 1.0079 0.2979 0.1347     

Average IDR Alpha           

High α 30.4494 8.2601 2.6320 
  

Medium α 0.0790 -0.0522 -0.0042 
  

Low α -10.3704 -3.8171 -1.8405     

Average Size           

High α 304.65 695.78 2,305.09 
  

Medium α 869.65 1,964.63 3,044.43 
  

Low α 525.11 1,205.18 2,337.58     
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Average Book-to-Market           

High α 1.4969 0.9854 0.6060 
  

Medium α 0.8975 0.6193 0.4949 
  

Low α 1.2925 0.8516 0.5959     

Average Leverage Ratio           

High α 4.7897 1.8378 0.7441 
  

Medium α 1.3513 0.6996 0.3793 
  

Low α 2.8937 1.3207 0.6827     

Average Return-on-Assets 
     

High α -0.0606 -0.0063 0.0274 
  

Medium α 0.0104 0.0318 0.0392 
  

Low α -0.0303 0.0138 0.0315     
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Table 3.10 

Portfolios sorted on the SDR beta controlled by the physical PD 

From January 1992 to December 2012, at the beginning of each month, we sort stocks into three portfolios based on 

their PD in the previous month. Within each portfolio, we further sort the stocks into three portfolios, based on their 

past month's SDR beta. We adjust PDs and SDR betas by the country average for this month. The sequential two-sort 

procedure produces nine portfolios in total. The portfolios are held for one month and are then rebalanced. Panel A 

shows the time-series monthly average of the value-weighted returns, respectively, for the 9 portfolios as well as 

average monthly raw returns and alphas (excess risk-adjusted returns) for portfolios that are long the highest SDR beta 

stock portfolio and short the lowest SDR beta stock portfolio for all three PD tertiles. We denominate returns in euros 

and express them in percentage terms. We calculate t-statistics in parentheses from Newey-West (1987) 

heteroskedasticity and autocorrelation-consistent standard errors. ** denotes significance at a 5% level and * at a 10% 

level. Panel B reports PDs, SDR betas, IDR alphas, sizes (in millions of euros), BM, LR and ROA ratios for each 

portfolio. 

  High β Medium β Low β High-Low t-stat 

Panel A. Portfolio Returns 

Return           

High PD 0.4605 0.4083 0.4810 -0.0204 (-0.06) 

Medium PD 0.5666 0.4726 0.5833 -0.0168 (-0.09) 

Low PD 0.8064 0.6782 0.4111 0.3953 (2.63)** 

CAPM α           

High PD 0.0607 0.0277 0.1303 -0.0696 (-0.21) 

Medium PD 0.1960 0.1172 0.2209 -0.0248 (-0.12) 

Low PD 0.5002 0.3909 0.1221 0.3781 (2.49)** 

3-factor α           

High PD -0.0488 -0.1139 -0.0246 -0.0242 (-0.07) 

Medium PD 0.1393 0.0625 0.1728 -0.0334 (-0.16) 

Low PD 0.5147 0.3431 0.1201 0.3946 (2.35)** 

4-factor α 
     

High PD -0.0637 0.0353 -0.0020 -0.0616 (-0.19) 

Medium PD 0.1528 0.0401 0.1838 -0.0310 (-0.14) 

Low PD 0.4314 0.2986 0.0712 0.3602 (1.94)* 

Panel B. Portfolio Characteristics 

Average Probability of Default 
     

High PD 16.9449 6.3173 16.4642 
  

Medium PD 0.2626 0.1492 0.1530 
  

Low PD 0.0016 0.0012 0.0016     

Average SDR Beta           

High PD 1.1806 0.0673 -0.9207 
  

Medium PD 0.3340 0.0172 -0.1212 
  

Low PD 0.0717 0.0022 -0.0374     

Average IDR Alpha           

High PD -6.5717 2.8973 28.8355 
  

Medium PD -3.9248 -0.4568 3.6604 
  

Low PD -0.8194 -0.0064 1.1237     

Average Size           

High PD 391.39 540.80 374.53 
  

Medium PD 1,205.64 1,300.03 1,138.04 
  

Low PD 2,703.03 2,878.01 2,725.56     
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Average Book-to-Market           

High PD 1.3957 1.1714 1.3493 
  

Medium PD 0.8010 0.7462 0.7814 
  

Low PD 0.5462 0.5162 0.5311     

Average Leverage Ratio           

High PD 3.9661 2.3535 3.4811 
  

Medium PD 1.2367 1.0154 1.0950 
  

Low PD 0.5651 0.4552 0.4941     

Average Return-on-Assets 
     

High PD -0.0476 -0.0175 -0.0401 
  

Medium PD 0.0144 0.0227 0.0191 
  

Low PD 0.0329 0.0373 0.0361     
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3.8 Figures of Chapter 3 

Panel A 

 
Panel B 

 
Figure 3.1. Merton Measure, Campbell, Hilscher and Szilagyi Measure and Volatility Index. The figure plots the monthly 

aggregate Merton (left scale) and CHS (right scale) measures for firms in the overall sample (Panel A) and the monthly aggregate 

Merton measure (left scale) and monthly VIX (right scale) values (Panel B). The columns denote recession periods in the euro 

area, as indicated by the OECD.  
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3.9 Appendices of Chapter 3 

 

Appendix 3.1 The Merton Measure 

Following Vassalou and Xing (2004), we allow only equity and debt in the capital structure of 

the firm. In Merton’s model, equity can be viewed as a call option on the firm’s assets with a 

strike price equal to the value of debt. The reason is that equity is a residual claim, i.e. equity 

holders lay claim to all the cash flows left over only after all the debt holders have been satisfied.  

The market value of the firm’s assets follow a geometric Brownian motion as below: 

𝑑𝑉𝐴 = 𝜇𝑉𝐴𝑑𝑡 + 𝜎𝐴𝑉𝐴𝑑𝑊,         (A.1) 

where 𝑉𝐴 is the market value of the firm’s assets, with an instantaneous drift 𝜇, and instantaneous 

volatility 𝜎𝐴. 𝑊 is a standard Wiener process. 

The market value of the firm’s equity is given by the Black and Scholes (1973) formula for 

call options: 

𝑉𝐸 = 𝑉𝐴𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2),          (A.2) 

𝑑1 =
ln(

𝑉𝐴
𝑋

)+(𝑟+
𝜎𝐴

2

2
)𝑇

𝜎𝐴√𝑇
, 𝑑2 = 𝑑1 − 𝜎𝐴√𝑇,       (A.3) 

where 𝑉𝐸 is the market value of firm’s equity, 𝑋 is the book value of debt that has a maturity 

equal to 𝑇, 𝑟 is the risk-free rate, and 𝑁 is the cumulative density function of the standard normal 

distribution. 

First, we calculate the volatility of equity 𝜎𝐸 from the daily data of the past 12 months and 

use it as the initial value for the estimation of 𝜎𝐴. Then, from (A.2) and (A.3), we compute 𝑉𝐴 for 

each trading day of the past 12 months using 𝑉𝐸 of that day and 𝑋. As Vassalou and Xing (2004) 

and KMV do, we use current liabilities (WC03101) plus half the long-term debt (WC03251) to 
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calculate the book value of debt X. Also, to account for reporting delays that may influence data 

availability, we use the book value of debt at the fiscal year end, only after 4 months have passed 

from the fiscal year end. From the daily values of 𝑉𝐴 we calculate 𝜎𝐴 for the next iteration. We 

repeat this process until the values of 𝜎𝐴 from two consecutive observations converge. Once we 

obtain a converged value of 𝜎𝐴, we use it to find 𝑉𝐴 from (A.2) and (A.3). We repeat the process 

at the end of every month and obtain monthly values for 𝜎𝐴. We use the 1-year T-bill rate at the 

end of the month as the risk-free rate. Once we obtain daily values for 𝑉𝐴, we compute the drift 𝜇 

as the mean of the change in ln 𝑉𝐴. Finally, using the normal distribution implied by Merton, we 

can show that the physical PD at time 𝑡 is given by the following formula: 

𝑃𝐷𝑡 = 𝑁(−𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝐷𝑒𝑓𝑎𝑢𝑙𝑡𝑡) = 𝑁(−
ln(

𝑉𝐴,𝑡
𝑋𝑡

)+(𝜇−
𝜎𝐴

2

2
)𝑇

𝜎𝐴√𝑇
),    (A.4) 

where we refer to 𝑃𝐷𝑡 as the Merton measure. 

In order to evaluate the performance of the Merton measure, we employ two widely used 

measures, the Hosmer and Lemeshow (2010) grouping and the area under the Receiver 

Operating Characteristic (ROC) curve. 

First, based on the Hosmer and Lemeshow method, each month we rank the estimated PDs 

and divide them into deciles. Out of the ten groups created (each one containing 1/10 of the firms 

in that month), the first group has the smallest average estimated PD and the last the largest. 

Next, we aggregate the number of defaulted firms in each decile for each month over the sample 

period and calculate the corresponding percentages of the defaulted firms in each decile. The 

percentage of defaulted firms in the last decile is 58.72%. When we look at the last three deciles, 

this percentage becomes 79.87%. This provides us initial evidence that the Merton measure 

captures important default-related information. 
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Second, we construct the area under the ROC curve (AUC) from the estimated PDs versus 

the actual status of the firms in each month for all possible cut-off probability values. 

Specifically, the curve plots the ratio of correctly classified defaulted firms to actual defaulted 

firms (sensitivity) and the ratio of wrongly classified healthy firms to actual healthy firms (1 - 

specificity) for all possible cut-offs. The AUC ranges from zero to one. A model with an AUC 

close to 0.5 is considered a random model with no discriminatory power. An AUC of 0.7 to 0.8 

represents good discriminatory power, an AUC of 0.8 to 0.9 very good discriminatory power and 

an AUC over 0.9 is exceptional and extremely unusual. The AUC that we obtain is equal to 

0.8212. This result further supports our belief that the Merton measure is indeed a good default 

predictor. 

As a supplementary and final test, we follow Vassalou and Xing (2004) and compare the PDs 

of the defaulted firms (treatment group) with the PDs of a group of non-defaulted firms (control 

group). For each defaulted firm, we choose a healthy firm of similar size (market capitalization) 

and same industry (4-digit ICB code). We try to match the size of defaulted and healthy firms on 

the exact month or year of delisting due to default whenever possible. Figure 3.1.1 shows the 

average PDs of both groups up to 160 months before delisting. It is apparent that the PDs of both 

groups move closely together up to four years (48 months) before delisting. In the beginning of 

the fourth year before delisting though, the average PD of the treatment group goes up sharply, 

whereas the average PD of the control group does not follow this extreme behavior. Its moderate 

upward movement can be attributed to general worsening economic conditions in times of many 

defaults that move upward all PDs in the economy. The average PD at 𝑡 = 0 is 0.14 for healthy 

firms and 0.34 for defaulted firms (around 2.5 times higher). This final test provides additional 

support that the Merton measure captures default risk successfully. 
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Figure 3.1.1. Average Merton Measure of treatment group (defaulted firms) and control group (healthy firms). We choose 

firms in the control group that have similar size (market capitalization) and the same four-digit industry code as those in the 

treatment group.  Specifically for size, we select firms that have similar size with their defaulted counterparts immediately before 

they delist. We also match the month or year of delisting whenever possible. 
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Appendix 3.2 Calculation of the CHS Measure 

Following Campbell, Hilscher and Szilagyi (2008), we use eight variables to calculate the CHS 

measure (all converted into euros). NIMTA is the ratio of net income (WC07250) to the market-

adjusted version of total assets, where the latter is the sum of the market value of equity and the 

book value of liabilities (WC03351); TLMTA is the ratio of total liabilities to the market-

adjusted version of total assets; EXRET is the monthly log excess return relative to the MSCI 

index of the country that is the firm’s main market; SIGMA is the standard deviation of the daily 

returns over the previous year; RSIZE is the log ratio of firm’s market value to the total market 

value of firms in the same country and month; CASHMTA is the ratio of cash and short-term 

investments (WC02001) to the market-adjusted version of total assets; MB is the market-to-book 

ratio; and PRICE is the log price per share winsorized at the first and third quartiles of the pooled 

price distribution. We winsorize all other variables at the first and ninety-ninth percentile of their 

pooled distributions. We lag all accounting data by at least 4 months and market data by 1 

month, to ensure their availability at the time of default prediction. To avoid excluding firms 

shortly before they default, we use data for up to 12 months if more recent data are unavailable. 

Table 3.2.1 presents summary statistics of these variables. A comparison of Panels B and C 

reveals the differences in the defaulted observations. They have lower profitability, higher 

leverage, lower stock excess returns, higher stock volatility, lower MB ratios and lower prices 

compared to the healthy observations. They are also smaller. Interestingly, they do not differ 

much in their cash holdings. 

Concerning the applied estimation method, we assume that the marginal probability of 

default over the next period follows a logistic distribution and is given by: 

𝑃𝐷(𝑌𝑖,𝑡 = 1|𝑥𝑖,𝑡−1) =
1

1 + exp(−α −𝛽𝑥𝑖,𝑡−1)
 , (B.1) 
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where 𝑌𝑖,𝑡 is an indicator that equals one if the firm defaults in period 𝑡 and zero otherwise, i.e. if 

the firm disappears from the sample for some reason other than default, such as delisting due to a 

merger; and 𝛽𝑥𝑖,𝑡−1 is a function of firm-specific characteristics that includes a vector of 

predictor variables 𝑥𝑖,𝑡−1 known at the end of the previous period. Finally, to capture cross-

country differences, we follow two different methods: (i) we estimate separate models for each 

country; (ii) we introduce country fixed effects and estimate only one model. 

Table 3.2.2 reports the regression results only under method (ii) due to space limitations. The 

coefficients confirm the findings from Table 3.2.1. The CHS measure is negatively related to 

profitability (NIMTA), excess return (EXRET), size (RSIZE), and PRICE. It is positively related 

to leverage (TLMTA), volatility (SIGMA), liquidity (CASHMTA) and MB. Most coefficients 

are significant at a 5% level, with the exception of CASHMTA and MB. The pseudo-R
2
 

(McFadden’s R
2
) is 17.4%, indicating a rather good fit.  The pseudo-R

2
 may look low when 

compared to R
2 

values of linear regression models, but such low values are normal in logistic 

regression. 
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Table 3.2.1 

 Summary Statistics for the CHS Measure 

The table reports summary statistics for all of the accounting and market variables used to calculate the CHS measure. NIMTA is the ratio 

of net income (WC07250) to the market-adjusted version of total assets, where the latter is the sum of the market value of equity and the book 

value of liabilities (WC03351); TLMTA is the ratio of total liabilities to the market-adjusted version of total assets; EXRET is the monthly 

log excess return relative to the MSCI index of the country that is the firm’s main market; RSIZE is the log ratio of firm’s market value to the 

total market value of firms in the same country and month; SIGMA is the standard deviation of the daily returns over the previous year; 

CASHMTA is the ratio of cash and short-term investments (WC02001) to the market-adjusted version of total assets; MB is the market-to-

book ratio; and PRICE is the log price per share winsorized at the first and third quartiles of the pooled price distribution. All other variables 

are truncated at the first and ninety-ninth percentile of their pooled distributions. Panel A describes the distributions of the variables in all 

observations, Panel B describes the sample of healthy observations, and Panel C describes the defaulted observations. 

 NIMTA TLMTA EXRET RSIZE SIGMA CASHMTA MB PRICE 

Panel A. All 

Mean 0.01 0.45 0.00 -7.98 0.41 0.09 2.33 1.65 

Median 0.03 0.44 -0.01 -8.04 0.36 0.06 1.63 1.62 

Std.Dev. 0.06 0.23 0.10 2.41 0.20 0.09 2.03 1.03 

Min -0.16 0.07 -0.19 -12.01 0.15 0.00 0.40 0.39 

Max 0.09 0.84 0.19 -3.61 0.91 0.33 8.22 2.92 

N 761,779 761,897 796,573 803,106 803,106 761,578 802,965 803,106 

Panel B. Healthy 

Mean 0.01 0.45 0.00 -7.98 0.41 0.09 2.33 1.65 

Median 0.03 0.44 -0.01 -8.04 0.36 0.06 1.63 1.62 

Std.Dev. 0.06 0.23 0.10 2.41 0.20 0.09 2.03 1.03 

N 761,257 761,374 795,979 802,511 802,511 761,055 802,370 802,511 

Panel C. Defaulted 

Mean -0.07 0.64 -0.05 -10.56 0.66 0.10 1.48 0.74 

Median -0.08 0.77 -0.04 -11.39 0.71 0.05 0.69 0.39 

Std.Dev. 0.09 0.25 0.13 1.88 0.24 0.11 1.90 0.74 

N 522 523 594 595 595 523 595 595 
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Table 3.2.2 

Regression Results for the CHS Measure 

The table reports results from the multi-period logit regression of the default indicator on the eight predictor 

variables. NIMTA is the ratio of net income (WC07250) to the market-adjusted version of total assets, where 

the latter is the sum of the market value of equity and the book value of liabilities (WC03351); TLMTA is the 

ratio of total liabilities to the market-adjusted version of total assets; EXRET is the monthly log excess return 

relative to the MSCI index of the country that is the firm’s main market; RSIZE is the log ratio of firm’s market 

value to the total market value of firms in the same country and month; SIGMA is the standard deviation of the 

daily returns over the previous year; CASHMTA is the ratio of cash and short-term investments (WC02001) to 

the market-adjusted version of total assets; MB is the market-to-book ratio; and PRICE is the log price 

truncated at the first and third quartiles of the pooled price distribution. We truncate all other variables at the 

first and ninety-ninth percentile of their pooled distributions. We lag all accounting data by at least 4 months 

and market data by 1 month. The model is estimated for January 1990 to December 2012, with yearly 

observations. Parameter estimates are given first followed by chi-square values in parentheses. Standard errors 

are cluster-robust to correct for dependence between firm-year observations of the same firm. Numbers 

significant at the 5% level are in bold. 

NIMTA -4.449 (-7.15) 

TLMTA 2.914 (11.33) 

EXRET -1.550 (-3.91) 

RSIZE -0.455 (-10.29) 

SIGMA 2.311 (9.19) 

CASHMTA 0.367 (0.75) 

MB 0.014 (0.51) 

PRICE -0.253 (-3.32) 

Constant -14.160 (-27.54) 

Firm-year observations 755,243  

Firms 7,980  

Distressed firms 522  

Country fixed effects Yes  

Pseudo R-squared 0.174  

Log likelihood -3568.9  

Wald test 970.0  
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Chapter 4 Are Private Equity Backed Initial Public Offerings Any 

Different? Timing, Information Asymmetry and Post-IPO Survival 

 

“I am not against Private Equity in general, but when it comes to IPOs they are in the business to 

get the highest price for their investors. This means there is a tendency to flatter the books to 

make the investment look a lot better than it is.” (James Laing, Aberdeen Asset Management, in 

the Financial Times, 18 February 2014). 

 

4.1 Introduction 

In this study with the term Private Equity (PE) I refer to both buyouts (BOs) and venture capital 

(VC) transactions, which are the largest and most important subclasses of PE. BO and VC 

sponsors are similar in terms of involvement and contribution to their portfolio companies. The 

main differences between the two are the companies they invest in and the methods they use to 

create value. VC targets early stage companies with high growth potential (often start-ups based 

on new technology or other innovation) and uses minority equity investment. BOs target larger 

and more mature companies (typically with above average profit margins, tangible assets and 

stable cash flows) and often use leverage to finance acquisitions (Metrick and Yasuda, 2011). 

Usually studies focus on either BOs or VC, but here I examine both, differentiating between the 

two. I focus on the period just before, during and after exit of PE sponsors and examine only 

exits via IPOs. 

There are three ways that a PE sponsor can exit a portfolio company: (i) a sale to another 

financial buyer (e.g. another PE fund - in thecase of BOs, this is a secondary BO), (ii) a sale to a 

strategic buyer (i.e. a trade sale), and (iii) an IPO. I study this latter IPO exit because the 



110 

literature argues that they can potentially involve more information asymmetry than other exit 

strategies. Bayar and Chemmanur (2011) build a theoretical model that predicts that, in high IPO 

valuation periods, companies that are harder to value by public investors are more likely to go 

public than be acquired.
16

 In another theoretical paper, Chemmanur and Fulghieri (1999) show 

that public investors produce less information than acquirers due to the free-rider problem.
17

 

Both studies suggest that information asymmetries between insiders and public investors can 

result in inflated valuations, but that acquirers (both financial and strategic ones) can value firms 

more accurately. This is because financial buyers perform sophisticated analyses and strategic 

buyers thoroughly investigate potential synergies before investing. 

The role of PE sponsors, as professional insiders, in such a setting is interesting. On the one 

hand, they may be more able to “exploit” the IPO market than insiders of stand-alone companies. 

On the other, every effort to “fool” public investors may be detrimental for their reputation and, 

as a consequence, their liquidity. It is possible also that BO and VC sponsors behave differently 

from each other. Academic literature as well as practitioners suggest that they may have different 

motives when taking portfolio companies public. BO sponsors prefer to exit quickly as these 

deals are very large and involve high potential losses. Thus, they may rush companies into 

premature IPOs. In accordance with this argument, Cao (2011) finds that BO deals that are 

exited quickly default more often post-IPO. VC sponsors, instead, undertake more risk that BO 

sponsors as only a small percentage of their companies make it to an IPO (the “stars”). It is a real 

opportunity for VC sponsors to establish their reputation from these transactions and, as a 

                                                           
16

 In a following paper, Bayar and Chemmanur (2012) empirically confirm these findings. 

17 Whereas the information production cost is incurred only by a small group of public investors, the benefits are 

shared among all, reducing the incentive of any single public investor to engage in information production. 
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consequence, they are unlikely to “fool” the IPO market. In accordance with this intuition, Neus 

and Waltz (2005) show that VC sponsors have incentives to report the true quality of their 

portfolio companies during the IPO process. 

In my study, I focus on IPO timing, information asymmetry and post-IPO survival. I also ask 

whether PE sponsors time their IPOs better, whether they inflate valuations more and whether 

they seek to sell firms with poor prospects (“unload lemons”) compared to insiders of stand-

alone companies. In my analysis I differentiate between BO and VC-backed IPOs in order to 

uncover their potentially different motives. My study is related to four literature strands that I 

present below. 

The first is the strand on IPO timing, which refers to either performance or market timing. In 

the performance timing literature, studies test whether companies time their IPOs to occur in 

years when there are exceptionally favorable market fundamentals. In an early study, Degeorge 

and Zeckhauser (1993) study a sample of 62 reverse leveraged buyouts (RLBOs)
18

 and find that 

LBO sponsors time their IPOs in years when their operating performance increases more than 

that of comparable companies. More recently, Cao (2011) studies 594 RLBOs from 1981 to 2006 

and does not find evidence of performance timing. He does not include comparisons with other 

companies, unlike Degeorge and Zeckhauser (1993) which do make these comparisons. In the 

market timing literature, Ritter and Welch (2002) argue that market conditions are the most 

important factor in a company’s decision to go public. Schulz (2003) characterizes this 

phenomenon as “pseudo” market timing because companies do not predict market peaks but 

simply follow their peers and go public at high valuation periods. Similarly, Alti (2005) shows 

theoretically that high offer price realizations have spillover effects that attract subsequent IPOs. 

                                                           
18

 These are LBO-backed IPOs. 
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Pastor and Veronesi (2005) develop similar predictions and confirm them empirically. For LBO 

sponsors, Cao (2011) studies the duration of LBO-backing pre-IPO and documents a negative 

relationship with high valuation periods and post-IPO default rates and a positive relationship 

with operating improvements. For VC sponsors, Lerner (1994) explores the exit choice between 

IPOs versus acquisitions and shows that they are particularly proficient at taking their portfolio 

companies public near market peaks. Similar are the findings of Ball, Chiu and Smith (2011) 

who argue in support of “pseudo” market timing. As Cao (2011) though, these two studies do not 

include comparisons with other firms. 

The second strand is on IPO underpricing. Existing academic literature uses short-run 

underpricing (first-day returns) as a measure of information asymmetry and finds higher 

underpricing for VC-backed IPOs and lower for BO-backed IPOs.
19

 Gompers (1996) argues that 

younger VC sponsors need to establish reputation in order to successfully raise capital for new 

funds (grandstanding hypothesis) and they use underpricing as a device to achieve this. For 

example, they might purposely leave money on the table to signal quality. Lee and Wahal (2004) 

report similar results with Gompers (1996) and find greater underpricing for VC-backed IPOs 

compared to other matched IPOs. Hogan, Olson and Kish (2001) find that first-day returns of 

RLBOs are higher from other IPOs in the period 1987-1998. However, these studies do not look 

at IPO proceeds to address the issue of inflated valuations. 

The third strand focuses on default risk in PE transactions. These studies usually track 

companies only during the period that they are PE-backed, thus they examine default as an exit 

                                                           
19

 An exception is Megginson and Weiss (1991) who examine an early small sample of VC-backed IPOs and find 

that they are less underpriced than matched IPOs (certification role of VC). Barry et al. (1990) find lower 

underpricing for VC-backed IPOs with better monitors (monitoring role of VC). 
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outcome. On the BO side, two early studies of the first wave of BOs are Kaplan and Stein (1993) 

and Andrade and Kaplan (1998). Studies of the second wave of BOs often involve comparisons 

with other companies. Tykvova and Borell (2012), Hotchkiss, Smith, and Stromberg (2013) and 

Wilson and Wright (2013) document similar default rates between BO-backed and comparable 

companies in Europe, the US and the UK respectively. On the VC side, Puri and Zarutskie 

(2012) find that cumulative failure rates of VC-backed companies are lower relative to 

comparable companies. Of the above studies, only Hotchkiss, Smith, and Stromberg (2013) look 

also at defaults post-exit and find that BO-exited companies have lower default rates than others. 

This suggests that BO sponsors leave their portfolio companies in good financial condition. 

However, they do not study IPO exits in particular. I am aware of two more studies that examine 

default risk post-exit: Harford and Kolasinski (2013) for BO-backed companies and Jain and 

Kini (2000) for VC-backed companies. Harford and Kolasinski (2013) study strategic 

acquisitions and find that having been owned previously by a BO fund has no impact on whether 

the company will eventually undergo distressed restructuring. Jain and Kini (2000) study a small 

sample of 877 IPOs that took place in the period 1977-1990 and find that VC-backing increases 

the survival likelihood. 

Whereas only Jain and Kini (2000) focus on post-IPO defaults, the fourth strand includes 

plenty of studies that focus on post-IPO stock and operating performance. On stock returns, Cao 

and Lerner (2009) and Brav and Gompers (1997) do not find strong evidence that BO and VC-

backed IPOs respectively outperform others. On operating performance, early studies of a few 

RLBOs have apparently contradictory conclusions. Whereas Muscatella and Vetsuypens (1990) 

report improvements, Degeorge and Zeckhauser (1993) document declines post-IPO. Krishnan et 

al. (2011) study VC-backed IPOs and find that more reputable. VCs contribute to stronger post-
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IPO operating performance. In a comparative framework, Holthausen and Larcker (1996) find 

that the operating performance of RLBOs is stronger than their industries as a whole. 

I make several contributions to this literature. To my knowledge, this is the first study about 

IPO exits of both BO and VC-backed companies. By focusing on an environment of high 

information asymmetry and looking at both types of PE sponsors, I am better able to examine 

their behavior during the IPO process and also uncover potentially different incentives between 

them. Another interesting aspect is my focus on default risk (both pre and post-IPO) instead of 

operating performance. Although the two are related, default risk can be heavily influenced by 

other factors, such as leverage and liquidity. Thus default measures reflect better the company’s 

pre-IPO financial situation. By looking also at actual defaults post-IPO, I offer important insights 

about the solvency situation of portfolio companies after PE sponsors unload them in the IPO 

market. It is also the first study to test if PE sponsors time their IPOs in “hot” periods or rush 

them more than their peers do. Finally, I extend the literature on underpricing and look directly at 

proceeds instead of only first-day returns, so enabling me to compare valuations of similar 

companies. 

In the first part of my analysis, I examine the pre-IPO period in order to address IPO timing 

considerations for PE-backed versus stand-alone IPOs. Initially, I measure pre-IPO default risk 

instead of operating performance (Degeorge and Zeckhauser, 1993; Cao, 2011) and perform 

comparisons between PE-backed and stand-alone companies in a matching framework. After I 

control for leverage (in the case of BO-backing) and profitability (in the case of VC-backing) I 

do not find significant differences in the pre-IPO default measures of PE-backed and matched 

stand-alone IPOs. I interpret this as evidence that PE sponsors do not time their IPOs in years 

that their financial situation is better compared to their peers. Then, on the IPO market timing 
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side, I move to a regression framework to test whether PE sponsors are better able than managers 

of stand-alone companies to time their IPOs for when overall market conditions are more 

favorable. I find neither BO nor VC-backed IPOs to be more common in hot periods. Moreover, 

although I find that, on average, companies enter at a younger age when the IPO market is hot, 

both BO and VC-backed IPOs that take place in hot market periods are older at the time of the 

IPO. The above suggests that PE sponsors do not target their IPOs in hot market periods and do 

not rush their companies into premature IPOs when market conditions are favorable more than 

managers of stand-alone companies do. If anything, they seem to rush them less. 

In the next part of my analysis, I test whether information asymmetries during the IPO 

enable PE sponsors to inflate valuations compared to those achieved by stand-alone companies. 

Conversely, I investigate whether these sponsors' reputation and liquidity concerns mitigate such 

behavior. Consistent with the literature, I find more underpricing for VC-backed IPOs than 

stand-alone IPOs. However, I do not find significant differences in the first-day returns between 

BO-backed and stand-alone IPOs. As a next step, I go beyond past studies and look directly at 

the size of the IPO. Practitioners argue that the size of the IPO does not receive as much 

extensive attention in the media as first-day returns. By comparing the proceeds of BO and VC-

backed IPOs with these of matched stand-alone IPOs, controlling for the float percentage, I can 

further test if these sponsors raise more or less cash. In the case of VC sponsors, the underpricing 

mentioned above together with past literature (Gompers, 1996; Neus and Walz, 2005; Lee and 

Wahal, 2004) suggests that they do not issue overvalued equity. However, the behavior of BO 

sponsors is less clear. As expected, I do not observe significant differences in IPO proceeds 

between VC-backed and matched stand-alone IPOs. Surprisingly, I find that BO-backed IPOs 

have lower IPO proceeds compared to matched stand-alone IPOs. These results suggest that BO 
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sponsors not only do not inflate valuations, but on the contrary, public investors price BO-backed 

IPOs more conservatively. Thus these results contradict the criticism that BO sponsors have a 

tendency to inflate valuations. 

In the last part of my analysis, I examine the post-IPO period in order to address the ultimate 

question of whether PE-backed IPOs delist more due to default or failure than stand-alone IPOs. 

I use actual default and failure rates post-IPO instead of stock or operating performance. With 

this I test whether PE sponsors are more likely than managers of stand-alone companies to take 

problematic portfolio companies public before hidden problems can unfold. By doing so they 

would transfer the risk and loss to public investors. Interestingly, I find that default and failure 

rates of BO-backed versus stand-alone IPOs and VC-backed versus stand-alone IPOs do not 

differ significantly in a matching framework that tracks companies up to five years post-IPO. 

When I move to a regression framework that uses all firm-year observations post-IPO, I even 

find evidence that BO and VC-backed IPOs default less frequently than others. Finally, in 

accordance with the theoretical model of Yung, Colak and Wang (2008), I find that IPOs that 

take place in hot market periods are significantly more likely to default, but this result is not any 

stronger for BO or VC-backed examples. These results indicate that PE sponsors are not any 

more likely than managers of stand-alone companies to “fool” the market and it is in accordance 

with the intuition that if these sponsors are caught “cheating”, they will struggle to raise money 

in the future. 

The paper is organized as follows: Section 4.2 describes the dataset and presents summary 

statistics. Section 4.3 describes the methodology and the reasons for its selection. Section 4.4 

presents the results, and Section 4.5 concludes. 

 



117 

4.2 The Data 

I collect data related to the IPOs that took place on the AMEX, NASDAQ and NYSE exchanges 

for the period 1975 to 2013. Data is provided by Jay Ritter 20
 and also that which is available in 

Thomson Reuter’s SDC Platinum New Issues Database. I follow the literature and exclude IPOs 

with an offer price below $5.00 per share, a total valuation below $1.5 million, unit offers, 

American Depository Receipts (ADRs), closed-end funds, natural resource partnerships, 

acquisition companies, Real Estate Investment Trusts (REITs), bank and Savings and Loans 

(S&L) IPOs, and firms not listed on CRSP. I end up with 7,033 IPOs out of which 897 are BO-

backed (13%) and 2,763 are VC-backed (39%). I identify the BO and VC-backed IPOs as 

follows: For years 1984 to 2006, Jerry Cao provides me with his data on BO-backed IPOs. For 

years 2002 to 2013, Jay Ritter provides me with his data on VC-backed IPOs. For the remaining 

years, I complement these data with Thomson Reuter’s VentureXpert Database. I follow Jay 

Ritter’s classification and characterize growth-capital backed IPOs as VC-backed.
21

 

I take offer dates, offer prices, file price ranges, proceeds, number of shares, SIC codes, 

headquarter states, over-allotment details and other IPO specific data items mostly from SDC 

Platinum New Issues Database and complement them where possible with data from Jay Ritter. I 

collect underwriter rankings and founding dates from Jay Ritter’s website (based on Loughran 

and Ritter, 2004). To construct “IPO hotness” measures and to identify IPOs that receive star 

analyst coverage, I use the same website. Specifically, for my IPO hotness measures, I collect 

monthly data on the number of IPOs, average first-day returns and the percentage of deals each 

month that are priced above the midpoint of the original file price range (based on Ibbotson, 

                                                           
20

 Field and Karpoff (2002) and Loughran and Ritter (2004) use earlier versions of this dataset. 

21
 Growth capital is a hybrid form between venture capital and buyouts, but closer to the first. 
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Sindelar, and Ritter, 1994). For IPOs that receive star coverage, I collect data on analysts (based 

on Cliff and Denis, 2004; Bradley and Ritter, 2008; Fang and Yasuda, 2009; Liu and Ritter, 

2011). To calculate financial ratios, default measures and first-day returns, I get financial 

information from Compustat, and delisting and price information from CRSP. Compustat 

generally has financial information available up to two years pre-IPO. Codes DLDTE provide 

the delisting date and DLRSN the delisting reason. The standard matching variable is the 9-digit 

CUSIP, complemented with the ticker symbol where necessary. 

Table 4.1 and Figure 4.1 provide summary statistics of my sample. Panel A of Table 4.1 

shows the industry distribution of all IPOs, BO-backed IPOs and VC-backed IPOs across two-

digit SIC codes that have at least 30 IPOs. There is significant variation across industries with 

BO-backed IPOs representing 45.10% of all IPOs in SIC code 53 (Food stores) and VC-backed 

IPOs representing the vast majority (64.38%) of all IPOs in SIC code 28 (Chemicals and Allied 

Products). In absolute terms, there are large clusters of both BO-backed and VC-backed IPOs in 

SIC code 73 (Business services). In Panel B, I show the geographic distribution of all IPOs, BO-

backed IPOs and VC-backed IPOs noting states in which the company is headquartered. I 

display the distribution only for states that represent at least 2% of all IPOs (at least 140 IPOs). 

VC-backed IPOs represent 63.62% of all IPOs in Massachusetts and 59.80% in California. The 

most BO-backed IPOs are in California (130) and New York (77), and the most VC-backed IPOs 

are in California (1,694) and Massachusetts (306). There is high geographic concentration, with 

45% of all IPOs originating from just four states: California, New York, Texas and 

Massachusetts. The fact that BO and VC sponsors invest in particular types of companies is 

reflected in both company and IPO characteristics, as shown in Panel C. BO-backed IPOs occur 

with older and larger companies (both in terms of assets and sales), whereas the opposite is the 
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case for VC-backed IPOs. BO-backed IPOs also have higher valuations, gross spreads and 

underwriter rankings compared to both stand-alone and VC-backed IPOs. Moreover, they are 

more leveraged. VC-backed IPOs are less profitable on average. Past studies report very similar 

summary statistics (Lee and Wahal, 2004 and others). Consistent with the literature, VC-backed 

IPOs have higher first-day returns (27.86%) and BO-backed IPOs lower first-day returns 

(10.51%) than stand-alone IPOs. Finally, Figure 4.1 plots the number of all IPOs, BO-backed 

IPOs and VC-backed IPOs per year. It is obvious from the graph that both BO and VC-backed 

companies follow the trends of general IPO activity. 

 

4.3 The Methodology 

PE backing represents an endogenous choice for PE sponsors and entrepreneurs since its 

provision and receipt is the outcome of many negotiations between them (Megginson and Weiss, 

1991). This endogenous choice is also reflected at the time of exit in the non-random 

distributions and characteristics of BO and VC-backed IPOs that Table 4.1 demonstrates. The 

non-randomness of these data suggests that I can use this information to construct instruments 

wiht some power to predict BO and VC backing. Once I construct such instruments that are 

correlated with the endogenous choice and control for the selection bias, I use them in a first-

stage regression that predicts BO backing. Then, estimates from the first-stage regressions are 

fed into various matching methods to match BO-backed IPOs with stand-alone IPOs. I repeat 

exactly the same procedure for VC-backed IPOs. It is important to have two sets of estimates, 

one for BO and one for VC backing, since, as shown in Table 4.1, the two kinds of PE invest in 

quite different companies. In many cases, as an alternative to the above matching approach, I 
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also estimate OLS regressions with two dummy variables, one for BO and one for VC backing, 

and various controls. 

I now explain the matching approach in the case of BO backing (since the VC backing case 

is exactly the same). Let us suppose that 𝑡 is a binary random variable that takes the value of 1 if 

an IPO is BO-backed and 0 otherwise. I call 𝑡 the treatment level. Thus IPOs that are BO-backed 

belong to the treatment group and stand-alone IPOs belong to the control group. The potential 

outcome for a firm would when given treatment 𝑡 ∈ {0,1} is 𝑦𝑡. Each 𝑦𝑡 has realizations 𝑦𝑡𝑖. For 

potential outcome variables I examine pre-IPO default measures, underpricing, IPO proceeds and 

post-IPO delistings. The parameter of interest is the average treatment effect on the treated 

(ATET) which is the average effect of BO-backing on BO-backed IPOs and is given by 𝐸(𝑦1 −

𝑦0|𝑡 = 1, 𝑋), where 𝑋 is a vector of predictor variables. This could be estimated if the following 

condition is recognized: 

𝐸(𝑦1 − 𝑦0|𝑡 = 1, 𝑋) = 𝐸(𝑦1|𝑡 = 1, 𝑋) − 𝐸(𝑦0|𝑡 = 1, 𝑋)    (1) 

𝐸(𝑦1|𝑡 = 1, 𝑋) is the average outcome variable for BO-backed IPOs. However, 𝐸(𝑦0|𝑡 =

1, 𝑋), the average outcome variable that BO-backed IPOs would experience if they did not 

receive BO backing, is unobservable. The traditional approach is to use 𝐸(𝑦0|𝑡 = 0, 𝑋) instead, 

the average outcome variable of stand-alone IPOs. Unfortunately, because BO backing is not 

randomly assigned but represents an endogenous choice, this creates a bias. The bias is defined 

as: 

𝐵(𝑋) =  𝐸(𝑦0|𝑡 = 1, 𝑋) − 𝐸(𝑦0|𝑡 = 0, 𝑋)      (2) 

Rubin (1974, 1977) and Rosenhaum and Rubin (1983) show that, under certain conditions, 

matching on Pr (𝑡 = 1| 𝑋) eliminates the bias and reduces the dimensionality of the problem. I 

use two widely used matching estimator techniques to do that: (i) one-to-one nearest neighbor 
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matching (Rubin, 1974, 1977; Rosenbaum and Rubin, 1983) and (ii) one-to-many smoothed 

weighted matching (Heckman et al., 1997). 

With the one-to-one nearest neighbor matching techniques the distance between pairs of 

observations with regard to a set of covariates is calculated. Then each observation of the 

treatment group is matched to a comparable observation of the control group that is closest to it. 

This technique has two different types: propensity score matching; and the full covariate 

matching. Propensity score matching requires the estimation of a model for the endogenous 

choice treatment variable with a vector of 𝑋 observable variables. The predicted probability of 

treatment is then used as the propensity score, and each observation of the treatment group is 

matched with an observation of the control group with the highest propensity score. The full 

covariate matching does not require the estimation of a formal treatment model. The nearest 

neighbor is instead determined by using a weighted function of the covariates for each 

observation. 

The one-to-many smoothed weighted matching techniques use a weighted average of the 

outcomes of several (or perhaps all) observations of the control group to calculate the treatment 

effect. The weight given to each observation of the control group is in proportion to "closeness" 

of the vector of 𝑋 observable variables. Again, there are two main types of this technique, the 

regression-adjusted local linear matching and the inverse probability weighing matching. The 

regression-adjusted (RA) local linear matching performs a linear regression to predict potential 

outcomes from observable variables. To estimate the treatment effect, local weights are 

calculated, with more weight given to outcomes of observations of the control group that are 

similar in the predicted outcomes to those of the treatment group. The inverse probability 

weighting (IPW) matching performs a regression to predict the probability of treatment, instead 
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of potential outcomes, from observable variables. To estimate the treatment effect, local weights 

are calculated, with more weight to outcomes of observations of the control group with high 

probability of treatment. So the RA builds a formal model for the outcome, whereas the IPW 

builds a formal model for the treatment status. 

I do all matching with replacement and rely on Abadie and Imbens standard errors to 

conduct statistical inference because they are more appropriate than bootstrapped standard errors 

for matching estimators (Abadie and Imbens, 2006). Finally, I calculate selection-bias-adjusted 

95% confidence intervals. 

 

4.4 The Results 

4.4.1 Pre-IPO Default Risk, Fundamentals and IPO Timing 

In this section, I examine the pre-IPO period in order to understand and compare IPO timing 

considerations for both PE-backed and stand-alone IPOs. Initially, I apply the above matching 

approach and test whether PE-backed IPOs have higher or lower default risk in the year prior to 

the IPO compared to the default risk of comparable stand-alone IPOs. Then, I move to a 

regression framework and test whether PE sponsors or insiders of stand-alone companies are 

more likely to time their IPOs for when overall market conditions are more favorable. 

 

4.4.1.1 Do PE sponsors time their IPOs when their default risk is lower compared to matched 

companies? 

Here, I first examine various fundamentals in the year prior to the IPO that are related to default 

risk (such as profitability and leverage) then calculate default measures and, finally, perform 

comparisons between PE-backed and stand-alone companies. Tables 4.2 and 4.3 show average 
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selection-bias-adjusted default measures and financial ratio differences between BO-backed 

versus stand-alone IPOs and VC-backed versus stand-alone IPOs respectively. I use two one-to-

one nearest neighbor techniques (propensity score and full covariate matching) and two one-to-

many smoothed weighted techniques (regression-adjusted local linear and inverse probability 

weighting matching). Abadie and Imbens (2006) standard errors appear in parentheses and 95% 

confidence intervals are in square brackets. 

The default measures that I use are Altman and Hotchkiss’s (2005) survival probability 

(Z’’score), Zmijewski’s (1984) default probability, and Shumway’s (2001) default probability, 

calculated from Chava and Jarrow’s (2004) model for private firms (who re-estimate Shumway’s 

(2001) model augmented with industry and interaction terms). The financial ratios that I choose 

to present here as fundamentals are the leverage ratio (total assets to total liabilities), the earnings 

per share (net income to shares outstanding) and the return on assets (net income to total assets). 

In both Tables 4.2 and 4.3, Panel A presents my basic model, in which I use the following 

dummies as instruments in the first-stage regression that predicts either BO backing (Table 4.2) 

or VC backing (Table 4.3): the underwriter rank, the logarithm of total assets in the year prior to 

the IPO, two-digit SIC dummies, headquarter-state dummies, offer year dummies, the natural 

logarithm of firm age, the number of total managers, road show success dummies, and stock 

exchange . Jain and Kini (2000) show that PE-backed IPOs attract more prestigious underwriters, 

have a higher number of total managers and greater road show success. Thus, it is important to 

use these variables as instruments in my first-stage regression. To measure road show success, I 

construct three road show success dummies based on the offer price being below, within, or 

above the initial filing range. Moreover, I use total assets and age as instruments, since the 

summary statistics in Table 4.1 show substantial differences in these variables. Also evident 
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from Table 4.1 are the industry and geographic concentrations of PE-backed IPOs. Thus SIC and 

headquarter-state dummies are necessary instruments. Time-series variation in IPOs and the 

presence of “hot” markets suggest that I should control for year effects as well. Finally, I use 

stock exchange dummies because there are differences in listing restrictions among stock 

exchanges. Although I use the same instruments to predict BO and VC backing, I estimate two 

different models because the two kinds of PE sponsor invest in different companies. 

Table 4.2 reports results for BO-backed IPOs. In Panel A, I find that BO-backed IPOs have 

significantly lower survival probabilities in the year prior to the IPO, as measured by the Altman 

and Hotchkiss (2005) model, and higher default probabilities (as measured by Zmijewski’s 

(1984) model) compared to matched stand-alone IPOs. Specifically, BO-backed IPOs have 

significantly lower survival probabilities (3.2% to 5%) and significantly higher default 

probabilities (4.8% to 8.5%). Shumway’s (2001) model gives insignificant results. I also find 

that they have significantly higher leverage ratios (12% to 15%), but the evidence for differences 

in other fundamentals is rather weak. Thus, in Panel B, I add the leverage ratio as an instrument 

and, interestingly, differences based on Altman and Hotchiss (2005) and Zmijewski’s (1984) 

models are no longer significant, whereas according to Shumway’s (2001) model, BO-backed 

IPOs have significantly lower default probabilities pre-IPO this time 2.4% to 4.2%. This is 

evidence that the differences in the default measures of Panel A are mostly driven by the higher 

leverage ratios of BO-backed IPOs and do not hold when I compare firms with similar leverage 

levels. In Panels C and D, I repeat the analysis performed in Panels A and B, controlling for 

additional instruments. Specifically, I include an all-star analyst dummy, a syndicate dummy and 

the overallotment percentage. Again, moving from Panel C to Panel D, I add the leverage ratio as 
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an instrument and I no longer find evidence that the pre-IPO default measures of BO-backed and 

matched stand-alone IPOs differ. 

Table 4.3 reports results for VC-backed IPOs. Similarly to the results for BO-backed IPOs, 

in Panel A, I find that VC-backed IPOs have significantly lower survival probabilities pre-IPO 

(as measured by the Altman and Hotchkiss (2005) model) and higher default probabilities (as 

measured by both Zmijewski’s (1984) and Shumway’s (2001) models) compared to matched 

stand-alone IPOs. Specifically, VC-backed IPOs have significantly lower survival probabilities 

(5.2% to 14%) and significantly higher default probabilities (1.8% to 8.3%). Contrary to the 

findings on BO-backed IPOs, though, these differences are not due to higher leverage ratios of 

VC-backed IPOs compared to matched stand-alone IPOs, but rather due to significant 

differences in their profitability ratios. Specifically, VC-backed IPOs have lower earnings per 

share and ROA (14.5% to 22.7%) than matched stand-alone IPOs. Thus, in Panel B, I add the 

ROA as an instrument and, interestingly, almost all differences lose their significance. This is 

evidence that the differences in the default measures of Panel A are mostly driven by the lower 

profitability ratios of VC-backed IPOs and do not hold when I compare firms with similar 

profitability. As before, in Panels C and D I repeat the analysis performed in Panels A and B, 

controlling for additional instruments and find the same results. 

In unreported results, I find that results for both BO and VC-backed IPOs are robust to 

different default measures such as Olson’s O-score (1980), different measures of size (i.e. 

number of employees, total sales or IPO proceeds instead of total assets) and different ratios. 

To sum up, as expected, I find that in the year prior to the IPO, BO-backed companies have 

significantly higher leverage ratios and VC-backed companies have significantly lower 

profitability ratios than matched stand-alone companies. These differences explain entirely the 
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greater prevalence of measures indicating default for both BO and VC-backed IPOs in the year 

prior to the IPO. Thus, I do not find strong evidence of a difference between pre-IPO default 

measures of PE-backed and matched stand-alone IPOs differ after I control for leverage, in the 

case of BO-backing, and profitability, in the case of VC-backing. I interpret this as evidence that 

PE sponsors do not time their IPOs in years that they have lower default risk, thus better 

financial situation, compared to their peers. 

Even if PE sponsors are not more proficient than stand-alone companies in timing their IPOs 

for when company’s financial situation is better compared to peers, it can be that they are better 

in timing the IPO when overall market conditions are more favorable. This is another version of 

IPO timing that I test below. 

 

4.4.1.2 Are PE sponsors better than insiders of stand-alone companies in timing their IPOs when 

overall market conditions are more favorable? 

To answer this question, I move to a regression framework and look at both the exact period as 

well as the age of the firm when IPOs take place. Firstly, I study whether PE-backed IPOs are 

more common than stand-alone IPOs in hot market periods. Secondly, I study if PE-backed IPOs 

that take place in hot market periods are younger firms at the time of the IPO compared to stand-

alone IPOs. 

Table 4.4 reports the regression results of two IPO timing measures on a BO and a VC 

dummy, along with controls that include firm and IPO specific characteristics. I construct the 

two dependent variables as follows. The first (columns 1-3) is a dummy equal to one if the 

average first-day return in the month of the IPO is above the median for the period January 1975 

to August 2014 (12.5%). The second (columns 4-6) is a dummy equal to one if the percentage of 
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IPOs with an offer price above the midpoint of the initial offer file range in the month of the IPO 

is above the median for the period January 1980 to August 2014 (42%). The coefficients of 

interest are the ones of the BO and VC dummies. The coefficient of the BO dummy is negative 

and significant in four out of the six specifications. This is some evidence that BO-backed IPOs 

are less common than other IPOs in hot market periods. The coefficient of the VC dummy is 

positive and significant in only one specification. Given the above results, I cannot argue that PE 

sponsors target their IPOs in hot market periods more than stand-alone companies do. In the case 

of BO sponsors, there is indeed some evidence to the contrary. Other results that demonstrate 

some significance are that IPOs that have negative EPS in the year prior the IPO and IPOs that 

receive coverage from an all-star analyst are more likely to take place during hot market periods. 

Table 4.5 reports the regression results of firm age at the time of the IPO on a BO and a VC 

dummy, two IPO market hotness measures, and interactions among these measures and the BO 

and VC dummies, along with controls that include firm and IPO specific characteristics. To 

proxy for market conditions at the time of the IPO, I follow Cao (2011) and construct two 

measures. The first (column 1) is the average market first day return in the three months prior to 

the IPO and the second (column 2) is the number of IPOs in the three months prior to the IPO. 

As expected, I find that BO-backed IPOs tend to occur for older firms and VC-backed IPOs for 

younger firm on average. This is consistent with the summary statistics in Table 4.1 (Panel C). In 

specification (2), I also find some evidence that companies enter at a younger age when there is a 

high number of IPOs in previous months. This is in accordance with the intuition that companies 

rush into IPOs when the market conditions are favorable, and thus they can take advantage of 

higher valuations. The coefficients of the interactions terms of BO and VC dummies, which are 

of interest, are negative and significant though (at 10% and 5% respectively). This indicates that 
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the firms that undergo BO and VC-backed IPOs during hot market periods are older on average 

than stand-alone IPOs that take place during the same periods. Thus, I can argue that, if anything, 

PE sponsors are less likely to rush their companies into premature IPOs. Other results that 

demonstrate significance are that companies which are older at the time of the IPO are also more 

levered, more profitable and larger. 

 

4.4.2 IPO Underpricing and Valuations 

In this section, I test whether PE sponsors, as professional insiders, take more advantage of 

information asymmetries during the IPO compared to stand-alone companies. To test this, I first 

follow the literature and measure differences in information asymmetries through differences in 

underpricing. Then, I look directly at the proceeds from IPOs and examine whether PE sponsors 

inflate valuations more or less compared to similar stand-alone companies. 

Tables 4.6 and 4.7 show the average differences (both for selection-bias-adjusted first-day 

returns and the proceeds from IPO) between VC-backed versus stand-alone IPOs, and BO-

backed versus stand-alone IPOs respectively using the methods described above. As before, in 

my basic model, I use the following instruments in the first-stage regression that predicts either 

VC backing (Table 4.6) or BO backing (Table 4.7): the underwriter rank, the logarithm of total 

assets, two-digit SIC dummies, headquarter-state dummies, offer year dummies, the natural 

logarithm of firm age, the number of total managers, road show success dummies, and stock 

exchange dummies. . In Panels B, C, and D, I include additional instruments to control for 

differences in the equity, default probability and leverage ratio, also obvious from Panel C of 

Table 4.1. Given the missing value problem associated with some of these data items and the 



129 

different methods employed, the observations used in the estimation are not always equal among 

panels and methods. 

Table 4.6 reports results for VC-backed IPOs. In accordance with the literature (Gompers, 

1996; Lee and Wahal, 2004; Neus and Walz, 2005) and in line with the summary statistics in 

Table 4.1 (Panel C), I find some evidence that first-day returns of VC-backed IPOs are higher 

compared to stand-alone IPOs. These studies suggest that VC-backed companies face higher 

information asymmetries in the IPO market. Thus, VC sponsors are willing to underprice IPOs to 

signal their quality and use underpricing as a mechanism to establish their reputation. 

Specifically, I find that first-day returns of VC-backed IPOs are significantly higher by 4.7% to 

7.2% (Panel D, inverse probability weighting and regression-adjusted local linear matching) 

when I use the one-to-many smoothed weighted techniques. As a next step, I go beyond existing 

literature and look directly at the size of the IPO. In the vast majority of cases, I do not observe 

significant differences in net IPO proceeds between VC-backed and matched stand-alone IPOs. 

Combining the above results, VC-backed companies have similar initial valuations with stand-

alone firms but their stocks often have higher first-day returns. This is an indication that the 

market soon recognizes them to be “stars”. 

Now I test if these results differ in “hot” versus “cold” IPO valuation periods. For this 

reason, I split my sample in two sub-periods based on Jay Ritter’s monthly measure of "hotness" 

of the IPO market: the percentage of deals that are priced above the midpoint of the initial file 

price-range. Specifically, I characterize high valuation periods as those months when the 

percentage of IPOs with an offer price above the midpoint of the initial offer range is above the 

median for January 1980 to August 2014 (42%). I characterize low valuation periods as months 

when this percentage is below median. The two sub-periods are almost equal in size (425 “high 
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valuation” months and 418 “low valuation” months). For the sub-period analysis, I do not 

calculate sub-period estimates by partitioning the full sample results because they are obtained 

from a first-stage regression that uses all the data. Instead, I follow Lee and Wahal (2004) and re-

estimate the first-stage regression for each sub-period, thereby I tighten the conditioning 

information and find more conservative estimates. 

As before, I find the differences in first-day returns to be almost always positive and both 

economically and statistically significant in many cases, especially during low valuation periods. 

In such periods, the differences demonstrate significance under all techniques and are larger in 

size, ranging from 3.7% (Panel D, full covariate matching) to 12.4% (Panel C, propensity score 

matching). This is evidence that when valuations are low, VC-backed IPOs outperform stand-

alone IPOs even more, as they have quite high first-day returns. Differences of net proceeds 

remain insignificant in both “hot” and “cold” markets. 

Table 4.7 reports results for BO-backed IPOs. First-day returns in most cases do not differ 

significantly between BO-backed and stand-alone IPOs. This indicates that information 

asymmetry is similar for both. Interestingly, I always find that BO-backed IPOs have lower 

valuations as measured by the net IPO proceeds, compared to matched stand-alone IPOs. Results 

are both economically and statistically significant, as well as robust to the use of the book value 

of equity, default probability and float percentage as instruments (Panels A, C and D 

respectively), which suggests that the lower valuations of BO-backed IPOs are not solely driven 

by their higher indebtedness/default risk levels and potentially lower float percentages. This is an 

unexpected finding, since, in the summary statistics in Table 4.1 (Panel C), BO-backed IPOs 

have more than double the net proceeds of stand-alone IPOs. Specifically, I find that IPO 

proceeds for BO-backed IPOs are significantly lower for the full sample by 29.51 (Panel B, full 
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covariate matching) to 205.71 million (Panel A, inverse probability weighting matching). This is 

evidence that BO sponsors do not exploit information asymmetries in the IPO market to inflate 

valuations of their portfolio companies. On the contrary, public investors value these IPOs more 

conservatively. All findings hold in both high and low valuation periods. 

In unreported results, I find that results for both VC and BO-backed IPOs are robust to 

different measures of size, to gross instead of net proceeds, to addition of other variables such as 

the initial amount filed, a positive earnings dummy, an “all-star” analyst dummy and a syndicate 

dummy as instruments, and to another measure of IPO “hotness” (based on the average first day 

return being above the median for the period January 1975 to August 2014, which is 12.5%). 

To sum up, VC-backed IPOs have higher first-day returns than matched stand-alone IPOs, a 

result that is in accordance with the literature and indicates that VC sponsors are confronted with 

higher information asymmetries in the IPO market. BO-sponsors on the contrary have similar 

underpricing as their peers, i.e. information asymmetries between BO sponsors and public 

investors are similar to the asymmetries between managers and public investors. Finally, neither 

VC nor BO-backed companies have inflated valuations compared to similar companies. In the 

case of BO sponsors, there is indeed evidence that they are conservatively priced. The reason for 

this may be that investors perceive them as riskier due to their high leverage. In the next section, 

I test if this fear is justified, specifically if they default more often post-IPO. 

 

4.4.3 Post-IPO Default and Failure Risk 

In the sections above, I concentrate on the pre-IPO and IPO period. It may be  that PE investors 

strategically choose to exit via an IPO before hidden problems in their portfolio companies 

unfold. Thus, what is of utmost interest is the question of whether BO and VC-backed companies 
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delist more often than stand-alone companies for reasons related to default or failure. I am 

interested in two types of delistings: delistings due to default and, more generally, delistings due 

to failure. I define as default cases of bankruptcy or liquidation (codes 400-490 and 574). I define 

as failure cases of bankruptcy, liquidation, or delisting due to other negative reasons such as non-

payment of fees (codes 400-490, 550-561 and 574-591). 

Tables 4.8 and 4.9 show average selection-bias-adjusted default and failure rates differences 

between BO-backed versus stand-alone IPOs and VC-backed versus stand-alone IPOs 

respectively using the methods described above. Here, I track companies for five years after the 

IPO, thus I do not examine IPOs after 2009. By right censoring my data I control for 

survivorship bias by which older firms undergoing IPOs provide more years of data and have a 

longer period “at risk”. I examine a horizon of five years for all companies to correct for this 

effect. Robustness tests with different horizons provide qualitatively the same results. A shorter 

horizon though, (e.g. for one year) may be inappropriate since IPOs generally feature lockup 

provisions that prohibit corporate insiders from selling shares before a certain date. In our sample 

lockup provisions for PE-backed IPOs are no different from those of other IPOs and have an 

average of six months. These lockup provisions help align the interests of insiders with those of 

public investors (Field and Hanka, 2001, Aggarwal et al., 2002) and may decrease default and 

failure risk during this period. As before, in my basic model, I use the following as instruments 

in the first-stage regression that predicts either BO backing (Table 4.8) or VC backing (Table 

4.9): the underwriter rank, the logarithm of total assets, two-digit SIC dummies, headquarter-

state dummies, offer year dummies, the natural logarithm of firm age, the number of total 

managers, road show success dummies and stock exchange dummies. 
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Table 4.8 reports results for BO-backed IPOs. In Panel A, I find that default and failure rates 

of BO-backed and stand-alone IPOs do not differ significantly. The same holds in Panel B, 

where I add the leverage ratio as an instrument. In Panels C and D I repeat the analysis 

performed in Panels A and B, controlling for additional instruments. Specifically, I include an 

all-star analyst dummy, a syndicate dummy and the overallotment percentage. Again, moving 

from Panel C to Panel D, I add the leverage ratio as an instrument and find the same results. 

Table 4.9 reports results for VC-backed IPOs. As for BO-backed IPOs, I find that, in most 

cases, default and failure rates of VC-backed and stand-alone IPOs do not differ significantly. 

There is some weak evidence that VC-backed IPOs have lower failure rates than stand-alone 

IPOs since differences are negative and significant in a few cases, ranging from 2.8% (Panel A, 

inverse probability weighting matching) to 5.3% (Panel B, inverse probability weighting 

matching). 

In order to shed more light on the above results and further test if PE-backed IPOs delist 

more often than stand-alone IPOs due to default or failure, I now move to a regression 

framework where I use all firm-year observations post-IPO. Specifically, I apply the multi-period 

logit regression framework (Shumway, 2001) for my default and failure prediction models. As 

described above, I use two dependent variables in my regressions. The first (Table 4.10) is a 

default dummy equal to one in the year that the company delists due to bankruptcy or liquidation 

(codes 400-490 and 574). The second (Table 4.11) is a failure dummy equal to one in the year 

that the company delists due to bankruptcy, liquidation, or due to other negative reasons (codes 

400-490, 550-561 and 574-591). I regress these dummies on a BO and a VC dummy, along with 

various firm and IPO specific characteristics. To proxy for market conditions at the time of the 

IPO, I use the same measures as in Table 4.7 and examine interaction of these variables with the 
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BO and VC dummies to additionally test if BO and VC-backed IPOs that take place in hot 

market periods are more likely to default or fail afterwards. 

Table 4.10 reports the regression results for the default dependent variable from four 

different specifications. My coefficients of interest are those of the BO and VC dummies which 

are negative and significant in three out of the four specifications. This is evidence that BO and 

VC-backed IPOs default less than others. IPOs that take place in hot market periods (i.e. in 

months that follow high IPO activity as measured by the number of IPOs taking place in the 

previous three months) are significantly more likely to default on average. This is consistent with 

my previous finding in Table 4.5 that companies often rush into premature IPOs when market 

conditions are favorable. It is also in accordance with the theoretical model of Yung, Colak and 

Wang (2008), according to which there are more delistings in hot market periods. Since the 

coefficients of the interaction terms in column (3) are not significant though, I cannot argue that 

this result is stronger for either BO or VC-backed IPOs. As expected, companies with lower 

profitability and higher leverage are more likely to default as indicated from the signs of the 

profitability and leverage ratios. Table 4.11 reports the regression results for the failure 

dependent variable using the same four specifications. When we move from Table 4.10 to Table 

4.11, results remain substantially similar. The above results indicate that PE sponsors are not any 

more likely than managers of stand-alone companies to “unload lemons” in the IPO market and 

it is in accordance with the intuition that if these sponsors are caught “cheating”, they will 

struggle to raise money for future funds. 
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4.5 Concluding Remarks 

I study the role of both BO and VC sponsors in a setting of high information asymmetry as the 

IPO market. These professional insiders may be more capable of taking advantage of such 

asymmetries compared to insiders of stand-alone companies. But they also have more 

reputational capital at stake, a factor which tends to be known by the market. BO and VC 

sponsors may also behave differently from each other. Thus, I differentiate my analysis for each 

type of PE sponsor and compare BO and VC-backed IPOs with IPOs of stand-alone companies 

in a matching framework. 

I do not find significant differences between these IPOs and matched IPOs of stand-alone 

companies. The financial situation of both BO and VC-backed companies in the pre-IPO year, as 

measured by their default risk, is similar to that of their peers. Moreover, PE sponsors do not 

target their IPOs in hot periods any more than do managers of stand-alone companies. They also 

are not more prone to rush their companies into premature IPOs and do not inflate valuations. 

Finally, PE-backed companies do not default more often post-IPO. This is evidence that PE 

sponsors are not more likely to seek to sell firms with poor prospects (“unload lemons”) in the 

IPO market. 

This paper provides evidence against the criticism that PE sponsors often receive in the 

media (e.g. “Rush to get to the front of the IPO queue” in Financial Times, 18 February 2014). It 

can also have important policy implications on the regulatory framework related to PE, such as 

the Dodd-Frank Act (signed by Obama in July 2010). Finally, it comes as a timely contribution, 

given the increasing importance of PE-backed IPOs in the market (“Private equity-backed IPOs 

could hit seven-year high” in the Financial Times, 29 September 2014). 
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4.6 Tables of Chapter 4 

 

Table 4.1 

Distribution and Characteristics of IPOs, 1975 to 2014 

The table shows the distribution and characteristics of 7,033 IPOs for which data are available after excluding those with an offer price below $5.00 per share, 

a size below 1.5 million, unit offers, American Depository Receipts (ADRs), closed-end funds, natural resource partnerships, acquisition companies, Real 

Estate Investment Trusts (REITs), bank and Savings and Loans (S&L) IPOs. I classify growth-capital backed IPOs as VC-backed. Panel A shows the 

distribution of all IPOs, BO-backed IPOs and VC-backed IPOs across two-digit SIC Codes both as a number and a percentage of all IPOs in each SIC Code. 

SIC Codes in which there are less than 30 IPOs over the entire sample period are not shown. Panel B shows the geographic distribution of all IPOs, BO-

backed IPOs and VC-backed IPOs both as a number and a percentage of all IPOs headquartered in each state. States with less than 140 IPOs, corresponding to 

2% of all IPOs, are not shown. Finally, Panel C provides means of various characteristics of stand-alone IPOs, BO-backed IPOs and VC-backed IPOs. Gross 

and net proceeds are in millions of dollars. The gross spread is in percent. Underwriter rankings are on a 0 to 9 scale, with higher ranking to more prestigious 

underwriters. All financial statements data are from up to two years prior to the offering. Assets, sales and book and market value of equity are in millions of 

dollars. The market value is calculated using the post issue shares outstanding multiplied by the offer price. I calculate first-day returns as the percentage price 

movement from the offer price to the close price on the first trading day. Age is the average number of years from the founding date to the IPO date. The 

default rate is the percentage of delistings due to bankruptcy and liquidation (CRSP delisting codes 400-490 and 574).  

  All IPOs BO-backed VC-backed     All IPOs BO-backed VC-backed 

  # # % # % 
 

  # # % # % 

Panel A. Distribution by two-digit SIC Code               

15 39 6 15.38 1 2.56 
 

49 81 6 7.41 19 23.46 

20 108 24 22.22 14 12.96 
 

50 186 26 13.98 44 23.66 

23 68 12 17.65 8 11.76 
 

51 82 13 15.85 11 13.41 

25 31 8 25.81 4 12.90 
 

53 33 13 39.39 6 18.18 

26 37 13 35.14 7 18.92 
 

54 51 23 45.10 4 7.84 

27 64 16 25.00 10 15.63 
 

56 81 21 25.93 15 18.52 

28 553 45 8.14 356 64.38 
 

57 71 15 21.13 13 18.31 

30 57 11 19.30 5 8.77 
 

58 156 29 18.59 33 21.15 

33 79 19 24.05 11 13.92 
 

59 172 25 14.53 60 34.88 

34 66 21 31.82 7 10.61 
 

63 202 33 16.34 19 9.41 

35 453 39 8.61 217 47.90 
 

65 40 5 12.50 4 10.00 

36 627 75 11.96 321 51.20 
 

70 62 6 9.68 3 4.84 

37 117 41 35.04 12 10.26 
 

73 1,499 100 6.67 858 57.24 

38 479 31 6.47 269 56.16 
 

78 69 8 11.59 14 20.29 

39 74 11 14.86 9 12.16 
 

79 52 7 13.46 1 1.92 

42 62 6 9.68 6 9.68 
 

80 244 28 11.48 108 44.26 
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44 54 9 16.67 2 3.70 
 

82 36 8 22.22 12 33.33 

45 55 2 3.64 12 21.82 
 

87 207 24 11.59 78 37.68 

47 35 5 14.29 7 20.00 
       

48 311 38 12.22 131 42.12 
 

Full sample 7,033 897 12.75 2,763 39.29 

  All IPOs BO-backed VC-backed     All IPOs BO-backed VC-backed 

  # # % # % 
 

  # # % # % 
 

Panel B. Distribution by State 

California 1,694 130 7.67 1,013 59.80 
 

New Jersey 281 36 12.81 93 33.10 

Colorado 147 12 8.16 67 45.58 
 

New York 522 77 14.75 126 24.14 

Connecticut 152 25 16.45 53 34.87 
 

Ohio 149 38 25.50 26 17.45 

Florida 306 35 11.44 68 22.22 
 

Pennsylvania 252 36 14.29 93 36.90 

Georgia 182 28 15.38 75 41.21 
 

Texas 491 62 12.63 163 33.20 

Illinois 253 62 24.51 67 26.48 
 

Virginia 162 33 20.37 50 30.86 

Massachusetts 481 31 6.44 306 63.62 
 

Washington 149 9 6.04 86 57.72 

Minnesota 148 24 16.22 62 41.89 
 

Full sample 7,033 897 12.75 2,763 39.29 

Panel C. Characteristics 

 
Stand-alone IPOs 

 
BO-backed 

 
VC-backed 

    
  # Mean 

 
# Mean 

 
# Mean 

    
Gross proceeds 3,373 70.63 

 
897 156.85 

 
2,763 58.99 

    
Net proceeds 3,373 65.80 

 
897 145.57 

 
2,763 54.29 

    
Gross spread 3,362 4.30 

 
896 10.15 

 
2,759 4.04 

    
Underwriter rank 3,314 6.38 

 
883 8.30 

 
2,726 7.71 

    
Assets 2,945 725.23 

 
861 836.03 

 
2,563 60.71 

    
Sales 2,460 300.70 

 
773 742.03 

 
2,319 52.17 

    
% profitable 2,986 72.37 

 
846 66.78 

 
2,653 49.19 

    
Book value of equity 3,218 96.50 

 
881 79.44 

 
2,698 21.94 

    
Market value of equity 2,762 338.55 

 
825 661.06 

 
2,533 406.53 

    
Debt/Assets 2,926 0.80 

 
859 0.87 

 
2,559 0.69 

    
Return on assets 2,459 -0.10 

 
773 -0.01 

 
2,317 -0.39 

    
Average first-day return 3,044 14.09 

 
883 10.51 

 
2,588 27.86 

    
Age 3,325 16.19 

 
892 34.20 

 
2,758 8.70 

    
Default rate 3,373 3.91   897 2.34   2,763 2.39         
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Table 4.2 

Pre-IPO selection bias adjusted default measures' and financial ratios' differences between BO-backed and stand-alone IPOs 

The table presents selection bias adjusted average default measures' and financial ratios' differences between BO-backed and stand-alone IPOs. Each BO-backed IPO is matched with one (nearest neighbor) or 

many (smoothed weighted) stand-alone IPOs using the propensity score, full covariate, regression-adjusted local linear and inverse probability weighting matching approaches described in the text. I do all 

matching with replacement and use Abadie and Imbens (2006) standard errors to conduct statistical inference. The t-statistics, 95% confidence intervals and number of BO-backed IPOs matched appear below the 

average differences. When BO-backed IPOs are matched to many stand-alone IPOs, the total number of observations used in the estimation also appears.  All financial statements data are from the year prior to 

the offering. I calculate Altman and Hotchkiss's survival probability from Altman and Hotchkiss's (2005) model. I calculate Zmijewski's default probability from Zmijewski's (1984) model. I calculate Shumway's 

default probability from Chava and Jarrow's (2004) model for private firms, who re-estimate Shumway's (2001) variables' coefficients augmented with industry and interaction terms. The leverage ratio is the ratio 

of total assets to total liabilities. The earnings per share is the ratio of net income divided by the number of pre-issue shares outstanding. The Return on Assets is the ratio of net income to total assets. ** denotes 

significance at a 5% level and * at a 10% level. 

Δ(Probabilities) 
 

Δ(Ratios) 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 
 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 

Propensity score Full covariate  
Regression-adjusted 

local linear 

Inverse probability 

weighting 
 Propensity score Full covariate  

Regression-adjusted 

local linear 

Inverse probability 

weighting 
   

Panel A. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success dummies, stock 

exchange dummies 

Altman and Hotchkiss's (2005) survival probability 
 

Leverage ratio 

-0.050 -0.047 
 

-0.032 -0.049 
 

0.135 0.139 
 

0.119 0.150 

(-2.56)** (-3.30)** 
 

(-2.59)** (-4.65)** 
 

(4.27)** (5.54)** 
 

(5.35)** (7.66)** 

[-0.088,-0.012] [-0.075,-0.019] 
 

[-0.057,-0.008] [-0.069,-0.028] 
 

[0.073,0.198] [0.090,0.188] 
 

[0.075,0.162] [0.112,0.189] 

698 453 
 

699/2,810 699/2,810 
 

841 613 
 

842/3,691 842/3,691 
Zmijewski's (1984) default probability 

 
Earnings per share 

0.048 0.050 
 

0.049 0.085 
 

-2.344 -1.411 
 

-2.884 -3.118 

(2.82)** (3.24)** 
 

(4.09)** (5.51)** 
 

(-1.42) (-1.46) 
 

(-1.83)* (-1.92)* 

[0.015,0.082] [0.020,0.080] 
 

[0.025,0.072] [0.038,0.079] 
 

[-5.579,0.890] [-3.301,0.479] 
 

[-5.975,0.206] [-6.294,0.057] 

732 516 
 

733/3,034 733/3,034 
 

826 604 
 

827/3,723 827/3,723 

Shumway's (2001) default probability 
 

Return on Assets 
-0.005 0.020 

 
-0.009 -0.001 

 
-0.017 -0.008 

 
0.011 -0.028 

(-0.56) (1.36) 
 

(-1.40) (-0.20) 
 

(-0.62) (-0.30) 
 

(0.44) (-2.20)** 

[-0.021,0.012] [-0.009,0.048] 
 

[-0.022,0.004] [-0.008,0.006] 
 

[-0.073,0.038] [-0.058,0.043] 
 

[-0.036,0.027] [-0.054,-0.003] 
754 516 

 
755/3,144 755/3,144 

 
755 538 

 
756/3,150 756/3,150 

Panel B. Instrumental variables: Underwriter rank, log (total assets), leverage ratio, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 

dummies, stock exchange dummies 

Altman and Hotchkiss's (2005) survival probability 
      

-0.024 -0.033 
 

-0.001 -0.028 
      

(-1.20) (-1.70)* 
 

(-0.08) (-1.09) 
      

[-0.062,0.0149] [-0.070,0.005] 
 

[-0.024,0.022] [-0.077,0.022] 
      

698 453 
 

699/2,810 699/2,810 
      

Zmijewski's (1984) default probability 
      

0.013 0.004 
 

0.005 0.016 
      

(0.66) (0.42) 
 

(0.59) (1.66)* 
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[-0.026,0.053] [-0.016,0.025] 
 

[-0.012,0.022] [-0.003,0.036] 
      

732 516 
 

733/3,034 733/3,034 
      

Shumway's (2001) default probability 
      

-0.024 0.000 
 

-0.042 -0.027 
      

(-2.14)** (0.06) 
 

(-2.14)** (-4.29)** 
      

[-0.046,-0.002] [-0.022,0.023] 
 

[-0.054,-0.033] [-0.039,-0.015] 
      

754 516 
 

755/3,144 755/3,144 
      

Panel C. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success dummies, stock 

exchange dummies, all-star analyst dummy, syndicate dummy, overallotment percentage 

Altman and Hotchkiss's (2005) survival probability 
 

Leverage ratio 

-0.078 -0.042 
 

-0.038 -0.052 
 

0.154 0.131 
 

0.096 0.151 

(-3.66)** (-2.97)** 
 

(-2.60)** (-4.06)** 
 

(3.31)** (5.01)** 
 

(3.30)** (5.50)** 

[-0.120,-0.036] [-0.069,-0.141] 
 

[-0.066,-0.009] [-0.078,-0.027] 
 

[0.063,0.245] [0.080,0.182] 
 

[0.039,0.153] [0.097,0.205] 
448 453 

 
450/1,852 450/1,845 

 
512 613 

 
474/2,304 474/2,010 

Zmijewski's (1984) default probability 
 

Earnings per share 

0.059 0.046 
 

0.044 0.060 
 

-2.27 -1.44 
 

-2.72 -2.16 

(2.59)** (3.01)** 
 

(2.97)** (4.46)** 
 

(-0.92) (-1.50) 
 

(-1.33) (-1.36) 

[0.014,0.103] [0.162,0.076] 
 

[0.015,0.073] [0.034,0.086] 
 

[-7.103,2.557] [-3.325,0.446] 
 

[-6.730,1.289] [-5.276,0.959] 
472 516 

 
474/2,017 474/2,010 

 
503 604 

 
461/2,253 461/2,010 

Shumway's (2001) default probability 
 

Return on Assets 

-0.013 -0.011 
 

-0.014 -0.003 
 

-0.032 0.014 
 

0.010 -0.021 
(-1.00) (-1.33) 

 
(-1.60) (-0.49) 

 
(-0.76) (0.49) 

 
(0.36) (-1.10) 

[-0.039,0.013] [-0.027,0.005] 
 

[0.031,0.003] [-0.014,0.008] 
 

[0.0627,0.245] [-0.043,0.0720] 
 

[-0.046,0.067] [-0.058,0.016] 

479 537 
 

474/2,055 474/2,010 
 

480 538 
 

474/2,060 474/2,010 

Panel D. Instrumental variables: Underwriter rank, log (total assets), leverage ratio, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 
dummies, stock exchange dummies, all-star analyst dummy, syndicate dummy, overallotment percentage 

Altman and Hotchkiss's (2005) survival probability 
      

-0.021 -0.019 
 

-0.007 -0.024 
      

(-0.83) (-1.46) 
 

(-0.52) (-1.89)* 
      

[-0.069,0.028] [-0.044,0.006] 
 

[-0.034,0.020] [-0.049,0.001] 
      

448 453 
 

450/1,852 450/1,845 
      

Zmijewski's (1984) default probability 
      

0.014 0.004 
 

0.006 0.017 
      

(0.49) (0.33) 
 

(0.59) (1.43) 
      

[-0.042,0.070] [-0.018,0.025] 
 

[-0.014,0.026] [-0.006,0.040] 
      

472 516 
 

474/2,017 474/2,010 
      

Shumway's (2001) default probability 
      

-0.016 -0.009 
 

-0.044 -0.031 
      

(-1.11) (-1.44) 
 

(-2.25)** (-3.57)** 
      

[-0.044,0.012] [-0.022,0.003] 
 

[-0.058,-0.030] [-0.048,-0.014] 
      

479 537 
 

474/2,055 474/2,010 
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Table 4.3 

Pre-IPO selection bias adjusted default measures' and financial ratios' differences between VC-backed and stand-alone IPOs 

The table presents selection bias adjusted average default measures' and financial ratios' differences between VC-backed and stand-alone IPOs. Each VC-backed IPO is matched with one (nearest neighbor) or 

many (smoothed weighted) stand-alone IPOs using the propensity score, full covariate, regression-adjusted local linear and inverse probability weighting matching approaches described in the text. I do all 

matching with replacement and use Abadie and Imbens (2006) standard errors to conduct statistical inference. The t-statistics, 95% confidence intervals and number of VC-backed IPOs matched appear below the 

average differences. When VC-backed IPOs are matched to many stand-alone IPOs, the total number of observations used in the estimation also appears.  All financial statements data are from the year prior to the 

offering. I calculate Altman and Hotchkiss's survival probability from Altman and Hotchkiss's (2005) model. I calculate Zmijewski's default probability from Zmijewski's (1984) model. I calculate Shumway's 

default probability from Chava and Jarrow's (2004) model for private firms, who re-estimate Shumway's (2001) variables' coefficients augmented with industry and interaction terms. The leverage ratio is the ratio 

of total assets to total liabilities. The earnings per share is the ratio of net income divided by the number of pre-issue shares outstanding. The Return on Assets is the ratio of net income to total assets. ** denotes 

significance at a 5% level and * at a 10% level. 

Δ(Probabilities) 
 

Δ(Ratios) 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 
 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 

Propensity score Full covariate  
Regression-adjusted 

local linear 

Inverse probability 

weighting 
 Propensity score Full covariate  

Regression-adjusted 

local linear 

Inverse probability 

weighting 
   

Panel A. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success dummies, stock 

exchange dummies 

Altman and Hotchkiss's (2005) survival probability 
 

Leverage ratio 

-0.131 -0.098 
 

-0.052 -0.140 
 

-0.060 -0.056 
 

-0.067 -0.039 

(-5.25)** (-4.88)** 
 

(-2.88)** (-4.93)** 
 

(-1.62) (-2.08)** 
 

(-3.20)** (-1.43) 

[-0.181,-0.082] [-0.137,-0.059] 
 

[-0.088,-0.017] [-0.196,-0.084] 
 

[-0.133,0.0127] [-0.109,-0.003] 
 

[-0.108,-0.026] [-0.092,0.0142] 

2,234 1,734 
 

2,208/4,537 2,208/4,319 
 

2,529 2,088 
 

2,235/5,380 2,235/4,536 
Zmijewski's (1984) default probability 

 
Earnings per share 

0.083 0.037 
 

0.083 0.078 
 

-1.106 -1.142 
 

-2.009 -1.475 

(3.44)** (5.52)** 
 

(6.81)** (4.34)** 
 

(-1.64)* (-1.95)* 
 

(-2.25)** (-3.41)** 

[0.035,0.130] [0.024,0.050] 
 

[0.059,0.107] [0.043,0.113] 
 

[-2.424,0.213] [-2.29,0.008] 
 

[-3.356,-0.263] [-2.323,-0.627] 

2,234 1,860 
 

2,235/4,537 2,235/4,536 
 

2,614 2,163 
 

2,202/5,512 2,202/4,371 

Shumway's (2001) default probability 
 

Return on Assets 

0.073 0.020 
 

0.018 0.076 
 

-0.145 -0.182 
 

-0.227 -0.186 

(3.10)** (1.36) 
 

(2.14)** (5.47)** 
 

(-2.72)** (-5.00)** 
 

(-7.82)** (-4.75)** 

[0.027,0.120] [-0.009,0.480] 
 

[0.002,0.034] [0.048,0.103] 
 

[-0.250,-0.041] [-0.253,-0.110] 
 

[-0.278,-0.167] [-0.263,-0.109] 
2,234 1,806 

 
2,235/4,681 2,235/4,536 

 
2,290 2,088 

 
2,235/4,686 2,235/4,536 

Panel B. Instrumental variables: Underwriter rank, log (total assets), Return on Assets, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 

dummies, stock exchange dummies 

Altman and Hotchkiss's (2005) survival probability 
      

-0.069 0.010 
 

-0.020 -0.024 
      

(-2.73)** (0.62) 
 

(-1.00) (-0.77) 
      

[-0.118,-0.020] [-0.021,0.040] 
 

[-0.060,0.020] [-0.084,0.037] 
      

2,234 1,734 
 

2,208/4,537 2,208/4,319 
      

Zmijewski's (1984) default probability 
      

-0.011 0.011 
 

0.013 -0.042 
      

(-0.42) (0.98) 
 

(1.46) (-1.77)* 
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[-0.062,0.040] [-0.011,0.032] 
 

[-0.004,0.030] [-0.088,0.004] 
      

2,234 1,860 
 

2,235/4,537 2,235/4,536 
      

Shumway's (2001) default probability 
      

-0.025 0.001 
 

-0.039 -0.053 
      

(-0.94) (0.06) 
 

(-2.92)** (-2.15)** 
      

[-0.078,0.027] [-0.022,0.023] 
 

[-0.049,-0.030] [-0.101,-0.005] 
      

2,234 1,806 
 

2,235/4,681 2,235/4,536 
      

Panel C. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success dummies, stock 

exchange dummies, all-star analyst dummy, syndicate dummy, overallotment percentage 

Altman and Hotchkiss's (2005) survival probability 
 

Leverage ratio 

-0.131 -0.100 
 

-0.051 -0.140 
 

-0.077 -0.057 
 

-0.089 -0.039 

(-4.37)** (-4.12)** 
 

(-2.72)** (-4.93)** 
 

(-1.72)* (-2.14)** 
 

(-3.31)** (-1.43) 

[-0.190,-0.072] [-0.148,-0.053] 
 

[-0.087,-0.014] [-0.196,-0.084] 
 

[-0.165,0.011] [-0.110,-0.005] 
 

[-0.141,-0.036] [-0.092,0.0142] 
1,562 1,734 

 
1,565/4,537 1,565/4,319 

 
1,721 2,088 

 
1,585/3,509 1,585/3,119 

Zmijewski's (1984) default probability 
 

Earnings per share 

0.096 0.039 
 

0.091 0.078 
 

-3.459 -0.887 
 

-2.463 -1.475 

(3.45)** (5.92)** 
 

(5.88)** (4.34)** 
 

(-2.15)** (-1.95)* 
 

(-2.06)** (-3.41)** 

[0.042,0.151] [0.026,0.052] 
 

[0.061,0.121] [0.043,0.113] 
 

[-6.587,-0.311] [-1.778,0.004] 
 

[-4.810,-0.117] [-2.323,-0.627] 
1,582 1,860 

 
1,585/3,124 1,585/4,536 

 
1,731 2,163 

 
1,579/3,477 1,579/3,119 

Shumway's (2001) default probability 
 

Return on Assets 

0.082 0.015 
 

0.016 0.019 
 

-0.194 -0.185 
 

-0.253 -0.186 

(2.95)** (1.05) 
 

(1.45) (1.96)** 
 

(-3.23)** (-5.17)** 
 

(-6.95)** (-4.75)** 

[0.027,0.136] [-0.013,0.044] 
 

[-0.006,0.037] [-0.000,0.039] 
 

[-0.312,-0.076] [-0.256,-0.115] 
 

[-0.324,-0.181] [-0.263,-0.109] 

1,582 1,806 
 

1,585/3,165 1,585/4,536 
 

1,592 1,860 
 

1,585/3,169 1,585/3,119 

Panel D. Instrumental variables: Underwriter rank, log (total assets), Return on Assets, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 
dummies, stock exchange dummies, all-star analyst dummy, syndicate dummy, overallotment percentage 

Altman and Hotchkiss's (2005) survival probability 
      

-0.071 0.018 
 

0.033 -0.042 
      

(-2.48)** (0.95) 
 

(-1.70)* (-1.44) 
      

[-0.127,-0.015] [-0.019,0.054] 
 

[-0.070,0.005] [-0.098,0.015] 
      

1,562 1,734 
 

1,565/4,537 1,565/4,319 
      

Zmijewski's (1984) default probability 
      

0.025 0.013 
 

0.013 -0.076 
      

(0.82) (1.25) 
 

(1.13) (-2.35)** 
      

[-0.035,0.086] [-0.008,0.034] 
 

[-0.009,0.035] [-0.139,-0.012] 
      

1,582 1,860 
 

1,585/3,124 1,585/4,536 
      

Shumway's (2001) default probability 
      

-0.001 -0.005 
 

-0.050 -0.097 
      

(-0.03) (-0.42) 
 

(-2.75)** (-4.01)** 
      

[-0.064,0.061] [-0.028,0.018] 
 

[-0.062,-0.037] [-0.145,-0.050] 
      

1,582 1,806 
 

1,585/3,165 1,585/4002C536 
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Table 4.4 

Regressions of IPO timing dummy on firm and IPO characteristics 

The table shows OLS regressions of two measures of IPO timing on firm and IPO characteristics. The first dependent variable is a dummy equal to one if the average first-day return 

in the month of the IPO is above the median. The second dependent variable is a dummy equal to one if the percentage of IPOs with an offer price above the midpoint of the initial 

offer file range in the month of the IPO is above median. I construct these dummies with data from Jay Ritter's website. The sample consists of all IPOs from Table 4.1 with 

available data. All financial statements data are from the year prior to the offering. NITA is the ratio of net income to total assets. TLTA is the ratio of total liabilities to total assets. 

Ln (age) is the natural logarithm of the number of years from the founding date to the IPO date. The positive EPS dummy is equal to one if the earnings per share (ratio of net 

income divided by the number of pre-issue shares outstanding) is above zero. Underwriter rankings are on a 0 to 9 scale, with higher ranking to more prestigious underwriters. The 

all-star analyst dummy is equal to one if the offer receives coverage of an all-star analyst. Industry fixed effects are based on two-digit SIC codes. ** denotes significance at a 5% 

level and * at a 10% level. 

 
Dummy =1 if average 1st day return > median 

 
Dummy =1 if % of IPOs with offer price above midpoint > median 

  (1) (2) (3) 
 

(4) (5) (6) 

BO dummy -0.142* (-1.69) -0.226** (-2.20) -0.472** (-3.78) 
 

-0.0128 (-0.15) -0.166 (-1.64) -0.347** (-2.82) 

VC dummy 0.166** (2.78) 0.075 (0.97) -0.0638 (-0.66) 
 

-0.0156 (-0.26) -0.0816 (-1.07) -0.0782 (-0.83) 

TLTA 
  

-0.185** (-2.40) -0.247** (-2.70) 
   

-0.0254 (-0.34) 0.0480 (0.55) 

NITA 
  

-0.123* (-1.65) -0.108 (-1.24) 
   

-0.00611 (-0.09) 0.0567 (0.70) 

Ln (age) 
  

0.0620** (2.13) 0.0317 (0.91) 
   

0.0283 (0.99) 0.000606 (0.02) 

Positive EPS dummy 
  

-0.243** (-3.05) -0.222** (-2.32) 
   

-0.146* (-1.88) -0.0928 (-1.00) 

Underwriter rank 
  

-0.0523** (-2.76) -0.0205 (-0.85) 
   

-0.0205 (-1.10) -0.0277 (-1.16) 

All-star analyst dummy 
    

0.284** (2.51) 
     

0.188* (1.77) 

Constant -0.802 (-1.04) 0.645 (0.85) 1.561 (0.96) 
 

-1.943** (-2.16) 0.135 (0.18) 1.421 (0.88) 

Other controls 
 

Yes 
 

Yes 
 

Yes 
  

Yes 
 

Yes 
 

Yes 

Industry FE 
 

Yes 
 

Yes 
 

Yes 
  

Yes 
 

Yes 
 

Yes 

Observations   7,033   5,045   3,507                7,033   5,045   3,507 
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Table 4.5 

Regressions of age at IPO on firm and IPO characteristics 

The table shows OLS regressions of the age at IPO on firm and IPO characteristics. I calculate age at IPO 

as the natural logarithm of the number of years from the founding date to the IPO date. The sample 

includes all IPOs from Table 4.1 with available data. All financial statements data are from the year prior 

to the offering.  NITA is the ratio of net income to total assets. TLTA is the ratio of total liabilities to total 

assets. To proxy for market conditions at the time of the IPO, I use two measures: The average market 

first-day return and the logarithm of the number of IPOs in the three months prior the IPO. I construct 

these measures with data from Jay Ritter's website. I examine interaction effects for the additional impact 

of BO and VC-backed IPOs. Industry fixed effects are based on two-digit SIC codes. ** denotes 

significance at a 5% level and * at a 10% level. 

 
Age at IPO 

  
(1) 

 
(2) 

BO dummy 0.335** (4.88) 
 

-0.389 (-1.10) 

VC dummy -0.107** (-2.18) 
 

-0.796** (-2.89) 

TLTA 0.222** (7.02) 
 

0.223** (7.07) 

NITA 0.165** (5.57) 
 

0.168** (5.68) 

Log (total assets) 0.223** (2.84) 
 

0.223** (2.77) 

Previous market first-day return 0.110 (0.65) 
 

-0.0306 (-0.22) 

Previous market first-day return * BO dummy -0.280 (-1.11) 
   

Previous market first-day return * VC dummy -0.189 (-1.29) 
   

Log (number of previous IPOs) -0.0296 (-0.54) 
 

-0.117* (-1.84) 

Log (number of previous IPOs) * BO dummy 
   

0.141* (1.87) 

Log (number of previous IPOs) * VC dummy 
   

0.134** (2.36) 

Constant 0.190 (0.13) 
 

0.383 (0.26) 

Other controls 
 

Yes 
  

Yes 

Industry FE 
 

Yes 
  

Yes 

Observations 
 

5,362 
  

5,362 
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Table 4.6 

Selection bias adjusted first-day returns' and net IPO proceeds' differences between VC-backed and stand-alone IPOs 

The table presents selection bias adjusted average net IPO proceeds' and first-day returns' differences between VC-backed and stand-alone IPOs. Each VC-backed IPO is matched with one (nearest neighbor) or 

many (smoothed weighted) stand-alone IPOs using the propensity score, full covariate, regression-adjusted local linear and inverse probability weighting matching approaches described in the text. I do all 

matching with replacement and use Abadie and Imbens (2006) standard errors to conduct statistical inference. The t-statistics, 95% confidence intervals and number of VC-backed IPOs matched appear below 

the average differences. When VC-backed IPOs are matched to many stand-alone IPOs, the total number of observations used in the estimation also appears. High valuations periods are months when the 

percentage of IPOs with an offer price above the midpoint of the initial offer range is above median. Low valuations periods are months when this percentage is below median. I take this measure from Jay 

Ritter's website. Δ(Proceeds) are in millions of dollars and Δ(Returns) in percentage points. ** denotes significance at a 5% level and * at a 10% level. 

Δ(Returns) 
 

Δ(Proceeds) 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 
 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 

Propensity score Full covariate  Regression-adjusted 

local linear 

Inverse probability 

weighting 
 Propensity score Full covariate  Regression-adjusted 

local linear 

Inverse probability 

weighting 
   

Panel A. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success dummies, stock 

exchange dummies 

Full sample 

0.012 0.023 
 

0.071 0.051 
 

-11.34 3.52 
 

-5.73 -6.33 

(0.36) (1.01) 
 

(4.29)** (2.32)** 
 

(-0.67) (0.28) 
 

(-0.61) (-0.80) 

[-0.054,0.078] [-0.021,0.067] 
 

[0.039,0.104] [0.008,0.095] 
 

[-44.51,21.82] [-21.37,28.40] 
 

[-24.20,12.74] [-21.76,9.10] 

2,475 2,034 
 

2,475/5,208 2,474/5,207 
 

2,541 2,081 
 

2,541/5,375 2,541/5,374 

High valuations periods 

0.023 0.000 
 

0.080 0.040 
 

10.79 -5.45 
 

4.76 6.54 

(0.44) (-0.01) 
 

(2.98)** (1.12) 
 

(0.43) (-1.10) 
 

(0.33) (0.58) 

[-0.774,0.123] [-0.071,0.071] 
 

[0.028,0.133] [-0.030,0.110] 
 

[-38.01,59.59] [-15.14,4.23) 
 

[-23.79,33.30] [-15.54,28.62] 

1,425 1,187 
 

1,425/2,897 1,425/2,889 
 

1,470 1,223 
 

1,470/3,000 1,470/2,994 

Low valuations periods 

0.063 0.038 
 

0.045 0.054 
 

-13.92 -2.22 
 

-13.94 -13.36 

(2.37)** (1.96)** 
 

(3.17)** (3.13)** 
 

(-1.06) (-0.42) 
 

(-1.18) (-1.99)** 

[0.011,0.116] [-82e-07,0.075] 
 

[0.017,0.074] [0.020,0.087] 
 

[-39.78,11.93] [-12.52,8.08] 
 

[-37.08,9.20] [-26.51,-0.210] 

1,027 709 
 

1,043/2,311 1,043/2,311 
 

1,048 716 
 

1,064/2,375 1,064/2,373 

Panel B. Instrumental variables: Underwriter rank, log (total assets), log (equity), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 

dummies, stock exchange dummies 

Full sample 

0.031 0.036 
 

0.071 0.052 
 

-10.65 0.67 
 

-5.58 -5.99 

(0.94) (1.52) 
 

(4.30)** (2.40)** 
 

(-0.62) (0.05) 
 

(-0.59) (-0.77) 

[-0.034,0.097] [-0.010,0.083] 
 

[0.189,0.243] [0.009,0.095] 
 

[-44.18,22.87] [-24.82,26.17] 
 

[-24.08,12.93] [-21.27,9.28] 

2,474 2,033 
 

2,474/5,200 2,474/5,199 
 

2,540 2,080 
 

2,540/5,367 2,540/5,366 

High valuations periods 

-0.005 0.007 
 

0.080 0.042 
 

6.85 -7.52 
 

5.28 6.65 

(-0.10) (0.19) 
 

(3.00)** (1.19) 
 

(0.27) (-1.52) 
 

(0.36) (0.59) 

[-0.108,0.097] [-0.064,0.078] 
 

[0.028,0.132] [-0.029,0.110] 
 

[-42.44,56.14] [-17.24,2.20] 
 

[-23.40,33.95] [-15.46,28.75] 

1,425 1,187 
 

1,425/2,893 1,425/2,885 
 

1,470 1,223 
 

1,470/2,996 1,470/2,990 
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Table 4.6. Panel B. Cont. 

Low valuations periods 

0.073 0.043 
 

0.044 0.054 
 

-20.67 -4.16 
 

-14.16 -13.32 

(2.50)** (2.30)** 
 

(3.08)** (3.13)** 
 

(-1.32) (-0.77) 
 

(-1.21) (-1.99)** 

[0.016,0.130] [0.006,0.080] 
 

[0.016,0.072] [0.020,0.087] 
 

[-51.44,10.10] [-14.81,6.49] 
 

[-37.05,8.73] [-26.44,0.20] 

1,026 709 
 

1,063/2,307 1,042/2,307 
 

1,047 715 
 

1,063/2,371 1,042/2,369 

Panel C. Instrumental variables: Underwriter rank, log (total assets), default probability, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 

dummies, stock exchange dummies 

Full sample 

0.010 0.018 
 

0.069 0.039 
 

-7.37 3.15 
 

1.25 -3.93 

(0.26) (0.68) 
 

(3.48)** (1.16) 
 

(-0.38) (0.20) 
 

(0.11) (-0.44) 

[-0.067,0.877] [-0.034,0.071] 
 

[0.030,0.107] [-0.023,0.105] 
 

[-45.34,30.59] [-27.63,33.95] 
 

[-21.13,23.62] [-21.46,13.59] 

2,126 1,679 
 

2,126/4,199 2,126/4,199 
 

2,160 1,707 
 

2,160/4,283 2,160/4,283 

High valuations periods 

-0.060 -0.750 
 

0.071 0.005 
 

10.83 -6.74 
 

12.07 9.36 

(-0.85) (-0.11) 
 

(2.27)** (0.08) 
 

(0.37) (-1.19) 
 

(0.74) (0.73) 

[-0.198,0.078] [-13.85,12.34] 
 

[0.010,0.133] [-0.12,0.13] 
 

[-46.99,68.65] [-17.87,4.39] 
 

[-20.02,44.17] [-15.62,34.34] 

1,268 524 
 

1,268/2,440 1,268/2,434 
 

1,296 1,044 
 

1,296/2,501 1,296/2,495 

Low valuations periods 

0.124 0.040 
 

0.045 0.056 
 

-17.97 0.02 
 

-9.14 -12.79 

(1.72)* (1.68)* 
 

(2.70)** (2.82)** 
 

(-1.05) (0.52) 
 

(-0.54) (-1.65)* 

[-0.017,0.265] [-0.007,0.086] 
 

[0.012,0.078] [0.017,0.095] 
 

[-51.55,15.61] [-0.057,0.098] 
 

[-42.12,23.84] [-27.97,2.39] 

835 522 
 

852/1,759 852/1,759 
 

841 1,017 
 

858/1,782 858/1,782 

Panel D. Instrumental variables: Underwriter rank, log (total assets), float percentage, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 
dummies, stock exchange dummies 

Full sample 

0.020 0.035 
 

0.072 0.047 
 

-5.01 3.50 
 

-3.53 -5.86 

(0.61) (1.53) 
 

(4.24)** (2.09)** 
 

(-0.27) (0.26) 
 

(-0.36) (-0.73) 

[-0.045,0.086] [-0.010,0.080] 
 

[0.039,0.105] [0.003,0.091] 
 

[-40.72,30.70] [-22.46,29,46] 
 

[-22.90,15.83] [-21.62,9.91] 

2,405 1,959 
 

2,405/5,020 2,405/5,020 
 

2,453 1,997 
 

2,453/5,122 2,453/5,122 

High valuations periods 

0.041 0.018 
 

0.083 0.026 
 

6.58 -5.11 
 

7.63 10.72 

(0.79) (0.51) 
 

(3.03)** (0.59) 
 

(0.25) (-1.02) 
 

(0.51) (0.84) 

[-0.061,0.144] [-0.051,0.087] 
 

[0.029,0.136] [-0.059,0.111] 
 

[-44.34,57.49] [-14.88,4.67] 
 

[-21.74,36.99] [-14.19,35.64] 

1,403 1,164 
 

1,268/2,822 1,268/2,434 
 

1,439 1,197 
 

1,296/2,899 1,296/2,495 

Low valuations periods 

0.053 0.037 
 

0.041 0.051 
 

-15.96 -2.6 
 

-12.29 -13.84 

(1.91)* (1.87)* 
 

(2.68)** (2.76)** 
 

(-0.99) (-0.45) 
 

(-0.96) (-1.90)* 

[-0.001,0.107] [-0.002,0.075] 
 

[0.011,0.070] [0.015,0.088] 
 

[-47.43,15.51] [-13.99,8.79] 
 

[-37.38,12.81] [-28.15,0.46] 

980 662 
 

996/2,184 996/2,184 
 

992 667 
 

1,008/2,223 1,008/2,223 
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Table 4.7 

Selection bias adjusted first-day returns' and net IPO proceeds’ differences between BO-backed and stand-alone IPOs 

The table presents selection bias adjusted average net IPO proceeds' and first-day returns' differences between BO-backed and stand-alone IPOs. Each BO-backed IPO is matched with one (nearest neighbor) or 

many (smoothed weighted) stand-alone IPOs using the propensity score, full covariate, regression-adjusted local linear and inverse probability weighting matching approaches described in the text. I do all 

matching with replacement and use Abadie and Imbens (2006) standard errors to conduct statistical inference. The t-statistics, 95% confidence intervals and number of BO-backed IPOs matched appear below the 

average differences. When BO-backed IPOs are matched to many stand-alone IPOs, the total number of observations used in the estimation also appears. High valuations periods are months when the percentage 

of IPOs with an offer price above the midpoint of the initial offer range is above median. Low valuations periods are months when this percentage is below median. I take this measure from Jay Ritter's website. 

Δ(Proceeds) are in millions of dollars and Δ(Returns) in percentage points. ** denotes significance at a 5% level and * at a 10% level. 

Δ(Returns) 
 

Δ(Proceeds) 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 
 

One-to-one nearest neighbor 
 

One-to-many smoothed weighted 

Propensity score Full covariate  Regression-adjusted 

local linear 

Inverse probability 

weighting 
 Propensity score Full covariate  Regression-adjusted 

local linear 

Inverse probability 

weighting 
   

Panel A. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success dummies, stock 

exchange dummies 

Full sample 

-0.008 -0.027 
 

0.008 -0.003 
 

-130.88 -32.26 
 

-65.71 -205.71 

(-0.43) (-1.67)* 
 

(0.76) (-0.26) 
 

(-3.30)** (-3.29)** 
 

(-3.31)** (-3.16)** 

[-0.045,0,029] [-0.058,0.005] 
 

[0.082,0.112] [-0.022,0.017] 
 

[-208.67,-53.09] [-51.46,-13.07] 
 

[-104.59,-26.83] [-333.12,-78.31] 

848 697 
 

849/3,581 849/3,581 
 

854 701 
 

855/3,688 855/3,688 

High valuations periods 

0.010 0.003 
 

0.010 0.011 
 

-194.03 -61.54 
 

-62.57 -241.07 

(0.31) (0.12) 
 

(0.56) (0.71) 
 

(-2.70)** (-3.93)** 
 

(-1.96)** (-1.90)* 

[-0.054,0.074] [-0.044,0.049] 
 

[-0.024,0.044] [-0.020,0.043] 
 

[-334.77,-5.33] [-92.22,-30.87] 
 

[-125.73,-0.60] [-489.64,7.50] 

420 312 
 

423/1,891 423/1,887 
 

425 318 
 

428/1,956 428/1,952 

Low valuations periods 

-0.027 -0.042 
 

0.003 0.008 
 

-73.96 -49.39 
 

-63.37 -172.62 

(-1.56) (-2.34)** 
 

(0.27) (0.43) 
 

(-1.99)** (-2.72)** 
 

(-2.94)** (-2.92)** 

[-0.062,0.007] [-0.077,-0.007] 
 

[-0.016,0.022] [-0.029,0.045] 
 

[-146.99,-0.94] [-84.97,-13.82] 
 

[-105.65,-21.09] [-288.62,-56.62] 

417 295 
 

422/1,690 422/1,752 
 

418 296 
 

423/1,732 423/1,732 

Panel B. Instrumental variables: Underwriter rank, log (total assets), log (equity), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success dummies, 
stock exchange dummies 

Full sample 

-0.004 -0.029 
 

0.011 -0.001 
 

-156.68 -29.51 
 

-67.30 -190.04 

(-0.21) (-1.78)* 
 

(1.00) (-0.08) 
 

(-4.09)** (-3.01)** 
 

(-3.43)** (-3.67)** 

[-0.041,0.033] [-0.060,0.003] 
 

[-0.010,0.031] [-0.020,0.018] 
 

[-231.69,-81.67] [-48.71,-10.31] 
 

[-105.79,-28.81] [-291.63,-88.45] 

848 696 
 

849/3,681 849/3,574 
 

854 701 
 

855/3,681 855/3,681 

High valuations periods 

0.017 -0.008 
 

0.008 0.015 
 

-212.65 -62.74 
 

-67.18 -192.71 

(0.49) (-0.32) 
 

(0.47) (0.91) 
 

(-2.82)** (-4.00)** 
 

(-2.10)** (-2.47)** 

[0.050,0.084] [-0.055,0.039] 
 

[-0.027,0.044] [-0.017,0.047] 
 

[-360.27,-65.04] [-93.46,-32.03] 
 

[-129.92,-4.44] [-345.54,-39.87] 

424 312 
 

423/1,887 423/1,883 
 

425 318 
 

428/1,952 428/1,948 
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Table 4.7. Panel B. Cont. 

Low valuations periods 

-0.015 -0.060 
 

0.009 0.011 
 

-167.65 -34.47 
 

-62.70 -164.02 

(-0.77) (-3.28)** 
 

(0.86) (0.56) 
 

(-2.88)** (-1.90)* 
 

(-2.93)** (-3.10)** 

[-0.052,0.228] [-0.096,-0.024] 
 

[-0.011,0.028] [-0.026,0.047] 
 

[-281.72,-53.58] [-69.95,1.01] 
 

[-104.59,-20.81] [-267.61,-60.42] 

417 295 
 

422/1,687 422/1,687 
 

418 296 
 

423/1,729 423/1,729 

Panel C. Instrumental variables: Underwriter rank, log (total assets), default probability, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 

dummies, stock exchange dummies 

Full sample 

-0.008 -0.009 
 

0.011 0.000 
 

-170.61 -40.86 
 

-85.34 -195.48 

(-0.37) (-0.51) 
 

(0.92) (0.03) 
 

(-3.73)** (-3.53)** 
 

(-3.89)** (-3.69)** 

[-0.050,0.0334] [-0.042,0.024] 
 

[-0.012,0.034] [-0.022,0.022] 
 

[-260.34,-80.89] [-63.52,-18.20] 
 

[-128.33,-42.36] [-299.19,-91.77] 

718 570 
 

719/2,792 719/2,792 
 

721 573 
 

722/2,845 722/2,845 

High valuations periods 

0.004 0.027 
 

0.019 0.017 
 

-179.37 -63.25 
 

-94.40 -275.04 

(0.08) (0.94) 
 

(0.95) (0.93) 
 

(-1.81)* (-3.60)** 
 

(-2.53)** (-1.92)* 

[-0.098,0.107] [-0.029,0.083] 
 

[-0.021,0.059] [-0.019,0.054] 
 

[-373.30,14.55] [-97.68,-28.82] 
 

[-167.52,-21.28] [-556.32,6.23] 

358 247 
 

361/1,531 361/1,527 
 

360 249 
 

363/1,566 363/1,562 

Low valuations periods 

-0.012 -0.046 
 

0.003 0.019 
 

-123.66 -66.01 
 

-71.28 -156.69 

(-0.58) (-2.16)** 
 

(0.24) (0.87) 
 

(-2.10)** (-3.05)** 
 

(-3.12)** (-2.88)** 

[-0.052,0.282] [-0.088,-0.004] 
 

[-0.019,0.024) [-0.023,0.061] 
 

[-239.09,-8.24] [-108.36,-23.65] 
 

[-116.12,-26.43] [-263.22,-50.16] 

350 220 
 

354/1,261 354/1,261 
 

351 220 
 

355/1,279 355/1,279 

Panel D. Instrumental variables: Underwriter rank, log (total assets), float percentage, SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of total managers, road show success 

dummies, stock exchange dummies 

Full sample 

0.002 -0.013 
 

0.012 0.001 
 

-206.64 -39.12 
 

-71.94 -205.69 

(0.13) (-0.78) 
 

(1.14) (0.07) 
 

(-4.33)** (-3.16)** 
 

(-3.51)** (-3.15)** 

[-0.340,0.039] [-0.045,0.019] 
 

[-0.008,0.032] [-0.019,0.020] 
 

[-300.16,-113.12] [-63.40,-14.84] 
 

[-112.11,-31.76] [-333.79,-77.60) 

826 673 
 

827/3,427 827/3,427 
 

830 677 
 

831/3,500 831/3,500 

High valuations periods 

0.017 0.013 
 

0.017 0.013 
 

-174.03 -59.11 
 

-70.39 -225.23 

(0.39) (0.56) 
 

(0.94) (0.76) 
 

(-1.90)* (-3.60)** 
 

(-2.11)** (-1.98)** 

[-0.068,0.101] [-0.033,0.060] 
 

[-0.018,0.052] [-0.020,0.045] 
 

[-353.34,5.28] [-91.32,-26.90] 
 

[-135.71,-5.06] [-448.62,-1.85] 

410 297 
 

413/1,829 413/1,825 
 

413 301 
 

416/1,874 416/1,870 

Low valuations periods 

-0.020 -0.008 
 

0.005 -0.010 
 

-92.88 -32.34 
 

-67.20 -154.36 

(-1.09) (-0.43) 
 

(0.50) (-0.99) 
 

(-2.27)** (-1.68)* 
 

(-3.04)** (-2.90)** 

[0.055,0.016] [-0.045,0.029] 
 

[-0.015,0.025] [-0.031,0.010] 
 

[-173.19,-12.56] [-70.15,5.38] 
 

[-110.57,-23.83] [-258.54,-50.19] 

405 282   410/1,598 410/1,598   406 282   411/1,626 411/1,626 
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Table 4.8 

Post-IPO selection bias adjusted default and failure rates' differences between BO-backed and stand-alone IPOs 

The table presents selection bias adjusted average default rates' differences between BO-backed and stand-alone IPOs. Each BO-backed IPO is matched 

with one (nearest neighbor) or many (smoothed weighted) stand-alone IPOs using the propensity score, full covariate, regression-adjusted local linear and 

inverse probability weighting matching approaches described in the text. I do all matching with replacement and use Abadie and Imbens (2006) standard 

errors to conduct statistical inference. The t-statistics, 95% confidence intervals and number of BO-backed IPOs matched appear below the average 

differences. When BO-backed IPOs are matched to many stand-alone IPOs, the total number of observations used in the estimation also appears. I track 

companies for five years after the IPO, thus I do not examine IPOs after 2009. I define default as delisting due to bankruptcy or liquidation (CRSP 

delisting codes 400-490 and 574). I define failure as delisting due to bankruptcy, liquidation or other negative reasons i.e. failure to meet various trading 

requirements (CRSP delisting codes 400-490, 550-561 and 574-591). ** denotes significance at a 5% level and * at a 10% level. 

 
One-to-one nearest neighbor 

 
One-to-many smoothed weighted 

 Propensity score Full covariate  
Regression-adjusted 

local linear 
Inverse probability weighting 

  

Panel A. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of 

total managers, road show success dummies, stock exchange dummies 

Default 0.004 0.003 
 

0.119 0.003 

 
(0.57) (0.44) 

 
(0.84) (0.71) 

 
[-0.010,0.018] [-0.010,0.016] 

 
[-0.159,0.396] [-0.006,0.012] 

 
750 668 

 
750/3,536 750/3,535 

Failure -0.011 -0.002 
 

0.011 -0.020 

 
(-0.58) (-0.16) 

 
(1.01) (-0.87) 

 
[-0.047,0.025] [-0.031,0.026] 

 
[-0.010,0.032] [-0.066,0.026] 

 
750 668 

 
750/3,536 750/3,535 

Panel B. Instrumental variables: Underwriter rank, log (total assets), leverage ratio, SIC dummies, headquarter-state dummies, offer year dummies, ln 

(age),  number of total managers, road show success dummies, stock exchange dummies 

Default 0.000 0.002 
 

0.003 0.003 

 
(0.00) (0.31) 

 
(0.35) (0.60) 

 
[-0.015,0.015] [-0.011,0.015] 

 
[-0.012,0.017] [-0.006,0.011] 

 
726 644 

 
726/3,347 726/3,347 

Failure -0.029 -0.006 
 

0.016 -0.026 

 
(-1.42) (-0.36) 

 
(1.48) (-1.30) 

 
[-0.069,0.011] [-0.036,0.024] 

 
[-0.005,0.037] [-0.065,0.013] 

 
726 644 

 
726/3,348 726/3,347 

Panel C. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of 
total managers, road show success dummies, stock exchange dummies, all-star analyst dummy, syndicate dummy, overallotment percentage 

Default 0.012 0.003 
 

0.010 0.006 

 
(1.20) (0.46) 

 
(1.64) (1.53) 

 
[-0.008,0.032] [-0.010,0.017] 

 
[-0.0019,0.0216] [-0.003,0.022] 

 
497 668 

 
497/2,279 497/2,279 

Failure -0.016 0.002 
 

-0.017 -0.029 

 
(-0.63) (-0.14) 

 
(-0.82) (-0.90) 

 
[-0.066,0.034] [-0.033,0.029] 

 
[-0.058,0.0236] [-0.092,0.034] 

 
497 668 

 
497/2,279 497/2,279 

Panel D. Instrumental variables: Underwriter rank, log (total assets), leverage ratio, SIC dummies, headquarter-state dummies, offer year dummies, ln 

(age),  number of total managers, road show success dummies, stock exchange dummies, all-star analyst dummy, syndicate dummy, overallotment 
percentage 

Default 0.010 -0.001 
 

0.001 0.002 

 
(1.02) (-0.08) 

 
(0.20) (0.26) 

 
[-0.009,0.030] [-0.015,0.014] 

 
[-0.011,0.014] [-0.011,0.014] 

 
490 644 

 
490/2,231 490/2,231 

Failure -0.045 -0.010 
 

-0.010 -0.031 

 
(-1.52) (-0.61) 

 
(-0.62) (-1.10) 

 
[-0.102,0.013] [-0.041,0.021] 

 
[-0.041,0.0211] [-0.085,0.024] 

 
490 644 

 
490/2,231 490/2,231 
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Table 4.9 

Post-IPO selection bias adjusted default and failure rates' differences between VC-backed and stand-alone IPOs 

The table presents selection bias adjusted average default rates' differences between VC-backed and stand-alone IPOs. Each VC-backed IPO is matched 

with one (nearest neighbor) or many (smoothed weighted) stand-alone IPOs using the propensity score, full covariate, regression-adjusted local linear and 

inverse probability weighting matching approaches described in the text. I do all matching with replacement and use Abadie and Imbens (2006) standard 

errors to conduct statistical inference. The t-statistics, 95% confidence intervals and number of VC-backed IPOs matched appear below the average 

differences. When VC-backed IPOs are matched to many stand-alone IPOs, the total number of observations used in the estimation also appears.  I track 

companies for five years after the IPO, thus I do not examine IPOs after 2009. I define default as delisting due to bankruptcy or liquidation (CRSP 

delisting codes 400-490 and 574). I define failure as delisting due to bankruptcy, liquidation or other negative reasons i.e. failure to meet various trading 

requirements (CRSP delisting codes 400-490, 550-561 and 574-591). ** denotes significance at a 5% level and * at a 10% level. 

 
One-to-one nearest neighbor 

 
One-to-many smoothed weighted 

 Propensity score Full covariate  
Regression-adjusted 

local linear 
Inverse probability weighting 

  

Panel A. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of 

total managers, road show success dummies, stock exchange dummies 

Default -0.003 0.001 
 

0.004 0.001 

 
(-0.46) (0.16) 

 
(0.97) (0.18) 

 
[-0.018,0.011] [-0.011,0.013] 

 
[-0.004,0.011] [-0.007,0.009] 

 
2,360 2,035 

 
2,360/5,146 2,360/5,145 

Failure -0.037 -0.020 
 

-0.015 -0.028 

 
(-1.85)* (-1.23) 

 
(-1.39) (-2.08)** 

 
[-0.076,0.002] [-0.051,0.012] 

 
[-0.037,0.006] [-0.054,-0.0016] 

 
2,360 2,035 

 
2,360/5,146 2,360/5,145 

Panel B. Instrumental variables: Underwriter rank, log (total assets), return on assets, SIC dummies, headquarter-state dummies, offer year dummies, ln 

(age),  number of total managers, road show success dummies, stock exchange dummies 

Default -0.007 0.000 
 

0.002 0.001 

 
(-0.80) (0.04) 

 
(0.37) (0.13) 

 
[-0.024,0.010] [-0.013,0.014] 

 
[-0.007,0.010] [-0.009,0.010] 

 
2,035 1,705 

 
2,035/4,205 2,035/4,205 

Failure -0.045 -0.005 
 

-0.016 -0.053 

 
(-2.00)** (-0.26) 

 
(-1.24) (-2.38)** 

 
[-0.089,-0.001] [-0.039,0.030] 

 
[-0.040,0.009] [-0.097,-0.009] 

 
2,035 1,705 

 
2,035/4,205 2,035/4,205 

Panel C. Instrumental variables: Underwriter rank, log (total assets), SIC dummies, headquarter-state dummies, offer year dummies, ln (age),  number of 

total managers, road show success dummies, stock exchange dummies, all-star analyst dummy, syndicate dummy, overallotment percentage 

Default -0.002 -0.001 
 

0.000 0.004 

 
(-0.17) (-0.17) 

 
(-0.01) (0.72) 

 
[-0.022,0.018] [-0.013,0.011] 

 
[-0.010,0.010] [-0.006,0.013] 

 
1,719 2,035 

 
1,719/3,504 1,719/3,501 

Failure -0.014 -0.018 
 

-0.005 -0.017 

 
(-0.53) (-1.15) 

 
(-0.39) (-1.07) 

 
[-0.066,0.038] [-0.049,0.013] 

 
[-0.031,0.021] [-0.048,0.014] 

 
1,719 2,035 

 
1,719/3,504 1,719/3,501 

Panel D. Instrumental variables: Underwriter rank, log (total assets), return on assets, SIC dummies, headquarter-state dummies, offer year dummies, ln 
(age),  number of total managers, road show success dummies, stock exchange dummies, all-star analyst dummy, syndicate dummy, overallotment 

percentage 

Default -0.001 -0.001 
 

-0.003 0.001 

 
(-0.06) (-0.18) 

 
(-0.51) (0.21) 

 
[-0.021,0.020] [-0.016,0.013] 

 
[-0.014,0.008] [-0.010,0.013] 

 
1,575 1,705 

 
1,575/3,110 1,575/3,110 

Failure -0.020 -0.004 
 

-0.010 -0.045 

 
(-0.70) (-0.21) 

 
(-0.69) (-1.86)* 

 
[-0.075,0.035] [-0.038,0.030] 

 
[-0.040,0.091] [-0.093,0.002] 

 
1,575 1,705 

 
1,575/3,110 1,575/3,107 
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Table 4.10 

Regressions of default dummy on firm and IPO characteristics 

The default models are estimated for 1975-2014 with yearly observations using the multi-period logit technique (Shumway, 

2001). The dependent variable is a dummy variable equal to one if the company is delisted due to bankruptcy or liquidation 

(CRSP delisting codes 400-490 and 574). Financial variables are lagged by one year. NITA is the ratio of net income to 

total assets. TLTA is the ratio of total liabilities to total assets. To proxy for market conditions at the time of the IPO, I use 

two measures: The average market first-day return and the logarithm of the number of IPOs in the three months prior the 

IPO. I construct these measures with data from Jay Ritter's website. Other controls include the ratio of current assets to 

current liabilities, the natural logarithm of age and interaction terms of industry effects and financial variables (Chava and 

Jarrow, 2004). Industry fixed effects are based on Chava and Jarrow's (2004) wide industry classifications. Parameter 

estimates are given first followed by chi-square values in parentheses. ** denotes significance at a 5% level and * at a 10% 

level. 

  (1) (2) (3) (4) 

BO dummy -0.614** (-2.48) -0.563** (-2.24) -1.778 (-0.99) -0.644** (-2.59) 

VC dummy -0.416** (-2.60) -0.342** (-2.04) -0.372 (-0.37) -0.396** (-2.35) 

NITA -0.579** (-4.05) -0.583** (-4.06) -0.581** (-4.06) -0.581** (-4.02) 

TLTA 1.755** (8.63) 1.761** (8.66) 1.764** (8.67) 1.762** (8.64) 

Log (number of 

previous IPOs) * BO 

dummy 
    

0.282 (0.69) 
  

Log (number of 

previous IPOs) * VC 

dummy 
    

0.00635 (0.03) 
  

Constant -7.289** (-25.3) -8.763** (-16.05) -8.629** (-14.40) -7.470** (-24.13) 

Other controls 
 

Yes 
 

Yes 
 

Yes  
 

Yes 

Industry FE 
 

Yes 
 

Yes 
 

Yes  
 

Yes 

Year FE   No   Yes   Yes    Yes 

Firm-year observations 
 

65,378 
 

65,378 
 

65,378 
 

65,378 

Firms 
 

6,943 
 

6,943 
 

6,943 
 

6,943 

Defaulted firms 
 

218 
 

218 
 

218 
 

218 

Pseudo R-squared 
 

0.065 
 

0.072 
 

0.072 
 

0.069 

Log likelihood 
 

-1,328.2 
 

-1,319.3 
 

-1,319.0 
 

-1,323.4 

Wald test 
 

547.95** 
 

580.49** 
 

581.59** 
 

580.39** 

Area under Curve   0.77   0.79   0.78   0.78 
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Table 4.11 

Regressions of failure dummy on firm and IPO characteristics 

The failure models are estimated for 1975-2014 with yearly observations using the multi-period logit technique (Shumway, 

2001). The dependent variable is a dummy variable equal to one if the company is delisted due to bankruptcy, liquidation or other 

negative reasons i.e. failure to meet various trading requirements (CRSP delisting codes 400-490, 550-561 and 574-591). 

Financial variables are lagged by one year. NITA is the ratio of net income to total assets. TLTA is the ratio of total liabilities to 

total assets. To proxy for market conditions at the time of the IPO, I use two measures: The average market first-day return and 

the logarithm of the number of IPOs in the three months prior the IPO. I construct these measures with data from Jay Ritter's 

website. Other controls include the ratio of current assets to current liabilities, the natural logarithm of age and interaction terms 

of industry effects and financial variables (Chava and Jarrow, 2004). Industry fixed effects are based on Chava and Jarrow's 

(2004) wide industry classifications. Parameter estimates are given first followed by chi-square values in parentheses. ** denotes 

significance at a 5% level and * at a 10% level. 

  (1) (2) (3) (4) 

BO dummy -0.664** (-6.81) -0.629** (-6.36) -1.203* (-1.74) -0.665** (-6.82) 

VC dummy -0.660** (-11.12) -0.619** (-10.08) -0.884** (-2.58) -0.618** (-10.05) 

NITA -2.197** (-3.40) -2.163** (-3.37) -2.162** (-3.38) -2.221** (-3.47) 

TLTA 1.700** (1.98) 1.720* (1.93) 1.712* (1.93) 1.709** (1.96) 

Log (number of 

previous IPOs * BO 

dummy 
    

0.135 (0.83) 
  

Log (number of 

previous IPOs * VC 

dummy 
    

0.060 (0.78) 
  

Constant -5.293** (-7.67) -6.2341 (-8.47) -6.082** (-8.14) -5.349** (-7.66) 

Other controls 
 

Yes 
 

Yes 
 

Yes  
 

Yes 

Industry FE 
 

Yes 
 

Yes 
 

Yes  
 

Yes 

Year FE   No   Yes   Yes    Yes 

Firm-year observations 
 

65,378 
 

65,378 
 

65,378 
 

65,378 

Firms 
 

6,943 
 

6,943 
 

6,943 
 

6,943 

Failed firms 
 

1,772 
 

1,772 
 

1,772 
 

1,772 

Pseudo R-squared 
 

0.139 
 

0.141 
 

0.145 
 

0.140 

Log likelihood 
 

-6,974.5 
 

-6,953.7 
 

-6,953.1 
 

-6,963.3 

Wald test 
 

2,317.25** 
 

2,319.19** 
 

2,315.45** 
 

2,328.81** 

Area under Curve   0.84   0.84   0.84   0.84 
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4.7 Figures of Chapter 4 

 

 

Figure 4.1. IPOs per year. The figure plots the number of all IPOs, BO-backed IPOs and VC-

backed IPOs per year for the period 1975 to 2013, excluding those with an offer price below 

$5.00 per share, a size below 1.5 million, unit offers, American Depository Receipts (ADRs), 

closed-end funds, natural resource partnerships, acquisition companies, Real Estate Investment 

Trusts (REITs), bank and Savings and Loans (S&L) IPOs. I classify growth-capital backed IPOs 

as VC-backed. 
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Conclusions 

The three papers of this thesis explore default and credit performance determinants in private 

firms (SMEs), listed firms (especially mid and small-caps), and companies that are in the 

transition phase between private and public ownership (IPOs) respectively. The work has several 

implications for banks, investors and policy makers by (i) uncovering regional corporate default 

risk vulnerabilities, (ii) explaining the observed anomalous pricing of default risk in the stock 

market, and (iii) exploring the impact of alternative investment funds such as private equity and 

venture capital on the default risk of their portfolio companies. 

The first paper uses macro-economic variables to compliment firm-specific data, enhancing 

the models’ forecasting ability, especially at the aggregate default incidence level for different 

sovereign environments in Europe. So, while fundamental, firm-specific variables show 

important stable and robust levels of accuracy across countries, the aggregate level of distress is 

considerably enhanced by adding macro-determinants and cross-country data. The paper 

validates the superiority of models that incorporate macroeconomic dependencies, suggested by 

previous research, also in the case of SMEs. Specifically, macro variables differ among 

European regions based on region-specific conditions and characteristics. Since our regional 

distress models always perform better than a generic model estimated for the regional sub-

samples, we conclude that their use can lead to performance improvements in the risk 

management of international SME portfolios. 

The second paper tackles a thorny and controversial issue in Finance involving risk and 

return expectations versus actual results. We provide an explanation for the anomalous pattern 

based on an argument that rests on the impact of systematic default risk (SDR) on returns of 
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individual firms. We show that the physical PD is usually a poor measure of exposure to 

aggregate default risk because stocks in the highest PD quintile have relatively low SDR 

exposure. Investors indeed require a premium to hold stocks that are riskier when aggregate 

default risk is higher but they do not require compensation to hold stocks with high firm-specific 

risk because these stocks are a source of portfolio risk diversification. Our results suggest that 

riskier stocks, as measured by the physical PDs, will tend to under-perform because they have, 

on average, lower exposure to aggregate default risk. Their riskiness is mostly idiosyncratic and 

can be diversified away. On the contrary, it is the systematic component of default risk, 

measured by the SDR betas, that requires a return premium. 

The third paper involves assessing the impact of PE-backed firms which tap the IPO market 

as an exit strategy and compares these IPOs with non-PE backed IPOs. The different incentives 

of PE investors and managers can strongly impact subsequent performance and default risk. 

These professional insiders may be more capable of taking advantage of information 

asymmetries compared to insiders of stand-alone companies. But they also have more 

reputational capital at stake, a factor which tends to be known by the market. We find evidence 

against the hypothesis that PE sponsors “cheat” the market  . The financial situation of both BO 

and VC-backed companies in the pre-IPO year, as measured by their default risk, is similar to 

that of their peers. Moreover, PE sponsors do not target their IPOs in hot periods any more than 

do managers of stand-alone companies. They also are not more prone to rush their companies 

into premature IPOs and do not inflate valuations. Finally, PE-backed companies do not default 

more often post-IPO. This is evidence that PE sponsors are not more likely to seek to sell firms 

with poor prospects (“unload lemons”) in the IPO market. 
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