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Abstract. In this article we will take a look at a variant of the PageRank algorithm
initially used by S. Brinn and L. Page to rank homepages on the Internet. The aim of
the article is to see how we can use the topological structure of the graph to speed up
calculations of PageRank without doing any additional approximations. We will see
that by considering a non-normalized version of PageRank it is easy to see how we
can handle different types of vertices or strongly connected components in the graph
more efficiently. Using this we propose two PageRank algorithms, one similar to the
Lumping algorithm proposed by Qing et al which handles certain types of vertices
faster and last another PageRank algorithm which can handle more types of vertices
as well as strongly connected components more effectively. In the last sections we will
look at some specific types of components as well as verifying the time complexity of
the algorithm.
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1 Introduction

While the PageRank algorithm initially used by S. Brinn and L. Page to rank
homepages on the Internet is very efficient [2], networks such as the graph
describing the homepages and their links on the Internet are often huge, and
further more are quickly growing. This calls for increasingly higher require-
ments on algorithms working on this kind of data. Some studies have been
made in looking at how certain parameters influence the convergence speed
and stability, such as how the constant ¢ affect the condition number and con-
vergence speed [6,8]. While many steps have been made to improve the method
by for example aggregating webpages that are close 7] or not compute PageR-
ank for pages that are deemed to have already converged [10]. Another method
to speed up the algorithm is to remove so called dangling pages (pages with
no links to any other page), and then calculate their rank at the end [1,9]. A
similar method can also be used for root nodes (pages with no links from any
other pages) [12]. The first method is similar to the one proposed by Qing Yu
et al [12], while the second aims to improve the method further. Specifically
we will look at the topological structure of the graph and see which types of
vertices or strongly connected components in the graph can be handled more
efficiently. To help with this we will need to define a slightly different version of
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PageRank without the normalization in the original formulation, which allows
for us to compare the rank between two different graphs more easily.

While we above talked about webpages and links, in the rest of the article
we will mainly consider any simple directed graph G with vertices V' (pages)
and edges E (links). It is also worth to note that while we assume the ba-
sic underlying algorithm used to calculate PageRank is the Power method as
described in [3], any method could actually be used. We are merely looking
at what part of the graph we need to use such a method for, and for which
parts we can do something better. Traditionally PageRank is defined as in
Definition. 1.

Definition 1. PageRank R(!) for vertices in system S consisting of n vertices
is defined as the (right) eigenvector with eigenvalue one to the matrix:

M=cA+gu")" +(1-clue’ (1)

where A is the adjacency matrix weighted such that the sum over every non-
zero row is equal to one (size n X n), g is a n X 1 vector with zeros for vertices
with outgoing edges and 1 for all vertices with no outgoing edges, w is an x 1
non-negative vector with ||ull; = 1, e is a one-vector with size n x 1 and
0 < c < 1is a scalar.

In this article we will use a slightly different version of PageRank with the
main difference in that it does not normalize the rank, resulting in an easier
handling of multiple graphs and their rank.

Definition 2. ([4]) PageRank R for system S is defined as

RrRM
R®) = 73””1, d=1-> cATRW (2)

where v is a non-negative weight vector such that u x v.

The main difference between R and R®) is that the rank between two dif-
ferent systems can freely be compared between them in R®) while this is not
easily done in R™") even if the two graphs have the same number of vertices, this
because the rank is normalized depending on number of vertices in a system .
Note that while v and w in Definition. 1 need to be proportional (v « v), v can
be scaled in any way deeped appropriately as long as it is still a non-negative.
Specifically this means that we do no need to re-scale v when adding or sub-
tracting a vertex from the system. Similarly we note that the only difference
between R and R®) is in the scaling, thus the two versions are obviously
proportional to eachother. (R(3) is written with a ”73” rather than ”2”in order
to keep it consistent with our other work).

R™ can be defined as the stationary distribution of some Markov chain,
similarly R®) can also be defined by considering a random walk on a graph.

Definition 3. Consider a random walk on a graph described by A. We walk
to a new vertex from our current with probability 0 < ¢ < 1 and stop the
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random walk with probability 1 — ¢. Then PageRank R®) for a single vertex
can be written as

RY =(v+ > wPlei—e) <§:(P(€j—>6j))k> (3)

EiGS,ei?ﬁe]‘ k=0

where P(e; — e;) is the probability to hit node e; in a random walk starting
in node e;. This can be seen as the expected number of visits to e; if we do
multiple random walks, starting in every vertex a number of times desribed by
v.

It is easy to prove that R(3) as defined in Definition. 3 and Definition. 2 are
equivalent, the proof follows very closely that of a slightly different definition
of PageRank in [5].

Theorem 1. The two definitions Definition. 2 with PageRank R®) as a scaled
version of RY and Definition. 3 with PageRank constructed by considering a
random walk are equivalent.

Proof. Starting with Definition. 3:

R§»3) = Z v, P(e; — e;) +v; <§: (P(ej — 6j))k> . (4)

61‘65,61‘756]‘ k=0

(CAT)fj is the probability to be in vertex e; starting in vertex e; after k steps.
Multiplying with the vector v therefor gives the sum of all the probabilities to
be in node e; after k steps starting in every node once weighted by v. The
expected total number of visits is the sum of all probabilities to be in node e;

for every step starting in every node:

R = ((i (CAT)k> v) . (5)
k=0 j

> reo (cAT)* is the Neumann series of (I — cA)~! which is guaranteed to
converge since cA T is non-negative and have column sum < 1. This gives:

R®) = ((i (cAT)k> v) =I-cA") v . (6)

k=0

We continue by rewriting R(":
RY =MRY « 1-cANRY = (cug” + (1 —c)ue" ) RY . (7)
Looking at the right hand side we get:

(cug” + (1 — c)ue)RY = (1 —c+ CZR&I)) u = (1 - CZATR(1)> U
(8)
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where RS is the PageRank of all vertices with no outgoing edges. This gives:
RW = (I—-cAT)™! (1—CZATR(1)>U . 9)

From Definition. 2 we have

R _ ROl _ ooy _ B9

= = . (10)
d vy
Substituting (10) into (9) gives:
(3) — (T_ ~AT I _ T (1)
R = (1—cAT) 2 (1 > AR )u . (11)
Sinced =1 - cATR® and v = ||v||;u we end up with
R® =(I—cAT) v . (12)

Which is the same as what we got using Definition. 3. O

We will mainly use Definition. 3 while Definition. 2 is mainly there to show
that it is very simple to go from R to R®) and to show that R(") and R®)
are proportional, thus corresponds to the same ranking.

2 PageRank for Different Types of Vertices

Our aim is to use the topology of the graph in order to find an effective method
to calculate PageRank by handling different types of vertices differently. We
start by defining five different types of vertices.

Definition 4. For the vertices of a simple directed graph with no loops we
define 5 distinct groups
GlaG27"'7G5

1. G;: Vertices with no outgoing or incoming edges.

2. (9 Vertices with no outgoing edges and at least one incoming edge (also
called dangling nodes).

3. G3: Vertices with at least one outgoing edge, but no incoming edges (also
called root nodes).

4. Gy4: Vertices with at least one outgoing and incoming edge, but which is
not part of any directed cycle (no path from the vertex back to itself).

5. (5: Vertices that is part of at least one cycle.

From the construction of the five groups it should be obvious that every vertex
belong to a single group, with no vertices belonging to multiple or none at all.
Note that Qing Yu et al [12] also divide the vertices into five groups however
in a slightly different way. They group it by dangling and root nodes (G2 and
G3), vertices that can be made into a dangling or root node by recursively
removing dangling and root nodes (part of G4) and remaining vertices (part of
G4 and Gs).
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2.1 Vertices in G,

Vertices in G; corresponds to the simplest possible vertices with no edges either
to or from of the vertex. For these types of vertices we formulate the following
theorem.

Theorem 2. We let e, € G and e; be any other vertex, then
RS;) =y, and Peg —e;) =0 . (13)

Proof. We look at R ) as defined in Definition. 3. Since there obviously is no
path from e, back to 1tself we have

Z (eg = €g)) k:1. (14)

k=0

Since no other node links to ey, we have P(e; — e4) = 0 for all e; as well, and

we end up with R(3) (04 v4)(1) = vy. Since ey links to no other node it’s
obvious that P(e, — ¢;) =0 as well. O

The first part means that the PageRank R®) of vertices in G is always equal
to their weight in v, while the second part means that the vertex have no
influence on the PageRank of any other verticesx and can therefor simply be
removed from the PageRank calculationof other vertices altogether. We note
that we can effectively calculate the rank of vertices in G; whenever we want
(before or after finding the rank of all other vertices).

2.2 Vertices in G4

Vertices in G are what is often called ”dangling nodes” with the small addition
that there is at least one other vertex linking to it (so as to not belong to
G1). Tt is already well known how to handle this type of vertices effectively
as described in for example [1] where these vertices are first removed from the
system, then PageRank is calculated for remaining vertices and last PageRank
of these ”dangling nodes” are found. We still take a short look at them here as
well since it is very clear how to handle them using the definition of PageRank
we use.

Theorem 3. We let e, € G2 and e; be any other vertex, then

Rl(ez) = Z viP(e; = eg) + vy, and Ple, —e;) =0 . (15)
e, €S, 51'75@51

Proof. We look at Rg) as defined in Definition. 3. Since there obviously is no
path from e, back to itself we have

D (Pleg —eg))F =1 . (16)

k=0
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However since there is at least one incoming edge to e, we have

Z viP(e; = e4) >0 . (17)
e; €S, ei?éeg

Since e4 have no outgoing edges, it is obvious that P(e; — €;) = 0 as well. O

From the second part it is obvious that the vertex e, € G2 does not influence
the PageRank of any other vertex and can therefor safely be removed from the
graph for the PageRank calculation of all other vertices. We also see that since
there is no path back to itself, if we know the PageRank of all other vertices
we can calculate the PageRank of e,. In fact since Rg‘?) = Z?zl cainS’) + v;
we can easily find the PageRank of vertices in Go as

ng’) = Z caigRg’) + v (18)
i=1

which is a simple vector x vector multiplication. This means that as long as
we have the PageRank of all vertices not in GG; or G2 we can then find the
PageRank of those in G2 very quickly as well. We note that in order to find
the rank of the vertices in G5 we first need to calculate the rank of all other
vertices.

In practice this means that we start by dividing the whole system S in two
parts S = SoU Sy where Sy is the vertices in G5 in S and Sy contains all other
vertices. This gives system matrix

0 0 (19)

cA — |:CAO CAd:|
where Ay is the part of A with edges to vertices not in G, and A4 contains the
edges to vertices in G3. In the same way we have the weight vector V' = [vg, v4]
where v is the part of the weight vector corresponding to vertices in Go. Given
the PageRank of the part without the vertices in Ga: Rg? the PageRank of
the vertices in G5 is

RY =cA] Ry + v, . (20)

It is also possible to repeatedly remove vertices in G until no longer possible
and then apply the above procedure multiple times, once for every set of vertices
removed.

2.3 Vertices in G3
For vertices in G5 we get something similar as for those in Gs.

Theorem 4. We let e, € G3 and e; be any other vertex, then

RS:) =g, and Z Pleg —€) >0 . (21)
e; €S, eiFey
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Proof. Again we look at R((i as defined in Definition. 3. Since there obviously
is no path from ey back to 1tse1f we have

Z (eg —eg))f=1. (22)
k=0

Since there is no incoming edges to ey, we have P(e; — e4) = 0 for all e; as

well, and we end up with Rg?;) = (0+vgy)(1) = vy. Since e4 has outgoing edges

there is at least a path from e, to the vertices e4 links to

> Pleg—e)>0. (23)

€ €S, ejFey
O

While vertices in GGo did not change the PageRank of other vertices and could
be calculated after other vertices effectively, vertices in G5 like those in G can
easily be calculated before all other vertices. However they cannot be ignored
when calculating the PageRank of remaining vertices. We take a closer look at
calculating PageRank of other vertices given the Pagerank of a vertex e4 € Gs.

Theorem 5. Given Ré‘z) = vy, eg € G3. We can write the PageRank of
another general vertex e; as

oo
RS) = | v; + vgcaq; + Z (vj +vgcaqi)Ple; — e;) (Z (e; — ;) )

ej €S k=0
ejFei,eq
(24)
where cag; is the one-step probability to go from ey to e;.

Proof. Again we look at RS';) as defined in Definition. 3. Since we know that
there is no path from e; back to e, we know that the right hand side will be
identical for all other vertices. We rewrite the influence of e, using

vgP(eg — €;) = vgcag; + Z vgcag; Ple; — e;) . (25)
ejES
ejFei,eq

We can now rewrite the left sum in Definition. 3:

Z v;P(e; — €;) = vgcagq + Z (vj +vgcaqj)Ple; — e;) (26)
6165,61758]' 268
€ 7F€i,€g

which when substituted into (3) proves the theorem. 0O

It is clear that while e, influences the PageRank of other vertices, if we change
the weights of the vertices linked to by e, € G5 we can remove e, when cal-
culating the PageRank of other vertices. In a way it is similar to the vertices
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in G5 but rather instead of first computing the main part and then compute
PageRank of the vertices in Gy we first compute the PageRank of vertices in
(G5 and then the main part of the vertices.

Using Theorem 4 we can find the PageRank of any vertex in G3 as the
weight v; for that vertex. Likewise it is also simple to find the rank of any
vertices whose incoming edges are only from vertices in Gg.

To find the PageRank of the remaining vertices we first need to modify their
initial weights to accommodate for the PageRank of the vertices in G3 and then
calculate PageRank with the new weight vector. We recall that PageRank can
be seen as a sum of all probabilities of ending up in a vertex when starting in
every vertex once with an initial ”probability” equal to its weight.

This means that we only need to change the weights for the vertices that
are linked to by the vertices in G35 and not any other. We get the new weights
in the same way as when we calculated the PageRank of the vertices with
incoming edges from only vertices in G3:

Vimew = Z cajiR§-3) +v; . (27)
€j€G3

Now that we have the new weights it’s a simple matter of applying the PageR-
ank algorithm of choice on the remaining system and get their PageRank.

2.4 Vertices in G4

Vertices in G4 can be seen as transient states, once you leave them you can
never get back. But compared to G5 and G3 there are edges both to and from
of the vertex. While not as simple as for the previous groups we will see that
vertices in G4 can sometimes change group to one of Gy or G3 when a vertex
in G2 or (B3 is removed from the graph.

Theorem 6. We let e, € G4 and e; be any other vertex, then

RSZ) = Z viP(e; = eg) + vy, and Z P(eg —€;) >0 . (28)
e; €S, eiFey e €S, eite,

Proof. Again we look at RE;;) as defined in Definition. 3. Since there is no path
from e, back to itself (e, is not part of any cycle) we have > p  (P(ey — €,4))" =
1. However since there is at least one incoming edge to e, and e, links to at
least one other vertex we have

Z v;P(e; = e4) >0, and Z Pleg —e;)) >0 . (29)
e; €S, eiFey e; €S, ejFey

O
Similar to Gy we see that if we know the PageRank of all other vertices in
G3,G4, G5 we can easily find the PageRank of one vertex in G4 as well. Sim-

ilarly if we know the PageRank of e, we can remove e, from the graph by
changing weights as we did for vertices in GG3. This might look like a problem
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in that we would need the PageRank of the other vertices to increase the speed
of calculating PageRank of these same vertices. However since e, € G4 is not
part of any cycle, the PageRank of any vertex for which can be reached from e,
does not influence the PageRank of any vertex which can reach e,. Vertices for
which there is no path in either direction with e, obviously doesn’t effect nor
are affected by the PageRank of e,. The obvious practical use of these vertices
is the fact that they can change from G4 to either of G or G3 when removing
vertices in Gy or G3

Not all vertices in G4 can change in this way though as in the case when
there are vertices in G5 with paths both from and to e,. In this case more
information is needed.

2.5 Vertices in G5

The existence of vertices in G5 is the reason we need methods such as the
Power method. We will not go deeper into if it is possible to divide G5 itself
into more groups where some might have more effective calculation methods.
For vertices in G5 we can make no obvious simplification as for the other
groups. We see that the biggest obstacle in how fast we can find the PageRank
(theoretically) depends on the existence and size of cycles in the graph rather
than tree structures.

2.6 A Simple Scheme to Calculate PageRank

We are now ready to give a simple scheme for calculating PageRank in which
we combine what we have found this far to calculate PageRank. This method
is very similar to the one proposed by Qing et al [12] apart from the first step
made possible because of how we define PageRank.

1. If possible split up the system into multiple disjoint parts Sy, S1, Sz, ... and
calculate PageRank for every subsystem individually.

2. Repeatedly remove all vertices in Gy and any new vertices in Gy created
until there are no longer any vertices in Go left.

3. Remove vertices in G3 in the same way, what is left we call the skeleton.

4. Calculate PageRank of all vertices in (G5 as discussed in Sect. 2.3

5. Change the weight vector for the skeleton to accommodate the influence of
the vertices in G5 as discussed in Sect. 2.3.

6. Calculate PageRank of the skeleton using any method of choice.

7. Calculate the PageRank of the vertices in G5 using the PageRank of the
skeleton and vertices in G5 as discussed in Sect. 2.2.

This could potentially be made faster by improving the main PageRank cal-

culation in (6) by for example an adaptive PageRank algorithm [10] or by
systematically aggregating the vertices as in [7].
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3 PageRank for Different Strongly Connected
Components

While removing vertices as discussed earlier can give a significant improvement
when calculating PageRank, there is one problem in that a large amount of
the vertices in G4 could lie between different strongly connected components
(henceforth only written as ”component”), and thus will not be removed ac-
cording to the earlier scheme. To guarantee that we can remove all of these
as well as give a natural way to divide the problem in smaller problems (for
parallel computing for example) we will take a look at the topology of the
graph.

By first finding all components of the graph and their topological ordering
for example by using Tarjan’s algorithm [11]. By regarding every component as
a single vertex we can partition them in the previously found groups Gy, ... Gs.
The rank of these components can be handles in a way similar to that of the
single vertices in the previous section.

Component in G1. As with a vertex in GG1, PageRank of a connected component
with no edges to or from any other connected component can be calculated by
itself at any time during the calculations according to the scheme in Sect. 2.6.

Component in Go. As with a vertex in G5, PageRank of a component with no
edges to any other component does not influence the PageRank of any other
component. Similarly we can find the PageRank of the component itself by
first calculating for all other components leading to it and then change initial
weight vector as we did when considering a vertex in G5 in Sect. 2.3.

Component in G3. Once again we can compare it with a single vertex in the
same group, since the component have no incoming edges from any other com-
ponents its PageRank we can calculate its PageRank before any other. In the
same way as for single vertices we need to adjust the weights for vertices outside
the component linked to by any edge in the component.

Component in G4 and Gs. Since G5 will be empty (otherwise they would
compromise a single larger component), all components in G4 will eventually be
reduced to one in G if we repeatedly calculate the PageRank of all components
in G, adjust the weight for all other vertices and remove them from the graph.

3.1 A New Scheme to Calculate PageRank
This gives us a new scheme with which to calculate PageRank:

1. Find components of the graph and their topological order. Optionally
merge 1-vertex components.

2. Calculate PageRank of all components in G5 using the scheme in Sect. 2.6.

3. Adjust the weight vector according to the PageRank of the components we
just calculated and remove them from the graph.
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4. Repeat step 2-3 until there is no components in Gz left.
5. Calculate PageRank of remaining components (in Gy).

Note that PageRank for components in G; can be calculated at any time.
This second method depend on a fast way to find components in the graph
which may or may not be worth it depending on the structure and size of the
graph as well as the error tolerance used. There is also the possibility that
the extra overhead needed compared to the previous algorithm, both in finding
the components as well as the handling of them during the PageRank steps
themselves could influence the performance of the algorithm negatively.

One advantage when partitioning the graph into multiple components is
that it makes it possible to choose the most suitable algorithm for every com-
ponent rather than one method for the whole graph.

3.2 Small components

While the numerical methods used to calculate PageRank for one component
is done in linear time in the number of edges, the number of iterations needed
is generally not that much smaller than for a very large component. Because
of this it is often more suitable to solve the equation system analytically if the
graph is small, say 10 vertices or less.

Using equation 6 we get the equation system (I—cAT)R®) = v which we
already know to have a unique solution found using any standard method.

Calculating PageRank for these components analytically have the added
benefit that no extra error is introduced from the method itself, while the
numerical methods will always have a small error. Regardless it should be
noted that even if a component is calculated analytically, there could still be
other components with edges targeting vertices in this components, hence the
initial weight v could have some small errors (decided by the error tolerance
for the numerical methods).

Iin many real networks such as a graph over the Web there is often one very
large components but also a large number of very small components. Even if
these components are very small components, because of the great number of
them they signify a significant amount of the total number of vertices and time
needed.

3.3 Acyclic subgraphs

If 1-vertex components are merged in step 1, then this corresponds to a sug-
braph with no cycles. The algorithm for acyclic subgraphs exploits the fact
that there are no cycles to calculate the PageRank of the graph using a varia-
tion of Breadth first search. Since An acyclic subgraph have no vertices in G
the value in the right hand paranthesis in 3 is equal to one for all vertices, thus
the rank of a vertex v can be decided from the initial weight and the rank of
all vertices with incomming edges to v in the same way as we did for those in
Gs.

The algorithm start by calculating the in-degree of every vertex and store
it in v.degree for each vertex v, this can be done by looping through all edges
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in the subgraph once. We also keep a value v.rank initialized to corresponding
value in the weight vector for each vertex. The breadth first search itself can
be described by the following psuedocode.

for each vertex v
if v.degree ==
Queue. enqueue (v)
while Queue.size > 0
w = Queue.dequeue()
for each edge (w,u)
u.rank = u.rank+w.rank*W(w,u)
u.degree—-
if (w.degree == 0) Queue.enqueue(w)
end
w.degree--—
end
end
end

Here W(w,u) is the weight on the (w,u)-edge. The difference between this
and ordinary BFS is that we only add a vertex v to the queue when we have
visited all incomming edges to v rather than when we have visited the first
incomming edge as for ordinary breadth first search. We also loop through all
edges to ensure that we wisit each vertex once since there could be multiple
initial vertices which have a zero in-degree.

Looking at the time complexity it is easy to see that we visit every vertex
and every edge once doing constant time work, hence we have the same time
complexity as for ordinary breadth first search O(|V|+|E|) =~ O(|E|), if |E| >
|V|. While it has the same time complexity as most numerical methods to calcu-
late PageRank, in practice it will often be much faster in that the coefficient in
front will be smaller, especially as the error tolerance of the numerical method
decreases.

4 Verifying the linear time complexity of the algorithm

Consider a graph G with E edges and V vertices, it is easy to show that
the ordinary PageRank algorithm can be done in O(FE). For example using
the power method (by iterating R™®,,,; = cATRM) , 4+ (1 — ZCATRS))U)
we need to do one matrixxvector multiplication with a sparse matrix needing
O(F) operations and one vector addition needing O (V') operations. In addition
some kind of convergence criterion need to be used (typically O(V'), such as
the max or mean difference between iterations). The number of iterations does
not depend on the number of vertices (at least not directly), but primary on
the convergence criterion used.

Finding strongly connected components and their topological order in step 1
can be done in O(E) time using a depth first search such as Tarjan’s algorithm
[11]. While both this and the PageRank algorithm itself is linear in the number
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of edges, the depth first search is generally much faster since it only needs to
access every edge once, while the Power method needs to access every edge
once in every iteration.

The work done in step 2 and step 5 is the same as for the original Power
method (or whichever method is used) except that edges between components
are not used O(Fs..), where Fg.. is the number of edges within endpoints
within the same strongly connectd component.

In step 3 consists of a single matrixxvector multiplication similar to one
step in the power method for each set of G3 components. In total over all
components each edge between two strongly connected components is used
exactly once, this gives O(F}) where Ej, denotes the number of edges between
components. This gives a total time complexity of O(Es.. + Ep) = O(E) for
step 2 and 3, although it should be noted that the work needed for edges
between components is much less since they are only needed once.

Thus we can see that we have the same time complexity overall for the the
method O(FE) however some edges are only needed once in the PageRank step
compared to those that might be needed tens or hundreds of times depending
on graph structure and error tolerance. Unfortunately there is also an extra
cost in step one needed in order to find the strongly connected components and
order them appropriately.

5 Conclusions and future work

We have seen how to theoretically improve the computation of PageRank us-
ing the structure of the graph, both for different types of vertices as well as
for entire strongly connected components in the graph. We could also see that
we could use the same structures to potentially divide the problem into many
smaller problems potentially making it easier to implement in parallel on multi-
ple computers as well as allowing for the use of sepererate methods for different
components. We have not made any assumptions about the structure of the
graph, however it is obvious that calculating for certain types of graphs we
would gain a lot more from what we have looked at here than others. Espe-
cially we see that the presence of long cycles limits the possibility for us to
divide the graph into smaller parts, both on the vertex level as well as on the
component level.

The next step which is underway is implementing the method (along with
a way to combine certain 1-vertex components) and comparison with previous
methods. Other remaining things to look at is if certain strongly connected
components could be handles more effectively. A start may be to look at
vertices with only one incoming or outgoing edge.
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Abstract. Statistical dependence between petrophysical properties in heterogeneous
formations is usually nonlinear and complex; therefore, traditional statistical methods
based on assumptions of linearity and normality are usually not appropriate. Copula
based models have been previously applied to this kind of variables but it seems to be
very restrictive to find a single copula family to be flexible enough to model complex
dependencies in highly heterogeneous porous media. The present work combines vine
copula modeling with a bivariate gluing copula approach to model rock permeability
using vugular porosity and measured P-wave velocity as covariates in a carbonate
double-porosity formation at well log scale.

Keywords: Vine and gluing copulas, nonlinear dependence, petrophysical modeling.

1 Copula basics

A copula function is the functional link between the joint probability distribu-
tion function of a random vector and the marginal distribution functions of the
random variables involved. For example, in a bivariate case, if (X,Y) is a ran-
dom vector with joint probability distribution Fxy (z,y) = P(X < z,Y < y)
with continuous marginal distribution functions Fx and Fy then by Sklar’s
Theorem[19] there exists a unique bivariate copula function Cxy : [0,1]? —
[0,1] such that Fxy(x,y) = Cxy(Fx(x), Fy(y)). Therefore, all the informa-
tion about the dependence between X and Y is contained in the underlying
copula Cxy, since Fx and Fy only explain the individual (marginal) behavior
of such random variables. As an example, for continuous random variables, X
and Y are independent if and only if Cxy (u,v) = II(u,v) := wv.

As a consequence of results by Hoeffding[9] and Fréchet[6], particularly
what is known as the Fréchet-Hoeffding bounds for joint probability distribu-
tion functions, Sklar’s Theorem leads to the following sharp bounds for any
bivariate copula: W (u,v) < Cxy(u,v) < M(u,v) for all u,v in [0, 1], where
W (u,v) := max{u+v—1,0} and M (u,v) := min{u, v} are themselves copulas.
W (respectively M) is the underlying copula of a bivariate random vector of
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continuous random variables (X,Y) if, say, Y is an almost surely decreasing
(respectively increasing) function of X.

Formal definitions and main properties of copula functions are covered in
detail in Nelsen[14] and Durante and Sempi[3]. Among many other properties,
any copula C is a uniformly continuous function, and in particular its diagonal
section ¢ (t) := C(t,t) is uniformly continuous and nondecreasing on [0, 1]. In
terms of the Fréchet-Hoeffding bounds, we get max{2t — 1,0} < d¢o(t) <t for
all ¢ in [0, 1].

Let {(z1,%1),-..,(Zn,yn)} denote an observed sample of size n from a bi-
variate random vector (X, Y") of continuous random variables. We may estimate
the underlying copula Cxy by the empirical copula C,,, see Deheuvels[2], which
is a function with domain {% : i =0,1,...,n}? defined as:

i 1< , .
Cn(n ) n) = I;]I{rcmk(xk) <1, rank(yr) <j} (1)
and its convergence to the true copula C'xy has also been proved, see Riischendorf[17]
and Fermanian et al.[5]. Strictly speaking, the empirical copula is not a copula
since it is only defined on a finite grid, but by Sklar’s Theorem C,, may be ex-
tended to a copula. Based on the empirical copula several goodness-of-fit tests
have been developed, see for example Genest et al.[7], to choose the best para-
metric family of copulas from an already existing long catalog, see for example
chapter 4 in Joe[11].

The underlying copula C'xy is invariant under strictly increasing transfor-
mations of X and Y, that is Cxy = Cy(x)(y) for any strictly increasing
functions « and . Recall that for any continuous random variable X we have
that the random variable F'x (X) is uniformly distributed on the open interval
10,1]. Let U := Fx(X) and V := Fy (Y), then (X,Y") has the same underlying
copula as (U,V) and by Sklar’s Theorem Fyvy (u,v) = Cyy (Fy(u), Fy(v)) =
Cuv (u,v). So the transformed sample {(u1,v1), ..., (un, vy,)} where (ug,v) =
(Fx(xr), Fy (yx)) may be considered as observations from the underlying cop-
ula Cxy. If Fx and Fy are unknown (which is usually the case) they can be
replaced by the empirical aproximation F,(z) = 13/ {z) < 2z} and in
such case we obtain what is known as pseudo-observations of the underlying
copula Cxy, which are used for copula estimation purposes, since they are
equivalent to the ranks in (1).

2 Gluing copulas

Sklar’s Theorem is also useful for building new multivariate probability models.
For example, if F' and G are univariate probability distribution functions, and
C' is any bivariate copula, then H(z,y) := C(F(z),G(y)) defines a joint prob-
ability distribution function with univariate marginal distributions F' and G.
Several methods for constructing families of copulas have been developed (geo-
metric methods, archimedean generators, ordinal sums, convex sums, shuffles)
and among them we may include gluing copulas by Siburg and Stoimenov[18],
which we will illustrate in a very particular case: let C; and C5 be two given
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bivariate copulas, and 0 < 6 < 1 a fixed value, we may scale C to [0, 6] x [0,1]
and Cy to [#,1] x [0,1] and glue them into a single copula:

(00 (%,v), 0<uc<é,
Crazo(u,v) = { (1 =0)Ca(4=5.v) + 00,0 <u < 1. @

A gluing copula construction may easily lead to a copula with a diagonal sec-
tion d01,2,9(t) = C1,2,¢(t,t) that has a discontinuiy in its derivative at the gluing
point t = . This fact may be taken into consideration when trying to fit a
parametric copula to observed data, since common families of copulas have di-
agonal sections without discontinuities in their derivatives, and if the empirical
diagonal 5n(%) = Cn(%, %) strongly suggests there is one or more points at
which a discontinuity of the derivative occurs, an appropriate data partition by
means of finding some gluing points could be helpful to model the underlying
copula by the gluing copula technique.

For a more specific example, in the particular case C; = M and Cy = IT
it is straightforward to verify that for 0 < ¢t < 6 we get a diagonal section
81.2,0(t) = 0t, while for <t < 1 we get d12(t) = t* and clearly the left and
right derivatives at the gluing point ¢ = 8 are not the same, see Figure 1.

Gluing copula diagonal section

1.0

0.6 0.8

diag (t)

0.4
|

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. Diagonal section of the resulting gluing copula with ¢y = M, Cy = II and
gluing point 6 = %

3 Trivariate vine copulas

In the previous sections we summarized some main facts about bivariate copu-
las, but Sklar’s Theorem is valid for any d > 2 random variables. For example,
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in the case of a trivariate random vector (X7, X5, X3) of continuous random
variables with joint probability distribution Fyoz(z1, 22, 23) = P(X; < z1, Xo <
x9, X3 < x3) and marginal univariate distributions Fy, F», and F3, by Sklar’s
Therem there exists a unique underlying copula Cia3 : [0,1]* — [0, 1] such that
Fia3(x1, 22, x3) = Crag(Fi(21), Fa(z2), F3(x3)). In case Fiao3 is absolutely con-
tinuous we may obtain the following expression for the trivariate joint density:

J123(x1, w2, x3) = c123(F1(21), Fa(xa), F3(x3)) fi(x1) fa(x2) f3(x3)  (3)

where the copula density ¢123(u, v, w) = %Cmg (u,v,w) and the marginal
densities fi(z) = <L Fy(2), k € {1,2,3}. According to Kurowicka[13]:

The choice of copula is an important question as this can affect the
results significantly. In the bivariate case [d = 2], this choice is based on
statistical tests when joint data are available [...] Bivariate copulae are
well studied, understood and applied [...] Multivariate copulae [d > 3]
are often limited in the range of dependence structures that they can
handle [...] Graphical models with bivariate copulae as building blocks
have recently become the tool of choice in dependence modeling.

The main idea behind vine copulas (or pair-copula constructions) is to express
aribitrary dimensional dependence structures in terms of bivariate copulas and
univariate marginals. For example, we may rewrite the trivariate joint density
(3) in the following manner by conditioning in one of the random variables, say
X1 :

Ji23 = fa3n - S
= coa1 (Fay1, Fapn) - fopn - fapn - fu
= ca31 (Fop, Fp) - % : % - fi
= cog)1 (Fo1, Fap1) - c1a(F1, F) - ca3(F1, Fs) - fi- fa- f3 (4)

with other two similar possibilities by conditioning on random variables X5 or
Xs. If {(z1k, T2k, T3x) }_ | is a an observed sample size n from an absolutely
continuous random vector (X1, X2, X3) we may use the bivariate observations
{(z1r, zox } —  to estimate c12 and Fy)q, and we use {(21x, 23, }; — to estimate
c13 and Fj);. Following the ideas in Gijbels et al.[8] we obtain the following
expression for the conditional bivariate joint distribution of (X3, X3) given
X1 =1 :

Fogpi (22,23 |21) = P(X2 <29, X3 <3| X1 = 11)
= Cogy1 (Fop1 (w2 | 21), Fyp1 (s | @1) | 21) (5)
Here the value z; becomes a parameter for the conditional bivariate copula
Cs3)1 and for the conditional univariate marginals F5); and F3j;. In case there
is some kind of evidence (empirical or expert-based) to assume that the un-

derlying bivariate copula for Fy3); does not depend on the value of the condi-
tioning variable, we have what is known as a simplifying assumption, see for
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example Joe[11], and so to estimate such bivariate copula C33 = Cag); again
we may follow the ideas in Gijbels et al.[8] and use the pseudo-observations
{(ugk, usk) = (Fopn (w2k | 21x), Fap (Tsr | 21k)) Fi— -

4 Application to petrophysical data

As mentioned in Erdely and Diaz-Viera[4]:

Assessment of rock formation permeability is a complex and challenging
problem that plays a key role in oil reservoir modeling, production
forecast, and the optimal exploitation management [...] Dependence
relationships [among] petrophysical random variables [...] are usually
nonlinear and complex, and therefore those statistical tools that rely on
assumptions of linearity and/or normality and/or existence of moments
are commonly not suitable in this case.

In the present work we apply a trivariate vine copula model to petrophysical
data from Kazatchenko et al.[12] for variables X; = vugular porosity (PHIV),
Xo = measured P-wave velocity (VP), and X3 = permeability(K), see Figure
2 for bivariate scatterplots and bivariate copula pseudo-observations.
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Fig. 2. First row: bivariate scatterplots. Second row: bivariate copula pseudo-
observations.

First we searched for empirical evidence to check if a simplifying assumption
is reasonable by splitting the pseudo-observations
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{(uag, usx) = (F2|1(x2k | 218), F5)1 (w31 | 3311.;))}22 1 in two sets A and B depend-
ing on whether the conditioning variable was less or greater than its median,
and use them for an equality of copulas hypothesis test Hg : Ca = Cp by
Rémillard and Scaillet[16] implemented in the TwoCop R-package[15], see Ta-
ble 1 for a summary of the results obtained. An extremely low p-value leads
to the conclusion of rejecting a simplifying assumption, since lower values of
the conditioning variable suggest a different dependence structure that the one
corresponding to higher values. From Table 1 we conclude that a simplfying
assumption condtioning on variable X3 is definitely rejected, and conditioning
on X; would be the best option in this case.

Conditioning variable Simplifying assumption p-value
X1 0.34
X 0.13
X3 0.00

Table 1. p-values from Rémillard-Scaillet test adapted to test for simplifying as-
sumption.

For the three bivariate copulas needed in the trivariate vine copula model
(4) no single family of parametric bivariate copulas was able to achieve an
acceptable goodness-of-fit, according to results obtained with the copula R-
package[10]. Therefore a gluing approach has been applied, using a heuristic
procedure to find gluing point candidates, called also knots, for a piecewise cubic
polynomial fit (a particular case of splines) to the empirical diagonal §,, but
without the usual assumption of having continuous first or second derivative at
the knots, since for gluing copula purposes that is exactly what we are looking
for: points of discontinuity in the derivative of the diagonal section of the
underlying copula.

Let K :={to,...,tm} be a set of m+ 1 knots in the interval [0, 1] such that
0=ty <t <--- <ty =1. Consider the set P of all continuous functions p
on [0,1] such that:

° p(ti) = 5n(ti)a xS {0, 1,... ,m}
e p is a cubic polynomial on [t;_1,t], ¢ € {1,...,m}

The goal is to find the smallest sets of knots IC such that the mean squared error
(MSE) of piecewise polynomial approximations to each empirical diagonal d,,
is minimal and such that it is possible to reach an acceptable goodness-of-fit
of bivariate copulas for the data partitions induced by each K :

Step 1 Calculate pseudo-observations S := {(ug,vi) : k =1,...,n} and rearrange
pairs such that u; < -+ < uy,.

Step 2 Calculate empirical diagonal D,, := {(%7 571(%)) :i=0,1,...,n}.

Step 3 Find optimal knot (or gluing point) ¢* = % such that I = {0,t*,1} leads

to minimal MSE on D,,.
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Step 4 Define subsets Gy and Gy from S such that G := {(uk,vr) € S : up < t*}
and Gg := {(ug,vr) € S 1 u > t*}.

Step 5 Apply goodnes-of-fit tests for parametric copulas in each subset G; and Gs.

Step 6 If an acceptable fit is reached in both subsets, we are done. Otherwise,
apply steps 1 to 5 to the subset(s) which could not fit.

In Table 2 we present a summary of results, specifying how many partitions
were needed and the best copula goodness-of-fit achieved on each one, for each
bivariate relationship required by (4), making use of the copula R-package[10].

Bivariate dependence Best parametric copula fit p-value
X7, — X2 Plackett* 0.6079
Galambos* 0.1384
Plackett 0.3941
independence 0.5200
X1, X3 Plackett* 0.6539
Clayton 0.1494
Husler-Reiss 0.8586
—XQ , X3 ‘Xl Plackett* 0.3541
Clayton* 0.4800

Table 2. Families of copulas indicated with * means that the transformed copula
C*(u,v) =u+v—14C(1 —u,1—v) was used, where C' is the original copula family.

5 Final remark

According to Czado and Stéber[1]:

[...] compared to to the scarceness of work on multivariate copulas,
there is an extensive literature on bivariate copulas and their proper-
ties. Pair copula constructions (PCCs) build high-dimensional copulas
out of bivariate ones, thus exploiting the richness of the class of bivari-
ate copulas and providing a flexible and convenient way to extend the
bivariate theory to arbitrary dimensions.

But even expecting a single copula family to be able to model a complex bivari-
ate dependency seems to be still too restrictive, at least for the petrophysical
variables under consideration in this work. In such case, an alternative found
was to apply a gluing copula approach[18]: decomposing bivariate samples
into subsamples whose dependence structures were simpler to model by known
parametric families of copulas, taking advantage of already existing tools (and
their computational implementations) for bivariate copula estimation.
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Abstract: Aviation companies currently have a huge amount of data that enables the
development of new forms of diagnosis and prognosis of faults. The application of
Knowledge Discovery in Databases (KDD) and of Data Mining (DM) techniques to these
data of aircraft engines allows the implementation of new Condition Based Maintenance
(CBM) policies. During an flight, the amount of available data that allows determining
the engine’s state is abundant. However, most of the data collected are redundant, and the
sheer amout of data makes all the processing very time-consuming, or even impossible
with the available resources, even in a “Big Data” context. Thus, selecting significant
data is an important task in the phase of pre-processing of data in KDD, and contributes
to the success of the process, but it is very time-consuming. The objective of this paper is
to select instances for a sample that may be used for CBM. There should be no loss of
relevant information in the sample to identify the state of the engine. In this paper we
have applied self-organizing maps (SOM’s) to sample the data. We used the batch and
the sequential algorithms to train the maps. With clustering techniques and sensibility
analysis we compared the results and propose a method to choose the best sample.

Keywords: Knowledge Discovery Databases (KDD), Instance Selection, Self-
Organizing Maps (SOM), non-supervised learning.

1. Introduction

To classify the state of an engine and predict the occurrence of the next failure
are important information in support of the making decision to remove engines
for maintenance. Usually the decision to remove the engines for repair depends
on visual inspections carried out regularly, monitoring the records of the
performance parameters of aircraft engines and the knowledge of experts. The
monitoring of an engine’s performance parameters is done by comparing the
values recorded during the flight with the manufacturer’s thresholds. When
flight data are close to these thresholds, maintenance actions are taken. This
monitoring is done individually by parameter. Due to the inherent risks of
unexpected failure, engine removal is usually done before the optimal time.
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Aviation companies, currently, have a register of a huge amount of data that
enables the development of new forms of diagnosis and prognosis of faults. The
application of Knowledge Discovery in Databases (KDD) to the registers of the
engine parameters and the flight conditions, through the study of their
interactions, allows another type of information about engine performance.

KDD means the process of knowledge discovery that you can obtain from the
data of past experience, Gama et al. [1]. One of the steps in this process is data
mining which consists of the application of algorithms in order to find patterns
from the data.

During a flight, the data about different performance and operation parameters
of the engines are recorded every second. It is possible to recognize abnormal
data in order to identify possible crashes/failures in the engine, but during a
flight not all data are relevant.

To select significant data is an important task in the phase of the preprocessing
of data in KDD , Fernandez et al. [2], but is time-consuming, although its tasks
contribute to the success of the process Reinartz [3], mainly the step of data
mining.

The objective of this is work is to use a neuronal network, SOMs, to select
instances and evaluate the samples quality by using clustering techniques. We
want to find a sample with the smallest dimension, in such a way that the
parameters have the same behaviour as the original data.

The paper is structured as follows: Section 2 gives a brief description of the
instance selection problem. The description of the data and the methodology
used are in Section 3. Section 4 presents the results obtained with SOMs.
Conclusions are given in Section 5.

2. Instance Selection: the problem

Currently, to use samples to make an inference about statistical population
parameters is the usual procedure. The first work to present the sampling theory
was at the end of sec XIX.,Seng [4]. However the proliferation of applications
and data mining algorithms, over recent decades, has given rise to the need for
data reduction,i.e. a reduction of data from the point of view of a decrease in the
number of features (variables) and/or the number of instances (observations). In
this context, in addition to the reasons which always led to the necessity to do
sampling, there is also a need to select instances because the data are not
recorded with the goal of applying data mining techniques or any other
application. The purpose of collecting this data is operational.

Instance selection, in the KDD process, is to choose a subset of data to achieve
the original purpose of the data mining, Michalski [5]. When we work with a
subset of data we have gains in the steps of data mining because it is easier and
faster. The sample size and quality of the results obtained in data mining are the
important matters. To evaluate the best sample is a difficult task. In instances
selection, the evaluation of samples depends on the objectives for which this
will be used. The conventional evaluation methods for sampling, classification
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and clustering can be used to assess the performance in instances selection, Liu
and Motoda [6].

The literature about the instance selection is abundant. In 2001, Liu and Motoda
[6] edited one book about instance selection in data mining. However, most of
the works in this book are about instance selection in supervised learning. In the
supervised learning we know the data of input and output space and assess the
sample quality is simple, we can use per example the success rate. From this
perspective, Olvera-Ldpez et al.[7] presents a detailed summary of the most
commonly used algorithms, given their features and also comparing their
performances.

The our work is about non-supervised learning. We found very little literature
(after 2000) about instance selection in non-supervised learning. The works of
John and Langley [8], Palmer and Faloutsos [9] ,Liu and Motoda [10]) refer to
the usual sampling procedures to sample the data (i.e. simple random sampling,
sampling uniform, stratified) and clustering methods. But instance selection in
non-supervised learning, is important. The amount of information, in the data
exploratory phase makes this analysis complex and ineffective, due to the
execution time of some algorithms and the non- implementation of other
algorithms Liu and Motoda [10].

In 2014, Fernandes et al. [11] presented a work with different methods to select
instances in non-supervised learning. They used conventional methods of
sampling and data mining algorithms. In their work the SOMs, with sequential
algorithm showed good results but were very time-consuming.

The SOMs are non-supervised learning neural networks and use a competitive
learning technique. They were originally proposed by Kohonen in 1982.
Currently, SOMs are considered to be one of the most powerful learning
techniques, Kohonen [12]. According Ballabio et al. [13] one of the major
disadvantages of SOMs is to be very time-consuming due to the network
optimisation.

Several parameters established before the traininig phase affect the results of the
SOM. The parameters can be grouped into different types of parameter:
structure parameters - size, topology, shape and initialisation of the map; and
training parameters - number of iterations, learning rate, neighbourhood radius
and neighbourhood function. So there are many parameters to optimize in the
self-organizing maps. There are several studies about the effects of changes in
the parameters of SOMs and about the compararison of the different values of
those parameters (Ettaouil et al.[14], Cottrel et al. [15]).

In this work, in order to reduce the time consumed with SOMs, we used two
types of algorithm to training the network: sequential and batch. The difference
between these two algorithms is the way in which the data are presented to the
network. In sequential data vectores are presented to the network one at a time
while the batch data vectors are simultaneously presented to the network. Others
changes in the parameters of SOMs were also studied.

3. Data description and Methodology
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a. Data description

We have 229 flights made by one commercial B767-300 between 2009 and
2013. On each flight were recorded, second by second, the data of 25
performance parameters of the two engines and 6 features of the flight
conditions. The final database is large; there are 4,232,008 instances and 31
variables. Table | describes the parameters of the database, 1/2 are the

parameters of engines 1 and 2.

Table | - Description of Parameters

Parameters

Flight Conditions (6)

Altitude

Gross Weight

Mach Number

Static Air Temperature

Total Air Temperature

Pressure Total

Engine Performance (25)

Bleed Duct Pressure - Engine 1/2

Temperature - Engine 1/2

Vibration-Engine 1/2

Pressure Ratio - Engine 1/2

Request EPR 1/2

Max Limit EPR1/2

Fuel Flow - Engine 1/2

Fan Speed-Speed Low Pressure - Engine 1/2

Core Speed-Speed High Pressure - Engine 1/2

Oil Pressure - Engine 1/2

Oil Quantity - Engine 1/2

Oil Temperature - Engine 1/2

Throttle Resolver Angle

The number of observations per flight varies widely because it depends on the
duration of each flight. Figure 1 describes the number of instances per flight.
Most of flights are of more than 4 hours duration, i.e. they have a number of

records greater than 15,000, Table II.
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Table 11 — N° of flights by

229 duration
217 - o
205 Time of Ne° of
193 flight flights
181 - 1 hour 17
169
157 1-4 hours | 73
145 + 4 hours | 139
133
121 Total 229
109

97

85

73

61

49

37

25

13

1% T T T 1
0 10000 20000 30000 40000

Fig. 1.  Distribution of the instances per flight
b. Methodology

We have an original database which is very large so we have the typical
problems when we want to apply data mining techniques. One of them is the
redundancy of the values in the same flight. As the records on each flight are
done every second, there are many that are equal to the previous one. The
approach used in this work is done flight by flight. For the definition of the
sample size we studied the behaviour of eight flights, Figure 2, selected
randomly but according to the three groups of time established in Table II.

F114
F5
F4
F6

F76
F63
F25
F49

10.05

Fig. 2. Distribution of the flight time (hours)

In each flight we calculate the Euclidian distance between instance t and
instance t-1.The data was standardized with z-score. We want to understand the
behaviour between the distances in consecutives instances. The average of
distances of each flight is less than 0.5 but have a big dispersion, Table I11.
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Table 111 — Descriptive Statistics of the Euclidian Distance between instance t and

instance t-1
— Flight | Flight | Flight | Flight | Flight | Flight | Flight | Flight
Statistics 4 5 6 114 49 63 76 25
(F4) (F5) (F6) (F114) (F49) (F63) (F76) (F25)
Mean 012 | 011 | 010 0,10 035 | 021 | 015 0,34
Standard
Deviation 085 | 070 | 0,78 0,85 1,30 | 096 | 0,99 1,23
Coefficient of | 7 665 757 878 366 456 653 382
variation
Number of 24331 | 26143 | 24311 | 36187 | 2039 | 4823 | 14111 | 2779
records

When we analysed the differences between instances, more than 90% records
have minimal distances, only 1% the records have a large distance, Figure 3.

98%

2% 0%

0-1 1-3 >=3

HF4 WF5 WF6 MF114 WF49 WF63 WF76 WF25

Fig. 3. Distance between instance t and t-1

So the dimension used for the sample was the 1% of the instances per flight. In
this work we studied the results when some parameters changed in the SOMs.
We built five scenarios which led to 11 different samples. The shape, topology
initialisation of the map, learning rate, neighbourhood radius and neighbourhood
function was the same for the five scenarios. The values used are in Table IV.

Table IV — SOM parameters

Structure parameters Training parameters
Learning rate Neighbourhood
S o radius Neighbourhood
Topology Shape linitialisation o function
Initial End Initial End
Hexagonal Sheet Randomly 0,7 0,02 8 3 Gaussian

The differences among the scenarios are because of the number of iterations,
initial weights, size of maps and algorithms used to train the network.

The first four scenarios have two samples each; the difference is the training
algorithm, sequential and batch. In these samples the dimension was 42.254
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records. In the last scenario we used two different forms to present the data to
the network in a sequential algorithm: randomly and ordered. We also used one
different form to specify the size of the maps; we identified the number of units
as 1% of the instances in each flight. In this scenario the size of the sample was
42.402 records. In the other’s scenarios (scenario 1 to 4) we pre-defined the size
of matrices. Table V summarizes the different parameters used in each scenario.

Table V - Description of five scenarios

Number of iterations

Scenario " map size Initial weights (Wi)
Initial End
1 Randomly but different in each
2 30 229 matrices, the size of algorithm
matrices varied between [4 5] "
) X Randomly but equal in both
2 and [19 20] depending flight .
. h algorithm
time (almost square matrices)
3 100 150
229 matrices, the size of
4 matrices varied between [210]
ahd [10 38] depending f.llght The same scenario 2
2 30 time ( rectangular matrices)
Not defined matrices, we chose
5 number of units=1% data on
each flight

To assess the quality of the samples, we use one technique of clustering and the
time-consuming for each scenario. In the samples and in the original database
ten clusters were created for each flight. We applied the K-means algorithm for
the formation of the clusters. After this, a Euclidian distance between the
centroids clusters of the samples and the original database were calculated,
Figure 4. We used two procedures to compare the centroids: 1) According the
first variable, we sorted the centroids in ascending order; 1I) Compared
centroids of the all clusters among themselves.

At the end, we calculated the total distance by flight and compared for each
procedure. The lower the total distance the greater the similarity between the
sample and the original database.
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Fig. 4.Evaluation scheme of samples

At the beginning of the study we applied ten clusters because during the flight
there are six natural clusters, the principal phases of flight [16], but in abnormal
situations it is possible to have more phases. Later we made a sensibility
analysis by using three, six and seven clusters. The six phases described in [16]
are grouped usually in three: take off, cruising and landing.

4. Results

Table VI shows the total distance for the 11 samples when we used the two
assess procedures and 10 clusters.
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Table VI — Results for 11 samples

Cluster's comparison
I- Cluster's Il - Comparison |- Cluster's Il - Comparison of all
. ordered the 1st . | ordered the 1st .
Scenario X of all cluster's X cluster's
variable variable
SomSequential SomBatch
1 17.285,35 231.980,64 110.059,85 1.167.537,84
2 16.096,36 219.172,05 112.918,76 1.195.762,97
3 25.732,27 320.065,35 95.879,89 1.026.478,06
4 16.042,76 218.590,44 89.467,68 959.773,45
5.1 16.480,42 221.658,20 96.372,69 1.033.432,14
5.2 17.804,43 233.759,31

The sequential algorithm has smaller total distances then the algorithm batch for
all the scenarios. In the sequential algorithm in an orderly manner to present the
data to the network not brought better distances than when we present randomly
(scenarios 5.1 and 5.2). It is the way as we defined the map size that shows
better results, scenario 4, where the matrix is more rectangular for both
algorithms.

When we increased the number of iterations, scenario 3, the results of the
sequential algorithm does not improve, unlike the success of the batch
algorithm. Both algorithms present consistency in the results despite the changes
in the parameters of SOMs.

The way we compare the clusters does not seem to influence the behaviour of
the total distances just of magnitude values, figures bellows.
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Fig. 5.- Procedure | Fig. 6.- Procedure 11

As regards the time-consumed, the performance of the two algorithms is the
opposite: the batch algorithm consumes less time than the sequential algorithm,
Table VII. While this behaviour was expected due to already published works
(Cottrell et al.[15], Kohonen et al.[17]) we did not expect such a big difference.

Table VII — Time consuming in different scenarios

Time consuming (seconds)
scenario SomSequential SomBatch
1 28.817,97 1.061,74
2 27.644,04 1.018,19
3 138.224 4.880,60
4 28.378,00 1.045,80
5.1 36.176,11 1.210,69
5.2 36.401,01

The previous results of the algorithm batch, time consuming and better results
obtained with an increase in the number of iterations led us to create more four
scenarios increasing the number of iterations. These new simulations had
scenario 5 as their base. If this new simulations obtain better final results, this
will compensate for the increase in time-consuming when compared with the
sequential algorithm.
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Fig. 7.— Total distance for different number
of iterations

The increase in the number of iterations did not change the results, Figure 7, and

Table VIII — Time-consuming when
increasing the number of iterations

N° of Time
iterations (seconds)
2000*3000 | 120.720,99
200*300 11.738,16
400*600 21.778,10

20*30 1.210,69

significantly increase the time-consuming in the training of SOMs, Table VIII.

As the two procedures used to compare the clusters led to the same conclusion
we undertook sensibility analyses with the number of clusters, Table IX. Here
we also used scenario 5 as the base. The shaded values refer to the situation in

which the data were presented in an orderly way to the network.

Table IX — Sensibility analyses of number of clusters

Cluster's comparison
Ne° of | - Cluster's 11 - Comparison | - Cluster's ordered | Il - Comparison
ordered the 1st \ . )
clusters - of all cluster's the 1st variable of all cluster's
variable
SomSequential SomBatch
_ 2.380,58 15.473,92
K=3 2.519.89 1597775 12.427,43 45.967,63
_ 8.168,54 73.755,05
K=6 8.278.79 73.652.51 54.536,37 355.111,03
_ 10.043,69 100.995,69
K=7 11.102.29 108.781,46 62.230,72 470.794,69
_ 16.480,42 221.658,20
K=10 17.804,43 23375931 96.372,69 1.033.432,14

The total distances increase with the number of clusters in both algorithms and
evaluation procedures, Figure 8 and 9. There are no differences when the data

are presented to the network in an orderly or random way.
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5. Conclusion

Several simulations were carried out with the objective of constituting a
representative sample of the original data with dimension of approximately 1%
of the original.

The optimization of SOM depends on the values of the parameters. The results
for the different scenarios were consistent. The big difference was in the
algorithm used. The sequential algorithm has always had better results than the
batch algorithm. Even when increasing the number of iterations within the batch
algorithm the values obtained are worse than those presented by the sequential
algorithm and the time- consuming greatly increases. The disadvantage of the
sequential algorithm is the time-consuming in the train of the network; in this
case it is far superior to the batch. Even when presenting the data to the network
in an orderly manner there are no gains.

As sampling the data is not an everyday procedure in the process of KDD, i.e.
the same sample is used for applying different data mining techniques; it seems
to us to be more relevant that the results are obtained in terms of similarity to
the original data instead of the regarding the time consumed, so we preferred the
sequential algorithm.

In the evaluation of the results of each sample the way to compare the clusters
did not show relevant difference but the numbers of clusters used led to

variations of the total distances.
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Abstract. According to current legislation the statutory retirement age is planned to
increase permanently with constant increment for each subsequent generation. The
Council of the European Union recommends to link the rise more clearly with expected
changes in life expectancy.

The Expert Committee on Pension Reform of the Czech Republic recommends to
determine the retirement age as the age when the percentage share of the life expectancy
(calculated as the arithmetic mean of these expectancies for males and females) in respect
of the total expected length of life at that age will be about 25%, i.e. one quarter of their
total expected length of life. Of course the generation life tables should be used for this
computations.

The paper presents computation of the retirement age in the case of the Czech Republic
according to generation life tables based on the mortality scenarios of the latest
population projection by the Czech Statistical Office and on the latest Eurostat
population projection. In both projections the retirement age in the second half of this
century should be lower than the present legislation values.

Keywords: Generation life tables, pension system, retirement age.

1 Introduction

One of the themes dealt with in 2014 by the Expert Committee on Pension
Reform of the Czech Republic was the adjustment of the age limit for retirement
in the Czech Republic, attaining which is one of the conditions for entitlement
to the old-age pension. According to the existing legal arrangement (Law No.
155/1995 Coll., Z&kon [9]) the retirement age is to permanently rise in time
linearly regardless of the development of the life expectancy in the Czech
Republic. Theoretically, therefore, it could happen that, if the growth of life
expectancy slowed down or stopped, in the future many people would not even
reach retirement age or would receive a pension only for a relatively short
period of time.

Completely halting any further rise in retirement age after reaching a certain
limit (such as 65 years), as proposed by some political parties, would not,
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however, be suitable. The Council of the European Union, on the contrary,
recommends the Czech Republic to Ensure the long-term sustainability of the
public pension scheme, in particular by accelerating the increase of the
statutory retirement age and then by linking it more clearly to changes in life
expectancy. (Council Recommendation [2], p. 15). According to the present
projection of the population of the Czech Republic (CZSO [3]) and other
prognoses (e.g. Burcin and Kucera [1]), it is expected that in the Czech Republic
there will be a permanent rise in the life expectancy throughout the present
century. The continuing rise of the retirement age is thus in accordance with the
recommendation of the European Council.

The question remains of how to link the retirement age with the development of
the life expectancy to achieve a certain degree of stabilisation of the average
period of receipt of the old-age pension. Proposals have appeared, for example,
which envisaged selecting the retirement age in such a way that the average
duration of the receipt of the old-age pension would be roughly constant, say 20
years. This would mean, however, that, assuming a rise in the length of life, the
retirement age would rise and thus also the expected length of economic
activity, but the period of receipt of the pension would remain the same and the
relative period of receipt of the pension would drop.

The Expert Committee on Pension Reform therefore finally approved the
recommendation that the retirement age (which should be the same for both men
and women) and, as hitherto, should depend on the year of birth of the
individual. The value of the retirement age should in this case be determined so
that people reaching senior age should receive an old-age pension on average
for the last quarter of their lives (Expert Committee [5]). For the generations
born before 1966 the retirement age in this case should continue to be in
accordance with the present legislation, where for every generation of
succeeding year of birth the retirement age rises (in comparison with the
preceding year generation) for men by 2 months. For women (which have at
present time lower retirement age) the rise is by 4 months, after 2019 by 6
months until they reach the level of men. Men born in 1965 should thus retire at
the age of 65 years, women with 2 children at 64 years 8 months.

The calculations for the average period of receipt of old-age pensions must,
however, be based on the life expectancy at the appropriate age (not at birth)
and also calculated on the basis of the generation (not cross-section) life tables.
The cross-section life tables, which are usually published for each year, give the
life expectancy on the assumption that mortality in the years to come will still
be the same as in the year of the tables. To estimate the mortality and life
expectancy of the actual population it is therefore necessary to use the
generation mortality tables, which take into account the expected changes in
mortality in later years (e.g. Roubicek, [8]).

The aim of this paper is to present model calculations of the development of
retirement age in the Czech Republic with the application of the above-
mentioned proposal that seniors should receive their pension on average for the
last quarter of their lives. The calculations are made for generations born in the
period 1950-2020, i.e. for generations which will reach the retirement age in the
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period since the present time until almost the end of this century. The
calculation of the generation life expectancies and hence also the values for
retirement age was carried out in two variants of the expected development of
mortality in the Czech Republic. The first is based on the scenario of the
mortality of the medium variant of the projection of the Czech population 2013
(CZSO [3]), the second is based on the main scenario of the Eurostat projection
for the Czech Republic from the same year (Eurostat [4]).

Throughout this paper pension will be taken to mean the lifelong old-age
pension paid out from the moment of attaining retirement age until the deaths
(unless expressly stated otherwise).

2 Methodological notes

The most accurate estimate of the real length of the remaining life of a person at
age x of birth year g is the life expectancy e@ofa person at the age x from the
generation mortality tables for the generation of birth year g. Because the
mortality of males and females differs, usually the mortality tables and thus also
the life expectancy are calculated separately by gender. For the calculation of
retirement age, which is to be the same for both men and women, we will use
the life expectancy without gender differentiation defined for each age unit as
the arithmetical mean of the life expectancies of males and females at this age.
The estimate of the average length of entire life of a person of birth year g at the
moment they attain the age of x, is understandably then the value x+e,.
According to the proposal of the Pension Committee the theoretical retirement
age x@ for the generation of those born in year g should be such that for this
generation it applies that
& _025 (1.

X+e,
(upper index g is omitted for simplicity). The expected average period of receipt
of pension for this generation e, would then be equal to a third of the value of
their retirement age x©.
Life expectancies are usually calculated only for integer age values. When
seeking the value of retirement age we therefore find from the mortality tables
for the appropriate generation first of all the highest integer age value x, for
which the above-mentioned share (1) is still higher or equal to 0.25; then we
determine the “more accurate” value of retirement age by linear interpolation
between values x and x+1 where

025 and  _ Sa 025 (2)
X+e, X+1+e,,
Because life expectancy declines with the increase in age, the solution is always
unequivocal.

For determining the retirement age of the generation born in year g it is not,
therefore, necessary to have the values of life expectancies for the entire age
range. It is sufficient to know these values for the higher age when the life
expectancy comes close to a quarter of the average length of entire life. Present
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mortality prognoses indicate that for the generations born after 1950 this age
will be over 60 years for both males and females.

Calculation of generation life expectancies

The life expectancy of a person at the age of x is influenced only by mortality at
this age and higher ages and does not depend on mortality at lower ages. For the
calculation of life expectancies of the generation of persons born in year g at the
age of 60 and over it therefore suffices to know for each generation g the age-
specific mortality rates m,® of this generation for the age x>60. We then
calculate the life expectancies in the following manner (upper index g
designating the generation is omitted for simplicity):

We select the initial value for the number survivors lg, for x>60 we calculate
the survival probability and the number of survivors to the age x+1

P = e™, Ix+l = Ix Py (3)
The total number of person-years lived above the age x is then

T zfl— =|x+|x+l+|x+1+|x+2+ +Iw—1+|w =§| _Iix, (4)

o 2 2 2 “2
and the life expectancy at the age x
w-1
|
6 = - &_1 , (5)
I | 2

its value does not depend on the selected initial value of the number of survivors

u=x

X

Estimate of generation age-specific mortality rates by cross-section rates.

The values of generation age-specific mortality rates can be acquired in several
ways. One of these is an estimate based on (real or forecasted) cross-section
mortality rates. A person born in the year g will reach the age of x in the year
g+x, and will therefore live at the completed age x partly in the year g+x, partly
in the year g+x+1. As an estimate of the mortality rate at age x of the generation
born in year g we can use the mean of the cross-section mortality rates

m +m
m)((g) — g+X,X g+X+1,X , (6)

2
where my is the cross-section mortality rate in year t at the age x.

Mortality scenarios of the population projections of the Czech Republic
according to the Czech Statistical Office — CZSO (medium variant)
and Eurostat (main variant).

The mortality scenarios of both projections are based on the expectation of the
continuing reduction in the mortality of both males and females and therefore
consider the growth of the life expectancy at birth for both genders during the
entire period of the projection. There is a difference, however, in the rate of this
growth. The projection of the CZSO envisages more rapid growth of the life
expectancy up to 2030, but after that (up to 2100) a gradual slowing of the
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annual rise in the life expectancy, whereas Eurostat starts from the assumption
of a lower, but more stable, rise in life expectancy for the whole period up to
2080. The CZSO projection thus considers a life expectancy for both males and
females in the middle of the century roughly 1 year 4 months higher than
Eurostat, but gradually the difference between the two projections drops and
roughly from the seventies Eurostat expects a higher life expectancy than the
CZSO.

CZSO did not publish the values of age-specific mortality rates for the
individual years in the scenario of its projections. An estimate of these was
therefore made by the projected proportions of the number of persons living. For
the age of 60 years and over it is possible to assume that foreign migration is
negligible and so the survival probability for age of x in year t was estimated
according to the formula

D, = St+l,x + St+1,><+1 . (7)
v SI,><—l + Sl,x

Eurostat directly states the values of the specific mortality levels used for the
calculation of the projection.

For the calculation of life expectancies for generations of those born in the years
1950-2020 according to the formula (6) the values of cross-section age-specific
mortality rates at the age from 60 years and more are needed for each year of the
period 2010-2125 (we assume that nobody will reach 105 years). The estimate
of specific mortality rates, or survival probabilities for further years (from the
horizon of the projection up to 2125) will then be carried out on the assumption
that the annual rate of the drop in mortality for individual units of age in the
following years will be the same as in the last decade of the projection scenario.
The generation age-specific mortality rates or survival probabilities were then
calculated analogically as (6).

Comparison of the generation life expectancies of both projection scenarios
For the calculation of retirement age, as has already been said, the life
expectancy at birth is not important, but first and foremost the life expectancies
of the individual generations at the age of 60 and over. These values for selected
units of age, where it may be expected that people will have roughly the last
quarter of their lives before them, are given in Tab. 1.

From the difference in the two scenarios described above it is evident that the
projection of the CZSO envisages a slightly higher life expectancy for the older
generations and a slightly lower life expectancy for younger generations in
comparison with the Eurostat projection. The borderline is formed by the
generations born around 1985, for which the life expectancy is roughly the same
according to both projections. The life expectancies of women are roughly 3-5
years higher than the life expectancies of men, but the differences lessen with
age.
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Table 1. Generation life expectancies for selected ages
(mean of values for males and females)

Year
of
births

Czech Statistical Office Scenario (medium variant)

Eurostat Main Scenario

age

age

60

61

62

63

64

65

66

67

68

69

60

61

63

64

65

66

67

68

69

1950

24,07

2332

2257

21,84

21,11

20,38

19,66

18,95

18,24

17,54

16,84

2339

2263

21,88

21,13

20,39

19,65

18,92

18,20

17,48

16,77

16,07

1951

2427

23 51

2276

22,02

2128

20,56

19,83

19,11

18,39

17,69

16,98

2356

2279

22,03

21,28

2053

1978

19,05

18,32

17,60

16,89

16,18

1952

2445

2369

22,94

2219

2145

2071

19,08

19,26

18,54

17,83

17,12

2372

2295

2218

2141

20,66

19,91

19,17

18,44

17,72

17,00

16,29

1953

24,64

23,87

23,11

22,36

21,62

20,88

20,14

19,41

18,69

17,97

17,25

23,87

23,00

22,32

21,56

20,79

20,04

19,30

18,56

17,84

17,11

16,40

1954

24,82

24,05

2329

2253

21,78

21,04

20,30

19,56

18,83

18,10

17,38

24,02

2324

2246

21,68

20,92

20,17

19,42

18,68

17,95

17,23

16,51

1955

24,99

2422

2345

2269

21,94

21,19

20,44

19,70

18,97

18,23

17,51

2417

2338

2259

2182

21,06

20,30

19,65

18,80

18,07

17,34

16,62

1956

25,18

2438

2361

2285

22,09

2133

2058

19,84

19,10

18,28

17,62

2431

2352

273

21,95

2118

20,42

19,67

18,92

18,19

17,45

1673

1957

2532

24,54

2377

23,00

22,23

21,47

20,72

19,97

19,22

18,47

17,73

24,45

2365

22,87

22,09

21,31

20,55

18,79

19,04

18,30

17,57

16,84

1958

2548

24,70

2392

2315

2238

21,61

20,85

20,09

19,34

18,58

17,84

2459

2379

23,00

2222

21,44

2067

19,91

19,16

18,42

17,68

16,94

1959

25,66

2487

24,09

2331

2253

21,76

20,99

2023

19,46

18,71

17,95

2473

2393

23,14

2235

21,57

20,80

20,04

19,28

18,53

17,79

17,06

1960

2583

2503

2424

2346

2268

21,90

2113

2036

19,59

18,82

18,08

2487

24,07

2327

2248

21,70

20,92

20,16

19,40

18,65

17,90

17,16

1961

2598

2518

2439

23,60

22,81

22,03

21,25

20,47

19.70

18,92

18,16

2501

24,20

23,40

22,61

21,83

21,05

20,28

19,52

18,76

18,01

17.27

1962

26,13

25,32

2453

2373

22,94

2216

21,37

2059

19,81

19,03

18,26

2515

2434

23,54

2274

21,95

21,17

20,40

19,63

18,87

18,12

17,37

1963

26,26

2646

24,66

2386

23,06

2227

2148

2069

19,90

19,12

18,36

2629

2448

2367

2287

22,08

21,30

2052

19,75

18,99

1823

1748

1964

26,38

2557

2476

2396

23,16

2236

2157

2077

19,98

19,20

18,43

2543

2481

2380

23,00

22,20

2142

2064

19,87

19,10

1834

17,59

1965

26,50

2569

24,88

24,07

23,26

22,46

21,66

20,86

20,07

19,29

18,51

2556

24,74

23,93

23,13

2233

21,54

20,76

19,98

19,21

18,45

17,69

1966

26,63

25,81

25,00

2418

23,37

2256

21,76

20,96

2017

19,38

18,60

25,70

2488

24,06

2325

22,45

21,66

2087

20,10

19,32

18,56

17,80

1967

26,75

2693

2511

2429

2348

2266

21,86

21,06

2026

19,47

18,68

2683

25,01

2419

2338

2258

2178

20,99

2021

19,43

18,66

17,90

1968

26,87

26,04

2522

24,40

2358

2276

21,95

2115

2035

19,56

18,77

2507

25 14

2432

2351

22,70

21,90

21,11

2032

19,54

1877

18,00

1969

26,98

26,15

2532

24,49

2367

22,85

22,04

21,24

20,43

19,64

18,85

26,10

2527

24,45

23,63

2282

22,02

21,22

20,44

19,65

18,88

18,11

1970

27,07

26,24

2541

2458

2376

22,94

2212

21,31

2051

19,71

18,92

26,23

2540

2457

2376

22,94

2214

21,34

20,55

19,76

18,98

1821

1971

27,16

26,33

2650

2467

23,84

2302

22,20

2139

2058

19,78

18,99

26,36

2553

24,70

2388

23,06

2226

2146

20,66

19,87

19,09

1831

1972

27,26

26,42

2558

2475

2393

23,10

2229

2147

2066

19,88

19,08

2649

2566

2483

24,00

2319

2237

2157

2077

19,98

19,19

1841

1973

27,34

26,50

2567

24,83

24,00

23,18

22,36

21,54

20,73

19,92

19,12

26,62

25,79

24,95

24,13

23,30

22,49

21,68

20,88

20,09

19,30

18,52

1974

2741

26,57

2573

24,90

24,07

2324

22,42

21,60

2078

19,97

19,17

26,75

2591

25,08

2425

2342

2261

21,80

20,99

20,20

19,40

18,62

1975

27,49

26,64

25,80

2497

2413

23,30

22,48

2166

2084

20,02

19,21

26,88

26,04

26,20

24,37

2354

2272

2191

21,10

20,30

1951

1872

1978

2757

2672

2588

25,04

24,20

2337

2254

2171

2089

20,08

19,28

27,01

26,16

2532

24,49

2366

2284

2202

2121

2041

1961

18,82

1977

27,65

26,80

25,95

2511

24,27

23,44

22,60

21,77

20,95

20,13

19,31

27,14

26,29

2544

24,61

23,78

22,95

2213

21,32

20,51

19,71

18,92

1978

21,72

26,87

26,02

2518

2434

23,50

2266

21,83

21,00

20,18

19,36

27,26

26,41

2557

2473

2389

23,06

2224

21,43

20,62

19,81

19,02

1979

21,79

26,94

26,09

2524

2439

2356

2271

21,88

21,05

2022

19,39

2739

26,53

25,69

24,84

24,01

2318

2235

2153

20,72

19,02

1911

1980

27,86

27,01

26,15

2530

2445

2361

2276

21,93

21,09

2026

19,43

27 51

26,66

25,81

2496

2412

2329

2246

21,64

2083

20,02

1921

1981

27,94

27,08

26,23

2527

24,52

23,67

22,83

21,98

21,15

20,31

19,48

2764

26,78

25,92

25,08

24,24

23,40

2257

21,75

20,93

20,12

19,31

1982

28,01

27,15

26,29

2543

2458

2373

22,88

22,03

21,19

20,35

19,52

2776

26,90

26,04

2519

2435

2351

2268

21,85

21,03

20,22

19.41

1983

28,08

27,21

26,35

2549

2463

2377

22,92

22,07

2123

20,39

19,56

27,88

27,02

26,16

2531

24,46

2362

2279

21,96

2113

20,32

19,50

1984

28,14

2727

26,40

2554

24,68

2382

22,97

212

2127

2043

19,60

28,00

27 14

26,28

2542

2457

2373

2289

22,06

21,24

20,41

19,80

1985

28,19

27,32

26,45

25,59

24,72

23,86

23,01

22,15

21,31

20,47

19,64

28,12

27,25

26,39

25,54

24,68

23,84

23,00

22,16

21,34

20,51

19,69

1986

28,25

27,37

26,50

2563

2417

23,90

2305

2219

2135

2051

19,67

2824

2737

26,51

2565

2479

2395

2310

2227

21,44

20,61

19,79

1987

28,30

27,43

26,55

25,68

24,81

2395

23,09

2224

2139

2055

19,71

2836

2749

26,62

25,76

24,90

24,05

2321

2237

21,54

20,71

19,88

1988

2835

2747

26,60

2572

24,85

2399

2313

2228

2143

2059

19,75

2848

2760

26,73

2587

2501

2416

2331

2247

2163

20,80

19,98

1989

28,40

27,52

26,64

2577

24,90

24,03

2317

22,32

21,47

20,62

19,79

28,59

27,72

26,85

25,98

2512

2427

23,42

22,57

21,73

20,90

20,07

1990

2845

27,57

26,69

2581

2494

24,08

23,21

2236

21,51

20,66

19,83

2871

2783

26,96

26,09

2523

2437

2352

2267

21,83

20,99

20,16

1991

28,49

27 61

26,73

25,85

2498

2411

2325

2239

2154

20,70

19,86

2882

27,95

27,07

26,20

25,34

24,48

2362

277

21,93

21,09

20,25

1992

2854

27,66

2677

25,90

25,02

2418

2329

2243

2158

20,74

19,90

2804

28,06

27,18

2631

2544

2458

2372

2287

2202

21,18

2035

1993

28,59

27,70

26,82

25,94

25,06

24,19

23,33

22.47

21,62

20,77

19,93

29,05

2817

27,29

26,42

25,55

2468

2382

22,97

22,12

21,28

20,44

1994

2863

27,74

26,86

2598

25,10

2423

2336

22,50

2165

20,80

19,96

2916

2828

2740

26,52

2565

2478

2392

23,07

2222

21,37

20,53

1995

2869

27,80

26,91

26,03

25,15

2428

2341

2256

21,70

20,85

20,01

2928

2839

27 51

2663

2575

24,89

24,02

23,16

2231

21,46

2062

1998

2875

27,86

26,97

26,09

26,21

2433

2347

2260

2175

20,90

20,05

2939

28,50

2761

26,73

25,86

24,99

2412

2326

22,40

2156

20,71

1997

28,81

27,91

27,02

26,14

25,26

24,38

23,51

22,65

21,79

20,94

20,10

29,50

28,61

27,72

26,84

25,96

25,09

24,22

23,36

22,50

21,64

20,79

1998

28,85

27,96

27,07

26,18

25,30

24,42

2355

2269

21,83

20,98

2013

2961

2871

27,83

26,94

26,06

2519

2432

2345

2259

21,73

20,88

1999

28,90

28,00

2711

2622

26,34

24,46

2359

2273

2187

21,02

20,17

2971

2882

27,93

27,04

26,16

26528

2441

23,56

2268

21,82

20,97

2000

28,94

28,05

2715

2627

25,38

24 51

2363

277

2191

21,08

2021

2982

28,92

28,03

2715

26,26

2538

24 51

23,64

2717

21,91

21,06

2001

28,99

28,09

27,20

26,31

2542

24,55

23,67

22,81

21,95

21,09

20,25

29,93

29,03

28,14

27,25

26,36

2548

24,60

2373

22,87

22,00

21,14

2002

29,03

2813

27,24

26,35

2547

2459

2371

2285

2198

21,13

20,28

30,03

2914

28,24

27,35

26,46

2558

2470

23,83

22,96

22,09

21,23

2003

29,07

2818

27,28

26,39

26,51

2463

2375

2289

22,02

21,17

20,32

30,14

2924

28,34

27,45

26,56

2667

2479

23,92

23,05

2218

21,32

2004

2912

2822

27,33

26,44

25,55

2467

2379

2292

22,06

2121

20,36

30,24

20 34

2844

2156

26,65

2517

2489

24,01

2313

2227

21,40

2005

29,16

28,26

27,37

26,48

25,59

2471

23,83

22,96

22,10

21,25

20,40

30,35

29,44

28,54

27,64

26,75

25,86

24,98

24,10

23,22

22,35

21,48

2006

29,20

28,30

27,41

2652

25,63

2475

2387

23,00

2214

21,28

20,43

30,45

2954

28,64

21,74

26,85

2596

2507

24,19

2331

22,44

21,57

2007

29,24

2834

2745

26,55

25,67

2479

2391

23,04

2218

21,32

20,47

30,56

29,64

28,74

27,84

26,94

26,06

2516

2428

23,40

2252

21,66

2008

2927

2837

2748

2659

26,70

2482

23,94

23,07

2221

2135

20,50

30,65

2074

28,84

27,93

27,04

26,14

2525

2437

2348

2261

2173

2009

29,31

28,41

27,52

26,63

2574

24,86

23,98

2311

22,24

21,38

20,53

30,75

29,84

28,93

28,03

27,13

26,23

25,34

24,45

23,57

22,69

21,82

2010

29,36

2846

27,56

26,67

2578

24,89

24,01

2314

2228

21,42

20,57

30,85

29.94

29,03

28,12

27,22

26,32

2543

2454

2366

2277

21,90

2011

2941

28 51

27,61

26,71

25,82

24,94

24,06

2318

2232

21,46

20,60

30,95

30,04

20,13

2822

27,31

26,41

2562

2463

2374

22,86

21,98

2012

2948

2856

27,66

2676

25,87

2498

2410

2323

2236

2150

2065

31,08

30,12

2022

2831

2741

26,50

2561

2471

2383

22,94

22,06

2013

29,51

28,60

27,70

26,80

2591

25,02

24,14

23,27

22,40

21,54

20,68

31,14

30,23

29,31

28,40

27,50

26,59

25,69

24,80

23,91

23,02

22,14

2014

29,55

2865

2775

26,85

2595

25,07

2418

2331

2244

2158

20,72

31,24

30,32

29.41

28,49

27,59

26,68

2578

24,88

2399

2310

2222

2015

29,60

2869

27,79

26,89

26,00

2511

24,22

2335

2248

2161

20,76

31,33

3041

29,50

2859

27,68

26,17

2587

2497

24,07

2318

22,30

2016

2965

2874

27,84

26,94

26,04

2515

2427

2339

2262

2165

20,79

3142

3051

2059

2868

2776

26,86

2595

25,05

24,18

2326

2237

2017

29,70

28,79

27,88

26,98

26,08

25,19

2431

23,43

22,56

21,69

20,83

31,52

30,60

29,68

28,76

27,85

26,94

26,04

2513

24,24

23,34

2245

2018

29.74

28,83

27,93

27,02

26,13

2523

2435

2347

2259

2173

20,87

31,61

30,69

2977

28,85

27,94

27,03

26,12

2522

24,32

2342

2253

2019

29.79

2888

27,97

27,07

26,17

2627

24,39

2351

2263

2177

20,90

31,71

30,78

20,86

28,94

28,02

27,11

26,20

26,30

24,40

23,50

22,60

2020

2984

2892

2802

27 11

26,21

25,32

2443

2356

2267

21,80

20,94

31,80

30,87

2095

29,03

2811

27,20

2629

25,38

24,48

2358

2268

Source: Author’s computations
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Model retirement age ensuring the receipt of a pension on average for the
last quarter of one’s life

The retirement age for individual generations, assuming that the average period
of receipt of a pension should equal a quarter of the average lengths of entire life
of seniors, is given in Tab. 2. For greater clarity the values of retirement age are
rounded up into whole months. From the differences in the generation life
expectancies in retirement age of the two scenarios it emerges that according to
the CZSO scenario the retirement age for generations born roughly up to 1985
would be slightly higher than according to the Eurostat scenario and for
generations born later it should be the other way round.

In both scenarios it is evident, however, that the proposal of the Pension
Committee, even if it were realised immediately, decidedly would not lead to
areduction in the retirement age of the generations entering retirement at
present. The retirement age according to present legislation is, for generations
born in the fifties of last century, roughly one year for men and sometimes
several years for women (according to the number of children reared) lower
than the model value envisaging the average period of receipt of a pension as
the last quarter of one’s life.

For the model calculations according to the CZSO projection the retirement age
for men born in 1965 according to present legislation is still 8 months lower
than the model value. The model value for retirement age according to the
Eurostat projection is, however, already 1 month lower for this generation than
the 65 years hitherto proposed.

For younger generations, however, it is evident that with the development of
mortality according the assumptions of the Eurostat scenario the retirement age
for further generations would be higher according to present legislation than the
retirement age ensuring that the average duration of receipt of a pension would
equal the length of a quarter of a lifetime and that this difference would
increase. For the generation of those born in 2000 this difference would already
be roughly 2 % years and for those born in 2020 the difference would be almost
5 years.

With the development of mortality according to the CZSO projection the
retirement age according to present legislation would always be lower for the
generations born up to 1973 than the model retirement age, but then, with regard
to the expected strong slowing of the growth of life expectancy and the
continuing raising of the retirement age by 2 months for each generation, the
difference would increase rapidly. For the generation of those born in 2020 the
retirement age would, according to present legislation, already be more than
6 years higher than the retirement age ensuring receipt of a pension for the last
quarter of one’s life on average.
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Table 2. Current and proposed retirement age in the Czech Republic

Year Receipt of pension Current legislation

of thle last quarter of life males females
births CZS0 scenario | Eurostat scenario 2 children’
1950 63 912 63 212 62 612 58 4112
1951 63 11/12 63 312 62 8/12 58 812
1952 64 112 63 512 621012 59

1953 64 312 63 6/12 63 59 412
1954 64 512 63 812 63 212 59 812
1955 64 712 63 912 63 412 60

1956 64 812 63 10112 63 612 60 4/12
1957 64 10112 684 83 812 60 8M12
1958 64 1112 64 1/12 631012 61 212
1959 65 112 64 312 64 61 812
1860 65 312 64 4/12 64 212 62 2/12
1961 65 412 64 512 64 412 62 812
1962 65 5612 64 TM12 64 612 63 212
1963 65 612 64 812 64 812 63 812
1984 65 712 84 912 641012 64 2112
1965 65 812 64 11/12 65 64 812
1966 65 912 65 65 212 65 2112
1967 6510112 65 1/12 65 412 65 412
1968 66 65 312 65 612 65 612
1969 66 65 4/12 65 812 65 8/12
1970 66 112 65 512 651012 651012
1971 66 212 65 612 66 66

1972 66 312 65 712 66 212 662112
1973 66 412 685 912 66 412 66412
1974 66 4112 65 10/12 66 612 66 612
1975 66 512 65 11/12 66 812 66812
1976 66 6/12 66 66 10/12 66 10/12
1977 66 612 66 1/12 67 &7

1978 66 712 66 3/12 67 212 67 2/12
1979 66 712 66 4/12 67 412 67 412
1980 66 812 66 512 67 612 67 _6M12
1981 66 812 66 6/12 67 812 67 812
1982 66 912 66 712 67 1012 67 1012
1983 66 9112 66 8/12 68 68

1984 66 10112 66 912 68 212 68 212
1985 66 10/112 66 10/12 68 4/12 68 4/12
1986 66 1112 66 11/12 68 612 68 612
1987 66 11112 67 68 8M2 68 8M12
1988 66 11112 67 1112 681012 68 1012
1989 &7 687 212 89 69

1980 67 67 312 69 212 69 2112
1991 67 112 67 412 69 412 69 412
1992 67 112 67 512 69 612 69 612
1993 67 112 67 612 69 812 69 812
1994 67 212 67 7112 69 10/112 69 10/12
1995 67 2112 67 812 70 70

1996 67 312 67 912 70 212 70 2112
1997 67 312 67 10112 70 412 70 412
1998 67 412 687 11112 70 612 70 612
1999 67 4112 68 70 812 70 8M2
2000 67 412 68 1/12 701012 7010M12
2001 67 &/12 68 2/12 71 71

2002 67 512 68 312 71212 71 212
2003 67 612 68 4/12 71 412 71 412
2004 67 612 68 512 71 612 71 612
2005 67 612 68 612 71 812 71 812
2006 67 7112 68 6/12 711012 711012
2007 67 712 88 712 72 72

2008 67 7112 68 8/12 72 2112 72 212
2009 67812 68 912 72 412 72 412
2010 67 812 68 10/12 72 612 72 612
2011 67 912 68 11/12 72 812 72 812
2012 67 912 68 11/12 721012 721012
2013 67 912 69 73 73

2014 67 1012 689 1112 73 212 73 212
2015 67 10112 69 2112 73 412 73 412
2016 67 1112 69 312 73 612 73 812
2017 67 1112 69 312 73 812 73 8M2
2018 67 1112 69 412 731012 7310112
2019 68 69 5/12 74 74

2020 68 689 612 74 212 74 212

1At present time the retirement age of females is lower than for males and depends on the number of
their children. It will be subsequently equalised in next decades.
Source: Law No. 155/1995 Coll., author’s computations

206



Conclusions

The paper shows the model calculations of the retirement age needed to ensure
that the average period of receipt of a pension is at the level of the last quarter of
the expected entire lifetime of people reaching retirement age.

The level of the model value of retirement age understandably depends first and
foremost on the prognosis of the mortality development used. For practical
purposes it is expected that far more sophisticated methods will be used for
predicting the development of mortality, not the simple projections used in this
paper. In addition the accuracy of prognoses declines with their length and
actual development almost always differs somewhat from the forecast
development. The proposal of the Pension Committee therefore envisages that
the prognoses would be regularly updated every five years on the basis of the
latest available data and that any correction of the retirement age would be
carried out only for the generation of people whose age would be between
roughly 25-50 years at the moment of making the correction. It would not, then,
be possible to change the retirement age of persons for whom, according to
current legislation, retirement is only a few years away, nor would the precise
value of retirement age be determined in advance for the very young or those
not even yet born.

The results of the modelling on the basis of the simple projections of the CZSO
or Eurostat, however, confirm in any case that in the generations of persons born
up to 1965 there is no reason to lower the existing limit of the retirement age, as
in their case the average period of receipt of a pension would actually equal
a little more than 25 % of their lives. This applies in particular to women, whose
retirement age should rise by 2030 to the level of the retirement age for men or
(in the case of women with three or more children, of whom there are relatively
few) they should reach this level a few years after 2030.

On the other hand the model calculations indicate that if the average period of
receipt of a pension should equal 25 % of a lifetime, then after 2030 (i.e. for the
generation of 1966 and younger) there should be a slowing-down of the present
tempo of the rise in retirement age. This depends, however, not only on whether
the proposal mentioned will be approved, but also on the results of later
calculations based on more sophisticated and updated prognoses of the future
development of mortality.
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Abstract. Degradation processes modellingisa  key p roblem to perform an y ty pe of
reliability study. Indeed, the quality of the computed reliability indicators and prognosis
estimations directly depends on this modelling. Mathematical models commonly used in
reliability (Markov chains, Gamma processes...) are based on some assumptions that can
lead to aloss o finform ation on the d egradation d ynamic. In many studi es, D ynamic
Bayesian Networks (DBN) have been prov  ed relev ant to r epresent multico mponent
complex systems and to perform reliability studies. In a previous paper, we intro duced a
degradation model based on D BN named graphical duration model (GDM) in order to
represent a wide range of dur ation models. This paper will introduce a new degradation
model based on GDM integrating the concept of conditional sojourn time distributions in
order to im prove the degrad ation m odelling. It integrates the p ossibility to tak e into
account several degradation modes together and to adapt th e de gradation modelling in
respect of s ome new availab le observations of eith er the curr ent operation state or the
estimated deg radation | evel, to take into account an even tual d ynamic change. A
comparative study on simulated data between the presented model and the GDM will be
performed to show the interest of this new approach.

Keywords: Dynamic Bayesian Networks, Graphical Duration Models, semi-markovian
degradation process modelling, Reliability analysis, Residual Useful Life estimation.

1 Introduction

For th e last fifty years, th e co mplexity of m ost of industrial system s has

constantly increased. If at b est, their failu re can 1 ead to a te mporary poorer
performance of the system, a complete shutdown can also occur, inducing some
potentially strong security risks. If the system fails, some components can have
to be replaced, making the sy stem unavailable for quite a 1ong time which can
be very costly. For these reasons, the research of decision support tools for the
reliability analysis has become a key issue.

Many studies already dealt with this topic. Two approaches seems to be mainly
used for degradation process modelling: the set of anal ytic degradation models

16th ASMDA Conference Proceedings, 30 June — 4 July 2015, Piraeus, Greece -
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derived from the mechanic of the system, Lemaitre and Demorat [1], sometimes
quite difficult to validate, and the use of stochastic tools, Aven and Jensen [2].
Int his second ap proach, so me models are directly based on probability
distributions such as Bertholon model, Bertholon et al. [3], Weibull Freitas et al.
[4] or exponential distributions... These modelling generally aim to focus on the
failure time of the system. Ifone needs to evaluate the temporal behavior of a
set o frand om v ariables, “dynamic” a pproaches will b e preferred su ch as

stochastic p rocesses (G amma pr ocess, Van N oortwijk [5], Poi sson p rocess,
Hossain and Dahiya [6]...) or Prob abilistic Graph ical M odels (PGM) such as
Neuronal networks, Rajpal ef al. [7], Petri nets, Volovoi [8], Dynamic Bayesian
Networks, Weber a nd Jo uffe [9] ... I nt his pa per, t his last form alism was

considered. Indeed, since some years, it has been proved as relevant to perform
reliability stu dies since a degradation m odelling b ased on discrete and fin ite
states space is acceptable.

The si mplest model of deg radation p rocess ofasy stemusi ngt he DBN
formalism is b ased on its ab ility to model a simple Mark ov chain. Then, this
approach i mplies t he st rong assum ption of geom etrically di stributed s ojourn
times in each state. To overcom e th is limita tion, a specific DBNna  med
Graphical duration model (GDM) was proposed, Donat ef al. [10], to model the
degradation of a di screte states system using any kind of discrete sojourn time
distribution.

If this modelling provided some interesting results such as Bouillaut et al. [11],
it assum es th at sojourn times elapsed  in each state are indepe ndent. T he
existence of sev eral d ynamics in the degradation process cannot there fore be
identified neither taken into account. In this paper, an extension of the standard
semi-markovian G DM m odelling i s pr oposed, m anaging t he dependence
between t he s ojourn t imes thr ough t he ¢ oncept of ¢ onditional so journ t ime
distributions (CSTD). The aim is to be able to build a model that can describe a
system whose dynamic is a mixture of some degradations modes and that can be
adapted to observe changes in modes.

In the next section, the formalism of DBN and MGD will be briefly introduced
and co mpared. Th en, th e proposed GDM with co nditional soj ourn tim e
distributions will be d etailed. Fin ally, a comparative stu dy o f the stan dard
markovian approach with DBN and semi-markovian modelling (with GDM and
MGD with C STD) will b e p roposed for reliab ility an alysis b efore some
conclusions and prospects.

2 Probabilistic Graphical Models, a frame for reliability
analysis

2.1 From Bayesian Networks to Dynamic Bayesian Networks
Formally, a Bayesian Net work (BN)d enotedby M isdefinedasapai r

(gs {pn} ISngN) where:
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- G=(X, €) is a directed acyclic graph giving a qualitative description of the BN.
The graph nodes and t he associated random variables are both represented by
X={Xi, ..., Xy}, with values in = 3 x...x Ay. € is the set of edges encoding

the conditional independence relationships among these variables.

-{pn}1<n<v @ set o f Conditional Probability Distributions (CPD) asso ciated with
the ran dom v ariables. These distributions aim to quantify the lo cal sto chastic
behavior of each variable.

Besides, both the qualitative (i.e. §) and quantitative (i.e. {p,}) parts of M can

be automatically learnt, if some complete or incomplete data or experts opinions
are available, Jensen [ 12]. Using BN is also particularly interesting because of
the easiness for knowledge propagation through the network. Indeed, various
inference algorithms allow computing the marginal distribution of an y sub-set
of variables.

Ina dy namic be havior m odeling p oint of vi ew, t he t ime ext ension of BN
provide a convenient formalism to represent discrete sequential systems. Indeed,
DBNs are dedicated to model d ata which are sequ entially g enerated by so me
complex m echanisms (tim e-series data, bi o-sequences, number of m echanical
solicitations before failure...). It is t herefore frequently used to model Markov

chains. Formally, a DBN is defined by a pair of BN (M,,;, M ™) where:
- M

ini

= (&”’”",{ P <N) isaBN  modeling t he in itial d istribution of X,

denoted p™.
- =(g7 {pa)

process, i.e. the distribution of X; knowing X1, denoted p~.

) defines the transition model of t he considered
2<t<T;1<n<N

Figure 1 introduces a DBN modeling the Markov Chain of the sequence X=(Xj,
..., Xy) taking its values in the set X. This DBN is described by the pair:
(./f//,.m. , M ) = ((X1 , D ) , (g* , 0% )) where O den otes th e tran sition m atrix

of a Markov Chain, quantifying the probability of XX, .

® ©®—06

Initial model Transition model

\ L%

<Y ini

Fig. 1. DBN modelling a Markov Chain

If this approach is perfectly adapted to model the dynamic of systems, it induces
a strong a ssumption on sojourn time distribution in each state of t he system.
Indeed, as all Markovian approaches, transition rates are assumed constant and,
therefore, s ojourn tim es are necessa rily g eometrically di stributed. In many
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industrial appl ications, s uch an as sumption can in troduce strong biasin the
degradation modeling that cannot be foreseen in a con text of reliab ility based
maintenance optimization. To overcome this drawback, a specific DBN, named
Graphical Duration model, was proposed and will be briefly introduced in the
next paragraphs.

2.2 Graphical Duration Models

The G raphical Du ration M odel i s a spe cific DB N, using a sem i-Markov
approach. The main idea is to deal with the couple (X, S;) rather than the single
variable { X;} where S, denotes the re maining time in th e curre nt state of X,.
Figure 2 introduces the structure of a DMN modeling a GDM. The solid lines
define the basic structure of the GDM; dashed lines indicate optional items and
red bold edges characterize dependencies between time slices.

Initial model Transition model
v Mr’m’ - M 1

Fig. 2. Specific structure of a DBN modelling a Graphical Duration Model.

A GDM is therefore defined by the pair (M;,;, M™) with:
M= ( " (., F, )) where o and F;d enoteresp ectivelyth ein itial

distribution of X; and S;.

-MT = ( g, (Q“ ,F~ )) characterize d by two transition di stributions: Q7 is
the natural states changes distribution and F is the sojourn time distribution,
both described by the following equations (1) and (2).

F~ is the distribution of the remaining sojourn times in the current state X,. If a
natural transition occurs at ¢ (i.e. S.;=1), this distribution is defined by a given
conditional p robability distribution #**. On the other hand, F~=C where this

matrix simply dec rement the sojourn ti me of 1 un it at each iteration, until a
natural transition occurs.
F = p(St =s|X,=x,8,_, :s')
F (x,s) = p(S, =s|,X,=xS, ,= 1)
B C(s',s):p(S,:s|Stfl:s') Q)
- lif s =s'—1
- 10 otherwise
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Q7 is the distribution of state tran sitions. If a natural transition occurs at ¢, this
distribution is defined by the previously introduced tran sition matrix 0”°. On
the other hand, O~ =/ enforcing the variable X in the current state until a natural
transition occurs.

L =x\8_,=s")

2 -1
Q.vy.v (xl X p(Xt = x|5Xt71 = _)C',S171 = 1)
{1if x'=x

I
i

0 otherwise

Besides, the structure of a GDM introduced in figure 2 shows the process (X))
(respectively ( S))1 snot M arkoviansi nce X, HX, 1 |X ;

(respectively S yid S ‘S, ); where 4 M B denotes that variables 4 and B are
not statistically independent. On the other hand, the GDM structure leads to

(Xr—l’St—l) J'l'()(t+l’St+1)|()(t’St) (3)
So, the set (X}, S;) engendered by a GDM is Markovian, despite (X;) is not.
On the practical point of view, this ap proach allows s pecifying arbitrary state
sojourn time di stributions by contrast with a classic M arkovian fram ework in
which al 1 du rations have t o be ex ponentially di stributed. T his m odeling i s
therefore p articularly in teresting as soo n as th e q uestion is to cap ture th e
behavior o fa gi ven sy stem subjected to a part icular co ntext and a com plex
degradation distribution. M ore d etails on this GDM (qu antitative d escription,
optional context description ...) can be found in Donat ef al. [10].
As an illustration of the contribution of GDM for reliability analysis, the simple
and “standard” academ ic 3 se rial-parallel com ponents system will be
considered. C ; and C j; are parallel com ponents, t aking t heir values in { ok,
failed} whereas the serial component C takes its v alues in { ok, small defect,
failed}. The system fails when C, and C; are simultaneously failed or when C,
fails.
Figure 3 introduces the sojourn time distributions, considered in this example,
for all “not failed” states. Parameters of a DBN modeling a Markov Chain and
of GDM are learnt for the three components, using a database with 1000 sojourn
times in each state. This learning phase provides transition rates for the standard
DBN m odeling a nd discretized so journ time di stributions f ort he GDM
modeling, co nditioned by the parameter 7,,,,, defined as the higher bound of
sojourn times. Th e settle ment of this parameter is a fund amental p oint in the
GDM ap proach. Indeed, ifitis underestimated, the | earning o f's ojourn time
distributions can be strongly biased. On the o ther hand, the complexity of the
considered bayesian net work can induce algorithmic probl ems. In this paper,
Tnax=200.
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Fig. 3-a. Sojourn time distribution of component C i
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Fig. 3-b. Sojourn time distribution of component C, and C,

Fig. 3. Sojourn time distributions in non failure states for components C,, C,
and C;.

When all p arameters are learn t, all k ind of reliability indicators can be easily
estimated, such as instan taneous availability, reliability, cumulative distribution
function... The fo llowing figure introduces the estimation of this last in dicator
by both modeling “standard” DBN and GDM for the 3 components system.

0.8r
o8

07F

LX) o

===Thaoratical values
= Estimaticn by standard DBN
imati GDM
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04
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Time

Fig. 4. Sojourn time distributions in non-failure states for components C,, C,
and C;.
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The red lin e i ntroduces t he theoretical b ehavior of t he co nsidered reliability
indicator. One can note that, due to the stochastic properties of the sojourn time
distributions characterizi ng our system, a Mar kovian ap proach cannot fitthe
exact behavior of the system whe n the GDM provides a g ood formalism. This
first res ult fo cuses o nt he im pactoft he assum ptions m ade duri ngt he
degradation modeling on the accuracy of our reliability analysis.

In the next section, an extension of GDM is in troduced, allo wing tak ing into
account several dynamics in the de gradation process modeling. Indeed, as we
can note in figure 3, the sojourn ti mes d istributions seem s to co nsist inthe
merging of different dy namics. This is p articularly identifiable o n fi gure3-a
where two behaviors can be observed. With the standard GDM, this information
cannot be taken into account...

3 Introduction of conditional sojourn time distributions in
GDM

3.1 Structure and main properties of GDM-CSTD

Figure 5 sh ows the graphical st ructure o fthe DBN m odelinga GDM wi th
conditional so journ tim e d istributions. A variable en codingth e current
degradation mo de, denoted M, isad ded toth e couple ( X,,S;) used bythe
standard M GD. T his ¢ hange i nduces updating t he t ransition distributions
introduced in (1) and (2).

Initial model Transition model
-\/Iml' 'M £

Fig. 5. Specific structure of a DBN modelling a GDM integrating conditional
sojourn time distributions.

Since M, does not influence X, the state tran sition distribution introduced by
(2) will not be modified. The impact of the modes variable on the sojourn time
variable S, leads to the following adaptation of (1).

F~ :p(S, =s|X,=x,5_,=s"M,, :m')
F* (x,s,m') if s'=1 4)
C(s's)if s'>1

If no natural transition o ccurs between #-1 and ¢, the matrix C decrements the
remaining sojo urn time b y 1 unit wh ereas if s’=1, the state oft he system
changes between #-1 and z. Then, the sojourn time in the new current state is
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chosen in respect F**, the probability distribution of the sojourn time for each
state, in each mode.

Finally, (5) quantifies the transition of modes. If the state of the system does not
change between #-1 and ¢, the conside red mode at #-1 is conserved using the
matrix /. Ifa state transition o ccurs, the distribution W** defines, through the
elapsed time in the previous state, the most probable mode for the current state.

w= :p(M/ =m|X,, =xX,=x,8 =s,M,, :m’)
W (x’,x,s,m’,m)if x'=x (5)

N I(x',x,m')if x'=x

The 1 earning of C STD consists in three phases. First, the number of modes,
denoted #,,, has to be determined. This can be done either by expert’s advice or
using a criterion such as BIC - Bayesian Information Criteron, Schwarze [ 13],
that w ill d etermine, th rough a return of ex perience (REX ) database Dy, the
optimal number of mixtures. Then, through Dy, the EM al gorithm, Dempster e?
al. [14], is used to estim ate the sojourn time d istributions in the initial state for
each of the n, modes. This learning also provides a se gmentation of Dy in n,,

sub-bases de dicated to each mode, de noted Dy with me[1..n,,). Fin ally, t he
sojourn time distributions for each m ode in all other states are learnt using the
right Dy .
To illustrate this modeling, a four states syste m is co nsidered, taking its valu es
in X={ok, state2, state3, failed}, witht wo de gradation modes, pe riodically
observed (7,,). To set a 1000 traj ectories learning database, each sojourn ti me
distribution follows a Weibull distribution that parameters are under mentioned:
- ok: mode 1~W(2,15) and mode 2~W(6,33)
- state2: mode 1~WV(6,10) and mode 2~W/(9,25)

- state3: mode 1~WV(6,5) and mode 2~WW(15,15)

Then, ¢ onsidering t he p reviously i ntroduced 1 earning procedure, ¢ onditional
probability distributions are learnt from the sampled database for both MGD and
MGD-CSTD approaches. This learning phase underlined the bias that m ight be
introduced in the esti mation o f'th e failure ti me o fap eriodically o bserved
system when the coexistence of several dynamics in the degradation process is
not taken into account. Inde ed, if these sojourn time distributions a re used to
estimate the remaining useful life of our system, in the standard MGD approach,
the ob servation of a sho rt sojourn time in the first state d oes not impactthe
estimation of th e sojourn time in the next states. The following subsection will
introduce some illustrative results on this point.

3.2 Estimation of the remaining useful life of periodically observed systems

In this last illu stration, th e 4 states system in troduced in section 3.1 willb ¢
considered with a T, p eriodic m onitoring, p roviding the cu rrent state o fthe
system each 5 time step.
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Aiming to estimate the remaining useful life (RUL) of the system and to update
itwh enan ew ob servation is av ailable, the structure of th e MGD- CSTD
introduced in figure 5 was adapted, adding two variables D, and ¢ that represent
respectively the diagnosis of X, by the monitoring device, taking its values in

X U{D} and an activation variable controlling if the diagnosis is active or not.

In the considered example, & is T, periodically activated. In the other cases,
the monitoring device is not active and D, returns no information on X; through
the state . Figure 6 introduces the structure of this new DBN.

Initial model Transition model
M, M

Fig. 6. Structure of the DBN used to estimate the RUL of a periodically
observed system with a GDM-CSTD approach.

During the initialization phase, a sojou rn time in state ok is obtained with F,
determining the m ost p robable current m ode m,. T hen, knowing m, s ojourn
time distributions (or conditional sojourn time distribution in the MGD-CSTD
approach) in states state2 and state3 (con tained in F™7) p rovide t he in itial
estimation of the RUL.

When a new diagnosis is av ailable, if a natural tran sition is observed, in the
MGD-CSTD approach, the ¢ urrent mode is eventually corrected i n res pect of
the most probable mode knowing the elapsed time in the previous state. Then,
with the same reasoning that in the initialization phase, the RUL is uploaded.
Before tryin g to in tegrate this RUL es timation algo rithm in a wid er specific
DBN, the proposed methodology has to be briefly evaluated. This was the aim
of the results introduced in this end of paper.

Figure 7 introduces two illustrativ e re sults, und erlying the behavior of MGD
and MGD-CSTD a pproaches fort he R UL est imation oft he periodically
observed 4 states system.

The firston e focuses on the in terest of using th e cond itional so journ tim e
distributions concept. Indeed, one can observe that the information contained in
the de gradation m ode (a pproach MGD- CSTD) allows using a m ore accurate
sojourn time range to estimate the RUL. This is the reason why the estimation is
closer to the real value of the remaining useful life that when the standard MGD
is considered.
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In the second draw, another interest of M GD-CSTD is underlined. Indeed, in
this run, the MGD based estimation looks better in the first observations since it
is closer to the real RUL.  Th e exp lanation of th is unu sual situ ation is th at,
during the initial phase, the mode m; was chosen when the right one was m,. For
this reason, the wro ng part of the sojourn times was u sed in the MGD-CSTD
approach, explaining the less precise estimations. We can note that at =35, the
situation changes. Between 30 and 35, the state turns from ok to state2. Then,
knowing the elapsed time in ok, th e algo rithm is ab le to co rrect its in itial
mistake by correcting the m ost probable mode. Then, the MGD-CSTD uses the
right part of the sojourn time range while the MGD approach still work with the
complete sojourn time domain.

50[ T : T . T .
i ——Real RUL
40r 2 i 4 Estimation by MGD
a0 :“‘*——.__H_H = . v Estimation by MGD-CSTD|
— : i
204 -
-~
10 E
H

U 1 1 1 1 i 1

0 5 10 15 20 25 30 35
80 T T T T T T T T T T T T T
60 THK -
40y . 5 S E

v v a i A\:M_
0 L 1 1 1 1 I 1 1 L 1 \?\Z\l
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Time

Fig. 7. Examples of RUL estimations using GDM and GDM-CSTD approaches.

To be complete, we have to point on some possible situations that will have to
be investigated in further works. Figure 8 introduces what can happen when the
sojourn time in a given state is lo cated exactly in the intersection range of two
modes. In that example, the mode was correctly initialized in m;. Then the first
estimations with MGD-CSTD are v ery satisfactory. But, when the transition to
state state? is detected at =30, the probability of such a sojourn time in state ok
for mode m; is so weak that an ina ppropriate mode change is ad opted. Then,
during the two next observations, the RUL estimation by MGD-CSTD is really
poor. Fortunately, in that case, the transition state2-state3 allows correcting the
mode and therefore improving the last RUL estimation.

To give a better idea of the global behavior of the proposed approach, figure 9
introduces the RUL estimation error in respect of time for the trajectories of the
considered d atabase obtained with the MGD-CSTD approach, respecti vely for
the 500 trajectories in mode 2 and 93.2% of the 500 trajectories in mode 1. The
considered ti me indices in these dr ~ awings co rrespond to the number  of
observation before the system fails.
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Fig. 8. Examples of RUL estimations using GDM and GDM-CSTD approaches
- Unfavourable case.

One can no te that, for mode 2 trajectories, the initial estimation of the RUL is
quite poor. This is d ue to the fact th at, in the current version of the algorithm,
the variable M, is systematically initialized in mode 1. Then, the first estimations
are based on the wrong sojourn time distributions, i nducing strong errors. In
most o f cases, wh en th e fi rst n atural state tran sition is ob served, t he m ost
probable degradation mode is uploaded and the RUL estimation is improved.
We als o can note than the confidence in the estim ation in creases when the
failure time c omes and the RUL estimation becomes q uite in formative. On ly
very few trajectories are long enough to have more than 14 observations, this is
the reason why there a re a weak number of points for temporal indices upper
than 15.

For mode 1 trajectories, i.e. faster degradation sce narios, we can observe the
same global behavior of the RUL estimation algorithm. Nevertheless, this case
also illu strates th e drawback of'th e proposed ap proach, in troduced t hrough
figure 8 that might be i mproved in further w orks. Gl obally, 34 o fthe 500
trajectories in mode 1 have at least one sojourn time in the intersection range of
two m odes, i nducing a wr ong est imation of t he m ost pro bable deg radation
mode, such a way that the adaptation ab ility of the algorithm , underli ned in
figure 8, cannot process in t hese cases and the R UL estimation is ab solutely
unusable.

Nevertheless, even if the proposed algorithm shows some interesting adaptation
abilities when mode estimation errors occur, this final example points out some
improvements that will have to be investigated in further works, to make more
robust the proposed approach.
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RUL estimation error. Mode 2 trajectories
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Fig. 9. Global behaviour of the RUL estimation algorithm. Estimation error for
each degradation mode in respect of time

Conclusions

In this paper, the formalism of Probabilistic Graphical Models was investigated
to determine degradation process modeling for systems with discrete and finite
states space. If the “classic” Markovian approach consisting in the modeling of a
Markov C hain by a Dynamic B ayesian Netwo rk i nduces necessarily th e
assumption of sojourn tim es in each st ate exponentially distributed, a semi-

Markovian a pproach w as proposed usi ng a speci fic D BN st ructure, nam ed
Graphical Du ration M odel, t hat al lows co nsidering al 1 kind of s ojourn t ime
distribution without a ny as sumption o nt he st ochastic pr operties of t he
degradation process.

In this approach, sojourn times in each state are supposed independent. In some
applications, especially when the degradation process is the merging of sev eral
dynamics, suc h a n ass umption can i nduce st rong bi as i n t he e stimation of
reliability in dicators. To illustrate th is p roblem, an ex ample was in troduced
dealing with t he estim ation o ft he rem aining usefu I life of a  periodically
observed system.

Then, an extension of the standard GDM approach was proposed, integrating the
notion of ¢ onditional s ojourn t ime di stributions by a new random vari able
managing the most appropriate degradation mode, knowing the elapsed time in
the previous state. Then, both MGD an d MGD-CSTD were used and compared
for the estimation of th e remaining useful life o f a m ulti-states system. If the
MGD-CSTD approach offers a ve ry i nteresting global beha vior, i ts main
drawback lies in the existence of intersection ranges for several modes, inducing
some potential wrong degradation mode estimations and, in the worst cases, an
inability of the algorithm to readjust the RUL estimation before the failure time.
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Some improvements of the proposed algorithm are currently in progress on this
key point.
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2

Abstract. We present availability assessment of multi-state aging industrial animal food
additives production manufacturing system and investigate an impact of seasonal demand. In
order to determine the system availability we constructed Markov models, representing the
various production levels of each element and sub-system in the manufacturing system. Some
elements in the system have an aging property. The entire system can be represented as
Markov model with 48 different states expressing the different performance levels of the
entire process. The production demand is described as two level seasonal Markov model,
typical for such production process. The entire Markov model is described as system with 96
differential equations, solution of which is complicated problem. To overcome this obstacle
we propose an application of the Lz-transform method for availability assessment of aging
multi-state system (MSS) and its manufacturing capability.

We demonstrated that the suggested method can be implemented in engineering decision
making and construction of various MSS aging systems related to requirements, availability
and production.

Keywords: multi-state system; Markov model; Lz-transform method; discrete-state
continuous-time stochastic process; Availability.

1 Introduction

In this paper we examine a manufacturing production system for animal food
additives. The system consists of four elements: reactors and filters. The nominal
productivity of the entire system is 600 ton/year.

Due to the system’s nature, a fault in a single unit has only partial effect on the
entire performance: it only reduces the system’s productivity. Therefore, the
production system can be assessed as a multi-state system (MSS), where in general
both the entire system and its components have an arbitrary predetermined number of
states that corresponds to different performance rates (Lisnianski and Levitin [4],
Lisnianski et al. [3], Natvig [5]). The performance rate of the system at any instant t
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is interpreted as a discrete-state continuous-time stochastic process. Such production
systems are characterized by numerous states even in relatively simple cases.
Therefore, using Markov methods for building the model and finding the solution for
the corresponding system of differential equations is rather challenging.

In recent years for dynamic MSS reliability analysis a special technic named L; -
transform, has been introduced (Lisnianski [2], Lisnianski et al. [3]) for discrete-state
continuous-time Markov processes. L, —transform extends application of powerful
universal generating function technique (Lisnianski [2], Ushalov [6]) to reliability
analysis of aging MSS.

In the presented paper, the L, -transform is applied to a real production system
and its performance is analyzed. It is shown that L; -transform application
dramatically simplifies the performance computation for such systems in contrast to
the straightforward Markov method.

2 Brief Description of the Lz-transform Method

In this paper the L -transform method is implemented for the performance
determination for MSS manufacturing aging system. The method was introduced by
Lisnianski [2] where one can find its detailed description and corresponding
mathematical proofs. Briefly, the description of the method is as follows.

We consider a  discrete-state  continuous-time  (DSCT)  Markov

process X (t) € {X,,.... X }, which has K possible states i, (i=1,...,K) where the
performance level associated with any state i is x;. This Markov process is completely
defined by the set of possible statesx ={x,X,,... X}, the transition intensities
matrix depending on time A=(a(t)).i,j=12..,K and by the initial states
probability distribution given by
Po = [ Py = Pr{X(0) =x}..., Pxo = Pr{X(0) = XK}]'

According to [6], the L -transform of a DSCT Markov process X (t) is defined
by the following expression

L{X({®)}= Z POz

where p, () is the probability that the process is in state i at time instant t >0 for a
given initial states probability distribution p,, g; is the performance level of state i,

and z is a complex variable.
In general, any element j in MSS can have k; different states corresponding to

different performance, represented by the set g, :{gjl’"'!gjkj}’ where g; is the
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performance rate of element j in the state i, i e {l,2,...,kj}, and j e{L,...n}, where n

is the number of elements in the MSS.
According to Lz-transform method at first stage, a Markov model of stochastic
process should be built for each multi-state element in MSS. Based on this model,

state probabilities p; (t) =Pr{G;(t) =g,}, 1 €{L...,k;}or every MSS's element

can be obtained as a solution of the corresponding system of differential equations
under the given initial conditions. These probabilities define output stochastic process
G, (t) for each element j in the MSS. Then, individual Lz-transform for each element

j should be found

LG, (0} =X P, (02" j =L.n

At the next stage based on previously determined Lz-transform for each element j
and system structure function f, given by G(t) = f (G, (t)....,G, (t)) , Lz-transform of

the output stochastic process for the entire MSS should be defined. Using Ushakov's
operator €, (Ushakov [6] ) over all L -transforms of individual elements one can

obtain the resulting Lz-transform L {G(t)} associated with output performance
stochastic process G(t) of the entire MSS:
L{G1}=Q {LIG®)].... LIG, O]}

The resulting L transform is associated with the output performance stochastic
process for the entire MSS:

L{G®}=> p (t)z*

and MSS instantaneous availability can be easily derived from the resulting L-
transform in the following form:

Alt) =Y. p(t)

g >0

In other words, in order to find MSS's mean instantaneous availability one should
summarize all probabilities in L -transform from terms where powers of z are greater
to zero.
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3 Multi-state Model of the Manufacturing Production System in
Factory for Animal Food Additives

3.1 System Description

Detailed description of the production system is presented in Frenkel et al. [1].
The system consists of connected in series 2 reactor’s sub-systems and 2 filter
elements. The nominal performance of the whole system is 600 ton/year.

Both reactor subsystems have the nominal performance of 600 ton/year. The first
reactor’s system is 3 levels system with the following capacities: fully operation state
with capacity 600 ton/year, degraded state with capacity 300 ton/year and total
failure, corresponding to zero capacity. The second reactor’s subsystem is also multi-
level system with fully operation state with 600 ton/year capacity and states of partial
failures corresponding to capacities 400 and 200 ton/year, and a total failure with
capacity 0.

Filters can be in one of two states: a fully operational state with a capacity load of
600 ton per year and a state of total failure corresponding to a capacity of 0. Both
filters are elements possess the aging property.

3.2 Reactor’s Subsystem No. 1

Figure 1 presents the state-transition diagram of the MSS reactor’s subsystem No.
1.

Figure 1. State-transitions diagram of the MSS reactor’s subsystem No. 1

Using the state-transitions diagram (Fig. 1) in accordance with the Markov
method we build the following system of differential equations for reactor’s
subsystem No. 1:
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Rs1
o (t) _( F;s1 + F;sl) RS; (t)+/12RlSl szSl (t)+/1:i51 pl:zs1 (t)

R81
(t) F;s,1 lesl (t) _( RS,

- ) (1)

RSI (t) Fes1 Rs1 R81 RS, Rs1
= (1) + A5 P2 (1) 5 P2 (1),

Initial conditions are: p[™(0) =1 p5™(0) = pf*(0) =0.

A numerical solution for probabilities p{™ (t),i =1,2,3 can be obtained for this

system of differential equations using MATLAB® Therefore, for reactor’s Subsystem
No. 1 we can obtain the following output performance stochastic processes:

gRS { Rsl,gRsl gRsl} {600,300,0},
p™ (1) ={p" ©. " O, p," O

Having the sets g™ ,p"* (t) one can define for Reactor’s Subsystem No.1 Lz-

transform, associated with the reactor's output performance stochastic process:

RSy

L {G™ (1)} = pf™ (1) 2% + pf (1) 2% + p™ (1) 2%
=y ()2 + p™ ()27 + 5™ (1) 2,

3.3 Reactor’s Subsystem No. 2

Figure 2 presents the state-transition diagram of the MSS reactor’s subsystem No.
2.

Figure 2. State-transitions diagram of the MSS reactor’s subsystem No. 2
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Using the state-transitions diagram (Fig. 2) in accordance with the Markov
method we build the following system of differential equations for Reactor’s
Subsystem No. 2:

RSZ (t) — ( RSZ RSZ)

& > P (1) + 457 ™ (1) + aasy™ p™ (t) + ey p3™ (1);

RSZ (t) RS RS RS RS RS. RS
m e P (8) = (A +Ade + pay ) P (1)

RSz (t) RS, RS, (t) ( RS,

dt 3 2

R52 (t) RS, Rs2 S, RS, RS, Rs2 RS, Rs2
dt =M ()"'/12 P, () 4 (t) yom (t)

+,u3RlSZ) RS, (t);

Initial conditions are: p;™ (0) =1 p; (0) = ps* (0) = p;> (0) =0.

A numerical solution for probabilities p™ (t),i=12,3,4 can be obtained for

this system of differential equations using MATLAB®. Therefore, for Reactor’s
Subsystem No. 2 we can obtain the following output performance stochastic
processes:

g™ ={g/™, 05, 05%, g} } = {600,400,200,0},
p™ (1) ={p” .5 .07 .07 O

Having the sets g™ ,p"* (t) one can define for the Reactor’s Subsystem No. 2
L,-transform, associated with the reactor's output performance stochastic process:

RSy

|_Z {GRS2 (t)} _ leSz (t)291 + pRSZ ( )Zgz + presz ( ) gg 4 pR52 ( )
:pRSZ( ) 600+ pRSZ( ) 400+ pRSZ( ) 200+ pRSZ( )
1

3.4 Filter’s subsystem
Figure 3 presents the filter’s state-transition diagrams.
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Figure 3. State-transitions diagram of filters No. 1 and 2

Using the state-transitions diagram (Fig. 3) in accordance with the Markov
method we build the following system of differential equations for each filter (i=1,2):

R
AL ORI}
; at i-12.
Pe ) 2 0 -0 0

Initial conditions are: p{ (0) =1 pf (0) =0, i=12.
A numerical solution for probabilities p (t) and p; (t) (i=1,2) can be

obtained for each of these 2 systems of differential equations using MATLAB®.
Therefore, for each filter we can obtain the following output performance stochastic
processes:

o ={g, g | = {600,0},

P (1) ={p!' . p; O}- =

Having the sets g",p"(t) one can define for each filter L,-transforms,
associated with the filter's output performance stochastic process:

L, {GFI (t)} =pt (t)zgf1 +pg (t)zgzp' =p; (t)z* + p; (t)2°,
L, {G" (1)} = pf: ()2% + p2 (t)2% =pf ()2 + pit (1) 2°
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3.5 Model for the seasonal demand

The seasonal demand may be described as stochastic demand
(Lisnianski[4], Frenkel et al. [2]). Usually, for such systems, demand is
seasonally changing: the maximum level is increasing in summer and
decreasing in winter.

In this model, the demand is represented as a continuous time Markov
process with two states: w;=500 ton/year is peak level and w,=250
ton/year is low level. So, corresponding set of demands’ levels is as
following w={w,w,}={500,250}. State-transition diagram for Markov

process W(t) is presented in Figure 4.

/\\
// \\
- wr ) | wy
N

Figure 4. Two level demand model: state-transition diagram

According to the Markov method the systems of differential equations
for daily demand is as follows:

dp. , (t

pg:;( ) — dlp (t)+/1N2pW2(t)
dp,, (¢
pd—‘zt():/ldlpwl(t) —;izszw2(t)

The first state is the system's initial state, so p,, ={p,,(0), p,.,(0)}={L0}.

A numerical solution for probabilities p,,(t) and p,,(t) can be obtained for

this system of differential equations using MATLAB®. Therefore, we can obtain the
following output performance stochastic process:

{W ={w,,w, } = {500,250},
Py (1) ={ Pua (1), Po (O}
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Having the sets g,,,p,, (t) one can define for each filter L,-transforms, associated
with the filter's output performance stochastic process:

L {GW (t)} = P () 2% + P, (1) 2222, (1) 2% + p, (1) 27
3.6 Multi-state Model for the Production System

All systems’ elements are connected in series. So, Lz-transform, associated with
the whole system is:

LZ{GS(t)}=Qf (6™ ().G6™ (1).G" (1).6" (1)) =
Ser( RS, (t)zsoo n szsl( ) 750 4 pssl( )ZO lesz( ) 750 4 szsZ( )2400
)

Rs2 ( )220 4 RsZ ( )

pl()6°°+pz()°,pf2()“°+p (t)2°):

After simple algebra, where the powers of z are found as minimum values of
powers of corresponding terms, the final expression of the whole system’s Lz
transform is of the following form:

L, {G, (1)} =Py (1) 2 + P, (t) 2 + P, (1) 2 + P, (1) 2°° + P, (1) 2°
where
g, =600 ton/year P, (t)= pf (t) pf™ () pP (t) p7 (1)
)

g, = 400 ton/year
0., =300 ton/year

g, = 200 ton/year

g.s =0 ton/year
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3.7 Availability Computation for Entire Multi-state system

Block diagram for availability computation of the manufacturing

systems working under seasonal stochastic demand is presented in the Figure
5.

Manufacturing System

Reactor’s Reactor’s Gs(t) S~ Y(t):Gs(t)-W(t)
Subsystem — Subsystem Filter No. 1 Filter No. 2 -
No. 1 No. 2
w(t)
Demand

Figure. 5. Block diagram for the MSS availability computation

When the resulting stochastic process Y (t) = G,(t) -W (t) falls down

to level zero such event is treated as a failure. Processes G (t), W(t) are
independent.

Let’s find instantaneous availability for this aging multi-state
manufacturing system under the seasonal stochastic demand. .

In according to the L; —transform approach we obtain:
L, {G, (t)} = Py (1) 2% + P, (t) 2 + Py (t) 2°° + P, (1) 2% + P (1) 2°
L, {W (t)} = pya (1) 2% + Pz (1) 2% =, (1) 2 + 0 (1) 2°
Now, we have
L{Y (0} = L{G, (1) -W ()} = Qi {LAG, (O}, LW (1)}
= Qs { P (1) 2% + P, (1) 2 + P, (1) 2°° + P, (1) 27 + Py (1) 2°,
Pu (1) 2% + p,,, (1) 2%}
=P, ()P, 2 + P, (1) p,, (2 + Py (1) P, ()2 + P (1) P, (1) 27
+ P4 (0P (027 + Py (1) pa (027 + P (1) P, ()27 + P (1) py ()27
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Based on the last expression we obtain:
LY (©)}=P,(1)z*° +PR,, ()™ + p,, ()" + P, ()z*° + P, (1)
+R (2™ + R, ()27 + Ry ()™

where

g, =350 ton/year Py (t) = Py (t) P ()
9y, =150 ton/year Pyz (1) =P (1) P, (©)
9.5 =100 ton/year Pys (1) = Pu(t) P (1)
9y, = 50 ton/year, Py (1) = Pa(®) P2 (1)

9y =—50 ton/year, Pys (1) =P, (1) P, (1)
9y = —100 ton/year, Pye (1) =P (D) P (1)
gy, = —250 ton/year, Py () =Py () p,,, ()
9ys = —500 ton/year, Pye (1) = Ps (1) P (1)

These two sets
g :{gY1’ 9v219v310v419vs1Oy61 Oyrs gYS}
p(t) = { le(t)1 pvz(t): pvs(t): pv4(t)’ pvs(t)’ pye(t)i pv7(t)v pvs(t)}

define capacities and states probabilities of output performance stochastic
process for the entire MSS.

Based on the resulting L, -transform L, {Y (t)} of the entire MSS, one

can obtain the MSS instantaneous availability of the air-conditioning system
under seasonal stochastic demand as

Alt) = z p; )= le(t)+ pvz(t)+ pvs(t)+ pYA(t)

9y 20

4 Availability Calculation

Calculations were performed using the following failure and repair rates.
The failure rates of the first Rector’s Subsystem are A2 =2 year?, A% =23
year®, A% =4.3 year'. The repair rates are 5 =300 year' and & =300

year™
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The failure rates of the second Rector’s Subsystem are A% =2 year?, 1% =2

year', A% =" =25 year' and A2* =45 year’ . The repair rates are
15 =730 year™ ;5 =365 year and i =487 year™ .

The failure rate of each filter is A" =5+ 2t year™. The repair rate of the pump is
4" =730 year. As one can see the failure rates of both filters are increasing

functions of time, these elements possessing the aging property.

Availability calculation of MSS production system is presented in Figure 6. The
curves on this figure show that the availability of an aging system decreases with
time and down during a year. 3 curves are presented on this figure: availability for
seasonal demand and availabilities tor low level and high level constant demands.

1 T T T T

——Seasonal Demand
099+ |7 Demand 500 ton/year H
------- Demand 250 ton/year

0.98} i

0.97f

.....
"Nea
.....

Availability

o
©
w

0 2 4 6 8 10
Time (Years)

Fig. 6. Compatrison availability of the MSS manufacturing system for different
demnd levels

Conclusions

In this paper we applied the Lz-transform to a practical problem of availability
calculation for aging MSS working under stochastic demand. To illustrate, we used
as an example a manufacturing system.
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We demonstrated that the L,-transform method is well formalized and suitable
for practical application in reliability engineering for a real-world MSSs analysis. It
reinforces engineering decision making and determines a system structure to provide
required performance level for complex multi-state aging systems. This method
allows dramatic reduction in computation burden in comparison to straightforward
Markov method that otherwise would have required building up and solution of a
model with enormous number of states.
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Abstract. In this paper we introduce a new methodology for the problem of auto-
matic classification of languages according to rhythmic features, using speech samples.
The problem is to divide the set of languages in subsets with similar rhythmic pro-
perties in an automatic way. In other words we look for a partition of the set of
languages such that two languages are in the same part of the partition, if and only
if, they share the same rhythmic properties. The available dataset consist of 1648
recorded sentences coming from 8 languages. We extract from the speech samples the
local energy level on the acoustic signal for two specific frequency bands. Those two
energy bands carry information about rhythmic features of the language, according
to the results of Garcia et al. [7], Garcia et al. [12] and Garcia et al. [11]. In this
way, for each speech sample, we obtain a sequence of energy values. The strategy is
to compare the Bayesian information criterion (BIC) computed on the assumption of
markovianity, for all possible partitions of the set of languages {1,2,...8}. Assuming
that if two samples come from the same source, also follow the same law, which is
equivalent to say that if the rhythmic properties of two languages are significantly
different, then those languages will be allocated in different parts of the partition of
{1,2,...8}. Taking the previous idea in consideration, it was developed an algorithm
for the partition selection, under the scope of Partition Markov models (see Garcia
and Gonzélez-Lépez [8]). The resulting partitioning is in agreement with previous
results about this problem.

Keywords: Markov models, Bayesian information criterion, Partition of models,
Rhythmic classification of languages.

1 Introduction

This paper investigates aspects related to the the rhythmic patterns in speech
samples from several languages. In Garcia et al. [7] an algorithm is proposed
to automatically segment English speech on intervals of vowels and intervals
of consonants in function of the energy on some specific bands of frequencies.
Ramus et al. [14] proposed rhythmic measures based on that segmentation and
used them to classify the languages on tree rhythmic classes which correspond

16*" ASMDA Conference Proceedings, 30 June — 4 July 2015, Piraeus, Greece
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to a linguistic conjecture about the rhythm of languages (see Abercrombie [1]).
This suggests that it may be possible to use the information about the energy
on the frequency bands used by Garcia et al. [7] to obtain rhythmic classes.
In Garcia et al. [11] the same energy bands are used to discriminate between
languages and a robust procedure, see Garcia et al. [13], it is applied to auto-
matically choose for each language a subset of samples which are similar. We
use data from the following eight languages: Catalan, Dutch, English, French,
Italian, Japanese, Polish and Spanish. The linguistic conjecture that motivates
this study, claims the existence of three rhythmic classes, (a) the stress-timed
languages, (b) the syllable-timed languages and (c) the mora-timed languages.
Those classes are based in the idea that within each class, different elements
cause the temporal organization. The rhythmic type should be correlated with
the speech segmentation unit. Speakers of stress-timed languages should have
speech segmented in “feet”, speakers of syllable-timed languages in “syllables”,
and speakers of mora-timed languages in “morae”. About (a) and (b), Dauer [3]
and Ramus et al. [14] emphasize two phonologic/phonetic properties. Such
characteristics are (i) syllable structure: stress-timed languages have a greater
variety of syllable types than syllable-timed languages and (ii) vowel reduction:
in stress-timed languages, unstressed syllables usually have a reduced vocalic
system. According to (i) and (ii), Spanish, French and Italian should be cla-
ssified as syllable-timed languages. Dutch and English should be classified as
stress-timed languages. The existence of intermediate languages mixing (i) and
(ii) was reported in Ramus et al. [14]. In fact, Catalan and Polish should be
examples. Some studies also show that even in branches of the same language,
differences can be found, see Galves et al. [6]. And longitudinal studies show
that a language can alter their phonological features, see Frota et al. [4].

Ramus et al. [14] shows evidence that simple statistics based on hand labeled
segmentation, in vowels and consonants, of the speech signal could be used to
detect rhythmic classes. The limitation of the used approach is that it depends
on the segmentation that has to be made by hand by a phoneticist. As a con-
sequence, the sample analyzed was small and also the results are dependent on
the phoneticist interpretation. Galves et al. [5] proposed a sonority function
that assigns to each sentence the mean value (over all the sentence) of a local
index of regularity on the spectrogram. The local index of regularity is based
on the relative entropy of successive columns of the spectrogram. The sonority
function is calculated by an automatized algorithm without any hand labeling,
thus avoiding some drawbacks present in Ramus et al. [14]. However, the pa-
per does not assess any statistical evidence of difference between the sonority
of languages in different rhythmic classes. Cuesta-Albertos et al. [2] applied
a new Kolmogorov Smirnov test for functional data on the sonority function.
They use this test to find statistically significant differences between some of
the languages on the different rhythmic classes. This approach discrimina-
tes the languages without proposing a model. The main restriction with the
sonority approach is that it depends on the relative entropy on the spectrogram
of the signal which is very sensitive to small changes in the level of noise on
the signal. In the process of collecting acoustic signal, there are several sources
which impact in the signal-to-noise ratio, significantly changing the value of the
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sonority function. Some changes are generated by external factors at rhyth-
mic properties: different recording instruments, different distance between the
microphone and the speaker, natural voice volume of the speakers, etc. For
instance, for this reason Cuesta-Albertos et al. [2] used just 20 sentences, the
same that Ramus used, from a total of around 200 sentences for each language.
In contrast, the methodology introduced in the present paper produces, in an
automatic way, clusters which are based on bivariate Markov models. Such
models fit the time dependence and also fit the dependence between the two
energy on the two frequency bands. The mean energy is much less sensitive to
noise levels in the recordings than the relative entropy, giving as a result a more
robust classification. The clusters obtained confirm the theoretical conjecture
and had the advantage compared to Ramus et al. [14] and Cuesta-Albertos et
al. [2] that it does not require pre-selection of sentences. Our fitted models offer
a mathematical justification of the linguistic classes established by the conjec-
ture and make no prior assumptions about the rhythm’s classes that should be
found.

2 The data

The data set consists of 1648 recorded sentences belonging to eight languages,
Catalan with 216 sentences, Dutch with 228 sentences, English with 132 sen-
tences, French with 216 sentences, Italian with 216 sentences, Japanese with
212 sentences, Polish with 216 sentences and Spanish with 212 sentences. The
sentences have lengths going from 2 to 3.5 seconds, digitalized at 16.000 sam-
ples a second (i.e. sample rate of 16 kHz). This data comes from a cor-
pus belonging to the Laboratoire de Sciences Cognitives et Psycholinguistique
(EHESS/CNRS). The corpus includes the 160 sentences analyzed by Ramus et
al. [14] and Cuesta-Albertos et al. [2].

Denote by 9:(f) the power spectral density at time ¢ and frequency f, which is
the square of the coefficient for frequency f of the local Fourier decomposition
of the speech signal. The time is discretized in steps of 25 milliseconds and
the frequency is discretized in steps of 20 hz. The values of the power spectral
density are estimated using a 25 milliseconds Gaussian window.

Fixed a language [ we consider the sentence j of length 77 ;. Given a frequency f
we denote by ﬁé’j (f) the power spectral density at time ¢ for that sentence j and
language [ where t = 1,--- ,T; ;. For each time ¢ we consider the stochastic pro-
cesses Xlld (t)= Zf:80,100.,...,800 79557] (f) and Xl2’] (t) = Zf:1500,1520,...,5000 ﬁi’](f)
named energies. The definition of the energy bands including the frequencies
for the bands were chosen based in previous works about automatic segmen-
tation of speech signal in vowels and consonants, see for example Garcia et
al. [7].

2.1 Coding the data

For each sentence j from language | and energy band k (k = 1 represents the
inferior band of energy Xll’J (t) and k = 2 represents the superior band of energy
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X5 (t)). We define ;"% = 1if i/ (t + 1) > x}’ (), and ¥{"""* = 0 otherwise.
Define Z]l.yt = 2Ytl’]’2 + Ytl’“,

Remark 1 The value Z]l-’t = 0 means both energies decrease at time t + 1;
Zjl»’t = 1(Zjl.)t = 2) means that the energy in the inferior(superior) band in-
creases and the energy in the superior(inferior) band decreases at time t + 1;
Zjl»,t = 3 means both energies increase at time t + 1.

3 Partition Markov models

The Partition Markov Models applied in this paper, were introduced in Garcia
and Gonzélez-Lépez [8]. Those models are generalizations of Variable Length
Markov Chains, used to discover the differences in rhythmic features between
branches of the Portuguese in Galves et al. [6].

Let (X;) be a discrete time order M Markov chain on a finite alphabet A.
Let us call S = AM the state space. Denote the string AmGm41 - - - G, DY @,
where a; € A, m < i < n. For each a € A and s € S, P(a|s) = Prob(X; =
a| X/}, = s). Let £ ={L1, La,...,Lx} be a partition of S, fora € A, L € L,
P(L,a) = Y ,c; Prob(X{"); = s,X; = a), P(L) = ¥, Prob(X/"}, = s)

and P(a|L) = £459, with P(L) > 0.

Definition 1. Let (X;) be a discrete time order M Markov chain on a finite
alphabet A. We will say that s,r € S are equivalent (denoted by s ~, r) if

P(a|s) = P(a|r) Ya € A. For any s € S, the equivalence class of s is given by
[s] = {r € S|r ~, s}.

The previous definition allows to define a Markov chain with a “minimal par-
tition”, that is the one which respects the equivalence relationship.

Definition 2. let (X;) be a discrete time, order M Markov chain on A and let
L ={Li1,La,...,Lg} be a partition of S. We will say that (X;) is a Markov
chain with partition £, if this partition is the one defined by the equivalence
relationship ~,, introduced by definition 1.

The set of parameters for a Markov chain over the alphabet A with partition £
can be denoted by {P(a|L) : a € A, L € L}. Having established the equivalence
relationship for a given Markov chain, then we need (]A| — 1) transition proba-
bilities for each part to specify the model. The total number of parameters for
the model is |£|(]4] — 1).

Given a sample x7, L € L,a € A, N(L,a) = > ., N(s,a) and N(L) =
> scr N(s), where the number of occurrences of s in the sample z7 is denoted
by N(s) and the number of occurrences of s followed by a in the sample a7 is
denoted by N(s,a).

The model, in this context given by the “optimal partition £”, can be selected
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consistently, using the Bayesian Information Criterion. This is, the best parti-
tion is the one that maximizes

BIC(z}, L) = > N@ﬂnn(xzﬁ)—Om;”an

(n),
acA,LEL ( )

over the set of partitions of S.
A practical way to choose a model in the family in a consistent manner can
be found in Garcia and Gonzdlez-Lépez [8]. Here we propose to use a distance
similar to the one defined in the next paragraph in S, , where s ~, r <=

N]\gfg‘)’) = ]\1[\;?7«(;) Va € A, where n is the size of the dataset.

Definition 3. Let n be the size of the dataset, for any s,r € S, N({s,r},a) =
N(s,a)+ N(r,a),a € A,

) = =ty 2V ()

a€A

+Nm@m<ﬁ%?>

N({s,r},a)
— (N |
( ({S7T}7a’) n (N(S) + N(T) )
d,, can be generalized to subsets of S and it has the property of being equivalent

to the BIC criterion, to decide if s ~, r for any s,r € S (see Garcfa and
Gonzélez-Lépez [8]).

Remark 2 i. Asa consequence of Theorem 2.1 proved in Garcia and Gonzdlez-
Lépez [8], if (Xi) is a discrete time, order M Markov chain on a finite
alphabet A and x7 is a sample of the process, then for n large enough, for
each s, € S, d,(r,s) < 1 iff s and r belong to the same class.

ii. The algorithm introduced in Garcia and Gonzdlez-Lopez [9] returns the true
partition for the source, this means that under the assumptions of Theorem
2.1 Garcia and Gonzdlez-Lopez [8], L, giwen by the algorithm converges
almost surely eventually to L, where L is the partition of S defined by the
equivalence relationship introduced in definition 2.

4 Partition of the set of Markov models corresponding
to the languages

Consider the stochastic processes Z1, Zs, ..., Zg corresponding to the eight lan-
guages: Catalan, Dutch, English, French, Italian, Japanese, Polish and Spa-
nish. With sample (z;,);, of size n;,i = 1,...,8. Following the codification
given in section 2.1, each sample will be composed by the concatenation of
symbols from A = {0, 1,2,3}. The value of the order M considered here was 4,
based on previous works that investigate similar data, see for example Garcia
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et al. [11].
For {iy,...,ix} C {1,2,...,8}, s € S and a € A. Define the counting quantities,

k k
Ny iy (8) = ZNij (s) and Ng;, . i (s,0) = ZN” (s,a).
j=1 j=1
Where N (s) is the number of occurrences of s in the sample of the i;-th lan-

guage, (zij)l)ln:i]i and Ny, (s,a) is the number of occurrences of s followed by a.
Assuming that the data collection is made up of independent speech samples
(which is the case treated here, as each set of samples corresponds to different
languages), the BIC under the assumption of independence and identical dis-
tribution for Z;,, Z;,, ..., Z;, given an arbitrary partition £ is

BIC((Z“, . (zik,z)fiﬁ,.c) _

Nigy i (L
Z N{il"..Jk}(L?a)ln (M)
a€A,LEL N{il ..... ik}(L)

—wwﬂn(nil + 4 n4). (1)

Assumption 1 M = {My, Ms, ..., M,,} is a partition of {1,2, ...,8} such that,
for each 1 € {1,2,...,m} and for each i,j € {1,2,...,8}

i,j € My <= Z; =" Z; (they have the same distribution law).

Then, we can conclude that the BIC criterion computed from a specific M
of m elements will be expressed in terms of the m parts of the state space,
following definition 2, say

BIC( (21,04, s (28001205 M, ALy L2, o £}, (2)

to remark its dependence from M. Where £; is the partition of the state space
associated to M;,i =1,...,m.
Under the assumption 1, (2) will be

BIC((Zl,l)?;p“v(ZS,I)?ﬁpMa{ﬁpL%-“ ) ZBIC( (2j,0);2 1}j€M L )

Where each term of the sum on the right is defined by equation (1).
Maximizing BIC ((zl,l)?:ll, o (280)12 1, ML{L, Lo,y oy Em}> we get the op-
timal partition of the set of languages {1,2,...,8}.

4.1 The strategy
For a fixed M = {M;, My, ..., M,,}, define

BIC( (21,014 (z&l)ygl,M) ZBIC( zia)ia i 1)

17amep
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Where P is the set of partitions of S.
To find this maximum it is necessary to maximize each term in the sum. Then,
for each i = 1,2,...,m we find the partition £; of § which maximizes (in £)

BIC ({(zj,);21}jem- £) -

This can be done on an efficient way using a distance similar to the introduced
on definition 3, and defined as follows.

Definition 4. Let M; be one part of M, for any s,r € S,

R s oy (Na(s,0)
o 0) = iy 35 (Ve ()

a€A

+Nag, () In (W)

— (Nar,({s,7},a) In <NZJV([3(){—$;;\;N1G()T)> } ’

where n = ZjEMi nj, NMI.({S,T},(I) = NMz‘(s’a) + NMi(T? a)’ NMq‘,(s?a) =
> jen; Nj(ssa) and Nag,(s) =3y, Nj(s), with a € A.

To obtain £; we can use a clustering algorithm using the distance djy,, in this
work, the following algorithm is proposed.

Algorithm 1 (Markov partition model selection algorithm for the set of sam-
ples in M;)

Input: dy;,(s,7)Vs,r € S; Output: L;.

B=S

L; =0

while B # ()

select s € B

define L, = {s}

B=B\{s}

for each r € B,r # s
if dp,(s,r) <1

L;=L,U{r}
. B=B\{r}
L;=L;U{Ls}

Return: £; = {L1,La,..., Lk}

5 Results and Conclusions

For each partition of {1,2,3,4,5,6, 7,8} we run the algorithm 1 over each part of
the partition, obtaining a BIC value. Table 1 gives the numbers corresponding
to each language. Table 2 shows the 5 partitions of {1,2,3,4,5,6,7,8} with
the largest BIC values. On the first line of table 2 we can see in bold face the
winning partition which correspond to:
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Table 1. Numbering of the languages

Language‘ Catalan ‘ Dutch ‘ English‘ Spanish ‘ French ‘ Ttalian ‘ Japanese ‘ Polish
Number [ 1T [ 2 [ 3 | 4 | 5 | 6 [ 7 | 8

Table 2. The five partitions with the largest BIC values

Partition (M) ‘ BIC
1,45}, {2, 3,8}, {5, 6, 7}| -347488.008872141
(1}, {2.3.8}, {4}, {5.6.7} | -347500.127775736
{1.4},{2.3.5.8},{6.7} | -347517.276944946
(1.4}, {2.8),{3.5.6.7} | -347519.546013801
(1.4}, {2.8}, {3}, {5.6.7} | -347523.086121394

{Catalan, Spanish}
{Duth, English, Polish}
{French, Italian, Japanese}.

The only discrepancy with the linguistic conjecture on the winning partition
of languages is the placement of Japanese which is the only moraic language
in the sample and should be alone. We note that the method proposed in
Garcia and Gonzélez-Lépez [10] is able to capture the singularities of Japanese
but it has other weaknesses. This misplacement of Japanese also happened on
Cuesta-Albertos et al. [2] and Garcia et al. [11]-Garcia et al. [13]. In contrast,
the algorithm 1 was particularly efficient in two controversial cases: Polish and
Catalan. The first language was included in the stress-timed part while the se-
cond language was reported as being similar to Spanish. Despite Polish shows a
high syllable complexity, but without the expected vowel reduction for a stress-
timed language and Catalan has the same syllabic system as Spanish, although
it has some vowel reduction. This suggests that Catalan is not rhythmically
different from Spanish.
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Abstract. In this paper, we introduce a new genome modeling methodology (Min-
imal Markov Models), which is based on the identification of elements in Markov
chain state space that have the same transition probabilities. Thus, the state space is
divided into parts and elements in the same part of the partition activate the same ran-
dom mechanism to select the next element in the sequence. We used the methodology
to investigate for differences and similarities between five DNA sequences correspon-
ding to four complete, registered Epstein Barr Virus (EBV) sequences (B95-8-type I,
GD1-type I, GD2-type 1, and AG876-type II) and a new EBV strain type I sequence
reported in 2012, HKNPC1. From the Minimal Markov Models fitted for each se-
quence, we found that the sequences GD2 and HKNPC1 (nasopharyngeal carcinoma
strains from epithelial cells) were closer to each other than the three other sequences.
Our results are consistent with previously investigated aspects in McGeoch and Ga-
therer [1] and Kwok et al. [2].

Keywords: Minimal Markov models, Estimation in Markov chains, Entropy.

1 Introduction

An important issue in the medical literature over the last 35 years is the link
between the presence of viruses and cancer diagnosis - Stebbing and Bower [3].
Epstein Barr virus (EBV), a causative agent of infectious mononucleosis, was
identified in 1964 in a cultured African Burkitt’s lymphoma cell line - Hill [4].
This led to the recognition that EBV is implicated in various types of cancer,
such as Burkitt’s lymphoma and nasopharyngeal carcinoma. DNA sequence
analysis has led to significant advances in understanding and interpreting pa-
tterns in DNA sequences that reveal relationships between viruses and cancer.
In 1984, the first complete genome sequence of EBV, from a type-1 strain
named B95-8, was reported - Baer et al. [5]. This sequence was extracted from
a North American case of infectious mononucleosis. It is considered as the re-
ference complete sequence of EBV and has since played a central role in EBV
research. The last revisited version of this sequence has the accession number
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NC_007605 and contains the Raji strain sequence. In 2005, the second com-
plete genome sequence of EBV (named GD1), a type I strain described in Zeng
et al. [6] was obtained. It was isolated from the saliva of a nasopharyngeal
carcinoma patient from the province Guangdong in southern China (accession
number AY961628). The first complete EBV type IT genome sequence, named
AG876, was reported in Dolan et al. [7] and was described as a Ghanaian case
of Burkitt’s lymphoma (accession number DQ279927). In 2011, the complete
genome sequence of another EBV strain (named GD2) was obtained - Liu et
al. [8]. The type I strain GD2 was derived from the tumor of a nasopharyngeal
carcinoma patient from the Guangdong province in southern China (accession
number HQ020558). The genome sequence of EBV, HKNPC1 was reported in
2012 - Kwok et al. [2] (accession number JQ009376). It is a type I EBV isolated
from a primary nasopharyngeal carcinoma of a Chinese patient in Hong Kong.
EBV-type I and EBV-type II are found in all human populations; some stu-
dies have shown significant differences between the protein sequences of these
strains - Sample et al. [9].

Considerable effort had been directed toward comparing the complete sequences
of these strains, with the aim of uncovering important distinguishing features,
such as the presence/absence of specific genes, see McGeoch and Gatherer [1].
The authors of this report described a genome-wide comparison of these se-
quences based on single nucleotide polymorphismos (SNPs). The EBV genome
sequences B95-8-type I, AG876-type II and GDI1-type I were aligned using
CLUSTAL W. Seven regions (haplotypes) were identified to determine the in-
cidences of SNPs. In the leftmost regions, the B95-8-type I and AG876-type 11
sequences were considered very closely similar, but they were clearly distinct
from that of GD1 - type I in regions 1 and 2, and all the sequences showed the
same pattern in regions 3, 4 and 5. In region 6, B95-8 - type I had different
patterns to those of the other two sequences, and in region 7, AG876 - type
IT had differences to the other two sequences (see figure 2 from McGeoch and
Gatherer [1]). Recently, in Kwok et al. [2], a phylogenetic analysis with the
four complete sequences, B95-8-type I, AG876-type II, GD1-type I, and GD2-
type I, and the sequence HKNPC1-type I, revealed HKNPC1 was more closely
related to the Chinese nasopharyngeal carcinoma patient-derived strains GD1
and GD2 (for an illustration, see figure 3, A (whole genome) from Kwok et
al. [2]).

In this paper, we introduce a new genome modeling methodology based on
the identification of natural units. The methodology describes the state space,
in which the partition is defined by the condition that members of each part
have the same transition probability to the next symbol in the sequence. See
Garcia and Gonzélez-Lépez [10] for a complete explanation of the model fami-
ly, called Minimal Markov Models and see also Garcia and Ferndndez [11] to
other estimation methods under the framework of these models. The model
applied in this paper is a generalization of Variable Length Markov Chains mo-
dels (VLMC), see Rissanen [13], Buhlmann and Wyner [12], Galves et al. [14].
VLMC models have been applied to diverse areas, such as genetics (Buhlmann
and Wyner [12]) and linguistics (Galves et al. [14], Garcia et al. [15]). In Garcia
et al. [15], a robust model selection algorithm for VLMC models is used for the
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statistical classification of languages, and the application of this model in this
context has been widely investigated in Garcia et al. [16]. In this paper, we
offer a more flexible approach for the statistical modeling of genome sequences.
We estimate a partition of the set of subsequences, such that subsequences be-
longing to the same part of the partition can be considered as being synonyms
because they choose the next element in the sequence with the same transi-
tion probability. The Minimal Markov Model reveals the existence of synonym
structures in the genome, in the stochastic sense of the term. In Farcomeni [17],
this idea is used to extend hidden Markov models.

2 Materials and Methods

2.1 DNA Dataset

The datasets were obtained from http://www.ncbi.nlm.nih.gov/ (NCBI - Na-
tional Center for Biotechnology Information). The five DNA sequences were
the four complete EBV sequences registered so far: (i)B95-8-type I, the re-
ference sequence (accession number NC_007605), see Baer et al. [5], named
“EBV.WT” according to Kwok et al. [2]; (ii)GDI1-type I (accession number
AY961628) denoted by “GD1”, see Zeng et al. [6]; (iii) AG876-type II (accession
number DQ279927) denoted by “AG876”, see Dolan et al. [7]; (iv) GD2-type 1
(accession number HQ020558) denoted by “GD2”, see Liu et al. [8] and (v)the
new sequence reported in 2012, an EBV strain type I denoted by HKNPC1
(accession number JQ009376), see Kwok et al. [2].

2.2 Minimal Markov Model

Let (X;) be a discrete time order M Markov chain on a finite alphabet A.
Let us call S = AM the state space. Denote the string amam+1 -..an by ay,,
where a; € A, m < i < n. For each a € A and s € S, P(als) = Prob(X; =
alX]”y;, = s). Let L = {L1,Ls,...,Lg} be a partition of S, P(L,a) =
Seer Prob(X;7), =s,X; =a), a€ A, L€ L; P(L) =3, Prob(X]~}, =
s), L € L.If P(L) > 0,Ya € A, we define P(a|L) = Plg(LL")’). We define the
statistical model through the following equivalence relation.

Definition 1. Let (X;) be a discrete time order M Markov chain on a finite
alphabet A. We will say that s,r € S are equivalent (denoted by s ~, r) if
P(a|s) = P(a|r) Ya € A. For any s € S, the equivalence class of s is given by
[s] = {r € Sr ~, s}.

Technically, the equivalence relationship defines a partition of S. The parts of
this partition are the equivalence class, i.e. s, € S belongs to different parts if,
and only if, they have different transition probabilities. We can interpret that
each element of S on the same equivalence class activates the same random
mechanism to choose the next element in the Markov chain. We define now
the Markov chain with partition L.
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Definition 2. Let (X;) be a discrete time order M Markov chain on A and let
L ={Ly,Ls,...,Lg} be a partition of S. We will say that (X;) is a Markov
chain with partition £ if this partition is the one defined by the equivalence
relationship ~, introduced by definition 1.

The set of parameters for a Markov chain over the alphabet A = {a1, az, ..., a4 }
with partition £ = {L1,La,..., Lk} can be denoted by {P(a;|L;) : 1 < i <
|A],1 < j < K}. If we know the equivalence relationship for a given Markov
chain, then we need (JA| — 1) transition probabilities for each part to specify
the model. Then, the number of parameters for the model is |£|(]A| —1), where
|A| and |£| denote the cardinal of A and L respectively.

Definition 3. Let £ = {L;, Ls,..., Lk} be a partition of S. L € L is a good
part of L if Vs, s’ € L

Prob(X, = .|X!"), = s) = Prob(X; = . |X] "}, = 5).
Definition 4. A partition £ = {L1,La,..., Lk} of S is a good partition of S
if for each i € {1,..., K}, L;, check definition 3.

The next section shows how we estimate the partition given by definition 2,
which we will refer to as “minimal good partition”.

Partition Estimation Let 2} be a sample of the process (Xt), se€S,a€ A
and n > M. We denote by N, (s, a) the number of occurrences of the string s fo-
llowed by a in the sample z7, Ny, (s,a) = [{t : M < ¢ < n,alT) =51 = a}|.
The number of occurrences of s in the sample 27 is denoted by N,(s) and
No(s)=|{t: M <t < R s}|. The number of occurrences of elements
into L followed by a is given by, N*(L,a) = > scr Nn(s,a), L € L; the accu-
mulated number of N,,(s) for s in L is denoted by, NS(L) =>",.; Nu(s), L €
L.

Definition 5. Let £ denote the partition

L9 ={Ly,...,Li—1,Lij, Lix1,...,Lj—1,Lj41,...,Lr},

where £ = {Lj,..., Lk} is a partition of §, and for 1 < i < j < K with
Lij =L;U Lj.

For a € A we write, N7 (Lij,a) = NE(Li,a) + NE(Lj,a); NEV (Lij) =
N7 (Li) + Ny (Ly).

Definition 6. Let (X;) be a Markov chain of order M, with finite alpha-

bet A and state space S = AM 27 a sample of the process and let £ =
{L1,La,..., Lk} be a good partition of S,

nosos\ 2 erl:(Liva)
G20 ) = (A= D Iagw) 2= {Nf (Lira)In < NE(L) )

acA
Nrf(Ljﬂ a)
NE(Ly)

ri NEY (Lij,a)
J n 13
—N; " (L;j,a)In (Nn U( ) .

+NE(Lj,a)ln <
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Remark 1 i. Asa consequence of Theorem 2.1 proved in Garcia and Gonzdlez-
Lopez [10], if (X:) is a discrete time, order M Markov chain on a finite
alphabet A and x} is a sample of the process, then for n large enough,
d2(i,5) < 1 iff Ly and L; belong to the same part of the true partition.

it. The algorithm introduced in Garcia and Gonzdlez-Lopez [18] (using d: (i, j))
returns the true partition for the source, this means that under the assump-
tions of Theorem 2.1 Garcia and Gonzdilez-Ldpez [10], L, given by the
algorithm converges almost surely eventually to L, where L is the partition
of § defined by the equivalence relationship introduced in definition 2.

2.3 Processing the Data Set

The minimal Markov model for each sequence was obtained by applying the
algorithm introduced in Garcia and Gonzdlez-Lépez [18]. The 20 amino acid
alphabet plus the stop codon was used with IUPAC notation. The concatena-
tion of amino acids observed in the code was the string of realizations 7. The
size of each sequence is shown in table 1.

Table 1. Total number of amino acids of each DNA sequence: EBV.WT (accession
number NC_007605), GD1 (accession number AY961628), AG876 (accession num-
ber DQ279927), GD2 (accession number HQ020558) and HKNPC (accession number
JQO009376)

EBV.WT| GD1 |AG876| GD2 [HKNPC1
54373 |57219] 54670 [52074] 54913

For the incomplete sequence HKNPC1, the occurrences of each string were
computed separately from the beginning of each stretch of sequence.
The distances between the sequences were obtained using the symmetrized
relative entropy, see the next definition.

Definition 7. Given two sequences i and j, let QZ and Qj be the respective
models fitted using the model selection algorithm in Garcia and Gonzélez-
Lépez [18]. The symmetrized relative entropy between the sequences i and j
is defined by

5 )
where D(QzHQJ) =2 zex Qi(w) log (S;Eg)

3 Results

Table 2 shows the minimal good partition for each DNA sequence. We show
each part L, a member of L, as a collection of amino acids. For instance, if
L is composed of amino acids F, I, N and Y, then the part L, denoted as the
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set L = {F, I, N, Y} means that F, I, N and Y have the same probability of
choosing the next symbol in the DNA sequence. More precisely, for any element
a in the alphabet of amino acids A, P(a| F) = P(a|l) = P(a|N) = P(a]Y) and
according to definition 1, F, I, N and Y are equivalent.

3.1 The HKNPC1 model is closer to that of GD2 than to that of
GD1, EBV.WT, or AG876

Table 2. Minimal Good Partition for each sequence

EBV.WT GD1 AG876
{stop,K,M,T,V} {stop,D,H,K,L,M,V} {stop,E,K,Q}
{A,C,D,H,L,S} {A,G,P,R,W} {A,G,P,R,W}
{E,Q} {C,F,LN,Y} {C,D,H,L,M,S,T,V}
(F,LN,Y} (E,Q} (F,LN,Y}
{G,P} {S,T}
{R,W}
GD2 HKNPC1
{stop,E,K,Q} {stop,E,K,Q}
{A,D,G,H,L,M,S, T,V,W}|{A,D,L,M,S TV, W}
{C,FLN,Y} {C,F,H,IN,Y}
{P,R} {G,P,R}

We note that the minimal good partitions of two nasopharyngeal carcinoma-
related EBV strains, GD2 and HKNPC1, are very similar, except for the posi-
tions of the amino acids G and H. This result agrees with the findings in Kwok
et al. [2], in relation to these two sequences. In Kwok et al. [2] the authors
show that HKNPC1 has closer phylogenetic relationship to GD1 and GD2 than
EBV.WT and AG876. We emphasize that both sequences, GD2 and HKNPC1,
were obtained from epithelial cells. GD1 (the remaining nasopharyngeal carci-
noma EBV strain) was not directly harvested from epithelial tissue, but from
saliva. To confirm the proximity between GD2 and HKNPCI1, we built a den-
drogram using symmetrized relative entropy, defined in 7 (see also figure 1).

Table 3. Symmetrized Relative Entropy

|[EBV.WT| GD1 |AG876| GD2 |[HKNPC1
EBV.WT| 0.0000 [0.0154[0.0130|0.0175| 0.0143

GD1 - 0.0000{0.0169] 0.0226 | 0.0225
AG876 - - 10.0000 |0.0088| 0.0077
GD2 - - - 0.0000 | 0.0074
HKNPC1 - - - - 0.0000

The dendrogram exposes a proximity also between the group {GD2, HKNPC1}
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Fig. 1. Dendrogram from the symmetrized relative entropies (see table 3 and defini-
tion 7) between the estimated laws for the 5 sequences.

and the strain AG876; this is explained by the low values of the symmetrized
relative entropies between GD2 and AG876, and between HKNPC1 and AG876
(see table 3). In addition, if we compare the minimal good partitions of AG876,
GD2 and HKNPCI1, we can observe the common part {stop,E,K,Q}. Also, we
note that for those three sequences, the algorithm detects (i) the equivalence
between four amino acids N, Y, F and I; (ii) the equivalence between the six
amino acids D, L, M, S, T and V and (iii) the equivalence between the pair of
amino acids A and W, and P and R.

The distances between the three strings: EBV.WT, AG876 and GD1, are con-
sistent with the results of McGeoch and Gatherer [1]. See figure 2 in Mec-
Geoch and Gatherer [1], HR2 and HR5 cases. In McGeoch and Gatherer [1]
the authors use EBV haplotype regions to quantified the proximity between
EBV.WT, AG876 and GD1, GD1 is the farthest.

4 Conclusion

The labeling of amino acids that are considered equivalent for genome sequence
construction permits the elucidation of the intrinsic stochastic structure of
genome sequences. The members of some part of a minimal good partition from
some sequences can be considered as natural units of genome architecture and
can also reveal stochastic proximity between sequences as shown in this paper.
We show, using the minimal Markov model constructed for each sequence,
that the nasopharyngeal carcinoma-related EBV strains GD2 and HKNPC1 are
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closer, according to symmetrized relative entropy. This finding is in accordance
with the results of Kwok et al. [2]. Also we obtained results consistent with
McGeoch and Gatherer [1] in relation to the distance between EBV.WT, AG876
and GD1. The idea behind this model is to find a genetic profile to facilitate
future analysis and comparisons.
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Abstract. Clinical research is often interested in longitudinal follow-up over several
visits. All scheduled visits are not carried out and it is not unusual to have a different
number of visits by patient. The Generalized Estimating Equations can handle con-
tinuous or discrete autocorrelated response. The method allows a different number
of visits by patients. The GEE are robust to missing completely at random data, but
when the last visits are fewer, the estimator may be biased. We propose a simula-
tion study to investigate the impact of missing visits on the estimators of the model
parameters under different missing data patterns. Different types of responses are
studied with an exchangeable or autoregressive of order one structure. The number
of subjects affected by the missing data and the number of visits removed, vary in
order to assess the impact of the missing data. Our simulations show that the esti-
mators obtained by GEE are resistant to a certain rate of missing data. The results
are homogeneous regardless to the imposed missing data structure.

Keywords: Longitudinal data, repeated correlated data, correlation, missing data,
simulations, Generalized Estimating Equations.

1 Introduction

Clinical follow-up provides information on changing pattern of diseases. This
allows for biological measurements and clinical criterion observation over sev-
eral visits. Therefore, it is possible to study the link between several potential
biological covariates and a clinical response on repeated measurements.

However, observations from the same patient cannot be handled as inde-
pendent and the correlation among visits must be taken into account. Two of
the most common methods which are able to deal with longitudinal data are
the Generalized Linear Mixed Model, GLMM as describe by McCulloch [6] and
the Generalized Estimating Equations, GEE from Liang and Zeger [5].

GLMM are a subject specific method which introduces a random effect per
patient to take into account the longitudinal aspect of observations. Unfortu-
nately, the integration over these random effects distribution may be numer-
ically untractable. GEE are a population specific method which consider the

16*" ASMDA Conference Proceedings, 30 June — 4 July 2015, Piraeus, Greece

© 2015 ISAST

257



intra-subject correlations by imposing a correlation structure to the response.
Advantage of the GEE method is that only correct specification of marginal
means is needed for having a consistent and asymptotically normal parameter
estimator. We will use this method in this paper. For a discussion on GEE,
GLMM and relation between marginal and mixed effect models, reader can
refer to the work of Park [9], Heagerty and Zeger[3] and Nelder and Lee[7].

Studies’design provides for a number of visits per patient which is regret-
tably not always complied. In the case of intermittent missing data this results
in blank lines in observation matrix. No classical parametric imputation shall
be performed since no information is collected at this date. Moreover the in-
terpolation of these values is difficult because there are often few widely spaced
visits which means the prediction is blurred.

Missing data, as defined by Rubin [15], are divided into three categories :

e Missing Completely at Random, like a visit randomly deleted by loss record

e Missing At Random, as a missed visit linked to the length of the study

e Missing Not At Random, such as non presence of a patient related to the
latent seriousness of his condition

The GEE estimator is robust to the first case but biased in the other two
as explained by Liang and Zeger[5] and Robins et al.[13]. In case of dropouts
Robins et al.[13] introduced an inverse probability of censoring weighted GEE
which have been studied by Preisser et al.[10]. They proposed a modified
version of GEE in which observations or person-visits have weights inversely
proportional to their probability of being observed, which is unfortunately not
suitable here.

Within this context questions may arise :

e How much the GEE estimator is robust to missing visits?
e Which bias should we consider in case of MAR data?

We provide a simulation study to measure the impact of different missing
data patterns on GEE estimators. Second part of this paper gives the GEE
approach outline. Simulations plan and their results are shown in section 3 and
4. The paper ends by a conclusion in section 5.

2 Generalized Estimating Equation

When the population-average effect is of interest, the marginal model is com-
monly used to analyzing longitudinal data. Liang and Zeger[5] proposed the
Generalized Estimating Equations to estimate the regression parameter, by
only specifying the marginal distribution of the outcome variables in the marginal
model. Both continuous and binary responses can be modeled.
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Let y;;, of expectation pu;;, be the response of interest for the subject i at
the visit ¢ for i € {1,..,K} and ¢t € {1,..,n;}. Each subject has a set of p
measured covariates at each time ¢t denoted x;;. For a known function V(.) and
a given mean-link function g(.) we have :

Var(yir) = ¢V (kit) (1)
9(pit) = =4, 8 (2)

[ is the regression parameter to be estimated, ¢ is the dispersion parameter.
We will note Y;, the n; x 1 independent response vector and X;, the n; X p
measured covariates matrix for subject ¢. Generalized Estimating Equations
are defined by :

K
U(B) = ZD?Vﬂ(Yi — 1) =0 (3)

D; is the matrix of partial derivatives with Opu;: /08 as its (¢, k)-th element.
V; is the working covariance matrix defined by :

Vi = pA*Ri(a)A}? (4)

where R;(a) is a working correlation matrix completely described by the
parameter vector « of size s x 1. A; is the diagonal matrix with elements equal
to the variance terms V' (u;:). If R;(«) is the true correlation matrix of Y; then
V; is the true covariance matrix.

Liand and Zeger[5] propose an iterative estimation method. A consistent
method (as the moments method) is used to estimate the couple («, ¢) for fixed
values of 3. Then equation (3) is used to estimate j for fixed values of (&, g?))
This leads to a consistent estimate of (3.

The choice of R;(«) is important. Classic structures are independent, ex-
changeable or auto-regressive of order 1. Selection criterion for the choice of the
working correlation matrix are useful. We quote here just a few : the Quasi-log-
likelihood under the independence model Information Criteria from Pan [8], the
Correlation Information Criteria from Hin and Wang[4] and Rotnitzky-Jewell’s
criterion[14]. In order to simplify, we will suppose the working correlation
known and of exchangeable or auto-regressive of order one structure.

3 Simulations plan/structure

Two types of responses are studied, a continuous and a binary outcome. Both
cases introduce 4 covariates which have been simulated by a Gaussian distribu-
tion with an auto-regressive of order one with parameter p = 0.3. We denote
27 this correlation structure.
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3.1 (aussian response

The response Y; is a multivariate normal vector with intra-subject correlation
structure R;(«) following the model :

Y= X;8+¢ (5)

where 2! ~ N(0,X) for I € {2,...,5}. The error vector €; is a multivari-
ate normal vector with mean zero and variance matrix 0?R;(«). The mean
parameter vector is imposed equal to 8 = (1,0.5,—0.2,1,—1), where the first
component is the intercept. The variance parameter o2 is chosen for having a
signal/noise ratio of 0.5 as described by Ful[l].

V(xftﬂ)

5
1 2 2
=50 :2;@ = 4.58 (6)

3.2 Binary response

To simulate a binary response, the logit link is used and an intra-subject cor-
relation structure equal to R;(«) is imposed thanks to Qaquish[11].

logit(E(yi)) = =%, 8 (7)

where z! ~ N(0,X) for [ € {2,...,5}. The mean parameter vector is im-
posed equal to f = (1,0.5,—0.2,0.3,—0.4). The first component is the inter-
cept.

For both kinds of data, the parameters vary as follows according to a full
factorial design.

e K, the number of subjects on K = {50, 100, 200, 300}

e 1, the number of scheduled visits on N = {4, 6,9}

e R;(«), the correlation structure is either exchangeable or auto-regressive of
order one (both admit a scalar « — s = 1)

e «, the unique parameter of correlation on A = {0.1,0.3,0.5,0.6}

We simulated 1000 samples that we will called completed for each of these
96 scenarios. All of the subjects in these samples get the same number of vis-
its. In order to evaluate the effect of missing visits on the GEE estimators we
simulated 1000 other samples that we will called uncompleted ou unbalanced
where we deleted some of the visits on some subjects. The percentage of con-
cerned subjects varies according to P = {10%, 20%, 30%, 50%} and the number
of deleted visits varies according to V = {1, 2, 3}.

With the aim of evaluating how robust the GEE estimator is in MCAR and
MAR situations, we imposed two different schemes of visits removal. First,
we consider a scheme where visits follow a uniform distribution. In that case
we can speak of MCAR data. In a second time we consider a probability of
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deletion that will increase with the follow-up (i.e. with the number of visits).
Last case imposed MAR data. We will talk about uniform unbalanced and
increasing unbalanced respectively. All computations are performed using R
[12] and GEE fitting performed by the package geepack of Halekoh et al.[2].

4 Results

A useful criterion for assessing the goodness of an estimator 0 is the Absolute
Relative Bias defined by ARB() = W. We estimate this criterion by :

1000

B O g )
ARB(9) = 8
©) 1000 bz:; 16| ®
where ||.|| is the euclidean norm which boils down to the absolute value

when the parameter is a scalar. 0, is the estimate of 8 on the b-th sample.
The mean of the absolute relative gap between the estimator and its target is
thus estimated on 1000 samples.

4.1 Continuous response results
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Fig. 1. B ARB evolution by missing rate for Fig. 2. p ARB evolution by missing rate for
96 models with a continuous response 96 models with a continuous response

Figures 1 and 2 show the distribution of the ARB for the GEE estimator
of the parameter 5 and p on the 96 tested models for a continuous response.
These graphs compare the two deletion schemes : uniform and increasing.
The boxplots show no differences between the two deletion schemes. Precisely,
the difference is between [—0.005,0.005] for the Absolute Relative Bias of /3
and between [—0.06, 0.06] for the ABR of 4.
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The ARB slightly increases with the missing rate. The median ARB switches
from 0.091 to 0.101 for S and from 0.09 to 0.117 for p.
More precisely, graphics 3, 4 and 5 present the evolution of the Absolute Rela-
tive Bias for B in the case K = 100 and n € {4, 6,9} with increasing unbalanced
scheme.

Evolution of the Absolute Relative Bias of (f) Evolution of the Absolute Relative Bias of (f) Evolution of the Absolute Relative Bias of ()
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Fig.3. 3 ARB evolution by Fig.4. 3 ARB evolution by Fig.5. 3 ARB evolution by
missing rate for K = 100 and missing rate for K = 100 and missing rate for K = 100 and
n = 4 for a continuous re-n = 6 for a continuous re-n = 9 for a continuous re-
sponse sponse sponse

4.2 Binary response results
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Fig. 6. B ARB evolution by missing rate for Fig. 7. p ARB evolution by missing rate for
96 models with a binary response 96 models with a binary response

Graphs 6 and 7 show the distribution of the ARB for the GEE estimator
of the parameter 8 and p on the 96 tested models for a binary response. These
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graphs compare the two deletion schemes : uniform and increasing.
There are no differences between the two deletion schemes. Some differences
in the range of [—0.005,0.005] and [—0.015,0.015] have been noted for the Ab-

solute Relative Bias of 3 and p respectively.

The small increase of the ARB is more important for a binary response
whith a median ARB switching from 0.155 to 0.193 for 3 and from 0.101 to
0.131 for p. Graphs 8, 9 and 10 give more details about the evolution of the
Absolute Relative Bias.

Volution of the Absolute Relative Bias of (£)

Evolution of the Absolute Relative Bias of (f) Evolution of the Absolute Relative Bias of (f)
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Fig.8. 3 ARB evolution by Fig. 9. B ARB evolution by Fig. 10. B ARB evolution by
missing rate for K = 100 and missing rate for K = 100 and missing rate for K = 100 and
n = 4 for a binary response n = 6 for a binary response n =9 for a binary response

Results on binary response show higher Absolute Relative Bias meaning
worst results. Such results were expected since it is more complicated to have an
accurate estimator with a binary outcome. Nevertheless both responses, binary
and continuous, show the same evolution according to the rate of missing visits.
Moreover, both responses point the same lack of differences between uniform
unbalanced and increasing unbalanced structure.

Figures 3, 4, 5, 8, 9 and 10 demonstrate how small the increase is with the
rate of missing data. The decrease with the number of scheduled visits was
expected since it means a lower rate and better estimations.

5 Conclusion

Our simulations show two important issues. First of all, the evolution of the
absolute relative bias is similar regardless of the imposed missing data structure.
This means that no differences have been highlighted between both schemes.
Secondly, the absolute relative bias increases slowly with the missing rate,
which means that our imposed missing rate does not disrupt the efficacy of
GEE estimator.

We may infer that GEE estimators can be used in studies where MCAR. and
MAR data are present. Bias induced by MAR is negligible. However, users
should pay attention to the missing data scheme and rates used here.
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Since it is very complicated to prove the presence of MNAR data, this missing
structure has not been studied here. Nevertheless, a complementary study with
this type of missing data could bring some more information about expected
bias.
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Abstract. With the increase in the length of time people are living, comes an in-
crease in the strain placed upon hospitals due to the rising number of elderly patients
requiring specialised care. Unfortunately, this may lead to a compromise in the qual-
ity of care that pressurised hospitals can deliver. However, if the recurring nature
of elderly patient movements between the community and hospital can be under-
stood, then it may be possible for alternative provisions of care in the community to
be put in place for patients before readmission to hospital is required. The condi-
tional Cozian mixture approach is presented, taking the form of a mixture of Coxian
phase-type distributions incorporating Bayes’ Theorem. This method helps to bring
about understanding by modelling patient pathway through successive stages of care
in the form of an aggregate Markov model, whereby length of stay at each stage is
conditioned on the length of stay from the previous stage. For the purpose of demon-
stration, patient hospital and community data is simulated, providing an illustration
of the model applied to a synthetic data set.

Keywords: Bayes’ theorem, Coxian phase-type distribution, length of stay, read-
mission, survival analysis.

1 Introduction

The number of elderly people living in the United Kingdom is rising. In 2015,
there are almost 11.8 million people aged 65 years old or more with this number
projected to increase to 15.5 million by the year 2030 and to reach 20 million
by the year 2050 [1]. Unfortunately, however, long life is no guarantee of good
health and as a result, the use of health services increases considerably with
age, whereby the majority of resources are required in the final year of life [2].
The net result is that this places a strain on health services and in particular,
hospital care, meaning that patients often endure a less satisfactory hospital
experience, usually exacerbated by longer waiting times for treatment and care
[3]. If the process of elderly hospital admissions can be modelled as part of
a network comprising the various pathways that patients may take through
care, then further insight, understanding and evidence of both this process
and how it can be operated efficiently, could be provided to hospital managers
ensuring that hospital resources are used to their full potential, thereby min-
imising waste. Indeed, better planning of the allocation of hospital beds along
with coherent collaboration and organisation with the other care facilities in
the network could have a greater impact on both the health and wellbeing of
patients. Throughout the last ten years, phase-type distributions [4] and in
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particular, the Coxian phase-type distribution [5] have been extensively used
to model patient length of stay in hospital [6][7][8]. The methodology presented
in this paper is the conditional Cozian mizture approach which aims to facili-
tate hospital managers in understanding the role that patient discharge to the
community has on the overall cycle of care. This is achieved through the incor-
poration of a number of stages (each taking the form of a mixture of Coxian
phase-type distributions) representing hospital readmissions and discharges to
the community, in the overall aggregate Markov model.

2 Methodology

2.1 The Coxian phase-type distribution

The Coxian phase-type distribution [5] is a special type of phase-type dis-
tribution (a random variable which describes the time until absorption of a
continuous-time Markov process) in which the system starts in the first state
(or phase) with the states having an inherent and well-defined order. It is not
permitted for the system to proceed directly from one state to another more
than one transition along the sequence, nor is it possible to go backwards to
any previous state. Introducing notation, the Coxian phase-type distribution
is defined as follows: let X (¢);t > 0 be a Markov chain in continuous time with
states 1,2, ...,m, m + 1, where state m+ 1 is the absorbing state, the rest being
transient and ordered. The process, necessarily, starts in state 1 ie. X (0) = 1.
Figure 1 gives an example of such a Coxian phase-type distribution, with tran-
sitions occurring in a small time interval h. In the diagram, \; represents the
transition rate from transient state ¢ to the next transient state ¢ + 1 and p;
represents the transition rate from transient state ¢ to the absorbing state,
m+ 1.

uth Hsh Hm.sh /
ush Hnh
m+1 (Absorbing state)

Fig. 1. Example of a Coxian phase-type distribution with m transient states.

The generator matrix Q, required for determining the probability density func-
tion for a general phase-type distribution, may then be calculated through the
following equation:

Q— i (PO T

h—0
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where P(h) is the m x m transition matrix with elements P;;(h) equal to the
probability of moving between states ¢ and j in small time h and I is the
m x m identity matrix. The generator matrix Q for the Coxian phase-type
distribution shown in Figure 1 is given by

—(/\1 +u1) A1 0 0 0

0 *()\2 +,U,2) )\2 0 0

0 0 —(>\3 +,ug) 0 0

Q= : : : .. . .
0 0 0 _()\m—l +,UJ7n—1) Am—l
0 0 0 0 —m

The vector q is the m x 1 vector containing the transition rates between each
of the transient states and the absorbing state, taking the following form:

M1
H2

Hm—1
Lo
The initial probability vector, p, is a 1 x m vector with first element equal to 1
and remaining m - 1 elements equal to zero. This is to reflect the requirement
that the system must begin in the first state. As a result, the probability

density function for the Coxian phase-type distribution may be calculated using
the following expression:

f(t) = pe®q (1)

The states, quite often referred to as phases, in such a system may be used to
describe the stages of a process which terminates at some particular instant.
For example, in the case of determining the duration that geriatric patients
spend in hospital, transitions through the ordered transient states have been
interpreted to correspond to the different stages of care that patients go through
whilst at hospital, such as short-stay, rehabilitation and long-stay care; where
patients may eventually discharge, transfer or die at any of the states [9].

2.2 Mixture of Coxian phase-type distributions

The method of a mixture of phase-type distributions, proposed by Garg et
al. [10], allows provision for more than one absorbing state (and indeed, more
than one cohort of patient moving through the system), whereby it may now be
ascertained directly from the model, the precise rates with which patients move
into each of the absorbing states. This is particularly useful for modelling the
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movement of patients between the hospital and the community, since it is possi-
ble to precisely identify which patients have been discharged to the community,
rather than using a potentially inaccurate sample of those who have simply un-
dergone ‘global’ absorption from the hospital stage. This is a disadvantage of
using the Coxian phase-type distribution on its own for the particular problem
under consideration - when the wider network of possible patient movement
is considered, it is important to track precisely the destination of patients on
leaving hospital. Mixed distributions have become particularly popular for use
in conjunction with the Coxian phase-type distribution, resulting in a mizture
of Cozian phase-type distributions (MC-Ph distribution) [11]. This enables the
modelling of C different cohorts whereby each has a different survival distribu-
tion (in turn leading to a different distribution for the length of stay duration)
and each cohort may undergo absorption to multiple absorbing states. Using
the general form of the probability density function for the Coxian phase-type
distribution shown by equation 1, the MC-Ph distribution for C' cohorts and
M absorbing states has probability density function given by

c
f@) = pe¥'q. 2)
c=1
with the following notation:
SO, w0
0 —(AS+ D> uS) 0
Qc = . . T . : (3)
0 0 e =20 M
q1 i1 B2 - Hin
qs :U’C Mc /~LC
aq=1 . where qc = .21 .22 2.M (4)
dc P P - o

pC = (ac707 "'70)

where the ¢! mixture component is a phase-type distribution with k. transient
states and the absorbing state, and «. is the probability that the system takes
the form of this ¢* component. It should be noted that the MC-Ph distribu-
tion is a special type of Coxian phase-type distribution, where the probability
of moving between states corresponding to different cohorts is zero. This means
that equations 1 and 2 are equivalent, with Q equal to a diagonal C' x C' matrix
with diagonal elements equal to Q. for ¢ =1 : C and p is simply the concate-
nation of the p. vectors. Some further important results may be calculated:
the cumulative distribution function for the probability of absorption into a
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particular absorbing state and the vector of moment generating functions for
the unconditional length of stay in the transient states prior to discharge to
each absorbing state. This latter result enables the mean and variance of the
length of stay in each transient state to be estimated for different cohorts of
patients moving through the system.

2.3 An approach using joint probabilities

In the next section, the proposed methodology is presented. Firstly, however,
it is necessary to describe how it is possible to model the patient pathway
between successive types of care, as derived previously from work carried out
by Xie et al. [12] but in the form of a general phase-type distribution. Each
type of care is known as a stage within the system eg. the first hospital stage
or the second community stage. The aggregate model ie. the concatenation of
all stages together, permits the system to move from any state in a particular
stage to the first state in the subsequent stage. This is to reflect both the
discharge of patients from any state in the hospital stage to the community
and also the readmission of patients from any state in the community stage
to the hospital. There exists a single, global absorbing state representing the
death of the patient, which may be reached from any state belonging to any
stage. Figure 2 shows a simplification of this process containing two stages A
and B.

’\Alxiz Aa 1A,

Stage A Hay
2%

KAy,

1By
2

ABy By A, By, i,

Fig. 2. Representation of each stage as a mixture of Coxians with two absorbing
states.

The generator matrix for the aggregate model is as follows:

_( Qa TaB
Q= <0BA Qs ) (5)
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In this formulation, Q4 is the sub-generator matrix representing stage A. This
is cast as follows, where stage B (containing k; states) is the next stage of
care along from stage A (containing k, states), Aa, 4, is the rate of transition
between states ¢ and j in stage A, A4, p, is the rate of transition between state
i of stage A and the first state of stage B and p4, is the rate of absorption
from state i of stage A (arrows not shown in Figure 2 to maintain clarity):

—(Aapa,+Aa; B +pay) Adga, 0
0 —(Nagaz+ra, +pay) - 0
Qa =
0 0 o =y, By Ay,

The element of equation 5 on the super-diagonal ie. the trans-stage sub-matrix
T 4B, represents patients transferring from each state of stage A to the first
state of stage B. As a result, T 45 is a sub-matrix of dimension k, x k;, where
ko and kj are the number of states in stage A and stage B, respectively. Due
to the fact that patients may only enter the first state of any particular stage
from the previous stage, T op contains non-zero elements in its first column
only, with all other elements equal to zero. An example of the form of T 45 is
as follows:

Aayp 0. 0
Ay, 0 ...0
Tas = e
Aap 0 o 0

Finally, from equation 5, the element 0p 4 is a zero/null sub-matrix of dimen-
sion k x k.. It can be seen that, although still a phase-type distribution, this
aggregate model does not have a standard Coxian format, due to the non-zero
probability of moving between any state in a particular stage to the first state
in the subsequent stage. In fact, the only part of the model retaining strict
Coxian format is the sub-generator matrix in the bottom right-hand corner of
Q: Qp, since there are no further stages for the system to progress to, in the
example given by equation 5. The probability density function for a patient
undergoing absorption during the first stage is simply given by an expression
analogous to equation 1, with each component given subscripts pertaining to
the initial hospital stage, ie.

fi(t) = paeR4taqu

The probability density function for a sequence of two stages is derived from the
work of Fredkin and Rice [13]. Such a function for a patient moving through a
stage A in time t4 and undergoing absorption after time ¢p in stage B is given
by:

fo({t:}) = paeRA AT 4 geR5 5 qp (6)
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Equation 6 is the form that the probability density function takes for a system
moving through two successive stages of an overall aggregate Markov process.
The advantage of simply extending this model is that patients can be tracked
from their initial hospital admission all the way through the stages of care until
they either enter the end of life state or the time-frame of the study finishes.
Nevertheless, the drawback with extending this approach is that as the number
of stages (ie. readmissions) increases, the probability density function values
given by equations representing longer concatenations of successive stages be-
come very small, even when a given patient has lengths of stay in each stage
which are to be expected. Unfortunately, this would not be as useful for hos-
pital managers managing beds in its current form.

2.4 A conditional approach

The previous methodology achieved success [12] perhaps due to the low num-
ber of stages incorporated in the model (two), whereas when the approach is
applied to hospital readmissions, the number of stages will be larger, due to
the frequency with which elderly patients are readmitted to hospital care. It
is, however, possible to use the result given by equation 6 to model the de-
sired process in a different way. Instead of calculating the joint probability of
a patient having lengths of stay ¢1,ts and ¢3 in, for example, three successive
types of care, a more useful insight into patient movements may be gained if a
conditional approach is considered whereby the length of stay for a particular
type of care is conditioned on the length of stay observed in the most recent
type of care. This may be achieved through the use of Bayes’ theorem which,
given the previous notation, may be cast as follows: let A denote the length of
stay for an individual at the previous stage and let B denote the length of stay
for the same individual at the current stage, then

P(A=t;NB =t,)

Noting that P(A = t; N B = t3) is an example of the joint probability for
two successive events occurring, then it is permissible to calculate this quantity
through the use of equation 6. As a result, the conditional probability becomes:

P(A=t,NB=ty)
P(A=1)
B PAeQAtlTABeQBtQQB

= (8)

paeQatiqy

P(B=t)A=1t) =

Equation 8 may be used to calculate the probability that a patient experiences
a length of stay equal to t5 in care stage B, given that in the previous stage of
care (stage A) they stayed for a time ¢;. This may be accomplished by using
equation 8 in place of equation 1 when calculating the likelihood function for
the model. The conditional Cozian mizture model combines this conditional
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approach with the theory on mixtures of Coxians described earlier with a view
to representing the flow of patients from the initial hospital stage, through their
first discharge to the community, through the first readmission and so on. As
an illustration of the model, a synthetic data set of patients is simulated for
an example scenario of three stages of care: an initial hospital stage, the first
discharge to community and finally the first readmission to hospital. At each
stage, patients may undergo absorption into one of two absorbing states: the
global absorbing state (patient death) and either discharge to community (for
hospital stages) or readmission to hospital (for community stages). Figure 3
shows the general m-state flow diagram for a stage of the system with two
absorbing states: one representing patient death and the second representing
the patient moving on to the next stage of care.

Absorbing state 1

i’ hh
tish
Anah
1 2 3 e o m
H zsh an,;h /

ph
Absorbing state 2

Fig. 3. Representation of each stage as a mixture of Coxians with two absorbing
states.

The initial hospital stage is modelled simply by a mixture of Coxian phase-type
distributions with one cohort and two absorbing states, without conditioning.
The probability density function for this first part of the model is given by
equation 1, acknowledging the caveats shown in equations 3 and 4. This may
then be fitted for an increasing number of phases using the method of maximum
likelihood until the BIC [14]/AIC [15] have been optimised. The corresponding
number of phases is then considered optimal for this stage of the model. Once
this first stage has been modelled, the focus turns to the second stage (which
will be conditioned on the first stage). This (community) stage is once again
modelled by a mixture of Coxian phase-type distributions consisting of one co-
hort and two absorbing states (end of life and readmission to hospital), however
the probability density function is given by equation 8. As inputs, this stage
of the model requires the optimal parameter estimates from the previous stage
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with the exception of the global absorption rates, in addition to the length
of stay in the previous stage for each patient. In a similar way to the first
stage, this part of the model is fitted for an increasing number of phases until
the likelihood function is optimised whereupon the corresponding number of
phases is considered optimal. The model, as a whole, is easily extendable to a
greater number of stages without risk of the probability density function tend-
ing to zero. The previous theory may be replicated for as many readmissions to
hospital/discharges to community as is necessary (each time using equation 8
to calculate the probability density function) before the distribution of length
of stay between successive readmissions/discharges shows little change. All
calculations using this model are computed using MATLAB [16].

3 Simulation of data using the proposed model and
results of the fitting process

Times may be simulated through the use of the model survivor function S(¢).
Substitution of a random number from the uniform distribution (0, 1) for S(?)
and solving for ¢ results in a simulated time. This process may then be re-
peated for the desired number of simulated times. In order to solve for ¢, the
Newton Raphson method [17] is utilised due to the unavailability of an ana-
lytical solution for the general phase-type distribution. It is the aim to model
the pathway of these patients from the initial hospital stage, through the first
community stage and finally through the first hospital readmission stage. Since
for each stage (aside from the initial stage) the model requires two time vectors
(that for the previous stage as well as that to be generated for the current
stage) it is important to retain the previous time vector for the generation of
the next set of times. An indicator variable is also created, denoting how far
through the stages each patient has progressed before entering the global ab-
sorbing state. Figure 4 shows the actual pathway between the three stages of
care that are to be modelled. The rate parameters displayed in Figure 4 use
the following notation: /\3- denotes the rate of transition from the j** state to
the next state along in the i*" stage of the model. Furthermore, [L;» denotes
the rate of transition rate from the j' state in the i*" stage to the absorbing
state representing progression to the next stage of the model. Similarly, Nf;j
represents the transition rate from the j*" state in the i*? stage of the model
to the global absorbing state. For ease of presentation in Figure 4 the latter
transition rates are not accompanied by arrows. The process which is being
modelled consists of three states in hospital, two states in the community and
three states in hospital readmission; a total of three stages. Simulation of the
data vectors is conducted using MATLAB, as is the fitting process.

Length of stay data for 10,000 patients were simulated for the initial hospital
stage. Of these, a random sample of 2,500 move to the global absorbing state
with the remaining 7,500 virtual patients undergoing discharge to the commu-
nity stage. From this stage, 3,000 patients are randomly chosen to move to
the global absorbing state and the remaining 4,500 undergo readmission to the
final hospital stage. At this final stage, 2,500 patients are randomly selected
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Fig. 4. The succession of stages to be modelled.

[ aie1s Suigosqe |eqo|o }

Table 1. True values and parameter estimates for the simulated data

Parameter True value Estimate Standard Error 95% Confidence Interval

A 0.0300  0.1371 0.1743 [0.0000, 0.4787]
A 0.0650  0.0286 0.0145 [0.0002, 0.0570)]
ot 0.0580  0.0623 0.0353 [0.0000, 0.1315]
L 0.0450  0.0442 0.0068 [0.0309, 0.0575]
1l 0.0290  0.0259 0.0030 [0.0200, 0.0318]
[ig1 0.0610  0.0628 0.0066 [0.0499, 0.0757]
a2 0.0540  0.0539 0.0053 [0.0435, 0.0643)]
fta3 0.0430  0.0381 0.0037 0.0308, 0.0454
Y 0.0750  0.0574 0.0260 0.0064, 0.1084
3 0.0470  0.0461 0.0025 [0.0412, 0.0510)
113 0.0340  0.0334 0.0015 [0.0305, 0.0363]
Ha1 0.0510  0.0500 0.0021 [0.0459, 0.0541]
Ha2 0.0380  0.0366 0.0018 0.0331, 0.0401
Y 0.0660  0.0401 0.0605 0.0000, 0.1587
A3 0.0580  0.0014 0.0049 [0.0000, 0.0110]
s 0.0490  0.0506 0.0626 [0.0164, 0.0858]
1 0.0420  0.0329 0.0363 [0.0402, 0.0562]
s 0.0320  0.0177 0.0208 [0.0000, 0.0850]
Lo 0.0530  0.0511 0.0177 [0.0000, 0.1733)]
0 0.0480  0.0482 0.0041 [0.0000, 0.1040)]
las 0.0410  0.0231 0.0316 [0.0000, 0.0585]

274



to move to the next community stage (not modelled), with the remaining pa-
tients entering the global absorbing state. This is where the simulation of data
in the synthetic study ends. From Table 1 it can be seen that the parameter
estimates returned through the model fitting process are close to the true val-
ues initially used in the simulation, with all but two of the twenty one true
parameters falling within the 95% confidence interval for the corresponding
estimate. It should be noted that since the transition rates should be strictly
positive to have real-world meaning, the confidence intervals are bounded at
the lower end with zero, even if they are calculated as being negative. The
average length of stay in each state of a particular stage may be calculated
analagously to the method derived by Marshall and McClean [6] which makes
use of the calculated parameter estimates. Using the parameter estimates from
the above simulated data, the average length of stay in each of the states of
the initial hospital stage are calculated as 4, 8 and 16 days, respectively. Upon
discharge to the community stage, the two states may represent an initial re-
covery period during which the discharged patient is perhaps more at risk of
being readmitted to hospital, along with a lower risk (or more lengthy) spell
in the community. The expected length of stay in each of these latent states
is 7 and 14 days, respectively. Finally, when readmitted to hospital for the
first time, it is expected that patients will spend 7, 12 and 25 days in each of
the short-stay, medium-stay and long-stay states, respectively. These results
are consistent with what is expected when geriatric patient care is considered,
arising from the implementation of realistic transition rates in the simulation
of the patient data.

4 Discussion

Research has been undertaken into the development of a new model called the
conditional Cozian mizture approach, which is able to represent patient move-
ments between hospital and the community, including readmissions to hospital.
The approach extends previous research which has been successful in modelling
individual hospital length of stay, but thus far has been less successful in incor-
porating the additional aforementioned patient movements. The model takes
the form of a general phase-type distribution model, specifically a mixture of
Coxian phase-type distributions incorporating a Bayesian component, allowing
the time until a particular event occurs (eg. death or readmission to hospital)
to be conditioned on the time taken to exit the previous stage. A synthetic data
set consisting of length of stay variables for 10,000 patients has been simulated
over three distinct stages of care: the initial hospital stage, the subsequent
discharge to the community and the readmission to hospital. The model has
been validated using this synthetic data, with the parameter estimates obtained
through the fitting process closely reflecting those used in its simulation. It is
hoped that with the further incorporation of patient covariates in model, this
may lead to hospital managers having a better understanding of individual pa-
tient movement habits. Once ascertained, alternative measures of care may be
put in place so that the prospective patient may receive appropriate care in the
community, thereby relieving some of the pressure on hospitals.
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Abstract. Sets of infinite sequences with elements which belong to finite different
alphabets are considered.

In the paper it is offered to use the statistical techniques with probabilities of false
alarms equal to zero. This class of statistical decisions is based on concept of bans
of probability measures in a finite space. Conditions under which power functions
of statistical criteria accept value 1 on a finite step are found. These conditions are
formulated in terms of supports of probability measures. If the conditions are fulfilled
we present the brute force algorithm to construct tests defined by bans with power
function equals to 1.

Keywords: Bans of probability measures in finite spaces, statistical criteria, power
function of criteria, monitoring systems.

1 Introduction

Mathematical models for monitoring systems are actual in our days. Sup-
pose that such monitoring uses statistical techniques. Let the trajectories of
functioning of such systems be represented by infinite sequences in which each
coordinate accepts value in the finite different fixed alphabet.

Application of statistical techniques on a set of infinite sequences demands
a probability measure P which describes the correct behavior of analyzable
system. The wrong system behavior is described by a probability distribution
Q. Different wrong behaviors of the technological system can be described by
different distributions of probabilities on space of the infinite sequences.

In practice the monitoring system of a process observes initial sections of
trajectories and for chosen step n it tests the hypothesis Hy_ ,, that the distribu-
tion of the observed section of trajectory is defined by probability distribution
measure P, which is the projection of measure P on the first n coordinates.
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The alternative hypothesis H; , in the elementary case is defined by measure
@ which is projection of measure @ on the first n coordinates. Criteria of test-
ing of hypotheses Hj , against alternatives H; , allow to make the decision
about the wrong behavior of a system.

The basic problem for developers of such monitoring systems is the false
alarms appearance when the correct behavior of technological process is per-
ceived as wrong Axelson[1]. False alarms lead to necessity of the manual anal-
ysis of the reasons of the wrong system behavior.

In the paper it is offered to use the statistical techniques for monitoring with
probabilities of false alarms equal to zero. This class of statistical decisions is
based on concept of the ban Grusho and Timonina[4] , Grusho et al.[3]. The
ban of a probability measure in the considered scheme is a vector for which
probability of its appearance is equal to 0 in a finite projection of measure.

Any statistical criterion for testing Hy, ,, against H; ,, is defined by a critical
set S, of vectors of length n. When the observed vector is in S,, then it leads
to the acceptance of alternative H; ,. If all vectors in S,, are bans of a measure
P, say that the criterion is defined by bans of a measure P.

Existence and some properties of the criteria defined by bans were re-
searched in papers Grusho and Timonina[4], Grusho et al.[3], [5]. Conditions
of consistency of sequence of the statistical criteria defined by bans have been
found.

In this paper conditions under which power functions of criteria accept
value 1 on a finite step are found. These conditions are formulated in terms
of supports of probability measures for the main measure P on space of the
infinite sequences and for alternatives. If the conditions are fulfilled we present
the brute force algorithm to construct tests defined by bans with power function
equals to 1.

The article is structured as follows. Section 2 introduces definitions and
previous results. In Section 3 the main results are proved. In Conclusion we
shortly analyze the necessary steps for development of the theory.

2 Mathematical model. Basic definitions and previous
results

Let’s consider the following mathematical model. Let X;, i = 1,2,...,n,..., be
a sequence of finite sets, H?zl X; be a Cartesian product of X;, ¢ =1,2,...,n,
X be a set of all sequences where i-th element belongs to X;. Define A be
a o-algebra on X°°, generated by cylindrical sets. A is also Borel o-algebra
in Tychonoff product X, where X;, i = 1,2, ...,n,..., has a discrete topology
Bourbaki[2], Prokhorov and Rozanov[7]. On (X°°, A) a probability measure
P is defined. For any n =1, 2,..., assume that probability distribution P, is a
projection of measure P on the first n coordinates of random sequences from
X°°. It is clear that for every B, C [[\-, X;

P,(B,) = P(B, x X:°), (1)

where X° =T[2, ., Xi.
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Let D,,(P) be the support of a measure P, (Prokhorov and Rozanov[7]):

D,(P)={z, € ﬁXi, P.(Z,) > 0}.
i=1

Define cylindrical set A,,(P) as follows:
A, (P) = D,(P) x X:°.

The sequence of cylindrical sets A, (P), n=1,2,..., is not increasing and

A(P) = lim A, (P) = Dl A (P). (2)
The set A(P) is a compact and is a support of measure P.

Let T € Hle X, and Tp_1 is obtained from T by dropping the last coor-
dinate.

Definition 1. Ban of measure P,, (Grusho et al.[3]) is a vector Ty, € Hle X,
k < n, such that

n—k
P(@, x [[ Xi) =0.
=1

Definition 2. Ban T of measure P, is the smallest ban of measure P
(Grusho et al.[3]) if
Pk—l(%k—l) > 0.

If Zj is a ban of measure P, then for every k < s < n and for every sequence
Ty, starting with T, we have
Py(Z5) = 0.

If there exists a vector T,, € H?zl X; such that P,(Z,) = 0, then there
exists the smallest ban which is defined by the values of the first coordinates
of vector T,,.

Further under A,, we will understand a set of the smallest bans of measure
P, which have lengths equal to n.

We also consider a set of probability measures Qg, 8 € ©, on (X*°, A) for
which Qn. 0, Dn(Qg), An(Qp), A(Qg) are defined.

Consider the sequence of criteria for testing of hypotheses Hy ,, : P, against
alternatives Hy ,, : {Qn,9,0 €O}, n=1,2,....

The statistical criterion for testing Hy ,, against H; ,, is defined by a critical
set S, of vectors of length n. When the observed vector is in S,, then it leads to
the acceptance of alternative H; ,. If all vectors from .5,, are bans of measure
P, say that the criterion is defined by bans of measure P. Note that for every
n we have P,(S,) =0, if S,, is defined by bans.

Let W,,(0) be the power function of criterion for testing Ho,,, against Hy .
It is known that W,,(6) = @, ¢(Sy,), 0 € O.

The basic problem considered in the paper is to find conditions when there
exists such N that for all n > N the power function W,, () =1 for all € O©.
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3 Mathematical results

Let’s consider a set of probability measures {Qg, 6 € O} on (X*°, A), for which
Qo,n, Dn(Qos), An(Qp), A(Qp) are defined as in Section 2.

Consider a problem of testing a sequence of hypotheses Hy ,, : P, against
complex alternatives Hy ,, : {Qg,n, 0 € O}. Let W,(0) be a power function.

Theorem 1. There exists a sequence of criteria for testing Hoy, , against
H, ,, with critical sets S, n =1, 2..., defined by bans, for which exists such N
that for every n > N the power function W,,(0) = 1 if and only if there exists
a closed set A such that for every 6, 0 € O,

A(Q@) g Aa

and
AP)NA=0.

Proof. The proof of the theorem 1 is carried out similar to the proving of
the theorems 1 and 2 in Grusho et al.[6]. We will give the main ideas of the
proof which will be required in further reasonings.

Let’s define -
o= U I@s).
k=1Tr €N

where I(Z)) be the elementary cylindrical set in X°°, which is generated by
the smallest ban Ty.
It is easy to prove that
o= XP\A(P).

By the condition of the theorem 1 A C o. In the considered case the topological
Tychonoff product X°° is a compact space Bourbaki[2]. Then for the set A
there exists a finite cover

N
ov= U 1@0.

k=1Tr €N

The set oy is a cylindrical set and oy = Cnx x X7. From the conditions
of the theorem 1 and formula (1) it follows that for every 6 € ©

1=Qo(A(Qo)) < Qolon) = Qa, n(Cn).

If critical set Sy of criterion for testing Hy n : Py against the complex
alternatives Hy n : {Qg, n, 6 € O} is chosen as Sy = Cn, then W,,(8) =1 for
all #. The sufficiency is proved.

Let’ prove the necessity. Let Sy be such a critical set for which Qg N (Sn) =
1forall 8, 8 € @, and Sy is defined by bans of measure P. Then for all 8, § € O,
the set Dy (Qg) C Sy, and using the definition of o we conclude that every
set S defined by bans satisfies to

SNXX]?[OQO'N.
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For cylindrical sets we have
AN(Qg) Con, 0 €0O.

Thus
A(Qo) Con, €O,

By the definition
As

then it follows that
oy NA(P) = 0.

on is a cylindrical set and in discrete topology on Hf\il X; it is a closed set.
So we can define A = o. The theorem 1 is proved.

Example 1. Let z € X*°. For every n denote x|, be a vector of the
length n which coincides with value of the first n coordinates of the sequence
x. Assume that P(z) = 1.

Define two alternatives. Let y be a sequence of X *° such that z|,, = y|,, but
Z|pt1 # Ylny1. Define Qq1(y) = 1. Let z be a sequence from X, z|,, = x|m
and z|m41 # Z|m41 and m > n. Define Q2(z) = 1.

It is clear that the set of bans for P, contains all vectors from Hle X;
which are different from z|;. For & < n the support of Q1 1 is not covered by
bans of measure P. But when k = n + 1 bans of measure P cover the support
of Q1,n+1. The analogical conclusions can be derived for measure Q.

That is why for & > m + 1 the bans of measure P cover supports of all
projections of measures @)1 and Q2. It is clear that number of steps which are
needed to solve the problem of testing with the help of tests defined by bans
and power function equals to 1 is m + 1.

Example 2. Let’s assume that with the help of a channel rows of a re-
lational data base are transmitted. Let the domains of attributes Aq,..., A,
equal to X7,...,X,.. This is the case when the model is described by the se-
quence of different alphabets. An example of a ban here can be described by
the changing of values of attributes. For example, a change of an attribute A
in neighbor rows should be supported by the change of the value of attribute
As. Otherwise we get a ban in the sequence.

Generalizing the example 1 we can define an algorithm of constructing the
test with power function equals to 1.

Assume that the sufficient conditions of the theorem 1 are fulfilled. That’s
why we know the closed set A. In the considered topological space every closed
set can be represented as follows

s

where I, = C), x X2°, n = 1,2, ..., is not increasing sequence of cylindrical sets.
According to the theorem 1 the needed test will be constructed when bans of
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measure P cover the set C,, for some n. Due to finiteness of the model for
every n we can use the brute force algorithm by comparing bans of measure
P,, with elements of C,,. Due to the result of the theorem 1 we should consider
only finite number of n to construct the critical set with power function equals
to 1. Note that for every n: P,(C,) = 0.

Of course there may be a lot of cases when the complexity of the algorithm
can be reduced in comparison with brute force algorithm. But these cases
should be considered autonomously.

In all cases the construction of the test is the preliminary work and its usage
can be described by an efficient algorithm.

4 Conclusion

We defined the requirements for a monitoring system of some technological
process which separates normal and abnormal behavior of the process. It’s
necessary to prevent false alarms and for sure to find the process deviations
from the normal behavior. Usage of bans helps to exclude false alarms by
definition.

Theorem 1 defines the conditions when there exist tests defined by bans
with power functions equal to 1. If conditions are fulfilled we define brute
force algorithms for the construction of such tests defined by bans which can
be implemented in a monitoring system.

The most difficult work should be done at the stage of preparation of moni-
toring system for starting. There are a lot of problems concerning the reduction
of complexity of preliminary stage and with understanding of behavior of mon-
itoring system when preliminary data are incomplete.
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Abstract. We explore some issues arising in trajectory modeling with finite mixture
models adding covariates to the trajectory specifications. More specifically, we use a
generalized model that allows allows non parallel trajectories for different values of
covariates and discuss the use of covariant variables which have no significant influ-
ence on the group membership probabilities, as well as the risk of multicolinearity
in the case of time-varying covariates. We illustrate our discussion by giving typical
salary curves for the employees in the private sector in Luxembourg between 1987 and
2006, as a function of their country of residence, as well as of Luxembourg’s consumer
price index (CIP).

Keywords: Trajectory Modeling, Generalized Finite Mixture Models, Data Illustra-
tion.

1 Introduction

Time series are largely used in economics, sociology, psychology, criminology
and medicine and a host of statistical techniques are available for analyzing
them (see Singer and Willet[18]). In that context, the study of developmen-
tal trajectories is a central theme. In the 1990s, the generalized mixed model
assuming a normal distribution of unobserved heterogeneity (Bryk and Rau-
denbush[1]), multilevel modeling (Goldstein[5]), latent growth curves modeling
(Muthén[11], Willett and Sayer[22]) and the nonparametric mixture model,
based on a discrete distribution of heterogeneity (Jones, Nagin & Roeder[10])
have emerged. There has been a growing interest in this approach to answer
questions about atypical subpopulations (see Eggleston, Laub and Sampson[4]).

Latent class growth analysis, also called nonparametric mixed model or
semiparametric mixture model was originally discussed by Nagin and Land[14],
Nagin[12] and Roeder, Lynch and Nagin[16] and is specifically designed to de-
tect the presence of distinct subgroups among a set of trajectories and repre-
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sents an interesting compromise between analysis around a single mean tra-
jectory and case studies (von Eye & Bergman[20]). Compared to subjective
classification methods, the nonparametric mixed model has the advantage of
providing a formal framework for testing the existence of distinct groups of
trajectories. This method does not assume a priori that there is necessarily
more than one group in the population. Rather, an adjustment index is used
to determine the number of sub-optimal groups. This is a significant advance
over other categorical methods which determine the number of groups only
subjectively (von Eye & Bergman|[20]).

While the conceptual aim of the analysis is to identify clusters of individuals
with similar trajectories, the model’s estimated parameters are not the result of
a cluster analysis but of maximum likelihood estimation (Nagin[13]). Moreover,
this method allows to evaluate the accuracy of the assignement of the individu-
als to the different sub-groups and to consider the variation of this accuracy in
subsequent analyses (Dupéré et al.[3]). Nagin and Odgers[15] document numer-
ous applications of group-based trajectory modeling in criminology and clinical
research. They state that the appeal of group-based trajectory modeling for
the future lies in the potential for the innovative application of trajectory mod-
els on their own, in conjunction with other statistical methods or embedded
within creative study designs while carefully considering the perils and pitfalls
inherent in the use of any methodology.

Nagin[13] develops a generalization of his model that allows trajectories
depending on covariates. Unfortunately in this model, trajectories for different
values of the covariates are constrained to remain always parallel and the error
terms of the different groups all have the same dispersion. Schiltz[17] finally
presents a generalization of the model that overcomes these two weaknesses.
In this paper we discuss some remaining issues and illustrate them by data
examples.

It is structured as follows. In section two, we present the basic version of
Nagin’s finite mixture model, as well as two of his generalizations. In section
three, we present the generalization of Schiltz and some of its statistical prop-
erties. In section four, finally, we highlight some remaining issues by means of
a data example from economics.

2 Nagin’s Finite Mixture Model

Starting from a collection of individual trajectories, the aim of Nagin’s finite
mixture model is to divide the population into a number of homogenous sub-
populations and to estimate, at the same time, a typical trajectory for each
sub-population (Nagin[13]).

More, precisely, consider a population of size N and a variable of interest
Y. Let Y; = vyiy, Yiy, -, Yip be T measures of the variable Y, taken at times
t1,...,ty for subject number i. To estimate the parameters defining the shape
of the trajectories, we need to fix the number r of desired subgroups. Denote
the probability of a given subject to belong to group number j by ;.

The objective is to estimate a set of parameters {2 = {ﬂ'j,ﬂg,ﬂf, g j =
1,...,r} which allow to maximize the probability of the measured data. The
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particular form of {2 is distribution specific, but the 8 parameters always per-
form the basic function of defining the shapes of the trajectories. In Nagin’s
finite mixture model, the shapes of the trajectories are described by a polyno-
mial function of age or time. In this paper, we suppose that the data follow a
normal distribution. Assume that for a subject in group j

yie =Y Btk + e, (1)

k=1

where s denotes the order of the polynomial describing the trajectories in group
7 and g4 is a disturbance assumed to be normally distributed with a zero mean
and a constant standard deviation o. If we denote the density of the standard
centered normal law by ¢ and B9t = Y7 _, Bitr, the likelihood of the data is

given by

N r T :

1 Yir — Blta

i=1j=1 t=1
The disadvantage of the basic model is that the trajectories are static and
do not evolve in time. Thus, Nagin introduced several generalizations of his
model in his book (Nagin[13]). Among others, he introduced a model allowing
to add covariates to the trajectories. Let z1, ..., zpr be M covariates potentially
influencing Y. We are then looking for trajectories

S
Yit = Zﬁitft +adz + . 4 Qe (3)
k=0

where €;; is normally distributed with zero mean and a constant standard
deviation o. The covariates z,, may depend or not upon time t.

A second model extension also allows the statistical testing of hypothe-
ses about whether individual-level characteristics distinguish trajectory group
membership (Nagin[13]). To that effect, group membership probability =; is
written as a function of a possible effect §; of variable x to this probability.

ezi 0]'

- T
§ exiek
k=1

The actual statistical testing can then be done by conventional z-score based
testing (Greene|[7]) or the Wald test (Wald[21]).

(4)

(@)

But Nagin’s generalized models still have two major drawbacks. First, the
influence of the covariates in these model is unfortunately limited to the inter-
cept of the trajectory. This implies that for different values of the covariates,
the corresponding trajectories will always remain parallel by design, which does
not necessarily correspond to reality.

Secondly, in Nagin’s models, the standard deviation of the disturbance is
the same for all the groups. That too is quite restrictive. One can easily
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imagine situations in which in some of the groups all individual are quite close
to the mean trajectory of their group, whereas in other groups there is a much
larger dispersion.

3 A more flexible model

3.1 Definition

To address and overcome these two drawbacks, Schiltz[17] proposed the follow-
ing generalization of Nagin’s model.

Let zy..xpr and z;,, ..., 2;, be covariates potentially influencing Y. Here
the x variables are covariates not depending on time like gender or cohort
membership in a multicohort longitudinal study and the z variable is a covariate
depending on time like being employed or unemployed. They can of course also
designate time-dependent covariates not depending on the subjects of the data
set which still influence the group trajectories, like GDP of a country in case
of an analysis of salary trajectories.

The trajectories in group j will then be written as

s M
=S (gi ©S el t v) e &)

k=0 m=1

where the disturbance €;; is normally distributed with mean zero and a standard
deviation o; constant inside group j but different from one group to another.
Since, for each group, this model is just a classical fixed effects model for panel
data regression (see Woolridge[23]), it is well defined and we can get consistent
estimates for the model parameters.

This model allows obviously to overcome the drawbacks of Nagin’s mod-
els. The standard deviation of the uncertainty can vary across groups and
the trajectories depend in a nonlinear way on the covariates. In practice this
dependance of all the power coefficients of the polynomials may considerably
extend the computation time for the parameters, so it can be useful just to
work with a first or second order dependance instead of using the full model.

3.2 Statistical Properties

The model’s estimated parameters are the result of maximum likelihood esti-
mation. As such, they are consistent and asymptotically normally distributed
(Cramer[2]; Greene[7]; Theil[19]).

In our model, for a given group, the trajectories follow in fact a nonlinear re-
gression model. As such, exact confidence interval procedures or exact hypoth-
esis tests for the parameters are generally not available (Graybill and Iyer[6]).
There exist however approximative solutions. The standard error can be ap-
proximated for instance by a first-order Taylor series expansion (Greene[7]).
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This approximate standard error (ASE) is usually quite precise if the sample
size is sufficiently large.

Consider model (5), for which (2 4+ M)s regression parameters have to be
estimated. Then confidence intervals of level « for the parameters 3] are just

Cla(ﬁi) = Bi - tlfa/2;N7(2+M)sASE<B£)§ Bi + tlfoz/2;N7(2+M)sASE(Bi) )
(6)

where t1_,;, denotes as usually the 1 — o quantile of the Student distribution
with n degrees of freedom.

The confidence intervals for the ail and 'yi are obtained in the same way.

The confidence intervals of level a for the disturbance factor o; is given by

— S — 0@2 — S — 6‘2
Cla(aj):l\/w 2+ M) 1>J;\/<N 2+ M) 1>J|7 @

2 2
X1—a/2;N—(24+M)s—1 Xa/2;N—(24+M)s—1

where x7_,.,, denotes the 1 — a quantile of the Chi-Square distribution with n
degrees of freedom.

4 Empirical illustration

For the following data example, we use Luxembourg administrative data orig-
inating from the General Inspectorate of Social Security, IGSS (Inspection
générale de la sécurité sociale). The data have previously been described and
exploited with Nagin’s basic model by Guigou, Lovat and Schiltz ([8], [9]). The
file contains the salaries of all employees of the Luxembourg private sector who
started their work in Luxembourg between 1980 and 1990 at an age of less
than 30 years. This choice was made to eliminate people with a long carrier in
another country before moving to Luxembourg. The main variables are the net
annual taxable salary, measured in constant (2006 equivalent) euros, gender,
age at first employment, residentship and nationality, sector of activity, marital
status and the years of birth of the children. The file consists of 1303010 salary
lines corresponding to 85049 employees. In Luxembourg, the maximum con-
tribution ceiling on pension insurance is 5 times the minimum wage, currently
7577 EUR (2006 equivalent euros) per month. Wages in our data are thus also
capped at that number.

We will not present here an exhaustive analysis of the whole dataset, but
just two illustrations of the possibilities of our generalized mixture model and
its differences from Nagin’s model. We concentrate on the first 20 years of the
careers of the employees who started working in Luxembourg in 1987. That
gives us a sample of 1716 employees. We will first compute typical salary tra-
jectories for them, taking into account the country of residence of the employees
and then typical salary trajectories as a function of the Luxembourg Consumer
Price Index (CPI).
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4.1 First data example

Here we illustrate the case of a covariant variable which has no significant in-
fluence on the group membership probabilities and hence on the constitution
of the groups. We analyze if the fact to be either a Luxembourg resident or
a commuter has an influence on the salary. Unlike the case of the gender
(Schiltz[17]), this covariate does not distinguish trajectory membership. That
means that Nagin’s model does not provide different trajectories for residents
and non residents. Hence Nagin’s model implies that throughout the 20 first
years of their career residents and non residents have the same salary trajecto-
ries. To constrain it to give us different solutions for residents and commuters,
we took the 6 group solution resulting from Nagin’s generalized model and
computed the salary trajectories in each group separately for residents and
non residents. The result is shown in Fig. 1. It shows the salary of employees
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Fig. 1. Salary evolution by country of residence, modelized by Nagin’s model

in Luxembourg during the first 20 years of their professional career. The curves
in dark colors (groups 1L, 2L, 3L, 4L, 5L and 6L) represent employees living
in Luxembourg, the curves in light colors represent commuters living in the
surrounding countries. Since the country of residence has no significant effect
on the salary, it is not astonishing that in each group the curves for residents
and commuters are very close. But due to the limitations of the model, the
evolution of the salaries seems to be exactly the same for both categories. In
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fact the commuters seem to earn a little more money then the residents in all
six groups throughout the whole time line.
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Fig. 2. Salary evolution by country of residence, modelized by our model

Fig. 2 shows the six group solution for the 20 first year of Luxembourg
employees calibrated with our model. Here we see quite a different pattern. The
difference between residents and commuters is of course not very large, but the
evolution is not parallel any more. In the two low salary groups Luxembourg
residents earn a little bit more during the last few years, whereas commuters
have a slightly higher salary during the first years of their career. In the
two middle salary groups Luxembourg residents earn a little bit less at the
beginning and the end, but slightly more in the middle of the trajectory. The
same situation can be observed for the group with the highest salaries, whereas
for the second highest salary group, its the Luxembourg residents that gain
more at the beginning and the end, but less in the middle of our time interval.
Hence we see, that our model allows a more precise description of reality than
Nagin’s ones.

We obtained this results by calibrating the model
Sie = (B + o) + (B] + odw)t + (83 + odai)t® + (B + o), (8)

where S denotes the salary and x the country of residence variable (The Lux-
embourg resident are coded by 1 and the commuters by 0). Table 1 shows the
values of the parameters for a 6-group solution.
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Results for group 1

Parameter Estimate Standard error 95% confidence interval
Lower Upper
Bo 950.373 41.733 861.903 1038.843
ag 34.576 3.402 29.484 39.669
B1 259.220 16.792 223.623 294.817
ay 17.415 0.966 15.366 19.464
B2 -19.812 1.834 -23.701 -15.923
g -1.805 0.106 -2.028 -1.581
B3 0.531 0.058 0.410 0.653
as 0.026 0.003 0.018 0.033

Results for group 2

Parameter Estimate Standard error 95% confidence interval
Lower Upper
Bo 1946.965 47.927 1845.365 2048.565
[e 7 33.799 11.426 9.576 58.022
B1 420.544 19.284 379.664 461.424
oy -55.339 4.598 -65.086 -45.593
B2 -39.272 2.107 -43.739 -34.806
%} 9.235 0.502 8.170 10.300
B3 1.050 0.066 0.910 1.190
a3 -0.342 0.016 -0.375 -0.309

Results for group 3

Parameter Estimate Standard error 95% confidence interval
Lower Upper
Bo 1833.225 71.228 1682.228 1984.221
g 150.383 12.588 123.761 177.006
B 284.880 28.659 224.124 345.635
%} -26.094 5.053 -36.806 -15.382
B2 -11.063 3.131 -17.700 -4.426
g 0.520 0.552 -0.650 1.690
B3 0.204 0.098 -0.004 0.412
as 0.040 0.018 0.003 0.077

Results for group 4

Parameter Estimate Standard error 95% confidence interval
Lower Upper
Bo 2645.589 73.032 2490.767 2800.411
g 307.435 21.509 249.121 365.750
B 188.837 29.386 126.542 251.132
oy -69.719 11.068 -93.183 -46.256
B2 12.030 3.210 5.224 18.836
%} 5.112 1.209 2.548 7.675
B3 -0.528 0.101 -0.741 -0.314
as -0.130 0.038 -0.211 -0.050

Results for group 5

Parameter Estimate Standard error 95% confidence interval
Lower Upper
Bo 3361.231 134.999 3075.047 3647.415
g 310.893 17.475 347.938 273.849
B 649.017 54.318 533.867 764.167
oy -101.596 7.031 -86.691 -116.501
B2 -35.623 5.934 -48.203 -23.043
oz 7.832 0.768 9.460 6.203
B3 0.651 0.186 0.256 1.045
as -0.148 0.024 -0.097 -0.199

Results for group 6

Parameter Estimate Standard error 95% confidence interval
Lower Upper
Bo 2853.326 64.784 2715.991 2990.662
g 38.171 28.242 -21.699 98.040
B 457.569 26.067 402.310 512.828
oy 27.307 11.365 3.217 51.396
B2 -31.612 2.848 -37.649 -25.575
g -4.920 1.242 -7.552 -2.289
B3 0.688 0.089 0.499 0.877
a3 0.180 0.039 0.098 0.263

Table 1. Parameter estimates for model 8
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We observe that all parameters are significant, with the exception of s and
B3 for group 3 and «g for group 6. Hence, there really seems to be a nonlinear
relationship between the salaries and the country of residence and a simple
parallel shift is not enough to explain what is going on.

The disturbance terms for the six groups are o7 = 39.31, oo = 49.11,
o3 = 70.96, 04 = 79.45, 05 = 115.6 and 0g = 46.38 respectively. The dispersion
varies from group to group and is generally higher in the groups with higher
salaries then in those with lower salaries.

4.2 Second data example

In Luxembourg, the establishment of consumer price indices (CPI) started
at the beginning of the 1920s. The current index, which came into effect in
January 1997, complies with the Community regulations concerning the har-
monised consumer price index except that its weighting excludes the consumer
spending of non-residents on Luxembourg territory.

The index is issued monthly. It is presented in the form of a chain index,
the weighting of which is adjusted every year to take account of modifications
in households’ consumer habits. Calculated for the twelve months of a given
year compared to the month of December of the previous year, it is published
on base 100 at 1st January 1948 for the purposes of the sliding wage scale.
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Fig. 3. Typical salary trajectories for the 6 group solution and evolution of Luxem-
bourg’s CPI (dashed line).
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Fig. 3 shows the salary trajectories of the 6 groups (scale at the left side of
the y axis), as well as the CPI of Luxembourg (in dashed black, scale on the
right side of the y axis) during the same time. The two first groups contain the
employees that gain the legal minimum wage and the minimal qualified wage
respectively. Groups three and four represent middle class salaries and groups
five and six the higher salary groups. Moreover, groups two and six represent
employees with rather flat careers. Their salary is more or less constant from
year five on. They are just distinguished by their starting salary. Groups
three, four and five on the other hand represent more dynamical careers, again
characterized mainly by the differences in their starting salaries.

Our example illustrates the dependence of the trajectories on time varying
covariates. We use the same data as before and analyze the influence of Lux-
embourg’s CPI on the salary trajectories. Here we have to be careful in our
model choice because the two time series have a correlation of 0.995. Hence a
model like

Sit = (85 + 7 zie) + (8L + vl zin)t + (B + zi)t® + (B + vizi)t,  (9)

where S denotes the salary and z; is Luxembourg’s CPI in year ¢ of the study,
makes no sense. Because of obvious multicolinearity problems, almost none of
the parameters would be significant.

Therefore, we simplify the model and calibrate
Sit = (B3 + W zie) + Yzt + W ziat® + v zint®. (10)
Tables 2 shows the values of the parameters for a 6 group solution.

We observe a significant influence of the CPI for all six groups, which is not
astonishing, since by law, the salaries are coupled with the CPI. For groups
two, three and six all parameters are significant. The trajectories in groups
one and five do not have any constant term, nor a linear dependency on the
CPI but depend only on the interaction of CPI and time. Group four, finally,
exhibits only linear behaviour with respect to CPI, as well as the interaction
of CPI and time.

The disturbance terms for the six groups are o7 = 41.49, g9 = 33.18,
o3 = 68.48, 04 = 64.84, 05 = 111.83 and og = 39.74 respectively. Again, we
observe that the minimal wage group exhibits the smallest variability, whereas
the high salary groups four and five also have the highest disturbance term.

5 Conclusion

In this article, we presented Nagin’s finite mixture model and Schiltz’s general-
ization a key characteristic of which is its ability to modelize nearly all kind of
trajectories and to add covariates to the trajectories themselves in a nonlinear
way.

We used this model to illustrate some issues about trajectory modeling
through a data example related to salary trajectories. In the first part, we
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Results for group 1

Parameter Estimate Standard error 95% confidence intervals
Lower Upper
Bo 321.381 1189.430 -2213.502 2856.093
Yo 1689.492 277.834 -4.232 7.611
71 0.400 0.120 0.143 0.656
Y2 -0.034 0.007 -0.049 -0.019
¥3 0.0008 0.0002 0.0005 0.0013

Results for group 2

Parameter Estimate Standard error 95% confidence intervals
Lower Upper
Bo 7688.158 951.103 5660.197 9714.832
Yo -13.095 2.222 -17.822 -8.350
Y1 1.260 0.096 1.055 1.465
Y2 -0.097 0.006 -0.109 -0.085
¥3 0.0025 0.0002 0.0022 0.0028

Results for group 3

Parameter Estimate Standard error 95% confidence intervals
Lower Upper
Bo 682.638 196.327 2641.924 1101.045
Yo -11.367 4.586 -21.135 -1.586
Y1 0.983 0.199 0.559 1.406
Y2 -0.048 0.012 -0.073 -0.023
¥3 0.0010 0.0003 0.0003 0.0017

Results for group 4

Parameter Estimate Standard error 95% confidence intervals
Lower Upper
Bo 8473.081 1859.349 4511.016 12434.892
Yo -13.083 4.342 -22.335 -3.825
Y1 0.927 0.188 0.527 1.328
Y2 -0.013 0.011 -0.036 0.010
¥3 -0.0003 0.0003 -0.0009 0.0004

Results for group 5

Parameter Estimate Standard error 95% confidence intervals

Lower Upper
Bo 4798.276 3205.141 -2034.302 11630.238
Yo -2.846 7.488 -18.806 13.115
o721 1.315 0.324 0.0624 2.006
Y2 -0.081 0.019 -0.122 -0.040
¥3 0.0016 0.0005 0.0005 0.0027

Results for group 6

Parameter Estimate Standard error 95% confidence intervals
Lower Upper
Bo 8332.439 1139.127 5903.348 10759.713
Yo -12.472 2.661 -18.145 -6.800
Y1 1.378 0.015 1.132 1.623
Y2 -0.094 0.007 -0.108 -0.079
¥3 0.0022 0.0002 0.0018 0.0026

Table 2. Parameter estimates for model 10
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showed that the generalized model from Schiltz[17] is able to detect different
behaviour for different values of the covariant even in the case of covariant
variables which have no significant influence on the constitution of the clusters.
In the second part, we showed that models with time dependent covariates have
to be considered carefully, since colinearity problems between the covariate and
time can lead to parameters that are no more interpretable. In that case, it
is necessary to take out the time dependency of the trajectories in order to
preserve the dependency on the covariate.
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