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Abstract—In a near future, wireless networks will be one of
the key technologies for road traffic management in smart cities.
Vehicles and dedicated roadside units should be interconnected
through wireless technologies such as IEEE 802.11p (WAVE).
Traffic light and road signs may also take their place in this
architecture, forming a large-scale network of small devices
that report measurements, take orders from a control center,
and are able to take decisions autonomously based on their
local perception. Such a network shares many similarities with
classical wireless sensor and actuator networks, starting with
its distributed organization and with the role of the control
center. However, its topology, and subsequently the appropriate
selection of protocols and algorithms, will be strongly influenced
by each city’s characteristics. In this article, we characterize
and discuss probable topologies of these networks. The aim of
this work is to provide network models that can be used to
evaluate protocols and algorithms using realistic scenarios in
place of generic random graphs. We deploy such networks over
52 city maps extracted from OpenStreetMap and characterize the
resulting graphs, with a particular focus on connectivity aspects
(degree distribution and connected components). The tools, the
complete datasets, OMNeT++ network models are available freely
online.

Index Terms—Smart Cities, Wireless Sensor Networks, Net-
work Topology, Graphs

I. INTRODUCTION

Operators rely more and more on digital systems to monitor
road traffic. Intelligent Transportation Systems (ITS) are now
able to control traffic lights, limit congestion, prevent accidents
and reduce pollution or noise levels. In this context, the
success of today’s embedded systems allows deploying a
dense network of detectors and actuators that communicate
using wireless communications [1]], [2], [3]. Tiny devices can
be installed at traffic lights, or on urban lighting systems
to measure carbon dioxide, micro-particle or noise levels,
or to count vehicles using a magnetometer or a camera.
Using wireless transmissions instead of optical fibers reduces
installation costs and facilitates interaction with vehicles.
These devices are powerful enough to auto-organize, report
measurements to centralized acquisition and control software
such as SCOOT [4]] or SCATS [5] and receive global policies
in return. Deploying such a large-scale network would provide
a fixed infrastructure, fostering the development of vehicular
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applications that require a minimal amount of users to form
an infrastructure. However, when the traffic load is high, a
small event can easily and rapidly escalade into a severe
congestion [6] and communicating with a central decision
point may not be the most efficient solution [7]. The time
required to communicate with a central entity may impede
the development of responsive applications such as accident
or congestion detection. A decentralized system that works
locally naturally alleviates this problem. Taking advantage
of the distributed computing results, such devices can eas-
ily communicate together and rapidly adapt the traffic light
plans to solve a situation [3|]. This type of architecture can
make intersections or urban areas totally autonomous and
independent of any central entity, in addition to increase fault
tolerance. However, extensive and realistic evaluations need to
be realized before convincing urban planners of the benefit of
decentralized systems.

This paper studies and characterizes the plausible shape
of a network formed by static wireless devices deployed at
every intersection of a real city. If such networks are often
limited to the most congested zones or to the largest streets, we
believe that a citywide deployment makes sense, as it allows
building efficient and reactive traffic management strategies.
Traffic from congested areas can be, for example, offloaded to
quieter zones. However, this process should be controlled to
be efficient. Secondary streets should be monitored to detect
small events that can often escalate to blocking situations
and provide a fast and appropriate reaction. The huge amount
of research in ad-hoc, mesh and sensor networks has shown
that the network topology has a strong effect on the network
performance, its reliability and its adaptation capacities [8]],
[9], [10], [L1]. Selecting the appropriate set of algorithms and
protocols requires a full characterization of the scenario and
the network topology.

Based on a few deployment strategies that we explain in
Sec. we derive graph models for these topologies that
better reflect real topologies than the generic random graph
models. These communication graphs result from the sensors
deployment over 52 city maps extracted from OpenStreetMap.
The tools used to generate the topologies as well as the whole
set of results and additional conclusions are available online
(Sec. [llI-C). We then analyze the resulting graphs structural
properties in terms of local connectivity, and discuss the
networking aspects in Sec.



II. RELATED WORKS
A. Deployment

Using embedded devices to help managing smart cities is
not a novel idea. Press-covered research results show the inter-
est of fine-grained traffic monitoring for suppressing instability
in traffic flows [6]] and for reducing the congestion level. The
ramp metering systems that have been deployed by some cities
show that an active management of traffic lights could reduce
drastically the traffic jams, even though the Minneapolis ramp
meters were highly contested by users who had the feeling
that waiting times increased.

Several projects and initiatives have reached an experimental
phase and a few medium-scale deployments have begun.
Sensor networks experimental platforms are legion today, but
most of them are limited to one or a few buildings (e.g.,
Motescope [12] or FlockLab [13]]). In contrast, CitySense [14]]
is an urban wireless network testbed deployed all over the
city of Cambridge (MA, USA), forming a mesh network.
It is composed of 100 Linux-based computers that can be
programmed directly by end users. Even though the primary
focus was to foster mesh networks applications development,
nodes have been augmented with environmental and pollution
Sensors.

Corredor et al. [15] look at the deployment of magnetome-
ters for monitoring road traffic over smart highways. They
propose to deploy such sensors on every lane to maximize
vehicles detection probability and couple the sensors with
roadside units to solve connectivity problems. Hu et al. [16]]
proposes to deploy sensors across the second ring road of
Beijing (China) for road traffic monitoring. They influence
the deployment so that the resulting topology forms a small
world graph to take advantage of this type of structures, by
optimizing transmission radiuses of the nodes and refining
the location of high coverage nodes using an evolutionary
algorithm. CitySee [[17]] is a project to deploy a sensor network
in the city of Wuxi (China) to measure the carbon dioxide
level in real-time. The paper models the deployment issue as
a relay node placement problem and evaluates the number of
additional nodes deployed for connectivity purposes.

Some authors in the literature define the deployment of
ITS, such as traffic light control algorithms that act locally on
each intersection of a road infrastructure [1], [2], [18]. Their
algorithms are based on sensors deployed at an intersection
for the purpose of calculating a timed sequence of green
lights corresponding to the level of traffic. By defining the
roles and hierarchy of the sensors, [18] uses communications
between the adjacent intersections to create green waves (paths
of successive green lights).

B. Impact of topology

All these papers propose different deployment strategies,
and the resulting connectivity graphs are expected to be
slightly different. In the literature, it is commonly assumed
that city maps are scale-free networks. Besides, the complex
networks analysis methods that are widely used in social net-
works analysis are also applied in urban networks [19]], [20],
[21]. However, the topology of the communication network

deployed over a city infrastructure depends on the deployment
method and this topology has a strong effect on the network
protocols performance at all levels of the communication
process.

Ishizuka and Aida [8] examine the effect of sensor topology
on fault tolerance and event-detection probability. In particular,
their simulations show that the initial placement of the sensors
has a significant effect on the reliability of the network.
Vassiliou and Sergiou [9] study the performance of algorithms
that control congestion for wireless sensor networks on the
same topologies as Ishizuka and Aida [8]]. They show that
transmission delays or delivery rates, which directly depend
on the network topology, strongly affect the congestion control
algorithms. Puccinelli ef al. [10] evaluate the impact of the
topology on the data collection of a sensor network using
experimental results. They conclude that topology must be
taken into consideration for a protocol to be fully evaluated.
Ducrocq et al. [11] evaluate the impact of network topology on
geographic routing. Notably, they show that different topolo-
gies can lead to a difference of around 25% on the delivery
rate and the average length of a route, and up to 100% on the
overall cost of transmission.

Yet, very few contributions really tried to propose realistic
models of large-scale urban sensor networks. Naboulsi and
Fiore [22] examine the topology of a vehicular network, i.e.
a mobile network, in the city of Cologne (Germany). The
authors show the weaknesses that vehicular protocols may
encounter: mobility is perceived as an additional constraint,
creating a very volatile and fragmented network. However, no
contribution to our knowledge, has characterized the topology
of a fixed distributed network of sensors and actuators that
would be deployed and managed by the city itself, even though
the applications of such networks for traffic lights and adaptive
speed limits management is obvious.

III. DEPLOYING SENSOR NODES IN CITIES
A. Deployment strategies

There are several strategies to deploy sensors over an urban
road network to count vehicles, as illustrated on Fig. |1l (1)
a single sensor per intersection, as shown by the blue dot on
Fig.[I(a)] e.g. using a fisheye camera. (2) one sensor on each
road (green dots on Fig. [I(b)), e.g. using overhead cameras
capturing multiple lanes simultaneously, backed up by video
analysis software. (3) one sensor at the end of each incoming
lane (yellow dots on Fig. [I(c)), allowing a precise vision of
the vehicles flow. This strategy is a minimum requirement
for measuring average vehicle flow with magnetometer-type
sensors [23]. (4) two sensors per lane (red dots on Fig. :
one recording the arrivals and the other capturing the departure
process [3].

All these strategies are plausible, even though they provide
different levels of accuracy. In the rest of this article, the results
presented assume that the sensors are deployed individually on
each lane, which corresponds to the third scenario (Fig. [I(c)).
We focus on this strategy for two main reasons. (1) We choose
lanes rather than roads (green dots) or intersections (blue dot)
because we have in mind magnetometer-like sensors instead



(a) (b)

Fig. 1. Sensors deployment strategies on an intersection between a major road

of cameras that require special mounts and increased network
capacity to transmit video flows, or more CPU to analyze
it locally. (2) We deploy one sensor per-lane instead of two
because it is a minimum requirement to implement an ITS,
as the sensor can detect one vehicle on each lane, halving
deployment costs. However, results obtained for each strategy
are available online (Sec. [lI-C).

B. Creating the connectivity graph

In this section, we detail the method we used to build
the graph G = (N, E) that we will analyze in the rest of
this article. Let us consider a given city map, extracted from
a public database such as OpenStreetMap. This map gives
us the GPS coordinates of each intersection, as well of the
characteristics of the roads that connect these intersections.
A given deployment method will result in the creation of
a set of nodes N that possess geographic coordinates. To
create the associated undirected edge set E, we confront
the Euclidean distances between each couple of sensors to
a distance modeling the transmission range of the nodes. To
this extent, we associate to each possible edge, {(i,,0)} € E,
a normalized weight 6 €]0 : 1] that models the decrease
of the quality of the wireless link with the distance. In our
current setup, this weight is calculated based on the Sensys
Networks VSN240 sensors{]_-] model, which are used on roads
all around the world and can be deployed densely [24]. These
nodes use a nominal output power of 0 dBm and have a
receiver sensitivity of —95 dBm in the 2.4 GHz band. We
confront these values to a simplified propagation model that
corresponds to a 2.4GHz IEEE 802.15.4 network interface
([23]], [26]). This model defines the path loss (in dB) across a
distance of d meters as follows:

PL(d) = 40.2 + 201log(d),
] 58.5 + 331log,(d/8),

0.5m<d<8m

1
d > 8m b

The weight of an edge is a normalization of PL(d) using
1- %, where PL(0.5) is the minimum value
of the path loss according to formula @), and PL,,q. its
maximum value, which depends on the receiver characteristics.
An edge exists if and only if its weight is positive (i.e.
PL(d) < PLyaz). This model, which simply defines a

transmission range at this level of analysis, should fit most

Uhttp://www.sensysnetworks.com/products/sensor/

©) (d)

(4 lanes) and a minor street (1 lane, 1 way).

technologies that operate in the S-band (2 GHz to 4 GHz) and
can be adapted to other narrow frequency bands such as the
5.9 GHz band utilized by IEEE 802.11p (WAVE). Note that
the resulting graphs are different from classic urban street
network graphs, as the wireless links do not follow the roads
and multiple nodes are located at each intersection. Besides,
we can expect less directed edges in a connectivity graph
(asymmetric link) than in an urban network (one-way-street).

C. Creation of the scenarios database

We applied the graph creation method described in sec-
tion @ on a set of 52 city maps extracted from BBBike.or
a service that offers to retrieve OpenStreetMayf)| maps data
from more than 200 cities and region worldwide. These
maps have gone through several modifications, thanks to
crowdsourcing, and are now accurate enough for navigation
software [27]. We remove irrelevant map elements (e.g., bike
lanes, pedestrian areas) with NETCONVERT, a tool provided
by the SUMO microscopic traffic flow simulator [28]. We
also removed minor roads (e.g. residential, non-motorized) and
kept only main and secondary street

The full dataset comprising the 52 city maps and the results
are available onlineﬂ as well as the scripts to generate the
graph. These scripts invoke the different tools in sequence with
configurable parameter (path-loss model, deployment method,
etc.). They can be executed remotely through a web interface,
or downloaded from the same address under the LGPL license.
The SUMO and Omnet++ models are also available online,
allowing joint simulation of the traffic and communication
networks.

In the rest of this article, we use 6 representative cities
to illustrate our analysis, selected based on three properties.
New Orleans and Beirut, which have respectively the largest
and the smallest covered area. Miami and Cusco, which are
respectively the densest and the sparsest networks in our
dataset, as illustrated in Figure @ Finally, Madrid and Paris,
which have an average size and density, and an interesting
morphology as we can see in our full result dataset.

Zhttp://download.bbbike.org/osm/

3http://www.openstreetmap.org/

4See definition in http://wiki.openstreetmap.org/wiki/Key:highway
Shttp://g.sfaye.com/
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IV. CONNECTIVITY GRAPHS ANALYSIS

In this section, we study the properties of the resulting
graphs, focusing on their degree distribution to see if they
correspond to a classical random graph model. We then discuss
on their partitioning and examine the resulting connected
components.

A. Degree distribution analysis

Figure [3] shows the average node degree for each network,
i.e. the average number of nodes that are within transmission
range of an arbitrary node. In terms of networking, node
degree represents the number of contenders each node has
to compete with for accessing the wireless channel. As a node
has to share the channel bandwidth with all its neighbors,
network planning should aim for a relatively low degree. Yet,
a too small value is not desirable, as a fair degree offers path
diversity and redundancy.

Average degree

Miami
Madrid
Cusco
NewOrleans
Paris

Beirut

Fig. 3. Average node degree

These results shows that all graphs have a similar average
degree that lies between 5 and 8 neighbors. Given the con-
siderable amount of performance evaluations realized on var-
ious wireless technologies and considering the technological
choices that standards (Bluetooth, Zigbee, etc.) usually make,
this fits quite well the classical use case of today’s wireless
standards. Cities like Beirut, whose road network is relatively

. 2. Networks density (nodes per square kilometer) for the 52 cities that compose our dataset

uniform, have a higher average degree than other cities like
Paris, for example, which have a wide suburban area.

Beyond the average value, the whole degree distribution is
a classical measure to characterize large graphs. From our
results, we can notice that degree distributions cannot be
fitted by Poisson distributions, as the empirical average and
standard deviation are very different in all of them. They do
not correspond to a power law distribution either, as the log-
log representation of their degree distribution is far from linear.
Fig [] shows the quantile vs. quantile plot of the empirical
distributions with gamma distributions whose scale parameter
(0) is estimated as the ratio between the empirical degree
variance (0?) and the average empirical degree (11). The shape
parameter (k) is the ratio between the empirical average and
the scale parameter: 6 = o2 /p and k = pu /0.

Fig [] shows that the approximation is reasonable and only
deviates for high degree nodes. Figure [3] represents, as an
additional example, the empirical degree distribution measured
on Paris and the fitted gamma distribution (black curve ;
0 = 2.558382 and k = 2.26065).

B. Suitability of classical random graphs models

As the degrees tend to follow a gamma distribution, none
of the state of the art random graphs model really fits this
type of networks. The model from Gilbert [29] produces graph
whose degree distribution is binomial. Erdés and Rényi [30]
model generates graphs whose degree distribution follows a
Poisson distribution, as well as the random geometric graph
model [31]], which is classically used to generate random wire-
less networks. The preferential attachment method proposed
by Barabasi and Albert [32]], as well as the Watts and Strogatz
model [33] both produce scale-free networks whose degree
distribution follows a power law.

It is possible to generate graphs that match our deployments.
The experimenter should first decide of the type of city
he wishes to generate and decide of the shape and scale
parameters of the gamma distribution. Smaller shape values
shift the distribution towards low degrees and hence model
cities in which intersections are far away from each other.
The scale parameter defines the height of the peak and hence
models how uniform the degrees will be. It accounts to some
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extent for the regularity of the distances between the inter-
sections. The Molloy and Reed method [34] allows creating
graphs with an arbitrary degree distribution, including gamma
distributions. However, it produces scale-free graphs. Each
node can communicate with any other node in the network,
and this tends to create fewer connected components than can
subsequently be observed. One solution would be to adapt the
Molloy and Reed method to the context of geometric graphs
rather than using traditional graphs. Apart from being based
on a degrees sequence that respects a gamma distribution,
each node would be defined by a geographic location. This
would imply the need for a dimension parameter, so that the
placement of the nodes respects the schemes we describe in
our dataset. The idea we have in mind has two stages. First,
creating nodes based on the distribution of the center of gravity
of connected components. Secondly, changing these nodes to
connected components, formed with new nodes that follow a
known degree distribution.

C. A brief review of global connectivity

While the degree distribution accounts for local connec-
tivity, the number of connected components in the resulting
graphs evaluates the global connectivity (i.e. partitioning) of
the networks. A connected component models a group of
nodes that are connected together, but disconnected from the
rest of the network because of the long distance with the
other groups of nodes. In this case, each partition would
be autonomous and need to be explicitly connected to the
control center, either by an optical fiber, or by a wireless or
a cellular network. Figure [] shows the number of connected
components in the different networks (red bars). This number
depends directly on the dimension of the different networks
as well as on the number of nodes. Paris has more than 5500
components for 29 000 nodes, for example. This means that
the network, without additional relays, is composed of many
areas and hence has limited interaction possibilities. Green
bars describe the number of biconnected components in each
network, i.e. connected components in which there are at
least two node-disjoint paths between each couple of nodes.
Figure[6|also shows that few connected components are not bi-
connected, indicating that relatively few additional nodes need
to be deployed to comply with the classical N-1 reliability
criterion (i.e., the loss of any single element does not break a
connected component in two).

6000

connected components Em—
biconnected components ===

5000
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3000

Number of components
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NewOrleans

Fig. 6. Number of connected and bi-connected components

Network partitioning is not an issue per se, as the compo-
nents can also be interconnected together by a cellular network
or by a metropolitan wired network. However, the number of
independent network components should remain reasonable
to limit the backbone complexity. Yet, merging connected
components requires deploying additional nodes that act as
relays and do not need to measure traffic. There is therefore
a compromise between the number of additional relays to
deploy and the number of connected components. Figure [7]
shows the CDF of the distance between a component and its
neighbor component. To identify the closest components, we
first compute the coordinates of the centroid of each connected
component. This produces a set of points in the plan and we
build the Voronoi diagram of this set of points. A Voronoi
diagram separates the plan in zones centered on each node.
A zone is composed of all the points that are closer to the
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central node than any other node. We then consider that
two components are neighbors if their Voronoi cells have a
common frontier. Figure |/| shows that a few components are
very far from the rest of the network, but that most components
are relatively close to each other, which indicates that reducing
the number of components by inserting intermediate relays
should be efficient. Paris has, for example, 80 % of connected
components that are separated by less than 1 km, which should
be easily coverable with intermediate nodes or complementary
networks.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we examined and characterized a strategy to
deploy a sensor network at the intersections of various cities.
We present the graph generation method we used, that is sim-
ply based on operational constraints, and analyze the resulting
graphs in terms of local and global connectivity. The usual
random graphs models fail to represent these networks whose
degree distribution fits a gamma distribution. The Molloy and
Reed method could be modified to generate more accurate
graphs. Examining the partitioning in connected components,
we show that the resulting graph is highly disconnected and
comprises up to 25 % of isolated nodes.

Extended results, available online (Sec. [[IlI-C), show that
the network indeed presents a good redundancy level within
connected components. Besides, the average diameter of each
connected component is generally low and only a moderate
proportion relay nodes is required to let the maximum con-
nected component cover most of the urban area.

The effect on various network protocols and algorithms
remains to be evaluated, for example through simulation.
However, the conclusions that we draw in this article should
help selecting the most appropriate protocols for this class
of scenarios. In future works, we intend on studying for-
mally correlations between geographic parameters and net-
work graph parameters to improve the graph generation
method we sketched. We also intend bringing the analysis to
the networking level by comparing state of the art protocols
and algorithms using simulation tools. Finally, in order to
consider complex elements of urban areas (e.g., buildings),
it would be interesting to use a more complex propagation

model and therefore more parameters in our graph creation
method.
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