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Abstract

Securing cryptographic systems in the presence of side-channel leakages is still
an important problem. Over recent years, the cryptography theory community has
shown considerable interest in formally modelling the side-channel leakages and in
designing “provably” secure cryptographic primitives in these leakage models. This
area is often referred to as leakage-resilient cryptography. Yet, designing a formal
model that realistically captures side-channel leakages such as power consumption
patterns, and designing primitives efficient enough to be deployed in practice in
such a leakage model, remains a challenging research direction.

In this work, we aim to bridge the above gap between the theory of provably
secure cryptosystems that resist side-channel attacks and their practical relevance.
Keeping this goal in mind, we analyze existing constructions and provide new ones
for basic cryptographic primitives such as encryption and authentication in both
public-key and symmetric-key cryptography.

This dissertation consists of three parts. In the first part, we analyze existing
and design new efficient leakage-resilient constructions for public-key encryption and
digital signatures that tolerate continual leakage in the split-state leakage model.
Our security reductions are in the generic bilinear group model. The constructions
we consider are simple variants of the ElGamal key encapsulation mechanism, and
the Boneh–Boyen and the Schnorr signature schemes. We also cryptanalyze a vari-
ant of the ElGamal key encapsulation mechanism that was previously conjectured
to be leakage-resilient under certain conditions.

The second part of this work is concerned with the protection of block ciphers in
the probing adversarial leakage model. This approach, popularly known as masking
in the cryptographic engineering community, is an effective countermeasure for block
cipher implementations against power-analysis attacks. We improve the efficiency of
a generic higher-order masking scheme recently proposed by Carlet et al. Improving
the efficiency of this scheme is related to the problem of evaluating polynomials over
binary finite fields in a newer cost model that counts only “non-linear” polynomial
multiplications. We propose a new method for evaluating polynomials in this cost
model, and argue (heuristically) that this method is asymptotically optimal.

The third part deals with the construction of efficient leakage-resilient symmetric-
key authentication and encryption schemes. The constructions are shown to be
secure in the standard model under a recently introduced simulatable leakage as-
sumption. This assumption offers practitioners a hope to work with a formal leak-
age model that allows empirical verifiability. We propose a leakage-resilient CBC-
like message authentication code, and also propose a leakage-resilient PRG-based
chosen-plaintext secure encryption scheme for which we quantify the leakage it tol-
erates during the challenge phase in terms of security of a single iteration. Our
constructions tolerate continual leakage but require leak-free updates.
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1.1 Information Security and Cryptography

Securing information against unintended access and use has been a concern since
the beginning of human civilization. With the advent of modern telecommunication
systems and digital computers, the ability to generate, process, transmit and store
information has tremendously improved. Needless to say, the need to protect the
information in digital form has also become increasingly vital. Some of the infor-
mation security objectives are as follows: privacy or confidentiality, data integrity,
entity authentication or identification, message authentication, signature, autho-
rization, validation, access control, certification, time-stamping, witnessing, receipt,
confirmation, ownership, anonymity, non-repudiation, and revocation [MvV96, Sec-
tion 1.2].

Of the above objectives, the following four are the main ones through which
others can be realized:
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• confidentiality : to protect data from unauthorized access,

• data integrity : to protect data from unauthorized alteration,

• authentication: to correctly identify communicating entities and/or identify
the origin of data,

• non-repudiation: to protect against denial of previous commitments.

Cryptography is a discipline that provides the mathematical foundations and
techniques that are needed to realize the above goals of information security.
Cryptography has an interesting history and it has been known to be used
since the Roman times. It has also played a crucial role in the outcome of the
World Wars. We refer to [Kah96] for a comprehensive account of the history
of cryptography.

Cryptography can be broadly classified into symmetric-key cryptography and
public-key cryptography. In the former the entities involved share a common
secret key, while in the latter no common secret is needed. While symmetric-
key cryptography has been in use since historic times, the commonly accepted
origin of public-key cryptography can be traced to the seminal work of Diffie-
Hellman [DH76].

Some of the most basic symmetric-key primitives are symmetric-key encryp-
tion ciphers - stream ciphers and block ciphers, and message authentication
codes (MACs). In public-key cryptography the corresponding primitives are
public-key encryption schemes and digital signatures. A hash function is an
important unkeyed cryptographic primitive.

1.2 Cryptanalysis

The study of techniques to defeat the goals of cryptographic primitives and
protocols is termed as cryptanalysis. Typically, the goal and the capabilities of
an adversary attacking a cryptosystem will be clearly defined. Adversaries can
be broadly classified into two types: passive and active. In the former scenario,
an adversary merely observes the communications and/or the computations,
while in the latter they try to influence the execution of the cryptosystem.

Traditional attack scenarios (i.e., adversarial capabilities) for encryption sche-
mes in both the symmetric-key and public-key settings are: ciphertext-only
attack, known-plaintext attack, chosen-plaintext attack, adaptive chosen-plain-
text attack, chosen-ciphertext attack, and adaptive chosen-ciphertext attack
[MvV96, Section 1.13]. The most common adversarial goal is to distinguish
the encryptions of any two arbitrary messages of the same length [GM84].

In the case of MACs and digital signature schemes, the usual attack scenar-
ios are: key-only attack, known-message attack, chosen-message attack, and
adaptive chosen-message attack. The usual adversarial goals are: selective
forgery and existential forgery [Sti95, Section 7.2].
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We shall describe some of the above attacks in detail at appropriate places in
later chapters.

1.2.1 Implementation Attacks: Side-Channel Attacks

The above traditional attack scenarios on basic crypto primitives do not allow
an adversary to obtain information from the secret internal state of an execu-
tion. However, it is possible to successfully mount attacks on cryptographic
implementations that recover (possibly partial) information about the inter-
nal state [Koc96, KJJ99]. Such attacks are particularly feasible on embedded
systems such as smart cards, and hence protecting these devices against such
attacks is often necessary. Some of the most commonly exploited sources
of these “side-channel leakage” are timing information [Koc96], power con-
sumption [KJJ99], and electromagnetic emission [QS01]. Less commonly used
leakage sources are acoustic emanation [GST13], optical emission [FH08], and
thermal emissions [BKMN09].

Implementation attacks, such as those mentioned above, that are based on
observation of physical leakages, are termed side-channel attacks. Other than
side-channel attacks, another important class of implementation attacks are
fault attacks [BDL01, BS97]. Fault attacks typically exploit the erroneous
outputs induced by a fault in a computation to recover some secret informa-
tion.

Implementation attacks, not necessarily on cryptosystems, have an interesting
history dating back to the World Wars. However, it is not until the works of
[Koc96, KJJ99] that these types of attacks got wide spread attention in the
cryptographic community. For a brief history of implementation attacks, we
refer to [Kiz11, Section 1.3].

Broadly speaking, implementation attacks are categorized into two types: pas-
sive and active, analogous to the black-box setting. In passive implementa-
tion attacks, an adversary merely observes an execution of an implementation
that nearly works as intended, whereas, in active attacks, an adversary tries
to influence the execution of an implementation causing it to deviate from
its normal execution. Side-channel attacks belong to the category of passive
attacks, while fault attacks are active attacks.

Alternatively, implementation attacks can be also classified as: non-invasive,
semi-invasive, and invasive, depending upon to what extent an implementa-
tion is intruded. Side-channel attacks are mostly non-invasive, but sometimes
are required to be semi-invasive, for instance, by partially removing the pack-
aging of an integrated circuit to facilitate the observation of electromagnetic
emissions.

After timing attacks, the next most feasible side-channel attacks on crypto-
graphic implementations are power analysis attacks. Power analysis attacks
can broadly classified into: simple power analysis attacks, differential power
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analysis attacks, and template attacks. In the following, we briefly describe
these three attacks. For a more detailed account of side-channel analysis, in
particular, the power analysis attacks, we refer to [MOP07].

Typical stages in a power analysis attack, and generally for any side-channel
analysis experiment, are: profiling stage, online stage, and offline stage [Kiz11,
Section 1.3]. In the profiling stage, which is optional, an adversary sets up a
characteristic profile for the leakage of a device which it has access to. In the
online stage, the adversary performs the measurements to obtain the side-
channel race. In the final stage, the offline stage, all the data gathered is
analyzed to (usually) recover the secret key.

Leakage from a power analysis experiment, and also generally, will firstly be
dependent on the device in hand. Additionally, it will be operation dependent
and/or data dependent. Every measurement data will be accompanied with
noise. In many attacks, to associate the leakage to intermediate variables, we
need a “leakage model”. In practical analysis, a device is typically assumed
to leak the hamming weight of intermediate variables or leak the hamming
distance of the old and new values of a variable. Typically the goal of power
analysis attacks, and also generally, is to recover the secret key.

1.2.1.1 Simple Power Analysis

In a Simple Power Analysis (SPA) attack an adversary tries to deduce a
secret key by analyzing a single trace, or many traces individually. A well-
known SPA attack scenario is on modular exponentiation implemented in
a straightforward way using square-and-multiply technique, which is widely
used in public-key cryptography [KJJ99]. SPA attacks on symmetric-key cryp-
tographic implementations are also known to be effective [Man02].

1.2.1.2 Differential Power Analysis

Differential Power Analysis (DPA) attacks are based on first obtaining several
power traces corresponding to many executions using the same fixed secret key
[KJJ99]. It is a divide-and-conquer-based approach that recovers the secret
key one part at a time. DPA attacks are effective against symmetric-key
implementations, which are typically deterministic. Various statistical tools
are used to analyze the resulting leakage trace and recover the corresponding
chunks of the secret key [MOP07, Chapter 6]. DPA attacks exploit a single
point (i.e., sample) in a leakage trace corresponding to a targeted variable. In
higher-order DPA attacks, multiple points in a leakage trace corresponding to
a targeted variable are exploited, and hence protection against such attacks
can be more challenging [Mes00]. Nevertheless, mounting even third-order
attacks is already challenging.
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1.2.1.3 Template Attacks

Template attack is an another divide-and-conquer-based strategy to mount a
power analysis attack when adversary has the option do profiling [CRR02].
Here, an adversary builds a collection of templates corresponding to known
values of a targeted intermediate variable during the initial profiling stage.
Once leakage traces are obtained, they are then compared against the template
collection using statistical tests. Template attacks can be considered to be
one of the most powerful form of power analysis attacks, and they do not
necessarily need a model for leakage. But they require that adversary has full
access to a copy of targeted device.

1.3 Provable Security

In the previous section, we saw various attack scenarios against cryptosys-
tems ranging from black box cryptanalysis to implementation attacks. De-
signing cryptoprimitives that are secure against a given set of attacks and
formally analyzing their security is an important task. Such rigorous study
of cryptosystems dates back to the work of Shannon in the 1940s [Sha49]. He
introduced the notion of perfect secrecy and mathematically argued that the
one-time pad cipher satisfies such a property, that is, the one-time pad resists
ciphertext-only attack. However, to achieve such a property, the key size has
to be at least as long as the size of messages, which is impractical in modern
communications.

The seminal work of Goldwasser and Micali [GM84] introduced the notion
of semantic security for encryption schemes which may be viewed as an ana-
logue, in the computational setting, of the notion of (information-theoretic)
perfect secrecy. Semantic security requires that any adversary is not able
to learn any efficiently computable function of the underlying message given
only the ciphertext. This notion was shown to be equivalent to the notion
of indistinguishability. These notions and their generalization to other primi-
tives allowed practical construction of cryptoprimitives that allowed “security
proofs” under certain computational assumptions.

The paradigm of provable security aims at the formal design and analysis of
cryptosystems by first formally specifying the adversarial attack model. Then,
the security of a designed scheme is argued via a reduction from an usually
well-accepted computational assumption or from the assumed security of a
smaller primitive. Namely, one argues that if there exists an adversary against
the designed cryptosystem, then one could construct an algorithm (resp., ad-
versary) against the computational assumption (resp., smaller primitive). The
security definitions typically will be either attack-game based, such as the in-
distinguishability game for encryption schemes, or simulation based, such as
the security definitions used in multi-party computation. For a detailed in-
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troduction to the provable security approach to cryptography, we refer to the
books [Gol01, Gol04, KL07].

A computationally efficient adversary is specified either as a probabilistic
polynomial-time turing machine or a family of polynomial-sized boolean cir-
cuits. Widely used computational assumptions are the existence of one-way
functions, psuedorandom generators and psuedorandom functions. In public-
key cryptography, intractability of integer factorization problem, discrete log-
arithm problem and certain lattice-based problems are widely used.

Often security reductions need to make use of certain idealized model of com-
putations in order to obtain security proofs in some instances. Two such
popular idealized models are the random oracle model [FS86] and the generic
group model [Sho97]. In the random oracle model, a hash function is assumed
to behave as a random function. Whereas in the generic group model, the
group elements are assumed to have random encodings. Since we use the
generic group model extensively in Part I of this dissertation, we will briefly
elaborate on this model.

Generic Group Model. The generic group model was introduced in the
seminal work of Shoup [Sho97]. As mentioned before, group elements are gen-
erally assumed to have random encodings, though some variants of this model
do not need this random encodings requirement, for instance, see [Mau05].
Intuitively, in this model an adversary cannot exploit the representations of
group elements other than checking for equality of the elements. A security
proof in the generic group model only rules out “generic attacks,” that is, it
rules those attacks that work over any instantiation of the underlying group.

Generalizations of the generic group model are also widely used. One such
extension that we use in our work is for pairing-based groups, called the
generic bilinear group model [BB04]. We defer a formal description of this
model to Section 2.2.2.3.

The generic group model is often criticized (sometimes rather unfairly) as
being too idealistic to be practically relevant. For a discussion on this issue,
we refer to [KM07].

1.3.1 Leakage-Resilient Cryptography

In Section 1.2.1, we saw that side-channel attacks are a security concern for im-
plementations on embedded devices. Various types of countermeasures both
at the hardware/physical and software/algorithmic level have been proposed.
For different classification of these countermeasures, we refer to [MOP07],
[Kiz11, Section 1.3], and [Fau10, Section 3.3].

In this dissertation, we consider a class of algorithmic countermeasures that
are usually referred to as being leakage resilient. Such countermeasures ad-
dress the issue of side-channel leakage at the design stage of a cryptographic
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primitive itself. For doing so, we need to specify a leakage model that “reason-
ably” incorporates the side-channel leakages that we wish to protect against.

In Section 1.2.1, we saw that timing attacks and power analysis attacks are
a serious security threat for implementations on embedded devices. Timing
attacks are simpler to prevent than power analysis attacks. Here we usually
need to ensure that all the execution paths are of uniform length, say, by using
dummy instructions. In contrast, power analysis attacks can leak intermediate
variables and ensuring protection against such attacks is a serious concern.

Next, we describe some previously used leakage models that we consider in
this work. Though our primary concern is protection against power analysis
attacks, we believe that in most cases they reasonably model a broader class
of side-channel leakages, that arguably includes electromagnetic emanations.

1.3.1.1 Split-State Leakage Model

This model is based on the only computation leaks paradigm introduced in the
work of Micali and Reyzin [MR04]. In this model computations are divided
into steps that leak independently. The split-state model is a slightly powerful
leakage model that only requires that the internal memory is usually split into
two parts that leak independently, and not necessarily only computation leaks
[LL12]. The leakage in these models is specified as an efficiently computable
function of the secret state, i.e., the secret key and the internal randomness.
The output length of these leakage functions is bounded. An adversary can
obtain leakages either a bounded number of times, or overall it can be un-
bounded, i.e., continual leakage. Typical justification of the bounded length
requirement of leakage functions is that in practice many side-channel attacks
only exploit a few bits of leakage information for reasonable implementations
[KP10a].

Some variants of the split-state model do not put bounded length require-
ment for the leakage functions. Instead, they require that the remaining min-
entropy or the computational entropy is sufficiently high. There are already
several leakage-resilient schemes that are proposed in the split-state model
and its variants, some of which are [DP08, Pie09, KP10a, FKPR10, LL12].

One important remark is that most of the public-key primitives that are
leakage-resilient in this leakage model and have proofs of security in the “stan-
dard model” are inefficient to be implemented on embedded devices.

1.3.1.2 Probing Leakage Model

This leakage model was introduced by Ishai, Sahai and Wagner [ISW03]. In
this model, originally introduced for boolean circuits, any adversary could
probe a bounded number of wires, say t, and read the values carried. A general
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circuit compiler was proposed that transforms a given circuit into a leakage-
resilient circuit. The size of the resulting circuit is increased by a factor of t2.
The secret-sharing techniques are employed to obtain the transformed circuit.
Later this model was extended to computation over finite fields [RP10].

The technique of secret sharing (a.k.a. masking) has long been employed
in cryptographic engineering to protect implementations against side-channel
attacks [CJRR99]. Provably secure masking schemes of arbitrary order exist
that are based on this leakage model [CGP+12, Cor14]1.

Recent works extend the probing model to the case where all the intermediate
variables leak but the leakage is noisy [PR13, DDF14]. Such a leakage model
captures practical scenarios more realistically.

1.3.1.3 Simulatable Leakage Assumption

This leakage model was recently introduced by Standaert, Pereira and Yu
[SPY13] in the context of symmetric-key primitives that use block ciphers.
This framework offers practitioners a hope of placing reasonable restrictions
on leakage functions that are empirically verifiable in side-channel evaluation
laboratories, unlike most of the known leakage models. A leakage-resilient
psuedorandom generator was constructed in [SPY13], with a relatively simple
security proof in the standard model.

Other Leakage Models. We briefly mention other leakage models that were
previously considered, mainly by the cryptography theory community. For a
survey of these models, we refer to [Wic11, Chapter 2].

One such widely considered model is the full memory leakage model that al-
lows leakage functions to take as input the entire secret state [AGV09, NS09].
Variants of this scheme, similar to the split-state model, differ in terms of
types of leakages allowed. Other models that allow such full leakage are found
in works related to threshold cryptography [DF89], key-insulated cryptogra-
phy [DKXY02], and forward-secrecy [DvOW92]. Some other known partial
leakage models are oblivious RAMs [Gol87] and models in exposure-resilient
cryptography [Dod00].

As remarked earlier for the split-state model, most of the public-key primi-
tives whose security proofs do not resort to an idealized computation model,
such as the random oracle or the generic group models, are inefficient to be
implemented in practice.

1Sometimes provably secure masking schemes, such as those based on the probing leakage model
[ISW03], are not classified as leakage-resilient countermeasures. But we feel it is not inappropriate
to consider them as being leakage resilient.
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1.4 Our Contribution and Organization

In this work, we aim to bridge the gap between the theory and practice of
leakage-resilient cryptography, in both the public-key and symmetric-key set-
tings.

This dissertation consists of three parts.

– In Part I, we analyze existing and propose new efficient leakage-resilient
constructions for public-key encryption and digital signatures that tol-
erate continual leakage in the split-state leakage model, where even key
updates are allowed to leak. All the above schemes are simple variants
of existing well-known schemes obtained by blinding (i.e., splitting) the
secret key. Our security proofs are in the bilinear generic group model.
Arguing about their security in the standard model is currently out of
reach of existing techniques [Wic13].

∗ Chapter 2 contains two main results. First, we cryptanalyze a
variant of the ElGamal key encapsulation mechanism by Kiltz and
Pieterzak [KP10a] that was conjectured to tolerate continual leakage
in the split-state model. We give a non-trivial upper bound on the
amount of leakage tolerated by this conjecture, by exhibiting an at-
tack that recovers the full secret key. The attack uses a new variant
of the hidden number problem, that we call hidden shares - hidden
number problem. This part is based on the publication [GV14].
As a second contribution, we provide an improved security analysis
of a bilinear variant of the ElGamal key encapsulation mechanism,
also due to [KP10a]. We give an improved security analysis of this
scheme. Next, for practical considerations, we modify this scheme.
Then we implement our variant and analyze its side-channel resis-
tance. This part is based on the publication [GGL+14].

∗ In Chapter 3, we propose a leakage-resilient signature scheme in
the continual split-state leakage model that is based on the identity-
based encryption scheme by Boneh and Boyen [BB04]. Our scheme is
existentially unforgeable against adaptive chosen message and leak-
age attacks. This chapter is based on the publication [GV12].

∗ In Chapter 4, we propose a leakage-resilient pairing-based variant of
the Schnorr signature scheme. This scheme also enjoys properties
similar to the scheme from Chapter 3. This chapter is based on the
publication [GV13].

– In Part II (Chapter 5), we improve the efficiency of a generic higher-
order masking scheme proposed by Carlet et al. [CGP+12]. This scheme
is secure in the probing leakage model [ISW03]. Efficiency of this scheme
is related to the problem of evaluating polynomials over binary finite
fields representing S-boxes. The corresponding evaluation cost model
considers only non-linear multiplications.
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We take a formal approach to this polynomial evaluation problem. We
investigate optimal methods for exponentiation in F2n by studying a pre-
viously proposed variant of addition chain that we call as cyclotomic-class
addition chain. We define the notion of F2n-polynomial chain for arbi-
trary polynomials, and use it to count the number of non-linear multipli-
cations required to evaluate polynomials over F2n . Among several inter-
esting properties, we prove lower bounds for optimal evaluation methods.
We propose a new heuristic technique for evaluating arbitrary polyno-
mials, whose complexity is asymptotically optimal. In practice, with
this new technique, we significantly reduce the complexity of evaluating
S-boxes compared to previous methods.

This chapter is based on the publications [RV13] and [CRV14]. A part
of the results in [RV13] has also appeared in the dissertation of Arnab
Roy [Roy13].

– In Part III (Chapter 6), we construct efficient leakage-resilient symmetric-
key authentication and encryption schemes in the standard model under
the simulatable leakage assumption [SPY13].

We propose a leakage-resilient CBC-like message authentication code,
and also propose a leakage-resilient PRG-based chosen-plaintext secure
encryption scheme for which we quantify the leakage it tolerates during
the challenge phase in terms of security of a single iteration. Our con-
structions tolerate continual leakage but requires leak-free updates. This
chapter is based on the manuscript [PSV15].

1.5 Notation

In this dissertation, we denote the set of integers by Z, and N denotes the set
of positive integers. By Zp (resp. Zq) we denote, depending upon the context,
either the set of integers {0, 1, . . . , p−1} or the ring modulo p (resp. q), where
p, q > 0. Unless otherwise specified, p and q are prime numbers. The field
of pn elements is denoted by Fpn . The field Fp is identified with Zp, unless
evident from the context.

We denote a random sampling of an element a ∈ A from a set A, and also
denote a (possibly probabilistic) output of an algorithm A, by a ← A. If we
want to explicitly denote the randomness r used during the sampling/output,
then we do so by s

r← S. Unless otherwise mentioned or implicit from the
context, any sampling is from an uniform independent distribution. This is

always implied by the notation s
$← S.

The symbol “:=” is used to define a notation in an expression, as in A := Z,
or to explicitly indicate an output of a deterministic algorithm or a function.

Chapter specific notations are defined in respective chapters.



Part I

Split-State Leakage Model:
Cryptanalysis & Efficient
Public-Key Constructions





Chapter 2

Split-State ElGamal
Encryption

In this chapter, we first describe an attack on a variant of the ElGamal key en-
capsulation mechanism (EG-KEM) proposed in [KP10a]. It was conjectured
in [KP10a] that the said EG-KEM with stateful decryption resists lunch-time
chosen ciphertext (i.e., CCA1) and leakage attacks in the split-state model
We give a non-trivial upper bound on the amount of leakage tolerated by this
conjecture. More precisely, we show that the conjecture does not hold if more
than a

(
3
8 + o (1)

)
fraction of the bits are leaked at every decryption step,

by showing a lunch-time attack that recovers the full secret key. The attack
uses a new variant of the hidden number problem, that we call hidden shares
- hidden number problem, which is of independent interest.

Secondly, we provide an improved security analysis of a bilinear variant of the
ElGamal KEM (BEG-KEM), also due to [KP10a]. More precisely, we weaken
the restriction on the image size of the leakage functions in the previously
used bounded leakage model, and only insist that the inputs to the leakage
functions have sufficient min-entropy left, in spite of the leakage, with no
limitation on the quantity of this leakage. Such a model is closer to practice
than the bounded leakage model. We provide a novel security reduction for
BEG-KEM in this relaxed leakage model using the generic bilinear group
model. Finally, consider the problem of implementing this scheme securely
in practice. We propose, implement and evaluate an advanced variant of
BEG-KEM, BEG-KEM+, that generates random elements in the pairing base
group, avoiding exponentiation by a secret integer value, but rather uses an
encoding to the pairing base group due to [FT12]. The implementation is
in software and the side-channel evaluation (w.r.t. power analysis attacks) is
based on an exhaustive survey of the side-channel cryptanalysis literature.
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2.1 Limits of a Conjecture

2.1.1 Introduction

Leakage-resilient cryptography is a recent research line that aims at building
countermeasures and/or defences against side-channel attacks while provid-
ing security reductions in a provable manner [ISW03, MR04, DP08, AGV09,
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NS09, DGK+10, DHLAW10a, SPY13]. The methodology is as follows: an
abstract model specifying the leakage data is chosen and the goal is to exhibit
a reduction from a hardness assumption to a hypothetical side-channel adver-
sary. The theory of leakage-resilient cryptography has witnessed a tremendous
activity despite its short life.

However, meeting the strongest security levels, such as, resiliency against
a broad class of continual leakage attacks [DHLAW10a], under the weakest
assumptions, say, memory leakage model [AGV09] or auxiliary input model
[DGK+10], is still out of reach from a practical point of view. To our knowl-
edge existing schemes are inefficient when compared to their counterparts in
the non-leakage setting; moreover, current leakage-resilient constructions are
conceptually far more complex than those a practitioner currently finds in its
cryptographic tool-box. Indeed, in an important work, Wichs [Wic13] shows
that it might be impossible to achieve leakage-resilience for cryptosystems
whose secret key is uniquely determined by its public key, unless we weaken
the security model. The former property is enjoyed by most practical cryp-
tosystems nowadays.

In this sense it is worth to mention the work by Kiltz and Pietrzak [KP10a].
They propose BEG (also denoted BEG-KEM), a pairing-based analogue of the
ElGamal Key Encapsulation Mechanism (EG-KEM) [Gam85] with stateful
decryption that is leakage-resilient against lunch-time chosen ciphertext and
leakage attacks (CCLA1). The latter means that the classical distinguishing
adversary against ElGamal is given access to decryption and leakage oracles
only before the challenge ciphertext is given. The basic idea is to set the
ElGamal secret key to be a group element (in contrast to an integer), and
then multiplicatively share it. While splitting the secret key before decryption
is a well-known technique from the side-channel countermeasures literature,
the novelty of this work is to propose to split a group element rather than an
integer.

The work [KP10a] does not contradict the impossibility result by Wichs. In-
deed, [KP10a] slightly weakens the security model by using the split-state
model [MR04], meaning that the computation can be divided into steps,
where each such step accesses different parts of the memory that leak in-
dependently. Their security arguments hold in an extension of the generic
group model [Sho97] called generic bilinear group (GBG) Model [BBG05].
Still, they consider leakage to be continual leakage, i.e. the useful leakage
data per decryption invocation is bounded in length, but unbounded over-
all. More concretely, it is shown that if the secret key length is κ, then their
scheme is secure against leakage of at most λ � κ

2 bits at every decryption
step. More precisely, λ < κ

2 − ω (log κ) to make it infeasible to guess the
remaining bits of the secret key by a brute force attack.

The authors of [KP10a] discuss the limitations of getting a security proof for a
similar leakage-resilient property for EG-KEM with stateful decryption over
arbitrary groups where the decisional Diffie-Hellman problem is believed to
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be hard. Nevertheless they conjecture that, for certain such arbitrary groups,
EG-KEM with stateful decryption, denoted EG?, might be resistant against
side-channel attacks that abide by the continual leakage split-state model.

2.1.1.1 Our Contribution

In this work we impose a limit on the conjecture from [KP10a], by proving
that if a minimum of

(
3
8 + o (1)

)
κ bits are leaked at every invocation of the

secret key, a CCLA1 attack exists against EG-KEM with stateful decryption
scheme EG? that recovers the secret key. Naturally our limit on the conjecture
is built using the abstract model of leakage specified in the conjecture, that
is, the only computation leaks information model. Interestingly, our limit to
the conjecture applies to any arbitrary instantiation of the underlying group.
To achieve this result we define a new problem, called hidden shares - hidden
number problem, which is a close but new variant of the hidden number
problem [BV96].

2.1.1.2 Known Hidden Number Problems

The hidden number problem (HNP) was originally introduced by Boneh and
Venkatesan [BV96] to demonstrate the hardness of computing the most sig-
nificant bits of the secret key in the Diffie-Hellman key exchange mechanism.
In its most generic form it can be described as follows. Let

fα : D → V, α ∈ A

be a family of maps between algebraic domains D and V. The map is
parametrized by α, that takes values from some set A.

Definition 2.1 [Generic HNP [Shp05]] Suppose some partial information
about fα (t) ∈ V is given for several values of t (also completely specified),
chosen uniform randomly from a subset T ⊆ D, find α.

Typically, D and V are finite fields Fp. An instance of the Generic HNP prob-
lem is the Modular Inversion Hidden Number Problem (MIHNP) [BHHG01],
also called Fp-Inverse-HNP [Shp05]. In MIHNP, we have D = T = Fp\ {−α},
V = A = Fp, where

fα (t) = MSBk,p

(
1

α+ t

)
,

where MSBk,p(z) means the (integer representing the) k most significant bits
of z (mod p), and the elements of Fp are identified with integers of fixed bit-
length blog2 pc+1. In other words, we are given n+1 pairs ( ti,MSBk,p (1/(α+
ti)) ), for i = 0, . . . , n, where ti ∈ Fp\ {−α} are chosen uniform randomly and
independently, and the goal is to find a polynomial-time (in log p) algorithm
to recover α ∈ Fp completely. The hardness of variants of this problem has
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been used to construct efficient algebraic PRNGs and MACs [BHHG01]. A
close variant of MIHNP is one where

fα,β (t) = MSBk,p

(
β

α+ t

)
.

Another problem related to the HNP was addressed in [HGNS03] and it is
called the “HNP with hidden multipliers” (HM-HNP). In [Shp05], the same
problem is referred to as Fp-Approx-HNP.

Definition 2.2 [HM-HNP [HGNS03]] Given n+1 pairs (MSBk,p (ti) ,MSBk,p

(α · ti)), where i = 0, . . . , n, α ∈ Fp and ti
$← Fp, find α.

In HM-HNP, we need to find α ∈ Fp given (MSBk,p (ti) ,MSBk,p (αti)), where
ti ∈ Fp. This variant is related to proving the bit security of “time-released
crypto”, among other applications. Variants of the HNP have also been used
to attack DSA [HGS01, NS02].

2.1.1.3 Hidden Shares - Hidden Number Problem

We propose a variant of the MIHNP and HM-HNP problems that we call
Hidden Shares - Hidden Number Problem (HS-HNP).

Definition 2.3 [HS-HNP] Given n + 1 pairs
(

MSBk,p (ti) ,MSBk,p

(
α
ti

))
,

where i = 0, . . . , n, α ∈ Fp and ti
$← Fp\ {0}, find α.

Note that unlike the Generic HNP, in HS-HNP (also HM-HNP) only a partial
information about the values of (random) ti is given. The name “hidden
shares” follows from the fact that ti and α

ti
(mod p) are two multiplicative

shares of α ∈ Fp. To our knowledge the HS-HNP has not been explicitly
addressed before. However, as is the case with most variants of the HNP, our
approach uses lattice techniques [Cop97, BHHG01]. Particularly, we use the
techniques of [BHHG01].

We stress that in spite of similarities in the techniques used to solve various
variants of HNP, there are significant differences in the technical details. For
example, the exact structure of the lattices set up in the solution vary ac-
cording to the problem. These differences eventually reflect in the amount of
partial information (value of k) required to solve the problem with a reason-
able success probability. For comparison, the values of k currently required
for HNP, MIHNP, and HM-HNP are

√
log p + log log p, 1

3 log p, and 4
5 log p,

respectively [BV96, BHHG01, HGNS03]. As we shall see in Section 2.1.3,
HS-HNP currently requires the value of k to be 3

4 log p.

The HS-HNP can be generalized to arbitrary commutative groups.

Definition 2.4 [Generalized HS-HNP] Let (G, ·) be a group and α ∈ G.
Given partial information on each ti ∈ G and α · t−1

i , for i = 0, . . . , n, find α.
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If (G, ·) is modelled as a “generic group” [Sho97], then the Generalized HS-
HNP is hard, provided that the shares have sufficient remaining entropy. This
is a straightforward consequence of the work in [KP10a] and also of that in this
dissertation (cf. Section 2.2). In particular, using the techniques in Section
2.2, it can be shown that the advantage of a (“generic”) adversary is at most
O
(
q22λ/p

)
, where |G| = p, q is the sum of the number of group oracle queries

and the number (n+ 1) of pairs (ti, α · t−1
i ), and λ is a bound on the amount

of information obtained on each ti and α · t−1
i , measured in bits.

2.1.2 The Conjecture

By MSBk,p(z), we mean the (integer representing the) k most significant bits
of z (mod p), where the elements of Zp are represented by integers of fixed
bit-length m = blog pc+ 1. For instance, MSB2,7(3) = 1. The notation “log”
always refers to logarithm to the base 2.

First we shall briefly recollect the notion of a key encapsulation mechanism
(KEM) and a stateful KEM. Next we describe the ElGamal-based stateful
KEM of [KP10a]. Then we discuss the conjecture in [KP10a] regarding the
security of the scheme, and its relation to HS-HNP.

2.1.2.1 KEM and the Leakage Model

A key encapsulation mechanism KEM is a public-key cryptosystem used to
establish a session key for a symmetric-key encryption scheme. Formally, KEM
consists of three algorithms KG, Enc and Dec. The key generation algorithm
KG on input a security parameter κ produces a pair of public and secret
keys (pk, sk). The encapsulation algorithm Enc, taking only pk as input,
outputs an encryption C of a key K. The decapsulation algorithm Dec on
inputs sk and C outputs K. The goal of an adversary is to distinguish the
encryption of a given key from that of a random key. An adversary may
be a Chosen Plaintext Attack- (CPA-) adversary if it has no access to a
decryption oracle. If it does have access to such an oracle then it is called a
Chosen Ciphertext Attack (CCA) adversary. CCA adversaries can be further
classified into CCA1- or CCA2-adversaries. A CCA1-adversary cannot query
the decapsulation oracle after obtaining the challenge ciphertext.

In a KEM with stateful decapsulation, KEM? = (KG,Enc,Dec1,Dec2), the de-
capsulation algorithm Dec is split into two parts Dec1 and Dec2 executed
consecutively. Each such algorithm uses different parts of the memory that
therefore leak independent side-channel data, thus obeying to the Only Com-
putation Leaks/Split-State model [MR04, LL12]. The secret key of KEM? now
consists of two parts ski = (σi, σ

′
i), each part residing on a different portion

of the memory. Dec1 can access only the part of the memory containing σi,
while Dec2 has access only to the other part containing σ′i. The decapsula-
tion procedures may update the secret key (to a functionally equivalent key)
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after each access to it, say from ski to ski+1 =
(
σi+1, σ

′
i+1

)
. Note that in

order to protect against continual leakage, the secret key must be “refreshed”
regularly. We refer to one execution of the decapsulation query as a round.

The leakage in each round is modelled as the output of two adversarially cho-
sen efficiently computable functions fi(·) and gi(·). The output of the two
functions is bounded by λ bits each, where λ is the leakage parameter. The
function fi(σi−1, ri) models the leakage of one part of the memory containing
σi−1 and the internal randomness ri used by Dec1. Whereas, gi(σ

′
i−1, wi, r

′
i)

models the leakage of the other part of the memory containing σ′i−1, the inter-
nal randomness r′i used by Dec2, and the information wi shared between Dec1
and Dec2 to obtain the complete decapsulation key. The KEM? is said to be
(κ, λ) secure under the Chosen Ciphertext with Leakage Attacks 1 (CCLA1) if
the scheme remains secure even when an adversary can obtain λ bits of leakage
from each of the two functions fi and gi, in every decapsulation query.

2.1.2.2 Stateful ElGamal KEM

The following well-known variant of the ElGamal KEM, where the secret key
is multiplicatively shared, was studied in [KP10a].

Let the output of Gen(κ, λ) be a (multiplicatively written) cyclic group G =
〈g〉 of prime order p, generated by g. It is required that p−1 has a large prime
factor, as we shall see later. Let EG? = (KGEG? ,EncEG? ,Dec1EG? ,Dec2EG?) be
the stateful KEM defined in [KP10a, Section 3.1] as follows:

1. KGEG?(κ, λ): Compute (G, g, p) ← Gen(κ, λ). Choose random x
$← Zp

and σ0
$← Z∗p. Set h = gx and σ′0 = x · σ−1

0 (mod p). The public key is
pk = (G, g, p, h), and the secret key is sk = (σ0, σ

′
0).

2. EncEG?(): Choose random l
$← Zp. The ciphertext is C = gl, and the

key is K = hl.

3. Dec1EG?(σi−1, C): Choose random ri
$← Z∗p. Set σi ← σi−1 · ri (mod p),

and K ′i = Cσi . Return (ri,K
′
i).

4. Dec2EG?
(
σ′i−1, (ri,K

′
i)
)
: Set σ′i ← σ′i−1 · r−1

i (mod p), and K = K
′σ′i
i .

Return K as the shared secret key.

Claim [KP10a, Conjecture 1] EG? is CCLA1 secure if p− 1 has a large prime
factor.

The above statement is incomplete if the leakage parameter λ (i.e., the amount
of leakage from each of Dec1EG? and Dec2EG?) is not specified. For instance,
the conjecture could hold for λ� log p

2 . More precisely, λ < log p
2 −ω (log log p)

to make it infeasible to guess the remaining bits by a brute force attack. Since
leakage is modelled by functions fi(σi−1, ri) and gi

(
σ′i−1, (ri,K

′
i)
)
, it is easy

see that if λ > log p/2, then one can completely recover ri in the ith round
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and also some bits of the initial state (σ0, σ
′
0). In at most 2 dlog pe rounds,

the secret key x can be fully recovered. This is the trivial attack. It is also
necessary that the Decisional Diffie-Hellman problem is hard in the group G.

The reason why p − 1 must have a large prime factor is due to the fact that
it is easy to compute discrete logarithms in Z∗p otherwise. Since log (σi · σ′i) =
log σi + log σ′i, one can effectively transform the multiplicative sharing of the
secret key into additive sharing if it is feasible to extract discrete logarithms.
In [KP10a, Section 1.1], an attack is outlined on schemes using additive shar-
ing, where x = τ i+τ ′i (mod p). The attack requires only a few bits of leakage
on τ i and τ ′i in each round i. Since τ i + τ ′i can only be equal to either x or
x + p, we can compute few bits of x and/or x + p at a time from the corre-
sponding bits of τ i and τ ′i (and carries, if any). This shows that the Generic
HS-HNP (Definition 2.4) is easy to solve in the group (Zp,+) with only a few
bits of leakage from each share. Note that this attack will not apply for the
multiplicative sharing since σi · σ′i = x + s · p, for many possible values of s
(0 ≤ s ≤ p− 2).

2.1.2.3 Relationship to the HS-HNP

In the following we argue that it is possible to obtain 2λ most significant bits
of each of the two shares of the secret key in EG?. This is a consequence of the
fact that λ bits of σi (respectively, σ′i) can be leaked from each of fi(σi−1, ri)
and fi+1(σi, ri+1) (respectively, gi

(
σ′i−1, (ri,K

′
i)
)

and gi+1

(
σi,
(
ri+1,K

′
i+1

))
),

where i ≥ 1. After 2n + 2 rounds of execution of (Dec1EG? ,Dec2EG?), an
adversary will be able to obtain n+1 pairs

(
MSB2λ,p (σ2i+1) ,MSB2λ,p

(
σ′2i+1

))
of the secret key, where i = 0, . . . , n.

The above observation leads us to an instance of HS-HNP (Definition 2.3)
with α = x, ti = σ2i+1 and α

ti
≡ σ′2i+1 (mod p), where i = 0, . . . , n. Note that

ti is uniform random and independent in Z∗p. Hence investigating HS-HNP is
a natural approach to resolve the above conjecture. This is the topic of the
next section.

Let us notice that in [KP10b] it is wrongly stated that breaking the CCLA1
security of the stateful ElGamal KEM is related to the Hidden Multipliers
- HNP (Definition 2.2). That is, using our notation, the HM-HNP boils
down to an adversary that is getting leakage on ti and αti, which corresponds
to ti = σ2i+1 and αti ≡ σ′2i+1t

2
i (mod p), where i = 0, . . . , n. Apparently,

the value αti is never computed in the ElGamal KEM nor can possibly be
computed by leakage functions.
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2.1.3 Hidden Shares - Hidden Number Problem

Let p be an m-bit integer. We have m = blog pc+1. Let yi = 2m−k ·MSBk,p (ti)

and bi = 2m−k ·MSBk,p

(
α
ti

)
in Definition 2.3. Let

ti = yi + δi,

α

ti
(mod p) = bi + εi,

where 0 ≤ δi, εi < 2m−k, where i = 0, . . . , n. Note that the integers yi and bi
are known, while the integers δi and εi are unknown. We have

(yi + δi) (bi + εi) ≡ α (mod p). (2.1)

Since α is an unbounded variable, we will eliminate it from the n+1 equations
represented by (2.1). We obtain

(yi + δi) (bi + εi)− (y0 + δ0) (b0 + ε0) ≡ 0 (mod p).

On rearranging the terms, we obtain a set of n equations (for i = 1, . . . , n) as

(−1) δ0ε0 + (1) δiεi + (−b0) δ0 + (bi) δi + (−y0) ε0 + (yi) εi

+ (yibi − y0b0) ≡ 0 (mod p). (2.2)

For the sake of clarity, let us denote the coefficients in the above
(
ith
)

relation
by Ai, Bi, Ci, Di, Ei, Fi, Gi, respectively in the order. Equation (2.2) can
now be rewritten as

Aiδ0ε0 +Biδiεi + Ciδ0 +Diδi + Eiε0 + Fiεi +Gi ≡ 0 (mod p). (2.3)

Note again that the only unknowns in the above equation are δ0, δi, ε0 and
εi. Equation (2.3) can be rewritten over the integers as

Aiδ0ε0 +Biδiεi + Ciδ0 +Diδi + Eiε0 + Fiεi +Gi + p · µi = 0, (2.4)

where the µi are unknowns, and i = 1, . . . , n. The quantities µi are of little
interest compared to that of δi and εi. We shall now construct a lattice that
captures the relations defined by (2.4). Since (2.4) contains non-linear terms
like δ0ε0 and δiεi, we “linearize” the relation by treating the non-linear terms
as a separate variable. It is also desirable to have the solution we are looking
for correspond to a “short” vector in the lattice. Our construction is similar
to the one in [BHHG01, Section 3.1].

2.1.3.1 Setting up the Lattice

The lattice we construct has dimension 4n + 4 and it is represented by a
(4n + 4) × (4n + 4) matrix M consisting of rational entries. The lattice is
generated as the row span of the matrix M . The structure of M is as follows:

M =

(
J R
0 P

)
, (2.5)
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where J and P are diagonal matrices having dimensions (3n + 4)× (3n + 4)
and n×n, respectively. Matrix R has dimensions (3n+4)×n. The rows of M
correspond to the terms present in the n relations represented by (2.4). The
first row is associated with the constant term, the next n+ 1 rows correspond
to the variables δi, next n + 1 rows with εi, while the further n + 1 rows
correspond to δiεi. The last n rows are associated with the terms µi. Each
of the last n columns of M correspond to a relation in (2.4), while the first
3n+ 4 columns are associated with the inverse of an upper bound on the size
of the quantities 1, δi, εi and δiεi (in the solution we are interested in). In
what follows, we give a complete description of the matrix M .

Let P [i′, j′] denote the entry in the i′th row and the j′th column of the matrix
P . The matrix P has p on all of its main diagonal, i.e. P [i, i] = p for 1 ≤ i ≤ n.
The ith row of P corresponds to the term µi in (2.4). The diagonal matrix J
has J [1, 1] = 1 (for the constant term), J [i′, i′] = 2k−m for 2 ≤ i′ ≤ 2n + 3
(for terms δi and εi), and J [i′, i′] = 22(k−m) for 2n + 4 ≤ i′ ≤ 3n + 4 (for
terms δiεi). As we shall later see, these entries of J are required to bound the
norm of the vector corresponding to our solution. Each of the n relations of
(2.4) is described in matrix R (excluding terms p · µi, which are described by
matrix P ). The entry R [i′, j′] is the coefficient of the term corresponding to
row i′ in the j′th relation. Hence the columns of matrices R and P together
completely describe the system of equations (2.4).

As an illustration, the matrix M is described for the case n = 2 in Figure 2.1,
where φ = 2k−m. The terms corresponding to the 12 rows of M are (from top
to bottom) 1, δ0, δ1, δ2, ε0, ε1, ε2, δ0ε0, δ1ε1, δ2ε2, µ1, and µ2, respectively.

M =



1 0 0 0 0 0 0 0 0 0 G1 G2

0 φ 0 0 0 0 0 0 0 0 C1 C2

0 0 φ 0 0 0 0 0 0 0 D1 0
0 0 0 φ 0 0 0 0 0 0 0 D2

0 0 0 0 φ 0 0 0 0 0 E1 E2

0 0 0 0 0 φ 0 0 0 0 F1 0
0 0 0 0 0 0 φ 0 0 0 0 F2

0 0 0 0 0 0 0 φ2 0 0 A1 A2

0 0 0 0 0 0 0 0 φ2 0 B1 0
0 0 0 0 0 0 0 0 0 φ2 0 B2

0 0 0 0 0 0 0 0 0 0 p 0
0 0 0 0 0 0 0 0 0 0 0 p


Figure 2.1: The matrix M for the case n = 2. Let φ = 2k−m.

Let εi = ei, δi = di (0 ≤ i ≤ n) and µi = ui (1 ≤ i ≤ n) be a solution to the
system of equations (2.4), where 0 ≤ ei, di < 2m−k. Note that such a solution
exists from the way the system was constructed. Let v be a (row) vector, of
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length 4n+ 4, defined as follows:

v = 〈1, d0, . . . , dn, e0, . . . , en, d0e0, . . . , dnen, u1, . . . , un〉 .

Since ei, di and ui satisfy the system (2.4), it is easy to see that

v ·M =

〈
1,

d0

2m−k
, . . .

dn
2m−k

,
e0

2m−k
, . . .

en
2m−k

,
d0e0

22(m−k)
, . . .

dnen

22(m−k)
, 0, . . . 0

〉
.

(2.6)
Note that the vector v ·M has a leading 1, and n trailing zeros. Its length is
4n+ 4 and its Euclidean norm ‖v ·M‖2 satisfies

‖v ·M‖ 2 <
√

3n+ 4. (2.7)

If we are able to find the vector v ·M , then we can readily recover the values
di, ei, and hence solve the system of (2.4). Since the vector v · M has a
bounded length, we can try to choose a value for k such that the resulting
lattice has a sufficiently large determinant, and hence is unlikely to have
many vectors shorter than ‖v ·M‖ 2. Then we can run a lattice reduction
algorithm, say LLL [LLL82], to obtain reduced basis vectors. We then hope
that by exploiting the structure of the vector v ·M , we can obtain it as a
simple combination of a few short basis vectors. Since it appears hard to
rigorously bound the probability of failure, we had to content ourselves with
the heuristic arguments, as it is common with these techniques.

We have done an implementation of our method to justify the heuristics, and
to get an estimate of the running time. The results have been presented in
Section 2.1.3.3.

2.1.3.2 Estimating k

We now give an estimate for the suitable values of k. The Gaussian heuristic
gives an estimate of the expected number of lattice points in a sphere of given
volume. Consider a full rank lattice L′ in Rn′whose determinant is det(L′).
Let Vn′ (r

′) denote the volume of an n′-ball Sn′(r
′) of radius r′, centered at

the origin.

Lemma 2.1 [Gaussian Heuristic [Ngu10, pp. 28]] The “expected” number of

lattice points of L′ in Sn′ is
Vn′ (r

′)
det(L′) .

An explicit formula for Vn′ (r
′) is

Vn′
(
r′
)

=
π
n′
2

Γ(n
′

2 + 1)
r′n
′
, (2.8)

where Γ (·) is the Gamma function.
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In our case, the determinant of the lattice M in (2.5), det(M), is

det(M) =
pn

2(m−k)(4n+4)
≥ 2(m−1)n

2(m−k)(4n+4)
. (2.9)

The above inequality follows from the fact that p is an m-bit integer. Note
that the value of det(M) increases with the value of k. By (2.7), ‖v ·M‖ 2 <√

3n+ 4. We would like to choose such a value for k so that the expected
number of lattice points of M in S4n+4(

√
3n+ 4) is at most one. By Lemma

2.1 and (2.9), it suffices if

2(m−1)n

2(m−k)(4n+4)
≥ V4n+4(

√
3n+ 4).

On rearranging the above inequality, we get

k

m
≥

3 + 4
n

4 + 4
n

+

(
n+ log2

(
V4n+4(

√
3n+ 4)

)
m (4n+ 4)

)
. (2.10)

From (2.8), V4n+4(
√

3n+ 4) = π2n+2

(2n+2)! (3n+ 4) 2n+2. Therefore, in (2.10),

n+ log2

(
V4n+4(

√
3n+ 4)

)
m (4n+ 4)

= O

(
log n

m

)
.

If 1� n� m, we obtain

k =

(
3

4
+ o (1)

)
m. (2.11)

The following remark summarizes the above result.

Remark 2.1 There is an efficient (heuristic) method to solve the HS-HNP
(Definition 2.3) with k =

(
3
4 + o (1)

)
m.

On applying the above method to attack the scheme KEMEG (c.f. Section
2.1.2.3), we obtain the following remark that disproves the claim in Section
2.1.2.2. Note that k = 2λ.

Remark 2.2 On applying the above method to attack the scheme EG? (c.f.
Section 2.1.2.3), we obtain that the stateful KEM EG? is not CCLA1 secure
if the leakage parameter λ ≥

(
3
8 + o (1)

)
log p. We would like to note that our

attack does not exploit any information about the elements of the underlying
group G in EG?. Hence this attack will work for any instantiation of the
group. Also note that the attack can be easily adapted to composite-order
groups.
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2.1.3.3 Implementation Details

We have implemented the above method to solve HS-HNP. We have used the
“PARI/GP” computer algebra system [The12] in our implementation. The
experiments were run on an Intel(R) Core i7-2600 CPU with 4 GB RAM,
running cygwin (ix86/GMP-4.2.1 kernel) 32-bit version. The results are given
in Table 2.1. For every (n,m) pair, 10 random m-bit primes p were chosen.
For each p, 10 random hidden numbers α were chosen. The running time
reported is averaged over 100 (p, α) pairs for each row of the table. For lattice
reduction, we have used the routine qflll in PARI/GP. The source code used
for the experiments is given in Section 2.1.4.

n m (bits) k (bits) k
m dimension(M) time (sec)

2 256 216 0.844 12 0.031

2 512 429 0.838 12 0.087

2 1024 856 0.836 12 0.290

5 256 205 0.800 24 0.507

5 512 408 0.797 24 1.367

5 1024 813 0.794 24 4.468

10 256 200 0.781 44 4.144

10 512 398 0.777 44 10.911

10 1024 794 0.775 44 32.395

Table 2.1: HS-HNP: implementation results

In the experiments, we have observed that there is one (reduced) basis vector
of very low norm, of order 1

2m−k
. This is because the rows of the matrix M

(Equation (2.5)) corresponding to the terms δiεi (0 ≤ i ≤ n) can add up to
produce the vector〈

0 , . . . , 0︸ ︷︷ ︸
2n+3

, 2k−m, . . . , 2k−m︸ ︷︷ ︸,
n+1

0 , . . . , 0︸ ︷︷ ︸
n

〉
.

For instance, in Figure 2.1, we have A1 = A2 = −1, and B1 = B2 = 1. Hence
by adding up the corresponding three rows, we obtain the vector〈

0, 0, 0, 0, 0, 0, 0, 2k−m, 2k−m, 2k−m, 0, 0, 0
〉
.

We have also observed that there are many (reduced) basis vectors with norm
of about

√
3n+ 4. In order to overcome these issues, we “randomize” the

relations from Equation (2.2) by multiplying each relation by a random (in-
dependent) non-zero element of Zp. Of course, this will not alter the solution
set. In spite of doing so, there will be very short vectors of the order 1

2m−k
.

But the experiments suggest that there will be only one (reduced) basis vector
(second shortest) of norm about

√
3n+ 4, and we can get the required values
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of di and ei from the corresponding entries of the basis vector. This heuristic
has not failed even once for the 900 (p, α) pairs of Table 2.1, provided k is
chosen according to Equation (2.10).

2.1.4 PARI/GP script for solving HS-HNP

1 \\ Input p − m−b i t prime .
2 \\ Input y , b − vec to r o f (k−)MSBs, o f l ength n+1.
3
4 HSHNP(n ,m, k , p , y , b ) =
5 {
6 l o c a l (M,R, S ,T, i , j , tmp , ans ) ;
7
8 M = matrix (4∗n+4,4∗n+4) ;
9 R = matrix (3∗n+4,n) ;

10
11 \\ Matrix J
12
13 for ( i =1, 3∗n+4,
14 i f ( i ==1, M[ i , i ]=1 ) ;
15 i f ( i>1 && i <=(2∗n+3) , M[ i , i ]=2ˆ(k−m) ) ;
16 i f ( i >(2∗n+3) && i <=(3∗n+4) , M[ i , i ]=2ˆ(2∗(k−m) ) ) ;
17 ) ;
18
19 \\ Matrix P
20
21 for ( i =1,n , M[ i +(3∗n+4) , i +(3∗n+4)]=p) ;
22
23 \\ Matrix R, M
24
25 for ( j =1, n ,
26 while ( ( tmp = random (p) ) ==0,) ;
27 for ( i =1, 3∗n+4,
28 i f ( i ==1, R[ i , j ]=(( y [ j +1]∗b [ j +1]−y [ 1 ] ∗ b [ 1 ] ) ∗tmp)%p) ;
29 i f ( i ==2, R[ i , j ]=(−1∗b [ 1 ] ∗ tmp)%p) ;
30 i f ( i>2 && i<=(n+2) && j==(i −2) , R[ i , j ]=(b [ j +1]∗tmp)%p) ;
31 i f ( i==(n+3) , R[ i , j ]=(−1∗y [ 1 ] ∗ tmp)%p) ;
32 i f ( i >(n+3) && i <=(2∗n+3) && j==(i−(n+3) ) ,
33 R[ i , j ]=(y [ j +1]∗tmp)%p ;
34 ) ;
35 i f ( i ==(2∗n+4) , R[ i , j ]=(−1∗tmp)%p) ;
36 i f ( i >(2∗n+4) && i <=(3∗n+4) && j==(i −(2∗n+4) ) ,
37 R[ i , j ]=(1∗tmp)%p
38 ) ;
39 M[ j +(3∗n+4) , i ]=R[ i , j ] ; \\Transpose o f ”M”
40 ) ;
41 ) ;
42
43 T = q f l l l (M) ;
44 S = M∗T; \\Reduced b a s i s
45
46 \\compute the hidden number
47
48 tmp = ( ( y [1 ]+2ˆ(m−k ) ∗abs (S [ 2 , 2 ] ) ) ;
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49 ans = tmp∗(b [1 ]+2ˆ(m−k ) ∗abs (S [ n+3 ,2]) ) )%p ;
50
51 ans \\return
52 }
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2.2 Split-State Bilinear ElGamal KEM

2.2.1 Introduction

In Section 2.1.1, we briefly mentioned about a leakage-resilient key encapsula-
tion mechanism proposed by Kiltz and Pietrzak [KP10a]. It is a pairing-based
stateful variant of the ElGamal encryption scheme (called BEG-KEM), where
the secret key is an element of the pairing base group (essentially a point in
the group of points of an elliptic curve). The secret key is divided into two
shares, which are re-shared at each new decryption call by using multiplica-
tive blinding. To decrypt, one takes the first half of the secret key, refreshes
it, and uses it as the input to a pairing calculation. In the second step, the
second half of the secret key is updated with the blinding used for refresh-
ing; it is then used as the input to a new pairing calculation; and finally the
two pairing values are multiplied to obtain a decapsulated symmetric key (for
details see Section 2.2.2). This is one of the very few schemes admitting con-
tinual leakage (maybe the only one?) that one could dare to implement on
an embedded processor, for instance on a smart phone.

The result proven in [KP10a], which holds under a variant of the generic
group model tailored to pairing groups uses a bounded leakage assumption.
Roughly speaking, it is required that the data leaked against side-channel at-
tacks conform to the split-state leakage model (hence also satisfy the only
computation leaks information axiom), shall be significantly smaller than κ
for a single measurement, where κ is the security parameter (e.g. κ = 128).
These leakages are modeled as an oracle that answers values f(·) for adap-
tively chosen arbitrary (but efficiently computable) functions f on input the
secret data being used in the calculation. This kind of requirement, that may
look reasonable for a theoretician used to study cryptographic primitives in
the so-called black-box model might seem completely unrealistic to the prac-
titioner (though we could, perhaps not unreasonably, argue that the amount
of “useful” information leaked is bounded). An an example, let us recall the
figure gathered in [SPY13], where it is pointed out that the leaking of a block
cipher recently reported in [Mor12], consisted of 200000 traces leading to more
than 1.5 Gigabits of data storage.

2.2.1.1 Our Contribution

In this chapter, we analyze, modify, implement and evaluate BEG-KEM. We
start our investigation by proposing and testing a relaxation on the require-
ment of ‘bounded leakage size’ in the split-state model. We weaken the re-
striction on the image size of the leakage functions in these models to asking
that the random variables used to refresh the secret key shall have enough
min-entropy left given the leakage, with no limitation on the ‘size’ of this
leakage. This is an altogether more reasonable leakage bound assumption,
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which could eventually be met by clever implementations (in fact we provide
an implementation candidate). We give a new security reduction using the
generic bilinear group axiom for BEG-KEM in this relaxed leakage model,
which turns out to be tighter than the original reduction in [KP10a] in the
split-state model.

Secondly, we observe that the blinding mechanism originally proposed is sus-
ceptible to invalidate the leakage bound assumption. This is because to per-
form blinding, one computes an exponentiation Gri for a random integer ri,
which if implemented in a naive way, can almost completely leak ri, even with
a simple power analysis attack (i.e. with a single power trace), as we discuss
in Section 2.2.5. The authors in [KP10a] did not discuss how exponentiation
shall be implemented to meet the leakage bound, nor we can currently find
a exponentiation algorithm with these guarantees. Thus, their positive result
risks to be void.

This is why we propose, as our third contribution, an advanced BEG-KEM+,
where we avoid blinding by an exponentiationGri for a random integer ri. Our
modification is based on the observation that the knowledge of the exponent
ri is not needed to perform a successful decryption, but it suffices to build a
random element in a suitable pairing base group. We propose instead to use
a random encoding into asymmetric pairing groups by Fouque and Tibouchi
[FT12]. It turns out that this encoding produces a random element in the
base group, and can naturally be implemented in such a way that the leakage
expected against a single measurement is arguably minimal (see Section 2.2.5).

Fourthly, we report the implementation of BEG-KEM+ in ANSI C on an
ARM based microcontroller. BEG-KEM+ is, to our knowledge, the first im-
plementation and evaluation of a public-key scheme from the leakage-resilient
literature. We also assess its (theoretical) resistance against power analysis
attacks from a practical perspective, taking into account the state-of-the-art
in side-channel cryptanalysis.

2.2.2 Stateful Bilinear ElGamal KEM

In this section, we first recall the basics of the notion of min-entropy, bilinear
groups, and the generic bilinear group model. Then we introduce the concept
of stateful KEM and the security under non-adaptive chosen-ciphertext at-
tacks in the presence of continual min-entropy leakage (CCmLA1). We note
again that the class of leakage functions allowed in our model (based on low-
ering min-entropy) is broader than the bounded length model (CCLA1) used
in [KP10a]. Next, we recollect the stateful bilinear ElGamal KEM construc-
tion from [KP10a] and present a new (and tighter) security reduction in our
relaxed leakage model.1

1We point out that the authors of [KP10a] mention that their results also carry over to a relaxed
leakage model, close in spirit to ours. However this model is not fully detailed, and additionally
no justification of this fact is given in [KP10a] nor in [KP10c].
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2.2.2.1 Min-Entropy

Let X be a finite random variable with probability distribution Pr. The min-
entropy of X, denoted H∞(X), is defined as H∞(X) := − log2

(
max
x

Pr[X =

x]
)
. Min-entropy is a standard measure of the worst-case predictability of

a random variable. Let Z be a random variable. The average conditional
min-entropy of X given Z, denoted H̃∞(X |Z), is defined as

H̃∞(X |Z) := − log2

(
E

z←Z

[
max
x

Pr[X = x |Z = z]
])
.

Average conditional min-entropy is a measure of the worst-case predictability
of a random variable given a correlated random variable.

Lemma 2.1. [[DORS08]] Let f : X → {0, 1}λ′ be a function on X. Then
H̃∞(X | f(X)) ≥ H∞(X)− λ′.

Lemma 2.2. [Schwartz-Zippel [Zip79, Sch80]] Let F be an arbitrary finite
field. Let Q ∈ F[X1, . . . ,Xk] be a non-zero multivariate polynomial of (total)
degree at most d. Then the number of zeroes of Q (over F) is at most d·|F|k−1.

We propose the following variant of the Schwartz-Zippel Lemma for prime
fields, which extends to arbitrary finite fields in a straightforward manner.
[Sch80, Zip79]. This result of ours first appeared in [GV12].

Lemma 2.3. [Schwartz-Zippel; min-entropy version] Let F ∈ Zq[X1, . . . ,Xn]
be a non-zero polynomial of (total) degree at most d. Let Pi (i = 1, . . . , n) be
probability distributions on Zq such that H∞(Pi) ≥ log q− λ′, where 0 ≤ λ′ ≤
log q. If xi

Pi← Zq (i = 1, . . . , n) are independent, then Pr[F(x1, . . . , xn) = 0] ≤

2λ
′ d

q
.

Proof. We prove the result by induction. When n = 1, the univariate polyno-
mial F has at most d roots. Since H∞(P1) ≥ log q − λ′, we have Pr[F(x1) =
0] ≤ d 2−(log q−λ′) = d

q 2λ
′
.

Let us now prove the result for the n-variables case assuming the result for
the (n−1)-variables case. On writing F as a polynomial in X1 with coefficients
in Zq[X2, . . . ,Xn], let i (i ≥ 1) be the degree of X1 in the leading term and
F′ ∈ Zq[X2, . . . ,Xn] be the leading coefficient. The probability

Pr[F(x1, . . . , xn) = 0] ≤ Pr[F(x1, . . . , xn) = 0 |F′(x2, . . . , xn) 6= 0]

+ Pr[F′(x2, . . . , xn) = 0].

F′ is now a non-zero polynomial, of degree at most d−i, in only n−1 variables.
By induction hypothesis, we have Pr[F′(x2, . . . , xn) = 0] ≤ d−i

q 2λ
′
. When

F′(x2, . . . , xn) 6= 0, we have Pr[F(x1, . . . , xn) = 0] ≤ i
q 2λ

′
because degree of

F in X1 is i (i ≥ 1) and the distributions Pi (i = 1, . . . , n) are independent.
Hence Pr[F(x1, . . . , xn) = 0] ≤ d

q 2λ
′
. Note that the parameter n does not

appear in the above bound.
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Corollary 2.1. If λ′ < log q−ω (log log q) in Lemma 2.3, then Pr[F(x1, . . . , xn)
= 0] is negligible (in log q).

2.2.2.2 Bilinear Groups

Let κ denote the security parameter and λ denote the leakage parameter. Let
BGen′(κ, λ) be a probabilistic bilinear group generator that outputs (G,GT , q,
e′, g) such that:

1. G = 〈g〉 and GT are (multiplicatively written) cyclic groups of prime
order q with binary operations · and ?, respectively. The size of q is κ
bits.

2. e′ : G×G→ GT is a map that is:

(a) bilinear: ∀u, v ∈ G and ∀a, b ∈ Z, e′(ua, vb) = e′(u, v)ab.

(b) non-degenerate: e′(g, g) 6= 1.

Such a group G is said to be a (symmetric) bilinear group if the above proper-
ties hold and the group operations in G and GT , and the map e′ are efficiently
computable. The group G is called as base group and GT as target group. In
the asymmetric setting there will two different base groups instead of one.

2.2.2.3 Generic Bilinear Group Model

The generic bilinear group (GBG) model [BBG05] is an extension of the
generic group model [Sho97]. We use the notation used in [KP10a]. The
encodings of the elements of G and GT are given by random bijective maps
ξ : Zq → Ξ and ξT : Zq → ΞT , respectively, where Ξ and ΞT are sets of
bit-strings. The group operations in G and GT , and evaluation of the bilin-
ear map e are performed by three public oracles O, OT and Oe, respectively,
defined as follows. For all a, b ∈ Zq

– O(ξ(a), ξ(b)) := ξ(a+ bmod q)

– OT (ξT (a), ξT (b)) := ξT (a+ bmod q)

– Oe(ξ(a), ξ(b)) := ξT (abmod q)

We assume that the (fixed) generator g of G satisfies g = ξ(1), and also the
(fixed) generator gT of GT satisfies gT = e(g, g) = ξT (1). The encoding of
g is provided to all users of the group oracles. The users can thus efficiently
sample random elements in both G and GT .

We further assume that Ξ ∩ ΞT = φ, |Ξ| = |ΞT | = q, and that the elements
of Ξ and ΞT are from a well-defined set and are efficiently recognizable. For
instance, the encodings in Ξ can comprise of the binary representation of the
set {0, 1, . . . , q − 1}, where every string begins with ‘0’ and all are of uniform
length. The encodings in ΞT are similarly defined but instead begin with ‘1’.
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Since the encodings are efficiently recognizable, the queries to a group oracle
with an invalid encoding can be detected and an error can be raised. Such
properties of encodings will be useful in the leakage setting. For simplicity,
we assume that the users’ queries to the oracles are all valid.

2.2.2.4 Stateful Key Encapsulation Mechanism

Formally, a split-state key encapsulation mechanism KEM = (KG,Enc,Dec1,
Dec2) consists of four polynomial-time algorithms. Recollect that κ denotes
the security parameter, and that λ denotes the leakage parameter. The key
generation procedure KG (κ, λ) takes as input κ and λ, and outputs the pub-
lic key pk, a pair of initial (stateful) secret states (σ0, σ

′
0), and the public

parameters PP. The encapsulation procedure Enc (pk) takes as input pk, and
outputs a secret symmetric key K and the corresponding ciphertext C. The
stateful decapsulation procedure takes C as an input and outputs K ∈ K.
This procedure is split into two consecutive steps Dec1 and Dec2, where each
step accesses distinct parts of the two secret states. The procedures Dec1 and
Dec2 may also update the secret key using locally generated fresh randomness:

(σi, wi)
ri← Dec1(σi−1, C) ; (σ′i,K)

r′i← Dec2(σ′i−1, wi).

The scheme KEM is required to satisfy the following correctness property:

Pr
[
Dec2

(
Dec1 (Enc (pk) , σi−1) \σi, σ′i−1

)
= K :(

pk,
(
σi−1, σ

′
i−1

) )
← (KG,Dec1,Dec2) , K ← Enc (pk)

]
= 1.

The security of the scheme KEM is defined by the following game:

KEM-CCmLA1KEM(A, κ, λ) KEM-Leak-Oracle OCCmLA1(C, fi, hi)
(pk, (σ0, σ

′
0))← KG (κ, λ)

i := 1, w ← AOCCmLA1(·) (pk) (σi, wi)
ri← Dec1(σi−1, C)

b
$← {0, 1} (σ′i,K)

r′i← Dec2(σ′i−1, wi)
(C,K0)← Enc (pk) Λi := fi(σi−1, ri)

K1
$← K Λ′i := hi(σ

′
i−1, r

′
i, wi)

b′ ← A (w,CKb) i := i+ 1
Return (K,Λi,Λ

′
i)

In the above experiment, fi(σi−1, ri) and hi(σ
′
i−1, r

′
i, wi) are (efficiently com-

putable) leakage functions that the adversary can choose adaptively between
the rounds. The functions fi(·) and hi(·) are such that the min-entropy of the
individual inputs of the leakage functions is decreased by at most λ bits, given
the corresponding leakages. More precisely, the requirement on the leakage
functions is that

H̃∞ (t | fi(σi−1, ri)) ≥ H∞ (t)− λ ∀t ∈ σi−1 ∪ ri,
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and

H̃∞
(
t | hi(σ′i−1, r

′
i, wi)

)
≥ H∞ (t)− λ ∀t ∈ σ′i−1 ∪ r′i ∪ wi.

Essentially, the above equations restrict the class of allowed leakage functions
to those that do not decrease the min-entropy of each atomic parameter of
the secret state by more than λ bits. For instance, if wi = {wi,1, wi,2}, then
we require that individually wi,1 and wi,2 have their min-entropy reduced by
at most λ bits given the leakages.

Definition 2.1. [CCmLA1 security for KEM] A key encapsulation mech-
anism KEM is secure under non-adaptive chosen-ciphertext attacks in the
presence of continual split-state leakage (CCmLA1), with min-entropy leakage
bound λ, if Pr [b′ = b] is at most negligibly greater than 1

2 in the Experiment
KEM-CCmLA1KEM(A, κ, λ) for any efficient adversary A.

Note that if in the above definition we would force the leakage functions
to have output length of at most λ bits, then we would obtain the CCLA1
security for KEM as defined in [KP10a]. From Lemma 2.1, we have that the
conditional min-entropy of a random variable, given the leakage output of at
most λ bits, cannot decrease by more than λ bits. Hence if a KEM is CCLA1
secure, then it is also CCmLA1 secure.

2.2.2.5 Bilinear ElGamal KEM

The scheme BEG=
(
KGBEG, EncBEG, Dec1BEG, Dec2BEG

)
is as follows:

1. KGBEG(κ): Compute PP = (G,GT , e
′, q, g) ← BGen′(κ, λ) and randomly

choose x, t0
$← Fq. Set X = gx, σ0 = gt0 , σ′0 = gx−t0 , and XT = e′ (g, g)x.

Return (pk, sk0), where

(a) the public key is pk = (PP, XT ).

(b) the secret state is sk0 = (σ0, σ
′
0) ∈ G×G.

2. EncBEG(pk): Choose a random r
$← Fq. Compute the ciphertext C = gr,

and the derived key K = Xr
T . Return (C,K).

3. Dec1BEG(σi−1, C): Choose a random ti
$← Fq, set σi = σi−1 · gti , Yi =

e′ (σi, C). Return (ti, Yi).

4. Dec2BEG(σ′i−1, (ti, Yi) , C): Set σ′i = σ′i−1 ·g−ti , and Y ′i = e′ (σ′i, C). Com-
pute the derived key K = Yi · Y ′i ∈ GT . Return K.

The correctness of the scheme follows from the fact that σi · σ′i = X ∀i ≥ 0
and using the bilinearity of e′ ().

In [KP10a], the above scheme is shown to be secure in the generic bilinear
group model [Sho97, BBG05] under (non-adaptive) chosen-ciphertext attacks
in the presence of continual bounded-size leakage (in short, CCLA1 security).
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The basic motivation for splitting the decapsulation step into two parts comes
from the “only computation leaks information” axiom [MR04], which states
that any leakage of information occurs only from the data that is being cur-
rently accessed by the computation.

Theorem 2.1. [KP10a, Theorem 1] The scheme BEG (also called BEG-
KEM) is CCLA1 secure in the generic bilinear group model. The advantage
of an s-query adversary who gets at most λ bits of leakage per each invocation
of Dec1BEG or Dec2BEG is at most s3

q 22λ+1.

2.2.2.6 A CCmLA1 Security Reduction

We show that BEG-KEM is also leakage-resilient in the min-entropy leakage
model introduced above, where leakage functions are not necessarily size-
bounded. The only restriction is that the inputs to the leakage functions shall
have enough min-entropy left, as a function of a leakage parameter λ, given the
corresponding outputs. Interestingly, by using a different proof technique than
[KP10c], we obtain a tighter bound on the adversarial CCLmA1 advantage
than the bound claimed in [KP10a] for the adversarial CCLA1 advantage,
w.r.t. the number of oracle queries s. In other words, with respect to the
previous work, we provide here a new security reduction under a more realistic
leakage model, and surprisingly we achieve better tightness.

Theorem 2.2. The scheme BEG-KEM is CCmLA1 secure in the GBG model.
The advantage of an s-query adversary with min-entropy leakage bound λ is(

9s2+3s
q

)
22λ.

At a high level, the proof of this theorem proceeds in two steps. First we
show in Theorem 2.3 that the scheme is secure if there is no leakage, i.e.,
CCA1 security. Note that the adversary is transparent to the internal details
of secret state updates. Then, we complete the proof of CCmLA1 security by
analyzing the effect of leakage on the CCA1 security.

The main idea to prove the CCA1 security is that the adversary will not be
able to compute the derived symmetric key K0 even after seeing the challenge
ciphertext. To show this we just need to prove that K0 cannot be written as
a “linear combination” of the elements of GT that it has got as input or can
compute itself using the pairing oracle along with the input elements of G.
Hence in the GBG model it will not be able to distinguish the actual derived
key or a randomly chosen key in GT . The challenger simulates the security
game G to the adversary in the naive way. Also, the challenger simulates
the generic bilinear group oracles in the usual way by maintaining lists of
pairs of encodings and polynomials that represent the relation amongst group
elements.

We then argue that that the proof for the non-leakage setting (i.e. proof of
Theorem 2.3) and that for the leakage setting would be the same conditioned
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on the fact that the adversary is unable to derive useful relation amongst the
elements it has seen or guessed, and that it will not be able to compute and
hence leak the full secret key X through the leakage functions, if λ is suffi-
ciently small. Finally, we show that the probability of this event is increased
by a factor of at most 22λ compared to the non-leakage setting. The formal
proof is given below.

2.2.3 Proof of Theorem 2.2

The proof of this theorem proceeds in two steps. First we show in Theorem
2.3 that the scheme is secure if there is no leakage, i.e., CCA1 security. Note
that the adversary is transparent to the internal details of secret state up-
dates. Then, in Section 2.2.3.2, we complete the proof of CCmLA1 security
by analyzing the effect of leakage on the CCA1 security.

2.2.3.1 Non-Leakage Setting: CCA1 Security

Theorem 2.3. The scheme BEG is CCA1 secure in the generic bilinear group
model, i.e., it is secure against non-adaptive chosen-ciphertext attacks if there
is no leakage of the secret states. The advantage of an s-query adversary is
at most 1

2 + 9s2

q .

Proof. Let A be an s-query adversary that can break the CCA1 security of
BEG. Hence A can make totally at most s group oracle, pairing oracle and
decryption oracle queries. Let sO denote the total number of calls to the
oracles O, OT and Oe, and sD denote the number of calls to the decryption
oracle OCCA1. Thus sO + sD ≤ s. Let PrCCA1

A,BEG denote the success probability
of the adversary A in making a correct guess of b′ in the security game. We
show that

PrCCA1
A,BEG ≤

1

2
+

9s2

q
.

for any s-query adversary A in the GBG model.

The main idea is to show that A will not be able to compute the derived
symmetric key K0 even after seeing the challenge ciphertext C∗. To show this
we just need to prove that K0 cannot be written as a “linear combination”
of the elements of GT that it has got as input or can compute itself using
the pairing oracle Oe along with the input elements of G. Hence in the GBG
model it will not be able to distinguish the actual derived key or a randomly
chosen key in GT . The challenger C simulates the security game G to A in the
naive way. Also, C simulates the generic bilinear group oracles in the usual
way by maintaining lists of pairs of encodings and polynomials that represent
the relation amongst group elements.

We now formally describe the game G. The description of the group oracles
is typical for proofs in the generic group model (see [Sho97, Mau05, BB08]).
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Description of Game G: Let X, R,{Ui : i ≥ 1} and {Vi : i ≥ 1} be in-
determinates. Intuitively, these (or other) polynomials represent the relation
amongst the group elements that are output by a group oracle, or guessed by
A. The indeterminate X corresponds to the quantity x (discrete logarithm of
the secret key), and R corresponds to the challenge ciphertext. Since A can
query the group oracles with representations (from Ξ and ΞT ) not previously
obtained from the group oracles, in order to accommodate this case, we intro-
duce the indeterminates Ui, Vi. The Ui correspond to the guessed elements
of G, whereas Vi correspond to the guessed elements of GT . We denote the
lists {Ui : i ≥ 1} and {Vi : i ≥ 1} by {U} and {V}, respectively.

C maintains two lists of pairs

L = {(F1,i , ξ1,i) : 1 ≤ i ≤ τ1}, (2.12)

LT = {(FT,i , ξT,i) : 1 ≤ i ≤ τT }. (2.13)

The entries F1,i ∈ Zq[X,R, {U}], FT,i ∈ Zq[X,R, {U}, {V}] are multivariate
polynomials over Zq, whereas ξ1,i, and ξT,i are bit-strings in the encoding
sets Ξ (of G) and ΞT (of GT ), respectively. The polynomials in lists L and
LT correspond to (more precisely, a superset of the) elements of G and GT ,
respectively, that A will ever be able to compute or guess. The values τ1 and
τT denote the respective list counters. In order to simplify the description,
we view Zq[X,R, {U}] as a subring of Zq[X,R, {U}, {V}].

Initially, τ1 = 1, τT = 1, L = { (1, ξ1,1) }, and LT = { (X, ξT,1) }. The bit-
strings ξ1,1, ξT,1 are set to random distinct strings from Ξ and ΞT , respectively.
We assume that there is some ordering among the strings in the sets Ξ and ΞT
(say, lexicographic ordering), so that given a string ξ1,i or ξT,i, it is possible
to efficiently determine its index in the lists, if it exists. The initial state
of the lists L and LT correspond to the generator of G and the public key,
respectively. The game begins by C providing A with the string ξ1,1 from L,
and the string ξT,1 from LT .

Group Operation of G: The calls made byA to the group oracleO are mod-
eled as follows. For group operations in G, A provides C with two operands
(bit-strings) ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L and also specifies whether to mul-
tiply or divide them. C answers the query by first incrementing the counter
τ1 := τ1 + 1, and computes the polynomial F1,τ1 := F1,i ± F1,j . If F1,τ1 = F1,k

for some k < τ1, then C sets ξ1,τ1 := ξ1,k. Otherwise, ξ1,τ1 is set to a random
string distinct from those already present in L. The pair (F1,τ1 , ξ1,τ1) is ap-
pended to L and C provides A with ξ1,τ1 . Note that the (total) degree of the
polynomials F1,i in L is at most one.

If A queries O with an encoding ξ not previously output by the oracle, then A
increments the counter τ1 := τ1 + 1, sets ξ1,τ1 := ξ, and sets F1,τ1 := Uτ1 . The
pair (F1,τ1 , ξ1,τ1) is appended to L. This step is carried out for each guessed
operand.



2.2 Split-State Bilinear ElGamal KEM 37

Group Operation of GT : The group oracle OT is modeled similar to O,
instead appropriately updating the counter τT , and appending the list LT
with the output (FT,τT , ξT,τT ). C provides A with ξT,τT . For guessed operands
in GT , a new variable VτT is introduced instead.

Pairing Operation: For a pairing operation, A queries C with two operands
ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L. C first increments τT := τT + 1, and then
computes the polynomial FT,τT := F1,i · F1,j . Again, if FT,τT = FT,k for some
k < τT , then C sets ξT,τT := ξT,k. Otherwise, ξT,τT is set to a random string
distinct from those already present in LT . The pair (FT,τT , ξT,τT ) is appended
to LT , and C provides A with ξT,τT . Note that the degree of the polynomials
FT,i in LT is at most two.

Decryption: C answers decryption queries by A in the normal way by calling
the pairing oracle Oe, correspondingly updating the list LT , and by providing
A the corresponding encoding in ΞT .

Challenge: C chooses a random bit b
$← {0, 1}. C adds the polynomial R and

gives A the corresponding random distinct encoding in Ξ. If b = 0, C adds the
polynomial XR to LT , else it adds a new polynomial VτT (after incrementing
τT ) to LT . A is also given the corresponding encoding in ΞT .

End of Game G: When A terminates it outputs a guess b′ of b. Next, C
chooses random values x, r, {u}, {v}, {r} ← Zq for the indeterminates X, R,
{U}, {V}, respectively. Then it evaluates the polynomials in lists L and LT .

Note that the adversary A will not be able to compute the polynomial XR
from polynomials in L and LT if XR was not given to it in the challenge step.
A is said to have won the game G if:

1. F1,i(x, r, {u}) = F1,j(x, r, {u}) in Zq, for some two polynomials F1,i 6= F1,j

in L.

2. FT,i(x, r, {u}, {v}) = FT,j(x, r, {u}, {v}) in Zq, for some two polynomials
FT,i 6= FT,j in LT .

3. b′ = b.

This completes the description of the game G and simulator C.
Let Collision denote either of the events 1 and 2 above, i.e. a collision occurring
in lists L and/or LT . Denote the event 3 above by Success.

Analysis of PrCCA1
A,BEG : The success probability PrCCA1

A,BEG of A in the actual
CCA1 game satisfies

PrCCA1
A,BEG ≤ Pr[Success |Collision] + Pr[Collision]. (2.14)

This is because the event Collision ensures that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable to cause
collisions among group elements. As long as the event Collision does not occur,
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then the view of A is identical in the game G and the actual interaction.
Hence if A is unable to provoke collisions, then adaptive strategies are no
more powerful than non-adaptive ones (see [Mau05, Lemma 2 on pp. 12],
also [Sho97]). This observation allows us to choose group elements and their
representations independently of the strategy of A.

First we bound Pr[Collision]. The τ1 polynomials F1,i in L have degree at
most one. Note that F1,i 6= F1,j ⇔ F1,i − F1,j 6= 0 as polynomials. From
Lemma 2.3 (with λ′ = 0), the probability that two distinct polynomials in
L evaluate to the same value for randomly and independently chosen values
for the indeterminates is at most 1

q . Summing up over at most
(
τ1
2

)
distinct

pairs (i, j), the probability that the condition 1 above holds is at most
(
τ1
2

)
· 1q .

Similarly, the probability that the condition 2 above holds is at most
(
τT
2

)
· 2
q .

Since A makes at most sO < s group oracle queries and that in each query
A can guess at most two new elements, it is easy to see that lists L and LT
together have at most 3(sO + sD) ≤ 3s elements. Hence we obtain

Pr[Collision] ≤
(
τ1

2

)
· 1

q
+

(
τT
2

)
· 2

q
≤ 1

q
(τ1 + τT )2 ≤ 9s2

q
. (2.15)

Next, to bound Pr[Success |Collision], we note that the adversary A will not be
able to compute the polynomials XR or R from polynomials in L and LT if XR
or R was not given to it in the challenge step. Hence the event of no collision
ensures that A will not be able to compute the representation of the element
corresponding to XR or R. Hence Pr[Success |Collision] = 1

2 . Therefore, from
(2.15) and (2.14), we get

PrCCA1
A,BEG ≤

1

2
+

9s2

q
. (2.16)

Hence if s = poly(log q), then PrCCA1
A,BEG is negligible. This completes the proof

of Theorem 2.3.

2.2.3.2 Leakage Setting: Completing Proof of Theorem 2.2.

Let us first briefly sketch the main ideas of the proof. Working on the lines of
(2.14), the advantage of A is bounded by its success probabilities conditioned
on the event whether or not a collision has occurred in the lists consisting
of elements of G and GT . It is important to note that the proof for the
non-leakage setting (i.e. proof of Theorem 2.3) and the leakage setting would
be the same conditioned on the fact that a collision has not occurred, and
that the leakage functions will not be able to compute the “polynomial X”
corresponding to the secret key nor guess the correct representations of the
group elements for which it only partially obtains information through the
leakage functions. The reason is that in the event of no collision, the adversary
gets to see only distinct group elements and hence it will not have enough
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information on the relation amongst the group elements it can compute. The
fact that the leakage functions cannot compute the full secret key shows that
the adversary will never be able to continually leak the whole of the secret
key. Hence leakage on the secret state will not be useful in this case. Hence
the success probability of A is the same in the event of no collision (that
includes the event of guessing the representations of group elements using
partial information about them).

However the probability that a collision occurs in the leakage setting is in-
creased by a factor of at most 22λ. This is because when A has access to
leakage output f i(σi−1, ti) and hi(σ

′
i−1, (ti, Yi)) during ith decryption query,

then in adversary’s view the parameters ti (i ≥ 1) are no longer uniformly
distributed even though they are still independent. Hence A can now cause
collisions among polynomials (in Conditions 1-2 on page 37) with increased
probability. Since ti appears in both f i() and hi(), its (average conditional)
min-entropy will be reduced by at most 2λ bits.

The only useful information that the leakage functions can provide to A is
about the secret key X. This is because the values ti are independent of the
derived shared secret key. However A can use the leakages of ti to eventually
leak X. IfA is able to compute X, then it can trivially compute the symmetric
key corresponding to the challenge ciphertext. The event of no collision, and
the fact that X is not a “linear combination” of the inputs to the leakage
functions, guarantees that A is unable to compute X. Note that because
the representations of group elements in the GBG model are randomized, the
probability of guessing the complete representations of each of σi−1, σ′i−1 and
Yi, given the leakages, is increased by a factor of at most 22λ.

Proof. Let A be an s-query adversary that can break the security of the
scheme BEG. Hence A can make totally at most s group oracle and pairing
oracle queries (sO) and decryption oracle queries (sD). In the count of s, even
group oracle queries by leakage functions f i, hi (i ≥ 1) specified by A are also
included. Let the adversary A play the game G′ described below. This game
is an extension of game G described in the proof of Theorem 2.3. To avoid
repetition, we only describe here the extensions that are not part of game G.
Let {T} denote the list of indeterminates {Ti : 1 ≤ i ≤ sD} that correspond
to the values ti in BEG.

Game G′: For each leakage function f i(σi−1, ti) and hi(σ
′
i−1, (ti, Yi)), Amain-

tains a pair of lists
(
Lfi , LfiT

)
and

(
Lhi , LhiT

)
, respectively. These lists con-

tain polynomial and bit-string pairs. The polynomials in Lfi and Lhi be-
long to Zq[X,R, {U}, {T}], and the corresponding bit-strings are from the en-

coding set Ξ of group G. The polynomials in LfiT and LhiT are in the ring
Zq[X,R, {U}, {V}, {T}], and the corresponding bit-strings are from the encod-
ing set ΞT of group GT . Intuitively, the polynomials in lists Lfi and Lhi
correspond to the elements of group G that can be computed by fi and hi,
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respectively, whereas the lists LfiT and LhiT correspond to the elements of GT .

Every polynomial in Lfi is of the form c1,iTi+c2,i

i−1∑
j=0

Tj+c3,iDi, where c1,i, c2,i,

c3,i ∈ Zq are chosen by A and Di ∈ Zq[X,R, {U}] is in L (cf. (2.12)). Every
polynomial in Lhi is of the form

d1,iTi + d2,i

X−
i−1∑
j=0

Tj

+ d4,iWi, (2.17)

where d1,i, d2,i, d3,i, d4,i ∈ Zq are also chosen by A and Wi ∈ Zq[X,R, {U}] is
in the list L. Note that the polynomials in lists Lfi and Lhi are of degree at
most one, and that they do not contain the monomial X. The polynomials in
lists LfiT and LhiT are of degree at most two.

The game G′ proceeds exactly as game G except that A can also obtain leakage
through functions f i and hi in the ith decryption query. The leakages on the
representations of the group elements are simulated in the naive way, whereas
for the leakages on ti, a temporary random value is chosen for each ti and
the leakage on this value is given to the adversary. When A terminates it
outputs a guess b′ of b. Let us denote by Success∗ the event of successful
guess of the bit b by A. Let Collision∗ denote the event of a collision occurring
in lists L, LT , Lfi , Lhi , LfiT , LhiT (1 ≤ i ≤ sD) and also the event of successful
guessing of the partially leaked representations. The polynomials are now
evaluated with values chosen from independent distributions with min-entropy
log q−2λ, not necessarily from an uniform distribution. The exact distribution
depends on the leakage functions chosen by A. Since we are only interested to
upper bound the collision probability, we can safely assume that the simulator
chooses the right distribution. Note that even in the leakage setting, adaptive
strategies are no more powerful than non-adaptive ones, as observed in [AM11,
pp. 691]. This completes the description of the game G′.
Let PrCCmLA1

A,BEG denote the probability of the event Success∗. On the lines of
(2.14), we can write

PrCCmLA1
A,BEG ≤ Pr[Success∗ |Collision∗] + Pr[Collision∗]. (2.18)

As mentioned before, conditioned on the event Collision∗, the view of the ad-
versary A will be same in both the games G′ and G. This is because in both the
cases A will get to see only distinct group elements. Also, we are conditioning
on the event that A will not be able to guess the correct representations of any
of the at most 2λs group elements it obtains through the leakage functions.
Hence, on the lines of (2.16), we have

Pr[Success∗ |Collision∗] =
1

2
. (2.19)

Lemma 2.4. Pr[Collision∗] ≤
(

9s2+2λs
q

)
22λ.
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Proof. To compute the required probability, the polynomials in lists L, LT ,
Lfi , Lhi , LfiT , LhiT (1 ≤ i ≤ sD) are evaluated by choosing values from Zq
according to (independent) distributions with min-entropy at least log q −
2λ. This is because A can obtain at most 2λ bits of leakage about ti (i =
1, . . . , sD). According to Lemma 2.1, the values ti have min-entropy at least
log q − 2λ in the view of A. The total length of all the lists is at most
3(τ1 + τT ) ≤ 3s) (c.f. 2.2.3.1). Working exactly on the lines of (2.15), and

using Lemma 2.3 (with λ′ = 2λ), we obtain this probability as 9s2

q 22λ. The
probability of the event that A will guess the complete representations of any
of the at most 3s group elements, for which it can possibly obtain partial
information on their representations through the leakage functions, is at most
3s·22λ

q . Hence Pr[Collision∗] ≤
(

9s2+3s
q

)
22λ.

From (2.18), (2.19) and Lemma 2.4, we have PrCCmLA1
A,BEG ≤ 1

2 +
(

9s2+3s
q

)
22λ.

This completes the proof of Theorem 2.2.

2.2.4 BEG-KEM+ : A Leakage-Resilient KEM Closer to Prac-
tice

Our choice of BEG-KEM for this investigation is entirely motivated by the
fact that a similar leakage-resilience result as that proven in [KP10a] cannot
be expected for a pairing-less group, as shown in Section 2.1. This motivates
using pairing groups to implement ElGamal.

On the other hand, while Theorem 2.2 ensures a protection against side-
channel attacks that combine traces of different computations (e.g. differential
power analysis attacks), we still need protection against single trace attacks,
i.e. Simple Power Analysis (SPA). The use of pairing groups can help on this
respect, as pointed out by Scott in [Sco05]:

“[...] it is of interest to consider the resistance of pairing-based
protocols to so-called SPA attacks [...] one might with reasonable
confidence expect that the power consumption profile of (and exe-
cution time for) such protocols will be constant and independent of
any secret values.”

We continue by proposing a tweak to BEG-KEM with the aim to make the
most, from a minimizing leakage perspective, out of our choice of using pairing
groups to realize leakage-resilient public-key cryptographic primitives.

2.2.4.1 An Advanced BEG-KEM+

Let us first make the observation that Dec1∗BEG is picking a random point in
the pairing based group G by computing an exponentiation gr for a random
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r. As is well-known, a näıve implementation of exponentiation can leak the
entire exponent r, which would, of course, invalidate the required bound on
maximum leakage in our new (as well as in the old) model. This leads us
to the question whether it is possible, given the large body of side-channel
resistant exponentiation techniques, to find an algorithm that would likely
meet the leakage bound for single measurements. In other words, we have
to answer the question of whether the exponentiation can be made resistant
against SPA attacks.

Exponentiation in a multiplicative group (or scalar multiplication in an elliptic
curve group) of large order involves hundreds or even thousands of low-level
arithmetic operations such as modular multiplication. Unfortunately, all these
low-level operations are (either directly or indirectly) controlled by the secret
exponent, which means that each of them can potentially leak sensitive infor-
mation (see e.g. [WT01, Wal04, ST06] for further details). Consequently, we
need both an SPA-resistant exponentiation algorithm and an SPA-resistant
implementation of the underlying multiple-precision operations. The latter is
difficult to achieve in software due to side-channel leakage induced by certain
micro-architectural features such as the early-termination mechanism of in-
teger multipliers in ARM processors [GOPT10]. For example, it was shown
in [GOPT10] that highly regular exponentiation (resp. scalar multiplication)
techniques, which are (in theory) perfectly SPA-resistant, succumb to an SPA
attack when exploiting the early-termination mechanism. Therefore, we avoid
exponentiation with a secret exponent in our modified scheme2.

A careful analysis of BEG-KEM reveals that Dec1∗BEG only needs to sample
uniformly at random an element u of G, and that knowledge of logg u is not
necessary. For this reason, we decided to build a random u in the pairing
base group by using a so-called encoding to the base group [SvdW06, Ica09,
FT12]. Roughly speaking, an encoding is a deterministic function mapping
an arbitrary string to a point in an elliptic curve. Recently, Fouque and
Tibouchi [FT12] proposed a modification of the Shallue and van de Woestijne
encoding into arbitrary elliptic curves [SvdW06], that maps arbitrary strings
to Barreto-Naehrig asymmetric pairing groups [BN05]. Let f : F∗p → E(Fp)
be the Fouque-Tibouchi encoding. Then, (t1, t2) 7→ u = u1 ·E u2 builds a

point u ∈ E(Fp) distributed uniformly at random if t1, t2
$← F∗p, where ·E is

the addition operation in E(Fp). Additionally, [FT12] points out that f can
be naturally implemented so that its computation is completely independent
of the inputs, which clearly helps us towards meeting our desired min-entropy
leakage bound.

2As mentioned previously, the secret exponent controls a large number of multiple-precision
arithmetic operations, which execute an even larger number of mul instructions. Each of these mul

instructions can potentially trigger the early-termination mechanism and, hence, leak information
about the secret exponent. In our modified scheme, the secret value is only used as input of a
multiple-precision operation and does not control any other operations.
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Algorithm 1 Shallue-van de Woestijne encoding to BN curves y2 = x3 + b [FT12]

Input: A random number t ∈ F?p.
Output: Point P ∈ E(Fp)

1: w ←
√
−3 · t/(1 + b+ t2)

2: x1 ← (−1 +
√
−3)/2− tw

3: x2 ← −1− x1

4: x3 ← 1 + 1/w2

5: r1, r2, r3
$← F?p

6: α← χq(r
2
1 · (x3

1 + b))
7: β ← χq(r

2
2 · (x3

2 + b))
8: i← [(α− 1) · β mod 3] + 1

9: return P [xi, χq(r
2
3 · t) ·

√
(x3
i + b)]

2.2.4.2 BEG-KEM+: Description

Let ABGen be an asymmetric bilinear group generator that outputs (G1,G2,
GT , e, q, g1, g2) with |G1| = |G2| = |GT | = q, where q is a prime, κ be the
security parameter, and λ be the leakage parameter. We will again use the
multiplicative notation for group operations in G1, G2, and GT . Let e :
G1 × G2 → GT be a type 3 pairing map, i.e., e is a non-degenerate bilinear
map with no known efficiently computable isomorphism ψ : G2 → G1. These
groups are instantiated using the BN curves, denoted E(Fp), of the form
y2 = x3 + b, where b ∈ Fp [BN05]. Also, let G1 and G2 be generators of G1

and G2, respectively, and f : F∗p → G1 be the Fouque-Tibouchi encoding of
the elements of G1.

The advanced BEG− KEM+ =
(
KG+

BEG, Enc+
BEG, Dec1+

BEG, Dec2+
BEG

)
is defined

as follows:

1. KG+
BEG(κ): Compute PP = (G1,G2,GT , e, q,G1, G2) ← ABGen(κ) and

randomly choose x, t0
$← Fq. Set X = Gx1 , σ0 = Gt01 , σ′0 = G

(x−t0)
1 , and

XT = e (G1, G2)x. Return (pk, sk0), where

(a) the public key is pk = (PP, XT ).

(b) the secret state is sk0 = (σ0, σ
′
0).

2. Enc+
BEG(pk): Choose a random r

$← Fp. Compute the ciphertext C = Gr2,
and the derived key K = Xr

T . Return (C,K).

3. Dec1+
BEG(σi−1, C): Choose random ti, zi

$← F∗p, set ui = f (ti) ·f (zi), and
compute σi = σi−1 · ui, Yi = e (σi, C). Return (ui, Yi).

4. Dec2+
BEG(σ′i−1, (ui, Yi) , C): Set σ′i = σ′i−1 · (ui)−1, and Y ′i = e (σ′i, C).

Compute the derived key K = Yi · Y ′i ∈ GT . Return K.

Algorithm 1 describes the constant-time hashing function to BN curves from
[FT12]. As described in the original paper, implementing this algorithm
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against timing and Simple Power Analysis (SPA) attacks is not difficult to
be achieved. In step 6 and 7, instead of computing the values χq(x

3
1 + b)

and χq(x
3
2 + b) in a straightforward way, which can leak secret data, the au-

thors suggested to use blinding. Namely, in order to get α and β, we actually
evaluate χq(r

2
1 · (x3

1 + b)) and χq(r
2
2 · (x3

2 + b)), where r1 and r2 are random
field elements generated in Step 5. On the other hand, in order to prevent the
leakage while computing the index i, they employ a specific algebraic function
φ(α, β) = [(α− 1) · β mod 3] + 1, which runs in constant time.

2.2.5 Secure Implementation and Performance Analysis

In this section, we first describe a software implementation of BEG-KEM+
(along with the instantiation of the underlying pairing groups) and present the
execution times we measured on an ARM Cortex M-3 processor. The second
part of this section is devoted to a “practical” security evaluation of BEG-
KEM+ by analyzing potential sources of information leakage in the underlying
arithmetic operations that could be exploited to mount a side-channel attack.

2.2.5.1 Implementation Details and Performance Analysis

We implemented both BEG-KEM and BEG-KEM+ in Magma and ANSI
C, whereby the former implementation served as a reference for the latter.
The C implementation is based on the MIRACL library to ensure an efficient
execution of the pairing evaluation and all other arithmetic operations in the
diverse groups and fields. We instantiated both BEG-KEM and our improved
scheme using the Ate pairing over a 254-bit Barreto-Naehrig (BN) curve. More
specifically, our implementations adopts the curve BN254 from [PSNB11],
which provides a security level roughly comparable to that of 128-bit AES.
BN curves are defined by a Weierstrass equation of the form y2 = x3 +b over a
prime field Fq, whereby q can be written as polynomial p(u) = 36u4 + 36u3 +
24u2+6u+1 for some parameter u [BN05]. In our case, u = −(262+255+1) =
−0x4080000000000001 and, hence, q has a length of 254 bits. The curve
BN254 is given by the equation y2 = x3 + 2 (i.e. b = 2) and has prime order
with embedding degree k = 12.

The execution times for various arithmetic operations in the different fields
and groups are summarized in Table 2.2, whereby all timings are specified in
millions of clock cycles. Our prototype platform for performance evaluation
is an Arduino Due microcontroller board equipped with an ARM Cortex-M3
CPU. Even though the three groups G1, G2, and GT have the same order,
the underlying multiple-precision arithmetic operations are performed with
operands of different size. G1 and G2 are elliptic curve groups over Fq and
Fq2 , the elements of which have, in our case, a bitlength of 254 and 508 bits,
respectively. The group GT is a subgroup of the multiplicative group of the
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extension field Fq12 , i.e. the modular multiplications for exponentiation in GT

are carried out on 3048-bit operands.

Table 2.2: Running times for field ex-
ponentiation, square root, inversion,
group exponentiation and pairing oper-
ations (in 106 clock cycles)

Operation Running time

Square root Fq 0.7
Inversion Fq 0.087

Encoding to G2 3.7
Exponentiation G1 4.5
Exponentiation G2 10.0
Exponentiation GT 27.1

Pairing 65.0

Table 2.3: Comparison of running times
for key generation, encapsulation and
decapsulation for BEG-KEM and BEG-
KEM+ (in 106 clock cycles)

Operation BEG-KEM BEG-KEM+

KeyGen 108 108
Encryption 34 34
Decryption 131 140

The execution times for key generation, encapsulation as well as decapsulation
for both BEG-KEM and BEG-KEM+ are given in Table 2.3. Our results show
that an encapsulation can be carried out in 34 million clock cycles, while the
decapsulation takes about 140 million cycles. We observe that our modified
decapsulation algorithm is roughly 6% slower than the original one.

2.2.5.2 Side-Channel Resistance: Practical Point of View

One of the fundamental principles of leakage-resilient cryptography is to use
a critical secret only once (or a few times), which ensures that an attacker
is not able to retrieve the secret key if the per-invocation leakage is in some
way “limited” or “bounded.” In every invocation of the scheme or function,
the secret is either “refreshed” or a completely new secret is generated ran-
domly. The original BEG-KEM scheme from [KP10a], and also our variant
BEG-KEM+, follow this principle. As a consequence, all forms of side-channel
attack that require several executions of a cryptographic function with one and
the same secret key, e.g. Differential Power Analysis (DPA), are obviously not
applicable to BEG-KEM+ (and in fact the latter is guaranteed by Theorem
2.2). However, attacks that aim to recover the secret key from information
leaked from a single invocation of a cryptographic function (i.e. Simple Power
Analysis (SPA) attacks) may succeed under certain conditions. The group
exponentiation computed in the BEG-KEM scheme to derive a random group
element σ0 = gt0 serves as a good example. If this exponentiation is imple-
mented in completely straightforward way (e.g. using the square-and-multiply
method) an attacker can obtain t0 if he is able to distinguish group squarings
from group products in the power consumption profile. Such SPA attacks on
unprotected or insufficiently protected ECC implementations are fairly easy
and have been reported extensively in the literature, see e.g. [BSS05, Chap-
ter IV] and the references therein. Therefore, we advocated to replace the
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afore-mentioned group exponentiation by a deterministic encoding into an el-
liptic curve group [FT12].

SPA Resistance of Pairing Evaluation. Section 2.2.4.1 quotes a state-
ment of Scott [Sco05, Section 3.1] saying that one can expect the power con-
sumption profile of a pairing-based protocol to be independent of any secret
values. An intuitive explanation why pairings are fairly “robust” against SPA
leakage is also given in [Sco05]: the target of the attack is a secret point,
which is generally much harder to reveal than e.g. a secret scalar or a secret
exponent. As mentioned before, our implementation uses the Ate pairing in-
stantiated on a BN curve over a 254-bit prime field Fp. Consequently, the
secret is the x and y coordinate of an elliptic curve point, which are in our
case simply elements of Fp. The only way in which an attacker can hope to
gain information about x and y is by inspecting the power consumption and
execution time of the Fp-arithmetic operations (e.g. addition, multiplication)
performed on them. However, the operand-related SPA leakage from field-
arithmetic operations is generally very small. To explain this in detail, let
us use the addition in Fp as example, which is nothing else than a modular
addition r = a + b mod p. We assume that a is a secret value and that b is
known to the attacker. A modular addition consists of an ordinary addition
s = a + b, followed by a subtraction if the sum s is equal to or bigger than
p. Conventional wisdom from the side-channel community says that such a
conditional subtraction causes differences in the power consumption profile
(and also execution time), which is observable by an attacker. However, the
information content is very small; in fact, when the subtraction is executed
the attacker just knows that a+ b ≥ p, i.e. he has learned that a ≥ p− b.
The situation is similar for multiplication in Fp, which is nothing else than
a modular multiplication r = a · b mod p. Again, we assume that a is the
secret value and that b is known to the attacker. A modular multiplica-
tion involves a conventional multiplication t = a · b, followed by a modular
reduction r = t mod p, which is in pairing-based cryptography typically im-
plemented using Montgomery’s algorithm [Mon85]. Both the multiplication
and Montgomery reduction are highly regular (i.e. do not have to execute any
conditional statements), except for the so-called “final subtraction.” Mont-
gomery’s reduction technique does not directly compute t mod p but produces
the following output

x =
(
t+ (t · p′ mod 2n) · p

)
/2n (2.20)

where p′ = −p−1 mod 2n and n is the bitlength of p. Note that x may be not
fully reduced, which means a final subtraction of p is necessary to get the least
non-negative residue as result. An attacker able to observe whether or not
this final subtraction is executed learns only whether x ≥ p or not, which does
not reveal much information about a. The same also holds for subtraction
and squaring in Fp. However, a noteworthy exception is the inversion oper-
ation, which we will further discuss below. In summary, a straightforward
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implementation of the arithmetic operations (bar inversion) in Fp leaks only
very little information about the operands, which confirms that pairing eval-
uation is, in general, not susceptible to SPA attacks. To our knowledge, the
recent literature contains only two papers in which SPA attacks on pairings
are discussed [PV04, WS06], but both of them are only relevant for pairings
over binary fields where the multiplication is implemented in a highly irreg-
ular way. The attack from [Wal04] is only applicable to scalar multiplication
with a secret scalar, but not to pairings with a secret point.

SPA Resistance of Encoding Function. The encoding function shown in
Algorithm 1 consists of a number of basic arithmetic operations (e.g. addition,
multiplication) in the field Fp. Furthermore, two inversions are executed, one
in step 1 and the other in step 4. The straightforward approach to invert an
element of a finite field is the Extended Euclidean Algorithm (EEA). Con-
ventional wisdom from the side-channel community says that the EEA is a
highly irregular algorithm, executing many conditional operations, which is
likely to leak SPA-relevant information about the operand to be inverted. In
order to prevent an SPA attack on the inversion operation, we apply a simple
multiplicative masking. That is, instead of inverting a field element v directly,
we first multiply it by a random number r, which yields the product t = v · r.
Then, we invert this product using the EEA to obtain 1/t = 1/(v · r), which
we finally multiply again by r to get 1/v as result.

The function χ in step 6 and 7 of Algorithm 1 is essentially an evaluation of the
Legendre Symbol, which, in turn, consists of an exponentiation using a con-
stant public exponent (i.e. (p+1)/4). The input to the χ function is “blinded”
by the random value r2

1 and r2
2, which means the underlying exponentiation

can not leak any SPA-relevant information. As mentioned in Section 2.2.4.1,
a constant-time algebraic function is adopted for the calculation of the index
i in step 8, which also cannot leak.

2.3 Conclusion and Future Directions

In the first part of this chapter, we cryptanalyzed a variant of the ElGamal
key encapsulation mechanism proposed in [KP10a]. Though the attack model
of [KP10a] allows an attacker to query with (bounded) leakage functions in
the split-state model, we really need simple leakage functions for our attack -
leakage of

(
3
8 + o (1)

)
fraction of the most significant bits of the current secret

state and the past secret state, alternatively, in successive rounds. We do not
need an adversary to have access to decryption oracle, and our attack works
for any arbitrary group used to instantiate the scheme.

For future work related to this part, it would be interesting to see whether
Coppersmith-like lattice techniques [Cop97] could lead to attacks that require
lesser fraction of the most significant bits of the secret shares. Another direc-
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tion is to rigourously prove our leakage bound of
(

3
8 + o (1)

)
, possibly using

the techniques of Ling et al. [LSSW12]. A challenging open problem is to
address the hidden shares - hidden number problem over pairing groups.

In the latter part of this chapter, first, we argued that a naive implementa-
tion of the pairing group exponentiation in the leakage-resilient ElGamal key
encapsulation mechanism proposed in [KP10a] makes it impossible to reach
the required leakage bound. To overcome this problem, we have made two
additional contributions. On the one hand, we have proposed a relaxed leak-
age model, that we call min-entropy leakage, that lifts the restriction on the
image size of leakage functions, and proposes instead to require that the in-
puts to the leakage functions have sufficient min-entropy left, in spite of the
leakage. On the other hand, we adopted a different mechanism for finding
a random point in an elliptic curve group, namely the encoding of Fouque
and Tibouchi. We assessed the security of our implementation from both a
theoretical and a practical perspective and argued that it is indeed secure in
both the worlds. BEG-KEM+ is, to our knowledge, the first leakage-resilient
public-key scheme that has been successfully implemented and evaluated on
an embedded 32-bit processor.

As far as we know, no stateful ElGamal-based public-key encryption scheme
with constant public-key size exists in the literature offering provable resis-
tance against a broad class of continual leakage attacks in the standard model.
Finding such a scheme remains a challenging open question.

Another interesting direction is to obtain encryption schemes of efficiency
comparable to that of BEG-KEM but secure against a stronger leakage model
than the split-state model, possibly still using the generic group model to
argue about the security.



Chapter 3

Split-State Boneh–Boyen
Signature Scheme

In this chapter, we propose a leakage-resilient signature scheme in the con-
tinual split-state leakage model that is based on a well-known identity-based
encryption scheme by Boneh and Boyen [BB04]. The proposed signature
scheme is the one of the most efficient among the existing schemes that allow
for continual leakage. Its efficiency is close to that of non leakage-resilient
pairing-based signature schemes. It tolerates, asymptotically, leakage of half
of the bits of the secret key at every new signature invocation. We prove the
security of the new scheme in the generic bilinear group model. We observe
that the original Boneh–Boyen signature scheme is existentially unforgeable
in the generic bilinear group model, whereas it is only known to be selectively
unforgeable in the standard model.
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3.1 Introduction

In Chapter 2, we analyzed a pairing-based variant of the ElGamal encryption
scheme due to Kiltz and Pietrzak [KP10a] in the min-entropy leakage model.
In this chapter, we use the techniques from Chapter 2 to propose a leakage-
resilient signature scheme that builds upon the Boneh–Boyen identity-based
encryption scheme [BB04].
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We make two main assumptions to model leakage:

– bounded leakage: the useful leakage data per signature invocation is
bounded in length, but unbounded overall;

– split-state leakage: the computation can be divided into rounds, where
each such round leaks independently.

The first assumption, probably unlike the min-entropy model, can be seen
overly restrictive; however it should be noticed that in practice many side-
channel attacks only exploit a polylogarithmic amount of information. Note
that the second assumption is also present in the min-entropy leakage model.

Our variant of the Boneh–Boyen signature scheme is obtained by splitting
the secret group element into two parts that is continually refreshed. The
resulting signature scheme is nearly as efficient as the original identity-based
encryption scheme, being only 4

3 times slower. Our security reduction is in the
generic bilinear group (GBG) model. Our main theorem (Theorem 3.2) states
that allowing λ bits of leakage at every round decreases the security of the
scheme by at most a factor 22λ. A interesting observation from our analysis
is that the Boneh–Boyen signature scheme is existentially unforgeable in the
GBG model, whereas it is only known to be selectively unforgeable in the
standard model.

Finally, we note that our proposal is far more efficient than signature schemes
proven to be leakage-resilient under similar (or more stronger) leakage model,
with proof in the standard model [KV09, FKPR10, BKKV10, DHLAW10b,
MTVY11, BSW11].

We start in Section 3.2 by recalling some basic facts and definitions. In Section
3.3, we prove the security, without leakage, of the Boneh–Boyen signature
scheme in the GBG model. In Section 3.4, we split the secret state of the
scheme and prove its leakage resilience under continual split-state leakage in
the GBG model.

3.2 Definitions

In this section, we recollect some basic notions of security for signature schemes.
We also describe the model of leakage we shall consider in this chapter and
formulate a definition of security of signature schemes in the presence of con-
tinual leakage. We adapt the leakage model specified in [KP10a] to signature
schemes.

For other necessary technical background for this chapter, refer to Section
2.2.2.1 for a discussion on min-entropy, to Section 2.2.2.2 on bilinear groups,
and to Section 2.2.2.3 on the generic bilinear group model.

A signature scheme Π = (KeyGen,Sign,Verify) consists of three probabilistic
polynomial-time algorithms KeyGen, Sign, and Verify. Let κ denote the secu-
rity parameter. KeyGen(κ) on input κ produces a public- and secret-key pair
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(pk, sk) along with other public parameters PP. The algorithm Sign(sk,m)
on input a secret key sk and a message m ∈ M , where M is the message
space, outputs a signature σ. Verify(pk,m, σ) on input a public key pk, a
message m ∈ M and a signature σ, outputs a bit b = 1 meaning valid, or
b = 0 meaning invalid. We require the following correctness requirement to
be satisfied by Π:

Pr[Verify(pk,m, Sign(sk,m)) = 1 : (pk, sk)← KeyGen(κ),m ∈M ] = 1.

The standard security notion for signature schemes is existential unforgeabil-
ity under adaptive chosen-message attacks (EUF-CMA), and it is is defined
through the following experiment:

Sign-ForgeΠ(A, κ) Sign-Oracle Ωsk(m)
(pk, sk)← KeyGen(κ) w := w ∪m
w := ∅ σ ← Sign(sk,m)

(m,σ)← AΩsk(·)(pk) Return σ
If m ∈ w, then return b := 0
b← Verify(pk,m, σ)

Definition 3.1. [Existential Unforgeability] A signature scheme Π is existen-
tially unforgeable under adaptive chosen-message attacks, in short “secure”,
if Pr [b = 1] is negligible in Sign-ForgeΠ(A, κ) for any efficient adversary A.

3.2.1 Leakage Model

We split the secret state into two parts that reside in different parts of the
memory, and structure any computation that involves access to the secret
state into a sequence of steps. Any step accesses only one part of the secret
state (active part) and the other part (passive part) is assumed not to leak in
the current step of computation. For simplicity, we define a security notion
for leakage-resilient signature schemes assuming that the signing process is
carried out in two steps. We also refer to a single invocation of the signature
generation algorithm as a round.

Let us consider the problem of achieving leakage resilience under continual
leakage even when a significant fraction of the bits of the secret state are
leaked per round. Then it is necessary that the secret state must be stateful,
i.e. the secret state must be refreshed during every round [KP10a]. Otherwise,
after many rounds the entire secret state will be completely leaked.

Formally, a stateful signature scheme Π∗ = (KeyGen∗, Sign∗1, Sign∗2,Verify∗)
consists of four probabilistic polynomial-time algorithms KeyGen∗, Sign∗1, Sign∗2
and Verify∗. KeyGen∗(κ) is same as the set-up phase KeyGen of Π except that
instead of a “single” secret key sk, it outputs two initial secret states (S0, S

′
0).

From the point of view of an adversary, the signing algorithm Sign of Π and
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(Sign∗1,Sign∗2) have the same functionality. First, Sign∗1 is executed and later
Sign∗2 is executed. That is, the ith round of the signing process is carried out
as:

(Si, wi)
ri← Sign∗1(Si−1,mi) ; (S′i, σi)

r′i← Sign∗2(S′i−1, wi). (3.1)

In the above expression, ri and r′i are the randomness used by Sign∗1 and Sign∗2,
respectively. The parameter wi is some state information passed onto Sign∗2
by Sign∗1. The signature σi is generated for the message mi, and the internal
state is updated from (Si−1, S

′
i−1) to (Si, S

′
i).

We model the leakage during signature generation by giving an adversary A
access to a leakage oracle Ωleak

(Si−1,S′i−1)(·). This oracle, in addition to giving

A signatures for the messages of its choice, also allows A to obtain leakage
from the computation used to generate signatures. More precisely, let λ be a
leakage parameter. During the ith signing round, A is allowed to specify two
functions fi and hi, each of range {0, 1}λ, that can be efficiently computed.
The outputs of the leakage functions are

Λi = fi(Si−1, ri) ; Λ′i = hi(S
′
i−1, r

′
i, wi). (3.2)

Since the value of m can be included in the description of fi and hi, hence
it is not explicitly included as an input. Note that it also possible for A
to specify hi after obtaining Λi. But for simplicity of the exposition, we
only describe here the case where fi and hi are specified along with the
message mi to the oracle. The security of the signature scheme Π∗ in the
presence of (continual) leakage is defined through the following experiment
Sign-Forge-LeakΠ∗(A, κ, λ). In the description below, |fi| refers to the length
of the output of fi.

Sign-Forge-LeakΠ∗(A, κ, λ) Sign-Leak-Oracle Ωleak
(Si−1,S′i−1)(mi, fi, hi)

(pk, (S0, S
′
0))← KeyGen∗(κ) If |fi| 6= λ or |hi| 6= λ, return ⊥

i := 1, w := ∅ (Si, wi)
ri← Sign∗1(Si−1,mi)

(m,σ)← A
Ωleak

(Si−1,S
′
i−1

)
(·)

(pk) (S′i, σi)
r′i← Sign∗2(S′i−1, wi)

If m ∈ w, then return b := 0 Λi := fi(Si−1, ri)
b← Verify∗(pk,m, σ) Λ′i := hi(S

′
i−1, r

′
i, wi)

i := i+ 1
w := w ∪mi

Return (σi,Λi,Λ
′
i)

Definition 3.2. [Existential Unforgeability with Leakage] A signature scheme
Π∗ is existentially unforgeable under adaptive chosen-message attacks in the
presence of (continual) leakage if Pr [b = 1] is negligible in the Experiment
Sign-Forge-LeakΠ∗(A, κ, λ) for any efficient adversary A.
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3.3 Basic Boneh–Boyen Signature Scheme

We now describe a signature scheme that is obtained from the Boneh–Boyen
identity based encryption scheme (BB-IBE) [BB04]. This scheme is not yet
known to be existentially unforgeable under adaptive chosen-message attacks
(EUF-CMA) in the standard model. However, we are able to prove that the
BB-signature scheme is EUF-CMA secure in the GBG model.

Let ΠBB = (KeyGenBB, SignBB,VerifyBB) be a signature scheme on the message
space Zp defined as follows:

1. KeyGenBB(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose
random x, x0, x1 ← Zp. Set X := gx, X0 := gx0 , X1 := gx1 and
XT := e(g,X) = e(g, g)x. The public key is pk := (PP, X0, X1, XT )
and the secret key is sk := X.

2. SignBB(sk,m): Choose a random t← Zp. Set σ := (sk · (X0 ·Xm
1 )t, gt).

Output the signature σ.

3. VerifyBB(pk,m, σ): Let σ = (σ1, σ2) ∈ G2. Output the bit b = 1 (valid)
if XT ? e(σ2, X0 ·Xm

1 ) = e(σ1, g). Otherwise output b = 0 (invalid).

Theorem 3.1. The signature scheme ΠBB is EUF-CMA secure in the generic
bilinear group model.

Proof. Let A be a q-query adversary that can break the security of ΠBB. By
a q-query adversary we mean that A can make totally at most q group oracle
and signing oracle queries. Let qO be the total number of calls to the group
oracles O, OT and Oe, and qΩ correspond to the number of calls to the signing
oracle. We have qO + qΩ ≤ q.
As is typical for proofs in the generic group model, we bound the advantage
of A against ΠBB by the success probability of A in the following game G
simulated by the challenger B (see [Sho97, Mau05, BB08]). B simulates the
EUF-CMA experiment in the näıve way. B answers the signature queries in
a straightforward manner, and simulates the bilinear generic group oracles
by maintaining a list of pairs (for each group) that represents the relation
among the group elements output by group oracles or guessed by A, and their
corresponding encodings. We then argue that a forgery cannot be computed
(as a “linear combination”) from the group elements known to A (cf. Lemma
3.1), except with negligible probability.

Game G : Let X, X0, X1, {Ti : 1 ≤ i ≤ qΩ}, {Ui : 1 ≤ i ≤ qg, 0 ≤
qg ≤ 2(qO + 1)} and {Vi : 1 ≤ i ≤ qgT , 0 ≤ qgT ≤ 2qO} be indetermi-
nates, and {mi : 1 ≤ i ≤ qΩ} be elements of Zp chosen by A. Intuitively,
these indeterminates correspond to randomly chosen group elements in ΠBB,
or more precisely their discrete logarithms. The indeterminates X, X0, X1

correspond to the quantities x, x0, x1, respectively. Note that A might query
the group oracles with representations (bit-strings) not previously obtained
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from the group oracles. In order to accommodate this case we introduce the
indeterminates Ui, Vi. The Ui (1 ≤ i ≤ qg) correspond to the elements of G,
whereas Vi (1 ≤ i ≤ qgT ) correspond to the elements of GT . We denote the
lists {Ti : 1 ≤ i ≤ qΩ}, {Ui : 1 ≤ i ≤ qg} and {Vi : 1 ≤ i ≤ qgT } by {T},
{U} and {V}, respectively.

B maintains two lists of pairs

L = {(F1,i , ξ1,i) : 1 ≤ i ≤ τ1}, (3.3)

LT = {(FT,i , ξT,i) : 1 ≤ i ≤ τT }, (3.4)

such that, at step τ (0 ≤ τ ≤ qO) in the game,

τ1 + τT = τ + 2qΩ + qg + qgT + 4. (3.5)

The entries F1,i ∈ Zp[X,X0,X1, {U}, {T}], FT,i ∈ Zp[X,X0,X1, {U}, {V}, {T}]
are multivariate polynomials over Zp, whereas ξ1,i, ξT,i are bit-strings in the
encoding sets Ξ (of G) and ΞT (of GT ), respectively. Intuitively, the polyno-
mials in lists L and LT correspond to elements of G and GT , respectively, that
A will ever be able to compute or guess. In order to simplify the description,
we view Zp[X,X0,X1, {U}, {T}] as a subring of Zp[X,X0,X1, {U}, {V}, {T}].
Initially, τ = 0, τ1 = 2qΩ + qg + 3, τT = qgT + 1,

L = { (1, ξ1,1), (X0, ξ1,2), (X1, ξ1,3), {(Ui, ξ1,i+3) : 1 ≤ i ≤ qg},
{(X + (X0 +miX1)Ti, ξ1,2i+qg+2), (Ti, ξ1,2i+qg+3) : 1 ≤ i ≤ qΩ}

}
,

LT = { X, {(Vi, ξT,i+1) : 1 ≤ i ≤ qgT } } .

The bit-strings ξ1,i, ξT,i are set to random distinct strings from Ξ and ΞT ,
respectively. We assume that there is some ordering (say, lexicographic or-
dering) among the strings in the sets Ξ and ΞT , so that given a string ξ1,i or
ξT,i, it is possible to determine its index in the lists, if it exits.

The initial state of the two lists correspond to the group elements that A gets
as input as part of the public parameters and the signatures obtained by A
on the messages mi of its choice.

Remark 3.1 We have assumed above that the adversary will obtain at once
(non-adaptively) all the signatures on the messages of its choice, right at the
beginning of the game. This is w.l.o.g. since B provides A a pair of distinct
encodings (in Ξ) as signature for every signature query. Hence A does not
get any added advantage if it is allowed to make signature queries adaptively.
Note that this assumption is made only to simplify the description of the
proof.

As previously mentioned, the polynomials Ui, Vi correspond to the group
elements that A will guess in the actual interaction. Even in this case we
can assume w.l.o.g. that the guesses are made non-adaptively. Since A can
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query the group oracles with at most two new (guessed) elements and since
it may also output at most two new elements from G as its forgery, we have
qg+qgT ≤ 2qO+2. Hence (3.5) can be simplified as (assuming qΩ ≥ 6, without
loss of generality)

τ1 + τT ≤ qO + 2qΩ + 2qO + 2 + 4 ≤ 3(qO + qΩ) ≤ 3q. (3.6)

The game begins by B providing A with the initial τ1 strings ξ1,1, . . ., ξ1,τ1

from L, and τT strings ξT,1, . . ., ξT,τT from LT .

Group operation: The calls made by A to the group oracles O and OT
are modeled as follows. For group operations in G, A provides B with two
operands (bit-strings) ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L and also specifies whether
to multiply or divide them. B answers the query by first incrementing the
counters τ1 := τ1 + 1 and τ := τ + 1, and provides A with the polynomial
F1,τ1 := F1,i ± F1,j . If F1,τ1 = F1,k for some k < τ1, then B sets ξ1,τ1 := ξ1,k.
Otherwise, ξ1,τ1 is set to a random string distinct from those already present
in L. Also the pair (F1,τ1 , ξ1,τ1) is appended to L. Note that the (total) degree
of the polynomials F1,i in L is at most two. Similarly, group operations in GT

are answered, appropriately updating the list LT and the counters τT and τ .

Pairing: For a pairing operation, A queries B with two operands ξ1,i, ξ1,j

(1 ≤ i, j ≤ τ1) in L. B first increments τT := τT + 1 and τ := τ + 1, and
then computes the polynomial FT,τT := F1,i · F1,j . Again, if FT,τ1 = FT,k for
some k < τT , then B sets ξT,τT := ξT,k. Otherwise, ξT,τT is set to a random
string distinct from those already present in LT . Also the pair (FT,τT , ξT,τT )
is appended to LT . The degree of the polynomials FT,i in LT is at most four.

WhenA terminates it outputs (m, (ξ1,α1 , ξ1,α2)) ∈ Zp×L×L (1 ≤ α1, α2 ≤ τ1).
This corresponds to the “forgery” output by A in the actual interaction. Let
the polynomials corresponding to ξ1,α1 and ξ1,α2 in L be F1,α1 and F1,α2 ,
respectively. After A terminates, B computes the polynomial

F1,σ := X + F1,α2(X0 +mX1)− F1,α1 . (3.7)

Note that the degree of F1,σ is at most three. Next, B chooses random values
x, x0, x1, {u}, {v}, {t} ← Zp for the indeterminates X, X0, X1, {U}, {V},
{T}, respectively. Then it evaluates the polynomials in lists L and LT . A is
said to have won the game G if:

1. F1,i(x, x0, x1, {u}, {t}) = F1,j(x, x0, x1, {u}, {t}) in Zp, for some two poly-
nomials F1,i 6= F1,j in L.

2. FT,i(x, x0, x1, {u}, {v}, {t}) = FT,j(x, x0, x1, {u}, {v}, {t}) in Zp, for some
two polynomials FT,i 6= FT,j in LT .

3. F1,σ(x, x0, x1, {u}, {t}) = 0 in Zp, and m 6= mi ∀i, i = 1, . . . , qΩ.

This completes the description of the game G.
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We claim that the success probability of A in the actual EUF-CMA game is
bounded above by its success probability in the above game G. This is because
of the following reasons (also observed in the proof of Theorem 2.3):

– The conditions 1 and 2 above ensure that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable to
cause collisions among group elements. As long as these two conditions
are not satisfied, then the view of A is identical in the game G and
the actual interaction. Hence if A is unable to provoke collisions, then
adaptive strategies are no more powerful than non-adaptive ones (for
more details, we refer to [Mau05, Lemma 2 on pp. 12], also [Sho97]). This
observation allows us to choose group elements and their representations
independently of the strategy of A. Hence A specified the messages mi

at the beginning of the game G and also obtained the corresponding
signatures (cf. Remark 3.1). For the same reason, it also decided at
the beginning itself on the representations it would guess. Note that the
assumption that A would a priori decide the representations it would
guess is only to simplify the description of the proof and it is not an
inherent limitation.

– The condition 3 above ensures that the pair (ξ1,α1 , ξ1,α2) is a valid forgery
on a distinct message m.

We now compute the success probability ofA in the game G. The τ1 polynomi-
als F1,i in L have degree at most two. Note that F1,i 6= F1,j ⇔ F1,i−F1,j 6= 0 as
polynomials. From Lemma 2.3 (with λ′ = 0), the probability that two distinct
polynomials in L evaluate to the same value for randomly and independently
chosen values for the indeterminates is at most 2

p . Summing up over at most(
τ1
2

)
distinct pairs (i, j), the probability that the condition 1 above holds is at

most
(
τ1
2

)
· 2
p . Similarly, we have the probability that the condition 2 above

holds is at most
(
τ2
2

)
· 4
p . The degree of the polynomial F1,σ in condition 3 is

at most three. In order to apply Lemma 2.3, we need to prove that Fσ is not
identically equal to the zero polynomial. We prove this fact in Lemma 3.1
below. Let PrforgeA,ΠBB

denote the advantage of the adversary A in computing a
forgery against ΠBB. Then, assuming Lemma 3.1, we obtain from (3.6)

PrforgeA,ΠBB
≤
(
τ1

2

)
· 2

p
+

(
τ2

2

)
· 4

p
+

3

p
≤ 2

p
(τ1 + τ2)2 ≤ 18q2

p
. (3.8)

Hence if q = poly(log p), then PrforgeA,ΠBB
is negligible.

Lemma 3.1. The polynomial F1,σ ∈ Zp[X,X0,X1, {U}, {T}] is non-zero.

Proof. Any polynomial in L is obtained by either adding or subtracting two
polynomials previously existing in the list. Hence we can write F1,α1 and F1,α2

in terms of polynomials present in L when it was was initialized at step τ = 0
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in the game G. Note that initially L also includes the representations guessed
by A, in addition to the inputs.

F1,α1 = c1 + c2X0 + c3X1 +
∑qg

i=1 c4,iUi +
∑qΩ

i=1 c5,iTi

+
∑qΩ

i=1 c6,i(X + (X0 +miX1)Ti), (3.9)

F1,α2 = d1 + d2X0 + d3X1 +
∑qg

i=1 d4,iUi +
∑qΩ

i=1 d5,iTi

+
∑qΩ

i=1 d6,i(X + (X0 +miX1)Ti), (3.10)

where cj , dj(j = 1, 2, 3), cj,i, dj,i(j = 4, 5, 6; 1 ≤ i ≤ qΩ) ∈ Zp are chosen by A.
We have two possible cases:

Case 1: c6,i = d6,i = 0 ∀i, 1 ≤ i ≤ qΩ.

In this case, both F1,α1 and F1,α2 do not contain the indeterminate X. Hence
the expression F1,α2(X0 + mX1) − F1,α1 in (3.7) is free of X. Therefore, in
the polynomial X + F1,α2(X0 + mX1) − F1,α1 , the coefficient of the term X is
non-zero. Hence F1,σ is non-zero.

Case 2: c6,k 6= 0 or d6,k 6= 0 for some k, where 1 ≤ k ≤ qΩ.

On substituting expressions from (3.9) and (3.10) into (3.7), we get that the
coefficient of monomials X2

0Ti, X0Ti, X1Ti in F1,σ are d6,i, d5,i − c6,i, m d5,i −
mic6,i, respectively, for 1 ≤ i ≤ qΩ.

If d6,k 6= 0, then the coefficient of X2
0Tk is non-zero, and hence F1,σ 6= 0.

Else, c6,k 6= 0. We again have two cases: If d5,k 6= c6,k, then the coefficient
of X0Tk is non-zero. Or else, if d5,k = c6,k, then the coefficient of X1Tk is
non-zero, since m 6= mi ∀i, i = 1, . . . , qΩ. Hence in all cases we have F1,σ to
be a non-zero polynomial.

3.4 A Leakage-Resilient Boneh–Boyen Signature Sc-
heme

As previously mentioned in Section 3.2.1, any cryptographic scheme that does
not maintain a stateful secret state is insecure against continual leakage. So is
the case with the signature scheme ΠBB. We now describe a leakage-resilient
version Π∗BB of ΠBB. We follow the techniques of [KP10a] to adapt ΠBB to
a leakage setting. The basic idea is to store the secret key X = gx in two
different parts of the memory as (S0 := gl0 , S′0 := gx−l0) for a randomly
chosen l0 ← Zp. Accordingly, the KeyGenBB step of ΠBB is modified to obtain
the set-up stage KeyGen∗BB of Π∗BB. The signature generation is now carried
out as a two step process Sign∗BB1 and Sign∗BB2. During the ith signature
query, the two parts of the secret key (Si−1, S

′
i−1) are refreshed to obtain

(Si := Si−1 · gli , S′i := S′i−1 · g−li), where li ← Zp. This is done in order to
protect against continual leakage.
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Let Π∗BB = (KeyGen∗BB,Sign∗BB1,Sign∗BB2,Verify∗BB) be a stateful signature sche-
me on the message space Zp defined as follows:

1. KeyGen∗BB(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose ran-
dom x, x0, x1, l0 ← Zp. Set X := gx, X0 := gx0 , X1 := gx1 and
XT := e(g,X) = e(g, g)x. The public key is pk := (PP, X0, X1, XT )
and the secret key is sk∗ := (S0 := gl0 , S′0 := gx−l0 = X · g−l0) ∈ G2.

2. Sign∗BB1(Si−1,mi): Choose random ti, li ← Zp. Set Si := Si−1 · gli ,
σ′1,i := Si · (X0 ·Xmi

1 )ti , and σ′2,i := gti .

3. Sign∗BB2(S′i−1, (σ
′
1,i, σ

′
2,i, li)): Set S′i := S′i−1 ·g−li and σi := (S′i ·σ′1,i, σ′2,i).

Output the signature σi.

4. Verify∗BB(pk,m, σ): Let σ = (σ1, σ2) ∈ G2. Output the bit b = 1 (valid)
if XT ? e(σ2, X0 ·Xm

1 ) = e(σ1, g). Otherwise output b = 0 (invalid).

In steps 2 and 3 above, the index i keeps a count of the number of invocations
(rounds) of the signing algorithm. For every i ≥ 1, let Yi :=

∑i
j=0 lj . It is

easy to check that Si ·S′i = gYi · gx−Yi = X. We sometimes even refer to X as
the secret key.

Note that Sign∗BB1 requires four exponentiations and Sign∗BB2 requires one. The
total number of exponentiations needed for every signature invocation can be
reduced from five to four if Sign∗BB1 also passes on gli to Sign∗BB2. Hence only
one extra exponentiation is needed when compared with the SignBB step of
ΠBB, which requires three.

For the sake of clarity, we would like to compare the various notations used in
the signature scheme Π∗BB above with those in (3.1) corresponding to a generic
stateful signature scheme Π∗. The quantities ri and wi in (3.1) correspond
to (li, ti) and (σ′1,i, σ

′
2,i, li) of Π∗BB, respectively. The quantities Si, S

′
i and

mi denote the same things in both the cases. However, since the algorithm
Sign∗BB2 of Π∗BB does not generate any randomness, there is no analogue in Π∗BB

for r′i of (3.1). Accordingly, the leakage functions specified by an adversary to
the signing oracle Ωleak

(Si−1,S′i−1)(mi, fi, hi) would be of the form f i(Si−1, (li, ti))

and hi(S
′
i−1, (σ

′
1,i, σ

′
2,i, li)).

First we show that Π∗BB is secure in the GBG model when an adversary is not
allowed to obtain leakage. The following lemma is a trivial consequence of
the fact that the input/output behaviour of Π∗BB and ΠBB are identical (c.f.
Theorem 3.1).

Lemma 3.2. The signature scheme Π∗BB is EUF-CMA secure in the generic
bilinear group model.

The following theorem establishes the fact that the signature scheme Π∗BB is

resilient to (continual) leakage attacks in the GBG model if λ� log p
2 , where

λ is the leakage parameter.
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Theorem 3.2. The signature scheme Π∗BB is secure with leakage w.r.t. Def-
inition 3.2 in the generic bilinear group model. The advantage of a q-query
adversary who gets at most λ bits of leakage per each invocation of Sign∗BB1 or

Sign∗BB2 is O
(
q2

p 22λ
)

.

Proof. Let A be a q-query adversary that can break the security of Π∗BB. By
a q-query adversary A we mean that A can make totally at most q group
oracle and signing oracle queries. Let qO be the total number of calls to the
group oracles O, OT and Oe, and qΩ correspond to the number of calls to the
signing oracle. We have qO + qΩ ≤ q. In the count qO, even the group oracle
queries by leakage functions f i, hi specified by A are also included.

We first informally sketch the main ideas of the proof and then formalize
these ideas. Let us try to see why the proof of security of Π∗BB in the absence
of any leakage (i.e. proof of Theorem 3.1) would not carry over as it is
in the presence of leakage. In the non-leakage setting, while determining
the probability of collision among distinct polynomials in conditions 1-3 on
page 55, we substituted for each indeterminate an independent value chosen
from an uniform distribution over Zp. But, when A has access to leakage
functions f i(Si−1, (li, ti)) and hi(S

′
i−1, (σ

′
1,i, σ

′
2,i, li)), then from its point of

view the parameters ti (1 ≤ i ≤ qΩ) are no longer uniformly distributed
(though they are still independent). With some partial information about
ti, A can now cause collisions among polynomials with increased probability.
Since each ti is chosen independently and it can be leaked by only fi, hence
at most λ bits of ti can be leaked. Apart from the values ti, the only other
“useful” information that leakage functions can provide is about the secret
key X = gx. This is because the parameters li themselves alone do not help
A to output forgery since the signatures generated are independent of these
randomly chosen values. Instead, A can very much use the leakages of li
to compute, and eventually leak, the secret key X. Note that the leakage
functions do not provide any additional information on the values x, x0 or x1.

We first bound the probability of the event that the secret key X is computed
by some leakage function f i or hi. As long as this event has not occurred,
then no bits of the secret key is leaked and the “only” additional information
A has is about the values ti. Clearly, the probability of this event depends on
the leakage parameter λ. For instance, if the amount of leakage per invocation
is not bounded, then during the first signature query itself, the adversary can
leak the initial two shares of the secret key S0 = gl0 and S′0 = X · g−l0 to
recompute X. Finally, we determine the advantage of A conditioned on the
event of the secret key X not being computed by any of the leakage functions.

Formally, we define E to be the event of computing (or guessing) the secret
key X = gx by any of the leakage functions f i or hi (1 ≤ i ≤ qΩ). Let E
denote the complement of the event E, Forgery denote the event of A forging a
signature on a new message, and PrforgeA,Π∗BB

= Pr[Forgery] denote the advantage
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of A in computing a forgery against Π∗BB. We have

PrforgeA,Π∗BB
= Pr[Forgery|E] Pr[E] + Pr[Forgery|E] Pr[E].

Since Pr[Forgery|E], Pr[E] ≤ 1, we obtain

PrforgeA,Π∗BB
≤ Pr[E] + Pr[Forgery|E]. (3.11)

We first bound the probability of the event E.

Lemma 3.3. Pr[E] ≤ O
(
q2

p 22λ
)

.

Proof. Let the adversary A play the following game G′. Since the game G′ is
similar in nature to the game G in the proof of Theorem 3.1, we only briefly
describe G′. We use the notations introduced in the game G. Let {L} denote
the list of indeterminates {Li : 1 ≤ i ≤ qΩ} that correspond to the values li
in Π∗BB.

Game G′: For every leakage function f i(Si−1, (li, ti)) and hi(S
′
i−1, (σ

′
1,i, σ

′
2,i, li

)), A builds lists Lfi and Lhi , respectively. These lists contain polynomial-
bit string pairs. The polynomials are from Zp[X,X0,X1, {U}, {T}, {L}] and
the bit-strings are from the encoding set Ξ of the group G. Intuitively, the
polynomials in lists Lfi and Lhi correspond to the elements of group G that
can be computed by fi and hi, respectively. Every polynomial in Lfi is of the
form

c1,iLi + c2,i

i−1∑
j=0

Lj + c3,iDi, (3.12)

where c1,i, c2,i, c3,i ∈ Zp are chosen by A and Di ∈ Zp[X,X0,X1, {U}, {T}] is
in the list L (c.f. (3.3)). Every polynomial in Lhi is of the form

d1,iLi + d2,i

X−
i−1∑
j=0

Lj

+ d3,i

 i∑
j=0

Lj

+ (X0 +miX1)Ti

+ d4,iWi,

(3.13)
where d1,i, d2,i, d3,i, d4,i, mi ∈ Zp are also chosen by A and Wi ∈ Zp[X,
X0,X1, {U}, {T}] is in the list L.

When A terminates it outputs a polynomial F from the list Lfi or Lhi , for
some i. Intuitively, the polynomial F output by A corresponds to its guess of
the secret key X. A is said to have won the game G′ if

1. There is a collision in any of the lists Lfi and Lhi , for some i (1 ≤ i ≤ qΩ).

2. F− X = 0 in Zp.



3.4 A Leakage-Resilient Boneh–Boyen Signature Scheme 61

Note that the polynomials are now evaluated with values chosen from inde-
pendent distributions with min-entropy log p−2λ. The reason for this will be
shortly explained. This completes the description of the game G′.

Technically speaking, A must also maintain lists LfiT and LhiT (1 ≤ i ≤ qΩ)
that correspond to elements of the group GT that can be computed by fi and
hi. To simplify the discussion, we only describe collisions in the lists Lfi and
Lhi . Similar arguments apply for the lists LfiT and LhiT . Since we compute
Pr[E] only up to a constant factor, the additional advantage A obtains from

collisions in LfiT and LhiT is implicitly included. However, working on the lines
of the proof of Theorem 3.1, it is relatively straightforward to completely
formalize the present discussion.

For similar reasons as given in the proof of Theorem 3.1, we have Pr[E] is
bounded above by the success probability of A in the above game G′. We
particularly like to note the following. As observed in [AM11, pp. 691] and
the references therein, even in the leakage setting adaptive strategies are no
more powerful than non-adaptive ones.

Before computing the success probability of A, we first show that F − X is a
non-zero polynomial. From Lemma 3.2 and Theorem 3.1, we know that Π∗BB

is secure without leakage. Hence the polynomial X (that corresponds to the
secret key) cannot appear in the list L, because this would otherwise imply
that the secret key can be computed without access to leakage functions. A
formal proof for this fact can be easily obtained on the lines of the proof of
Lemma 3.1. Hence even when c1,i = c2,i = 0 in (3.12), the lists Lfi cannot
contain the polynomial X. If c1,i 6= 0 or c2,i 6= 0, then the polynomial in (3.12)
will contain either Li or Li−1, or both. Hence the polynomial X cannot appear
in any of the lists Lfi . In a similar way it can be seen that the lists Lhi do
not contain X. Hence F− X is a non-zero polynomial of degree at most two.

Let us now determine the probability that the condition 1 above holds, i.e.
the probability of collisions among distinct polynomials in any of the lists Lfi
and Lhi . In order to compute the probability, we evaluate the polynomials
in (3.12) and (3.13) by choosing values from Zp according to (independent)
distributions with min-entropy at least log p − 2λ. This is because A can
obtain at most 2λ bits of leakage about li (i = 0, . . . , qΩ), and at most λ bits
of ti (i = 1, . . . , qΩ). From Lemma 2.1, the values li, ti have min-entropy
at least log p − 2λ in the view of A. The total length of the lists Lfi , Lhi
is at most O(qΩ + qO) = O(q). Hence there can be at most O(q2) pairs of
distinct polynomials (of degree at most two) evaluating to the same value.

From Lemma 2.3 (with λ′ = 2λ), we obtain Pr[E] ≤ O
(
q2

p 22λ
)
. Since F− X

is a non-zero polynomial of degree at most two, the probability that F − X
evaluates to zero is at most 2

p22λ. This probability is also implicitly included
in the above bound.
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We now determine the probability Pr[Forgery |E] in (3.11).

Lemma 3.4. Pr[Forgery |E] ≤ 18q2

p
2λ.

Proof. Given that the event E has not occurred, the only meaningful leakage
A can now obtain is that of ti (i = 1, . . . , qΩ). Since at most λ bits of ti can
leak (only by fi), from the view point of A the values ti have min-entropy at
least log p − λ. From Lemma 2.3 (with λ′ = λ), the probability of collision
among distinct polynomials in conditions 1-3 on page 55 is now increased by

a factor of 2λ. Hence, from (3.8), we obtain Pr[Forgery |E] ≤ 18q2

p 2λ.

From (3.11) and Lemmas 3.3 and 3.4, we have PrforgeA,Π∗BB
≤ O

(
q2

p
22λ

)
. This

completes the proof of Theorem 3.2.

3.5 Conclusion and Future Directions

In this chapter, we proposed a leakage-resilient Boneh–Boyen signature scheme
in the continual split-state leakage model that tolerates approximately half the
bits of (a share of) the secret key at every invocation. We proved the secu-
rity of our construction in the generic bilinear group model. To generate a
signature, the number of exponentiations needed in the pairing base group is
four (cf. Section 3.4). Hence we require only one extra exponentiation com-
pared to the original Boneh–Boyen signature scheme. We also observed that
the Boneh–Boyen signature scheme is existentially unforgeable in the GBG
model, whereas it is only known to be selectively unforgeable in the standard
model.

It seems that our results readily extend to the min-entropy leakage model of
Chapter 2. Also it appears straightforward to extend our results to the full
Boneh–Boyen identity-based encryption scheme. We also expect it to be fully
secure (against adaptive identity attacks) in the GBG model, while it is only
known to be secure against selective identity attacks in the standard model.

An interesting direction would be to obtain efficient leakage-resilient signature
schemes that tolerate continual leakage in the full memory leakage model
where the entire secret state is input to the leakage functions. With the
current techniques we expect that such schemes, if they exist, can possibly be
proven secure only in an idealized model of computation, such as the generic
group model or the random oracle model.



Chapter 4

Split-State Pairing-based
Schnorr Signature Scheme

In this chapter, we propose a pairing analogue of the classical Schnorr sig-
nature scheme. We next transform it to include split signing key updates,
similar to what was done in the earlier chapters. We give a leakage-resilience
bound in the generic bilinear group model against continual split-state leakage
attacks for the new scheme. Our scheme tolerates leakage of almost half of
the bits of the secret key at every new signature invocation. The secret key’s
storage space is constant and it is uniquely determined by the public key, the
properties also enjoyed by schemes in the previous chapters.

Contents
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4.3 A Leakage-Resilient Pairing-based Schnorr Signa-
ture Scheme . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Conclusion and Future Directions . . . . . . . . . 75

4.1 Introduction

We aim at building a signature scheme secure against continual leakage in
the split-state model that builds on the Schnorr signature scheme [Sch91].
Apart from being of possible interest to the cryptographic engineering com-
munity due to its efficiency, it exhibits certain properties of theoretical interest
as well. Notice that several works [Kat09, ADW09, FKPR10] have already
built leakage-resilient signature schemes based on Schnorr. All of these works
confirm the finding by Wichs [Wic13], who seems to indicate that it might
be impossible to achieve continual leakage-resilience for cryptosystems whose
secret key is uniquely determined by its public key, unless we weaken the se-
curity model. All the above mentioned schemes are built by gluing together
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several copies of the basic Schnorr signature scheme (a technique that was
first used by Okamoto [Oka92]), and thus given its public key there are expo-
nentially many possible secret keys. The works [Kat09, ADW09] only allow a
bounded leakage during the life-time of the protocol, although in their model
every part of the memory is susceptible to leak (as opposed to the split-state
model); the work [FKPR10] uses the split-state model and allows roughly
1/36 leakage ratio at every signing step, but the number of signature queries
is bounded in advance. Our goal is to provide a Schnorr-like signature scheme
where the secret key material to be stored is constant at any time, since in
the aforementioned works the secret keys’ storage is proportional to the leak-
age ratio allowed. In particular we propose a scheme where the secret key
is uniquely determined by its public key, the secret key consists of only two
group elements at any given time and it is unforgeable even if the number of
adversarial signature queries is not known in advance.

From the results of Section 2.1, we see that there are attacks (in the contin-
ual split-state leakage model) for the split-secret key variant of the original
Schnorr scheme instantiated over any cryptographic group G where the dis-
crete logarithm problem is assumed to be hard. This is why we state our theo-
rems with respect to a transposition of the modified Schnorr signature scheme
to pairing groups, where the secret key is no longer x ∈ Zp but X = gx ∈ G,
where G is the base pairing group with e : G×G→ GT . This allows us to use
the generic bilinear group (GBG) model that will ease our analysis. We pro-
ceed by first showing that our transposition of the Schnorr signature scheme to
pairing groups is existentially unforgeable [GMR88] in the GBG model. This
is achieved by showing that the security reduction in the generic group model
[Sho97] for elliptic-curve based Schnorr signatures recently given by Neven,
Smart and Warinschi [NSW09] can be translated to the GBG and allows to
deal with data leakage. Secondly, we modify the pairing-based Schnorr scheme
by multiplicatively sharing X = X1 ·X2, where X1, X2 ∈ G, and by breaking
the signing scheme into two phases, each one using the corresponding share
X1 or X2. Again, at each new signature invocation a fresh sharing (X ′1, X

′
2)

of X is computed. Our main theorem (Theorem 4.2) states that allowing λ
bits of leakage at each phase of every round overall decreases the security of
the scheme by a factor of at most 22λ in our leakage model, which is the same
as the one used in Chapter 3. Also, our Schnorr-like scheme has efficiency
comparable to that of our scheme from Chapter 3.

In Section 4.2, we introduce a bilinear variant of the Schnorr signature scheme
and prove its security (without leakage) in the GBG model. In Section 4.3,
we split the secret state of the bilinear Schnorr scheme and prove its leakage
resilience under continual split-state leakage in the GBG model.

4.2 Basic Pairing-based Schnorr Signature Scheme

We propose a bilinear variant of the Schnorr signature scheme [Sch89, Sch91].
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Let H : {0, 1}∗ → Zp be a hash function. The signature scheme ΠSc =
(KeyGenSc, SignSc, VerifySc), defined on the message space {0, 1}∗, is as follows:

1. KeyGenSc(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose ran-
dom x ← Zp. Set X := gx, gT := e(g, g), and XT := e(g,X) = gxT . The
public key is pk := (PP, XT ,H) and the secret key is sk := X.

2. SignSc(sk,m): Choose a random t← Zp. Set γ := H(gtT ||m), Y := gt ·Xγ

and σ := (Y, γ). Output the signature σ.

3. VerifySc(pk,m, σ): Let σ = (Y, γ) ∈ G × Zp. Set ρ := e(Y, g) ? (gxT )−γ .
Output the bit b = 1 (valid) if H(ρ||m) = γ. Otherwise output b = 0
(invalid).

We now prove the security of the above scheme in the GBG model relative to
two hardness assumptions about the hash function H that were introduced in
[NSW09], and which are recalled below. These two assumptions are weaker
than collision-resistance [NSW09]. We adapt the proof techniques of [NSW09]
to the bilinear setting.

Definition 4.1. [Random-Prefix (Second-) Preimage problem [NSW09]] The
advantage of an adversary A in solving the Random-Prefix Preimage ( RPP)
problem (respectively, Random-Prefix Second-Preimage ( RPSP) problem) for
a hash function H : {0, 1}∗ → Zp, with prefix in a set of bit-strings D, is given
by

Adv
RPP[D]
H (A) = Pr [H(R||m) = γ : γ ← A, randomR← D, m← A(R)] ,

Adv
RPSP[D]
H (A) = Pr

[
H(R||m) = H(R||m′) : m← A, randomR← D,

m′ ← A(R), m′ 6= m
]
,

where the probability is taken over R and the coins of A. The RPP problem
(respectively, RPSP problem) for H is said to be (t, ε) hard if no adversary A
with running time at most t has advantage greater than ε in solving it.

Theorem 4.1. The signature scheme ΠSc is EUF-CMA secure in the generic
bilinear group model if the RPP[ΞT ] and RPSP[ΞT ] problems are hard for H.

Proof. Let A be a (Γ-time, q-query) adversary that can break the security of
ΠSc. Hence A can make totally at most q group oracle, pairing oracle and
signing oracle queries, and runs in time at most Γ. Let qO denote the total
number of calls to the oracles O, OT and Oe, and qΩ denote the number of
calls to the signing oracle ΩSc. Thus qO + qΩ ≤ q.
PrforgeA,ΠSc

denote the advantage of the adversary A in computing a forgery
against ΠSc. Also let RPP[ΞT ] and RPSP[ΞT ] problems be (Γ′, εRPP)- and
(Γ′, εRPSP)-hard for the hash function H. We show that

PrforgeA,ΠSc
≤ 2q · εRPSP + 36q2 · εRPP +

15q2

p
+

108q3

p



66 Split-State Pairing-based Schnorr Signature Scheme

for any (Γ-time, q-query) adversary A in the GBG model, where Γ′ ≈ Γ. More
precisely, Γ′ is the sum of Γ and the time required by simulator to maintain
the environment.

The main idea is to use A to construct an adversary B that solves both the
RPP[ΞT ] and the RPSP[ΞT ] problems for the hash function H. B will simulate
EUF-CMA experiment for A in the naive way, through the game G that
we later describe below. In the game, B also simulates the generic bilinear
group oracles in the usual way by maintaining lists of pairs of encodings
and polynomials that represent the relation amongst group elements. Let C
be a challenger trying to prove the hardness of both the RPP[ΞT ] and the
RPSP[ΞT ] problems for H against B.

There are only two possibilities for A to output a forgery:

1. A uses a signature previously obtained to output a forgery (on a distinct
message).

2. A does not output a previously obtained signature as a forgery.

Note that in a forgery of type 1, the “random prefix” for the hash function
input (during verification) is the same as that for the corresponding previously
obtained signature. In this case B will attempt to solve the RPSP[ΞT ] problem
for H. There are two issues that B needs to address in this case to solve
the RPSP problem. First, it must correctly guess at the beginning of the
simulation when A outputs a forgery of type 1 (and accordingly inform C
that it attempts to solve the RPSP problem). Secondly, B needs to guess a
priori which one of the previous signatures will A use for the forgery. Then
during that step B needs to forward the corresponding message to the (now
RPSP) challenger C to obtain a random prefix as part of its RPSP challenge.
This random prefix will be used as the encoding of the corresponding element
gtT during the above signing step. B solves the RPSP problem by forwarding
to its (now RPSP) challenger C the forged message output by A. Note that
the probability that B will succeed in both the guesses is at least 1

2q .

In the case of forgery of type 2, B will attempt to solve the RPP[ΞT ] problem
for H. Again, B must first guess correctly when this type of forgery occurs (and
accordingly inform C that it attempts to solve the RPP problem). Secondly, B
must commit to a value γ to obtain a random prefix R ∈ ΞT as part of a RPP
challenge. Eventually when A outputs a forgery on a (distinct) message m, it
must turn out that the encoding of the “corresponding gtT ” must be R and that
H(R||m) = γ. The tricky question is how to commit to the value γ before
seeing R and m? We overcome this problem by assuming that A executes
the verification algorithm VerifySc(·) before outputting its forgery (Y, γ), as
done in [NSW09]. This is w.l.o.g. because for every adversary that does not
verify its forgery, we can build an adversary that has the same advantage but
verifies its attempted forgery. This step guarantees that the elements Y ∈ G
and gtT ∈ GT appears as outputs of group oracles, with Y appearing before
gtT . We bound the probability that Y appears later than gtT to be εRPP.
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Hence B simply needs to guess a priori which group oracle query outputs
gtT . During this step, B recovers the value of γ using the coefficients of the
polynomials representing Y and gtT , as explained in (4.5) and proved in Lemma
4.1. Note that B also needs to guess a priori which element will be output
as Y . B forwards the value of γ to the (now RPP) challenger C and obtains
the random prefix R, which it uses as the encoding of gtT . Note that the
probability that B will succeed in all the three guesses is at least 1

2(3q)2 , where

we later show that the number of elements to choose from is at most 3q in both
the cases. We would like to note that recovering γ in the proof of [NSW09] (for
the original Schnorr signature scheme) is easier than in the bilinear setting.
This is because in [NSW09] it involved guessing an element in only one list
and the polynomials involved are all binomials.

We now formally describe the game G. The description of the group oracles
is typical for proofs in the generic group model (see [Sho97, Mau05, BB08,
GV12]).

Description of Game G: Initially, B will choose a random bit βC
$← {0, 1}.

This bit decides which of the two problems RPSP (if βC = 0) or RPP (if
βC = 1) will B attempt to solve using the forgery output by A. If βC = 0,

then B randomly chooses i∗
$← {1, . . . , q}, else it randomly chooses i∗, j∗

$←
{1, . . . , 3q}. The quantity i∗ indicates the step in which B interacts with C
to obtain a random prefix ξT,i∗ ∈ ΞT . This step may be a signature query
(if βC = 0) or a group oracle query to OT (if βC = 1). More on this will
be discussed later when describing the simulation of signature queries and
queries to the group oracle OT .

Let X, {Ti : i ≥ 1}, {Ui : i ≥ 1} and {Vi : i ≥ 1} be indeterminates, and
{mi : i ≥ 1} be bit-strings (messages) that are chosen by A. Intuitively, these
(or other) polynomials represent the relation amongst the group elements
that are output by a group oracle, or guessed by A. The indeterminate X
corresponds to the quantity x (discrete logarithm of the secret key), whereas
Ti corresponds to the parameter ti chosen in the ith signing step (1 ≤ i ≤ qΩ).
Since A can query the group oracles with representations (from Ξ and ΞT )
not previously obtained from the group oracles, in order to accommodate
this case, we introduce the indeterminates Ui, Vi. The Ui correspond to the
guessed elements of G, whereas Vi correspond to the guessed elements of GT .
We denote the lists {Ti : i ≥ 1}, {Ui : i ≥ 1} and {Vi : i ≥ 1} by {T}, {U}
and {V}, respectively.

B maintains three lists of pairs

L = {(F1,i , ξ1,i) : 1 ≤ i ≤ τ1}, (4.1)

LT = {(FT,i , ξT,i) : 1 ≤ i ≤ τT }, (4.2)

LΩ = {(mi , ξΩ,i , γi) : 1 ≤ i ≤ τΩ}. (4.3)

The entries F1,i ∈ Zp[X, {U}, {T}], FT,i ∈ Zp[X, {U}, {V}, {T}] are multivariate
polynomials over Zp, whereas ξ1,i, ξΩ,i, and ξT,i are bit-strings in the encoding
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sets Ξ (of G), Ξ, and ΞT (of GT ), respectively. We have mi ∈ {0, 1}∗ and
γi ∈ Zp. The polynomials in lists L and LT correspond to elements of G and
GT , respectively, that A will ever be able to compute or guess. The list LΩ

records the signatures obtained by A on the messages mi of its choice. The
values τ1, τT and τΩ denote the respective list counters.

Initially, τ1 = 1, τT = 1, τΩ = 0, L = { (1, ξ1,1) }, LT = { (X, ξT,1) }, and
LΩ = {}. The bit-strings ξ1,1, ξT,1 are set to random distinct strings from
Ξ and ΞT , respectively. We assume that there is some ordering among the
strings in the sets Ξ and ΞT (say, lexicographic ordering), so that given a
string ξ1,i or ξT,i, it is possible to efficiently determine its index in the lists, if
it exists. The initial state of the lists L and LT correspond to the generator
of G and the public key, respectively.

The game begins by B providing A with the string ξ1,1 from L, and the string
ξT,1 from LT .

Signature Query: Signature queries by A are modeled as follows. A pro-
vides a message mτΩ ∈ {0, 1}∗ of its choice to B. In response B first increments
the counters τ1 := τ1 +1, τT := τT +1 and τΩ := τΩ +1, and sets FT,τT := TτΩ .

– (RPSP Challenge) If βC = 0 and i∗ = τΩ, then B passes on mτΩ to
C to obtain a random prefix ξT,i∗ ∈ ΞT as part of an RPSP challenge.
If ξT,i∗ is already present in LT , then B completes the RPSP challenge
with C by returning arbitrary values, after A terminates. Denote this
event by Abort. Else B sets ξT,τT := ξT,i∗ .

– Else if βC 6= 0 or i∗ 6= τΩ, then B sets ξT,τT to a random string distinct
from those already present in LT .

Append LT with (FT,τT , ξT,τT ). B computes γτΩ := H(ξT,τT ||mτΩ), sets F1,τ1 :=
TτΩ +γτΩX, sets ξ1,τ1 to a random distinct string, appends L with (F1,τ1 , ξ1,τ1),
sets ξΩ,τΩ := ξ1,τ1 , and appends LΩ and provides A with (mτΩ , ξΩ,τΩ , γτΩ).

Group Operation of G: The calls made byA to the group oracleO are mod-
eled as follows. For group operations in G, A provides B with two operands
(bit-strings) ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L and also specifies whether to mul-
tiply or divide them. B answers the query by first incrementing the counter
τ1 := τ1 + 1, and computes the polynomial F1,τ1 := F1,i ± F1,j . If F1,τ1 = F1,k

for some k < τ1, then B sets ξ1,τ1 := ξ1,k. Otherwise, ξ1,τ1 is set to a random
string distinct from those already present in L. The pair (F1,τ1 , ξ1,τ1) is ap-
pended to L and B provides A with ξ1,τ1 . Note that the (total) degree of the
polynomials F1,i in L is at most one.

If A queries O with an encoding ξ not previously output by the oracle, then A
increments the counter τ1 := τ1 + 1, sets ξ1,τ1 := ξ, and sets F1,τ1 := Uτ1 . The
pair (F1,τ1 , ξ1,τ1) is appended to L. This step is carried out for each guessed
operand.

Group Operation of GT : The group oracle OT is modeled similar to O,
instead appropriately updating the counter τT , and appending the list LT
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with the output (FT,τT , ξT,τT ). B provides A with ξT,τT . For guessed operands
in GT , a new variable TτT is introduced instead.

Pairing Operation: For a pairing operation, A queries B with two operands
ξ1,i, ξ1,j (1 ≤ i, j ≤ τ1) in L. B first increments τT := τT + 1, and then
computes the polynomial FT,τT := F1,i · F1,j . Again, if FT,τT = FT,k for some
k < τT , then B sets ξT,τT := ξT,k. Otherwise, ξT,τT is set to a random string
distinct from those already present in LT . The pair (FT,τT , ξT,τT ) is appended
to LT , and B provides A with ξT,τT . Note that the degree of the polynomials
FT,i in LT is at most two.

RPP Challenge: Recollect that B has earlier sampled i∗, j∗
$← {1, . . . , 3q}.

Since A makes at most qO < q group oracle queries and that in each query
A can guess at most two new elements, it is easy to see that lists L and LT
together have at most 3(qO + qΩ) ≤ 3q elements. Hence

|L|+ |LT | ≤ 3q. (4.4)

If βC = 1, then during each of the queries above the counter τT is checked
while adding an element to the list LT . If i∗ = τT , then B computes

γ∗ =

qΩ∑
i=1

aiγi − aX, (4.5)

where aX is the coefficient of X in FT,i∗ , ai is the coefficient of Ti in F1,j∗

(1 ≤ i ≤ qΩ), and γi is, as defined previously, the hash value in the ith

signature query.

If F1,j∗ does not exist, or i∗ > τT at the end of the game G, then B completes
the RPP challenge with C by returning arbitrary values. Else, B passes γ∗ ∈
Zp to C to obtain a random prefix ξT,i∗ ∈ ΞT , as part of an RPP challenge.
If FT,τT = FT,k for some k < τT and ξT,i∗ 6= ξT,k, then B completes the RPP
challenge with C by returning arbitrary values (Abort). Else, if there is no such
k but ξT,i∗ is already present in LT , then also Abort. Else B sets ξT,τT := ξT,i∗ .

If B has made right guesses for i∗ and j∗, then F1,j∗ and FT,i∗ corresponds to
the forgery and satisfy

FT,i∗ := F1,j∗ − γX, (4.6)

where γ is the hash value corresponding to the forgery. Note again that both
the polynomials exist (in case of successful forgery) because we assume that
A always verifies its attempted forgery before it is output. Lemma 4.1 below
proves that indeed γ∗ = γ. Because A has access to the oracle OT , it is easy
to see that it is not possible to recover γ from FT,i∗ alone.

Lemma 4.1. Let FT,i∗ = F1,j∗ − γX, as computed in (4.6). Let aX be the
coefficient of X in FT,i∗, and ai be the coefficient of Ti in F1,j∗ (1 ≤ i ≤ qΩ).
Also let γi be the hash value in the ith signature query. Then γ =

∑qΩ
i=1 aiγi −

aX.
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Proof. Any polynomial in L, in particular F1,j∗ , is of the form F1,j∗ = c1 +∑
i=1 c2,iUi+

∑qΩ
i=1 ai(Ti+γiX), where c1, c2,i, ai ∈ Zp are chosen by A. Hence

the lemma follows.

End of Game G: When A terminates it outputs (m, (ξ1,α , γ)) ∈ {0, 1}∗ ×
Ξ × Zp, where ξ1,α ∈ L and 1 ≤ α ≤ τ1. This corresponds to the “forgery”
output by A in the actual interaction. B simply forwards m to its challenger
C.

Let Forge denote the event of successful forgery. Next, B chooses random
values x, {u}, {v}, {t} ← Zp for the indeterminates X, {U}, {V}, {T}, respec-
tively. Then it evaluates the polynomials in lists L and LT . B will abort if:

1. F1,i(x, {u}, {t}) = F1,j(x, {u}, {t}) in Zp, for any F1,i 6= F1,j in L.

2. FT,i(x, {u}, {v}, {t}) = FT,j(x, {u}, {v}, {t}) in Zp, for any FT,i 6= FT,j in
LT .

Let Collide denote either of the above events, i.e. a collision occurring in lists
L and/or LT . This completes the description of game G and simulator B.

Analysis of PrforgeA,ΠSc
: The success probability PrforgeA,ΠSc

of A in the actual
EUF-CMA game satisfies

PrforgeA,ΠSc
≤ Pr[Forge |Collide] + Pr[Collide]. (4.7)

This is because the event Collide ensures that A will get to see only distinct
group elements in the actual interaction. In other words, A is unable to cause
collisions among group elements. As long as the event Collide does not occur,
then the view of A is identical in the game G and the actual interaction.
Hence if A is unable to provoke collisions, then adaptive strategies are no
more powerful than non-adaptive ones (see [Mau05, Lemma 2 on pp. 12],
also [Sho97]). This observation allows us to choose group elements and their
representations independently of the strategy of A.

First we bound Pr[Collide]. The τ1 polynomials F1,i in L have degree at
most one. Note that F1,i 6= F1,j ⇔ F1,i − F1,j 6= 0 as polynomials. From
Lemma 2.3 (with λ′ = 0), the probability that two distinct polynomials in
L evaluate to the same value for randomly and independently chosen values
for the indeterminates is at most 1

p . Summing up over at most
(
τ1
2

)
distinct

pairs (i, j), the probability that the condition 1 above holds is at most
(
τ1
2

)
· 2p .

Similarly, the probability that the condition 2 above holds is at most
(
τT
2

)
· 2
p .

Using (4.4) we obtain

Pr[Collide] ≤
(
τ1

2

)
· 1

p
+

(
τT
2

)
· 2

p
≤ 1

p
(τ1 + τT )2 ≤ 9q2

p
. (4.8)
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Next we bound Pr[Forge |Collide] in terms of the advantage of B against C.
Whenever A succeeds in outputting a forgery (m, (ξ1,α , γ)), there are only two
possibilities that can arise:

– (Solving RPSP Challenge) There exists an i (1 ≤ i ≤ qΩ) such
that (mi, (ξ1,α , γ)) ∈ LΩ. In other words, A uses a signature previously
obtained to output its forgery on a distinct message. Let Forge1 denote
this event. If βC = 0 and i∗ = i, then B can successfully use the forgery
to solve the RPSP[ΞT ] problem for H. This is because B will attempt
to solve the RPSP problem only when βC = 0, the probability of which
is 1

2 . Since at the beginning itself B will decide at which signing step
(step i∗) it will interact with C when βC = 0, the probability that i∗ = i
is at least 1

qΩ
> 1

q . Hence the advantage of B in solving RPSP problem

is at least 1
2qPr[Forge1 |Collide] −

(
3q
p

)
, where

(
3q
p

)
is an upper bound

on the probability that B does not Abort due to a repeated entry in
LT during RPSP challenge step. It may be noted that if B attempts
to solve the RPP problem using this type of forgery, then Abort will
occur with overwhelming probability. Therefore, Pr[Forge1 |Collide] ≤
2q · εRPSP + 6q2

p .

– (Solving RPP Challenge) The complementary event of Forge1, Forge1.
That is, A does not use a signature previously obtained to output its
forgery. Since A verifies its forgery before it is output, then there exists
some ith entry (FT,i, ξT,i) in the list LT such that H(ξT,i||m) = γ. Also
let this entry be the first occurrence of this pair in LT . If βC = 1, i∗ = i
and j∗ = α, then B can successfully use the forgery to solve the RPP[ΞT ]
problem for H. Hence the advantage of B in solving the RPP problem is

at least 1
2(3q)2 Pr[Forge1 |Collide] −

(
3q
p + εRPP

)
, where again

(
3q
p

)
is an

upper bound on the probability that B does not Abort due to a repeated
entry in LT during RPP challenge step.

The quantity εRPP appearing above is an upper bound on the probability
that the entry (FT,i, ξT,i) does not appear before (F1,α, ξ1,α). Because
FT,i = F1,α − γX (c.f. (4.6)) and that encodings are random, this means
that A is able to compute the value γ even before getting an encoding
ξT,i such that H(ξT,i||m) = γ. In other words, A has solved the RPP[ΞT ]

problem for H. Therefore, Pr[Forge1 |Collide] ≤ 36q2 · εRPP + 108q3

p .

Since Pr[Forge |Collide] = Pr[Forge1 |Collide] + Pr[Forge1 |Collide], we obtain

Pr[Forge |Collide] ≤ 2q · εRPSP + 36q2 · εRPP +
6q2

p
+

108q3

p
. (4.9)

From (4.7), (4.8) and (4.9), we have PrforgeA,ΠSc
≤ 2q · εRPSP + 36q2 · εRPP +

15q2

p + 108q3

p . Hence if q = poly(log p), then PrforgeA,ΠSc
is negligible provided

(εRPSP + εRPP) is negligible. This completes the proof of Theorem 4.1.



72 Split-State Pairing-based Schnorr Signature Scheme

4.3 A Leakage-Resilient Pairing-based Schnorr Sig-
nature Scheme

In this section, we describe a leakage-resilient variant Π∗Sc of the scheme ΠSc.
We use the techniques of [KP10a] to transform ΠSc to Π∗Sc. A major difference
between the two variants is that the secret key X = gx of ΠSc is now split into
two parts as (S0 := gl0 , S′0 := gx−l0) for a random l0 ← Zp. The two shares
reside in different parts of the memory. The key generation step KeyGen∗Sc

of Π∗Sc is obtained by suitably modifying the KeyGenSc step of ΠSc. The
signing step of Π∗Sc is also split into two steps Sign∗Sc1 and Sign∗Sc2. After every
signature query, the two shares of the secret key are randomly refreshed. This
is required because, as seen in Section 3.2.1, if the secret state is not stateful,
then the scheme cannot be secure in the presence of continual leakage.

Let H : {0, 1}∗ → Zp be a hash function. The stateful signature scheme
Π∗Sc = (KeyGen∗Sc, Sign∗Sc1, Sign∗Sc2,Verify∗Sc), defined on {0, 1}∗, is as follows:

1. KeyGen∗Sc(κ): Compute PP := (G,GT , p, e, g) ← BGen(κ). Choose ran-
dom x, l0 ← Zp. Set X := gx and XT := e(g,X) = e(g, g)x. The public
key is pk := (PP, XT ,H) and the secret key is sk∗ := (S0 := gl0 , S′0 :=
gx−l0 = X · g−l0) ∈ G2.

2. Sign∗Sc1(Si−1,mi): Choose random ti, li ← Zp. Set Si := Si−1 · gli , γi :=
H(gtiT ||mi), and Y ′i := gti · Sγii .

3. Sign∗Sc2(S′i−1, (Y
′
i , γi, li)): Set S′i := S′i−1 · g−li , Yi := Y ′i · (S′i)

γi , and
σi := (Yi, γi). Output the signature σi. .

4. Verify∗Sc(pk,m, σ): Let σ = (Y, γ) ∈ G × Zp. Set ρ := e(Y, g) ? (gxT )−γ .
Output the bit b = 1 (valid) if H(ρ||m) = γ. Otherwise output b = 0
(invalid).

The index i used above refers to the number of times the signing algorithm
has been invoked. For i ≥ 1, let Zi :=

∑i
j=0 lj . The correctness property of

Π∗Sc follows from ΠSc since Si · S′i = gZi · gx−Zi = X. The leakage functions
fi() and hi() that the adversary specifies to the signing oracle would take the
form f i(Si−1, (li, ti)) and hi(S

′
i−1, (Y

′
i , γi, li)) (cf. (3.1) and (3.2)).

The signing step of Π∗Sc requires totally six exponentiations - four for Sign∗Sc1

and two for Sign∗Sc2. This quantity can be reduced to five if gli is also passed
on from Sign∗Sc1 to Sign∗Sc2. Note that the SignSc step of ΠSc requires only
three exponentiations.

Since the input/output behaviour of Π∗Sc and ΠSc is identical, from Theorem
4.1 we obtain that Π∗Sc is secure in the GBG model in a non-leakage setting.

Lemma 4.2. The signature scheme Π∗Sc is EUF-CMA secure in the generic
bilinear group model if the RPP[ΞT ] and RPSP[ΞT ] problems are hard for H.
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The following theorem shows that Π∗Sc is resilient to continual leakage in the
GBG model if RPP[ΞT ] and RPSP[ΞT ] problems are hard for the hash func-
tion H, and λ < log p

2 − ω (log log p), where λ is the leakage parameter.

Theorem 4.2. The signature scheme Π∗Sc is secure with leakage w.r.t. Def-
inition 3.2 in the generic bilinear group model relative to the hardness of
RPP[ΞT ] and RPSP[ΞT ] problems for H. Let the RPP and RPSP problems
be (Γ, εRPP) and (Γ, εRPSP)-hard, respectively. Then the advantage of a (Γ-
time, q-query) adversary who gets at most λ bits of leakage per each invocation

of Sign∗Sc1 or Sign∗Sc2 is O
(
q2 εRPP + q εRPSP + q3

p + q2

p 22λ
)

.

Let us briefly sketch the main ideas of the proof. Working on the lines of
(4.7), the advantage of A is bounded by its success probabilities conditioned
on the event whether or not a collision has occurred in the lists consisting
of elements of G and GT . It is important to note that the proofs for the
non-leakage setting (i.e. proof of Theorem 4.1) and the leakage setting would
be the same conditioned on the fact that a collision has not occurred. The
reason is that in the event of no collision, the adversary must either solve the
RPP or the RPSP problem for the hash function in order to output a forgery
(let us recall that a solution to either the RPP or the RPSP problem implies
a collision for the hash function). Hence leakage on the secret state will not
be useful in this case. Hence the success probability of A against ΠSc and Π∗Sc

is the same in the event of no collision (that includes the event of guessing
the representations of group elements using partial information about them).

However the probability that a collision occurs in the leakage setting is in-
creased by a factor of at most 22λ. This is because when A has access to
leakage output f i(Si−1, (li, ti)) and hi(S

′
i−1, (Y

′
i , γi, li)) during ith signature

query, then in adversary’s view the parameters ti, li (i ≥ 1) are no longer
uniformly distributed even though they are still independent. Hence A can
now cause collisions among polynomials (in Conditions 1-2 on page 70) with
increased probability. Each value ti can only be leaked by fi, hence at most
λ bits of ti can be leaked. Since li appears in both f i() and hi(), at most 2λ
bits of li can be leaked.

The only useful information that the leakage functions can provide to A is
about the secret key X and the values ti. This is because the values li are
independent of the signatures generated. However A can use the leakages of
li to eventually leak X. If A is able to compute X, then it can trivially forge
a signature on a distinct message. The event of no collision, and the fact
that X is not a “linear combination” of the inputs to the leakage functions,
guarantees that A is unable to compute X.

Proof. Let A be a (Γ-time, q-query) adversary that can break the security of
Π∗Sc. Hence A can make totally at most q group oracle, pairing oracle and
signing oracle queries, and runs in time at most Γ. In the count of q, even
group oracle queries by leakage functions f i, hi (i ≥ 1) specified by A are also
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included. Let the adversary A play the game G′ described below. This game
is an extension of game G described in the proof of Theorem 4.1. To avoid
repetition, we only describe here the extensions that are not part of game G.
Let {L} denote the list of indeterminates {Li : 1 ≤ i ≤ qΩ} that correspond
to the values li in Π∗Sc.

Game G′: For each leakage function f i(Si−1, (li, ti)) and hi(S
′
i−1, (Y

′
i , γi, li)),

A maintains a pair of lists
(
Lfi , LfiT

)
and

(
Lhi , LhiT

)
, respectively. These

lists contain polynomial and bit-string pairs. The polynomials in Lfi and
Lhi belong to Zp[X, {U}, {T}, {L}], and the corresponding bit-strings are from

the encoding set Ξ of group G. The polynomials in LfiT and LhiT are in the
ring Zp[X, {U}, {V}, {T}, {L}], and the corresponding bit-strings are from the
encoding set ΞT of group GT . Intuitively, the polynomials in lists Lfi and Lhi
correspond to the elements of group G that can be computed by fi and hi,
respectively, whereas the lists LfiT and LhiT correspond to the elements of GT .

Every polynomial in Lfi is of the form c1,iLi+c2,i

i−1∑
j=0

Lj+c3,iDi, where c1,i, c2,i,

c3,i ∈ Zp are chosen by A and Di ∈ Zp[X, {U}, {T}] is in L (cf. (4.1)). Every
polynomial in Lhi is of the form

d1,iLi + d2,i

X−
i−1∑
j=0

Lj

+ d3,i

Ti + γi

 i∑
j=0

Lj

+ d4,iWi, (4.10)

where d1,i, d2,i, d3,i, d4,i ∈ Zp are also chosen byA and Wi ∈ Zp [X,X0,X1, {U},
{T}] is in the list L. Note that the polynomials in lists Lfi and Lhi are of
degree at most one, and that they do not contain the monomial X. The
polynomials in lists LfiT and LhiT are of degree at most two.

The game G′ proceeds exactly as game G except that A can also obtain leakage
through functions f i and hi in the ith signature query. In particular, when
A terminates it outputs (m, (ξ1,α , γ)) ∈ {0, 1}∗ × Ξ× Zp, where ξ1,α ∈ L and
1 ≤ α ≤ τ1. Let us denote by Forge∗ the event of successful forgery by A.
Let Collide∗ denote the event of a collision occurring in lists L, LT , Lfi , Lhi ,
LfiT , LhiT (1 ≤ i ≤ qΩ). The polynomials are now evaluated with values chosen
from independent distributions with min-entropy log p − 2λ, not necessarily
from an uniform distribution. The exact distribution depends on the leakage
functions chosen by A. Since we are only interested to upper bound the
collision probability, we can safely assume that the simulator chooses the
right distribution. Note that even in the leakage setting, adaptive strategies
are no more powerful than non-adaptive ones, as observed in [AM11, pp. 691].
This completes the description of the game G′.
Let PrforgeA,Π∗Sc

denote the advantage of A in computing a forgery against Π∗Sc.

On the lines of (4.7), we can write

PrforgeA,Π∗Sc
≤ Pr[Forge∗ |Collide∗] + Pr[Collide∗]. (4.11)
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As mentioned before, conditioned on the event Collide∗, the view of the ad-
versary A will be same in both the games G′ and G. This is because in both
the cases A will get to see only distinct group elements. Hence, from (4.9),
we have

Pr[Forge∗ |Collide∗] ≤ O

(
q2 εRPP + q εRPSP +

q3

p

)
. (4.12)

Lemma 4.3. Pr[Collide∗] ≤ O
(
q2

p 22λ
)

.

Proof. To compute the required probability, the polynomials in lists L, LT ,
Lfi , Lhi , LfiT , LhiT (1 ≤ i ≤ qΩ) are evaluated by choosing values from Zp
according to (independent) distributions with min-entropy at least log p −
2λ. This is because A can obtain at most 2λ bits of leakage about li (i =
0, . . . , qΩ), and at most λ bits of ti (i = 1, . . . , qΩ). According to Lemma
2.1, the values li, ti have min-entropy at least log p − 2λ in the view of A.
The total length of all the lists is at most O(qΩ + qO) = O(q). Hence there
can be at most O(q2) pairs of distinct polynomials (of degree at most two)
evaluating to the same value. From Lemma 2.3 (with λ′ = 2λ), we obtain

Pr[Collide∗] ≤ O
(
q2

p 22λ
)
.

From (4.11), (4.12) and Lemma 4.3, we have PrforgeA,Π∗Sc
≤ O

(
q2 εRPP + q εRPSP+

q3

p + q2

p 22λ
)
. This completes the proof of Theorem 4.2.

4.4 Conclusion and Future Directions

In this work we presented a pairing-based Schnorr signature scheme and quan-
tified its security against independent and continual leakage (i.e, against split-
state leakage model) in the generic bilinear group model. In particular, we
showed that allowing λ bits of leakage at each of the two phases of every
round in the proposed scheme can be compared to decreasing the security of
the pairing-based Schnorr scheme (without leakage) by a factor of at most
22λ in our leakage model. It seems that our results readily extend to the min-
entropy leakage model of Chapter 2. Signing takes at most 5 exponentiations
in G plus 1 exponentiation in GT ; verification takes 1 pairing plus 1 exponenti-
ation in GT . A suitable bilinear pairing group to implement our modification
of the Schnorr scheme is the pairing-friendly curve BN-128 studied by Scott
in [Sco11].

It is interesting to compare the relative efficiency and strength of our scheme
and the FKPR scheme by Faust et al. [FKPR10]. The latter has a weak
form of EUF-CMA security against continual independent leakages in the
random oracle model, where the adversary can ask at most for D signatures
queries, for D fixed before the key generation phase. The main advantage
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of that construction with respect to ours is that it can be implemented over
any group G where the DL problem is conjectured to be hard (our scheme
needs pairing-based groups). Let us now examine its disadvantages against
our scheme, which are all related to its practicality. The signer in the FKPR
scheme needs to maintain a state consisting on roughly d Schnorr signatures
and d public and corresponding secret keys, with the length of a signature
being proportional to d and D = 2d+1 − 2; signing takes 9 exponentiations in
the group G, while verification time is proportional to d. FPKR only tolerates
a leakage rate of roughly 1/36. Thus, for reasonable values of d, e.g. d = 20,
our scheme is more efficient in storage, computing time and leakage ratio than
the FPKR scheme, while offering standard existential unforgeability against
continual leakage in the split-state model. Finally both our scheme and the
FPKR scheme use an idealized model of computation to prove security, namely
the former uses the random oracle model, while ours uses generic groups.

One possible research direction is to see if the use of Forking lemma could
eventually lead to a simplification of our leakage-resilience proof of the pairing-
based Schnorr signature scheme, this time with respect to the hardness of
the pairing inversion problem1. Although we have not really explored this
possibility, we are rather sceptical about its success. This is due to the fact
that in the GBG model we can assume knowledge of the secret key gx to
simulate the leakage. This is not the case in the Forking lemma case, where
we would use an adversary to compute gx from e(g, g)x, i.e. we do not know
how to simulate leakage on gx, since we do not know gx.

1We thank an anonymous referee of IMA CC 2013 for this suggestion.
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Chapter 5

Masking of S-boxes and
Polynomial Evaluation

In this chapter, we improve the efficiency of a generic higher-order masking
scheme proposed by Carlet et al. [CGP+12]. Efficiency of this scheme is
related to the problem of evaluating polynomials over binary finite fields rep-
resenting S-boxes. The corresponding evaluation cost model considers only
non-linear multiplications. A non-linear multiplication is a multiplication of
two distinct non-constant polynomials over a binary field.

Firstly, we make a formal approach to this polynomial evaluation problem. To
this end, we investigate optimal methods for exponentiation in F2n by studying
a previously proposed variant of addition chain that we call as cyclotomic-class
addition chain, or CC-addition chain. Among several interesting properties,
we prove lower bounds on min-length CC-addition chains. We define the
notion of F2n-polynomial chain, and use it to count the number of non-linear
multiplications required while evaluating polynomials over F2n . We give lower
bounds on the length of such a chain for any polynomial. In particular, we
prove a lower bound of Ω(2n/2/

√
n) on the complexity of any method to

evaluate polynomials over F2n . As a consequence, we show that a lower bound
for the masking complexity of DES S-boxes is 3 (upon padding outputs with
zeroes), and that of PRESENT S-box is 2.

Next, we describe a new technique for evaluating polynomials over binary
finite fields. For n-bit S-boxes our new technique has heuristic complexity
O(2n/2/

√
n) instead of O(2n/2) proven complexity for the parity-split method.

Hence our method is asymptotically optimal. In practice we can evaluate any
8-bit S-box in 10 non-linear multiplications instead of 22 needed by the parity-
split method, and the DES S-boxes in 4 non-linear multiplications instead of
10. We also evaluate any 4-bit S-box in 2 non-linear multiplications instead of
3. Hence our method achieves optimal complexity for the PRESENT S-box.

Contents
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5.1 Introduction

5.1.1 Masking

A well known technique to protect implementations against power analysis
based side-channel attacks is to mask internal secret variables. This is done
by XORing any internal variable with a random variable r, for e.g., x′ =
x⊕ r. However, this will make the implementation secure against first-order
attacks only. Second-order attacks against such counter-measures is proposed
in [Mes00]. In this type of attack the adversary combines the information
obtained from two internal variables. This will require more data (power
consumption traces) in practice, which could make the attack infeasible in
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certain cases. In general the above masking technique can be extended to
secure an implementation against higher-order attacks. This can be achieved
by splitting an internal variable x into d shares, say, x =

⊕d
i=1 xi. Using this

idea it is easy to compute any linear/affine function ` in a secured way, since it
is enough to compute yi = `(xi) for 1 ≤ i ≤ d. However, it is not obvious how
to do this for non-linear functions. In practice, nearly every cryptographic
primitive includes some non-linear function, e.g., S-box, modular addition,
etc.

5.1.2 Generic Higher-Order Masking

The Rivain-Prouff masking scheme is the first provably secure higher-order
masking technique for AES [RP10]. The main idea of this method is to
perform secure monomial evaluation with d shares of a secret variable using
the previously known ISW scheme [ISW03]. Namely, the non-linear part of
the AES S-box can be represented by the monomial x254 over F28 . Prouff
and Rivain showed that this monomial can be evaluated securely using 4 non-
linear multiplications and a few linear squarings. By using this scheme the
AES S-box can be masked for any order d.

This method was extended to a generic technique for higher-order masking,
in [CGP+12], by Carlet, Goubin, Prouff, Quisquater and Rivain (CGPQR).
Any given n-bit S-box can be represented by a polynomial

∑2n−1
i=0 ai x

i over
F2n using Lagrange’s interpolation theorem. Hence, any S-box can be masked
by secure evaluation of this polynomial with d shares of a secret variable.
This is the first generic technique to mask any S-box for any order d. In
this technique a polynomial evaluation in F2n is split into simple operations
over F2n : addition, multiplication by constant, and regular multiplication of
two elements. Note that multiplication of two same elements (i.e. squaring)
and multiplication by a constant – both are linear operations over F2n , hence
easy to mask. For performing a secure multiplication of two distinct elements,
i.e. a non-linear multiplication, the CGPQR masking scheme uses the ISW
method as in [RP10].

Asymptotically, the running time of the Rivain-Prouff and CGPQR masking
schemes is dominated by the number of non-linear multiplications required to
evaluate a polynomial over F2n . Namely with d shares, using the ISW method
an affine function can be masked with only O(d) operations over F2n , whereas
a non-linear multiplication requires O(d2) operations. Note that for achieving
d-th order security the Rivain-Prouff scheme requires at least 2d + 1 shares.
Originally it was claimed in [RP10] that the scheme is secure against d-th
order attack with d+ 1 shares. However, an attack of order d/2 was shown in
[CPRR13] against the scheme. The authors of [CPRR13] also showed a d-th
order secure scheme with d+ 1 shares for some subset of S-boxes.

Another higher-order masking scheme has been proposed by Coron [Cor14].
This scheme is based on the table-recomputation technique [CJRR99, SP06,
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RDP08]. An advantage of CGPQR scheme over Coron’s scheme is that the
former can be implemented with very little memory compared to the latter.

5.1.3 Masking and Polynomial Evaluation

An (n,m)-S-box is a function from {0, 1}n to {0, 1}m, where m ≤ n. For most
of the well-known ciphers, n is 4, 6 or 8. To design a generic masking scheme,
Carlet et al. [CGP+12] consider a polynomial representation of an (n, m)-
S-box over F2n . The n-bit and m-bit strings are identified with elements of
F2n in a natural way, if necessary, by appending m-bit strings with leading
zeros. Such a polynomial can be easily computed from the S-box table by
applying Lagrange interpolation method. The polynomial will be of the form∑2n−1

i=0 ai x
i, where ai ∈ F2n . Hence the evaluation of an S-box reduces to

evaluating the corresponding polynomial for some element in F2n .

The operations involved in the above polynomial evaluation are: addition,
multiplication by a scalar (from F2n), squaring, and multiplications that are
not squaring. Except the last one, all the above operations are affine in
F2n . In this masking scheme only the non-linear multiplications are signif-
icant. Because the dth-order masking of an affine operation requires O(d)
logical operations, whereas a non-linear multiplication requires O(d2) opera-
tions [CGP+12]. Hence the masking complexity of a S-box is defined as the
minimum number of non-linear multiplications needed to evaluate its corre-
sponding polynomial.

Efficient methods for polynomial evaluation is a well-studied area [Knu97,
Section 4.6.4]. Of particular interest is the evaluation of a power function
(i.e. xα), because of its simplicity. Not only are these functions of theoretical
interest, there are also studies on the suitability of S-boxes based on power
functions [NGG09]. Formal analysis of the optimal methods to evaluate these
powers has led to a detailed study of addition chains [vzGN97, Knu97, Section
4.6.3]. The length of these chains correspond to the number of multiplications
needed for the corresponding exponentiation. However, to analyze the num-
ber of non-linear multiplications required to evaluate an S-box, we need to
investigate a variant of addition chain introduced in [CGP+12]. We call this
variant as cyclotomic-class addition chain, or in short, CC-addition chain to
distinguish it from the usual addition chain. Also, CC-addition chains more
accurately model the cost of exponentiations in F2n . This is because squar-
ing is very efficient in F2n , and we can also use the relation x2n = x to our
advantage.

5.1.4 Our Contribution

In this chapter, we analyze and improve the generic higher order masking
scheme proposed in [CGP+12]. In Section 5.2, we start by establishing sev-
eral interesting properties of CC-addition chain. We prove a lower bound on
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the min-length CC-addition chain of any integer, which turns out to be loga-
rithmic in the Hamming weight of the integer. As a consequence, we disprove
a previous claim that integers of the form 2n − 2 have the longest min-length
CC-addition chain than any other smaller number. We give a short mathe-
matical proof showing that the masking complexity of AES is at least four,
which was previously established by the brute-force method in [CGP+12]. We
also give a result on the monotonicity property of the min-length CC-additions
of an integer.

Next in Section 5.3, we propose and define the notion of F2n-polynomial chain.
Although the notion of CC-addition chain helps to evaluate the masking com-
plexity of power functions (i.e., monomials), in case of general polynomials the
idea of F2n-polynomial is more natural and useful. Such a notion is necessary
to formally define and establish lower bounds on the masking complexity of
an S-box. We prove the well-definedness of the notion of masking complexity
by arguing that it is invariant of the way of representing the corresponding
field.

We prove two lower bounds on the minimum number of non-linear multipli-
cations required to evaluate a polynomial in F2n . This lower bound is related
to the min-length CC-addition chains of the integers present in the exponents
of the polynomial. As a corollary, we show that the masking complexity of
DES (S-box) is at least three upon padding each 4-bit output with 2 leading
zeroes. (Zero was a natural choice though the effect on complexity is unclear
yet.) For PRESENT we show that its complexity is at least two. Previously,
no such lower bounds were known. Next, we significantly improve this lower
bound to Ω(2n/2/

√
n) non-linear multiplications for any method to evaluate

arbitrary polynomials over F2n .

Later in the section, we propose an improved generic technique for fast poly-
nomial evaluation in F2n . For arbitrary n-bit S-box, our method has heuristic
complexity O(2n/2/

√
n), compared to the O(2n/2) proven complexity for the

Parity-Split method from [CGP+12]. Hence our method is asymptotically
optimal.

As a concrete application of our new polynomial evaluation method, we show
in Section 5.4 that for the generic higher-order masking of several well known
S-boxes, e.g. DES, CLEFIA, PRESENT, etc., our method reduces the number
of multiplications compared to the previously known methods [CGP+12]. In
particular, using our method PRESENT can be masked with 2 multiplications
(instead of 3), and DES with 4 multiplications (instead of 10), see Table 5.1.
In Table 5.8, we report the timing results for DES masked using our technique.

5.2 Evaluation of Powers

In this section, we consider optimal methods (that minimize non-linear mul-
tiplications) for evaluating monomials in F2n .
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S-box
Methods DES PRESENT SERPENT CAMELLIA CLEFIA

Previous Work
[CGP+12]

10 3 3 22 22

Our Method
(Sec. 5.4)

4 2 2 10 10

Table 5.1: Number of non-linear multiplications required for the CGPQR generic
higher-order masking scheme.

5.2.1 Definitions

Notation. ν(n) refers to the number of bits that are one in the binary
representation of n, i.e. the Hamming weight of n. For a binary string z in
{0, 1}∗, 〈z〉2 denotes the binary representation of some non-negative integer.

For any subset Λ ⊆ {0, 1, . . . , 2n − 2}, xΛ denotes the set of monomials xΛ ={
xi : i ∈ Λ

}
⊆ F2n [x]. Finally we denote by P(xΛ) the set of all polynomials

in F2n [x] whose monomials are only from the set xΛ.

Let us recollect the standard notion of addition chain.

Definition 5.1. [Addition Chain [Knu97, Section 4.6.3]] An addition chain
S for α (α ∈ N) is a sequence of integers

a0 = 1, a1, a2, . . . , ar = α, (5.1)

such that for every i = 1, 2, . . . , r, there exist some 0 ≤ j, k < i such that

ai = aj + ak.

The length of S, denoted by L (S), is r.

Thus in an addition chain, any element in the sequence (except the first) must
be a sum of some previous two elements. The length of a shortest addition
chain for α is denoted by l(α). Formally,

l(α) = min {L (S) : S is an addition chain for α} . (5.2)

Intuitively, l(α) represents the minimum number of “multiplications” needed
to compute xα from x (x is an element of a monoid).

The notion of “addition chain” has been generalized to q-addition chain
(q ∈ N) in [vzG91]. In this generalization of the “usual” addition chains
the multiple of an element by q can be computed in a single step. Note that
an (usual) addition chain is a 2-addition chain.
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The q-addition chains are more relevant than (2-)addition chains in the case
of exponentiations in finite fields Fqn of characteristic q 6= 2. In such a field
it is possible to compute xq very efficiently, often “free” [vzG91].

In this work we study another variant of addition chain introduced in [CGP+12].
Before we describe the variant, let us first see the following definition.

Definition 5.2. [Cyclotomic Class [CGP+12]] Let n ∈ N and α ∈ {0, 1, . . . , 2n
− 2}. The cyclotomic class of α (w.r.t. n), denoted by Cα, is defined as

Cα =
{
α · 2i (mod 2n − 1) : i = 0, 1, . . . , n− 1

}
.

The intuition for introducing the above definition comes from the following
scenario. Let g be a generator of the multiplicative group F×2n . Given x = gα,
the set

{
x, x2, x4, x8, . . . ,

}
is the same as

{
gi | i ∈ Cα

}
. Note that x2n = x

in F×2n . Since 2n ≡ 1 (mod 2n − 1), therefore |Cα| ≤ n. It is easy to see that
the relation R on set {0, 1, . . . , 2n − 2}, defined as (α, β) ∈ R iff β ∈ Cα, is
an equivalence relation. Hence the collection of cyclotomic classes forms a
partition of the set {0, 1, . . . , 2n− 2}. Since |Cα| ≤ n, we obtain the following
observation.

Remark 5.1 The number of cyclotomic classes w.r.t. n is at least 2n−1
n .

In [CGP+12], the exact count of the number of cyclotomic classes (w.r.t. n)

is given as
∑

δ|(2n−1)

φ(δ)
µ(δ) , where φ is the Euler’s totient function and µ(δ) is

the multiplicative order of 2 modulo δ. However, no lower bound on this
expression was given there. The simple observation in Remark 5.1 shows that∑
δ|(2n−1)

φ(δ)
µ(δ) ≥

2n−1
n .

A variant of addition chain proposed in [CGP+12] is the cyclotomic-class
addition chain, in short, CC-addition chain.

Definition 5.3. [CC-Addition Chain [CGP+12]] Let n ∈ N, α ∈ {1, 2, . . . , 2n
− 2}, and C = {Ci : i = 0, 1, . . . , 2n − 2} be the collection of cyclotomic
classes w.r.t. n, A cyclotomic-class addition chain SC of α (w.r.t. n) is a
sequence of cyclotomic classes

Ca0 = C1, Ca1 , Ca2, . . . , Car = Cα, (5.3)

such that for every i = 1, 2, . . . , r, there exist some 0 ≤ j, k < i, βi ∈ Cai,
βj ∈ Caj , and βk ∈ Cak such that

βi ≡ βj + βk (mod 2n − 1) .

The length of SC , denoted by LCn (SC), is r.
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Formally, a shortest CC-addition chain for α (w.r.t. n), denoted by mn(α), is
defined as

mn(α) = min {LCn (SC) : SC is an addition chain for α (w.r.t. n)} . (5.4)

The phrase “masking complexity of α” has been used in [CGP+12] to describe
mn(α). CC-addition chains describe a way to compute xα from x ∈ F×2n , where
squaring operations are considered free and hence not counted. These sort of
chains model the complexity of exponentiation in F2n more accurately than
(2-)addition chains when squaring is implemented very efficiently using a spe-
cial representation of field elements [vzG91]. CC-addition chains also model
exactly the number of non-linear multiplications required to mask S-boxes
that are represented by power functions [CGP+12]. An important difference
between q-addition chains, in particular 2-addition chains, and CC-addition
chains is that the former is a sequence of positive integers while the latter is
a sequence of classes. It is for this reason that we refer to the latter chain
as “cyclotomic-class addition chain” and not just 2-addition chain as done in
[CGP+12]. The notion of CC-addition chains can be extended in a natural
way to Fqn to obtain q-CC-addition chain, analogous to q-addition chain. Ac-
cordingly, the CC-addition chain in Definition 5.3 may also be referred to as
2-CC-addition chain. In this work, we restrict ourselves to (2-)CC-addition
chains, particularly keeping applications to higher-order masking in mind.

Note that mn(α) is not necessarily equal to the minimum number of non-
doubling steps in all of addition chains for α, though mn(α) ≤ l(α). That
is, every CC-addition chain does not necessarily need to be derived from
an addition chain by not explicitly writing the doubling steps. This is a
consequence of the fact that there exist α, n1 and n2 such that mn1(α) 6=
mn2(α). For example, m5(23) = 2 but m6(23) = 3. We refer to the table of
values for mn(α) for n ≤ 11 in [CGP+12].

5.2.2 CC-Addition Chain: Upper Bound

Nevertheless, we can obtain upper bounds on the value of mn(α) using previ-
ous results on addition chains in a straightforward way. Note that for a given
value of α, mn(α) is defined only for those n such that α ≤ 2n − 2. Hence we
require n ≥ dlog2 (α+ 2)e.
A trivial upper bound mn(α) ≤ ν(α)− 1 is obtained from the binary method
[Knu97, Section 4.6.3]. Let α = bt2

t + bt−12t−1 + . . . + b121 + b0, where
t = blog2 αc, bi ∈ {0, 1} ∀i = 1, . . . , t, and bt = 1. An addition chain obtained
from the binary method is as follows

bt = 1, bt2, bt2 + bt−1, 2 (bt2 + bt−1) , bt2
2 + bt−12 + bt−2, . . . , α.

The above addition chain yields a CC-addition chain for α (w.r.t. any n ≥
dlog2 (α+ 2)e). Hence the length of such a chain is ν(α) − 1. Note that we
count only those additions that are not doublings.
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An improved upper bound for mn(α) is possible if we use the techniques of
Brauer [Bra39]. In [Bra39], addition chains much shorter than those from the
binary method have been constructed. This result on (2-)addition chains has
also been extended to q-addition chains in [vzG91]. See also [vzGN04, Knu97,
Section 4.6.3].

Brauer’s method of constructing addition chains is a generalization of the
binary method mentioned above. Instead of working in the base-2 expansion
of α, we now work with base-2k expansion (k ∈ N). Let z = 2k and α =
btz

t+bt−1z
t−1 + . . .+b1z

1 +b0, where t = blogz αc, bi ∈ {0, 1, . . . , z − 1} ∀i =
0, 1, . . . , t, and bt 6= 0. The corresponding addition chain is

1, 2, . . . , z − 2, z − 1,

bt2, bt4, . . . , btz, btz + bt−1,

(btz + bt−1) 2, (btz + bt−1) 4, . . . , (btz + bt−1) z, btz
2 + bt−1z + bt−2,

. . . bzt + bt−1z
t−1 + . . .+ b1z

1 + z0.

The total length of the above addition chain is z − 2 + t(k + 1). The number

of non-doubling steps is (z − 2)/2 + t = 2k−1 − 1 +
⌊

log2 α
k

⌋
, which is also the

length of the corresponding CC-addition chain for α (w.r.t. any n). This value
is minimized when k ≈ log2 log2 α − 2 log2 log2 log2 α and the corresponding

value is about log2 α
log2 log2 α−2 log2 log2 log2 α

+ log2 α

2(log2 log2 α)2 − 1. Hence as α → ∞,

we obtain

mn(α) ≤ log2 α

log2 log2 α
(1 + o(1)) . (5.5)

5.2.3 CC-Addition Chain: Lower Bound

No non-trivial lower bounds were known for mn(α) prior to [RV13]. In this
chapter we show that mn(α) ≥ dlog2(ν(α))e. Recall that ν(α) is the Hamming
weight of α in the binary notation. The basic idea is to first show that
Hamming weight is invariant in a cyclotomic class. To obtain the bound,
we then use this result along with the simple fact that when two positive
integers are added, then the Hamming weight of sum is at most the sum of
the Hamming weights. Similar techniques have been used in [vzG91].

Lemma 5.1. Let n ∈ N, α ∈ {0, 1, . . . , 2n − 2}, and Cα be the cyclotomic
class of α (w.r.t. n). If β ∈ Cα, then ν(β) = ν(α).

Proof. This follows from a well-known observation that the multiplication of
α by 2 modulo 2n − 1 is same as the cyclic left shift of the n-bit binary
representation of α.
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As an illustration, consider the cyclotomic class C3 of α = 3 w.r.t. n =
5. C3 = {3, 6, 12, 24, 17}. Note that 17 · 2 ≡ 3 (mod 31). In the binary
representation,

C3 = {〈00011〉2 , 〈00110〉2 , 〈01100〉2 , 〈11000〉2 , 〈10001〉2} . (5.6)

The following proposition gives a lower bound for mn(α).

Proposition 5.1. mn(α) ≥ dlog2(ν(α))e.

Proof. From Lemma 5.1 and, the fact that the Hamming weight of sum of
two positive integers is at most the sum of the Hamming weights, we obtain
that the CC-addition chain of length at most r (5.3) can only contain integers
having Hamming weight at most 2r. This is because elements of C1 have
Hamming weight 1 and at each step the Hamming weight can at most double.
Therefore, in order for α to be present in a CC-addition chain, then the chain’s
length must be at least dlog2(ν(α))e.

As a consequence of the above proposition, we now disprove the claim made
in [CGP+12, pp. 373]. Their claim was that given a (fixed) value of n,
mn(2n−2) ≥ mn(α) ∀α = 1, . . . , 2n−3, i.e., 2n−2 has the longest min-length
CC-addition chain among the integers modulo 2n − 1.

Proposition 5.2. Let n = 2t+1 for some t ∈ N and t > 2. Then mn(2n−2) =
t. In particular, m9(510) = 3 < m9(508) = 4.

Proof. The proof proceeds in two steps. In lemma 5.2 below, we first show
that mn(2n−2) = t. As a result, m9(510) = 3. Then in Lemma 5.3, we prove
that m9(508) = 4. This will complete the proof of the proposition.

Lemma 5.2. mn(2n − 2) = t, where n = 2t + 1, t ∈ N and t > 2.

Proof. From Proposition 5.1, we have mn(2n − 2) ≥ log2(ν(2n − 2)) = t. A
CC-addition chain of length t for 2n − 2 (w.r.t. n) can be constructed as
follows

C1, C22−1, C24−1, C28−1, . . . , C22t−1 = C2n−2. (5.7)

Note that C22t−1 = C2n−2 because 2n − 2 = 2
(

22t − 1
)

. Why the above

sequence is indeed a CC-addition chain can be readily seen if we look at the
n-bit-representations of the representatives of the cyclotomic classes in the
above sequence. In the proof of Proposition 5.1 and the example in (5.6),
we have observed that all the elements of a given cyclotomic class can be
obtained by (left) cyclic shifts of the n-bit-representation of any one element
of the class. Consider an integer sequence

〈1〉2
×→ 〈10〉2

+→ 〈11〉2
×→ 〈1100〉2

+→ 〈1111〉2 →

. . . → 〈11 . . . 11︸ ︷︷ ︸
2t

〉2
×→ 〈11 . . . 11︸ ︷︷ ︸

2t

0〉2. (5.8)
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In the above sequence, those arrows marked with × correspond to multiplying
by a power of 2 (i.e. left shift) and hence such a step is not a separate step in
the corresponding CC-addition chain. But those marked with + correspond
to addition of two distinct integers and hence count as one step in the CC-
addition chain. This shows that the sequence in (5.7) is a CC-addition chain
for 2n − 2 (w.r.t. n), and hence mn(2n − 2) = t.

Lemma 5.3. m9(508) = 4.

Proof. From Proposition 5.1, we have m9(508) ≥ dlog2(7)e = 3. We now rule
out the possibility that m9(508) = 3. Let there be a CC-addition chain for
508 (w.r.t. 9) of length 3. The only possibility is that in such a chain, the
Hamming weight doubles after each of the first two (addition) steps. But in
the last step, we must have two integers a =

〈
a8 . . . a0

〉
2

and b =
〈
b8 . . . b0

〉
2

such that 508 = a + b, ν(a) = ν(b), and both must come from the same
cyclotomic class. Hence the bit-patterns of a and b must be cyclic shifts of each
other. We just need to make sure that the bit-pattern 508 = 〈111111100〉2
cannot be obtained. There are four possible cases:

1. a0 = b0 = 1: then a1 = 1 or b1 = 1 (but not both). Hence with remaining
5 ones, it is not possible to obtain ones at the remaining 7 positions in
the sum.

2. a0 = b0 = 0 and a1 = b1 = 0: now there are 8 ones for 7 positions. Hence
a zero will appear in the sum when there is a one in the same position.

3. a0 = b0 = 0, a1 = b1 = 1 and a2 = b2 = 1: in this case it is not possible
to get ones in 6 positions in the sum with only 4 ones.

4. a0 = b0 = 0, a1 = b1 = 1 and a2 = b2 = 0: by symmetry, we can set
a3 = 1 and b3 = 0. Now there are 2 ones for a that can occur in any of
the five remaining positions. Hence there are

(
5
2

)
= 10 choices. Once the

two positions are fixed for a, then for b, the remaining three ones must
be in the other three remaining positions of the sum. One can easily
check in all the 10 cases that a and b are not cyclic shifts of each other.

Hence we obtain m9(508) > 3. The CC-addition chain

〈1〉2
×→ 〈10〉2

+→ 〈11〉2
×→ 〈1100〉2

+→ 〈1111〉2
×→ 〈111100〉2

+→ 〈111111〉2
×→ 〈1111110〉2

+→ 〈1111111〉2
×→ 〈111111100〉2.

shows that m9(508) ≤ 4. Hence m9(508) = 4

5.2.4 CC-Addition Chain: Monotonicity

It is natural to ask how the value of mn(α) varies with n. As mentioned
previously, mn(α) is defined only for n ≥ dlog2 (α+ 2)e. Is the value of
mn(α) independent of n for a given value of α? This is not true since we have
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already seen the counterexample m5(23) = 2 but m6(23) = 3. The example
m7(83) = 3 but m9(83) = 2 shows that mn(α) can also decrease as n increases.
We can generalize the above examples to obtain infinitely many examples.

For instance, consider mn

(〈
10 . . . 0︸ ︷︷ ︸

n−4

111
〉

2

)
= mn

(〈
0 . . . 0︸ ︷︷ ︸
n−4

1111
〉

2

)
= 2 but

mn+1

(〈
010 . . . 0︸ ︷︷ ︸

n−4

111
〉

2

)
= mn+1

(〈
0 . . . 0︸ ︷︷ ︸
n−4

11101
〉

2

)
= 3, where n ≥ 5.

But we can still show that mn(α) ≤ mn′(α) if n |n′, i.e. if n divides n′.

Theorem 5.1. Let α, n, n′ ∈ N, n |n′ and dlog2 (α+ 2)e ≤ n ≤ n′. Then
mn(α) ≤ mn′(α) .

Proof. The basic idea is to transform any CC-addition chain for α w.r.t. n′

into a CC-addition chain for α w.r.t. n such that the length of the resulting
chain is at most the length of the original one. This implies that mn(α) ≤
mn′(α). Let

C ′b0 = C ′1, C
′
b1 , C

′
b2, · · · , C

′
br = C ′α (5.9)

be a CC-addition chain for α w.r.t. n′. Let ai := bi (mod 2n − 1) and Cai be
the cyclotomic class of ai w.r.t. n, ∀i = 0, 1, . . . , r. Consider the sequence

Ca0 , Ca1 , Ca2, · · · , Car . (5.10)

The claim is that the above sequence in (5.10) is a CC-addition chain for
α w.r.t. n. In particular, we need to prove that the sequence in (5.10)
satisfies two properties. First is the CC-addition chain property (w.r.t. n),
i.e. Definition 5.3, and the second one is Car = Cα (w.r.t. n).

Claim 5.1 The sequence in (5.10) satisfies Definition 5.3 w.r.t. n.

Proof. First we need to show that the mapping C ′bj 7→ Caj is well-defined.

This is because the cyclotomic class C ′bj may be represented as C ′βj′′
, where

βj′′ ∈ C ′bj . From Definition 5.3, βj′′ ∈ C ′bj iff βj′′ = bj · 2j
′′
(

mod 2n
′ − 1

)
for some j′′ ∈ N. Since bj ≡ aj (mod 2n − 1), we have βj′′ ≡ bj · 2j

′′ ≡
aj · 2k (mod 2n − 1), where k := j′′ (modn). This proves the well-definedness
property of the mapping of cyclotomic classes. Next, to prove the additivity
property, observe that for every i = 1, 2, . . . , r, there exist 0 ≤ j, k < i,

βi′ ∈ C ′bi , βj′ ∈ C
′
bj

, and βk′ ∈ C ′bk such that βi′ ≡ βj′ + βk′
(

mod 2n
′ − 1

)
.

This is because the sequence in (5.9) is a CC-addition chain (w.r.t. n′).
From the reasoning above, we can write βi′ ≡ ai · 2i

′
(mod 2n − 1), βj′ ≡

aj · 2j
′

(mod 2n − 1) and βk′ ≡ ak · 2k
′

(mod 2n − 1). Since n |n′, we have
2n − 1 | 2n′ − 1. Hence βi′ ≡ βj′ + βk′ (mod 2n − 1) .Therefore, ai · 2i

′ ≡
aj · 2j

′
+ ak · 2k

′
(mod 2n − 1) . This proves the additivity property of the

sequence in (5.10).



5.3 Evaluation of Polynomials 91

Claim 5.2 Car = Cα.

Proof. Since C ′br = C ′α (w.r.t. n′) from (5.9), we have α ≡ br2t
(

mod 2n
′ − 1

)
for some t ∈ N and t < n′. Since 2n − 1 | 2n′ − 1, we have α ≡ br2

t ≡
ar2

t′ (mod 2n − 1). Therefore, Car = Cα.

This completes the proof of Theorem 5.1.

Theorem 5.1 suggests that, to find a minimum length CC-addition chain w.r.t.
n′, first try to find one w.r.t. a divisor n of n′. Since F2n is a smaller field
than F2n′ , it may be advantageous to work in F2n . Once a minimum length
CC-addition chain w.r.t. n is found, then check if it is a CC-addition chain
w.r.t. n′. If it is the case, then it will be a minimum length chain.

5.3 Evaluation of Polynomials

5.3.1 F2n-Polynomial Chain

The masking complexity of an S-box (Definition 5.5) corresponds to the min-
length CC-addition chain of the exponent when it can be represented as a
power. However when the S-box has a general polynomial representation, a
notion similar to CC-addition chain is required. For evaluating polynomials
(over R) the notion of polynomial chain is given in [Knu97, Section 4.6.4]. In
case of polynomials in F2n [x], we define the notion of F2n-polynomial chain,
where we do not count addition, scalar multiplication and squaring operations.
Note that if x, y ∈ F2n , then x2n = x and (x+ y)2 = x2 + y2.

Definition 5.4. A F2n-polynomial chain S for a polynomial P (x) ∈ F2n [x]
is defined as

λ−1 = 1, λ1 = x, . . . , λr = P (x) (5.11)

where

λi =


λj + λk −1 ≤ j, k < i,
λj · λk −1 ≤ j, k < i,
αi � λj −1 ≤ j < i, αi is a scalar,
λ2
j −1 ≤ j < i.

Note that here · and � both perform the same operation, multiplication in
F2n. However in order to differentiate the non-linear operation we use � for
scalar multiplication. Here λj ·λk denotes a non-linear multiplication. Let the
number of non-linear multiplications involved in chain S be N (S). Then the
non-linear complexity of P (x) (over F2n), denoted by M(P (x)), is defined
as M(P (x)) = min

S
N (S), where S computes P (x).
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5.3.2 Masking Complexity: Well-definedness

The masking complexity of an S-box is formally defined as follows.

Definition 5.5. [Masking Complexity] Let m,n ∈ N with m ≤ n. The
masking complexity of an (n,m)-S-box is the non-linear complexity of P (x),
where P (x) is the polynomial representation of the S-box over F2n.

Note that the above definition has been intuitively described in [CGP+12,
Definition 1] as the minimum number of non-linear multiplications needed to
evaluate the polynomial representation. Once the bit strings are identified
naturally with the elements of F2n (given a field representation), then we can
apply Lagrange interpolation technique to compute the (unique) polynomial
of degree at most 2n − 1 representing the S-box in the corresponding field.

The well-definedness and relevance of the above definition of masking com-
plexity is guaranteed because of the following reasons.

1. A natural question is - does masking complexity change with the irre-
ducible polynomial used to represent F2n? Note that under the natural
mapping of bit strings to the field elements, the same S-box may corre-
spond to different polynomials over F2n for different representations of
the field. However we show in Theorem 5.2 that masking complexity
does not depend on the field representation.

2. It is relatively straightforward to mask affine functions. In F2n , squaring
is linear, and affine functions are free from any “non-linear” multiplica-
tions.

The n-bit strings can be naturally mapped to field elements of F2n represented
as polynomials over F2 modulo a degree n irreducible polynomial f1(y). For-
mally, B1 : {0, 1}n → F2[y]/f1(y) is defined as

B1 (〈bn−1bn−2 . . . b0〉) :=
n−1∑
i=0

bi y
i + (F2[y] · f1(y)) , (5.12)

where bi ∈ {0, 1}. The m-bit strings (m ≤ n) are appended with leading zeros
to identify them with n-bit strings. Later we shall see that it suffices if B1

is some F2-linear bijection. Note that ({0, 1}n,⊕) may be viewed as a vector
space over F2.

Remark 5.2 It was claimed in [CGP+12, Remark 3] that the property of in-
dependence of masking complexity w.r.t. the irreducible polynomial used to
represent F2n follows from the fact that field isomorphisms are F2-linear bijec-
tions. This reason is not enough and a formal proof requires more arguments,
as we shall see in the proof of Theorem 5.2.

Let f1(y) and f2(z) be two irreducible polynomials of degree n over F2. Then
F2[y]/f1(y) and F2[z]/f2(z) are two representations for F2n . Let B1 : {0, 1}n →
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F2[y]/f1(y) be as in (5.12), and B2 : {0, 1}n → F2[z]/f2(z) be analogously
defined for f2(z). Note that B1 and B2 are F2-linear isomorphisms between
vector spaces. The corresponding inverse maps B−1

1 and B−1
2 are also F2-linear

isomorphisms of vector spaces.

Let U : {0, 1}n → {0, 1}n be any function on n-bit strings. For instance, U may
represent an (n,m)-S-box (upon padding m-bit strings with leading zeros).
The maps U and B1 will “induce” a map U1 : F2[y]/f1(y)→ F2[y]/f1(y). More
precisely,

U1 = B1 ◦ U ◦ B−1
1 . (5.13)

Similarly we can define
U2 = B2 ◦ U ◦ B−1

2 . (5.14)

Let P1(x) and P2(x) be the polynomial representations (of degree at most
2n − 1) of U1 and U2, respectively. We now prove the following theorem.

Theorem 5.2. M (P1(x)) = M (P2(x)), where P1(x) and P2(x) are as de-
fined above. In other words, the masking complexity of an S-box (in general,
any function on bit strings) is invariant w.r.t. field representations.

Proof. Let the maps B1, B2, U , U1 and U2 be as defined in (5.13) and (5.14).
Since two finite fields of the same order are isomorphic, there exists a field
isomorphism ψ : F2[y]/f1(y) → F2[z]/f2(z). Note that the map ψ is also
an F2-linear isomorphism between vector spaces that is compatible with the
multiplication operation of the fields. Let H : F2[y]/f1(y) → F2[z]/f2(z) be
defined as

H = B2 ◦ B−1
1 . (5.15)

Since B1 and B2 are F2-linear bijections, so will beH. Note thatH need not be
a field isomorphism. Also define the maps H∗,U∗1 : F2[z]/f2(z)→ F2[z]/f2(z)
as

H∗ = H ◦ ψ−1, (5.16)

U∗1 = ψ ◦ U1 ◦ ψ−1. (5.17)

Intuitively, the maps H∗ and U∗1 are analogues of H and U1 that are maps
from F2[z]/f2(z) to itself. From (5.13), (5.14), (5.15) and (5.17), we have

U1 = ψ−1 ◦ U∗1 ◦ ψ = H−1 ◦ U2 ◦ H.

Hence from (5.17), we get

U2 = H∗ ◦ U∗1 ◦ H∗
−1. (5.18)

Let PH∗(x), PH∗−1(x) and PU∗1 (x) be polynomials over F2[z]/f2(z) of degree

at most 2n − 1 representing H∗, H∗−1 and U∗1 , respectively. From the above
relation, we obtain

P2(x) = PH∗
(
PU∗1 (PH∗−1(x))

)
. (5.19)
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It is precisely to get the above relation that we had to introduce the maps H∗
and U∗1 . The following two lemmas show that M

(
PU∗1 (x)

)
=M (P1(x)) and

M (PH∗−1) =M (PH∗) = 0.

Lemma 5.4. M
(
PU∗1 (x)

)
=M (P1(x)).

Proof. Let P1(x) =
∑2n−1

i=0 ai x
i, where ai ∈ F2[z]/f2(z). From the definition

of U∗1 in (5.17), it follows that PU∗1 (x) =
∑2n−1

i=0 ψ(ai)x
i. Using the field

isomorphisms ψ and ψ−1, any polynomial chain to evaluate P1(x) can be
converted to one that evaluates PU∗1 (x), and vice-versa. Hence the lemma
follows.

Lemma 5.5. Let A : F2[z]/f2(z)→ F2[z]/f2(z) be an F2-affine function and
PA(x) be the corresponding polynomial representation of degree at most 2n−1.
Then PA(x) =

∑n−1
i=0 ai x

2i +a−1, for some ai ∈ F2[z]/f2(z) (−1 ≤ i ≤ n−1),
and M (PA(x)) = 0.

Proof. Since A is an F2-affine function, it can be written as A = A′ +
a−1, where A : F2[z]/f2(z) → F2[z]/f2(z) is an F2-linear map, and a−1 ∈
F2[z]/f2(z). It is enough to show that the polynomial PA′(x) corresponding
to A′ is of the form

∑n−1
i=0 ai x

2i . Suppose that there exists a term xm in
PA′(x) whose coefficient is non-zero, and m 6= 2j for 0 ≤ j ≤ n − 1. Let xm

be the largest among such terms and write m = 2t · k, where k > 1 is odd.
Define the bivariate polynomial

P ′(x, y) = PA′(x+ y)− PA′(x)− PA′(y).

We have P ′(x, y) 6≡ 0 since the coefficient of the term x2t(k−1) · y2t is 1. This

can be easily seen from the fact that (x+y)2tk =
(
x2t + y2t

)k
, and then using

the binomial expansion and the fact that the characteristic of F2n is two. By
the linearity of A′, we require P ′(α, β) = 0 for all α, β ∈ F2[z]/f2(z). But
this is not possible since the total degree of P ′(x, y) is m < 2n, and from
the Schwartz-Zippel lemma (cf. Appendix 2.2), the polynomial P ′(x, y) can
have at most m · 2n roots. Hence P ′(x, y) ≡ 0 and PA′(x) =

∑n−1
i=0 ai x

2i

and M (PA′(x)) = M (PA(x)) = 0. By the linearity of PA′(x), we have
PA′(0) = 0. Hence the lemma follows.

From (5.19), Lemma 5.4 and Lemma 5.5, we have M (P2(x)) ≤ M (P1(x)).
From (5.18), we get U∗1 = H∗−1 ◦ U2 ◦ H∗. Hence M (P1(x)) ≤ M (P2(x)).
Therefore, M (P1(x)) = M (P2(x)). This completes the proof of Theorem
5.2.

Lemma 5.6. [CGP+12, Proposition 1] The masking complexity of an S-box
(in general, any function) cannot increase when it is composed with affine
functions. When composed with affine bijections, then masking complexity
remains the same.
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Remark 5.3 Note that Lemma 5.6 holds only when the evaluation of affine
functions over F2ndoes not involve any non-linear multiplication. For the sake
of completeness, this property is proved in Lemma 5.5.

Note that in the proof of Theorem 5.2 the only property of the maps B1 and
B2 used is that they are F2-linear bijections. Hence if B1 and B2 are any linear
bijections, even then the masking complexity of an S-box remains invariant.

5.3.3 Non-linear Complexity: Lower Bounds

We now give lower bounds on the non-linear complexity of evaluating poly-
nomials over F2n . Our first lower bound result originally appeared in [RV13].
Later we improved this result significantly in [CRV14].

5.3.3.1 First Bound

Proposition 5.3. Let P (x) :=
∑2n−1

i=0 ai x
i be a polynomial in F2n [x]. Then

M(P (x)) ≥ max
0<i<2n−1

ai 6=0

mn(i).

Proof. To prove the proposition, we just need to prove the following claim.
Let σnk := {α |mn(α) ≤ k}. We claim that, with at most k non-linear multi-
plications, we can evaluate only those polynomials of the form

∑
i aix

i, where
i ∈ σnk and ai ∈ F2n . It is easy to see that with zero non-linear multiplications,
only those polynomials of the form

∑
i aix

i, where i ∈ σn0 = {2j |0 ≤ j ≤ n−1}.
Let us assume that the above claim is true up to k − 1 non-linear multipli-
cations. Consider the set of polynomials T :=

{
p(x) | p(x) =

∑
j bjx

j , j ∈
σnk−1, bj ∈ F2n

}
. Since squaring is a linear operation in F2n [x], the set T is

closed under additions, scalar multiplications and squaring operations. Hence
if we allow only one more non-linear multiplication, then exponents in the
resulting polynomial can only be from σnk . Note that mn(α) is defined only
for 0 < α < 2n − 1 and x2n−1 = 1 if x 6= 0. This proves the claim.

5.3.3.2 Improved Bound

Our technique to prove the lower bound of Ω(
√

2n/n) on the non-linear com-
plexity is similar to the one used in the proof of [PS73, Theorem 2]. But we
would like to emphasize that their result is not applicable to our setting since
they work over the integers and the cost model used there is different from
the one used in our case.

Proposition 5.4. There exists a polynomial P (x) ∈ F2n [x] such thatM(P (x))

≥
√

2n

n − 2.



96 Masking of S-boxes and Polynomial Evaluation

Proof. At a more abstract level, an F2n-polynomial chain evaluating P (x) ∈
F2n [x] that uses r non-linear multiplications (r ≥ 0) can be equivalently de-
scribed as a sequence Z of polynomials z−1, z0, . . ., zr, P (x), where

z−1 = 1,

z0 = x,

zk =

βk,−1 +

k−1∑
i=0

n−1∑
j=0

βk,i,j z
2j

i

 ·
β′k,−1 +

k−1∑
i=0

n−1∑
j=0

β′k,i,j z
2j

i


(mod x2n + x), (5.20)

where k = 1, 2, . . . , r, βk,−1, β
′
k,−1, βk,i,j , β

′
k,i,j ∈ F2n . Lastly,

P (x) = βr+1,−1 +
r∑
i=0

n−1∑
j=0

βr+1,i,j z
2j

i (mod x2n + x), (5.21)

where again βr+1,−1, βr+1,i,j ∈ F2n .

Since the squaring operation is F2-linear in F2n , and that x2n = x for all
x ∈ F2n , it is easy to see that any polynomial that can be evaluated using at
most r non-linear multiplications will be of the form as given in (5.21).

The number of parameters βk,−1, β′k,−1, βk,i,j , β
′
k,i,j in (5.20) for a given

value of k (k = 1, . . . , r) is 2 · (k · n+ 1). In (5.21), the number of parameters
βr+1,−1, βr+1,i,j is (r + 1) · n+ 1. Totally, the number of parameters are

(r + 1)n+ 1 +
r∑

k=1

2 (kn+ 1) .

Since there are only |F2n |2
n

distinct polynomials in F2n [x] (i.e. up to eval-
uation), and a given set of values for the parameters enables to evaluate a
single polynomial only, we get the following necessary condition to evaluate
all polynomials over F2n [x]

|F2n |
(r+1)n+1+

r∑
k=1

2(kn+1)
≥ |F2n |2

n

,

=⇒ (r + 1)n+ 1 +

r∑
k=1

2 (kn+ 1) ≥ 2n,

=⇒ n · r2 + (2n+ 2) · r − (2n − n− 1) ≥ 0,

=⇒ r ≥
√

2n

n
− 2. (5.22)

Hence there exists polynomials over F2n that require Ω(
√

2n/n) non-linear
multiplications to evaluate them.

Concrete Lower Bounds. In Table 5.2 we compare, for various values of
n, the previously known lower bound for non-linear complexity with the new
lower bound as determined by (5.22).
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n 4 5 6 7 8 9 10 11 12

Previous/our lower bound
(cf. [CGP+12], Prop. 5.3)

2 2 3 3 4 4 4 4 4

Our lower bound (cf.
(5.22))

0 1 2 3 4 6 9 12 17

Table 5.2: Lower bound for non-linear complexity in F2n .

5.3.3.3 Lower Bounds for S-boxes

Though we defer the discussion on the application to S-boxes to Section 5.4,
for clarity, we briefly mention the application of the above lower bound results
here.

We represent the fields F24 , F26 and F28 using irreducible polynomials y4 +
y3 + 1, y6 + y4 + y3 + y + 1, y8 + y4 + y3 + y + 1 ∈ F2[y], respectively. From
Theorem 5.2, we know that the masking complexity is invariant w.r.t. the
field representations.

The polynomials corresponding to the eight DES S-boxes are polynomials of
degree 62 in F26 [x] (here the 4 bit DES S-box outputs are padded with two
leading zeroes and identified with the elements of F26). For the PRESENT S-
box, the corresponding polynomial is a polynomial of degree 14 in F24 [x]. Since
m6(62) = 3 and m4(14) = 2, from Proposition 5.3 we obtain the following
corollary.

Corollary 5.1. Masking complexity of a DES S-box is at least 3, and that of
the PRESENT S-box is at least 2.

The AES S-box can be written as an affine permutation composed with the
polynomial x254 ∈ F28 [x]. From Lemma 5.6, the masking complexity of AES
S-box is M

(
x254

)
over F28 . Using arguments similar to the proof of Lemma

5.3, we obtain the following corollary.

Corollary 5.2. Masking complexity of the AES S-box is at least 4.

The above corollary was shown by exhaustive search in [CGP+12].

5.3.4 Generic Polynomial Evaluation Technique

Next we shall look at various methods to efficiently evaluate general polynomi-
als over F2n . As expected, the cost model we use is the non-linear complexity.
First, we briefly recollect the previously known methods for this problem.
Then we present a new improved method that is (heuristically) optimal. This
method originally appeared in [CRV14].
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Remark 5.4 Since our goal is only to evaluate polynomials over F2n , we
will be actually working in the ring F2n [x]/(x2n + x), which is an abuse of
the notation F2n [x]. In other words, we treat any given polynomial P (x) =
2n−1∑
i=0

aix
i ∈ F2n [x] to be the same as P (x) modulo x2n + x; hence P (x) has

degree at most N := 2n − 1.

5.3.4.1 Previous Generic Methods

Horner’s Method. This is a classical and one of the simplest methods used
to evaluate a given polynomial. The polynomial P (x) is computed as

P (x) = ((((aN x+ aN−1)x+ aN−2)x) + . . .+ a1)x+ a0.

This method does not take advantage of the fact that squarings are free. The
number of non-linear multiplications required is one less than the number of
monomials that are non-constant and have non-zero coefficients. The number
of scalar multiplications required is 1. The number of additions required is
one less than the number of monomials having non-zero coefficients.

In the worst case (for dense polynomials), the number of non-linear multipli-
cations required is 2n − 2. The number of additions required is 2n − 1.

Cyclotomic-Class Method. This method, proposed in [CGP+12], is an
optimized version of the brute force evaluation method of computing every
monomial, then multiplying with the corresponding coefficients and then sum-
ming the terms. The basic idea is to use one non-linear multiplication to com-
pute the monomial xαj for a new cyclotomic class αj ∈ Cαj . Now for every
other element in Cαj , we can compute the corresponding monomial for free
by squaring. Once all the monomials are computed, then using only scalar
multiplications and additions, we can compute P (x).

In the worst case, the number of non-linear multiplications required is same
as the number of cyclotomic classes, which is at least 2n−1

n (cf. Remark 5.1).
The number of squarings required is about 2n − 1 less the number of cyclo-
tomic classes, while the actual number of scalar multiplications required is
the number of non- monic coefficients less one (for the constant term) (hence
at most 2n − 1), and the number of additions required is one less than the
number of monomials having non-zero coefficients (hence at most 2n − 1).

Parity-Split Method. This method was also proposed in [CGP+12]. It is
based on the idea of representing P (x) in terms of polynomials having only
monomials raised to even powers:

P (x) = P1,1(x2) + x · P1,2(x2),
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where P1,1 and P1,2 are polynomials of degree at most N/2. On recursively
applying this technique, we can express P (x) in terms of polynomials succes-
sively having half the degree of those in the previous step. Note that at every
step the number of non-linear multiplications required at the combining step
also doubles compared with the previous level. Optimal depth is bn/2c (i.e.,
after bn/2c recursive decompositions of P (x)), and the required number of
non-linear multiplications in the worst case is approximately

√
2 · 2n/2.

The number of scalar multiplications and additions required is the same as
that of the cyclotomic-class method. The number of squarings for the parity-
split method is about 2dn/2e−1 + bn/2c (for dense polynomials).

Divide-and-Conquer Method. This method was originally proposed in
[PS73]. It is based on the idea of expressing the given polynomial in terms of
polynomials of smaller degree. This method is effective if the degree of the
given polynomial if of specific form, as discussed below.

Let P (x) be a polynomial having degree N = k(2t − 1). We divide P (x) by
xkt and express P (x) as following

P (x) = Q(x) · xkt +R(x) (5.23)

where Q is monic and deg(Q) = k(t − 1), deg(R) ≤ kt − 1. Now we divide
R(x)− xk(t−1) by Q(x) and obtain C(x), R1(x) as following

R(x)− xk(t−1) = C(x) ·Q(x) +R1(x) (5.24)

where deg(C) ≤ k − 1, deg(R1) ≤ k(t− 1)− 1. So P (x) can be written as

P (x) = (xkt + c(x)) ·Q(x) + xk(t−1) +R1(x) (5.25)

Note that (xk)t + c(x)) is already a function of polynomials having degree at
most k. Assume that t = 2i−1, then having computed x2, x3, ..., xk we can
compute xkt for “free”(without non-linear multiplications).

Next we apply the same technique to Q(x) and xk(t−1) +R1(x) (both having
degree k(t−1)) recursively. In general, if i ≤ m then the number of non-linear
multiplications can be calculated from the relation

T (k(2i − 1)) = 2T (k(2i−1 − 1)) + 1 (5.26)

where T (γ) is the number of non-linear multiplications required to evaluate a
polynomial having degree γ, using the above technique. This gives T (k(2m−
1)) = 2m−1−1 ≈ N/2k. Hence the total number of non-linear multiplications
is about 1

2(k +N/k).

If the degree N ≈ k · (2m − 1), then the number of additions is about (k +
1) · (2m − 1). The number of non-linear multiplications is about k · (2m − 1).
The number of squarings is about k

2 + logk d. Hence if k ≈
√
d, then this is
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about
√
d

2 + 2. Hence for dense polynomials, there is no significant overhead
with respect to the linear operations.

As we shall see in Section 5.4.4.1, we can suitably adapt this technique (at
least to some cases of practical relevance for S-boxes) even when the degree
of the polynomial is not of specific form as required.

5.3.4.2 New Generic Method

Description. Consider an n-bit to n-bit S-Box represented by a polynomial
P (x) ∈ F2n [x]. We consider a collection S of ` cyclotomic classes w.r.t. n:

S = {Cα1=0, Cα2=1, Cα3 , . . . , Cα`} . (5.27)

Also, define L as the set of all integers in the cyclotomic classes of S:

L = ∪
Ci∈S

Ci. (5.28)

We choose the set S of ` cyclotomic classes in (5.27) so that the set of corre-
sponding monomials xL from S can be computed using only `− 2 non-linear
multiplications. We require that every monomial x0, x1, . . . , x2n−1, can
be written as product of some two monomials in P(xL). Moreover, we try to
choose only those cyclotomic classes with the maximum number of n elements
(except C0 which has only a single element). This gives

|L| = 1 + n · (`− 1) . (5.29)

Next, we generate t − 1 random polynomials qi(x)
$← P(xL) that have their

monomials only in xL. Suitable values for the parameters t and |L| will be
determined later. Then, we try to find t polynomials pi(x) ∈ P(xL) such that

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x). (5.30)

It is easy to see that the coefficients of the pi(x) polynomials can be obtained
by solving a system of linear equations in F2n , as in the Lagrange interpolation
theorem. More precisely, to find the polynomials pi(x), we solve the following
system of linear equations over F2n :

A · ~c = ~b (5.31)

where the matrix A is obtained by evaluating the R.H.S. of (5.30) at every
element of F2n , and by treating the unknown coefficients of pi(x) as variables.
This matrix has 2n rows and t · |L| columns, since each of the t polynomials
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pi(x) has |L| unknown coefficients. The matrix A can also be written as a
block concatenation of smaller matrices:

A = (A1|A2| . . . |At), (5.32)

where Ai is a 2n × |L| matrix corresponding to the product pi(x) · qi(x). Let
aj ∈ F2n (j = 0, 1, . . . , 2n − 1) be all the field elements and pi(x) consists of
the monomials xk1 , xk2 , . . . , xk|L| ∈ xL. Then, the matrix Ai has the following
structure:

Ai =



ak1
0 · qi(a0) ak2

0 · qi(a0) . . . a
k|L|
0 · qi(a0)

ak1
1 · qi(a1) ak2

1 · qi(a1) . . . a
k|L|
1 · qi(a1)

ak1
2 · qi(a2) ak2

2 · qi(a2) . . . a
k|L|
2 · qi(a2)

...
... . . .

...

ak1
2n−1 · qi(a2n−1) ak2

2n−1 · qi(a2n−1) . . . a
k|L|
2n−1 · qi(a2n−1)


(5.33)

The unknown vector ~c in (5.31) corresponds to the unknown coefficients of
the polynomials pi(x). The vector ~b is formed by evaluating P (x) at every
element of F2n . Note that since P (x) corresponds to an S-box, the vector ~b
can be directly obtained from the corresponding S-box lookup table.

If the matrix A has rank 2n, then we are able to guarantee that the decom-
position in (5.30) exists for every polynomial P (x). To be of full rank 2n the
matrix must have a number of columns ≥ 2n. This gives us the necessary
condition

t · |L| ≥ 2n. (5.34)

We stress that (5.34) is only a necessary condition. Namely we don’t know
how to prove that the matrix A will be full rank when the previous condi-
tion is satisfied; this makes our algorithm heuristic. In practice for random
polynomials qi(x) we almost always obtain a full rank matrix under condition
(5.34).

From (5.29), we get the condition

t · (1 + n · (`− 1)) ≥ 2n (5.35)

where t is the number of polynomials pi(x) and ` the number of cyclotomic
classes in the set S, to evaluate a polynomial P (x) over F2n .

We summarize the above method in Algorithm 2 below. The number of
non-linear multiplications required in the combining step (5.30) is t − 1. As
mentioned earlier, we need `−2 non-linear multiplications to precompute the
set xL. Hence the total number of non-linear multiplications required is then

Nmult = `− 2 + t− 1 = `+ t− 3. (5.36)
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Algorithm 2 New generic polynomial decomposition algorithm

Input: P (x) ∈ F2n [x].

Output: Polynomials pi(x), qi(x) such that P (x) =
t−1∑
i=1

pi(x) · qi(x) + pt(x).

1: Choose ` cyclotomic classes Cαi : L ←
l⋃

i=1
Cαi , and the basis set xL can be

computed using `− 2 non-linear multiplications.
2: Choose t such that t · |L| ≥ 2n.

3: For 1 ≤ i ≤ t, choose qi(x)
$← P

(
xL
)
.

4: Construct the matrix A← (A1|A2| . . . |At), where each Ai is the 2n×|L| matrix
given by (5.33).

5: Solve the linear system A · ~c = ~b, where ~b is the evaluation of P (x) at every
element of F2n .

6: Construct the polynomials pi(x) from the solution vector ~c.

where t is the number of polynomials pi(x) and ` the number of cyclotomic
classes in the set S.

Remark 5.5 If A has rank 2n, then the same set of basis polynomials qi(x)
will yield a decomposition as in (5.30) for any polynomial P (x). That is, the
matrix A is independent from the polynomial P (x) to be evaluated.

Remark 5.6 Our decomposition method is heuristic because for a given n
in F2n we do not know how to guarantee that the matrix A has full rank 2n.
However for typical values of n, say n = 4, 6, 8, we can definitely check that the
matrix A has full rank, for a particular choice of random polynomials qi(x).
Then any polynomial P (x) can be decomposed using these polynomials qi(x).
In other words for a given n we can once and for all generate the random
polynomials qi(x) and check that the matrix A has full rank 2n, which will
prove that any polynomial P (x) ∈ F2n [x] can then be decomposed as above.
In summary our method is heuristic for large values of n, but can be proven
for small values of n. Such proof requires to compute the rank of a matrix
with 2n rows and a slightly larger number of columns, which takes O(23n)
time using Gaussian elimination.

Asymptotic Analysis. Substituting (5.36) in (5.35) to eliminate the pa-
rameter `, we get

t · (1 + n · (Nmult − t+ 2)) ≥ 2n,

=⇒ Nmult ≥
2n

n · t
+ t−

(
2 +

1

n

)
. (5.37)

The R.H.S. of the above expression is minimized when t ≈
√

2n

n , and hence

we obtain

Nmult ≥ 2 ·
√

2n

n
−
(

2 +
1

n

)
. (5.38)
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Hence, our heuristic method requires O(
√

2n/n) non-linear multiplications,
which is asymptotically slightly better than the Parity-Split method [CGP+12],
which has proven complexity O(

√
2n). If one has to rigorously establish the

above bound for our method, then we may have to prove the following state-
ments, which we leave as open problems:

– We can sample the collection S of cyclotomic classes in (5.27), each
having maximal length n (other than C0), using at most `−2 non-linear
multiplications.

– The condition t · |L| ≥ 2n suffices to ensure that the matrix A has full
rank 2n.

Table 5.3 lists the expected minimum number of non-linear multiplications,
as determined by (5.38), for binary fields F2n of practical interest. It also lists
the actual number of non-linear multiplications that suffices to evaluate any
polynomial, for which we have verified that the matrix A has full rank 2n,
for a particular random choice of the qi(x) polynomials. We also provide a
performance comparison of our method with that of the Cyclotomic Class and
the Parity-Split methods from [CGP+12]. In Table 5.4, we list the specific
choice of parameters t and L that we used in this experiment.

n 4 5 6 7 8 9 10

Cyclotomic Class method
[CGP+12]

3 5 11 17 33 53 105

Parity-Split method [CGP+12] 4 6 10 14 22 30 46

Expected minimum value of
Nmult (cf. (5.38))

2 3 5 7 10 13 19

Achievable value of Nmult 2 4 5 7 10 14 19

Table 5.3: Minimum values of Nmult

Remark 5.7 Note that there is still a gap between the lower bound from
Table 5.2 and the achievable value of Nmult for our method in Table 5.3. This
is because in our method the decomposition of P (x) as

P (x) =

t−1∑
i=1

pi(x) · qi(x) + pt(x) (5.39)

is performed by first generating the polynomials qi(x) randomly and inde-
pendently of P (x), in order to have a linear system of equations over the
coefficients of pi(x). Instead one could try to solve (5.39) for both the pi(x)
and the qi(x) polynomials simultaneously; however this gives a quadratic sys-
tem of equations, which seems much harder to solve.
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n t L |L|
4 2 C0 ∪ C1 ∪ C3 9

5 3 C0 ∪ C1 ∪ C3 ∪ C7 16

6 3 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C11 25

7 4 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C11 ∪ C15 36

8 6 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C87 ∪ C251 49

9 8 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C45 ∪ C119 ∪ C191 ∪ C255 73

10 11 C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C45 ∪ C119 ∪ C191 ∪ C155 ∪ C255 ∪ C339 101

Table 5.4: Heuristics for choosing parameters t and L.

Counting the Linear Operations. From (5.29) and (5.30), we get (2t −
1) · (|L|−1)+(t−1) as an upper-bound on the number of addition operations
required to evaluate P (x). This is because each of the 2t − 1 polynomials
pi(x) and qi(x) in (5.30) have (at most) |L| terms, and there are t summands
in (5.30). From (5.34), we get:

(2t− 1) · (|L| − 1) + (t− 1) ≤ 2 t |L| ≈ 2 · 2n

Similarly, we get (2t− 1) · |L| ≈ 2 · 2n as an estimate for the number of scalar
multiplications. Since the squaring operations are used only to compute the
list L, we need |L| − ` ≤ |L| ≈

√
n · 2n many of them (cf. (5.37)).

Remark 5.8 The above count of the linear operations can be significantly
reduced if the linear operations are replaced by table lookups as much as
possible. Such an approach is particularly well suited for application in the
higher-order masking scheme of [CGP+12], where we need to evaluate a given
polynomial with many shares and that the processing of linear polynomials
with shares is particularly straightforward. More specifically, we can write
each pi(x) as a sum of F2-linear polynomials pi,j , one for each cyclotomic
class in the pre-computed set S (cf. (5.27), (5.28))1:

pi(x) =
∑
Cαj∈S

pi,j (xαj ) .

The ` polynomials pi,j are F2-linear and hence are of the form
n−1∑
k=0

γk x
2k .

Similarly, the polynomials qi(x) can also be expressed in the above form. If
we tabulate the values of each of the linear polynomials pi,j and qi,j , then
it suffices to evaluate xαj for each cyclotomic class Cαj ∈ S using only non-
linear multiplications. Then the polynomials pi,j and qi,j can be evaluated by
just table lookups, and then each of the 2t − 1 polynomials pi and qi can be
eventually evaluated with ` − 1 additions each. Finally, we need t − 1 more

1We thank Matthieu Rivain for this suggestion.
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additions in the step (5.30). Hence, we need no scalar multiplications nor
squarings using this table lookup technique. The total number of additions
we need is

(2t− 1) · (`− 1) + t− 1 ≈ 2 · 2n

n
.

Note that this technique is not very effective for the evaluation method in
Section 5.4.4.1 since nearly every linear polynomial that appears has at most
two non-zero terms.

5.4 Application to various S-boxes

In this section, we apply the generic method described in Section 5.3.4, to
several well known S-boxes. Using our new method, we reduce the number of
non-linear multiplications required in each case, resulting in an improvement
over the previously known techniques.

We stress that in our method for an n-bit S-box, the maximum number of
non-linear multiplications required is invariant of the choice of the S-box when
n is fixed. Hence, the number of non-linear multiplications obtained for a fixed
n actually provides an upper bound on the masking complexity of an S-box
of size n.

5.4.1 CLEFIA and Other 8-bit S-boxes

The CLEFIA block cipher has two 8-bit S-boxes [SSA+07]. Let us denote the
S-box lookup table for either of the S-boxes as Sclefia. We choose

L = C0 ∪ C1 ∪ C3 ∪ C7 ∪ C29 ∪ C87 ∪ C251. (5.40)

This implies that after choosing t = 6, and then 5 basis polynomials qi
$←

P(xL) (1 ≤ i ≤ 5), the following system of equations is constructed in F28 :

Sclefia[xj ] =

5∑
i=1

pi(xj) · qi(xj)︸ ︷︷ ︸
Q

+p6(xj) j = 0, . . . , 255. (5.41)

We have checked that for some random choice of the polynomials qi(x) the
corresponding matrix A has full rank 256, and therefore we can determine the
polynomials pi(x). Given the solution to the above system, the S-box evalua-
tion is then the same as evaluating the polynomial Q(x) + p6(x). To evaluate
all the monomials in {x, x3, x7, x29, x87, x251} we need 5 non-linear multipli-
cations, implying that any monomial in xL, any qi(x) (randomly chosen from
P(xL)) and any pi(x) can all together be evaluated with 5 non-linear multi-
plications. Moreover the evaluation of Q(x) requires 5 additional non-linear
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multiplications. Therefore the total number of non-linear multiplications re-
quired for evaluating the S-box is 10.

Note that it requires at least 4 non-linear multiplications to evaluate the poly-
nomials corresponding to the two S-boxes of CLEFIA by any method. This
is because these two polynomials over F28 have degrees 252 (S-box S0) and
254 (S-box S1), and the result follows from Proposition 5.3.

Invariance. If we choose some other 8-bit S-box, then the matrix corre-
sponding to the resulting system remains the same. Hence, we will still get a
solution to the system for the same set of polynomials qi(x). This implies that
we can use the same set of basis polynomials to obtain polynomials pi(x) for
any other 8-bit S-box. Hence, for any S-box of size 8, the number of non-linear
multiplications is at most 10.

5.4.2 PRESENT and Other 4-bit S-boxes

For the 4-bit S-box of PRESENT [BKL+07], we choose t = 2 and L = C0 ∪
C1 ∪ C3. By selecting q1

$← P(xL), we construct the following linear system
of equations:

Spresent[xj ] = p1(xj) · q1(xj) + p2(xj) (5.42)

The monomials used to construct q1(x), q2(x) are {x, x2, x4, x8, x3, x6, x12, x9}.
All of these monomials can be evaluated with a single non-linear multiplication
and to evaluate p1(x) · q1(x) we need only one more non-linear multiplication.
Hence, the PRESENT S-box evaluation requires 2 multiplications. As in the
case of 8-bit S-boxes, this proves that with the same q1(x) any 4-bit S-box
can be evaluated with 2 multiplications. Table 5.5 gives the corresponding
polynomials for the PRESENT S-box.

The polynomial corresponding to the PRESENT S-box has degree 14 and
hence, from Proposition 5.3, its masking complexity is at least 2 [RV13].
This implies that our evaluation method achieves optimal complexity for the
PRESENT S-box.

5.4.3 (n,m)-bit S-box

We now consider S-boxes whose output size m is smaller than the input size
n, as for the DES S-boxes with n = 6 and m = 4. We can view an (n,m)-bit
S-box (m < n) as a mapping from F2n to F2m . Given any such S-box table S,
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Basis Polynomial

q1 (a3 + a2 + 1) · x12 + (a3 + a2 + a + 1) · x9 + a2 · x8 + x6 +
(a3 + a2 + a) · x4 + x2 + (a3 + a) · x+ a

Solution to linear System

p1 (a3 + a) · x12 + x9 + (a3 + a2) · x8 + (a2 + 1) · x6 + (a3 + a2 +
1) ·x4 + (a3 + a2 + a+ 1) ·x3 + (a2 + 1) ·x2 + (a2 + 1) ·x+ a2

p2 (a2 + 1) · x8 + (a3 + a2 + 1) · x6 + (a+ 1) · x4 + a · x3 + x2 +
(a3 + 1) · x+ a2

Table 5.5: Basis polynomial q1(x) for 4-bit S-boxes, and solutions p1(x), p2(x) to
PRESENT S-box. The irreducible polynomial is a4 + a+ 1 over F2.

we want to construct a system of linear equations

S[xj ] =
t−1∑
i=1

pi(xj) · qi(xj) + pt(xj)︸ ︷︷ ︸
G(x)

(5.43)

Note that each S[xj ] is an element of the smaller field F2m , but each G(xj)
is an element in the larger field F2n . One trivial way to remove this incon-
sistency is to consider S[xj ] as an element of the larger field F2n , by padding
the most significant bit of the S-box output with 0’s. Then, we determine
the polynomials pi(x) by solving the corresponding system A · ~c = S, as de-
scribed in Section 5.3.4.2. However intuitively this is not optimal, since we
are creating an artificial constraint to be satisfied by the coefficients of the
polynomials pi(x), namely that the n−m most significant bits of G(x) must
be 0, while eventually these most significant bits will simply be discarded after
the evaluation of G(x), since to get S(x) we only keep the m least significant
bits of G(x).

Instead, we consider the representations of the unknown coefficients of the
polynomials pi(x) in F2 instead of F2n , and we transform the system of linear
equations (5.43) over F2n , into a system of linear equations over F2. By doing
this, from each constraint G(xj), we generate m equations over F2, instead
of one equation over F2n . Note that each of these n equations will be an
affine combination of the unknown bits of the coefficients of the polynomials
pi(x). Only n of these equations are actually necessary, since the output
of the S-box is of size m bits. By equating each of these equations to the
corresponding output bit of the S-box, we get a transformed system of linear
equations B · ~c = S, where B is an (m · 2n) × (t · |L| · n) matrix over F2 and
L is the set of elements from the chosen cyclotomic classes. By solving this
transformed system over F2 we determine the polynomials pi(x).
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5.4.4 DES S-boxes

5.4.4.1 Adapting the Divide-and-Conquer Method

Before we illustrate the above technique in Section 5.4.3 for the case of DES S-
boxes, we will first describe our adaptation of the Divide-and-Conquer method
from Section 5.3.4.1 for the DES S-boxes that appeared in [RV13]. This
method requires only 7 non-linear multiplications compared to the Parity-
Split method that requires 10 non-linear multiplications.

The DES block cipher has 8 (6, 4)-bit S-boxes [des93]. Let PDES(x) ∈ F26 [x]
be the Lagrange interpolation polynomial corresponding to a DES S-box. Here
the 4-bit output of a DES S-box is identified as a 6-bit output with two leading
zeroes, and hence these bit strings are naturally identified with the elements
of F26 . Note that for all the DES S-boxes, deg (PDES(x)) = 62. Write

PDES(x) = q(x) · x36 +R(x),

where deg(R) ≤ 35 and deg(q) = 26. Then divide the polynomial R(x)− x27

by q(x):
R(x)− x27 = c(x) · q(x) + s(x),

where deg(c) ≤ 9 and deg(s) ≤ 25, which gives

PDES(x) =
(
x36 + c(x)

)
· q(x) + x27 + s(x).

Next decompose the polynomials q(x) and x27 + s(x) in a similar way but,
instead, dividing first by x18, and then using x9 as the “correction term”. One
gets

q(x) = (x18 + c1(x)) · q1(x) + x9 + s1(x),

x27 + s(x) = (x18 + c2(x)) · q2(x) + x9 + s2(x)

where deg(q1) = 8, deg(c1) ≤ 9, deg(s1) ≤ 7, deg(q2) = 9, deg(c2) ≤ 8, and
deg(s2) ≤ 8. Finally,

PDES(x) =(x36 + c(x)) ·
(

((x18 + c1(x)) · q1(x)) + (x9 + s1(x))
)

+
(

(x18 + c2(x)) · q2(x) + (x9 + s2(x))
)
.

(5.44)

The monomials x, x2, x3, x4, x5, x6, x7, x8, x9, x18, x36 are first evaluated
using 4 non-linear multiplications. Namely a non-linear multiplication is re-
quired for each of the monomials x3, x5, x7 and x9; the rest of the monomials
can be evaluated using linear squarings only. Each of the individual polyno-
mials in the above expression such as x36 + c(x), x18 + c1(x), q1(x), and so
on, can then be evaluated for free, that is without further non-linear multipli-
cations. To evaluate PDES(x) from (5.44), 3 more non-linear multiplications
are needed, and hence totally 7 non-linear multiplications are sufficient to
evaluate a DES S-box.
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5.4.4.2 Improved Method

From Table 5.3, we can see that by using our generic method over F26 we can
perform the evaluation with 5 non-linear multiplications. Below we show that
by working over F2 as explained in Section 5.4.3, only 4 non-linear multipli-
cations are required.

We choose L = C0 ∪ C1 ∪ C3 ∪ C7, t = 3, and q1(x), q2(x)
$← P(xL). Then

using our method we transform the following linear system of equations

Sdes[xj ] =
2∑
i=1

pi(xj) · qi(xj)︸ ︷︷ ︸
Q(x)

+ p3(xj) (5.45)

to a system over F2. That is, instead of embedding Sdes into F26 , we write
the system of equations over F2. This can be done by considering the binary
representation of xα evaluated at any given value in F26 . This will give 6
equations over F2 for each equation Q(xj) + p3(xj). Out of these 6 equations
only 4 will be necessary since the output of DES S-box has 4-bit values. By
solving this new system of linear equations over F2 we can determine pi(x)
for each i.

The number of multiplications required to evaluate q1(x), q2(x) is 2, and Q(x)
can be evaluated with 2 additional multiplications. Hence, the total number
of non-linear multiplications required is only 4. In Section 5.4.5 we give an
example of basis polynomials q1(x), q2(x) for DES and the solution polyno-
mials pi(x) corresponding to the system of linear equations for the first DES
S-box S1.

As previously, once we obtain a full rank matrix for a set of randomly fixed
q1(x), q2(x), for any other (6, 4)-bit S-box we can use this basis to find the
corresponding polynomials pi(x), since the matrix A is independent from the
S-box. Hence we can conclude that the masking complexity of any (6, 4)-bit
S-box is at most 4.

5.4.5 Evaluation Polynomials for DES S-boxes

In Table 5.6 we give an example of basis polynomials q1(x), q2(x) for DES and
Table 5.7 shows the solution polynomials pi(x) corresponding to the system
of linear equations for the first DES S-box S1.

5.4.6 Implementation Results: DES

We have performed a software implementation of the CGPQR countermeasure
[CGP+12] for DES that incorporates our new polynomial evaluation technique
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Basis Polynomials

q1 (a5 + a4 + 1) · x56 + (a5 + 1) · x49 + (a2 + a) · x48 + (a4 + a3) ·
x35 + (a5 + a4 + a2) ·x33 + (a5 + a+ 1) ·x32 + (a3 + a) ·x28 +
a2 · x24 + (a5 + 1) · x16 + (a4 + a+ 1) · x14 + x12 + (a4 + a3 +
a2 + 1) ·x8 + (a5 + a3 + a2 + a+ 1) ·x7 + (a5 + a4 + a3 + a2 +
1) ·x6 + (a5 + a4 + a3 + 1) ·x4 + (a5 + a2 + a+ 1) ·x3 + (a3 +
a2 + a) · x2 + (a4 + a2 + a+ 1) · x+ a5 + a4 + a3 + a2 + a

q2 (a+ 1) · x56 + (a5 + 1) · x49 + (a+ 1) · x48 + a · x35 + (a+ 1) ·
x33 +(a4 +a3 +a+1) ·x32 +(a3 +a2 +a) ·x28 +(a5 +a3 +a+
1) ·x24 +(a3 +1) ·x16 +(a4 +a2 +1) ·x14 +(a+1) ·x12 +(a5 +
a4 + 1) ·x8 + (a5 + a4 + a3 + a+ 1) ·x7 + (a5 + a4 + a3) ·x6 +
(a+1) ·x4 +(a5 +a3 +a2 +a) ·x2 +a ·x+a5 +a4 +a3 +a2 +1

Table 5.6: Basis polynomials q1, q2 obtained from P(xL), for DES.

Solution to linear system

p1 (a5 +a4 +a3 +a2 +1) ·x56 +(a5 +a2 +1) ·x49 +a4 ·x48 +(a4 +
a3 +a) ·x35 +(a5 +a4 +a2) ·x33 +(a5 +1) ·x32 +a ·x28 +(a4 +
a2)·x24+(a5+a)·x16+(a5+a2)·x14+(a5+a+1)·x12+(a5+
a4 +a3 +a) ·x8 + (a5 +a4 +a3 +a) ·x7 + (a5 +a4 +a3) ·x6 +
(a2+a+1)·x4+(a5+a4+a)·x2+(a5+a4+1)·x+a4+a3+a2

p2 (a5+a2)·x49+(a3+1)·x48+(a5+a3+a+1)·x35+(a4+a2+1)·
x33+(a5+a4+1)·x32+(a5+a4+a3+a+1)·x28+(a3+a2)·x24+
(a2+a+1)·x16+(a5+a4+a3)·x14+(a4+a3+a+1)·x12+(a4+
a3)·x8+(a5+a)·x7+(a5+a4)·x6+(a5+a4+a3+a2+a+1)·x4+
(a5+a4+a)·x3+(a5+a3+a+1)·x2+(a5+a)·x+a5+a4+a2+a

p3 a · x7 + a · x6 + (a4 + a+ 1) · x4 + (a5 + a2 + a) · x3 + (a5 +
a4 + a+ 1) · x2 + (a4 + a2) · x

Table 5.7: Solution to the system of linear equations for DES S-box (S1). The
irreducible polynomial is a6 + a+ 1 over F2.
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Table 5.8: Comparison of secure implementations of DES.
Method t′ n′ Rand ×103 Mem (bytes) Time (ms) PF

Unprotected 0.008 1

CGPQR+RV 1 3 2752 72 0.552 69

Table Recomputation 1 3 8512 423 0.279 34

CGPQR+CRV 1 3 2368 40 0.166 20

CGPQR+RV 2 5 9152 118 0.966 120

Table Recomputation 2 5 33472 691 0.612 76

CGPQR+CRV 2 5 7872 64 0.336 42

CGPQR+RV 3 7 19200 164 1.507 188

Table Recomputation 3 7 74880 959 1.091 136

CGPQR+CRV 3 7 16512 88 0.591 73

CGPQR+RV 4 9 32896 210 2.167 270

Table Recomputation 4 9 132736 1227 1.696 212

CGPQR+CRV 4 9 28288 112 0.905 113

from Section 5.4.3 (referred to as the CGPQR+CRV method in Table 5.8) re-
quiring only 4 non-linear multiplications. We have implemented this in C on a
Dell Latitude 13 notebook running Ubuntu 12.04 Linux. The processor is In-
tel Core 2 Duo (32-bit architecture) running at 1.3 GHz. Our implementation
is based on the source code available from [Cor13]. The present implemen-
tation is also publicly available at [Cor13]. We have used the technique of
tabulating linear polynomials from Remark 5.8 in the implementation of our
polynomial evaluation method. Note that these tables corresponding to the
linear polynomials need to be stored only in the ROM.

In Table 5.8, we have compared the above timing results with that of the CG-
PQR countermeasure implemented with the technique from Section 5.4.4.1
(referred to as the CGPQR+RV method) that requires 7 non-linear multipli-
cations. We have also made a comparison with the higher-order table recom-
putation method of Coron [Cor14]. In Table 5.8, the parameter t′ refers to
the order of security and n′ refers to the number of shares in the full secu-
rity model of [ISW03]. Note the relation n′ = 2t′ + 1. The (RAM) memory
requirement (in bytes) is provided only for the S-box computations and the
overall execution time for a DES encryption is in milliseconds. The penalty
factor (PF) gives the ratio of the execution time of a given method to that of
an unprotected implementation. The number of calls to the random number
generator is 1000 times that of the reported quantity.
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5.5 Conclusion and Future Directions

In this chapter, we studied various methods to evaluate polynomials over F2n

that reduces the number of non-linear multiplications required. We proposed
an asymptotically optimal (but heuristic) algorithm for this problem. As
a consequence of our results, in practice, we can significantly improve the
efficiency of generic higher-order masking scheme of Carlet et al.

It will be interesting to explore further the cost model of Grosso et al. [GPS14].
In [GPS14], non-linear multiplications are classified into two types: type-II
and type-III. A type-II non-linear multiplication is of the form y×g(y), where
g() is an F2-affine function, whereas type-III non-linear multiplications are the
complement of type-II operations. Type-II operations can be implemented
twice as efficiently compared to type-III operations for medium-sized S-boxes.
In fact, we have observed that by suitably adapting our evaluation method,
we can evaluate DES S-boxes with only 1 type-III operation and 3 type-III
operations. An open question is whether can we evaluate DES S-boxes with
only 5 type-III operations?

An interesting future direction is to further improve our method from Section
5.3.4.2 by obtaining smaller decompositions (i.e., having smaller value for t)
without increasing the precomputed set of monomials. One possible approach
is to use Gröbner basis, though the magnitude of the resulting multivariate
quadratic system of equations seems challenging for current techniques.

Another possible application of the non-linear cost model we have used in this
chapter is in the design of fully homomorphic encryption schemes [Gen09]. For
efficiency reasons, it is desirable to express circuits of additions and multipli-
cations over F2that we wish to homomorphically evaluate as low depth circuits
w.r.t. to the multiplication operations [GHS12]. Eventually, the techniques
developed in this chapter may find greater use in such designs.

Our results for binary finite fields seem to readily extend to finite fields of
general characteristic. It will be interesting to find practical applications of
the non-linear cost model for the case of finite fields of general characteristic.
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Chapter 6

Leakage-Resilient
Symmetric-Key
Authentication and
Encryption

Because of their efficiency and usability on a wide range of platforms, leakage-
resilient cryptosystems based on symmetric-key primitives, such as block ci-
phers, are particularly attractive. So far, the literature has mostly focused
on the design of leakage-resilient pseudorandom objects, e.g., PRGs, PRFs,
PRPs. In this chapter, we consider the complementary and practically im-
portant problem of designing secure authentication and encryption schemes.
We follow a pragmatic approach based on the advantages and limitations of
existing leakage-resilient pseudorandom objects, and rely on the arguably nec-
essary, yet minimal, use of a leak-free component for this purpose. The latter
can typically be instantiated with a block cipher implementation protected by
traditional masking-based countermeasures, and we investigate how to com-
bine it with the more intensive use of a much more efficient (less protected)
block cipher implementation.

Based on these premises, we propose and analyze new constructions of leakage-
resilient MAC and encryption schemes, which allow fixing security and effi-
ciency drawbacks of previous proposals in this direction. For encryption,
we additionally provide a detailed discussion of why previously proposed
indistinguishability-based security definitions cannot capture actual side-chan-
nel attacks, and suggest a relaxed and more realistic way to quantify leakage-
resilience in this case, by reducing the security of many iterations of the prim-
itive to the security of a single iteration, independent of the security notion
guaranteed by this single iteration (that remains hard to define).

Contents
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6.1 Introduction

Symmetric cryptographic primitives such as block ciphers are of utmost im-
portance and in general, they are considered as the workhorses of modern
cryptography [KR11]. Because of their low cost and efficiency on a wide range
of platforms, they are also a target of choice for physical attacks. Unfortu-
nately, their lack of mathematical structure makes them particularly chal-
lenging to protect. Taking the example of side-channel attacks, probably the
most investigated countermeasure is masking [CJRR99] (a.k.a. secret shar-
ing [ISW03]). But it implies overheads that are at least quadratic in the
number of shares used [GSF14], and its secure implementation is far from
trivial, i.e., hardware engineers have to ensure that the leakage of each shares
is independent of each other, which may lead to further constraints [NRS11].

So there is a need for leakage-resilient symmetric primitives, which by de-
sign is inherently more secure against such physical attacks. So far, leakage-
resilient symmetric cryptography has mostly focused on PRGs (a.k.a. stream
ciphers) [DP08, FPS12, PSP+08, Pie09, SPY13, SPY+10, YS13, YSPY10],
PRFs and PRPs [DP10, FPS12, SPY+10, YS13]. By contrast, much less
work has been carried out on the exploitation of these leakage-resilient prim-
itives in the context of standard cryptographic tasks such as authentication
and encryption. Our goal in this chapter is therefore to clarify how and when
to use leakage-resilience in these cases, and for what kind of formal security
guarantees.
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6.1.1 Preliminaries

Our starting point for dealing with this problem is a recent work of Beläıd,
Grosso and Standaert [BGS15] that shows that concretely, the security im-
provements brought by leakage-resilience highly depend on whether the un-
derlying primitive is stateful (like PRGs, typically) or stateless (like PRFs
and PRPs, typically). By stateful, we mean that the implementation of the
primitive has to maintain a state (typically a key) between its consecutive iter-
ations, which implies that different parties involved in the use of this primitive
have to be synchronized. That is, despite proofs for both types of primitives
being essentially based on the same assumptions, namely, the leakage per it-
eration has to be limited in some sense, ensuring this condition in practice is
significantly more difficult in the case of stateless primitives than in the case
of stateful ones.

In the case of PRGs and stream ciphers, leakage-resilient designs limit the
number of measurements that an adversary can obtain per iteration. By con-
trast, for PRFs and PRPs, they only limit the number of plaintexts for which
measurements can be obtained, which still allows the adversary to measure the
same plaintext an arbitrary number of times, hence to reduce the noise. There-
fore, implementations of leakage-resilient PRGs and stream ciphers (mostly)
lead to concrete security against side-channel key recovery attacks at a lower
cost than countermeasures like masking. By contrast, implementations of
leakage-resilient PRFs and PRPs (mostly) lead to lower concrete security lev-
els than standard PRFs and PRPs protected with such countermeasures.

As a result, if we want to stick with constructions based on standard block
ciphers for efficiency and usability reasons, there seems to be little hope to
have a secure MAC or encryption scheme without further assumption. In-
deed, stateless primitives are usually important ingredients of such schemes,
and without properties such as a homomorphic structure, block cipher re-use
will eventually leak the key in full, as just explained. In this respect, a natural
direction to investigate is to assume that we will need a leak-free component,
i.e., a leak-free block cipher in our case. Admittedly, this leak-free component
will be much slower than an unprotected block cipher implementation, as it
could be based on a combination of masking and other countermeasures, in
fact, it could also be based on a primitive enjoying some exploitable homo-
morphic structure.

So our goal will be to make minimal use of this component, typically, one
call per message, independently of the message, and to combine it with a
faster implementation of block cipher in order to get a scheme that would still
provide good protection against side-channel attacks (or at least, as good as we
can hope), but would also be much more efficient than if we had to use the leak-
free component only, or solutions that only exploit the mathematical structure
of asymmetric cryptographic primitives such as [KP10a] (also Chapter 2) for
encryption, and [MOS13], Chapters 3 and 4 for authentication.
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6.1.2 Leakage Model

We consider the continuous leakage model since it is the only one capturing
actual side-channel attacks. Indeed, if a system is used for a sufficiently long
period of time, the amount of leakage observed by an attacker may exceed
any apriori determined leakage bound. In this context, we capture the limited
informativeness of actual leakages with the recently introduced “simulatable
leakage” framework [SPY13]. We are aware of the ongoing discussion about
how to implement block ciphers ensuring this empirically verifiable assump-
tion [GMO+14, PSMD14]. Yet, and as argued in these different papers, it
remains the most realistic assumption to reason about leakage we currently
have. Besides, and more importantly, we believe our main contribution is
the general discussion of leakage-resilient MAC and encryption, as well as the
proposal of new efficient constructions minimizing the need of leak-freeness.
That is, we use a leakage model, here, the simulatability framework, to reason
formally about our constructions and make sure that they are theoretically
well founded. But we also hope that they will be helpful in practice, for
cryptographic engineers.

6.1.3 Our Contribution

First, we follow this goal of minimizing the need of leak-freeness for two im-
portant symmetric cryptographic functionalities, namely authentication and
encryption. Second, we clarify and fix two important shortcomings in previ-
ously published approaches to these functionalities.

For leakage-resilient MACs, the only existing work based on symmetric prim-
itives is the one by Schipper [Sch10]. The basic idea is simple: take a leakage-
resilient PRG and use it to generate keys for a one-time MAC. While this is
indeed a stateful primitive, the main problem in this scheme is that the use
of the key is limited per message, not per message block. This means that
for long messages, and depending on the one-time MAC that is used, the ad-
versary can observe a large number of leaking operations exploiting the same
key. For instance, CBC-MAC would be problematic.

One partial solution considered in Schipper’s thesis is to use a MAC based
on a leakage-resilient PRF. But this has a higher implementation cost, as
noticed in [MOS13], and faces the previously discussed problem of stateless
primitives. In order to improve this situation, we first propose a new (stateful)
leakage-resilient MAC that limits the use of leak-free component to a single
block of IV, which can therefore be pre-computed, and is efficient for large
messages, i.e., it requires a single block cipher execution per message block.
We then propose a further simplification of this scheme based on a hash and
MAC paradigm. Along these lines, we also put forward that certain standard
MACs are better suited for leakage-resilience than others, for e.g., HMAC is
better than CBC-MAC in this respect.
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For encryption, the literature based on symmetric primitives is also sparse. To
the best of our knowledge, the work by Abdalla et al. is the only one to address
this question [ABF13]. Here, the problem is more general and definitional.
That is, a central issue in all the leakage-resilient encryption schemes proposed
so far is that they need to exclude the leakage during the challenge queries, or
restrict themselves to settings where an encryption is assumed to not leak any
single bit of the plaintext that is encrypted, for e.g., consider only key leakage.
In fact, this is also true for public-key encryption schemes: see, e.g. [NS09] for
an early proposal in this direction and [HLWW13] for a more recent one. On
the one hand, this seems unavoidable: indeed a single bit of leakage on the
plaintext trivially breaks the semantic security game. On the other hand, we
argue that excluding challenge leakages is artificial and does not capture the
actual adversarial scenario of leaking devices, at least in the context of side-
channel attacks based on power consumption and electromagnetic radiation
that we consider in this chapter, but we believe that in general as well, this
is the case.

Hence, we propose an alternative way to model the security in front of leakage
where we do not try to enforce traditional security notions with a negligible
advantage. We rather show that the security of multiple iterations reduces
to the security of a single iteration. That is, we show that whatever the
adversary is able to do against multiple iterations of our encryption scheme
is also possible against a single iteration of this scheme. We believe this
approach is more realistic since it does not give users the (illusive) feeling
that semantic or any indistinguishability-based security can be obtained for
encryption schemes with leakage. By contrast, we provide an efficient solution
for which the designer is guaranteed that the security of the full construction
reduces to the security of a single block, whatever security he is able to achieve
for this single block.

6.2 Leakage-Resilient Message Authentication Cod-
es

6.2.1 Security Definition

Let us recollect the standard definition of a Message Authentication Code
(MAC). A MAC is a tuple of three polynomial time algorithms MAC =
(KeyGen,Mac,Vrfy) defined as follows:

– the key generation algorithm KeyGen(1n) takes as input the security
parameter n and generates a shared (master) secret key k to be used by
both the tag generator and the verifier,

– the MAC generation algorithm Mac(m, k) takes as input the message
m and the secret key k (also possibly some randomness), and then out-
puts a tag τ .



120 Leakage-Resilient Symmetric-Key Authentication and Encryption

– the tag verification algorithm Vrfy(m, τ, k) takes as input a message
m, the corresponding tag τ and the secret key k. The algorithm outputs
1 (accept) if the tag is valid for the message, else it outputs 0 (reject).

We require the usual correctness property to be satisfied by the MAC, i.e.
Vrfy(m,Mac(m, k), k) → 1 for every message m and key k in the range of
KeyGen. Informally, the MAC is said to be existentially unforgeable in the
presence of (session) key leakage during tag generation (in short, LR-MAC)
if the adversary is unsuccessful in the following security game. The adversary
can obtain tags corresponding to the messages of its choice. Every time a tag
is computed, a session key is used, which is derived using the shared master
secret key k and some fresh randomness. The adversary will not be able to see
the leakages during the session key generation due to the leak-free component.
However, it will be able to obtain the leakages corresponding to the session
key during the tag generation. The adversary will also have access to the
verification oracle, but it will not be able to get the corresponding leakages
during verification that corresponds to the fact that we only secure the tag
generation against side-channel attacks, not the tag verification.

Note that as mentioned in the introduction, preventing side-channel attacks
during the tag verification will most likely be more challenging. Indeed, if the
adversary can observe the leakage during verification, it should be able to fully
recover the key by re-using it many times in the verification phase. Besides,
this problem is not specific to symmetric primitives. A similar (yet relaxed)
restriction is also made in [MOS13] for a construction of a leakage-resilient
MAC based on pairings. In this case, the adversary gets the leakage during
verification, but only once, for a given message and randomness pair. Other-
wise, the adversary will be able to leak a correct tag bit-by-bit by repeatedly
accessing the verification oracle with incorrect tags against the same message.
The goal of the adversary is to output a valid forgery on a message for which
it has not previously obtained a corresponding tag.

Formally, we consider the following experiment Forgeeuf−cma
AL,MAC

(n):

Forgeeuf−cma
AL,MAC

(n) Oracle OML(m)

k ← KeyGen(1n) τ ← Mac(m, k) ; `
F ← ∅ F ← F ∪m
(m, τ)← AOML(·),OV(·)(1n) Return τ , `
If m ∈ F , then return b := 0
b← Vrfy(m, τ, k) Oracle OV(m, τ)

Return Vrfy(m, τ, k)

Here, ` represents the leakage that occurs when performing the tag computa-
tion and specifically excludes leakage during the session key generation. More
precisely, the leakage depends on the message and the session key, which is
derived from the master secret key and some fresh randomness.
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Definition 6.1. [LR-MAC] MAC is said to be (q, s, t, ε) secure LR-MAC if for
any adversary A running in time at most t, making at most q MAC queries
and additionally at most s queries to the leakage oracle, its advantage in the
experiment Forgeeuf−cma

AL,MAC
(n) is at most ε. That is,

Pr[Forgeeuf−cma
AL,MAC

(n) = 1] ≤ ε.

Remark 6.1 The notion of Strongly-Unforgeable LR-MAC is a stronger se-
curity notion than that in Definition 6.1. This distinction is analogous to the
difference between strong unforgeability and basic unforgeability notions for
MAC in the traditional setting (without leakage). In the case of strongly-
unforgeable LR-MAC, it suffices for the adversary to output a valid message-
tag pair distinct from those pairs it received in its interaction. Hence, it is
not necessarily required to output forgery on a distinct message. Otherwise,
the security game remains the same as that for LR-MAC.

6.2.2 Why CBC-MAC is not Leakage-Resilient?

To motivate our following investigations, we start with a brief explanation why
standard MAC constructions such as CBC-MAC, are not leakage-resilient by
default. For this purpose, just look at the informal description of CBC-MAC
in Figure 6.1. Here, the master key k is used in every iteration of the MAC
(and kept constant among messages). So we are exactly in the scenario where
a standard side-channel key recovery attack is the most devastating. As a
result, a natural suggestion for improving the situation would be to combine
CBC-MAC with a leakage-resilient stream cipher so that every message block
would be processed with a different key. Yet, this would imply three block
cipher executions per message block. In the following section, we show that
a three times more efficient solution can be obtained.

Figure 6.1: CBC-MAC.

6.2.3 Leakage-Resilient Tag Generation with Re-Keying

We next present a plausible construction of LR-MAC that is a variant of the
standard CBC-MAC. The scheme MAC1 = (KeyGen1,Mac1,Vrfy1), depicted
in Figure 6.2 and described below, is a fixed length MAC that takes as input
l blocks of messages (l ≥ 1), each block being n-bit long. The construction
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requires a pseudorandom function F that we will typically instantiate with a
block cipher.

Description of MAC1:

– KeyGen1(1n): Choose a shared master secret key k
$← {0, 1}n.

– Mac1 (m, k): Parse m = 〈m1,m2, . . . ,ml〉. Choose IV
$← {0, 1}n.

Compute the session key k′ := k1 = Fk(IV ).

∗ for j = 2, . . . l + 1: compute kj = Fkj−1
(mj−1).

Return τ = (IV, kl+1).

– Vrfy1 (m, τ, k): Parse τ = (IV, tg). Compute τ ′ ← Mac1 (m, k, IV ).

∗ If τ ′
?
= τ , then return 1 (correct), else return 0 (incorrect).

Figure 6.2: Re-keying MAC.

Compared to CBC-MAC, one can directly see that this scheme brings im-
proved leakage-resilience, since a new session key is used for every new mes-
sage. Compared to the LR-MAC of Schipper in [Sch10], we have the additional
advantage that the key evolves for every message block, which allows us to
state our requirements on the leakage for a single iteration of the scheme. We
also exploit the block cipher quite efficiently since this new stateful construc-
tion essentially requires an execution of F per message block. Eventually, we
require a very minimum use of the leak-free component (depicted in dark grey
on the figure): it is only needed to encrypt a random IV under the master
key k.

Remark 6.2 In the MAC1 construction above, a random IV is chosen to
compute every new tag on a message m. Nevertheless, the security of the
construction will not be affected even if we choose the IVs arbitrarily, as long
as they are distinct (cf. proof of Theorem 6.1). Hence, for instance, we could
use a counter mode (i.e. start with IV = 0, and then successively increment
it), but this would require the MAC to maintain a state.

We now prove the LR-MAC security of our MAC1 construction based on the
pseudorandomness and the simulatable leakage assumption of the block cipher
F, assuming that the block cipher implementation F used on IV to compute
the session key k′ is leak-free. We first recall these properties.
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Definition 6.2. [Pseudorandom Function (PRF) [SPY13, Definition 2]] A
block cipher F : {0, 1}n×{0, 1}n → {0, 1}n is a (s, t, εprf ) PRF in the presence
of leakage function L if, for every (s, t)-bounded adversary AL(.,.), we have:

|Pr[AL(.,.),FK(·) = 1]− Pr[AL(.,.),R(·) = 1]| ≤ εprf ,

where K
$← {0, 1}n and R is a random function.

As discussed in [SPY13], this definition would be exactly equivalent to the
standard notion of PRF if the leakage function was polynomial time. However,
it remains an open problem to determine the exact complexity of physical
functions. Hence, the definition is augmented in order to allow the adversary
to access a leakage oracle independent of the PRF challenge (which captures
the fact that in theory, nothing precludes this leakage function to do some
cryptanalytic work).

Next, the q-simulatable leakage assumption is defined via the following game.

Game q-sim(A,F, L,S) [SPY13, Section 2.1].

The challenger selects two random keys k, k∗
$← {0, 1}n and a random bit

b
$← {0, 1}. The output of the game is a bit b′ computed by AL based on

the challenger responses to a total of at most q adversarial queries of the
following type:

Query Response if b = 0 Response if b = 1

Enc(x) Fk(x), L(k, x) Fk(x), SL(k∗, x,Fk(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1

Gen(z, x) SL(z, x, k) SL(z, x, k∗)

It directly leads to the following definition of a block cipher implementation
with q-simulatable leakages.

Definition 6.3. [q-simulatable leakages [SPY13, Definition 1]] Let F be a block
cipher having leakage function L. Then F is said to have (sS , tS , sA, tA, εq-sim)
q-simulatable leakages if there is an (sS , tS)-bounded simulator SL such that,
for every (sS , tS)-bounded adversary AL, we have:

|Pr[q-sim(A,F, L,SL, 1) = 1]− Pr[q-sim(A,F, L,SL, 0) = 1]| ≤ εq-sim.

Eventually, the following lemma is a consequence of Definition 6.2 and Defi-
nition 6.3 (for 2− simulatable leakages) [SPY13].

Lemma 6.1. [2-simulatable ideal execution [SPY13, Lemma 1]] Let F : {0, 1}n
×{0, 1}n → {0, 1}n be a (s, t, εprf ) PRF in the presence of leakage function L
having (sS , tS , s, t, ε2-sim) 2-simulatable leakages, and let SL be an appropriate
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(sS , tS)-bounded leakage simulator. Then, for every k−, p0, p1, z ∈ {0, 1}n and
every (s− 3sS , t−max(tprf , tsim))-bounded distinguisher DL, the following
holds: ∣∣∣Pr

[
DL
(
y+, k+, L(k′, p0), L(k′, p1),SL(k−, z, k′)

)
= 1
]
−

Pr
[
DL
(
y+∗, k+∗,SL(k′, p0, y

+∗),SL(k′, p1, k
+∗),SL(k−, z, k′)

)
= 1
]∣∣∣ ≤ εprf +

ε2-sim,

with k′, y+∗, k+∗ $← {0, 1}n, y+ = F(k′, p0), k+ = F(k′, p1), tprf being equal
to 3tS augmented with the time needed to make 2 oracle queries to the PRF
challenger and select a uniformly random key in {0, 1}n, and tsim being the
time needed to relay the content of two Enc and one Gen queries from and to
a q-sim challenger.

Remark 6.3 We note that the output of the two Enc and the Gen queries in
Lemma 6.1 can be obtained adaptively. More precisely, let 〈d1, d2, d3, d4, d5〉
denote the input received by DL. The above indistinguishability result holds
even if DL adaptively obtains the input as 〈d1, d3〉, 〈d2, d4〉, and d5, in any
order of its choice. This observation will be useful in the security analysis of
MAC1.

Remark 6.4 Note that besides the previously mentioned simulatability, we
need to assume that blocks need to leak independently of each other. This
actually corresponds to the “only computation leaks” assumption (or “in-
dependent leakage” assumption) that is anyway required for any proof of
leakage-resilience to hold. In the present case, we believe that it is reasonable
to have it satisfied in practice, since we need it at the macroscopic level of
fairly large blocks. That is, as for [DP08] and follow up works, it seems un-
likely that our construction will be broken because of small deviations from
this assumption (which can possibly be reduced at the hardware level, e.g. by
shielding blocks with ground lines).

6.2.3.1 Security of MAC1

The following theorem establishes the LR-security of our MAC1 construction.

Theorem 6.1. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an (s, t, εprf ) PRF
having (sS , tS , s, t, ε2-sim) 2-simulatable leakages. Then, the instantiation of
MAC1 with F is an (q, s′, t′, ε′)-strongly-unforgeable LR-MAC on messages of
length l with n-bit blocks, where:

ε′ ≤ εprf + (q + 1)l(εprf + ε2-sim) + negl(n),

with s′ ≈ s−q ·l·sS and t′ ≈ t− t̃, where t̃ is the time required by the challenger
to simulate the experiment Forgeeuf−cma

AL,MAC
(n) for the construction MAC1, which
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essentially consists of (q + 1)(l + 1) evaluations of F and q · l calls to the
simulator SL. Here, negl(n) refers to a negligible function of n assuming that
q and l are polynomially bounded in n.

Proof. The proof of strongly-unforgeable LR-MAC security for our MAC1 con-
struction proceeds by a sequence of hybrid games, which essentially follows
the strategy introduced in [SPY13, Theorem 1].

Consider the following hybrid games:

Hybrid H+. This is the original security game executed as defined in
the experiment Forgeeuf−cma

AL,MAC
(n) (Definition 6.1, Remark 6.1). In particu-

lar, the q session keys k
(i)
1 (i = 1, 2, . . . , q) are the output of F on ran-

dom IV s. Let the queried messages (each having l blocks) be denoted as

mi =
〈
m

(i)
1 ,m

(i)
2 , . . . ,m

(i)
l

〉
(i = 1, 2, . . . , q). The advantage of a q-query ad-

versary AL in Forgeeuf−cma
AL,MAC

(n) is ε′.

Hybrid H++. This is the same as hybrid H+ except that the q IV s randomly
chosen are distinct. Let ε++ denote the advantage of AL in this hybrid. Using
the birthday bound, we have that∣∣ε′ − ε++

∣∣ ≤ q2

2n+1
. (6.1)

Hybrid H∗. This is the same as hybrid H++ except that the q session keys

k
(i)
1

$← {0, 1}n are chosen uniform randomly and independently. Let ε∗ denote
the advantage of AL in this hybrid. It is easy to see that∣∣ε++ − ε∗

∣∣ ≤ εprf . (6.2)

This is because using the adversary AL of MAC1, we can construct a (s, t′, εprf )
against F.

Hybrids H∗i,j . Next, we successively transform the hybrid H∗ into hybrids
H∗i,j (1 ≤ i ≤ q + 1, 0 ≤ j ≤ l) by transforming the normal execution of the
block cipher F into an ideal execution one message block at a time. More
precisely, the hybrids H∗ and H∗1,0 are identical. In hybrid H∗1,1, the output

of F(k
(1)
1 ,m

(1)
1 ) while processing the first message block during the first tag-

generation query is a uniform random element in {0, 1}n and leakages are
simulated (cf. Lemma 6.1). The processing of the remaining message blocks
in the first as well as the later queries is carried out “normally.” By “normal”
we mean that the actual values of F are used for all except the first block of
the first message and all the session keys, unless for consistency we are forced

to use the random sampled value in case the inputs (k
(1)
1 ,m

(1)
1 ) to F appear

again elsewhere later.
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More generally, in the hybrid H∗i,j , all the evaluations of F are treated as

ideal until (and including) the jth message block of the ith tag query. All
the remaining evaluations of F are normal upto the consistency requirement
mentioned above. The hybrids H∗i,l and H∗i+1,0 are identical for 1 ≤ i ≤ q, and

the verification of the plausible forgery output by AL is considered as q+ 1-st
tag query except that the leakages and the tag are not output. This means
that the hybrids H∗q+1,j correspond to idealizing the execution of F during

the verification stage. Note that the goal of the adversary AL is to break the
strong-unforgeability of MAC1. This means that either it outputs a forgery
on a distinct IV for a possibly previously queried message, or it outputs a
forgery on a previously queried IV but on a distinct message. We assume
without loss of generality that the forgery output by AL satisfies either of the
above two conditions and it makes exactly q tag request queries. Hence the
hybrids H∗q+1,j will be present. Note that this last sequence of hybrids may
be avoided if we try to follow the standard approach of first showing that the
construction is a PRF and hence it is a MAC. But it turns out this way we
need more hybrid games than the current approach.

Next, we show that in the successive hybrids H∗i,j and H∗i,j+1 (1 ≤ i ≤ q+1, 0 ≤
j ≤ l−1), the views ofAL are computationally identical upto the 2-simulatable
leakage assumption. Let εi,j and εi,j+1 denote the advantages of AL in the
hybrids H∗i,j and H∗i,j+1, respectively.

Lemma 6.2. |εi,j − εi,j+1| ≤ εprf + ε2-sim + (q+1)2(l+1)2

2n .

Proof. Using AL as a subroutine, we construct a (s′, t′)-bounded distinguisher
DL for the distributions of Lemma 6.1 that has advantage as indicated on the
R.H.S. of Lemma 6.2. DL simulates hybrid H∗i,j or hybrid H∗i,j+1 depending
on whether its input distribution is actual or ideal, respectively.

DL chooses a uniform random shared secret key k, random session keys ki,1
(1 ≤ i ≤ q), and possibly a random session key kq+1,1 for verification if the
target forgery is on a different IV. Whenever DL samples a random output
value, say γ, on “key-message” input (α, β) it records the input/output pair

((α, β), γ) in a table T , in addition to the simulated leakage SL(k̃∗, β, γ) (k̃∗
$←

{0, 1}n). This table is used to consistently return the same (random) output
on the same input pair. Also, all the block cipher evaluations while the
processing the tag requests return random outputs and simulated leakages
until (including) the jth message block of the ith tag request. Recall the
notation that the j′th block of the i′th message is denoted by mi′,j′ , and the
corresponding key and the output for the evaluation of F is denoted by ki′,j′

and ki′,j′+1, respectively. A ‘*’ in the superscript of a parameter, for example,
as in k∗i′,j′ , explicitly denotes that the parameter was chosen uniform randomly
and independently (and was not computed normally).

At this point, DL first receives its input d5 upon querying its challenger with

Gen(k̃∗i,j ,mi,j) with k̃∗i,j
$← {0, 1}n (cf. Remark 6.3). It then uses d5 instead of
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the simulated leakage SL(k̃∗i,j ,mi,j , k
∗
i,j). Note that the output of this round is

implicitly set to k′ (if j = 0, then the session key k∗i,1 is implicitly set to k′). It

then builds the view for the (i, j+1)th execution of F by querying its challenger
for (d1, d3) by querying Enc(mi,j+1) (p0 := mi,j+1). DL then provides AL with
(d1, d3). The remaining steps are executed normally by evaluating F with the
(known) inputs. In case any inconsistency arises when F is evaluated with the
inputs present in the table T , then the corresponding output value recorded
in the table is used. Such a situation does arise when the adversary outputs a
possible forgery on a message m′ w.r.t. the IV IVi, such that m′ 6= mi share a
common prefix. Also, note that to evaluate F w.r.t. the (implicit) key k′, DL

has to use its input distribution to determine the output. This means that if
there are more than two queries to F w.r.t. the (implicit) key k′, then DL will
abort the simulation. Denote this abort event by Abort.

In order for this simulation by DL to AL to be consistent with the working of
MAC1, two events must not occur.

– All the random values sampled (and listed in table T ) must be distinct.

– The abort event Abort mentioned above must not occur.

Let us denote both the events by Collision. The reason for the first of the
above conditions is that if the intermediate values repeat, then a possible pat-
tern could arise in the successive intermediate values and there by implicitly
setting the output of the (i, j)th step to k′ may lead to inconsistency. Next, to
ensure that the Abort event does not arise, and hence 2-simulatable assump-
tion suffices, we need to make sure that k′ is never used as key more than
once later. This means that F is not queried with the input (k∗i,j ,mi,j) more
than once later. Note that if the first condition above does not occur, then
the outputs of the later steps are function of parameters independent of the
value k∗i,j , except possibly once during the verification stage. It is easy to see
that

Pr[Collision] ≤ (q + 1)2(l + 1)2

2n
. (6.3)

Hence the lemma follows from Lemma 6.1 and (6.3).

Note that there are at most (q + 1)l distinct hybrids H∗i,j (1 ≤ i ≤ q + 1, 0 ≤
j ≤ l) since the hybrids H∗i,l and H∗i+1,0 are identical for 1 ≤ i ≤ q. Also note
that the hybrids H∗ and H∗1,0 are identical as well. Hence we obtain

|ε∗ − εq+1,l| ≤ (q + 1)l(εprf + ε2−sim) +
(q + 1)3l(l + 1)2

2n
. (6.4)

Lemma 6.3. εq+1,l ≤ 1
2n−((q+1)(l+1))2 + (q+1)2(l+1)2

2n+1
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Proof. In this hybrid, all the evaluations of F are ideal, that means that dis-
tinct “key-message” input pairs produce random output values, and all the
leakages are simulated. To break the strong-unforgeability property of MAC1,
AL must either output a forgery on a distinct IV for a possibly previously
queried message, or it outputs a forgery on a previously queried IV but on a
distinct message. This implies that during the verification step, conditioned
on the event of no collision of randomly chosen output values, there will be
distinct “key-message” pairs with which F will be queried and, as a conse-
quence, a random output will be produced. Further, no collision would imply
that the same would happen with the later message blocks during the veri-
fication step, including the final block. Note that the probability of collision

is at most (q+1)2(l+1)2

2n+1 . Again, conditioned on the event of no collision, the
probability that the tag τ output by AL is a valid forgery for the message m
is at most 1

2n−((q+1)(l+1))2 . Hence the lemma follows.

From (6.1), (6.2), (6.4) and Lemma 6.3, the Theorem 6.1 follows.

Remark 6.5 A glance at Figure 6.2 might suggest that only the 1-simulatab-
ility leakage assumption would suffice for the security of the MAC1 construc-
tion, but this does not seem to be the case. Indeed, for most parts of the
security reduction, the 1-simulatability leakage assumption is enough. But
because we allow the adversary to possibly output a forgery on a previously
used IV, we need the second output pair of the leakage simulator to enable
us to verify the attempted forgery by the adversary (on this particular IV).
Note that this issue only relates to the reduction and has nothing to do with
the construction itself (for which we exclude the leakage during verification).

6.2.4 Simplification: the Hash then MAC Paradigm

To conclude this section, we note that in view of how the message in Figure 6.2
is processed, an alternative (and in fact even simpler) solution to build a
leakage-resilient MAC is to rely on the hash then MAC paradigm. Such
a proposal is intuitively depicted in Figure 6.3, where we can see that the
leakage-resilience of the scheme now really boils down to the execution of
the leak-free block cipher on a random IV, which comes at the cost of an
additional building block (namely a collision-resistant hash function). This
essentially results from the fact that the hash function is only executed on
public inputs. Interestingly, this construction also suggests that a standard
solution like HMAC could be slightly tweaked in order to become leakage-
resilient (which is in contrast with the previously mentioned CBC-MAC).

More precisely, our construction MAC2 = (KeyGen2,Mac2,Vrfy2), can be
viewed as a special instantiation of MAC1 where the messages of arbitrary
length are first hashed to a single n-bit block using the hash function H :
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Figure 6.3: Hash then MAC.

{0, 1}∗ → {0, 1}n. Then a tag is generated for this hashed block using MAC1,
which makes its analysis straightforward.

Description of MAC2:

– KeyGen2(1n): Choose a hash function H : {0, 1}∗ → {0, 1}n, and a

shared symmetric-key k
$← {0, 1}n.

– Mac2 (m, k): Choose IV
$← {0, 1}n. Compute k′ = Fk(IV ), h =

H (m), and r = Fk′ (h). Return τ = (IV, r).

– Vrfy2 (m, τ, k): Parse τ = (IV, tg). Compute τ ′ ← Mac2 (m, k, IV ).

∗ If τ ′
?
= τ , then return 1 (correct), else return 0 (incorrect).

Our proof requires the definition of a collision-resistant hash function.

Definition 6.4. [Collision Resistance]. A hash function H : {0, 1}∗ → {0, 1}n
is said to be (t, εcr) collision-resistant if for any adversary A running for time
at most t, its advantage in outputting m,m′ ∈ {0, 1}∗ such that m 6= m′ and
H(m) = H(m′), is at most εcr.

Based on this definition, the following theorem establishes the LR-security of
our MAC2 construction.

Theorem 6.2. Let F : {0, 1}n × {0, 1}n → {0, 1}n be an (s, t, εprf ) PRF
having (sS , tS , s, t, ε2-sim) 2-simulatable leakages, and let H : {0, 1}∗ → {0, 1}n
be a (t, εcr) collision-resistant hash function. Then, the instantiation of MAC2

with F and H is an (q, s′, t′, ε′)-strongly-unforgeable LR-MAC on messages of
arbitrary length, where:

ε′ ≤ εcr + εprf + (q + 1)(εprf + ε2-sim) + negl(n),

with s′ ≈ s−q ·sS and t′ ≈ t− t̃, where t̃ is the time required by the challenger
to simulate the experiment Forgeeuf−cma

AL,MAC
(n) for the construction MAC2, which

essentially consists of 2(q + 1) evaluations of F and q calls to the simulator
SL. Here, negl(n) refers to a negligible function of n assuming that q and l
are polynomially bounded in n.
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Proof sketch. We just observe that if the adversary is unable to break the
collision resistance of H, then it has to output a valid forgery on a new hash
output (corresponding to some message) for a previously queried IV, or on
an old hash output but for a new IV. By treating the n-bit hash outputs as
the message space of MAC1, we obtain the above bound on the advantage of
A from Theorem 6.1 (with l = 1). Note that the adversary’s advantage in
breaking the collision-resistance of H is εcr.

6.3 Leakage-Resilient Encryption

6.3.1 Security Definition

We now turn to the construction of a leakage-resilient symmetric encryption
scheme ENC with key generation algorithm Gen, encryption algorithm Enc and
decryption algorithm Dec. The Enc algorithm proceeds on messages made of
a variable number of blocks, i.e. messages from a set ({0, 1}n)∗ where n is the
block size.

For this scheme, we define an PrivKlmcpa,b
AL,ENC

game, analogue to the traditional
IND-CPA security game, but in a physical setting where all encryption op-
erations, including the test query, return to the adversary a leakage together
with a ciphertext. This game is described in Table 6.1.

PrivKlmcpa,b
AL,ENC

is the output of the following experiment:

1. A key k is generated by running Gen.

2. ALgets access to a leaking encryption oracle that, on messages of arbitrary
block length, returns an encryption of these messages together with the leakage
resulting from the encryption process.

3. AL submits two messages m0 and m1 of identical block length

4. A ciphertext c ← Enck(mb) is computed, resulting in a leakage l. Both c and
l are given to AL.

5. AL can keep accessing the leaking encryption oracle.

6. AL outputs a bit b′.

Table 6.1: Multiple block leakage-resilient CPA game for symmetric encryption.

Naturally, we will be interested in the difference |PrivKlmcpa,0
AL,ENC

− PrivKlmcpa,1
AL,ENC

|,
which we would like to be minimal. However, and as discussed in the in-
troduction, since we consider leakages even during the test query, we cannot
expect this difference to be negligible. For that reason, we rather focus on es-
tablishing bounds that are derived from the security of a considerably simpler
encryption scheme, that encrypts only one message made of a single block per
key. That is, we want to show that any security security guarantee that can
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be ensured for this simple (one-time, single-block) encryption scheme (next
denoted by ENC1) extends to our full construction ENC. This is eventually
what we achieve in Theorems 6.3 and 6.4, which relate the CPA security of the
multi-block ENC scheme to the eavesdropper security of the single-block ENC1
scheme. We believe that such a result helps the task of secure implementation
and security evaluation in two ways:

1. The eavesdropper security game gives a unique leakage for a single-block
message to the adversary, which is a most limited input to run a side-
channel attack (such attacks usually rely on a few hundred leakages).
This means that a cheap and relatively weakly protected implementa-
tion could be used even in a setting where long messages need to be
encrypted [BGS15].

2. Security evaluations can also focus on the (comparatively) simpler task
of assessing the security of a single round of encryption, without needing
to care that the combination of leakages from the encryption of multiple
blocks of message could become a problem. (For instance, leaking one bit
of a key per encryption block is probably not a problem when encrypting
a single block, but could become a problem if the encryption of each block
leaks a new bit. Our proof guarantees that there is no such risk.)

The rest of this section is organized as follows. We start in Section 6.3.2 by
defining our leakage-resilient encryption scheme ENC and its leakage model,
in the spirit of our MAC treatment. Next, in Section 6.3.3, we define our
one-time and one-block encryption scheme ENC1, together with its leakage
model.

Based on these definitions, we build our security analysis as follows. In Sec-
tion 6.3.4, we define an idealized version ENC1I of ENC1 that has perfectly
random outputs and simulated leakages for the PRFs. We also define a one-
time (but multiple block) version of the ENC scheme, which we call ENCl (the
l referring to the l blocks), as well as an ideal version ENClI of it. We conclude
this section by bounding the probability that an adversary distinguishes be-
tween “real” and ideal version of the schemes. In Section 6.3.5, we push our
analysis one step further, bounding the probability that an adversary breaks
eavesdropper security for the ENClI scheme as a function of the probability
of breaking that same property on the ENC1I scheme. The result from Sec-
tion 6.3.4 can then be used to move back to the “real” encryption schemes.
Eventually, in Section 6.3.6, we conclude by relating the CPA security of the
ENC scheme to the eavesdropper security of the ENCl scheme.

6.3.2 Encryption with a Leakage-Resilient Stream Cipher

The ENC scheme. Our starting point is the leakage-resilient stream cipher
from [SPY13], which we transform into an encryption scheme by XORing its
output with the message to be encrypted. CPA security is obtained by adding
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Figure 6.4: Encryption with a leakage-resilient stream cipher.

an initialization round, which generates the stream-cipher seed by applying
a leak-free PRF, keyed with the encryption key, to an initialization vector
IV, as represented in Figure 6.4. As for the previous MAC constructions, we
require the initialization step be leak-free in order to make sure that, despite
the fact that it will be executed many times with the same key, that key
will remain safe. And here as well, this use is minimal (a single execution per
message) and independent of the message (so that the fresh key k′ can possibly
be pre-computed.) The ENC encryption scheme is defined more formally in
Table 6.2.

– Gen picks a random key k ← {0, 1}n.

– Enc picks a random IV ← {0, 1}n, then computes k′ := k0 =
F∗k(IV ) using the leak-free PRF. The encryption of the l-block
message m = m1, . . . ,ml is then computed as IV, c1, . . . , cl,
where ci = yi ⊕mi, yi = Fki−1

(pB) and ki = Fki−1
(pA) (pA 6=

pB are public constants).

– Dec proceeds in the natural way.

Table 6.2: The ENC encryption scheme

Leakage model and Assumptions. We capture the leakages of an imple-
mentation of this encryption scheme through two leakage functions: LF(p, k)
that defines the leakage of each PRF running on plaintext p with key k, and
L⊕(m, y) that defines the leakage of computing the XOR of m and y. (When
the adversary AL has the single L superscript, we mean that it can query both
these leakage functions.) So, the encryption of each message block mi causes
the following leakages: LF(pA, ki−1), LF(pB, ki−1) and L⊕(mi, yi). Here and
later, we precede an algorithm with the L letter (e.g. LEnck(m)) to refer to
both the output of an encryption and the resulting leakage.

As in the previous section about MACs, we require the leakages of the PRF



6.3 Leakage-Resilient Encryption 133

to be 2-simulatable, but no more. As a consequence, leakage functions do not
need to be efficient, and can possibly leak several bits of information on their
inputs. In particular, they can provide several bits of information on yi and
mi, which makes traditional security notions based on indistinguishability im-
possible to achieve. We believe that, without additional leak-free component,
this is just unavoidable: at some point, messages need to be used during the
encryption process, and this use must be expected to leak information that is
sufficient to win any indistinguishability game.

6.3.3 A Single-block One-time Encryption Scheme

Description of ENC1:

– Gen picks k0 ← {0, 1}n.

– Enc1k0
(m) returns (k1, c1),

where c1 = y1⊕m, y1 = Fk0
(pB)

and k1 = Fk0
(pA).

– Dec proceeds in the natural way.

The leakage resulting from Enc1k0
(m)

is defined as LEnc1(k0,m) :=
(LF(pA, k0), LF(pB , k0), L⊕(m, y1),
SL(k−, pA, k0), k−) with k− ←
{0, 1}n.

Description of ENC1I:

– Enc1I
k0(m) returns (k1, c1),

where c1 = y1⊕m, y1 ← {0, 1}n
and k1 ← {0, 1}n.

The leakage resulting from Enc1I
k0

(m)
is defined as LENC1I(k0, k1, y1,m) :=
(SL(k0, pA, k1),SL(k0, pB , y1),
L⊕(m, y1),SL(k−, pA, k0), k−) with
k− ← {0, 1}n.

Table 6.3: The ENC1 and ENC1I schemes.

We define, in the left part of Table 6.3, the ENC1 single-block one-time encryp-
tion scheme, from the security of which we will infer the PrivKlmcpa,

AL,ENC
security

of our ENC multi-block scheme. The ENC1 scheme, while being quite similar
to a single block version of ENC, also bears important differences with ENC:

1. It has no leak-free initialization process. This is not necessary for a
one-time version of the scheme.

2. Its ciphertext contains k1. While being harmless from a black-box point
of view, including k1 in the ciphertext will show to be useful in bounding
the amount of information that leakages can transfer between rounds.
We will provide constructive evidence that this is necessary after the
proof of Lemma 6.5.

3. Its leakages contain SL(k−, pA, k0), k−) with a random k−. This leak-
age has the same purpose as k1 in the ciphertext, and will be used to
bound the information that can leak, in the multi-block setting, from the
encryption of previous blocks.
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6.3.4 One-time Ideal Versions of Our Encryption Schemes

We now idealize the Enc1 encryption process by replacing the use of F for
computing k1 and y1 by the selection of random values. Furthermore, we
adapt the corresponding leakages using SL. The resulting algorithms are
defined in the right part of Table 6.3. The following lemma expresses that
leaking encryptions produced with these two schemes are hard to distinguish,
by relying on the 2-simulatability assumption and the properties of the PRF.

Lemma 6.4. Ideal single block encryption. Let F : {0, 1}n × {0, 1}n →
{0, 1}n be a (s, t, εprf )-PRF, whose implementation has a leakage function LF

having (sS , tS , s, t, ε2-sim) 2-simulatable leakages, and let SL be an appropriate
(sS , tS)-bounded leakage simulator. Then, for every m, pA, pB, p ∈ {0, 1}n
(pA 6= pB) and every (s− sr, t− tr)-bounded distinguisher DL, the following
holds: ∣∣∣Pr

[
DL (m, LEnc1(k0,m)) = 1

]
−

Pr
[
DL
(
m, LEnc1I(k0,m)

)
= 1
]∣∣∣ ≤ εprf + ε2-sim,

with sr := 3sS + 1 and tr = max(tprf , tsim) with tprf being equal to 3tS aug-
mented with the time needed to make 2 oracle queries to the PRF challenger
and select a uniformly random key in {0, 1}n, and tsim being the time needed
to relay the content of two Enc and one Gen queries from and to a q-sim
challenger.

Proof. We follow the approach used for proving Lemma 6.1: first replace
the leakages of LEnc1 with simulated leakages, relying on the simulatability
assumption, then replace the outputs of the PRF of LEnc1 with random values,
relying on the assumption that F is a PRF.

We now transpose the definitions of ENC1 and ENC1I to the multi-block set-
ting, but still focusing on the one-time encryption case. The resulting schemes,
ENCl and ENClI are described in Table 6.4. These ideal versions are closer
to the ENC scheme definition: while we still ignore the leak-free initialization
process, the ciphertexts do not contain the extra key block any more, and the
leakages follow the natural definition.

Just as before, we express that leaking encryptions produced with these two
schemes are hard to distinguish.

Lemma 6.5. Ideal multiple block encryption. Let F and SL be defined
as in Lemma 6.4. Then, for every l-block message m, every pA, pB (pA 6= pB)
and every (s− sr, t− tr)-bounded distinguisher DL, the following holds:∣∣∣Pr

[
DL (m, LEncl(k0,m))) = 1

]
−

Pr
[
DL
(
m, LEnclI(k0,m)

)
= 1
]∣∣∣ ≤ l(εprf + ε2-sim) + negl(n).
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Description of ENCl:

– Gen picks k0 ← {0, 1}n.

– Enclk0(m1, . . . ,ml) re-
turns c1, . . . , cl, where
ci = yi ⊕mi, yi = Fki−1

(pB) and
ki = Fki−1

(pA).

– Dec proceeds in the natural way.

The leakage LEncl(k0,m) result-
ing from computing Enclk0

(m)
is defined by the sequence of
(LF(pA, ki−1), LF(pB , ki−1), L⊕(mi, yi))
for i ∈ {1, . . . , l}.

Description of ENClI:

– EnclIk0
(m1, . . . ,ml) returns

(c1, . . . , cl), where ci = yi ⊕ mi,
y1, . . . , yl ← {0, 1}n and
k1, . . . , kl ← {0, 1}n.

The leakage LEnclI(k, y,m) resulting from
computing EnclIk0(m) with the random
vectors k and y is defined by the sequence
of (SL(ki−1, pA, ki),SL(ki−1, pB , yi),
L⊕(mi, yi)) for i ∈ {1, . . . , l}.

Table 6.4: The ENCl and ENClI schemes.

Here, sr = l(2sS + 3) and tr is equal to 2ltS augmented with the time needed
to pick 2l random values in {0, 1}n, evaluate F 2l times and compute l ⊕
operations. And, negl(n) refers to a negligible function of n assuming that l
is polynomially bounded in n.

Proof. We define the hybrid distributions H0, . . . ,Hl where Hi(m) is com-
puted as the concatenation of LEnclIk0(m[1,i]) and LEnclki(m[i+1,l]) with k0

chosen uniformly at random and ki resulting from the evaluation of EnclI. It
is clear that H0 is distributed just as the inputs of DL in the first probability
from the lemma’s statement, while Hl is distributed as the inputs of DL in
the second probability.

We now show that the probability with which DL can distinguish Hi−1 from
Hi is bounded by εprf +ε2-sim, which will in turn imply the expected result. To
this purpose, we build, from DL, a (s, t)-bounded distinguisher DL′ between
the two distributions d1 and d2 that are the input of the distinguisher of
Lemma 6.4. DL′ receives its inputs mi, ci, ki, and leakages lA, lB, l⊕, ls, ki−2

sampled from d1 or d2. It then:

1. Samples the encryption of the i − 1 first blocks of m from LEnclI by
choosing random keys kj , except that it uses ki−2 as key for the round
i− 1 and ls as leakage for computing ki−1;

2. Extends it with ci and the leakages lA, lB and l⊕ for the i-th round;

3. Extends it with LEnclki(m[i+1,l]) for the last l − i− 1 rounds.

It can be easily verified that, if the inputs of DL′ are sampled from d1 (resp
d2), then DL′ produced something sampled according to Hi−1 (resp. Hi),
provided that distinct round keys are chosen and distinct round keys are later
on (deterministically) computed (in or) after round i. This restriction arises
out of the need to sample random outputs for the first i − 1 rounds while
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maintaining the input-output consistency (similar event, Collision, appears in
the proof of Lemma 6.2). The probability of this event is upper bounded by
l3/2n.

If fed to DL, the result will enable DL′ to distinguish Hi−1 from Hi with the
same probability DL′ distinguishes d1 from d2, unless the above mentioned
collision event has occurred. Furthermore, by inspection, we can verify that
DL′ is (s, t)-bounded. Applying Lemma 6.4, this probability is then bounded
by εprf + ε2-sim + l3/2n, as desired.

Further Remarks on the Definition of Enc1. The proof above heavily
relies on the use of the extra leakages provided when running Enc1, for the
linking of the hybrids. This is however not just an artifact that we use to
simplify our proof. Consider for instance a situation in which Enc1 would
not leak k1 and a simple leakage function LF(p, k) would leak just the first
bit of k ⊕ Fk(p). In such a setting, if k1 is not leaked, the leakage does not
provide any useful information on the encrypted message (we just loose one
bit of security for the key). So, if we encrypt the messages m1 and m2 with
Enc1 using two independent keys, the leakages do not provide us with any
useful information. However, if we encrypt the message (m1,m2) using Encl,
we will obtain c1, c2 and leakages containing the first bit of k0 ⊕ y1, k0 ⊕ k1

and k1 ⊕ y2, from which we can derive the first bit of y1 ⊕ y2, and eventually
the first bit of m1 ⊕m2, which was not available before. This observation is
a constructive evidence that encrypting two message blocks with Encl can be
far more damaging on the privacy than encrypting these blocks independently
with a version of Enc1 from which k1 would not be leaked. The leakage of k1

in Enc1 prevents the shortcoming we just described, as k1 would provoke the
leakage of the first bit of each message block.

6.3.5 From 1-block to l-block Eavesdropper Security

The above section demonstrated how one-time versions of our encryption
scheme can be idealized with controlled security loss, in the case of single
and multiple block encryption. We now use these idealized encryption pro-
cesses to evaluate the (eavesdropper) security of an l-block encryption with
EnclI by comparison with the security of l encryptions with Enc1I performed
with independent keys, block by block.

Lemma 6.6. For every pair of l-block messages m0 and m1 and (s, t)-bounded
adversary AL, there is an (s− sr, t− tr)-bounded adversary AL′ such that the
following holds:
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∣∣∣Pr
[
AL
(

LEnclIk0(m0)
)

= 1
]
− Pr

[
AL
(

LEnclIk0(m1)
)

= 1
]∣∣∣ ≤

l∑
i=1

∣∣∣Pr
[
AL′

(
LEnc1I

ki(m0,i)
)

= 1
]
− Pr

[
AL′

(
LEnc1I

ki(m1,i)
)

= 1
]∣∣∣ ,

with all k’s chosen uniformly at random, sr = l(2sS + 1) and tr equal to 2ltS
to which we add the time needed to sample 2l random values and compute l
times the ⊕ operations

Proof. We proceed in two steps. We start by building a sequence of l + 1
messages mh,0, . . . ,mh,l starting from m0 and modifying its blocks one by
one until obtaining m1. That is, mh,i := m1

[1,i],m
0
[i+1,l]. From the triangle

inequality, it holds that:∣∣∣Pr
[
AL
(

LEnclIk0(m0)
)

= 1
]
− Pr

[
AL
(

LEnclIk0(m1)
)

= 1
]∣∣∣ ≤

l∑
i=1

∣∣∣Pr
[
AL
(

LEnclIki(mh,i−1)
)

= 1
]
− Pr

[
AL
(

LEnclIki(mh,i)
)

= 1
]∣∣∣

The l differences in the sum above can now be related to the probability
of distinguishing the encryptions of single block messages: from an Enc1I

encryption of m0,i or m1,i with the associated leakage LEnc1I , it is immediate
to sample an EnclI encryption of mh,i−1 or mh,i with the associated leakage
LEnclI . The cost of this sampling is bounded by sr leakage queries and running
time tr.

Injecting Lemmas 6.4 and 6.5, which relate real and ideal encryptions, into
Lemma 6.6, we obtain our main theorem for eavesdropper security.

Theorem 6.3. Let F be a (s, t, εprf )-PRF, with a leakage simulator SL as in
Lemma 6.4, and let (sr, tr) be the bounds defined in Lemma 6.5. For every
pair of l-block messages m0 and m1 and (s−sr, t− tr)-bounded adversary AL,
there is an (s − 2sr, t − 2tr)-bounded adversary AL′ such that the following
holds:

∣∣∣Pr
[
AL
(
LEnclk0(m0)

)
= 1
]
− Pr

[
AL
(
LEnclk0(m1)

)
= 1
]∣∣∣ ≤

l∑
i=1

∣∣∣Pr
[
AL′ (LEnc1ki(m0,i)) = 1

]
− Pr

[
AL′ (LEnc1ki(m1,i)) = 1

]∣∣∣+
4l(εprf + ε2-sim) + negl(n),

where, negl(n) refers to a negligible function of n assuming that l is polyno-
mially bounded in n.
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This theorem indicates that, if we want to bound the probability that an
attacker distinguishes the encryptions of two l-block messages, we can focus
on bounding the probabilities that an attacker distinguishes independent en-
cryptions of the l pairs of blocks, which is arguably much easier, and derive
the desired bound from this. Furthermore, the security degradation is quite
moderate, being just proportional to the number of blocks.

Remark 6.6 In Theorem 6.3, we have a security degradation that is cubic
in the number of message blocks. A careful analysis of the proof of LR-PRG
in [SPY13, Theorem 1] suggests that this cubic degradation seems necessary
when taking collisions into consideration (which seems missing in the original
proof). In fact, a birthday-like attack can distinguish the intermediate hybrids
H0 and Hl in the proof of [SPY13, Theorem 1].

6.3.6 From Eavesdropper to CPA Security

The ENCl scheme is obviously insecure under chosen plaintext attack. How-
ever, the PrivKlmcpa,b

AL,ENC
security of the ENC scheme can now be derived from

Theorem 6.3.

Theorem 6.4. Let AL be an (s − sr, t − tr)-bounded PrivKlmcpa,b
AL,ENC

adversary

against the ENC scheme based on a (s, t, εprf )-secure PRF. Then,∣∣∣Pr[PrivKlmcpa,0
AL,ENC

= 1]− Pr[PrivKlmcpa,1
AL,ENC

= 1]
∣∣∣ ≤∣∣∣Pr[AL′(LEnclk(m

0)) = 1]− Pr[AL′(LEnclk(m
1)) = 1]

∣∣∣+ 2εprf + negl(n),

where AL′ is (s − 2sr, t − 2tr)-bounded, m0 and m1 are the messages chosen
by AL for the test query, sr := 3q where q is the number of encryption queries
made by AL, and tr is the time needed to evaluate LEncl on q messages of at
most l blocks and sample 2l random values. And, negl(n) refers to a negligible
function of n assuming that q is polynomially bounded in n.

Proof. We proceed in two steps. First, we modify the PrivKlmcpa,b
AL,ENC

game by
replacing the leak-free PRF with a random function. Since the cost of the
reduction of this change to the PRF security is less than the (sr, tr) bounds,
the probability that AL detects the change is bounded by εprf . Next, we rely
on the perfectly random distribution of the ephemeral keys (k′) used by Enc
to emulate the leak-free PRF and (consistently) answer all encryption queries
with random IV ’s and random ephemeral key k0’s. For the test query, we
generate a random IV , but use the LEncl oracle to produce the ciphertext.
This strategy will only fail when the random IV selected here is equal to one
of the IV’s generated during one of the at most q previous encryption queries,
bounding the probability of this event by q/2n. Again, the cost of answering
these queries is bounded by (sr, tr).
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6.4 Conclusion and Future Directions

In this chapter, we constructed leakage-resilient MAC that is strongly unforge-
able in the simulatable leakage assumption. We also constructed an LR-PRG
based leakage-resilient encryption scheme also in the simulatable leakage as-
sumption. The combination of the results in this chapter is in fact well in line
with the early investigations of Micali and Reyzin, where it was shown that
unpredictability-based security is easier to obtain than indistinguishability-
based security in the presence of leakage [MR04].

Concretely, and based on present knowledge, it also means that if semantic
(or equivalent) security is required for an application, the best option is to use
leakage-resilient authentication to access a leak-free environment first, and to
perform encryption only afterwards. In other words, the security guarantees
of leakage-resilient encryption, despite practically meaningful (e.g. in order
to prevent key recoveries), are indeed much harder to formalize in terms of
message confidentiality.

Note finally that our constructions only consider the leakage-resilience of tag
generation and encryption. This is a relevant first step, since it is a frequent
scenario that only one (cost-constrained) party in authentication and encryp-
tion has to be protected against side-channel analysis [MSGR10]. Yet, we
also admit that securing the tag verification and decryption parts will most
likely be more challenging since these algorithms are not randomized in most
existing MAC and encryption schemes.

A future direction would be to see if the simulatable leakage assumption could
be used to construct authenticated encryption schemes.
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hardware implementation of nonlinear functions in the presence
of glitches. J. Cryptology, 24(2):292–321, 2011. 116

[NS02] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the
digital signature algorithm with partially known nonces. J.
Cryptology, 15(3):151–176, 2002. 17

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient
to key leakage. In Halevi [Hal09], pages 18–35. 8, 15, 119

[NSW09] Gregory Neven, Nigel P. Smart, and Bogdan Warinschi. Hash
function requirements for schnorr signatures. J. Mathematical
Cryptology, 3(1):69–87, 2009. 64, 65, 66, 67

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification
schemes and corresponding signature schemes. In Ernest F.
Brickell, editor, CRYPTO, volume 740 of Lecture Notes in
Computer Science, pages 31–53. Springer, 1992. 64

[Pie09] Krzysztof Pietrzak. A leakage-resilient mode of operation. In
Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture
Notes in Computer Science, pages 462–482. Springer, 2009. 7,
116

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-
channel attacks: A formal security proof. In Johansson and
Nguyen [JN13], pages 142–159. 8

[PS73] Mike Paterson and Larry J. Stockmeyer. On the number of
nonscalar multiplications necessary to evaluate polynomials.
SIAM J. Comput., 2(1):60–66, 1973. 95, 99



152 Bibliography

[PSMD14] Peter Pessl, François-Xavier Standaert, Stefan Mangard, and
François Durvaux. Towards leakage simulators that withstand
the correlation distinguisher. ASIACRYPT 2014 rump session
talk, 2014. 118

[PSNB11] Geovandro C. Pereira, Marcos A. Simpĺıcio, Michael Naehrig,
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