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Motivations and Objectives

Why thin-structures?

» Shell, plate and beam (thin) structures are widely used in civil,
mechanical and aeronautical engineering because they are
capable of carrying high loads with a minimal amount of
structural mass.

» Toour knowledge a unified open-source implementation of a
wide range of thin structural models is not yet available.
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Motivations and Objectives

Some applications

Multistable shells [Coburn etal.,
2013]

Stress focusing in elastic sheets
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Motivations and Objectives

Why FEniCS-shells?

The UFL language provides an excellent framework for writing
extensible, reusable and pedagogical numerical models of thin
structures.

FEniCS-shells is (will be) a library consisting of various thin structural
models and associated numerical techiniques expressed in the UFL.

» To have asolid and extensible open-source platform of quality
numerical methods for thin structures.

» Tolinkinaclearand direct way the continuous mathematical
model and its finite element solution.
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Remarks on shell theories

» Shells are three-dimensional elastic bodies which occupy a thin
region around a two-dimensional manifold situated in
three-dimensional space.

» Athree-dimensional problem is reduced to a two-dimensional
problem. Quantities of engineering relevance are computed
directly.

» Non-trivial numerical problems arise also for flat shells (plates)
and linear models.
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» Shearable theories (thick plates) BORDAS, C, MAURINI
FLEXURE =BENDING + SHEARING

Remarks on shell theories

e.g. for the Reissner-Mindlin (RM) plate model

1 —2
Erm = f/DVSG:VSO—i—t— FIVw — 0% - L,
2 Q 2 Q

Kinematic descriptors

w : transverse displacement

6 ={0,,05} : rotation
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» Shearable theories (thick plates) BORDAS, . MAURINI
FLEXURE=BENDINC + SHEARINGC

Remarks on shell theories

e.g. for the Reissner-Mindlin (RM) plate model

1 —2
ERM:f/DVSO:VSB—i—t—/F\Vw—BF—Le
2 Q 2 Q

0>
K = V*0 : curvature 720

Strain measures

v =Vw — 0 : shearing
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» Shearable theories (thick plates) BORDAS,C. MAURINI
FLEXURE=BENDING + SHEARING

Remarks on shell theories

e.g. for the Reissner-Mindlin (RM) plate model

1 t=2
Erm = f/DVSO:VSHJr—/F\waQFfLG
2 Q 2 Q

» Bending theories (thin plates)
Vw =6 and FLEXURE=BENDING
e.g. for the Kirchhoff-Love (KL) plate model

1
EKL: */ DVVwVVw—Le
2 Q

Remark: whent — 0 the RM-model asymptotically converges to the
KL-model with Vw = 6.
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Shearable  Bending  Linear  Nonlinear

AN NN

Remarks on shell theories

Kirchhoff-Love plate model ° °
Reissner-Mindlin plate model ° °
Hierarchical plate models o
von Karman plate model °
Marguerre shallow shell model

Koiter shell model °

Naghdi shell model °

Bending models have been implemented by employing the C/D
Galerkin formulation [Engel et al., 2002] in order to avoid
H?(Q)-finite elements

Shearable models have been implemented by employing the
MITC formulation [Dvorkin and Bathe, 1986] in order to avoid
numerical locking.
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We consider the sequence of problems in the thickness parameter ¢

MITCimplementation
. 1 t—2
G%IGHU {5(1(0, 0) + 7 /Q|V’LU — 0|2 — Le} U = Hl(Q)XHl(Q)

Fort — 0 we have the limit problem

. 1
pin {ga(ﬂ,B) - Le} K={0,w)eU : Vw =0}

while the corresponding discrete problem has limit problem

1
min {ia(ah,eh) — Le} Kh =Kn (@h X Wh)

0, wpeK},

If Ky, is not large enough the basis functions cannot properly represent
the Kirchhoff's constraint Vw = 6. The shear term doesn't vanish.
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MITCimplementation

Since the problem relies in the shear term v = ¢~ 2(Vw — 6) and for
0c H(Q),we H(Q)

Vw —0 € H(curl,Q)
itis possible to use the mixed formulation with penalty term
Find (0, w) € U and~ € H(curl, ) such that

a(0,0) + (Vo — 0,~) = (f, )  VY(0,0)eU
(Vw —0,7) — t*(v,7) =0 V4 € H(curl,Q)
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The idea: the discretization of the mixed formulation can be

transformed into a displacement form T mplementaton
. 1
min (Hh, 0:) —|— — |th — R,0,)? —
On,wr€UR

where the reduction operator
Ry : Hl(Q) — Iy C H(curI,Q)
interpolates piecewise smooth functions into the shear space I'},.

Main advantages
> Itleads to systems of equations with positive definite matrices
and fewer unknowns
» Theaction of Ry, is local and the system matrix can be assembled
locally
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Elements in MITC family are different for the choice of @;,, W), I'}, L BRUNETTL ) HALE, S
and the tying, as expressed by Rj,, between the interpolation in I, and FORons €At
the shear strain as evaluated from @y, W}, I',.

MITCimplementation

» Duran-Liberman [Duran, Liberman, 1992]

@, Wh, ry,

CGo CGy NED;

Rh:/(B—Rh0)~t:O VeeT
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FENICS implementation

First, we define the full mixed space U,f =@, x W, x I,

= FunctionSpace(mesh, "CG", 1)
VectorFunctionSpace(mesh, "CG", 2)
RR = FunctionSpace(mesh, "Nlcurl", 1)

V_3
R =

s U_F = MixedFunctionSpace([R, V_3, RR])

54

and the reduction/tying operator

/ (v - £)(BF - 1)

e

¢ def R_e(gam, R_th_t, U):
dSp = Measure(’'dS’, metadata={’'quadrature _degree’: 1})

60 dsp = Measure(’'ds’, metadata={’'quadrature_degree’: 1})

n = FacetNormal(U.mesh())

62 t = as_vector((-n[1], n[0]))

area = FacetArea(U.mesh())
return (areaxinner(gam, t)*xinner(R_th_t, t))("+")*dSp + \
(areaxinner(gam, t)*inner(R_th_t, t))x*dsp
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We define the projection form a1
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ga = lambda z1, z2: grad(z2) - zl1

g = ga(r, w)

g-t = ga(r_t, w_t)

a_10 = R.e(g, rr_t, U_F) + R_e(g_t, rr, U_F) MITCimplementation

the shear form ag;

¢ Pi_she = (eps*x-2)*0.5xinner(T(ga(rr_, w_)), ga(rr—, w_))xdx

F_she = derivative(Pi_she, u_, u_t)
a_01 = derivative(F_she, u_, u)

the primal mixed space U, = @), x W,

U = MixedFunctionSpace([R, V_3])

and the unprojected bending form agg

> Pi_ben = 0.5*%inner(M(ep(r_)), ep(r_))=dx

dPi_ben = derivative(Pi_ben, u_, u_t)
a_00 = derivative(dPi_ben, u_, u)
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Finally, we use a custom assembler to perform the projection at the
local linear algebra level

MITCimplementation

s A = mitc_assemble([a_00, a_01, a_10])

» C++code to assemble the stiffness matrix
A= Ay + A1oAni Ao

Ago : unprojected bending term
Ap1 : projected shearing term

Aq : projection matrix

» JIT compilation with Instant
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RM plate. Convergence

Comparison with the analytical solution provided by [Lovadina, 1995].
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Results
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von Karman plate model
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Starting with the scalings
u=0(e) w = O(e) e=|K]| fesels

the vK plate model retains the minimal geometrical nonlinearities able
to catch the coupling between bending and membrane strains

E:VSu—f—w K =VVuw

whose integrability conditions correspond to the linearization of the
Gauss theorema egregium

cutlcurl B = det K

Since By = Ex + t~? En, whenever possibile a plate tends to bend in
adevelopable surface (F,,, = 0 fordet K = 0).
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Circular plate with lenticular cross
section subjected to a temperature
gradient through its thickness

Results

average curvatures, ky, ky

Average curvatures bifurcation at
critical value [Mansfield, 1962]

8

R = (1 4 V)3/2

0 2 4 6 8

inelastic curvature
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References

» toimplement membrane locking-free element for the nonlinear
Koiter shell model

> toimplement membrane and shear locking-free element for the
nonlinear Naghdi shell model
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