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Motivations

Why thin-structures?

I Shell, plate and beam (thin) structures are widely used in civil,
mechanical and aeronautical engineering because they are
capable of carrying high loads with a minimal amount of
structural mass.

I To our knowledge a unified open-source implementation of a
wide range of thin structural models is not yet available.
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Motivations
Some applications

Multistable shells [Coburn et al.,
2013]

Stress focusing in elastic sheets
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Objectives

Why FEniCS-shells?

The UFL language provides an excellent framework for writing
extensible, reusable and pedagogical numerical models of thin
structures.

FEniCS-shells is (will be) a library consisting of various thin structural
models and associated numerical techiniques expressed in the UFL.

I To have a solid and extensible open-source platform of quality
numerical methods for thin structures.

I To link in a clear and direct way the continuous mathematical
model and its finite element solution.
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Remarks on shell theories

I Shells are three-dimensional elastic bodies which occupy a thin
region around a two-dimensional manifold situated in
three-dimensional space.

I A three-dimensional problem is reduced to a two-dimensional
problem. Quantities of engineering relevance are computed
directly.

I Non-trivial numerical problems arise also for flat shells (plates)
and linear models.
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I Shearable theories (thick plates)

FLEXURE = BENDING + SHEARING

e.g. for the Reissner-Mindlin (RM) plate model

ERM =
1

2

∫
Ω

D∇sθ : ∇sθ +
t−2

2

∫
Ω

F |∇w − θ|2 − Le

Kinematic descriptors

w : transverse displacement

θ = {θ1, θ2} : rotation

x1

x2

x3
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I Shearable theories (thick plates)

FLEXURE = BENDING + SHEARING

e.g. for the Reissner-Mindlin (RM) plate model

ERM =
1

2

∫
Ω

D∇sθ : ∇sθ +
t−2

2

∫
Ω

F |∇w − θ|2 − Le

Strain measures

K = ∇sθ : curvature

γ = ∇w − θ : shearing

x2

x3

θ2
γ2

θ+2
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I Shearable theories (thick plates)

FLEXURE = BENDING + SHEARING

e.g. for the Reissner-Mindlin (RM) plate model

ERM =
1

2

∫
Ω

D∇sθ : ∇sθ +
t−2

2

∫
Ω

F |∇w − θ|2 − Le

I Bending theories (thin plates)

∇w = θ and FLEXURE = BENDING

e.g. for the Kirchhoff-Love (KL) plate model

EKL =
1

2

∫
Ω

D∇∇w : ∇∇w − Le

Remark: when t→ 0 the RM-model asymptotically converges to the
KL-model with∇w = θ.
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FEniCS-shells. Models
Shearable Bending Linear Nonlinear

X Kirchhoff-Love plate model • •
X Reissner-Mindlin plate model • •
X Hierarchical plate models •
X von Kármán plate model • •
X Marguerre shallow shell model • •

Koiter shell model • •
Naghdi shell model • •

I Bending models have been implemented by employing the C/D
Galerkin formulation [Engel et al., 2002] in order to avoid
H2(Ω)-finite elements

I Shearable models have been implemented by employing the
MITC formulation [Dvorkin and Bathe, 1986] in order to avoid
numerical locking.



FEniCS-shells
12/28

m. brunetti, j. s. hale, s.
bordas, c. maurini

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and
References

Outline

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and References



FEniCS-shells
13/28

m. brunetti, j. s. hale, s.
bordas, c. maurini

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and
References

Numerical locking
We consider the sequence of problems in the thickness parameter t

min
θ,w∈U

ß
1

2
a(θ,θ) +

t−2

2

∫
Ω

|∇w − θ|2 − Le

™
U = H1(Ω)×H1(Ω)

For t→ 0 we have the limit problem

min
θ,w∈K

ß
1

2
a(θ,θ)− Le

™
K = {(θ, w) ∈ U : ∇w = θ}

while the corresponding discrete problem has limit problem

min
θh,wh∈Kh

ß
1

2
a(θh,θh)− Le

™
Kh = K ∩ (Θh ×Wh)

IfKh is not large enough the basis functions cannot properly represent
the Kirchhoff's constraint∇w = θ. The shear term doesn't vanish.
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Locking cure

Since the problem relies in the shear termγ = t−2(∇w − θ) and for
θ ∈H1(Ω),w ∈ H1(Ω)

∇w − θ ∈H(curl ,Ω)

it is possible to use the mixed formulation with penalty term

Find (θ, w) ∈ U andγ ∈H(curl ,Ω) such that

a(θ, θ̃) + (∇w̃ − θ̃,γ) = (f, w̃) ∀(θ̃, w̃) ∈ U
(∇w − θ, γ̃)− t2(γ, γ̃) = 0 ∀γ̃ ∈H(curl ,Ω)
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MITC formulation
The idea: the discretization of the mixed formulation can be
transformed into a displacement form

min
θh,wh∈Uh

ß
1

2
a(θh,θh) +

t−2

2

∫
Ω

|∇wh −Rhθh|2 − Le

™
where the reduction operator

Rh : H1(Ω)→ Γ h ⊂H(curl ,Ω)

interpolates piecewise smooth functions into the shear spaceΓ h.

Main advantages
I It leads to systems of equations with positive definite matrices

and fewer unknowns
I The action ofRh is local and the system matrix can be assembled

locally
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Elements in MITC family are different for the choice ofΘh,Wh,Γ h

and the tying, as expressed byRh, between the interpolation inΓh and
the shear strain as evaluated fromΘh,Wh,Γ h.

I Duran-Liberman [Duran, Liberman, 1992]

Θh

CG2

Wh

CG1

Γ h

NED1

Rh :

∫
e

(θ −Rhθ) · t = 0 ∀e ∈ T
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FEniCS implementation
First, we define the full mixed spaceUF

h = Θh ×Wh × Γ h

V_3 = FunctionSpace(mesh, "CG", 1)
26 R = VectorFunctionSpace(mesh, "CG", 2)

RR = FunctionSpace(mesh, "N1curl", 1)
28 U_F = MixedFunctionSpace([R, V_3, RR])

and the reduction/tying operator∫
e

(γh · t)(θ̃Rh · t)

58 def R_e(gam, R_th_t, U):
dSp = Measure(’dS’, metadata={’quadrature_degree’: 1})

60 dsp = Measure(’ds’, metadata={’quadrature_degree’: 1})
n = FacetNormal(U.mesh())

62 t = as_vector((-n[1], n[0]))
area = FacetArea(U.mesh())

64 return (area*inner(gam, t)*inner(R_th_t, t))("+")*dSp + \
(area*inner(gam, t)*inner(R_th_t, t))*dsp
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We define the projection form a10

70 ga = lambda z1, z2: grad(z2) - z1
g = ga(r, w)

72 g_t = ga(r_t, w_t)
a_10 = R_e(g, rr_t, U_F) + R_e(g_t, rr, U_F)

the shear form a01

78 Pi_she = (eps**-2)*0.5*inner(T(ga(rr_, w_)), ga(rr_, w_))*dx
F_she = derivative(Pi_she, u_, u_t)

80 a_01 = derivative(F_she, u_, u)

the primal mixed spaceUh = Θh ×Wh

U = MixedFunctionSpace([R, V_3])

and the unprojected bending form a00

102 Pi_ben = 0.5*inner(M(ep(r_)), ep(r_))*dx
dPi_ben = derivative(Pi_ben, u_, u_t)

104 a_00 = derivative(dPi_ben, u_, u)



FEniCS-shells
20/28

m. brunetti, j. s. hale, s.
bordas, c. maurini

Motivations and Objectives

Remarks on shell theories

MITC implementation

Results

Future Perspectives and
References

Finally, we use a custom assembler to perform the projection at the
local linear algebra level

114 A = mitc_assemble([a_00, a_01, a_10])

I C++ code to assemble the stiffness matrix

A = A00 +A10A01A10

A00 : unprojected bending term

A01 : projected shearing term

A10 : projection matrix

I JIT compilation with Instant
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RM plate. Convergence
Comparison with the analytical solution provided by [Lovadina, 1995].
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von Kármán plate model
Starting with the scalings

u = O(ε2) w = O(ε) ε = ‖K‖

the vK plate model retains the minimal geometrical nonlinearities able
to catch the coupling between bending and membrane strains

E = ∇su+
∇w ⊗∇w

2
K = ∇∇w

whose integrability conditions correspond to the linearization of the
Gauss theorema egregium

curl curlE = detK

SinceEvK = EKL + t−2Em, whenever possibile a plate tends to bend in
a developable surface (Em = 0 for detK = 0).
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Circular plate with lenticular cross
section subjected to a temperature
gradient through its thickness

x

y

Average curvatures bifurcation at
critical value [Mansfield, 1962]
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Future Perspectives

I to implement membrane locking-free element for the nonlinear
Koiter shell model

I to implement membrane and shear locking-free element for the
nonlinear Naghdi shell model
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Thanks for listening
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