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Part 0: Introduction and notation



Associative binary operations

Let X be a nonempty set

Consider an operation F : X 2 → X
Denote F (a, b) by ab

F is associative if

(ab)c = a(bc)

−→ enables us to define the expression abc by setting

abc = (ab)c

Question: How can we define abcd ?



Associative binary operations

By associativity, we have

(abc)d = (a(bc))d = a(bc)d = a((bc)d) = a(bcd)

= a(b(cd)) = ab(cd) = · · ·
= · · ·

→ we can define abcd by setting

abcd = (abc)d

Associativity shows that the expression abcd can be computed
regardless of how the parentheses are inserted



Associative binary operations

For any a1, . . . , an ∈ X , we can set

a1 · · · an−1an = (a1 · · · an−1)an

... can be computed regardless of how parentheses are inserted

In other words, associativity shows that

a1 · · · aj · · · ak · · · an = a1 · · · (aj · · · ak) · · · an

holds for any 1 6 j < k 6 n with 1 < j or k < n

(associativity for operations with an indefinite arity)



Associative operations with an indefinite arity

We started with a binary operation F : X 2 → X and we now
extend its domain to the set X 2 ∪ X 3 ∪ X 4 ∪ · · ·

F :
⋃

n>2 X
n → X

Assume that F satisfies

F (F (a1, a2), a3) = F (a1,F (a2, a3))

F (a1, . . . , an−1, an) = F (F (a1, . . . , an−1), an) , n > 3

Then (and only then)

F (a1, . . . , aj , . . . , ak , . . . , an) = F (a1, . . . ,F (aj , . . . , ak), . . . , an)



Notation

X = alphabet

Elements of X : letters (x , y , z , . . . ∈ X )

The set
X ∗ =

⋃
n>0

X n

is the set of all tuples on X , called strings over X
(x, y, z, . . . ∈ X ∗)

Convention: X 0 = {ε}, where ε = the empty string



Notation

X ∗ is endowed with concatenation (ε = neutral element)

x ∈ X n and y ∈ X ⇒ xyε = xy ∈ X n+1

Repeated strings

xn = x · · · x︸ ︷︷ ︸
n

, x0 = ε

Length of a string

|x| = n ⇐⇒ x ∈ X n

|ε| = 0 , |x | = 1



Notation

Let Y be a nonempty set

n-ary function
F : X n → Y

∗-ary function or variadic function

F : X ∗ → Y

n-ary part of F
Fn = F |X n

Default value of F
F (ε) = F0(ε)



Part 1: Associativity, generalizations,

and variants



Associativity

The condition

F (x1 · · · xn z) = F (F (x1 · · · xn) z) , n > 2

can be rewritten as

F (xz) = F (F (x)z) , |xz | > 3

( induction condition )



Associativity

The condition

F (x1 · · · xj · · · xk · · · xn) = F (x1 · · ·F (xj · · · xk) · · · xn)

for any 1 6 j < k 6 n with 1 < j or k < n

can be rewritten as

F (xyz) = F (xF (y)z) , |y| > 2, |xz| > 1

( associativity on
⋃

n>2 X
n )



Associativity

Proposition

For any map F :
⋃

n>2 X
n → X{

F2 = F |X 2 is associative

F (xz) = F (F (x)z) , |xz | > 3

m
F (xyz) = F (xF (y)z) , |y| > 2, |xz| > 1

−→ Extension to functions F defined on X ∗ =
⋃

n>0 X
n ?



Associativity

Definitions

• A variadic operation on X is a map F : X ∗ → X ∪ {ε}

• A variadic operation F : X ∗ → X ∪ {ε} is said to be associative if

F (xyz) = F (xF (y)z) , x, y, z ∈ X ∗

We often consider the condition

F (x) = ε ⇔ x = ε

( F is ε-standard )



Associativity

F is associative on X ∗

+
ε-standard

↙ ↘

F is associative on
⋃

n>2 X
n F1(F1(x)) = F1(x)

F1(F2(xy)) = F2(xy)

m F2(x F1(y)) = F2(xy)
F2(F1(x)y) = F2(xy)

F2 associative
+

Induction condition



Associativity

Suppose F2 : X 2 → X associative is given

How can we extend F2 to an associative and
ε-standard operation F : X ∗ → X ∪ {ε} ?

Induction condition → determine F3,F4, . . . ,Fn, . . . uniquely

What about F1 ?

F1(F1(x)) = F1(x)

F1(F2(xy)) = F2(xy) = F2(x F1(y)) = F2(F1(x)y)

Note that F1 = idX is a possible solution



Associativity

Example (sum). Take X = R and

F2(x1x2) = x1 + x2

Induction → Fn(x) = F (x1 · · · xn) = x1 + · · ·+ xn , n > 2

F1 = ?

We have F1(x) = F1(x + 0) = F1(F2(x0)) = F2(x0) = x

⇒ we get F1 = idR.



Associativity

Example (Euclidean norm). Take X = R and

F2(x1x2) =
√
x21 + x22

Induction → Fn(x) =
√

x21 + · · ·+ x2n = ‖x‖2 n > 2

F1 must satisfy

F1(F1(x)) = F1(x)

F1(F2(xy)) = F2(xy) = F2(x F1(y)) = F2(F1(x)y)

⇒ F1(x) = x and F1(x) =
√
x2 are possible solutions



Associativity

Example (t-norm). A t-norm is an associative binary operation
T : [0, 1]2 → [0, 1] that is symmetric, nondecreasing in each
argument, and satisfies T (x1) = T (1x) = x .

→ Extension to a variadic t-norm : T : [0, 1]∗ → [0, 1] ∪ {ε}

We have T1(x) = T1(T2(x1)) = T2(x1) = x

Example. If T (x1x2) = max(0, x1 + x2 − 1), then

Tn(x1 · · · xn) = max(0,
∑n

i=1 xi − n + 1)

Note. Same approach for t-conorms, uninorms,...



Associativity

There are also associative operations F : X ∗ → X ∪ {ε} that are
not ε-standard

Example. Let a ∈ X and define

F (x) =

{
a , if x = uav for some uv ∈ X ∗

ε , otherwise

Associativity is satisfied

F (xyz) = F (xF (y)z)



Associativity for string functions

Definition. A string function over X is a function F : X ∗ → X ∗

→ not an aggregation procedure

Examples (data processing tasks)

F (x) = sorting the letters of x in alphabetic order

F (x) = transforming a string x into upper case

F (x) = removing from x all occurrences of a given letter

F (x) = removing from x all repeated occurrences of letters
F (associativity) = ass/ocia/ti/vi/t/y = asocitvy

Each of these tasks satisfies

F (xyz) = F (xF (y)z)



Associativity for string functions

Definition. A string function F : X ∗ → X ∗ is said to be
associative if

F (xyz) = F (xF (y)z) , xyz ∈ X ∗

→ generalizes associativity for operations F : X ∗ → X ∪ {ε}

i.e., the properties of associativity for string functions also hold for
variadic operations

Proposition

The definition above remains equivalent if we assume |xz| 6 1



Associativity for string functions

Note. Setting x = z = ε in the identity

F (xyz) = F (xF (y)z)

we obtain F (y) = F (F (y))

F = F ◦ F



Associativity for string functions

Further equivalent forms

Proposition

Assume F : X ∗ → X ∗ satisfies F (ε) = ε
The following conditions are equivalent :

(i) F is associative

(ii) F (xy) = F (F (x)F (y))

(iii) F (F (xy)z) = F (xF (yz))

(iv) xyz = uvw ⇒ F (xF (y)z) = F (uF (v)w)



Associativity for string functions

Definition. Let m > 0 be an integer. A function F : X ∗ → X ∗ is
said to be m-bounded if |F (x)| 6 m for every x ∈ X ∗

Example. The variadic operations F : X ∗ → X ∪ {ε} are exactly
the 1-bounded string functions over X

Proposition

Assume that F : X ∗ → X ∗ is associative

(a) F is m-bounded if and only if F0, . . . ,Fm+1 are m-bounded

(b) If m-bounded, F is uniquely determined by F0, . . . ,Fm+1

Example (cont.) An associative function F : X ∗ → X ∗ is
1-bounded iff F0, F1, and F2 range in X ∪ {ε}

In this case, F is completely determined by F0, F1, and F2



Preassociativity

Let Y be a nonempty set

Definition. We say that F : X ∗ → Y is preassociative if

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

(we can assume |xz| 6 1)

Examples. F : R∗ → R ∪ {ε}
F0 = ε, Fn(x) = x1 + · · ·+ xn
F0 = ε, Fn(x) = x21 + · · ·+ x2n = ‖x‖22
F0 = ε, Fn(x) = g(x1 + · · ·+ xn), g one-to-one

F preassociative
g , h one-to-one

}
⇒ g ◦ F and F ◦ (h, . . . , h) preassociative



Preassociativity

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Equivalent definition

F (x) = F (x′)
F (y) = F (y′)

}
⇒ F (xy) = F (x′y′).



Preassociativity

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Proposition

Let F : X ∗ → X ∗ be a string function

F associative ⇔
{

F ◦ F = F
F preassociative

Proof. (⇒) We have F ◦ F = F by associativity.
Assume that F (y) = F (y′). Then

F (xyz) = F (xF (y)z) = F (xF (y′)z) = F (xy′z)

(⇐) We have F (F (y)) = F (y), and hence F (xF (y)z) = F (xyz) by
preassociativity.



Preassociativity

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Aggregation version :

Proposition

Let F : X ∗ → X ∪ {ε} be ε-standard

F associative ⇔
{

F1 ◦ F+ = F+

F preassociative

where F+ = F |∪n>1X n

Note. Contrary to associativity, preassociativity does not involve
any composition of functions



Preassociativity

F (y) = F (y′) ⇒ F (xyz) = F (xy′z)

Various codomains can be considered

Examples F : X ∗ → Z
F (x) = |x| (number of letters in x)

F (x) = number of occurrences in x of a given letter, say ‘z ’

F (x) = number of letters distinct from z minus the number of
occurrences of z

Note. The function that outputs the number of distinct letters in
x is not preassociative:

If a, b ∈ X are distinct, then F (a) = F (b) = 1 but

1 = F (aa) 6= F (ab) = 2



Preassociativity

Theorem

Let F : X ∗ → Y . The following assertions are equivalent:

(i) F is preassociative

(ii) F can be factorized into

F = f ◦ H

where H : X ∗ → X ∗ is associative
f : ran(H)→ Y is one-to-one

Example. F (x) = |x|

H(x) = x , f (x) = |x| ? No !



Preassociativity

Example. F (x) = |x|

Fix a ∈ X and define H(x) = a|x|

ran(H) = {an | n > 0}

H is associative

H(xH(y)z) = H(xa|y|z) = a|xyz| = H(xyz)

Define f : ran(H)→ N by f (an) = n

−→ f is one-to-one and

F = f ◦ H



Preassociativity

Preassociative functions

Associative string functions



Preassociativity

Recall that a function F : X ∗ → X ∗ is said to be ε-standard if

F (x) = ε ⇔ x = ε

Definition
A variadic function F : X ∗ → Y is said to be standard if

F (x) = F (ε) ⇔ x = ε

This means that ran(F0) ∩ ran(F+) = ∅



Preassociativity

Aggregation version :

Theorem

Assume that F : X ∗ → Y is standard
The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F1) = ran(F+)

(ii) F can be factorized into

F+ = f ◦ H+

where H : X ∗ → X ∪ {ε} is associative and ε-standard
f : ran(H+)→ Y is one-to-one

This result enables us to generate preassociative functions from
known associative variadic operations



Preassociativity

Example. Let V = d-dim. vector space on R and B = basis for V
(v)B = coordinate vector for v ∈ V relative to B
Note. (·)B : V → Rd is one-to-one

Consider the operation H : V ∗ → V ∪ {ε} defined by

H(ε) = ε and H(v1 · · · vn) =
∑n

i=1 vi

Fix e /∈ Rd . The function F : V ∗ → Rd ∪ {e} defined by

F (ε) = e and F (v1 · · · vn) =
(∑n

i=1 vi
)
B

is preassociative, standard, and ran(F1) = Rd = ran(F+)



Preassociativity

This factorization result also enables us to produce axiomatizations
of classes of preassociative functions from known axiomatizations
of classes of associative functions

A class of associative binary operations H : X 2 → X

⇓ (extension)

A class of associative variadic operations H : X ∗ → X ∪ {ε}

⇓ (factorization)

A class of preassociative variadic functions F : X ∗ → Y



Preassociativity

Theorem (Aczél 1949)

H : R2 → R is

continuous

one-to-one in each argument

associative

if and only if
H(xy) = ϕ−1(ϕ(x) +ϕ(y))

where ϕ : R→ R is continuous and strictly monotone

H(x1 · · · xn) = ϕ−1
(∑n

i=1ϕ(xi )
)



Preassociativity

Theorem

Assume that F : R∗ → R ∪ {F (ε)} is standard
The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F1) = ran(F+),
F1 and F2 are continuous and one-to-one in each argument

(ii) we have
F (x1 · · · xn) = ψ

(∑n
i=1ϕ(xi )

)
where ϕ : R→ R and ψ : R→ R are continuous and strictly
monotone



Preassociativity

Extension of a binary t-norm to an (ε-standard) variadic t-norm

T : [0, 1]2 → [0, 1] −→ T : [0, 1]∗ → [0, 1] ∪ {ε}

Theorem

Suppose F : [0, 1]∗ → R ∪ {F (ε)} is standard + F1 str. ↗
The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F1) = ran(F+),
F2 is symmetric, nondecreasing in each argument
F (x1) = F (1x) = F (x)

(ii) we have
F (x1 · · · xn) = (f ◦ T )(x1 · · · xn)

where f : [0, 1]→ R is strictly increasing
T : [0, 1]∗ → [0, 1] ∪ {ε} is a variadic t-norm



Preassociativity

Open questions

1. Find new axiomatizations of classes of preassociative functions
from existing axiomatizations of classes of associative
operations

2. Find interpretations of the preassociativity property in
aggregation function theory and/or fuzzy logic



Strong preassociativity

Definition. We say that F : X ∗ → Y is strongly preassociative if

F (xz) = F (x′z′) ⇒ F (xyz) = F (x′yz′)

We can insert letters anywhere

F (abc) = F (abc) ⇒ F (axbc) = F (abcx)

Proposition

Let F : X ∗ → Y

F strongly preassociative ⇔
{

F preassociative
Fn is symmetric ∀ n > 1



Part 2: Barycentric associativity,

generalizations, and variants



Barycentric associativity

Definition. A variadic operation F : X ∗ → X ∪ {ε} is said to be
barycentrically associative (or B-associative) if

F (xyz) = F (xF (y)|y|z)

F (abcd) = F (F (ab)2cd) = F (F (ab)F (ab)cd)

Notes.

...first considered for symmetric functions on
⋃

n>1Rn

(Schimmack 1909, Kolmogoroff 1930, Nagumo 1930)

...can be considered also for string functions F : X ∗ → X ∗

F (x) = removing from x all repeated occurrences of letters



Barycentric associativity

F (xyz) = F (xF (y)|y|z)

Suppose F : X ∗ → X ∪ {ε} is B-associative and ε-standard
Then F remains B-associative if we modify F (ε)

Proof. Define G : X ∗ → X by G (ε) = e ∈ X and G+ = F+

G (xG (y)|y|z) = ?

If y = ε, then G (xG (y)|y|z) = G (xεz) = G (xyz)

If y 6= ε, then

G (xG (y)|y|z) = F (xF (y)|y|z) = F (xyz) = G (xyz)

⇒ The value F (ε) is unimportant and we can assume ran(F ) ⊆ X



Barycentric associativity

Consider X = Rn as an infinite set of identical homogeneous balls
i.e., each ball is identified by the coordinates x ∈ Rn of its center
Define F : X ∗ → X as

F (x1 · · · xn) = barycenter of the balls x1, . . . , xn

��
���

���
��

HH
HHH

HHH
HHc y2

c y1 c y3s F (y)

c x1
c x2

c x3
c z1

c z2

F (xyz) = F (xF (y)|y|z)



Barycentric associativity

F (xyz) = F (xF (y)|y|z)

Example. Arithmetic mean F : R∗ → R

F (x1 · · · xn) =
1

n

n∑
i=1

xi

F (x1 F (x2x3)2) = F
(
x1

x2+x3
2

x2+x3
2

)
= 1

3

(
x1 + x2+x3

2 + x2+x3
2

)
= 1

3 (x1 + x2 + x3)

= F (x1 x2 x3)



Barycentric associativity

Definition. Quasi-arithmetic means
I = non-trivial real interval, possibly unbounded
f : I→ R continuous and strictly monotonic

F : I∗ → I

F (x1 · · · xn) = f −1
(

1

n

n∑
i=1

f (xi )

)

Note. F is B-associative



Barycentric associativity

Theorem (Kolmogoroff-Nagumo, 1930)

I = non-trivial real interval, possibly unbounded
Let F : I∗ → I
The following assertions are equivalent:

(i) F is B-associative
Fn symmetric
Fn continuous
Fn strictly increasing in each argument
Fn idempotent, i.e., Fn(x · · · x) = F (xn) = x

(ii) F is a quasi-arithmetic mean

Let us show that idempotence is redundant
i.e., the other assumptions imply that δFn = idI

δFn(x) = Fn(xn)



Barycentric associativity

Setting xz = ε in the identity

F (xyz) = F (xF (y)|y|z)

we obtain

F (y) = F (F (y)|y|)

For y = xn, we get

δFn(x) = F (δFn(x)n) = δFn ◦ δFn(x)

that is
δFn = δFn ◦ δFn

Applying δ−1Fn
to both sides gives (δFn is one-to-one)

idI = δFn



Barycentric associativity

Further examples of real B-associative functions

Fn(x) = min(x1, . . . , xn)

Fn(x) = max(x1, . . . , xn)

Fn(x) = x1

Fn(x) = xn

Fn(x) =
∑n

i=1
2i−1

2n−1 xi

Fα
n (x) =

∑n
i=1α

n−i (1−α)i−1 xi∑n
i=1α

n−i (1−α)i−1
, α ∈ R

Take α = 1, α = 0, α = 1/3, etc.



Barycentric associativity

F (xyz) = F (xF (y)|y|z)

Proposition

The definition above remains equivalent if we assume |xz| 6 1

Proposition

The following conditions are equivalent :

(i) F is B-associative

(ii) F (xy) = F (F (x)|x|F (y)|y|)

(iii) F (F (xy)|xy|z) = F (xF (yz)|yz|)

(iv) xyz = uvw ⇒ F (xF (y)|y|z) = F (uF (v)|v|w)



Barycentric associativity

Open questions

1. Find new axiomatizations of classes of B-associative
operations

2. Prove or disprove: If an operation F : X ∗ → X ∪ {ε} is
B-associative, then there exists a B-associative and
idempotent operation G : X ∗ → X ∪ {ε} such that
Fn = δFn ◦ Gn for every n > 1

3. Prove or disprove: Let F : X ∗ → X ∪ {ε} be a B-associative
operation. If Fn+1 is idempotent for some n > 1, then so is Fn



Strong barycentric associativity

Definition. A variadic operation F : X ∗ → X ∪ {ε} is said to be
strongly barycentrically associative (or strongly B-associative) if,
for every x ∈ X ∗, the value F (x) does not change if we

1. select a number of letters in x

2. replace each of them by their aggregated value

F (abcd) = F (F (ac)b F (ac)d)

Notes

Strong B-associativity ⇒ B-associativity

B-associativity + Fn symmetric ∀ n ⇒ strong B-assoc.

Fn(x) = x1 ∀ n : strongly B-associative

Fn(x) =
∑n

i=1
2i−1

2n−1 xi ∀ n : B-associative but not strongly



Strong barycentric associativity

Proposition

Assume that F : X ∗ → X ∪ {ε} is strongly B-associative.
Then, for every integer k > 1 and every x , z ∈ X , the function
y ∈ X k 7→ Fk+2(xyz) is symmetric



Strong barycentric associativity

Proposition

Let F : X ∗ → X ∪ {ε}
The following assertions are equivalent:

(i) F is strongly B-associative

(ii) F (xyz) = F (F (xz)|x| y F (xz)|z|)

(iii) F (xyz) = F (F (xz)|x| F (y)|y| F (xz)|z|)

Moreover, we may assume that |y| 6 1 in assertions (ii) and (iii)



Strong barycentric associativity

In Kolmogoroff-Nagumo’s characterization, B-associativity and
symmetry can be replaced with strong B-associativity

Theorem

I = non-trivial real interval, possibly unbounded
Let F : I∗ → I
The following assertions are equivalent:

(i) F is strongly B-associative
Fn continuous
Fn strictly increasing in each argument

(ii) F is a quasi-arithmetic mean



Barycentric preassociativity

Definition. We say that F : X ∗ → Y is barycentrically
preassociative (or B-preassociative) if

F (y) = F (y′)
|y| = |y′|

}
⇒ F (xyz) = F (xy′z)

(we can assume |xz| = 1)

Notes.

...inspired from the following property by de Finetti (1931)

F (y) = F (u|y|) ⇒ F (xyz) = F (xu|y|z) (|y|, |xz| > 1)

Preassociativity ⇒ B-preassociativity

The value F (ε) is unimportant



Barycentric preassociativity

B-preassociative functions

Preassociative functions

Associative string functions



Barycentric preassociativity

F (y) = F (y′)
|y| = |y′|

}
⇒ F (xyz) = F (xy′z)

Interpretations

Decision making : if we express an indifference when
comparing two profiles, then this indifference is preserved
when adding identical pieces of information to these profiles

Aggregation function theory : the aggregated value of a series
of numerical values remains unchanged when modifying a
bundle of these values without changing their partial
aggregation



Barycentric preassociativity

F (y) = F (y′)
|y| = |y′|

}
⇒ F (xyz) = F (xy′z)

Equivalent definition

F (x) = F (x′) and F (y) = F (y′)
|x| = |x′| and |y| = |y′|

}
⇒ F (xy) = F (x′y′)



Barycentric preassociativity

F (y) = F (y′)
|y| = |y′|

}
⇒ F (xyz) = F (xy′z)

Let F : X ∗ → X ∗

F associative ⇔
{

F (x) = F (F (x))
F preassociative

Proposition

Let F : X ∗ → X ∪ {ε}

F B-associative ⇒
{

F (x) = F (F (x)|x|)
F B-preassociative

The converse holds whenever ran(F+) ⊆ X .



Barycentric preassociativity

B-preassociative functions

B-associative variadic operations



Barycentric preassociativity

Examples

F (x) = |x| (preassociative)

· · ·

Proposition

F B-preassociative
gn one-to-one ∀ n

}
⇒ gn ◦ Fn B-preassociative

F defined by Fn = gn
(
1
n

∑n
i=1 xi

)
· · ·



Barycentric preassociativity

Theorem

Let F : X ∗ → Y
The following assertions are equivalent:

(i) F is B-preassociative and satisfies ran(δFn) = ran(Fn) ∀ n > 1

(ii) F can be factorized into

Fn = fn ◦ Hn ∀ n > 1

where H : X ∗ → X ∪ {ε} is B-associative
fn : ran(Hn)→ Y is one-to-one

... enables us to generalize Kolmogoroff-Nagumo’s characterization



Barycentric preassociativity

Quasi-arithmetic means
I = non-trivial real interval, possibly unbounded
f : I→ R continuous and strictly monotonic

F : I∗ → I

F (x1 · · · xn) = f −1
(

1

n

n∑
i=1

f (xi )

)
Definition. Quasi-arithmetic pre-means
f : I→ R and fn : R→ R continuous and strictly increasing (n > 1)

F : I∗ → R

F (x1 · · · xn) = fn

(
1

n

n∑
i=1

f (xi )

)
Note. F is B-preassociative



Barycentric preassociativity

Quasi-arithmetic pre-means

F (x1 · · · xn) = fn

(
1

n

n∑
i=1

f (xi )

)

F quasi-arithmetic pre-mean
Fn idempotent ∀n

}
⇔ F quasi-arithmetic mean

Non-idempotent examples

fn(x) = nx and f (x) = x ⇒ F (x) =
∑n

i=1 xi

fn(x) = enx and f (x) = ln x ⇒ F (x) =
∏n

i=1 xi



Barycentric preassociativity

Theorem

I = non-trivial real interval, possibly unbounded
Let F : I∗ → R
The following assertions are equivalent:

(i) F is B-preassociative
Fn symmetric
Fn continuous
Fn strictly increasing in each argument

(ii) F is a quasi-arithmetic pre-mean function

Open question. Find a characterization of those quasi-arithmetic
pre-mean functions which are preassociative



Barycentric preassociativity

We would like to have...

Theorem

Let F : X ∗ → Y
The following assertions are equivalent:

(i) F is B-preassociative

(ii) F can be factorized into ...

??



Barycentric preassociativity

Definition. A string function F : X ∗ → X ∗ is said to be
length-preserving if |F (x)| = |x| for every x ∈ X ∗

Examples

F = idX∗

F (x) = sorting the letters of x in alphabetic order

F (x) = transforming a string x into upper case

NOT : F (x) = removing from x all occurrences of ‘z ’

Proposition

Let F : X ∗ → X ∗ be length-preserving

F associative ⇔
{

Fn ◦ Fn = Fn ∀ n > 1
F B-preassociative



Barycentric preassociativity

Theorem

Let F : X ∗ → Y
The following assertions are equivalent:

(i) F is B-preassociative

(ii) F can be factorized into

Fn = fn ◦ Hn ∀ n > 1

where H : X ∗ → X ∗ is associative and length-preserving
fn : ran(Hn)→ Y is one-to-one



Barycentric preassociativity

B-preassociative functions

Preassociative functions

Associative functions

Associative and length-preserving functions

Up to one-to-one unary maps, any of these nested classes can be
described in terms of the smallest one



Strong barycentric preassociativity

Definition. A function F : X ∗ → Y is strongly B-preassociative if

F (xz) = F (x′z′)
|x| = |x′| and |z| = |z′|

}
⇒ F (xyz) = F (x′yz′)

Moreover, we may assume that |y| = 1.

Notes

Strong B-preassociativity ⇒ B-preassociativity

B-preassoc. + Fn symmetric ∀ n ⇒ strong B-preassoc.

Factorization results exist ...



Strong barycentric preassociativity

B-preassociativity and symmetry can be replaced with strong
B-preassociativity in the axiomatization of the class of
quasi-arithmetic pre-mean functions

Theorem

I = non-trivial real interval, possibly unbounded
Let F : I∗ → R
The following assertions are equivalent:

(i) F is strongly B-preassociative
Fn continuous
Fn strictly increasing in each argument

(ii) F is a quasi-arithmetic pre-mean function



Thank you for your attention !


