Generalizations and variants of associativity for aggregation functions

AGOP 2015 Tutorial presentation

Jean-Luc Marichal

in collaboration with Bruno Teheux

University of Luxembourg

Table of contents

- Part 0: Introduction and notation
- Part 1: Associativity, generalizations, and variants
- Part 2: Barycentric associativity, generalizations, and variants

Part 0: Introduction and notation

Associative binary operations

Let X be a nonempty set

Consider an operation $F: X^2 \rightarrow X$ Denote F(a, b) by ab

F is associative if

$$(ab)c = a(bc)$$

 \longrightarrow enables us to define the expression *abc* by setting

Question: How can we define abcd ?

Associative binary operations

By associativity, we have

$$(abc)d = (a(bc))d = a(bc)d = a((bc)d) = a(bcd)$$
$$= a(b(cd)) = ab(cd) = \cdots$$
$$= \cdots$$

 \rightarrow we can define *abcd* by setting

Associativity shows that the expression *abcd* can be computed regardless of how the parentheses are inserted

Associative binary operations

For any $a_1, \ldots, a_n \in X$, we can set

$$a_1\cdots a_{n-1}a_n = (a_1\cdots a_{n-1})a_n$$

... can be computed regardless of how parentheses are inserted

In other words, associativity shows that

$$a_1 \cdots a_j \cdots a_k \cdots a_n = a_1 \cdots (a_j \cdots a_k) \cdots a_n$$

holds for any $1 \leq j < k \leq n$ with 1 < j or k < n

(associativity for operations with an indefinite arity)

Associative operations with an indefinite arity

We started with a binary operation $F: X^2 \to X$ and we now extend its domain to the set $X^2 \cup X^3 \cup X^4 \cup \cdots$

$$F: \bigcup_{n \ge 2} X^n \to X$$

Assume that F satisfies

•
$$F(F(a_1, a_2), a_3) = F(a_1, F(a_2, a_3))$$

• $F(a_1, \dots, a_{n-1}, a_n) = F(F(a_1, \dots, a_{n-1}), a_n), \quad n \ge 3$

Then (and only then)

$$F(a_1,\ldots,a_j,\ldots,a_k,\ldots,a_n) = F(a_1,\ldots,F(a_j,\ldots,a_k),\ldots,a_n)$$

Notation

• X = alphabet

- Elements of X: *letters* $(x, y, z, \ldots \in X)$
- The set

$$X^* = \bigcup_{n \ge 0} X^n$$

is the set of all tuples on X, called strings over X $(x, y, z, \ldots \in X^*)$

Convention: $X^0 = \{\varepsilon\}$, where $\varepsilon = the empty string$

Notation

• X^* is endowed with concatenation (ε = neutral element)

$$\mathbf{x} \in X^n$$
 and $y \in X \Rightarrow \mathbf{x} y \boldsymbol{\varepsilon} = \mathbf{x} y \in X^{n+1}$

• Repeated strings

$$\mathbf{x}^n = \underbrace{\mathbf{x}\cdots\mathbf{x}}_n, \qquad \mathbf{x}^0 = \varepsilon$$

• Length of a string

$$egin{array}{rcl} |{f x}| &=& n & \Longleftrightarrow & {f x} \in X^n \ |arepsilon| &=& 0 \ , & |x| \ =& 1 \end{array}$$

Notation

Let Y be a nonempty set

• n-ary function

$$F: X^n \to Y$$

• *-ary function or variadic function

$$F: X^* \to Y$$

n-ary part of F

$$F_n = F|_{X^n}$$

Default value of F

$$F(\varepsilon) = F_0(\varepsilon)$$

Part 1: Associativity, generalizations, and variants

• The condition

$$F(x_1 \cdots x_n z) = F(F(x_1 \cdots x_n) z), \quad n \ge 2$$

can be rewritten as

$$F(\mathbf{x}z) = F(F(\mathbf{x})z), \qquad |\mathbf{x}z| \ge 3$$

(induction condition)

• The condition

$$F(x_1 \cdots x_j \cdots x_k \cdots x_n) = F(x_1 \cdots F(x_j \cdots x_k) \cdots x_n)$$

for any $1 \leq j < k \leq n$ with $1 < j$ or $k < n$

can be rewritten as

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}), \qquad |\mathbf{y}| \ge 2, \ |\mathbf{xz}| \ge 1$$

(associativity on $\bigcup_{n \geqslant 2} X^n$)

Proposition

 \longrightarrow Extension to functions *F* defined on $X^* = \bigcup_{n \ge 0} X^n$?

Definitions

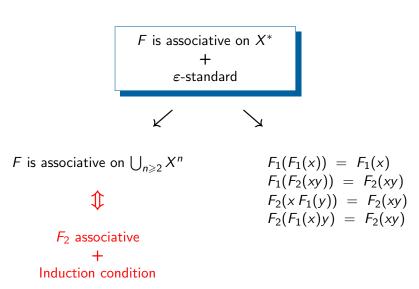
- A variadic operation on X is a map $F: X^* \to X \cup \{\varepsilon\}$
- A variadic operation $F: X^* \to X \cup \{\varepsilon\}$ is said to be *associative* if

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}), \qquad \mathbf{x}, \mathbf{y}, \mathbf{z} \in X^*$$

We often consider the condition

$$F(\mathbf{x}) = \boldsymbol{\varepsilon} \quad \Leftrightarrow \quad \mathbf{x} = \boldsymbol{\varepsilon}$$

(F is ε -standard)



Suppose $F_2: X^2 \to X$ associative is given

How can we extend F_2 to an associative and ε -standard operation $F: X^* \to X \cup \{\varepsilon\}$?

Induction condition \rightarrow determine $F_3, F_4, \ldots, F_n, \ldots$ uniquely What about F_1 ?

$$F_1(F_1(x)) = F_1(x)$$

$$F_1(F_2(xy)) = F_2(xy) = F_2(x F_1(y)) = F_2(F_1(x)y)$$

Note that $F_1 = id_X$ is a possible solution

Example (sum). Take $X = \mathbb{R}$ and

$$F_2(x_1x_2) = x_1 + x_2$$

Induction
$$\rightarrow F_n(\mathbf{x}) = F(x_1 \cdots x_n) = x_1 + \cdots + x_n, \quad n \ge 2$$

 $F_1 = ?$
We have $F_1(x) = F_1(x+0) = F_1(F_2(x0)) = F_2(x0) = x$

 \Rightarrow we get $F_1 = id_{\mathbb{R}}$.

Example (Euclidean norm). Take $X = \mathbb{R}$ and

$$F_2(x_1x_2) = \sqrt{x_1^2 + x_2^2}$$

Induction
$$\rightarrow F_n(\mathbf{x}) = \sqrt{x_1^2 + \cdots + x_n^2} = \|\mathbf{x}\|_2 \qquad n \ge 2$$

 F_1 must satisfy

$$F_1(F_1(x)) = F_1(x)$$

$$F_1(F_2(xy)) = F_2(xy) = F_2(x F_1(y)) = F_2(F_1(x)y)$$

 \Rightarrow $F_1(x) = x$ and $F_1(x) = \sqrt{x^2}$ are possible solutions

Example (t-norm). A *t-norm* is an associative binary operation $T: [0,1]^2 \rightarrow [0,1]$ that is symmetric, nondecreasing in each argument, and satisfies T(x1) = T(1x) = x.

ightarrow Extension to a variadic t-norm : $\mathcal{T} \colon [0,1]^*
ightarrow [0,1] \cup \{ arepsilon \}$

We have
$$T_1(x) = T_1(T_2(x1)) = T_2(x1) = x$$

Example. If $T(x_1x_2) = \max(0, x_1 + x_2 - 1)$, then

$$T_n(x_1 \cdots x_n) = \max(0, \sum_{i=1}^n x_i - n + 1)$$

Note. Same approach for t-conorms, uninorms,...

There are also associative operations $F: X^* \to X \cup \{\varepsilon\}$ that are not ε -standard

Example. Let $a \in X$ and define

$$F(\mathbf{x}) = \begin{cases} a, & \text{if } \mathbf{x} = \mathbf{u}a\mathbf{v} \text{ for some } \mathbf{u}\mathbf{v} \in X^* \\ \varepsilon, & \text{otherwise} \end{cases}$$

Associativity is satisfied

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z})$$

Definition. A *string function* over X is a function $F: X^* \to X^*$

 \rightarrow not an aggregation procedure

Examples (data processing tasks)

- $F(\mathbf{x}) =$ sorting the letters of \mathbf{x} in alphabetic order
- $F(\mathbf{x}) = \text{transforming a string } \mathbf{x} \text{ into upper case}$
- $F(\mathbf{x}) =$ removing from \mathbf{x} all occurrences of a given letter
- F(x) = removing from x all repeated occurrences of letters
 F(associativity) = as\$oci\$ti\$vi\$t\$y = asocitvy

Each of these tasks satisfies

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z})$$

Definition. A string function $F: X^* \to X^*$ is said to be *associative* if

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}), \qquad \mathbf{xyz} \in X^*$$

ightarrow generalizes associativity for operations $F \colon X^*
ightarrow X \cup \{arepsilon\}$

i.e., the properties of associativity for string functions also hold for variadic operations

Proposition

The definition above remains equivalent if we assume $|\mathbf{x}\mathbf{z}|\leqslant 1$

Note. Setting $\mathbf{x} = \mathbf{z} = \boldsymbol{\varepsilon}$ in the identity

$$F(xyz) = F(xF(y)z)$$

we obtain $F(\mathbf{y}) = F(F(\mathbf{y}))$

$$F = F \circ F$$

Further equivalent forms

Proposition

Assume $F: X^* \to X^*$ satisfies $F(\varepsilon) = \varepsilon$ The following conditions are equivalent:

(i) F is associative
(ii)
$$F(xy) = F(F(x)F(y))$$

(iii) $F(F(xy)z) = F(xF(yz))$
(iv) $xyz = uvw \implies F(xF(y)z) = F(uF(v)w)$

Definition. Let $m \ge 0$ be an integer. A function $F: X^* \to X^*$ is said to be *m*-bounded if $|F(\mathbf{x})| \le m$ for every $\mathbf{x} \in X^*$

Example. The variadic operations $F: X^* \to X \cup \{\varepsilon\}$ are exactly the 1-bounded string functions over X

Proposition

Assume that $F: X^* \to X^*$ is associative

(a) F is *m*-bounded if and only if F_0, \ldots, F_{m+1} are *m*-bounded

(b) If *m*-bounded, *F* is uniquely determined by F_0, \ldots, F_{m+1}

Example (cont.) An associative function $F: X^* \to X^*$ is 1-bounded iff F_0 , F_1 , and F_2 range in $X \cup \{\varepsilon\}$

In this case, F is completely determined by F_0 , F_1 , and F_2

Let Y be a nonempty set

Definition. We say that $F: X^* \to Y$ is *preassociative* if

$$F(\mathbf{y}) = F(\mathbf{y}') \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

(we can assume $|\mathbf{x}\mathbf{z}|\leqslant 1$)

Examples. $F : \mathbb{R}^* \to \mathbb{R} \cup \{\varepsilon\}$

•
$$F_0 = \varepsilon$$
, $F_n(\mathbf{x}) = x_1 + \dots + x_n$
• $F_0 = \varepsilon$, $F_n(\mathbf{x}) = x_1^2 + \dots + x_n^2 = \|\mathbf{x}\|_2^2$
• $F_0 = \varepsilon$, $F_n(\mathbf{x}) = g(x_1 + \dots + x_n)$, g one-to-one

 $\left. \begin{array}{l} F \text{ preassociative} \\ g, h \text{ one-to-one} \end{array} \right\} \quad \Rightarrow \quad g \circ F \text{ and } F \circ (h, \ldots, h) \text{ preassociative} \end{array} \right.$

$$F(\mathbf{y}) = F(\mathbf{y}') \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Equivalent definition

$$\begin{array}{l} F(\mathbf{x}) = F(\mathbf{x}') \\ F(\mathbf{y}) = F(\mathbf{y}') \end{array} \right\} \quad \Rightarrow \quad F(\mathbf{x}\mathbf{y}) = F(\mathbf{x}'\mathbf{y}').$$

$$F(\mathbf{y}) = F(\mathbf{y}') \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

PropositionLet $F: X^* \to X^*$ be a string functionF associative \Leftrightarrow $\begin{cases} F \circ F = F \\ F \text{ preassociative} \end{cases}$

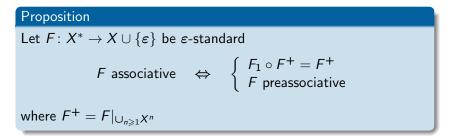
Proof. (\Rightarrow) We have $F \circ F = F$ by associativity. Assume that $F(\mathbf{y}) = F(\mathbf{y}')$. Then

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})\mathbf{z}) = F(\mathbf{x}F(\mathbf{y}')\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

(\Leftarrow) We have $F(F(\mathbf{y})) = F(\mathbf{y})$, and hence $F(\mathbf{x}F(\mathbf{y})\mathbf{z}) = F(\mathbf{x}\mathbf{y}\mathbf{z})$ by preassociativity.

$$F(\mathbf{y}) = F(\mathbf{y}') \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Aggregation version :



Note. Contrary to associativity, preassociativity does not involve any composition of functions

$$F(\mathbf{y}) = F(\mathbf{y}') \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Various codomains can be considered

Examples $F: X^* \to \mathbb{Z}$

- $F(\mathbf{x}) = |\mathbf{x}|$ (number of letters in \mathbf{x})
- $F(\mathbf{x}) =$ number of occurrences in \mathbf{x} of a given letter, say 'z'
- $F(\mathbf{x}) =$ number of letters distinct from z minus the number of occurrences of z

Note. The function that outputs the number of distinct letters in **x** is not preassociative:

If $a, b \in X$ are distinct, then F(a) = F(b) = 1 but

$$1 = F(aa)
eq F(ab) = 2$$

Theorem

- Let $F: X^* \to Y$. The following assertions are equivalent:
 - (i) F is preassociative
- (ii) F can be factorized into

$$F = f \circ H$$

where $H: X^* \to X^*$ is associative $f: \operatorname{ran}(H) \to Y$ is one-to-one

Example. $F(\mathbf{x}) = |\mathbf{x}|$

$$H(\mathbf{x}) = \mathbf{x}, \qquad f(\mathbf{x}) = |\mathbf{x}|? \qquad \text{No }!$$

Example. $F(\mathbf{x}) = |\mathbf{x}|$

Fix $a \in X$ and define $H(\mathbf{x}) = a^{|\mathbf{x}|}$

$$\operatorname{ran}(H) = \{a^n \mid n \ge 0\}$$

H is associative

$$H(\mathbf{x}H(\mathbf{y})\mathbf{z}) = H(\mathbf{x}a^{|\mathbf{y}|}\mathbf{z}) = a^{|\mathbf{x}\mathbf{y}\mathbf{z}|} = H(\mathbf{x}\mathbf{y}\mathbf{z})$$

Define $f: \operatorname{ran}(H) \to \mathbb{N}$ by $f(a^n) = n$

 \longrightarrow *f* is one-to-one and

$$F = f \circ H$$

Preassociative functions

Associative string functions

Recall that a function $F: X^* \to X^*$ is said to be *\varepsilon-standard* if

$$F(\mathbf{x}) = \boldsymbol{\varepsilon} \quad \Leftrightarrow \quad \mathbf{x} = \boldsymbol{\varepsilon}$$

Definition

A variadic function $F: X^* \to Y$ is said to be *standard* if

$$F(\mathbf{x}) = F(\varepsilon) \quad \Leftrightarrow \quad \mathbf{x} = \varepsilon$$

This means that $ran(F_0) \cap ran(F^+) = \emptyset$

Aggregation version :

Theorem

Assume that $F: X^* \to Y$ is standard

The following assertions are equivalent:

- (i) F is preassociative and satisfies $ran(F_1) = ran(F^+)$
- (ii) F can be factorized into

$$F^+ = f \circ H^+$$

where $H: X^* \to X \cup \{\varepsilon\}$ is associative and ε -standard $f: \operatorname{ran}(H^+) \to Y$ is one-to-one

This result enables us to generate preassociative functions from known associative variadic operations

Example. Let V = d-dim. vector space on \mathbb{R} and B = basis for V $(v)_B$ = coordinate vector for $v \in V$ relative to BNote. $(\cdot)_B \colon V \to \mathbb{R}^d$ is one-to-one

Consider the operation $H: V^* \to V \cup \{\varepsilon\}$ defined by

$$H(\varepsilon) = \varepsilon$$
 and $H(v_1 \cdots v_n) = \sum_{i=1}^n v_i$

Fix $e \notin \mathbb{R}^d$. The function $F \colon V^* \to \mathbb{R}^d \cup \{e\}$ defined by

$$F(\varepsilon) = e$$
 and $F(v_1 \cdots v_n) = \left(\sum_{i=1}^n v_i\right)_B$

is preassociative, standard, and $\operatorname{ran}(F_1) = \mathbb{R}^d = \operatorname{ran}(F^+)$

This factorization result also enables us to produce axiomatizations of classes of preassociative functions from known axiomatizations of classes of associative functions

A class of associative binary operations $H\colon X^2 o X$

 \Downarrow (extension)

A class of associative variadic operations $H \colon X^* \to X \cup \{\varepsilon\}$

 \Downarrow (factorization)

A class of preassociative variadic functions $F \colon X^* \to Y$

Theorem (Aczél 1949)

- $H \colon \mathbb{R}^2 \to \mathbb{R}$ is
 - continuous
 - one-to-one in each argument
 - associative

if and only if

$$H(xy) = \varphi^{-1}(\varphi(x) + \varphi(y))$$

where $arphi \colon \mathbb{R} o \mathbb{R}$ is continuous and strictly monotone

$$H(x_1\cdots x_n) = \varphi^{-1}(\sum_{i=1}^n \varphi(x_i))$$

Theorem

Assume that $F : \mathbb{R}^* \to \mathbb{R} \cup \{F(\varepsilon)\}$ is standard The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F₁) = ran(F⁺), F₁ and F₂ are continuous and one-to-one in each argument
(ii) we have

$$F(x_1 \cdots x_n) = \psi \left(\sum_{i=1}^n \varphi(x_i) \right)$$

where $arphi\colon\mathbb{R} o\mathbb{R}$ and $\psi\colon\mathbb{R} o\mathbb{R}$ are continuous and strictly monotone

Extension of a binary t-norm to an (ε -standard) variadic t-norm

 $\mathcal{T} \colon [0,1]^2 o [0,1] \longrightarrow \mathcal{T} \colon [0,1]^* o [0,1] \cup \{oldsymbol{arepsilon}\}$

Theorem

Suppose $F : [0,1]^* \to \mathbb{R} \cup \{F(\varepsilon)\}$ is standard $+ F_1$ str. \nearrow The following assertions are equivalent:

(i) F is preassociative and satisfies ran(F₁) = ran(F⁺),
 F₂ is symmetric, nondecreasing in each argument
 F(x1) = F(1x) = F(x)

(ii) we have

$$F(x_1 \cdots x_n) = (f \circ T)(x_1 \cdots x_n)$$

where $f: [0,1] \to \mathbb{R}$ is strictly increasing $T: [0,1]^* \to [0,1] \cup \{\varepsilon\}$ is a variadic t-norm

Open questions

- Find new axiomatizations of classes of preassociative functions from existing axiomatizations of classes of associative operations
- 2. Find interpretations of the preassociativity property in aggregation function theory and/or fuzzy logic

Strong preassociativity

Definition. We say that $F: X^* \to Y$ is *strongly preassociative* if

$$F(\mathbf{x}\mathbf{z}) = F(\mathbf{x}'\mathbf{z}') \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}'\mathbf{y}\mathbf{z}')$$

We can insert letters anywhere

$$F(abc) = F(abc) \Rightarrow F(axbc) = F(abcx)$$

Proposition

Let $F: X^* \to Y$ F strongly preassociative $\Leftrightarrow \begin{cases} F \text{ preassociative} \\ F_n \text{ is symmetric } \forall n \ge 1 \end{cases}$

Part 2: Barycentric associativity, generalizations, and variants

Definition. A variadic operation $F: X^* \to X \cup \{\varepsilon\}$ is said to be *barycentrically associative* (or *B-associative*) if

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z})$$

$$F(abcd) = F(F(ab)^2cd) = F(F(ab)F(ab)cd)$$

Notes.

- …first considered for symmetric functions on U_{n≥1} ℝⁿ (Schimmack 1909, Kolmogoroff 1930, Nagumo 1930)
- ...can be considered also for string functions $F: X^* \to X^*$ $F(\mathbf{x}) =$ removing from \mathbf{x} all repeated occurrences of letters

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z})$$

Suppose $F: X^* \to X \cup \{\varepsilon\}$ is B-associative and ε -standard Then F remains B-associative if we modify $F(\varepsilon)$

Proof. Define $G: X^* \to X$ by $G(\varepsilon) = e \in X$ and $G^+ = F^+$

$$G(\mathbf{x}G(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = ?$$

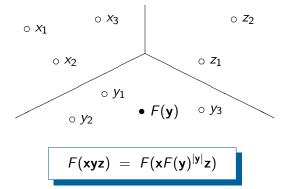
- If $\mathbf{y} = \boldsymbol{\varepsilon}$, then $G(\mathbf{x}G(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = G(\mathbf{x}\boldsymbol{\varepsilon}\mathbf{z}) = G(\mathbf{x}\mathbf{y}\mathbf{z})$
- If $\mathbf{y} \neq \boldsymbol{\varepsilon}$, then

$$G(\mathbf{x}G(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = F(\mathbf{x}\mathbf{y}\mathbf{z}) = G(\mathbf{x}\mathbf{y}\mathbf{z})$$

 \Rightarrow The value $F(\varepsilon)$ is unimportant and we can assume $\operatorname{ran}(F) \subseteq X$

Consider $X = \mathbb{R}^n$ as an infinite set of identical homogeneous balls i.e., each ball is identified by the coordinates $x \in \mathbb{R}^n$ of its center Define $F: X^* \to X$ as

$$F(x_1 \cdots x_n) =$$
 barycenter of the balls x_1, \ldots, x_n



$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z})$$

Example. Arithmetic mean $F \colon \mathbb{R}^* \to \mathbb{R}$

$$F(x_1\cdots x_n) = \frac{1}{n}\sum_{i=1}^n x_i$$

$$F(x_1 F(x_2 x_3)^2) = F(x_1 \frac{x_2 + x_3}{2} \frac{x_2 + x_3}{2})$$

= $\frac{1}{3} (x_1 + \frac{x_2 + x_3}{2} + \frac{x_2 + x_3}{2})$
= $\frac{1}{3} (x_1 + x_2 + x_3)$
= $F(x_1 x_2 x_3)$

Definition. Quasi-arithmetic means

 $\mathbb{I} =$ non-trivial real interval, possibly unbounded $f : \mathbb{I} \to \mathbb{R}$ continuous and strictly monotonic

$$F: \mathbb{I}^* \to \mathbb{I}$$
$$F(x_1 \cdots x_n) = f^{-1} \left(\frac{1}{n} \sum_{i=1}^n f(x_i) \right)$$

Note. *F* is B-associative

Theorem (Kolmogoroff-Nagumo, 1930)

 $\mathbb{I}=\mathsf{non-trivial}$ real interval, possibly unbounded

Let $F : \mathbb{I}^* \to \mathbb{I}$

The following assertions are equivalent:

- (i) F is B-associative
 - *F_n* symmetric
 - *F_n* continuous
 - F_n strictly increasing in each argument
 - F_n idempotent, i.e., $F_n(x \cdots x) = F(x^n) = x$

(ii) F is a quasi-arithmetic mean

Let us show that idempotence is redundant i.e., the other assumptions imply that $\delta_{F_n} = id_{\mathbb{I}}$

$$\delta_{F_n}(x) = F_n(x^n)$$

Setting $\mathbf{x}\mathbf{z} = \boldsymbol{\varepsilon}$ in the identity

$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z})$$

we obtain

$$F(\mathbf{y}) = F(F(\mathbf{y})^{|\mathbf{y}|})$$

For $\mathbf{y} = x^n$, we get

$$\delta_{F_n}(x) = F(\delta_{F_n}(x)^n) = \delta_{F_n} \circ \delta_{F_n}(x)$$

that is

$$\delta_{F_n} = \delta_{F_n} \circ \delta_{F_n}$$

Applying $\delta_{F_n}^{-1}$ to both sides gives (δ_{F_n} is one-to-one)

 $\operatorname{id}_{\mathbb{I}} = \delta_{F_n}$

Further examples of real B-associative functions

•
$$F_n(\mathbf{x}) = \min(x_1, ..., x_n)$$

• $F_n(\mathbf{x}) = \max(x_1, ..., x_n)$
• $F_n(\mathbf{x}) = x_1$
• $F_n(\mathbf{x}) = x_n$
• $F_n(\mathbf{x}) = \sum_{i=1}^n \frac{2^{i-1}}{2^n - 1} x_i$
 $F_n^{\alpha}(\mathbf{x}) = \frac{\sum_{i=1}^n \alpha^{n-i} (1 - \alpha)^{i-1} x_i}{\sum_{i=1}^n \alpha^{n-i} (1 - \alpha)^{i-1}}, \quad \alpha \in \mathbb{R}$

Take lpha= 1, lpha= 0, lpha= 1/3, etc.

$$F(\mathbf{xyz}) = F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z})$$

Proposition

The definition above remains equivalent if we assume $|\mathbf{x}\mathbf{z}|\leqslant 1$

Proposition

The following conditions are equivalent :

(i) F is B-associative

(ii)
$$F(\mathbf{x}\mathbf{y}) = F(F(\mathbf{x})^{|\mathbf{x}|}F(\mathbf{y})^{|\mathbf{y}|})$$

(iii)
$$F(F(\mathbf{xy})^{|\mathbf{xy}|}\mathbf{z}) = F(\mathbf{x}F(\mathbf{yz})^{|\mathbf{yz}|})$$

(iv) $\mathbf{x}\mathbf{y}\mathbf{z} = \mathbf{u}\mathbf{v}\mathbf{w} \quad \Rightarrow \quad F(\mathbf{x}F(\mathbf{y})^{|\mathbf{y}|}\mathbf{z}) = F(\mathbf{u}F(\mathbf{v})^{|\mathbf{v}|}\mathbf{w})$

Open questions

- 1. Find new axiomatizations of classes of B-associative operations
- 2. Prove or disprove: If an operation $F: X^* \to X \cup \{\varepsilon\}$ is B-associative, then there exists a B-associative and idempotent operation $G: X^* \to X \cup \{\varepsilon\}$ such that $F_n = \delta_{F_n} \circ G_n$ for every $n \ge 1$
- 3. Prove or disprove: Let $F: X^* \to X \cup \{\varepsilon\}$ be a B-associative operation. If F_{n+1} is idempotent for some $n \ge 1$, then so is F_n

Definition. A variadic operation $F: X^* \to X \cup \{\varepsilon\}$ is said to be *strongly barycentrically associative* (or *strongly B-associative*) if, for every $\mathbf{x} \in X^*$, the value $F(\mathbf{x})$ does not change if we

- 1. select a number of letters in x
- 2. replace each of them by their aggregated value

$$F(abcd) = F(F(ac)bF(ac)d)$$

Notes

- Strong B-associativity \Rightarrow B-associativity
- B-associativity + F_n symmetric $\forall n \Rightarrow$ strong B-assoc.
- $F_n(\mathbf{x}) = x_1 \quad \forall n :$ strongly B-associative

•
$$F_n(\mathbf{x}) = \sum_{i=1}^n \frac{2^{i-1}}{2^n-1} x_i \quad \forall n : B$$
-associative but not strongly

Proposition

Assume that $F: X^* \to X \cup \{\varepsilon\}$ is strongly B-associative. Then, for every integer $k \ge 1$ and every $x, z \in X$, the function $\mathbf{y} \in X^k \mapsto F_{k+2}(x\mathbf{y}z)$ is symmetric

Proposition

Let $F: X^* \to X \cup \{\varepsilon\}$

The following assertions are equivalent:

(ii)
$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(F(\mathbf{x}\mathbf{z})^{|\mathbf{x}|} \mathbf{y} F(\mathbf{x}\mathbf{z})^{|\mathbf{z}|})$$

(iii)
$$F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(F(\mathbf{x}\mathbf{z})^{|\mathbf{x}|} F(\mathbf{y})^{|\mathbf{y}|} F(\mathbf{x}\mathbf{z})^{|\mathbf{z}|})$$

Moreover, we may assume that $|\mathbf{y}| \leqslant 1$ in assertions (ii) and (iii)

In Kolmogoroff-Nagumo's characterization, B-associativity and symmetry can be replaced with strong B-associativity

Theorem

(i)

 $\mathbb{I}=$ non-trivial real interval, possibly unbounded

Let $F : \mathbb{I}^* \to \mathbb{I}$

The following assertions are equivalent:

- F is strongly B-associative
 - *F_n* continuous
 - F_n strictly increasing in each argument

(ii) F is a quasi-arithmetic mean

Definition. We say that $F: X^* \to Y$ is *barycentrically preassociative* (or *B-preassociative*) if

$$\begin{array}{lll} F(\mathbf{y}) &=& F(\mathbf{y}') \\ |\mathbf{y}| &=& |\mathbf{y}'| \end{array} \right\} \quad \Rightarrow \quad F(\mathbf{x}\mathbf{y}\mathbf{z}) &=& F(\mathbf{x}\mathbf{y}'\mathbf{z}) \end{array}$$

(we can assume $|\mathbf{x}\mathbf{z}| = 1$)

Notes.

• ...inspired from the following property by de Finetti (1931)

$$F(\mathbf{y}) = F(u^{|\mathbf{y}|}) \implies F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}u^{|\mathbf{y}|}\mathbf{z}) \quad (|\mathbf{y}|, |\mathbf{x}\mathbf{z}| \ge 1)$$

- Preassociativity \Rightarrow B-preassociativity
- The value $F(\varepsilon)$ is unimportant

B-preassociative functions
Preassociative functions
Associative string functions

$$\begin{array}{lll} \mathsf{F}(\mathbf{y}) &=& \mathsf{F}(\mathbf{y}') \\ |\mathbf{y}| &=& |\mathbf{y}'| \end{array} \right\} \quad \Rightarrow \quad \mathsf{F}(\mathbf{x}\mathbf{y}\mathbf{z}) &=& \mathsf{F}(\mathbf{x}\mathbf{y}'\mathbf{z}) \end{array}$$

Interpretations

- Decision making : if we express an indifference when comparing two profiles, then this indifference is preserved when adding identical pieces of information to these profiles
- Aggregation function theory : the aggregated value of a series of numerical values remains unchanged when modifying a bundle of these values without changing their partial aggregation

$$\begin{array}{ccc} F(\mathbf{y}) &=& F(\mathbf{y}') \\ |\mathbf{y}| &=& |\mathbf{y}'| \end{array} \right\} \quad \Rightarrow \quad F(\mathbf{x}\mathbf{y}\mathbf{z}) &=& F(\mathbf{x}\mathbf{y}'\mathbf{z}) \end{array}$$

Equivalent definition

$$\begin{array}{c} F(\mathbf{x}) \ = \ F(\mathbf{x}') \quad \text{and} \quad F(\mathbf{y}) \ = \ F(\mathbf{y}') \\ |\mathbf{x}| \ = \ |\mathbf{x}'| \quad \text{and} \quad |\mathbf{y}| \ = \ |\mathbf{y}'| \end{array} \right\} \quad \Rightarrow \quad F(\mathbf{x}\mathbf{y}) \ = \ F(\mathbf{x}'\mathbf{y}')$$

$$\begin{cases} F(\mathbf{y}) = F(\mathbf{y}') \\ |\mathbf{y}| = |\mathbf{y}'| \end{cases} \Rightarrow F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}\mathbf{y}'\mathbf{z})$$

Let
$$F: X^* \to X^*$$

 F associative $\Leftrightarrow \begin{cases} F(\mathbf{x}) = F(F(\mathbf{x})) \\ F \text{ preassociative} \end{cases}$

Proposition

Let $F: X^* \to X \cup \{\varepsilon\}$ F B-associative $\Rightarrow \begin{cases} F(\mathbf{x}) = F(F(\mathbf{x})^{|\mathbf{x}|}) \\ F$ B-preassociative

The converse holds whenever $ran(F^+) \subseteq X$.

B-preassociative functions

B-associative variadic operations

Examples

•
$$F(\mathbf{x}) = |\mathbf{x}|$$
 (preassociative)
• ...

Proposition

$$\left. \begin{array}{cc} F & \text{B-preassociative} \\ g_n \text{ one-to-one } \forall n \end{array} \right\} \quad \Rightarrow \quad g_n \circ F_n \quad \text{B-preassociative} \end{array}$$

• *F* defined by
$$F_n = g_n(\frac{1}{n} \sum_{i=1}^n x_i)$$

• ...

Theorem

Let $F: X^* \to Y$ The following assertions are equivalent: (i) F is B-preassociative and satisfies $ran(\delta_{F_n}) = ran(F_n) \forall n \ge 1$ (ii) F can be factorized into $F_n = f_n \circ H_n \quad \forall n \ge 1$ where $H: X^* \to X \cup \{\varepsilon\}$ is B-associative

 f_n : ran $(H_n) \rightarrow Y$ is one-to-one

... enables us to generalize Kolmogoroff-Nagumo's characterization

Quasi-arithmetic means

- $\mathbb{I} = \mathsf{non-trivial}$ real interval, possibly unbounded
- $f : \mathbb{I} \to \mathbb{R}$ continuous and strictly monotonic

$$F: \mathbb{I}^* \to \mathbb{I}$$
$$F(x_1 \cdots x_n) = f^{-1} \left(\frac{1}{n} \sum_{i=1}^n f(x_i) \right)$$

Definition. *Quasi-arithmetic pre-means* $f : \mathbb{I} \to \mathbb{R}$ and $f_n : \mathbb{R} \to \mathbb{R}$ continuous and strictly increasing $(n \ge 1)$

$$F: \mathbb{I}^* \to \mathbb{R}$$
$$F(x_1 \cdots x_n) = f_n\left(\frac{1}{n} \sum_{i=1}^n f(x_i)\right)$$

Note. *F* is B-preassociative

Quasi-arithmetic pre-means

$$F(x_1\cdots x_n) = f_n\left(\frac{1}{n}\sum_{i=1}^n f(x_i)\right)$$

$$\left.\begin{array}{l}F \text{ quasi-arithmetic pre-mean}\\F_n \text{ idempotent }\forall n\end{array}\right\} \quad \Leftrightarrow \quad F \text{ quasi-arithmetic mean}$$

Non-idempotent examples

•
$$f_n(x) = nx$$
 and $f(x) = x \implies F(\mathbf{x}) = \sum_{i=1}^n x_i$

•
$$f_n(x) = e^{nx}$$
 and $f(x) = \ln x \implies F(\mathbf{x}) = \prod_{i=1}^n x_i$

Theorem

 $\mathbb{I}=\mathsf{non-trivial}$ real interval, possibly unbounded

Let $F : \mathbb{I}^* \to \mathbb{R}$

The following assertions are equivalent:

- (i) F is B-preassociative
 - *F_n* symmetric
 - *F_n* continuous
 - *F_n* strictly increasing in each argument

(ii) F is a quasi-arithmetic pre-mean function

Open question. Find a characterization of those quasi-arithmetic pre-mean functions which are preassociative

We would like to have ...

Theorem

Let $F \colon X^* \to Y$

The following assertions are equivalent:

- (i) F is B-preassociative
- (ii) F can be factorized into ...

??

Definition. A string function $F: X^* \to X^*$ is said to be *length-preserving* if $|F(\mathbf{x})| = |\mathbf{x}|$ for every $\mathbf{x} \in X^*$

Examples

- $F = \operatorname{id}_{X^*}$
- $F(\mathbf{x}) =$ sorting the letters of \mathbf{x} in alphabetic order
- $F(\mathbf{x}) = \text{transforming a string } \mathbf{x} \text{ into upper case}$
- NOT : $F(\mathbf{x}) =$ removing from \mathbf{x} all occurrences of 'z'

Proposition

Let $F: X^* \to X^*$ be length-preserving F associative $\Leftrightarrow \begin{cases} F_n \circ F_n = F_n & \forall n \ge 1 \\ F & B\text{-preassociative} \end{cases}$

Theorem

Let $F: X^* \to Y$

The following assertions are equivalent:

(i) F is B-preassociative

(ii) F can be factorized into

$$F_n = f_n \circ H_n \qquad \forall \ n \ge 1$$

where $H: X^* \to X^*$ is associative and length-preserving $f_n: \operatorname{ran}(H_n) \to Y$ is one-to-one

B-preassociative functions			
	Ρ	Preassociative functions	
		Associative functions	
		Associative and length-preserving functions	

Up to one-to-one unary maps, any of these nested classes can be described in terms of the smallest one

Definition. A function $F: X^* \to Y$ is strongly *B*-preassociative if

$$\begin{array}{l} F(\mathbf{x}\mathbf{z}) &= F(\mathbf{x}'\mathbf{z}') \\ |\mathbf{x}| &= |\mathbf{x}'| \quad \text{and} \quad |\mathbf{z}| &= |\mathbf{z}'| \end{array} \right\} \quad \Rightarrow \quad F(\mathbf{x}\mathbf{y}\mathbf{z}) = F(\mathbf{x}'\mathbf{y}\mathbf{z}')$$

Moreover, we may assume that $|\mathbf{y}| = 1$.

Notes

- Strong B-preassociativity \Rightarrow B-preassociativity
- B-preassoc. + F_n symmetric $\forall n \Rightarrow$ strong B-preassoc.
- Factorization results exist ...

B-preassociativity and symmetry can be replaced with strong B-preassociativity in the axiomatization of the class of quasi-arithmetic pre-mean functions

Theorem

 $\mathbb{I}=$ non-trivial real interval, possibly unbounded

Let $F : \mathbb{I}^* \to \mathbb{R}$

The following assertions are equivalent:

- (i) F is strongly B-preassociative
 - *F_n* continuous
 - F_n strictly increasing in each argument

(ii) F is a quasi-arithmetic pre-mean function

Thank you for your attention !