Generalizations and variants of associativity for aggregation functions

AGOP 2015
Tutorial presentation

Jean-Luc Marichal

in collaboration with Bruno Teheux

University of Luxembourg

Table of contents

Part 0: Introduction and notation
Part 1: Associativity, generalizations, and variants
Part 2: Barycentric associativity, generalizations, and variants

Part 0: Introduction and notation

Associative binary operations

Let X be a nonempty set
Consider an operation $F: X^{2} \rightarrow X$
Denote $F(a, b)$ by $a b$
F is associative if

$$
(a b) c=a(b c)
$$

\longrightarrow enables us to define the expression $a b c$ by setting

$$
a b c=(a b) c
$$

Question: How can we define abcd ?

Associative binary operations

By associativity, we have

$$
\begin{aligned}
(a b c) d & =(a(b c)) d=a(b c) d=a((b c) d)=a(b c d) \\
& =a(b(c d))=a b(c d)=\cdots \\
& =\cdots
\end{aligned}
$$

\rightarrow we can define abcd by setting

$$
a b c d=(a b c) d
$$

Associativity shows that the expression abcd can be computed regardless of how the parentheses are inserted

Associative binary operations

For any $a_{1}, \ldots, a_{n} \in X$, we can set

$$
a_{1} \cdots a_{n-1} a_{n}=\left(a_{1} \cdots a_{n-1}\right) a_{n}
$$

... can be computed regardless of how parentheses are inserted

In other words, associativity shows that

$$
a_{1} \cdots a_{j} \cdots a_{k} \cdots a_{n}=a_{1} \cdots\left(a_{j} \cdots a_{k}\right) \cdots a_{n}
$$

holds for any $1 \leqslant j<k \leqslant n$ with $1<j$ or $k<n$
(associativity for operations with an indefinite arity)

Associative operations with an indefinite arity

We started with a binary operation $F: X^{2} \rightarrow X$ and we now extend its domain to the set $X^{2} \cup X^{3} \cup X^{4} \cup \ldots$

$$
F: \bigcup_{n \geqslant 2} X^{n} \rightarrow X
$$

Assume that F satisfies

- $F\left(F\left(a_{1}, a_{2}\right), a_{3}\right)=F\left(a_{1}, F\left(a_{2}, a_{3}\right)\right)$
- $F\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=F\left(F\left(a_{1}, \ldots, a_{n-1}\right), a_{n}\right), \quad n \geqslant 3$

Then (and only then)
$F\left(a_{1}, \ldots, a_{j}, \ldots, a_{k}, \ldots, a_{n}\right)=F\left(a_{1}, \ldots, F\left(a_{j}, \ldots, a_{k}\right), \ldots, a_{n}\right)$

Notation

- $X=$ alphabet
- Elements of X : letters $(x, y, z, \ldots \in X)$
- The set

$$
X^{*}=\bigcup_{n \geqslant 0} X^{n}
$$

is the set of all tuples on X, called strings over X $\left(\mathbf{x}, \mathbf{y}, \mathbf{z}, \ldots \in X^{*}\right)$

Convention: $X^{0}=\{\varepsilon\}$, where $\varepsilon=$ the empty string

Notation

- X^{*} is endowed with concatenation $(\varepsilon=$ neutral element $)$

$$
x \in X^{n} \text { and } y \in X \quad \Rightarrow \quad x y \varepsilon=x y \in X^{n+1}
$$

- Repeated strings

$$
\mathbf{x}^{n}=\underbrace{\mathrm{x} \cdots \mathrm{x}}_{n}, \quad \mathbf{x}^{0}=\varepsilon
$$

- Length of a string

$$
\begin{gathered}
|\mathbf{x}|=n \quad \Longleftrightarrow \quad \mathbf{x} \in X^{n} \\
|\varepsilon|=0, \quad|x|=1
\end{gathered}
$$

Notation

Let Y be a nonempty set

- n-ary function

$$
F: X^{n} \rightarrow Y
$$

- *-ary function or variadic function

$$
F: X^{*} \rightarrow Y
$$

n-ary part of F

$$
F_{n}=\left.F\right|_{X^{n}}
$$

Default value of F

$$
F(\varepsilon)=F_{0}(\varepsilon)
$$

Part 1: Associativity, generalizations, and variants

Associativity

- The condition

$$
F\left(x_{1} \cdots x_{n} z\right)=F\left(F\left(x_{1} \cdots x_{n}\right) z\right), \quad n \geqslant 2
$$

can be rewritten as

$$
F(\mathbf{x} z)=F(F(\mathbf{x}) z), \quad|\mathbf{x} z| \geqslant 3
$$

(induction condition)

Associativity

- The condition

$$
F\left(x_{1} \cdots x_{j} \cdots x_{k} \cdots x_{n}\right)=F\left(x_{1} \cdots F\left(x_{j} \cdots x_{k}\right) \cdots x_{n}\right)
$$

for any $1 \leqslant j<k \leqslant n$ with $1<j$ or $k<n$
can be rewritten as

$$
F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z}), \quad|\mathbf{y}| \geqslant 2,|\mathbf{x z}| \geqslant 1
$$

(associativity on $\bigcup_{n \geqslant 2} X^{n}$)

Associativity

Proposition

For any map $F: \bigcup_{n \geqslant 2} X^{n} \rightarrow X$

$$
\begin{gathered}
\left\{\begin{array}{l}
F_{2}=\left.F\right|_{X^{2}} \text { is associative } \\
F(\mathbf{x z})=F(F(\mathbf{x}) z), \quad|\mathbf{x} z| \geqslant 3
\end{array}\right. \\
\mathfrak{1}
\end{gathered} \quad \begin{aligned}
& F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z}), \quad|\mathbf{y}| \geqslant 2,|\mathbf{x z}| \geqslant 1
\end{aligned}
$$

$\longrightarrow \quad$ Extension to functions F defined on $X^{*}=\bigcup_{n \geqslant 0} X^{n}$?

Associativity

Definitions

- A variadic operation on X is a map $F: X^{*} \rightarrow X \cup\{\varepsilon\}$
- A variadic operation $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is said to be associative if

$$
F(x y z)=F(x F(y) z), \quad x, y, z \in X^{*}
$$

We often consider the condition

$$
F(\mathbf{x})=\varepsilon \quad \Leftrightarrow \quad \mathbf{x}=\varepsilon
$$

Associativity

F is associative on X^{*}

F is associative on $\bigcup_{n \geqslant 2} X^{n}$
I
F_{2} associative $+$

$$
\begin{aligned}
& F_{1}\left(F_{1}(x)\right)=F_{1}(x) \\
& F_{1}\left(F_{2}(x y)\right)=F_{2}(x y) \\
& F_{2}\left(x F_{1}(y)\right)=F_{2}(x y) \\
& F_{2}\left(F_{1}(x) y\right)=F_{2}(x y)
\end{aligned}
$$

Induction condition

Associativity

Suppose $F_{2}: X^{2} \rightarrow X$ associative is given

How can we extend F_{2} to an associative and ε-standard operation $F: X^{*} \rightarrow X \cup\{\varepsilon\}$?

Induction condition \rightarrow determine $F_{3}, F_{4}, \ldots, F_{n}, \ldots$ uniquely
What about F_{1} ?

$$
\begin{aligned}
F_{1}\left(F_{1}(x)\right) & =F_{1}(x) \\
F_{1}\left(F_{2}(x y)\right) & =F_{2}(x y)=F_{2}\left(x F_{1}(y)\right)=F_{2}\left(F_{1}(x) y\right)
\end{aligned}
$$

Note that $F_{1}=\mathrm{id}_{X}$ is a possible solution

Associativity

Example (sum). Take $X=\mathbb{R}$ and

$$
F_{2}\left(x_{1} x_{2}\right)=x_{1}+x_{2}
$$

Induction $\rightarrow F_{n}(\mathbf{x})=F\left(x_{1} \cdots x_{n}\right)=x_{1}+\cdots+x_{n}, \quad n \geqslant 2$
$F_{1}=$?
We have $F_{1}(x)=F_{1}(x+0)=F_{1}\left(F_{2}(x 0)\right)=F_{2}(x 0)=x$
$\Rightarrow \quad$ we get $F_{1}=\mathrm{id}_{\mathbb{R}}$.

Associativity

Example (Euclidean norm). Take $X=\mathbb{R}$ and

$$
F_{2}\left(x_{1} x_{2}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

Induction $\rightarrow F_{n}(\mathbf{x})=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}=\|\mathbf{x}\|_{2} \quad n \geqslant 2$
F_{1} must satisfy

$$
\begin{aligned}
F_{1}\left(F_{1}(x)\right) & =F_{1}(x) \\
F_{1}\left(F_{2}(x y)\right) & =F_{2}(x y)=F_{2}\left(x F_{1}(y)\right)=F_{2}\left(F_{1}(x) y\right)
\end{aligned}
$$

$\Rightarrow \quad F_{1}(x)=x$ and $F_{1}(x)=\sqrt{x^{2}}$ are possible solutions

Associativity

Example (t-norm). A t-norm is an associative binary operation $T:[0,1]^{2} \rightarrow[0,1]$ that is symmetric, nondecreasing in each argument, and satisfies $T(x 1)=T(1 x)=x$.
\rightarrow Extension to a variadic t-norm : $T:[0,1]^{*} \rightarrow[0,1] \cup\{\varepsilon\}$
We have $T_{1}(x)=T_{1}\left(T_{2}(x 1)\right)=T_{2}(x 1)=x$
Example. If $T\left(x_{1} x_{2}\right)=\max \left(0, x_{1}+x_{2}-1\right)$, then

$$
T_{n}\left(x_{1} \cdots x_{n}\right)=\max \left(0, \sum_{i=1}^{n} x_{i}-n+1\right)
$$

Note. Same approach for t-conorms, uninorms,...

Associativity

There are also associative operations $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ that are not ε-standard

Example. Let $a \in X$ and define

$$
F(\mathbf{x})= \begin{cases}a, & \text { if } \mathbf{x}=\mathbf{u} a \mathbf{v} \text { for some } \mathbf{u v} \in X^{*} \\ \varepsilon, & \text { otherwise }\end{cases}
$$

Associativity is satisfied

$$
F(x y z)=F(x F(y) z)
$$

Associativity for string functions

Definition. A string function over X is a function $F: X^{*} \rightarrow X^{*}$
\rightarrow not an aggregation procedure
Examples (data processing tasks)

- $F(\mathbf{x})=$ sorting the letters of \mathbf{x} in alphabetic order
- $F(\mathbf{x})=$ transforming a string \mathbf{x} into upper case
- $F(\mathbf{x})=$ removing from \mathbf{x} all occurrences of a given letter
- $F(\mathbf{x})=$ removing from \mathbf{x} all repeated occurrences of letters $F($ associativity $)=$ as $\$ o c i \not \partial t / d v i \not k y=$ asocitvy

Each of these tasks satisfies

$$
F(x y z)=F(x F(y) z)
$$

Associativity for string functions

Definition. A string function $F: X^{*} \rightarrow X^{*}$ is said to be associative if

$$
F(x y z)=F(x F(y) z), \quad x y z \in X^{*}
$$

\rightarrow generalizes associativity for operations $F: X^{*} \rightarrow X \cup\{\varepsilon\}$
i.e., the properties of associativity for string functions also hold for variadic operations

Proposition

The definition above remains equivalent if we assume $|\mathbf{x z}| \leqslant 1$

Associativity for string functions

Note. Setting $\mathbf{x}=\mathbf{z}=\varepsilon$ in the identity

$$
F(x y z)=F(x F(y) z)
$$

we obtain $F(\mathbf{y})=F(F(\mathbf{y}))$

$$
F=F \circ F
$$

Associativity for string functions

Further equivalent forms

Proposition
Assume $F: X^{*} \rightarrow X^{*}$ satisfies $F(\varepsilon)=\varepsilon$ The following conditions are equivalent:
(i) F is associative
(ii) $F(\mathbf{x y})=F(F(\mathbf{x}) F(\mathbf{y}))$
(iii) $F(F(\mathbf{x y}) \mathbf{z})=F(\mathbf{x} F(\mathbf{y z}))$
(iv) $\mathbf{x y z}=\mathbf{u v w} \quad \Rightarrow \quad F(\mathbf{x} F(\mathbf{y}) \mathbf{z})=F(\mathbf{u} F(\mathbf{v}) \mathbf{w})$

Associativity for string functions

Definition. Let $m \geqslant 0$ be an integer. A function $F: X^{*} \rightarrow X^{*}$ is said to be m-bounded if $|F(\mathbf{x})| \leqslant m$ for every $\mathbf{x} \in X^{*}$

Example. The variadic operations $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ are exactly the 1-bounded string functions over X

Proposition
Assume that $F: X^{*} \rightarrow X^{*}$ is associative
(a) F is m-bounded if and only if F_{0}, \ldots, F_{m+1} are m-bounded
(b) If m-bounded, F is uniquely determined by F_{0}, \ldots, F_{m+1}

Example (cont.) An associative function $F: X^{*} \rightarrow X^{*}$ is 1-bounded iff F_{0}, F_{1}, and F_{2} range in $X \cup\{\varepsilon\}$

In this case, F is completely determined by F_{0}, F_{1}, and F_{2}

Preassociativity

Let Y be a nonempty set
Definition. We say that $F: X^{*} \rightarrow Y$ is preassociative if

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(\mathbf{x y z})=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)
$$

(we can assume $|x z| \leqslant 1$)

Examples. $F: \mathbb{R}^{*} \rightarrow \mathbb{R} \cup\{\varepsilon\}$

- $F_{0}=\varepsilon, \quad F_{n}(\mathbf{x})=x_{1}+\cdots+x_{n}$
- $F_{0}=\varepsilon, \quad F_{n}(\mathbf{x})=x_{1}^{2}+\cdots+x_{n}^{2}=\|\mathbf{x}\|_{2}^{2}$
- $F_{0}=\varepsilon, \quad F_{n}(\mathbf{x})=g\left(x_{1}+\cdots+x_{n}\right), \quad g$ one-to-one
$\left.\begin{array}{l}F \text { preassociative } \\ g, h \text { one-to-one }\end{array}\right\} \Rightarrow g \circ F$ and $F \circ(h, \ldots, h)$ preassociative

Preassociativity

$$
F(y)=F\left(y^{\prime}\right) \Rightarrow F(x y z)=F\left(x y^{\prime} z\right)
$$

Equivalent definition

$$
\left.\begin{array}{l}
F(\mathbf{x})=F\left(\mathbf{x}^{\prime}\right) \\
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right)
\end{array}\right\} \Rightarrow F(\mathbf{x y})=F\left(\mathbf{x}^{\prime} \mathbf{y}^{\prime}\right) .
$$

Preassociativity

$$
F(\mathbf{y})=F\left(y^{\prime}\right) \Rightarrow F(x y z)=F\left(x y^{\prime} z\right)
$$

Proposition

Let $F: X^{*} \rightarrow X^{*}$ be a string function

$$
F \text { associative } \Leftrightarrow\left\{\begin{array}{l}
F \circ F=F \\
F \text { preassociative }
\end{array}\right.
$$

Proof. (\Rightarrow) We have $F \circ F=F$ by associativity. Assume that $F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right)$. Then

$$
F(\mathbf{x y z})=F(\mathbf{x} F(\mathbf{y}) \mathbf{z})=F\left(\mathbf{x} F\left(\mathbf{y}^{\prime}\right) \mathbf{z}\right)=F\left(\mathbf{x y}^{\prime} \mathbf{z}\right)
$$

(\Leftarrow) We have $F(F(\mathbf{y}))=F(\mathbf{y})$, and hence $F(\mathbf{x} F(\mathbf{y}) \mathbf{z})=F(\mathbf{x y z})$ by preassociativity.

Preassociativity

$$
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \Rightarrow F(x y z)=F\left(x^{\prime} \mathbf{z}\right)
$$

Aggregation version :

Proposition

Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ be ε-standard

$$
F \text { associative } \Leftrightarrow\left\{\begin{array}{l}
F_{1} \circ F^{+}=F^{+} \\
F \text { preassociative }
\end{array}\right.
$$

where $F^{+}=\left.F\right|_{\cup_{n \geqslant 1} X^{n}}$

Note. Contrary to associativity, preassociativity does not involve any composition of functions

Preassociativity

$$
F(\mathbf{y})=F\left(y^{\prime}\right) \Rightarrow F(x y z)=F\left(x y^{\prime} z\right)
$$

Various codomains can be considered
Examples $F: X^{*} \rightarrow \mathbb{Z}$

- $F(\mathbf{x})=|\mathbf{x}|$ (number of letters in \mathbf{x})
- $F(\mathbf{x})=$ number of occurrences in \mathbf{x} of a given letter, say ' z '
- $F(\mathbf{x})=$ number of letters distinct from z minus the number of occurrences of z
Note. The function that outputs the number of distinct letters in \mathbf{x} is not preassociative:

If $a, b \in X$ are distinct, then $F(a)=F(b)=1$ but

$$
1=F(a a) \neq F(a b)=2
$$

Preassociativity

Theorem

Let $F: X^{*} \rightarrow Y$. The following assertions are equivalent:
(i) F is preassociative
(ii) F can be factorized into

$$
F=f \circ H
$$

where $H: X^{*} \rightarrow X^{*}$ is associative

$$
f: \operatorname{ran}(H) \rightarrow Y \text { is one-to-one }
$$

Example. $F(\mathbf{x})=|\mathbf{x}|$

$$
H(\mathbf{x})=\mathbf{x}, \quad f(\mathbf{x})=|\mathbf{x}| ? \quad \text { No }!
$$

Preassociativity

Example. $F(\mathbf{x})=|\mathbf{x}|$
Fix $a \in X$ and define $H(\mathbf{x})=a^{|x|}$

$$
\operatorname{ran}(H)=\left\{a^{n} \mid n \geqslant 0\right\}
$$

H is associative

$$
H(\mathbf{x} H(\mathbf{y}) \mathbf{z})=H\left(\mathbf{x} a^{|\mathbf{y}|} \mathbf{z}\right)=a^{|\mathbf{x y z}|}=H(\mathbf{x y z})
$$

Define $f: \operatorname{ran}(H) \rightarrow \mathbb{N}$ by $f\left(a^{n}\right)=n$
$\longrightarrow f$ is one-to-one and

$$
F=f \circ H
$$

Preassociativity

Preassociative functions

Associative string functions

Preassociativity

Recall that a function $F: X^{*} \rightarrow X^{*}$ is said to be ε-standard if

$$
F(x)=\varepsilon \quad \Leftrightarrow \quad x=\varepsilon
$$

Definition
A variadic function $F: X^{*} \rightarrow Y$ is said to be standard if

$$
F(\mathbf{x})=F(\varepsilon) \quad \Leftrightarrow \quad \mathbf{x}=\varepsilon
$$

This means that $\operatorname{ran}\left(F_{0}\right) \cap \operatorname{ran}\left(F^{+}\right)=\varnothing$

Preassociativity

Aggregation version :

Theorem

Assume that $F: X^{*} \rightarrow Y$ is standard
The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}\left(F^{+}\right)$
(ii) F can be factorized into

$$
F^{+}=f \circ H^{+}
$$

where $H: X^{*} \rightarrow X \cup\{\varepsilon\}$ is associative and ε-standard $f: \operatorname{ran}\left(H^{+}\right) \rightarrow Y$ is one-to-one

This result enables us to generate preassociative functions from known associative variadic operations

Preassociativity

Example. Let $V=d$-dim. vector space on \mathbb{R} and $B=$ basis for V $(v)_{B}=$ coordinate vector for $v \in V$ relative to B
Note. $(\cdot)_{B}: V \rightarrow \mathbb{R}^{d}$ is one-to-one
Consider the operation $H: V^{*} \rightarrow V \cup\{\varepsilon\}$ defined by

$$
H(\varepsilon)=\varepsilon \quad \text { and } \quad H\left(v_{1} \cdots v_{n}\right)=\sum_{i=1}^{n} v_{i}
$$

Fix $e \notin \mathbb{R}^{d}$. The function $F: V^{*} \rightarrow \mathbb{R}^{d} \cup\{e\}$ defined by

$$
F(\varepsilon)=e \quad \text { and } \quad F\left(v_{1} \cdots v_{n}\right)=\left(\sum_{i=1}^{n} v_{i}\right)_{B}
$$

is preassociative, standard, and $\operatorname{ran}\left(F_{1}\right)=\mathbb{R}^{d}=\operatorname{ran}\left(F^{+}\right)$

Preassociativity

This factorization result also enables us to produce axiomatizations of classes of preassociative functions from known axiomatizations of classes of associative functions

A class of associative binary operations $H: X^{2} \rightarrow X$

$$
\Downarrow \quad(\text { extension })
$$

A class of associative variadic operations $H: X^{*} \rightarrow X \cup\{\varepsilon\}$

$$
\Downarrow \quad(\text { factorization })
$$

A class of preassociative variadic functions $F: X^{*} \rightarrow Y$

Preassociativity

Theorem (Aczél 1949)

$H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is

- continuous
- one-to-one in each argument
- associative
if and only if

$$
H(x y)=\varphi^{-1}(\varphi(x)+\varphi(y))
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and strictly monotone

$$
H\left(x_{1} \cdots x_{n}\right)=\varphi^{-1}\left(\sum_{i=1}^{n} \varphi\left(x_{i}\right)\right)
$$

Preassociativity

Theorem

Assume that $F: \mathbb{R}^{*} \rightarrow \mathbb{R} \cup\{F(\varepsilon)\}$ is standard
The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}\left(F^{+}\right)$,
F_{1} and F_{2} are continuous and one-to-one in each argument
(ii) we have

$$
F\left(x_{1} \cdots x_{n}\right)=\psi\left(\sum_{i=1}^{n} \varphi\left(x_{i}\right)\right)
$$

where $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and $\psi: \mathbb{R} \rightarrow \mathbb{R}$ are continuous and strictly monotone

Preassociativity

Extension of a binary t-norm to an (ε-standard) variadic t-norm

$$
T:[0,1]^{2} \rightarrow[0,1] \quad \longrightarrow \quad T:[0,1]^{*} \rightarrow[0,1] \cup\{\varepsilon\}
$$

Theorem

Suppose $F:[0,1]^{*} \rightarrow \mathbb{R} \cup\{F(\varepsilon)\}$ is standard $+F_{1}$ str.
The following assertions are equivalent:
(i) F is preassociative and satisfies $\operatorname{ran}\left(F_{1}\right)=\operatorname{ran}\left(F^{+}\right)$,
F_{2} is symmetric, nondecreasing in each argument $F(x 1)=F(1 x)=F(x)$
(ii) we have

$$
F\left(x_{1} \cdots x_{n}\right)=(f \circ T)\left(x_{1} \cdots x_{n}\right)
$$

where $f:[0,1] \rightarrow \mathbb{R}$ is strictly increasing

$$
T:[0,1]^{*} \rightarrow[0,1] \cup\{\varepsilon\} \text { is a variadic t-norm }
$$

Preassociativity

Open questions

1. Find new axiomatizations of classes of preassociative functions from existing axiomatizations of classes of associative operations
2. Find interpretations of the preassociativity property in aggregation function theory and/or fuzzy logic

Strong preassociativity

Definition. We say that $F: X^{*} \rightarrow Y$ is strongly preassociative if

$$
F(x z)=F\left(x^{\prime} z^{\prime}\right) \Rightarrow F(x y z)=F\left(x^{\prime} y z^{\prime}\right)
$$

We can insert letters anywhere

$$
F(a b c)=F(a b c) \Rightarrow F(a x b c)=F(a b c x)
$$

Proposition

Let $F: X^{*} \rightarrow Y$
F strongly preassociative $\Leftrightarrow\left\{\begin{array}{l}F \text { preassociative } \\ F_{n} \text { is symmetric } \forall n \geqslant 1\end{array}\right.$

Part 2: Barycentric associativity, generalizations, and variants

Barycentric associativity

Definition. A variadic operation $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is said to be barycentrically associative (or B-associative) if

$$
F(x y z)=F\left(x F(y)^{|y|} \mathbf{z}\right)
$$

$$
F(a b c d)=F\left(F(a b)^{2} c d\right)=F(F(a b) F(a b) c d)
$$

Notes.

- ...first considered for symmetric functions on $\bigcup_{n \geqslant 1} \mathbb{R}^{n}$ (Schimmack 1909, Kolmogoroff 1930, Nagumo 1930)
- ...can be considered also for string functions $F: X^{*} \rightarrow X^{*}$ $F(\mathbf{x})=$ removing from x all repeated occurrences of letters

Barycentric associativity

$$
F(\mathbf{x y z})=F\left(x F(y)^{|y|} \mathbf{z}\right)
$$

Suppose $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is B -associative and ε-standard Then F remains B-associative if we modify $F(\varepsilon)$

Proof. Define $G: X^{*} \rightarrow X$ by $G(\varepsilon)=e \in X$ and $G^{+}=F^{+}$

$$
G\left(\mathbf{x} G(\mathbf{y})^{|\mathbf{y}|} \mathbf{z}\right)=?
$$

- If $\mathbf{y}=\varepsilon$, then $G\left(\mathbf{x} G(\mathbf{y})^{|\mathbf{y}|} \mathbf{z}\right)=G(\mathbf{x} \varepsilon \mathbf{z})=G(\mathbf{x y z})$
- If $\mathbf{y} \neq \varepsilon$, then

$$
G\left(\mathbf{x} G(\mathbf{y})^{|\mathbf{y}|} \mathbf{z}\right)=F\left(\mathbf{x} F(\mathbf{y})^{|\mathbf{y}|} \mathbf{z}\right)=F(\mathbf{x y z})=G(\mathbf{x y z})
$$

\Rightarrow The value $F(\varepsilon)$ is unimportant and we can assume $\operatorname{ran}(F) \subseteq X$

Barycentric associativity

Consider $X=\mathbb{R}^{n}$ as an infinite set of identical homogeneous balls i.e., each ball is identified by the coordinates $x \in \mathbb{R}^{n}$ of its center Define $F: X^{*} \rightarrow X$ as

$$
F\left(x_{1} \cdots x_{n}\right)=\text { barycenter of the balls } x_{1}, \ldots, x_{n}
$$

$$
F(\mathbf{x y z})=F\left(x F(y)^{|y|} \mathbf{z}\right)
$$

Barycentric associativity

$$
F(\mathbf{x y z})=F\left(x F(y)^{|y|} \mathbf{z}\right)
$$

Example. Arithmetic mean $F: \mathbb{R}^{*} \rightarrow \mathbb{R}$

$$
F\left(x_{1} \cdots x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

$$
\begin{aligned}
F\left(x_{1} F\left(x_{2} x_{3}\right)^{2}\right) & =F\left(x_{1} \frac{x_{2}+x_{3}}{2} \frac{x_{2}+x_{3}}{2}\right) \\
& =\frac{1}{3}\left(x_{1}+\frac{x_{2}+x_{3}}{2}+\frac{x_{2}+x_{3}}{2}\right) \\
& =\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right) \\
& =F\left(x_{1} x_{2} x_{3}\right)
\end{aligned}
$$

Barycentric associativity

Definition. Quasi-arithmetic means
$\mathbb{I}=$ non-trivial real interval, possibly unbounded $f: \mathbb{I} \rightarrow \mathbb{R}$ continuous and strictly monotonic

$$
\begin{gathered}
F: \mathbb{I}^{*} \rightarrow \mathbb{I} \\
F\left(x_{1} \cdots x_{n}\right)=f^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right)
\end{gathered}
$$

Note. F is B-associative

Barycentric associativity

Theorem (Kolmogoroff-Nagumo, 1930)

$\mathbb{I}=$ non-trivial real interval, possibly unbounded
Let $F: \mathbb{I}^{*} \rightarrow \mathbb{I}$
The following assertions are equivalent:
(i) $\circ F$ is B-associative

- F_{n} symmetric
- F_{n} continuous
- F_{n} strictly increasing in each argument
- F_{n} idempotent, i.e., $F_{n}(x \cdots x)=F\left(x^{n}\right)=x$
(ii) F is a quasi-arithmetic mean

Let us show that idempotence is redundant
i.e., the other assumptions imply that $\delta_{F_{n}}=\mathrm{id}_{\mathbb{I}}$

$$
\delta_{F_{n}}(x)=F_{n}\left(x^{n}\right)
$$

Barycentric associativity

Setting $\mathbf{x z}=\varepsilon$ in the identity

$$
F(\mathbf{x y z})=F\left(\mathbf{x} F(\mathbf{y})^{|\mathbf{y}|} \mathbf{z}\right)
$$

we obtain

$$
F(\mathbf{y})=F\left(F(\mathbf{y})^{|\mathbf{y}|}\right)
$$

For $\mathbf{y}=x^{n}$, we get

$$
\delta_{F_{n}}(x)=F\left(\delta_{F_{n}}(x)^{n}\right)=\delta_{F_{n}} \circ \delta_{F_{n}}(x)
$$

that is

$$
\delta_{F_{n}}=\delta_{F_{n}} \circ \delta_{F_{n}}
$$

Applying $\delta_{F_{n}}^{-1}$ to both sides gives ($\delta_{F_{n}}$ is one-to-one)

$$
\mathrm{id}_{\mathbb{I}}=\delta_{F_{n}}
$$

Barycentric associativity

Further examples of real B-associative functions

- $F_{n}(\mathbf{x})=\min \left(x_{1}, \ldots, x_{n}\right)$
- $F_{n}(\mathbf{x})=\max \left(x_{1}, \ldots, x_{n}\right)$
- $F_{n}(\mathbf{x})=x_{1}$
- $F_{n}(\mathbf{x})=x_{n}$
- $F_{n}(\mathbf{x})=\sum_{i=1}^{n} \frac{2^{i-1}}{2^{n}-1} x_{i}$

$$
F_{n}^{\alpha}(\mathbf{x})=\frac{\sum_{i=1}^{n} \boldsymbol{\alpha}^{n-i}(1-\boldsymbol{\alpha})^{i-1} x_{i}}{\sum_{i=1}^{n} \boldsymbol{\alpha}^{n-i}(1-\alpha)^{i-1}}, \quad \boldsymbol{\alpha} \in \mathbb{R}
$$

Take $\boldsymbol{\alpha}=1, \boldsymbol{\alpha}=0, \boldsymbol{\alpha}=1 / 3$, etc.

Barycentric associativity

$$
F(\mathbf{x y z})=F\left(x F(y)^{|y|} \mathbf{z}\right)
$$

Proposition

The definition above remains equivalent if we assume $|\mathbf{x z}| \leqslant 1$

Proposition

The following conditions are equivalent:
(i) F is B -associative
(ii) $F(\mathbf{x y})=F\left(F(\mathbf{x})^{|x|} F(\mathbf{y})^{|y|}\right)$
(iii) $F\left(F(\mathbf{x y})^{\mid x y} \mid \mathbf{z}\right)=F\left(\mathbf{x} F(\mathbf{y z})^{|\mathbf{y z}|}\right)$
(iv) $\mathbf{x y z}=\mathbf{u v w} \quad \Rightarrow \quad F\left(\mathbf{x} F(\mathbf{y})^{\mid \mathbf{y}} \mathbf{z}\right)=F\left(\mathbf{u} F(\mathbf{v})^{|\mathbf{v}|} \mathbf{w}\right)$

Barycentric associativity

Open questions

1. Find new axiomatizations of classes of B-associative operations
2. Prove or disprove: If an operation $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is B -associative, then there exists a B -associative and idempotent operation $G: X^{*} \rightarrow X \cup\{\varepsilon\}$ such that $F_{n}=\delta_{F_{n}} \circ G_{n}$ for every $n \geqslant 1$
3. Prove or disprove: Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ be a B-associative operation. If F_{n+1} is idempotent for some $n \geqslant 1$, then so is F_{n}

Strong barycentric associativity

Definition. A variadic operation $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is said to be strongly barycentrically associative (or strongly B-associative) if, for every $\mathbf{x} \in X^{*}$, the value $F(\mathbf{x})$ does not change if we

1. select a number of letters in \mathbf{x}
2. replace each of them by their aggregated value

$$
F(a b c d)=F(F(a c) b F(a c) d)
$$

Notes

- Strong B-associativity $\Rightarrow B$-associativity
- B-associativity $+F_{n}$ symmetric $\forall n \Rightarrow$ strong B -assoc.
- $F_{n}(\mathbf{x})=x_{1} \quad \forall n$: strongly B-associative
- $F_{n}(\mathbf{x})=\sum_{i=1}^{n} \frac{2^{i-1}}{2^{n}-1} x_{i} \forall n$: B-associative but not strongly

Strong barycentric associativity

Proposition

Assume that $F: X^{*} \rightarrow X \cup\{\varepsilon\}$ is strongly B -associative. Then, for every integer $k \geqslant 1$ and every $x, z \in X$, the function $\mathbf{y} \in X^{k} \mapsto F_{k+2}(x y z)$ is symmetric

Strong barycentric associativity

Proposition
Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$
The following assertions are equivalent:
(i) F is strongly B-associative
(ii) $F(x y z)=F\left(F(x z)^{|x|} y F(x z)^{|z|}\right)$
(iii) $F(x y z)=F\left(F(x z)^{|x|} F(y)^{|y|} F(x z)^{|z|}\right)$

Moreover, we may assume that $|\mathbf{y}| \leqslant 1$ in assertions (ii) and (iii)

Strong barycentric associativity

In Kolmogoroff-Nagumo's characterization, B-associativity and symmetry can be replaced with strong B-associativity

Theorem

$\mathbb{I}=$ non-trivial real interval, possibly unbounded
Let $F: \mathbb{I}^{*} \rightarrow \mathbb{I}$
The following assertions are equivalent:
(i) $\quad F$ is strongly B-associative

- F_{n} continuous
- F_{n} strictly increasing in each argument
(ii) F is a quasi-arithmetic mean

Barycentric preassociativity

Definition. We say that $F: X^{*} \rightarrow Y$ is barycentrically preassociative (or B-preassociative) if

$$
\left.\begin{array}{rl}
F(\mathbf{y}) & =F\left(\mathbf{y}^{\prime}\right) \\
|\mathbf{y}| & =\left|\mathbf{y}^{\prime}\right|
\end{array}\right\} \Rightarrow F(\mathrm{xyz})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

$$
\text { (we can assume }|x z|=1 \text {) }
$$

Notes.

- ...inspired from the following property by de Finetti (1931)

$$
F(\mathbf{y})=F\left(u^{|\mathbf{y}|}\right) \Rightarrow F(\mathbf{x y z})=F\left(\mathbf{x} u^{\mid \mathbf{y}} \mathbf{z}\right) \quad(|\mathbf{y}|,|\mathbf{x z}| \geqslant 1)
$$

- Preassociativity \Rightarrow B-preassociativity
- The value $F(\varepsilon)$ is unimportant

Barycentric preassociativity

B-preassociative functions

Preassociative functions

Associative string functions

Barycentric preassociativity

$$
\left.\begin{array}{rl}
F(\mathbf{y}) & =F\left(\mathbf{y}^{\prime}\right) \\
|\mathbf{y}| & =\left|\mathbf{y}^{\prime}\right|
\end{array}\right\} \Rightarrow \quad F(\mathrm{xyz})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

Interpretations

- Decision making : if we express an indifference when comparing two profiles, then this indifference is preserved when adding identical pieces of information to these profiles
- Aggregation function theory: the aggregated value of a series of numerical values remains unchanged when modifying a bundle of these values without changing their partial aggregation

Barycentric preassociativity

$$
\left.\begin{array}{rl}
F(\mathbf{y}) & =F\left(y^{\prime}\right) \\
|\mathbf{y}| & =\left|\mathbf{y}^{\prime}\right|
\end{array}\right\} \quad \Rightarrow \quad F(\mathrm{xyz})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

Equivalent definition

$$
\begin{array}{r}
\left.F(\mathbf{x})=F\left(\mathbf{x}^{\prime}\right) \text { and } \begin{array}{l}
F(\mathbf{y})=F\left(\mathbf{y}^{\prime}\right) \\
|\mathbf{x}|=\left|\mathbf{x}^{\prime}\right| \quad \text { and } \quad|\mathbf{y}|=\left|\mathbf{y}^{\prime}\right|
\end{array}\right\} \quad \Rightarrow \quad F(\mathbf{x y})=F\left(\mathbf{x}^{\prime} \mathbf{y}^{\prime}\right)
\end{array}
$$

Barycentric preassociativity

$$
\left.\begin{array}{r}
F(\mathbf{y})=F\left(y^{\prime}\right) \\
|y|=\left|\mathbf{y}^{\prime}\right|
\end{array}\right\} \Rightarrow F(\mathbf{x y z})=F\left(\mathrm{xy}^{\prime} \mathbf{z}\right)
$$

Let $F: X^{*} \rightarrow X^{*}$

$$
F \text { associative } \Leftrightarrow\left\{\begin{array}{l}
F(\mathbf{x})=F(F(\mathbf{x})) \\
F \text { preassociative }
\end{array}\right.
$$

Proposition
Let $F: X^{*} \rightarrow X \cup\{\varepsilon\}$

$$
F \text { B-associative } \Rightarrow\left\{\begin{array}{l}
F(\mathbf{x})=F\left(F(\mathbf{x})^{|\mathbf{x}|}\right) \\
F \text { B-preassociative }
\end{array}\right.
$$

The converse holds whenever $\operatorname{ran}\left(F^{+}\right) \subseteq X$.

Barycentric preassociativity

B-preassociative functions

> B-associative variadic operations

Barycentric preassociativity

Examples

- $F(\mathbf{x})=|\mathbf{x}| \quad$ (preassociative)
- ...

Proposition

$$
\left.\begin{array}{c}
F \text { B-preassociative } \\
g_{n} \text { one-to-one } \forall n
\end{array}\right\} \Rightarrow g_{n} \circ F_{n} \quad \text { B-preassociative }
$$

- F defined by $F_{n}=g_{n}\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)$
- ...

Barycentric preassociativity

Theorem

Let $F: X^{*} \rightarrow Y$
The following assertions are equivalent:
(i) F is B-preassociative and satisfies $\operatorname{ran}\left(\delta_{F_{n}}\right)=\operatorname{ran}\left(F_{n}\right) \forall n \geqslant 1$
(ii) F can be factorized into

$$
F_{n}=f_{n} \circ H_{n} \quad \forall n \geqslant 1
$$

where $H: X^{*} \rightarrow X \cup\{\varepsilon\}$ is B-associative

$$
f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y \text { is one-to-one }
$$

... enables us to generalize Kolmogoroff-Nagumo's characterization

Barycentric preassociativity

Quasi-arithmetic means
$\mathbb{I}=$ non-trivial real interval, possibly unbounded
$f: \mathbb{I} \rightarrow \mathbb{R}$ continuous and strictly monotonic

$$
\begin{gathered}
F: \mathbb{I}^{*} \rightarrow \mathbb{I} \\
F\left(x_{1} \cdots x_{n}\right)=f^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right)
\end{gathered}
$$

Definition. Quasi-arithmetic pre-means
$f: \mathbb{I} \rightarrow \mathbb{R}$ and $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ continuous and strictly increasing ($n \geqslant 1$)

$$
\begin{gathered}
F: \mathbb{I}^{*} \rightarrow \mathbb{R} \\
F\left(x_{1} \cdots x_{n}\right)=f_{n}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right)
\end{gathered}
$$

Note. F is B-preassociative

Barycentric preassociativity

Quasi-arithmetic pre-means

$$
F\left(x_{1} \cdots x_{n}\right)=f_{n}\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right)
$$

$\left.\begin{array}{c}F \text { quasi-arithmetic pre-mean } \\ F_{n} \text { idempotent } \forall n\end{array}\right\} \Leftrightarrow F$ quasi-arithmetic mean

Non-idempotent examples

- $f_{n}(x)=n x$ and $f(x)=x \quad \Rightarrow \quad F(\mathbf{x})=\sum_{i=1}^{n} x_{i}$
- $f_{n}(x)=e^{n x}$ and $f(x)=\ln x \quad \Rightarrow \quad F(\mathbf{x})=\prod_{i=1}^{n} x_{i}$

Barycentric preassociativity

Theorem

$\mathbb{I}=$ non-trivial real interval, possibly unbounded
Let $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$
The following assertions are equivalent:
(i) $\cdot F$ is B-preassociative

- F_{n} symmetric
- F_{n} continuous
- F_{n} strictly increasing in each argument
(ii) F is a quasi-arithmetic pre-mean function

Open question. Find a characterization of those quasi-arithmetic pre-mean functions which are preassociative

Barycentric preassociativity

We would like to have...

Theorem

Let $F: X^{*} \rightarrow Y$
The following assertions are equivalent:
(i) F is B-preassociative
(ii) F can be factorized into ...

Barycentric preassociativity

Definition. A string function $F: X^{*} \rightarrow X^{*}$ is said to be length-preserving if $|F(\mathbf{x})|=|\mathbf{x}|$ for every $\mathbf{x} \in X^{*}$

Examples

- $F=\mathrm{id}_{X^{*}}$
- $F(\mathbf{x})=$ sorting the letters of \mathbf{x} in alphabetic order
- $F(\mathbf{x})=$ transforming a string \mathbf{x} into upper case
- NOT : $F(\mathbf{x})=$ removing from \mathbf{x} all occurrences of ' z '

Proposition

Let $F: X^{*} \rightarrow X^{*}$ be length-preserving
F associative $\Leftrightarrow\left\{\begin{array}{l}F_{n} \circ F_{n}=F_{n} \quad \forall n \geqslant 1 \\ F \text { B-preassociative }\end{array}\right.$

Barycentric preassociativity

Theorem

Let $F: X^{*} \rightarrow Y$
The following assertions are equivalent:
(i) F is B-preassociative
(ii) F can be factorized into

$$
F_{n}=f_{n} \circ H_{n} \quad \forall n \geqslant 1
$$

where $H: X^{*} \rightarrow X^{*}$ is associative and length-preserving $f_{n}: \operatorname{ran}\left(H_{n}\right) \rightarrow Y$ is one-to-one

Barycentric preassociativity

B-preassociative functions

Preassociative functions

Associative functions
Associative and length-preserving functions

Up to one-to-one unary maps, any of these nested classes can be described in terms of the smallest one

Strong barycentric preassociativity

Definition. A function $F: X^{*} \rightarrow Y$ is strongly B-preassociative if

$$
\left.\begin{array}{c}
F(x z)=F\left(\mathbf{x}^{\prime} \mathbf{z}^{\prime}\right) \\
|\mathbf{x}|=\left|\mathbf{x}^{\prime}\right| \quad \text { and } \quad|\mathbf{z}|=\left|\mathbf{z}^{\prime}\right|
\end{array}\right\} \Rightarrow F(x y z)=F\left(\mathbf{x}^{\prime} \mathbf{y z} z^{\prime}\right)
$$

Moreover, we may assume that $|\mathbf{y}|=1$.

Notes

- Strong B-preassociativity \Rightarrow B-preassociativity
- B-preassoc. $+F_{n}$ symmetric $\forall n \Rightarrow$ strong B-preassoc.
- Factorization results exist ...

Strong barycentric preassociativity

B-preassociativity and symmetry can be replaced with strong B-preassociativity in the axiomatization of the class of quasi-arithmetic pre-mean functions

Theorem

$\mathbb{I}=$ non-trivial real interval, possibly unbounded
Let $F: \mathbb{I}^{*} \rightarrow \mathbb{R}$
The following assertions are equivalent:
(i)

- F is strongly B-preassociative
- F_{n} continuous
- F_{n} strictly increasing in each argument
(ii) F is a quasi-arithmetic pre-mean function

Thank you for your attention !

