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Preface

The extensive growth of the theory and applications of aggregation functions at the end of the 20th century has

led to the creation of the working group AGOP in the framework of EUSFLAT association, and subsequently to

the organization of a summer school on aggregation held in Oviedo, Spain, July 2001. After 14 years, following

the past editions of AGOP in Oviedo (2001), Alcalá de Henares (2003), Lugano (2005), Ghent (2007), Palma

de Mallorca (2009), Benevento (2011) and Pamplona (2013), its eighth edition is organized in Katowice by the

Institute of Mathematics of University of Silesia, in cooperation with the EUSFLAT working group AGOP.

Up to the tutorials and invited lectures given by leading persons in the field of aggregation functions (tutorials:

Bernard De Baets, Jean-Luc Marichal and Radko Mesiar; invited lectures: József Dombi, Balasubramaniam Ja-

yaram and Maciej Sablik) and contributed presentations, the summer school offers space to numerous discussions

and consultations of interested students and young researchers in the domain with distinguished aggregation

experts.

We are grateful to all persons having contributed to the success of AGOP 2015, especially to all reviewers

and all authors of submitted papers. We would like to thank all the employees of Institute of Mathematics of

University of Silesia for their help in preparing this summer school. We also thank Scientific Information Centre

and Academic Library (Polish acronym: CINiBA) for providing a classroom for presentations. It is our pleasant

duty to acknowledge the financial support from BPSC. Finally, we also express our sincere thanks to EUSFLAT

for their support and student grants.

We believe that all participants will profit from this summer school both from a scientific and a social point

of view.

Katowice, July 7, 2015 Micha l Baczyński

Bernard De Baets

Radko Mesiar
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THE ROLE OF AGGREGATION FUNCTIONS
IN FUZZY RELATIONAL CALCULUS

Bernard De Baets
KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics,

Ghent University
Coupure links 653, 9000 Gent

Belgium
Bernard.DeBaets@UGent.be

Summary

In this tutorial lecture, we will consider both
unipolar and bipolar fuzzy relations. In the
first setting, fuzzy relations can be seen as
a generalization of crisp relations. The com-
position of unipolar fuzzy relations is based
on a conjunctive aggregation function, and is
tightly linked to the notion of transitivity. In
particular, we will focus on fuzzy preference
relations and the related notion of an addi-
tive fuzzy preference structure.

In the second setting, fuzzy relations can be
seen as a generalization of complete crisp re-
lations and should preferably be called re-
ciprocal relations. A notion of composition
is far from evident in this setting and vari-
ous notions of transitivity can be considered
here, not only based on conjunctive aggrega-
tion functions. In particular, we will focus on
winning probability relations and the notion
of cycle-transitivity.
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GENERALIZATIONS AND VARIANTS OF ASSOCIATIVITY
FOR AGGREGATION FUNCTIONS

Jean-Luc Marichal and Bruno Teheux
Mathematics Research Unit, FSTC, University of Luxembourg
6, rue Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

{jean-luc.marichal,bruno.teheux}[at]uni.lu

Summary

Consider an associative operation G∶X2 →X
on a set X and denote G(a, b) merely by ab.
By definition, we have (ab)c = a(bc) for all
a, b, c ∈ X and this property enables us to
define the expression abc unambiguously by
setting abc = (ab)c. More generally, for any
a1, a2, . . . , an ∈X, we can set

a1a2a3⋯an = (⋯((a1a2)a3)⋯)an
and associativity shows that this expression
can be computed regardless of how parenthe-
ses are inserted. This means that the identity

a1⋯aj ⋯ak⋯an = a1⋯(aj ⋯ak)⋯an
holds for any integers 1 ⩽ j ⩽ k ⩽ n.

This latter condition has been considered in
aggregation function theory to extend the
classical associativity property of binary op-
erations to variadic operations, i.e., those op-
erations that have an indefinite arity. In this
note we survey the most recent results ob-
tained not only on this extension of associa-
tivity but also on some variants and general-
izations of this property, including barycen-
tric associativity and preassociativity.

Keywords: Associativity, Preassociativity,
Barycentric associativity, Barycentric preas-
sociativity, Variadic function, String func-
tion, Functional equation, Axiomatization.

1 Introduction

Let X denote a nonempty set, called the alphabet, and
its elements are called letters. The symbol X∗ stands
for the set ⋃n⩾0Xn of all tuples on X. Its elements
are called strings and denoted by bold roman letters

x,y,z, . . . If we want to stress that such an element is
a letter of X, we use non-bold italic letters x, y, z, . . .
We assume that X0 has only one element; we denote it
by ε and call it the empty string. We endow the set X∗
with the concatenation operation for which the empty
string ε is the neutral element. For instance, if x ∈Xm

and y ∈ X, then xyε = xy ∈ Xm+1. For every string x
and every integer n ⩾ 1, the power xn stands for the
string obtained by concatenating n copies of x. By
extension, we set x0 = ε. The length of a string x is
denoted by ∣x∣. For instance, we have ∣ε∣ = 0.

Let Y be a nonempty set. Recall that, for every integer
n ⩾ 0, a function F ∶Xn → Y is said to be n-ary. Also,
a function F ∶X∗ → Y is said to have an indefinite arity
or to be variadic or ∗-ary (pronounced “star-ary”). A
unary operation on X∗ is a particular variadic function
F ∶X∗ →X∗ called a string function over the alphabet
X.

The main functional properties for variadic functions
that we present and investigate in this survey are given
in the following definition.

Definition 1.1. A string function F ∶X∗ →X∗ is said
to be

• associative if, for every x,y,z ∈X∗, we have

F (xyz) = F (xF (y)z) ;

• barycentrically associative (or B-associative) if,
for every x,y,z ∈X∗, we have

F (xyz) = F (xF (y)∣y∣z) .
A variadic function F ∶X∗ → Y is said to be

• preassociative if, for every x,y,y′,z ∈X∗, we have

F (y) = F (y′) ⇒ F (xyz) = F (xy′z) ;

• barycentrically preassociative (or B-preassociati-
ve) if, for every x,y,y′,z ∈X∗, we have

F (y) = F (y′)∣y∣ = ∣y′∣ } ⇒ F (xyz) = F (xy′z) .

Proceedings of 8th International Summer School on Aggregation Operators (AGOP 2015)
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For any variadic function F ∶X∗ → Y and any integer
n ⩾ 0, we denote by Fn the n-ary part of F , i.e., the
restriction F ∣Xn of F to the set Xn. We also let X+ =
X∗ ∖ {ε} and denote the restriction F ∣X+ of F to X+
by F +. The range of any function f is denoted by
ran(f).
A variadic function F ∶X∗ → Y is said to be

• a variadic operation on X (or an operation for
short) if ran(F ) ⊆X ∪ {ε}.

• standard if F (x) = F (ε) if and only if x = ε.
• ε-standard if ε ∈ Y and if we have F (x) = ε if and

only if x = ε.
2 Associativity and variants

In this main section we investigate the properties given
in Definition 1.1.

2.1 Associativity

We first discuss the associativity property for the class
of variadic operations, which constitutes an important
subclass of string functions. Recall that a binary op-
eration G∶X2 →X is said to be associative if

G(G(xy)z) = G(xG(yz)) , x, y, z ∈X.
A huge number of associative binary operations have
been discovered and investigated for years. They are at
the root of the concepts of group and semigroup. For
instance, the set intersection and union over a power
set are associative binary operations. Logical connec-
tives “and” and “or” as well as many of their fuzzy
counterparts are also associative binary operations.

More recently, associative binary operations have also
been studied as real or complex functions within the
theories of functional equations and aggregation func-
tions (see, e.g., [15]). Various classes of associative
binary operations over real intervals can be found in
[2, 4, 6–9,11,14–17,20–22,24,33,34].

Let us now consider an associative standard opera-
tion F ∶X∗ →X ∪ {ε}. This operation is necessarily ε-
standard and can always be constructed from an asso-
ciative binary operation G∶X2 → X simply by setting
F0 = ε, F1 = idX , F2 = G, and Fn+1(yz) = F2(Fn(y)z)
for every n ⩾ 2. To give an example, from the bi-
nary operation G∶R2 → R defined by G(x, y) = x + y,
we can construct the associative standard operation
F ∶R∗ → R ∪ {ε} defined by Fn(x) = ∑n

i=1 xi for every
integer n ⩾ 1.

This construction process immediately follows from
the following important proposition.

Proposition 2.1 ( [19,27,28]). A standard operation
F ∶X∗ → X ∪ {ε} is associative if and only if the fol-
lowing conditions hold.

(a) F0(ε) = ε, F1 ○ F1 = F1, F1 ○ F2 = F2.

(b) F2(xy) = F2(F1(x)y) = F2(xF1(y)) for all x, y ∈
X.

(c) F2 is associative.

(d) F (yz) = F (F (y)z) for all y ∈ X∗ and all z ∈ X
such that ∣yz∣ ⩾ 3.

Proposition 2.1 provides a characterization of associa-
tive standard operations F ∶X∗ → X ∪ {ε} in terms
of conditions on their constitutive parts Fn (n ⩾ 0).
Conditions (a)–(c) are actually necessary and suffi-
cient conditions on F0, F1, and F2 for F to be as-
sociative, while condition (d) provides an induction
property which shows that every Fn (n ⩾ 3) can be
constructed uniquely from F2.

Corollary 2.2. Any associative standard variadic op-
eration is completely determined by its unary and bi-
nary parts.

Let us now say some words about associativity for
string functions. It is noteworthy that several data
processing tasks correspond to associative string func-
tions. For instance, the function which corresponds to
sorting the letters of every string in alphabetical order
is associative. Similarly, the function which consists
in transforming a string of letters into upper case is
also associative. In such a context, associativity is a
natural property since it enables us to work locally on
small pieces of data at a time.

It is to be noted that the definition of associativity
remains unchanged if the length of the string xz is
bounded by one. This observation provides an equiv-
alent but weaker form of associativity.

Proposition 2.3 ( [19, 27, 28]). A function F ∶X∗ →
X∗ is associative if and only if F (xyz) = F (xF (y)z)
for any x,y,z ∈X∗ such that ∣xz∣ ⩽ 1.

2.2 B-associativity

By definition, B-associativity expresses that the func-
tion value of a string does not change when replacing
every letter of a substring with the value of this sub-
string. For instance, the arithmetic mean over the set
of real numbers, regarded as the ε-standard operation
F ∶R∗ → R∪{ε} defined as Fn(x) = 1

n ∑n
i=1 xi for every

integer n ⩾ 1, is B-associative.

Remark 1. The name B-associativity is justified by
the following geometric interpretation. Consider a set
of identical homogeneous balls in X = Rn. Each ball
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Figure 1: Barycentric associativity

is identified by the coordinates x ∈ X of its center.
Let F ∶X∗ → X ∪ {ε} be the ε-standard variadic oper-
ation which carries any set of balls into their barycen-
ter. Because of the associativity-like property of the
barycenter, the operation F has to satisfy the func-
tional property of B-associativity (see Fig. 1).

A noteworthy class of B-associative variadic operations
is given by the so-called quasi-arithmetic mean func-
tions, axiomatized independently by Kolmogoroff [18]
and Nagumo [32].

Definition 2.4. Let I be a nontrivial real interval (i.e.,
nonempty and not a singleton), possibly unbounded.
A function F ∶ I∗ → R is said to be a quasi-arithmetic
mean function if there is a continuous and strictly
monotonic function f ∶ I→ R such that

Fn(x) = f−1 ( 1

n

n∑
i=1 f(xi)) , n ⩾ 1.

The following theorem gives the axiomatization by
Kolmogoroff. Even though Kolmogoroff considered
functions F ∶ ⋃n⩾1 In → I, here we have extended the
domain of these functions to I∗. Also, it has been re-
cently proved [30] that the idempotence property of Fn

(i.e., Fn(xn) = x for every x ∈ I), originally stated in
Kolmogoroff-Nagumo’s characterization, is not needed
and hence can be removed. Note also that a variant
and a relaxation of Kolmogoroff-Nagumo’s characteri-
zation can also be found in [12,13,22].

Theorem 2.5 (Kolmogoroff-Nagumo). Let I be a
nontrivial real interval, possibly unbounded. A func-
tion F ∶ I∗ → I is B-associative and, for every integer
n ⩾ 1, the n-ary part Fn is symmetric, continuous, and
strictly increasing in each argument if and only if F is
a quasi-arithmetic mean function.

The existence of nonsymmetric B-associative opera-
tions can be illustrated by the following example, in-
troduced in [21, p. 81] (see also [26]). For every z ∈ R,
the ε-standard operation Mz ∶R∗ → R ∪ {ε} defined as

Mz
n(x) = ∑n

i=1 zn−i(1 − z)i−1 xi∑n
i=1 zn−i(1 − z)i−1 , n ⩾ 1,

is B-associative. Actually, one can show [25] that any
B-associative ε-standard operation over R whose n-
ary part is a nonconstant linear function for every
n ⩾ 1 is necessarily one of the operations Mz (z ∈ R).
More generally, the class of B-associative polynomial
ε-standard operations (i.e., such that the n-ary part
is a polynomial function for every n ⩾ 1) over an in-
finite commutative integral domain D has also been
characterized in [25].

2.3 Preassociativity

By definition, a function F ∶X∗ → Y is preassociative if
the function value of any string does not change when
modifying any of its substring without changing its
value. For instance, any ε-standard operation F ∶R∗ →
R∪{ε} defined by Fn(x) = f(∑n

i=1 xi) for every integer
n ⩾ 1, where f ∶R → R is a one-to-one function, is
preassociative.

The following two results clearly show that preassocia-
tivity is a generalization of associativity.

Proposition 2.6 ( [19]). A function F ∶X∗ → X∗ is
associative if and only if it is preassociative and satis-
fies F = F ○ F .

Proposition 2.7 ( [27,28]). An ε-standard operation
F ∶X∗ →X ∪ {ε} is associative if and only if it is pre-
associative and satisfies F + = F1 ○ F +.

Apart from the fact that it constitutes a less stringent
form of associativity, preassociativity has the remark-
able feature of avoiding functional composition in its
definition. Actually, Propositions 2.6 and 2.7 suggest
that preassociativity is precisely the property we ob-
tain from associativity when cleared of any functional
composition. Due to this feature, preassociativity can
be considered within the wider class of functions taking
as inputs strings over an alphabet X and valued over
a possibly different set Y. A natural and noteworthy
example of a preassociative function is the mapping
that outputs the length of strings.

We now show that all preassociative functions F ∶X∗ →
Y are actually strongly related to associativity, even
if the set Y is different from X∗. More precisely, we
give a characterization of the preassociative functions
F ∶X∗ → Y as compositions of the form F = f ○ H,
where H ∶X∗ → X∗ is associative and f ∶ ran(H) → Y
is one-to-one.

Theorem 2.8 ( [19]). Let F ∶X∗ → Y be a function.
The following conditions are equivalent.

(i) F is preassociative.

(ii) There exists an associative function H ∶X∗ → X∗
and a one-to-one function f ∶ ran(H) → Y such
that F = f ○H.
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Corollary 2.9 ( [27,28]). Let F ∶X∗ → Y be a standard
function. The following conditions are equivalent.

(i) F is preassociative and satisfies ran(F1) =
ran(F +).

(ii) There exists an associative ε-standard operation
H ∶X∗ → X ∪ {ε} and a one-to-one function
f ∶ ran(H+) → Y such that F + = f ○H+.

Corollary 2.9 enables us to construct preassociative
functions very easily from known associative variadic
operations. Just take nonempty sets X and Y , an
associative ε-standard operation H ∶X∗ →X∪{ε}, and
a one-to-one function f ∶ ran(H+) → Y . For any e ∉
Y , the standard function F ∶X∗ → Y ∪ {e} defined by
F (ε) = e and F + = f ○H+ is preassociative.

Example 2.10. Recall that the multilinear extension
of a pseudo-Boolean function f ∶ {0,1}n → R is the
unique multilinear polynomial function MLE(f) ob-
tained from f by linear interpolation with respect to
each of the n variables. Its restriction to {0,1}n is the
function f . Let X and Y denote the class of n-variable
pseudo-Boolean functions and the class of n-variable
multilinear polynomial functions, respectively. For
any e ∉ Y and any ε-standard operation H ∶X∗ →
X∪{ε}, the standard function F ∶X∗ → Y ∪{e} defined
by F (ε) = e and F + = MLE ○H+ is preassociative.

Corollary 2.9 also enables us to produce axiomatiza-
tions of classes of preassociative functions from known
axiomatizations of classes of associative functions. Let
us illustrate this observation on an example. Further
examples can be found in [29].

Let us recall an axiomatization of the Aczélian semi-
groups due to Aczél [1] (see also [7, 8]).

Proposition 2.11 ( [1]). Let I be a nontrivial real
interval, possibly unbounded. An operation H ∶ I2 → I
is continuous, one-to-one in each argument, and as-
sociative if and only if there exists a continuous and
strictly monotonic function ϕ∶ I→ J such that

H(x, y) = ϕ−1 (ϕ(x) + ϕ(y)) ,
where J is a real interval of one of the forms ]−∞, b[,]−∞, b], ]a,∞[, [a,∞[ or R = ]−∞,∞[ (b ⩽ 0 ⩽ a).
For such an operation H, the interval I is necessarily
open at least on one end. Moreover, ϕ can be chosen
to be strictly increasing.

It is easy to see that there is only one associative ε-
standard operation H ∶ I∗ → I ∪ {ε} whose binary part
coincides with the one given in Proposition 2.11. This
operation is defined by

Hn(x) = ϕ−1 ( n∑
i=1ϕ(xi)) , n ⩾ 1.

Combining this observation with Corollary 2.9 pro-
duces the following characterization result.

Theorem 2.12 ( [29]). Let I be a nontrivial real
interval, possibly unbounded. A standard function
F ∶ I∗ → R is preassociative and unarily quasi-range-
idempotent, and F1 and F2 are continuous and one-
to-one in each argument if and only if there exist con-
tinuous and strictly monotonic functions ϕ∶ I → J and
ψ∶J→ R such that

Fn(x) = ψ ( n∑
i=1ϕ(xi)) , n ⩾ 1,

where J is a real interval of one of the forms ]−∞, b[,]−∞, b], ]a,∞[, [a,∞[ or R = ]−∞,∞[ (b ⩽ 0 ⩽ a).
For such a function F , we have ψ = F1 ○ ϕ−1 and I is
necessarily open at least on one end. Moreover, ϕ can
be chosen to be strictly increasing.

2.4 B-preassociativity

Contrary to preassociativity, B-preassociativity recalls
the associativity-like property of the barycenter and
may be easily interpreted in various areas. In decision
making for instance, in a sense it says that if we express
an indifference when comparing two profiles, then this
indifference is preserved when adding identical pieces
of information to these profiles. In descriptive statis-
tics and aggregation function theory, it says that the
aggregated value of a series of numerical values re-
mains unchanged when modifying a bundle of these
values without changing their partial aggregation.

The following result is the barycentric version of
Proposition 2.6 and shows that B-preassociativity is
a generalization of B-associativity.

Proposition 2.13 ( [30]). A function F ∶X∗ →X∗ is
B-associative if and only if it is B-preassociative and
satisfies F (x) = F (F (x)∣x∣) for all x ∈X∗.

The ε-standard sum operation F ∶R∗ → R∪{ε} defined
as Fn(x) = ∑n

i=1 xi for every n ⩾ 1 is an instance of
B-preassociative function which is not B-associative.

A string function F ∶X∗ → X∗ is said to be length-
preserving if ∣F (x)∣ = ∣x∣ for every x ∈X∗.

Proposition 2.14 ( [31]). Let F ∶X∗ → X∗ be a
length-preserving function. Then F is associative if
and only if it is B-preassociative and satisfies Fn =
Fn ○ Fn for every n ⩾ 0.

We now show that, along with preassociative func-
tions, all B-preassociative functions F ∶X∗ → Y are
strongly related to associativity. More precisely, B-
preassociative functions can be factorized as composi-
tions of length-preserving associative string functions
with one-to-one unary maps.
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Theorem 2.15 ( [31]). Let F ∶X∗ → Y be a function.
The following assertions are equivalent.

(i) F is B-preassociative.

(ii) There exist an associative and length-preserving
function H ∶X∗ → X∗ and a sequence (fn)n⩾1 of
one-to-one functions fn∶ ran(Hn) → Y such that
Fn = fn ○Hn for every n ⩾ 1.

The following corollary provides an alternative factor-
ization result for B-preassociative functions in which
the inner functions are B-associative operations. For
every integer n ⩾ 1, the diagonal section δF ∶X → Y of
a function F ∶Xn → Y is defined as δF (x) = F (xn).
Corollary 2.16 ( [30]). Let F ∶X∗ → Y be a function.
The following assertions are equivalent.

(i) F is B-preassociative and satisfies ran(δFn) =
ran(Fn) for every n ⩾ 1.

(ii) There exists a B-associative ε-standard operation
H ∶X∗ → X ∪ {ε} and a sequence (fn)n⩾1 of one-
to-one functions fn∶ ran(Hn) → Y such that Fn =
fn ○Hn for every n ⩾ 1.

Corollary 2.16 enables us to produce axiomatizations
of classes of B-preassociative functions from known
axiomatizations of classes of B-associative functions.
Let us illustrate this observation on the class of quasi-
arithmetic pre-mean functions.

Definition 2.17 ( [30]). Let I be a nontrivial real
interval, possibly unbounded. A function F ∶ I∗ → R
is said to be a quasi-arithmetic pre-mean function if
there are continuous and strictly increasing functions
f ∶ I→ R and fn∶R→ R (n ⩾ 1) such that

Fn(x) = fn( 1

n

n∑
i=1 f(xi)), n ⩾ 1.

As expected, the class of quasi-arithmetic pre-mean
functions includes all the quasi-arithmetic mean func-
tions (just take fn = f−1). Actually the quasi-
arithmetic mean functions are exactly those quasi-
arithmetic pre-mean functions which are idempotent
(i.e., such that fn ○ f = idI for every integer n ⩾ 1).
However, there are also many non-idempotent quasi-
arithmetic pre-mean functions. Taking for instance
fn(x) = nx and f(x) = x over the reals I = R, we ob-
tain the sum function. Taking fn(x) = exp(nx) and
f(x) = ln(x) over I = ]0,∞[, we obtain the product
function.

We have the following characterization of the quasi-
arithmetic pre-mean functions, which generalizes
Kolmogoroff-Nagumo’s axiomatization of the quasi-
arithmetic mean functions.

Theorem 2.18 ( [30]). Let I be a nontrivial real in-
terval, possibly unbounded. A function F ∶ I∗ → R is B-
preassociative and, for every n ⩾ 1, the function Fn is
symmetric, continuous, and strictly increasing in each
argument if and only if F is a quasi-arithmetic pre-
mean function.

3 Historical notes

In the framework of aggregation function theory,
the associativity property for functions having an
indefinite arity was introduced first for functions
F ∶ ⋃n⩾1Xn → X satisfying F1 = idX (see [21, p. 24];
see also [5, p. 16], [15, p. 32], [17, p. 216] for alternative
forms). Then it was introduced for ε-standard variadic
operations F ∶X∗ →X ∪{ε} (see [6,27,28]), and finally
for string functions (see [19]).

A basic form of B-associativity was first proposed
for symmetric real functions F ∶ ⋃n⩾1Rn → R inde-
pendently by Schimmack [35], Kolmogoroff [18], and
Nagumo [32]. More precisely, Schimmack introduced
the condition F (yz) = F (F (y)∣y∣z) while Kolmogo-
roff and Nagumo considered the condition F (yz) =
F (F (y)∣y∣z) with ∣z∣ ⩾ 1. A more general definition
appeared more recently in [3] and [21] and has then
been used to characterize various classes of functions;
see, e.g., [12,13,23,25,26]. The general definition of B-
associativity given in Definition 1.1 appeared in [31].
For general background on B-associativity and its links
with associativity, see [15, Sect. 2.3] and [30]. The
B-associativity property and its different versions are
known under at least three different names: associativ-
ity of means [10], decomposability [14, Sect. 5.3], and
barycentric associativity [3, 30].

Preassociativity was introduced in [27,28] to generalize
the associativity property. B-preassociativity was in-
troduced in [30] to generalize the B-associativity prop-
erty. The basic idea behind this latter definition goes
back to 1931 when de Finetti [10] introduced the fol-
lowing associativity-like property for mean functions:
for any u ∈ X and any x,y,z ∈ X∗ such that ∣xz∣ ⩾ 1
and ∣y∣ ⩾ 1, we have F (xyz) = F (xu∣y∣z) whenever
F (y) = F (u∣y∣).
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R. Mesiar. Aggregation operators: properties, classes
and construction methods. In: Aggregation operators.
New trends and applications, pages 3-104. Stud. Fuzzi-
ness Soft Comput. Vol. 97. Physica-Verlag, Heidel-
berg, Germany, 2002.

[6] M. Couceiro and J.-L. Marichal. Associative poly-
nomial functions over bounded distributive lattices.
Order 28:1-8, 2011.

[7] M. Couceiro and J.-L. Marichal. Aczélian n-ary semi-
groups. Semigroup Forum 85:81-90, 2012.
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[11] K. Domańska, An analytic description of the class
of rational associative functions. Annales Universi-
tatis Paedagogicae Cracoviensis. Studia Mathematica,
11:111-122, 2012.

[12] J. Fodor and J.-L. Marichal. On nonstrict means. Ae-
quationes Math. 54:308–327, 1997.

[13] J. Fodor and J.-L. Marichal. Erratum to “On nonstrict
means”. Aequationes Math. 71:318–320, 2006.

[14] J. Fodor and M. Roubens. Fuzzy preference modelling
and multicriteria decision support. Theory and De-
cision Library. Series D: System Theory, Knowledge
Engineering and Problem Solving. Kluwer Academic
Publisher, Dordrecht, The Netherlands, 1994.

[15] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap.
Aggregation functions. Encyclopedia of Mathematics
and its Applications, vol. 127. Cambridge University
Press, Cambridge, 2009.

[16] E. P. Klement and R. Mesiar (Eds). Logical, algebraic,
analytic, and probabilistic aspects of triangular norms.
Elsevier Science, Amsterdam, The Netherlands, 2005.

[17] E. P. Klement, R. Mesiar, and E. Pap. Triangular
norms. In: Trends in Logic - Studia Logica Library,
vol. 8. Kluwer Academic, Dordrecht, 2000.

[18] A. N. Kolmogoroff. Sur la notion de la moyenne.
(French). Atti Accad. Naz. Lincei, 12(6):388–391,
1930.

[19] E. Lehtonen, J.-L. Marichal, B. Teheux. Associative
string functions. Asian-European Journal of Mathe-
matics, 7(4):1450059 (18 pages), 2014.

[20] C.H. Ling. Representation of associative functions.
Publ. Math. Debrecen, 12:189–212, 1965.

[21] J.-L. Marichal. Aggregation operators for multicriteria
decision aid. PhD thesis, Department of Mathematics,
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Summary

We discuss and exemplify several kinds of in-
tegrals with respect to monotone measures,
and in particular with respect to capacities
on a finite universe N .

Keywords: Capacity, Choquet integral,
Monotone measure, OWA operator, OMA
operator, Sugeno integral.

1 INTRODUCTION

Integrals belong to the historical aggregation func-
tions. Frustum of a pyramide described in the Mo-
cow papyrus dated back to 1 850 B.C. can be con-
sidered as the earliest written trace of integrals. The
exhaustion principle introduced by Eudoxus around
370 B.C. is a powerful tool also nowadays. Integrals
dated till Lebesgue were based on (σ−) additive mea-
sures, and a first integral approach, dealing with up-
per/lower extensions of measures - thus violating the
additivity, in general - is due to Vitali [27]. Later,
many kinds of integrals dealing with special or general
monotone measures were considered. We restrict our
considerations to finite spaces N = {1, ..., n} , n ∈ N,
and then any function f : N → [0,∞] can be rep-
resented as an n-dimensional vector x ∈ [0,∞]n. In
several cases we will consider x ∈ [0, 1]n only. Con-
cerning measures, we will deal either with monotone
measures µ : 2N → [0,∞], µ(∅) = 0, µ(N) > 0 and
µ(U) ≤ µ(V ) whenever U ⊆ V ⊆ N , or with normed
monotone measures constraint by the boundary con-
dition µ(N) = 1. The later measures will be called
capacities. For the interested scholars, we recommend
monographs [2, 6, 7, 22, 28].

The tutorial is organized as follows. In its first part,
after a short historical overview, we introduce and dis-

cuss basic integrals with respect to monotone mea-
sures, namely the Choquet, Shilkret and Sugeno in-
tegrals, see Section 2. Next, we discuss the universal
integrals in Section 3 and decomposition integrals in
Section 4. Section 5 brings several aggregation func-
tions based on introduced integrals, including OWA,
OMA and other operators. In Section 6, some general-
izations are highlighted and some concluding remarks
are added.

2 BASIC INTEGRALS

Definition 1. Let (X,A) be a measurable space, µ a
monotone measure on A and f : X → [0,∞] a mea-
surable function.

(i) The Choquet integral [10] Ch is given by

Chµ(f) =

∫ ∞

0

µ({f ≥ t}) dt, (2.1)

where the integral on the right–hand side is the
(improper) Riemann integral.

(ii) The Shilkret integral [23] Sh is given by

Shµ(f) = sup { t : µ({f ≥ t})|t ∈ [0,∞]} , (2.2)

where the standard convention 0 · ∞ =∞ · 0 = 0
is used.

(iii) The Sugeno integral [25] Su is given by

Suµ(f) = sup {min ( t, µ({f ≥ t})) |t ∈ [0,∞]} .
(2.3)

Considering the finite space N and a function f in
the vector form x ∈ [0,∞]n, let (·) : N → N be a
permutation such that x(1) ≤ ... ≤ x(n) (observe that
(.) need not to be unique). Then the above integrals
can be rewritten in the next form, denoting E(i) =
{(i), ..., (n)}:

Chµ(x) =
n∑

i=1

(x(i) − x(i−1)) · µ(E(i)) (2.4)
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with convention x(0) = 0;

Shµ(x) = max
{
x(i) · µ(E(i))|i ∈ N

}
, (2.5)

Suµ(x) = max
{

min(x(i), µ(E(i)))|i ∈ N
}
. (2.6)

We have several alternative formulae for these three in-
tegrals. For example, the Lovász extension [16] based
on the Möbius transform Mµ : 2N → R,

Mµ(A) =
∑

B⊆A
(−1)card(A\B) · µ(B),

leads to the Chateaunef – Jaffray evaluation formula
[9]

Chµ(f) =
∑

A⊆N
Mµ(A) ·min {f(xi) | i ∈ A} . (2.7)

For the Sugeno integral, we have also the next formula
due to [12]:

Suµ(x) = min
{

max(x(i), µ(E(i)))|i ∈ N
}
. (2.8)

Observe that all these integrals can be viewed as ag-
gregation functions (note that the Sugeno integral Suµ
is bounded by µ(N)). In particular, when µ is a capac-
ity, Chµ, Shµ, Suµ : [0, 1]n → [0, 1] are special idem-
potent aggregation functions characterized by the next
settings of properties (axioms):

• Chµ is comonotone additive;

• Shµ is comonotone maxitive and positively homo-
geneous;

• Suµ is comonotone maxitive and min–homoge-
neous.

3 UNIVERSAL INTEGRALS ON
[0, 1]

Though universal integrals [14] were introduced for
any measurable space (X,A), any monotone measure
µ on A and any A–measurable function f : X →
[0,∞], we restrict our considerations to finite spaces
N , vectors x ∈ [0, 1]n and capacities µ on N . Denote
by Mµ the set of all capacities on N .

Definition 2. A function I :
∑
n∈N

(Mn × [0, 1]n) →
[0, 1] is called a [0, 1]–valued discrete universal integral
if it satisfies the following axioms:

(A1) I is non–decreasing in each component;

(A2) I(µ, 1E) = µ(E) for all N = {1, 2, ..., n} , µ ∈
Mn, and E ⊆ N ;

(A3) I(µ, c · 1N ) = c for all N = {1, 2, ..., n} , µ ∈
Mn, E ⊆ N and c ∈ [0, 1];

(A4) I(µ1, f1) = I(µ2, f2) for all pairs (µ1, f1) ∈
Mn1 × Fn1 and (µ2, f2) ∈ Mn2 × Fn2 satisfying
µ1 ({f1 ≥ t}) = µ2 ({f2 ≥ t}) for each t ∈ [0, 1].

It is not difficult to check that, as a consequence of
(A4), the value I(µ, c · 1E) depends on the constant
c ∈ [0, 1] and the value µ(E) ∈ [0, 1], i.e., there
is an operation ⊗ : [0, 1]2 → [0, 1] such that, for
each c ∈ [0, 1] and each E ⊆ {1, 2, ..., n} we have
I(µ, c · 1E) = c ⊗ µ(E). This operations ⊗ turns out
to be a semicopula [1], i.e., it is non–decreasing in each
component and has 1 as neutral element.

Proposition 1. Let I be a [0, 1]–valued discrete uni-
versal integral. Then there exists a semicopula ⊗
such that we have I(µ, c · 1E) = c ⊗ µ(E) for all
n ∈ N, µ ∈Mn, c ∈ [0, 1], and E ⊆ {1, 2, ..., n}.

Obviously, Ch, Sh and Su are universal integrals. We
recall two classes of universal integrals on [0, 1].

a) Copula–based [0, 1]–valued discrete universal
integrals.

Copulas were introduced in [24] to model the de-
pendence structure of random vectors (for a detailed
treatise see [21]). Here we restrict ourselves to two–
dimensional copulas only which also can be considered
as special binary aggregation functions or, more pre-
cisely, as special semicopulas.

Definition 3. A function C : [0, 1]2 → [0, 1] is called
a (2–dimensional) copula if it is a 2–increasing semi-
copula, i.e., for all x, y, x∗, y∗ ∈ [0, 1] with x ≤ x∗ and
y ≤ y∗ we have

C(x∗, y∗)− C(x∗, y)− C(x, y∗) + C(x, y) ≥ 0.

Note that copulas are in a one–to–one correspon-
dence with probability measures on the Borel sub-
sets B([0, 1]2) with uniform marginals, i.e., for each
copula C : [0, 1]2 → [0, 1] there is a unique prob-
ability measure PC : B([0, 1]2) → [0, 1] satisfying
PC ([0, a]× [0, b]) = C(a, b). Based on ideas in [11, 13]
(see also [14]), for a given copula C the copula–based
integral IC was introduced as

IC(µ,x) = PC
({

(x, y) ∈ [0, 1]2|y ≤ µ ({i ∈ N |xi ≥ x})
})
.

(3.1)
Comparing with formula (2.4) one can see that for the
independence copula Π we rediscover the Choquet in-
tegral, i.e., IΠ = Ch, whereas for the greatest copula
∧ we obtain the Sugeno integral, i.e., I∧ = Su. Alter-
natively, one can write

IC(µ,x) =
n∑

i=1

(
C(x(i), µ(E(i))− C(x(i−1), µ(E(i))

)
.

(3.2)
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b) Weakest semicopula based universal inte-
grals.

For any semicopula ⊗ : [0, 1]2 → [0, 1], the weakest
[0, 1]–valued discrete universal integral I⊗ related to
⊗ is given by

I(⊗)(µ,x) = max
{
x(i) ⊗ µ(E(i))|i ∈ N

}
. (3.3)

Clearly, I(1) = Su and I(·) = Sh.

4 DECOMPOSITION INTEGRALS

Recall that the Riemann and Lebesgue integrals are
based on decomposition approaches generalized by
Even and Lehrer in [4], see also [20]. Finite subsets
of 2N are called collections. Any system H of collec-
tions is called a decomposition system.

Definition 4. Let H be a decomposition system. The
mappings IH, IH :Mn × [0, 1]n → [0,∞[ given by

IH(µ,x) = max
{∑k

i=1 ai · µ(Ai) | (A1, ..., Ak) ∈ H,

a1, ..., ak ≥ 0,
∑k
i=1 ai · 1Ai

≤ x
}

and

IH(µ,x) = min
{∑k

i=1 ai · µ(Ai) | (A1, ..., Ak) ∈ H,

a1, ..., ak ≥ 0,
∑k
i=1 ai · 1Ai

≥ x
}

are called H–decomposition and H–superdecompo-
sition integrals, respectively.

Decomposition integrals can be defined for monotone
measures and vectors from [0,∞]n, too.

Define:
H1 = {{A} |∅ 6= A ⊆ N} ,

H2 =
{

(A1, ..., An) ∈ (2N )n|(A1, ..., An) is a chain
}
,

H3 =
{

(A1, ..., An) ∈ (2N )n|Ai ∩Aj = ∅ whenever i 6= j
}
,

H4 = 22N

.

Then:

IH1 = Sh is the Shilkret integral;

IH2 = IH2
= Ch is the Choquet integral;

IH3
is the PAN integral [30];

IH4 is the concave integral [15];

IH4 is the convex integral [20].

For more details, especially for a complete description
of integrals which are both universal and decomposi-
tion (universal and superdecomposition) see [19].

5 AGGREGATION OPERATORS
BASED ON INTEGRALS

Well known weighted arithmetic mean given by

Ww(x) =

n∑

i=1

wixi,

where w = (w1, ..., wn) ∈ [0, 1]n is a normed weighting
vector (it can be seen as a discrete probability on N)
is the standard expected value of x with respect to
the probability measure µw : 2N → [0, 1] given by
µw(E) =

∑
i∈E

wi. It can be seen also as the Choquet

integral, Ww = Chµw .

One class of the most applied aggregation functions is
formed by OWA operators introduced by Yager [29],

OWAw(x) =
n∑

i=1

wix(i). (5.1)

Based on [5], OWAw = Chµ(w)
is the Choquet integral

with respect to a capacity µ(w) : 2N → [0, 1] given

by µ(w)(E) =
∑card E
i=1 wn−i+1. Observe that µ(w) is

called a symmetric capacity and it is characterized by
µ(w)(E) = µ(w)(F ) whenever card E = card F .

Recently, OMA operators [18] were characterized as n–
ary aggregation functions on [0, 1] which are symmetric
and comonotone modular. Observe that OMA opera-
tors coincide with copula–based integrals with respect
to symmetric capacities, OMA=IC(µ(w), ·).
In particular, for the greatest copula ∧, i.e., consider-
ing the Sugeno integral, OWMax (Ordered Weighted
Maximum) operators introduced by Dubois and Prade
[3] are rediscovered.

Observe that any introduced integrals with respect to
a symmetric capacity can be seen as a generalization
of OWA operators.

6 CONCLUDING REMARKS

There are several fresh generalizations of integral–
based aggregation functions introduced and discussed
in the previous sections. We recall only superadditive
and subadditive constructions generalizing decompo-
sition and superdecomposition integrals [8, 26]. An-
other interesting approach generalizes formula (2.4)
for the Choquet integral considering the function CGµ :
[0, 1]n → [0,∞] given by

CGµ (x) =
n∑

i=1

G(x(i) − x(i−1), µ(E(i)),
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where G : [0, 1]2 → [0, 1] is an appropriate function.
Obviusly CΠ

µ = Chµ is the Choquet integral. For more
details see [17].

Acknowledgements

The support of the grant VEGA 1/0420/15 is kindly
announced.

References

[1] B. Bassan, F. Spizzichino (2005). Relations
among univariate aging, bivariate aging and de-
pendence for exchangeable lifetimes. Journal of
Multivariate Analysis 93 (2), pp. 313–339.

[2] D. Denneberg (1997). Non-additive Measure and
Integral, Second Edition. Dordrecht, Kluwer Aca-
demic Publishers.

[3] D. Dubois, H. Prade (1985). A review of fuzzy
set aggregation connectives. Information Sciences
36, pp. 85–121.

[4] Y. Even, E. Lehrer (2014). Decomposition-
integral: unifying Choquet and the concave in-
tegrals. Economic Theory 56, pp. 33-58.

[5] M. Grabisch (1995). Fuzzy integral in multicrite-
ria decision making. Fuzzy Sets and Systems 69,
pp. 279–298.

[6] M. Grabisch, T. Murofushi, M. Sugeno, and
J. Kacprzyk, editors (2000). Fuzzy Measures and
Integrals. Theory and Applications 40, Physica
Verlag, Berlin.

[7] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap
(2009). Aggregation Functions: Encyclopedia of
Mathematics. Cambridge University Press.

[8] S. Greco, R. Mesiar, F. Rindone, L. Šipeky
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ON CONSISTENT OPERATOR SYSTEMS
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Combining several numerical values into a single value
is called aggregation and the numerical function is
called the aggregation function. From this, functions
can be expressed as aggregation functions. Usually
there use some important restrictions of the functions.
Most studies that deal with aggregation function focus
on a problem on how we can establish a general rep-
resentation theorem for the aggregator function when
it has certain explicitly defined properties. Because
the universal operator does not exist, for each step of
are algorithm we have to choose another one. When
we have consistent system we have a set of operators
and developing an algorithm seems easier to do. All
these problems are invited by fuzzy theory. Now let
us summarize the elements of this concept: Member-
ship functions, intersections (conjunctive operator, t-
norm), unions (disjunctive operator, t-conorm), com-
plementary operation (negation), inclusions (implica-
tions), symmetric difference, equivalence, and so on.
The operator work on membership values and other
functions can also be defined. For instance, the ag-
gregative operators (uninorms) or modifiers. When
examining continuous-valued operators, the key ques-
tion is how we should choose them in a consistency
way. Here, consistency means that the DeMorgan
law is valid and for the uninorms the self-DeMorgan
law holds. Or the distributive property is valid for
unary operators with conjunctive/disjunctive opera-
tors. We should also mention that the membership
function should be consistent with the operators of the
above systems. In our different functional equations
that are used to verify the consistency of our system.
We will call it the Pliant operators. The operators
are examined and the membership function is devel-
oped. We give a new semantic meaning to this type of
membership function and we will call them distending
functions. Distending functions and the Pliant system
together form a very effective tool for solving practi-
cal problems. Not only are the strict monstrously in-
creasing operator in the focus our research, although
the  Lukasiewicz type operators too. We call this op-

erator class bounded system. At the end of our talk
we give some examples for approximating functions,
clustering, developing decision trees and neural net-
works. From a scientific point of view, we present a
theorem on the convergence of the sharpness measure.
The better the input, the better the output.
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Fuzzy Logic Connectives can be seen as a generali-
sation of the classical logic connectives. The septu-
ple of ({0, 1},∧,∨,→,¬, 0, 1) corresponding to classi-
cal logic has been investigated along the following as-
pects: Logical, Algebraic and Applicational. Consid-
ering the septuple of ([0, 1], T, S, I,N, 0, 1) correspond-
ing to fuzzy logic, other than the above, one can also
discuss their analytical and probabilistic aspects.

Fuzzy Implications I generalise the classical implica-
tion on {0, 1} to the extended truth value set [0, 1].
The (i) analytic aspects of fuzzy implications, viz.,
the different generation process, families, properties,
intersections among them, their characterisations and
representations, functional equations they satisfy, etc.,
and their (ii) applicational aspects, viz., their role in
approximate reasoning, image processing, data min-
ing, etc., have been very well studied and documented.

The various studies on the algebraic aspects of fuzzy
implications can be categorised as below.

1. Fuzzy Implications on different Algebras

In the early days of research on fuzzy logic connec-
tives, the domain of these functions was taken to be
the unit interval [0, 1], corresponding to the general-
isation of the truth value set from the binary {0, 1}.
However, with the increasing awareness of their use
in many practical applications and towards ensuring
computational feasibility, researchers began to discre-
tise the underlying domain. This also presented an
opportunity to impose different algebras on the un-
derlying discrete domain other than the linear order
that was already available on [0, 1].

Among the algebraic exploration of fuzzy implications,
the above approach has garnered the maximum atten-
tion.

In this talk, we will present works done on fuzzy im-
plications from an algebraic perspective along the fol-
lowing lines which have been relatively unexplored and
largely recent.

2. Algebras based on Fuzzy Implications

A Fuzzy Implication algebra (FI-algebra) [2] is an alge-
bra (X,→, 0), where X is a non-empty set with a spe-
cial element 0 ∈ X, satisfying some axioms. We will
see how FI-algebras are related to many established
t-norm based logics and their consequent algebras.

3. Algebras on Fuzzy Implications

Among the many generation processes of fuzzy im-
plications, those that generate a fuzzy implication K
from a given pair of fuzzy implications (I, J) can be
seen as a binary operation � on the set of all fuzzy
implications I. Thus it is interesting to study the al-
gebraic structures, if any, on (I,�). Many such gener-
ation methods, in particular, the point wise min and
max of fuzzy implications, compositions of fuzzy impli-
cations (see [1], Chap. 6), and the recently proposed
~-composition of fuzzy implications [3], can be viewed
in this framework. An algebraic study of these struc-
tures have led to some interesting consequences. For
instance, hitherto unknown representations of some
families of fuzzy implications were obtained from such
studies.
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Summary

We intend to point out that bisymmetry is
nothing but classical Fubini theorem in a very
peculiar case. We show some applications in
economy, and then proceed to prove a char-
acterization of bisymmetric means in some
function spaces. In particular, we give a form
of bisymmetric operations in L1 and C(Ω).

Keywords: Mean, bisymmetry, iterated in-
tegral.

1 Introduction

By ”mean” we understand a functional M, mapping
the square of a real interval X into R and such that
for for any x, y ∈ X one has

min(x, y) ≤M(x, y) ≤ max(x, y).

More generally, if we fix an n ∈ N, n ≥ 2, then we can
think of mean as a functional M : Xn −→ R satisfying

min(x1, . . . , xn) ≤M(x1, . . . , xn) ≤ max(x1, . . . , xn).

There is also another concept of mean coming form
harmonic analysis. Let us fix a semigroup G and con-
sider the family B(G,R) of all real valued and bounded
functions defined in G. The (invariant) mean M is a
functional defined on B(G,R) and

a) linear,

b) M(f) ≤ sup f(G),

c) invariant (i.e. M(fa) = M(f) for every a ∈ G,
where fa(x) = f(xa), x ∈ G).

We could look at mean values of n elements, as means
defined on B(G,R) where G stands for Zn. It turns
out that in this case M is of the form

M(x0, . . . , xn−1) =
n−1∑

i=0

wixi,

for some weights wi, i ∈ {0, . . . , n−1} (this fact follows
from linearity (a)) and continuity being a consequence
of b)). From b) we get reflexivity of M, i.e.

M(c · 1) = c

for every c ∈ R. It also follows from b) that

f ≥ 0 =⇒M(f) ≥ 0.

Hence
∑n−1
i=0 wi = 1, and wi ≥ 0 for every

i ∈ {0, . . . , n − 1}. Now, condition c) implies that all
the weights are equal, i.e.

wi =
1

n
, i ∈ {0, . . . , n− 1}.

In other words, the only mean satisfying conditions
a) – c) is the arithmetic mean.

In order to determine other, not necessarily arithmetic
means, we have to skip condition c) and replace linear-
ity (a)) by bisymmetry. Bisymmetry is the following
property of operations. Suppose that a non-empty set
X is given. In the case n = 2 imagine the matrix

[
x y
u v

]

with entries belonging to a set X and let us ag-
gregate lines M(x, y), M(u, v) and then columns
M(x, u), M(y, v). Then aggregate the results again
to obtain

M(M(x, y),M(u, v))

and
M(M(x, u), M(y, v)).
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Now, if the final aggregations agree for all x, y, u, v ∈X
or the equality

M [M (x, y) ,M (u, v)] = M [M (x, u) ,M (y, v)]

holds, we say that the operation M is bisymmetric.
For bisymmetric means we have the following result
by J. Aczél [1]

Theorem 1 (Aczél [1], p. 281) The quasi–arith-
metic mean

M(x, y) = ϕ−1

(
ϕ(x) + ϕ(y)

2

)

is the general continuous, on both sides reducible, real
solution of

M [M (x11, x12) ,M (x21, x22)]

= M [M (x11, x21) ,M (x12, x22)]

under the additional conditions x, y, M(x, y) ∈ [a, b],

M(x, x) = x for all x ∈ [a, b],

M(x, y) = M(y, x) for all x, y ∈ [a, b].

(Without symmetry M is given by

M(x, y) = ϕ−1 ((1− q)ϕ(x) + qϕ(y))

where q ∈ R \ {0, 1}.)

Remark 1 Without reflexivity and symmetry M is
given by

M(x, y) = ϕ−1 ((αϕ(x) + βϕ(y) + γ)

for some α > 0, β > 0 and γ ∈ R such that

u, v ∈ [a, b] =⇒ αu+ βv + γ ∈ [a, b].

(J. Aczél [1], Gy. Maksa [6], P. Volkmann [9]).

In the case of arbitrary n ∈ N, n ≥ 2, we have the
following result

Theorem 2 (Münnich, Maksa, Mokken [8])
Let M : In → I (n ≥ 2 fixed) be strictly monotone
increasing in each of its arguments, continuous, and
satisfying

M(M(x11, . . . , x1n), . . . ,M(xn1, . . . , xnn))

= M(M(x11, . . . , xn1), . . . ,M(x1n, . . . , xnn))

M(x, . . . , x) = x, x ∈ I.
Then there are strictly monotone increasing, contin-
uous functions ϕ : I → R and constants α1, . . . , αn ∈
(0, 1) such that

n∑

i=1

αi = 1

and

M(x1, . . . , xn) = ϕ−1

(
n∑

i=1

αiϕ(xi)

)
.

1.1 Consistent aggregation.

Define

xi = (xi1, . . . , xin), xk = (x1k, . . . , xmk),

for all i ∈ {1, . . . ,m} and k ∈ {1, . . . , n}.

Table 1: Consistent aggregation of production.
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G (F1 (x1,1, . . . , xm,1) , . . . , Fn (x1,n, . . . , xm,n)) =

F (G1 (x1,1, . . . , x1,n) , . . . , Gm (xm,1, . . . , xm,n))

G (F (1, x(·, 1)) , . . . , F (n, x(·, n))) =

F (G (1, x(1, ·)) , . . . , G (m,x(m, ·))) .
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1.2 Example.

Take y : A = {1, . . . ,m} −→ R and assume that

F (y) = F (1, y) = F (2, y) = · · · = F (n, y) =

∫

A

y(s)ds

Similarly, let B = {1, . . . , n} and let z : B −→ R.
Assume that

G(z) = G(1, z) = · · · = G(m, z) =

∫

B

z(t)dt.

Then the above equation becomes

G


F (x(·, 1)) , . . . , F (x(·, n))︸ ︷︷ ︸

n


 =

F


G (x(1, ·)) , . . . , G (x(m, ·))︸ ︷︷ ︸

m


 .

or ∫

B

(∫

A

x(s, t)ds

)
dt =

∫

A

(∫

B

x(s, t)dt

)
ds

1.3 Distributions.

Let A, B ∈ R, A < B and denote by D(A,B) the
family of all distribution functions F : R −→ [0, 1]
such that

• F is constant in stretches and has only a finite
number of discontinuities;

• F (x) = 1
2 [F (x+)− F (x−)];

• F (x) = 0, x ≤ A and F (x) = 1, x ≥ B.

Note that for every ξ ∈ [A,B] the function Eξ given
by Eξ(x) = 1

2 (1 + sgn(x − ξ)) belongs to D(A,B).
The following was proved by B. de Finetti in [4]
(cf. Hardy–Littlewood–Pólya [5, p. 158])

Theorem 3 (B. de Finetti, [4]) Suppose that M :
D(A,B) −→ R satisfies (a) M (Eξ) = ξ, ξ ∈ [A,B];

(b) if F1, F2 ∈ D(A,B), F1 ≥ F2, and F1(x) > F2(x)
for some x ∈ R, then M(F1) < M(F2);

(c) if F, F ∗, G ∈ D(A,B) and M(F ) = M(F ∗), then

M(tF + (1− t)G) = M(tF ∗ + (1− t)G)

for t ∈ (0, 1). Then there is a function φ, continuous
and strictly increasing in [A,B], for which

(]) M(F ) = φ−1

(∫ ∞

−∞
φ(x)dF (x)

)
.

Conversely, if M is defined by (]), for a φ with the
properties stated, then it satisfies (a), (b) and (c), so
that these conditions are necessary and sufficient for
the representation of M in the form (]).

2 General form of bisymmetrical
mean

2.1 Definitions

Let (Ω,A, µ) be a triple consisting of a set Ω 6= ∅,
A ⊂ 2Ω – algebra of sets, and µ : A → [0,∞] – an
additive and nontrivial set function. Further, define
M = {f : Ω → R : f is A-measurable}. If f, g ∈ M
then

f ≤ g :⇐⇒ µ ({ω ∈ Ω : f(ω) > g(ω)}) = 0

Let us consider the following family of partitions of Ω.

P(Ω) =
∞⋃

n=1

{(A1, . . . , An) ∈ An :

n⋃

i=1

Ai = Ω, i 6= j =⇒ Ai ∩Aj = ∅}

Introduce the family of simple functions.

Mfin = {f ∈M : f(Ω) is finite}

=

{
n∑

i=1

xi1Ai
: n ∈ N, (A1, . . . , An) ∈ P(Ω)

}

Let F ⊂M be such that Mfin ⊂ F . We say that

• M : F → R is reflexive, iff
∧

c∈R
(M(c1) = c).

• M is µ-strictly increasing, iff
∧

f,g∈F
(f ≤ g andµ ({f < g})>0⇒M(f)<M(g)) .

Mfin ×Mfin = {
n∑

i=1

m∑

j=1

xij1Ai×Bj
:

m, n ∈ N, (A1, . . . , An), (B1, . . . , Bm) ∈ P(Ω)}

Remark 2 If x ∈Mfin ×Mfin then

M[t](x) := ”Ω 3 s→M(x(s, ·)) ∈ R” ∈Mfin

and

M[s](x) := ”Ω 3 t→M(x(·, t)) ∈ R” ∈Mfin.

2.2 Results.

Lemma 1 Suppose that (F , ‖ · ‖) is a normed space.
If M : F → R is reflexive, µ-strictly increasing, con-
tinuous and

M(M[s](x)) = M(M[t](x))
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for every x ∈Mfin×Mfin then there exist a strictly
increasing and continuous function ϕ :R→ R and an
additive function P : A → [0, 1] such that

P (Ω) = 1,

∧

A∈A
(P (A) > 0⇐⇒ µ(A) > 0),

and

M(y) = ϕ−1

(∫

Ω

(ϕ ◦ y)dP

)

for every y ∈Mfin.

From the above lemma we obtain

Theorem 4 Let µ : 2Ω → [0,∞] be an additive, non-
trivial function. Then M : B(Ω,R) → R is reflexive,
µ-strictly increasing, continuous and satisfies

M(M[s](x)) = M(M[t](x))

for every x ∈Mfin×Mfin, if, and only if, there exist
a strictly increasing and continuous function ϕ :R→R
and an additive function P : Ω→ [0, 1] such that

P (Ω) = 1,

∧

A⊂Ω

(P (A) > 0⇐⇒ µ(A) > 0),

and

M(y) = ϕ−1

(∫

Ω

(ϕ ◦ y)dP

)

for every y ∈ B(Ω,R).

We obtain also results for integrable functions.

Theorem 5 Let (Ω,A, µ) be a measure space with a
finite µ. Then M : L1(Ω,R) → R is reflexive, µ-
strictly increasing, continuous and satisfies

M(M[s](x)) = M(M[t](x))

for every x ∈Mfin×Mfin, if, and only if, there exist
a strictly increasing and continuous function ϕ :R→R
and a probability measure P : A → [0, 1] equivalent to
µ such that

M(y) = ϕ−1

(∫

Ω

(ϕ ◦ y)dP

)

for every y ∈ L1(Ω,R).

2.3 Remarks about the proof.

Let m and n be positive integers. Fix partitions
(A1, . . . , Am) ∈ P(Ω1) and (B1, . . . , Bn) ∈ P(Ω2).
Consider the function

x(s, t) =

m∑

i=1

n∑

j=1

xij1Ai×Bj (s, t) =

m∑

i=1




n∑

j=1

xij1Bj
(t)


1Ai

(s).

We have for every i ∈ {1, . . . ,m}

s ∈ Ai =⇒ x(s, ·) =

n∑

j=1

xij1Bj

whence

s ∈ Ai =⇒M (x(s, ·)) = M




n∑

j=1

xij1Bj




or

s −→M (x(s, ·)) =
M




n∑

j=1

x1j1Bj


 , . . . ,M




n∑

j=1

xmj1Bj




 .

Similarly we obtain

t −→M (x(·, t)) =(
M

(
m∑

i=1

xi11Ai

)
, . . . ,M

(
m∑

i=1

xin1Ai

))
.

for every t ∈ Ω2.

Let I, J be real intervals and define
(1)

F (x1, . . . , xm) = M

(
m∑

i=1

xi1Ai

)
, (x1, . . . , xm) ∈ Im;

(2)

G(y1, . . . , yn) = M




n∑

j=1

yj1Bj


 , (y1, . . . , yn) ∈ Jn;

We easily check that

F (G(x11, . . . , x1n), . . . , G(xm1, . . . , xmn)) =

M


M




m∑

i=1

n∑

j=1

xij1Ai×Bj




 =

M


M




m∑

i=1

n∑

j=1

xij1Ai×Bj




 =

G (F (x11, . . . , xm1), . . . , F (x1n, . . . , xmn)) .
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Moreover, the functions F, G are strictly increasing
and continuous. The above equation is a particular
case of

F (G1(x11, . . . , x1n), . . . , Gm(xm1, . . . , xmn)) =

G (F1(x11, . . . , xm1), . . . , Fn(x1n, . . . , xmn)) .

2.4 Maksa’s theorem

Theorem 6 (Gy. Maksa, [6]) Let 1 < n ∈ N,
1 < m ∈ N, Xij be real intervals, Gi : X1i × · · · ×
Xmi → R, Gi(X1i × · · · ×Xmi) = Ii, Fj : Xj1 × · · · ×
Xjn → R, Fj(Xj1×· · ·×Xjn) = Jj , Gi, Fj ∈ CM for
i ∈ {1, . . . , n} and j∈{1, . . . ,m}, G :J1×· · ·× Jm→R,
F : I1 × · · · × In → R, and G, F ∈ CM . Suppose that

G(F1(x11, . . . , x1n), . . . , Fm(xm1, . . . , xmn))

= F (G1(x11, . . . , xm1), . . . , Gn(x1n, . . . , xmn))

holds for all xij ∈ Xij , i ∈ {1, . . . , n} and j ∈ {1, . . .
. . . ,m}. Then there exist a real interval I and CM
functions ϕ : I → R, αi : Ii → R, γj : Jj → R and
βji : Xji → R, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} such that

F (z1, . . . , zn) = ϕ−1

(
n∑

i=1

αi(zi)

)
,

(z1, . . . , zn) ∈ I1 × · · · × In,

G(y1, . . . , ym) = ϕ−1

(
m∑

i=1

γj(yj)

)
,

(y1, . . . , ym) ∈ J1 × · · · × Jm,

Fj(xj1, . . . , xjn) = γ−1
j

(
n∑

i=1

βji(xji

)
,

Gi(x1i, . . . , xmi) = α−1
i




m∑

j=1

βji(xji)




for xji ∈ Xji, i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}.

By the above we can proceed as follows.

• Fix A ∈ A and let (A,Ω \A) ∈ P(Ω).

• Consider the function F : I × I −→ R defined by

F (x1, x2) = M
(
x11A + x21Ω\A

)
, (x1, x2) ∈ I2.

F satisfies the bisymmetry equation, is continuous
and strictly increasing.

• Therefore, by Theorem of Aczél or Münnich –
Maksa – Mokken we get

F (x1, x2) = ϕ−1 (α1ϕ(x1) + α2ϕ(x2)) ,

for some strictly increasing function ϕ : I −→ R,
and some positive numbers αi, i = 1, 2 summing
up to 1.

• We define P (A) := α1. We have to check that

• P is well defined,

• P is additive.

2.5 P is well defined.

Suppose that

F (x, y) =

ϕ−1 (α1ϕ(x) + α2ϕ(y)) = ψ−1 (β1ψ(x) + β2ψ(y)) .

Denote γ = ψ ◦ ϕ−1. We get from the bisymmetry
equation

α1γ
−1 (β1γ(u11) + β2γ(u12)) +

α2γ
−1 (β1γ(u21) + β2γ(u22)) =

γ−1[β1γ (α1u11 + α2u21) +

β2γ (α1u12 + α2u22)]

or, denoting Aγ(u, v) = γ−1 (β1γ(u) + β2γ(u)) we ob-
tain

α1Aγ (u11, u12) + α2Aγ (u21, u22) =

Aγ (α1u11 + α2u21, α1u12 + α2u22) .

Let v = (u11, u12), w = (u21, u22). Then we may write

α1Aγ(v) + α2Aγ(w) = Aγ(α1v + α2w),

whence
Aγ(v) =< a|v > +b

for some a = (a1, a2) ∈ R2 and b ∈ R. In particular we
get

s = γ−1 (β1γ(s) + β2γ(s)) = (a1 + a2) s+ b,

for every s ∈ ϕ(I). Hence obviously a1 + a2 = 1
and b = 0. Moreover, since Aγ is increasing, we have
ai > 0, i = 1, 2. In particular

γ(a1s+ a2t) = β1γ(s) + β2γ(t),

and applying a trick used by Z. Daróczy and Zs. Páles
in [3] we see that

γ

(
s+ t

2

)
=
γ(s) + γ(t)

2
,

for all s, t ∈ ϕ(I). This yields

γ(s) = cs+ d

for some c > 0 and b ∈ R. Therefore, recalling defini-
tion of γ we get

ψ(u) = cϕ(u) + d,
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and subsequently

ϕ−1 (α1ϕ(u) + α2ϕ(v)) =

ψ−1 (β1ψ(u) + β2ψ(v)) =

ϕ−1

[
1

c
(β1 (cϕ(u) + d) + β2 (cϕ(v) + d))− d

]
=

ϕ−1 (β1ϕ(u) + β2ϕ(v)) .

It follows that αi = βi, i = 1, 2, and thus the definition
of P (A) is correct.

2.6 P is additive.

As to the additivity of P , consider the following two
partitions of Ω:

(A1, A2,Ω \ (A1 ∪A2))

and
(A1 ∪A2,Ω \ (A1 ∪A2))

for some disjoint sets A1, A2 ∈ A. Then for every
s, t ∈ I we have

M
(
s1A1 + s1A2 + t1Ω\(A1∪A2)

)
=

M
(
s1A1∪A2

+ t1Ω\(A1∪A2)

)
,

which yields

ϕ−1 (α1ϕ(s) + α2ϕ(s) + α3ϕ(t)) =

ϕ−1 ((α1 + α2)ϕ(s) + α3ϕ(t)) ,

for all s, t ∈ I. But this means that

P (A1 ∪A2) = P (A1) + P (A2),

or the required additivity of P .

We have proved that

M(y) = ϕ−1

(∫

Ω

(ϕ ◦ y)dP

)
, (1)

for any y ∈ Mfin. If the set Mfin is dense in a func-
tion space X (or at least any element of X can be ap-
proximated by a sequence fromMfin) then obviously,
due to continuity of M, ϕ, ϕ−1 and passing with lim
under the sign of

∫
, we get formula (1) for any y ∈ X.
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Summary

In this paper, we define the set of incompa-
rable elements with respect to the T -partial
order for any t-norm on a bounded lattice.
By means of the T -partial order, an equiv-
alence relation on the class of t-norms on
bounded lattice is defined and this equiva-
lence is deeply investigated. Lastly, we dis-
cuss some properties of this equivalence.

Keywords: Triangular norm; T -partial or-
der; Bounded lattice

1 INTRODUCTION

Triangular norms were originally studied in the frame-
work of probabilistic metric spaces [14, 15, 16] aiming
at an extension of the triangle inequality.

In [12], it was defined a natural order for semigroups.
Similarly, in [7], a partial order defined by means of
t-norms on a bounded lattice was introduced. For any
elements x, y of a bounded lattice L

x ≼T y :⇔ T (ℓ, y) = x for some ℓ ∈ L,

where T is a t-norm. This order ≼T is called a t-partial
order of T . Moreover, the authors have investigated
connections between the natural order ≤ on L and the
T -partial order ≼T on L.

In [7], it was obtained that ≼T implies the natural or-
der ≤ but its converse needs not be true. It was showed
that a partially ordered set is not a lattice with respect
to ≼T . It was determined some sets which are lattices
with respect to ≼T under some special conditions.

In [8], by means of the T -partial order, an equiva-
lence relation on the class of t-norms is given and the
equivalence classes linked to some special t-norms are
characterized.
In [6], an equivalence relation on the class of the norms

on [0, 1] was defined. It was showed that the equiva-
lence class of the weakest t-norm TD on [0, 1] contains
a t-norm which was different from TD.

In [1], with the help of any t-norm T on [0, 1], it
was obtained that the family (Tλ)λ∈(0,1) of t-norms on
[0, 1]. If T was a divisible t-norm, then it was obtained
that ([0, 1],≼Tλ

) was a lattice.

In the present paper, we introduce the set of incom-
parable elements with respect to the T -partial order
for any t-norm on a bounded lattice (L,≤, 0, 1). The
main aim is to investigate some properties of this set.
The paper is organized as follows. We shortly recall
some basic notions in Section 2. In Section 3, we define
the set of incomparable elements with respect to the
T -partial order for any t-norm on a bounded lattice
(L,≤, 0, 1) and we determine the sets of incomparable
elements w.r.t. T -partial order of the infimum t-norm
T∧ and the weakest t-norm TW . In Section 4, we define
an equivalence on the class of t-norms on a bounded
lattice (L,≤, 0, 1). We determine the equivalence class
of the infimum t-norm T∧ when L is a chain. Thus,
we obtain that, in the case of L = [0, 1], all continuous
t-norms are equivalent. Although, we give some ex-
amples illustrating that left-continuous t-norms need
not be equivalent, in general. We show by an example
that the left-continuity of any of the t-norms in the
equivalence class does not imply the left-continuity for
another t-norm in the equivalence class. In [1], it was
shown that “T1 and T2 are two t-norms on [0, 1] such

that for all x ∈ [0, 1], IT1

(x) = IT2

(x) if and only if the
t-norms T1 and T2 are equivalent under the relation
∼ in (2)”. In this study, by an example we show that
this proposition only provides a sufficient and not a
necessary condition for the relation βL in (4).
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2 NOTATIONS, DEFINITIONS
AND A REVIEW OF PREVIOUS
RESULTS

Definition 2.1 ([10]). A triangular norm (t-norm for
short) is a binary operation T on the unit interval [0, 1],
i.e., a function T : [0, 1]2 → [0, 1], such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:
(T1) T (x, y) = T (y, x) (commutativity)

(T2) T (x, T (y, z)) = T (T (x, y), z) (associativity)

(T3) T (x, y) ≤ T (x, z) whenever y ≤ z(monotonicity)

(T4) T (x, 1) = x (boundary condition)

Example 2.1 ([10]). The following are the four basic
t-norms TM , TP , TL, TD given by, respectively:

TM (x, y) = min(x, y)

TP (x, y) = x.y

TL(x, y) = max(x + y − 1, 0)

TD(x, y) =

{
0 if (x, y) ∈ [0, 1[2

min(x, y) otherwise

Also, t-norms on a bounded lattice (L,≤, 0, 1) are
defined in similar way, and then extremal t-norms T∧
and TW on L is defined as follows, respectively:
T∧(x, y) = x ∧ y

TW (x, y) =





x if y = 1
y if x = 1
0 otherwise

Especially we obtained that TW = TD and T∧ = TM

for L = [0, 1].

Definition 2.2 ([5]). A t-norm T on L is divisible if
the following conditions holds:

∀x, y ∈ L with x ≤ y there is a z ∈ L such that

x = T (y, z)

Proposition 2.1 ([4]). Let T be a t-norm on [0, 1]. T
is divisible if and only if T is continuous.

Definition 2.3 ([2]). Given a bounded lattice (L,≤
, 0, 1) and a, b ∈ L, if a and b are incomparable, in this
case we use the notation a ∥ b.

Definition 2.4 ([7]). Let (L,≤, 0, 1) be a bounded
lattice, T be a t-norm on L. The order defined as
following is called a T -partial order (triangular order)
for t-norm T .

x ≼T y :⇔ T (ℓ, y) = x for some ℓ ∈ L

Proposition 2.2 ([7]). Let (L,≤, 0, 1) be a bounded
lattice, T be a t-norm on L. Then the binary relation
≼T is a partial order on L.

Proposition 2.3 ([7]). Let T be a t-norm on a
bounded lattice (L,≤, 0, 1). Then, if x ≼T y neces-
sarily we have also x ≤ y.

Lemma 2.1 ([8]). Let (L,≤, 0, 1) be a bounded lattice.
For all t-norms on L and all x ∈ L it holds that 0 ≼T

x, x ≼T x and x ≼T 1.

Definition 2.5 ([8]). Let T be a t-norm on [0, 1] and
let KT be defined

KT = {x ∈ [0, 1] | for some y ∈ (0, 1)

[x ≤ y and x �T y] or [y ≤ x and y �T x]}

Definition 2.6 ([8]). Let (L,≤, 0, 1) be a given
bounded lattice. Define a relation ∼ on the class of
all t-norms on (L,≤, 0, 1) by T1 ∼ T2 if and only if the
T1-partial order coincides with the T2-partial order,
that is

T1 ∼ T2 : ⇔≼T1=≼T2 . (1)

Definition 2.7 ([6] ). Let ([0, 1],≤, 0, 1) be the unit
interval. Define a relation β on the class of all t-norms
on [0, 1] by T1βT2 if and only if the set of incomparable
elements with respect to the T1-partial order coincides
with the set of incomparable elements with respect to
the T2-partial order, that is

T1βT2 : ⇔ KT1 = KT2 . (2)

3 ABOUT THE SET KL
T ON ANY

BOUNDED LATTICE

In this section, we study on the set of all incomparable
elements with respect to the T partial order ≼T with
some t-norm T on a bounded lattice (L,≤, 0, 1).

Definition 3.1. Let T be a t-norm on a bounded
lattice (L,≤, 0, 1) and let KL

T be defined by

KL
T = {x ∈ L\{0, 1} | for some y ∈ L\{0, 1}

[x < y implies x �T y] or [y < x implies y �T x]

or x ∥ y}

If L = [0, 1], then it is trivial to see that KT = KL
T .

Note: It is obtained that KL
T ⊆ L\{0, 1} for any t-

norm T by Lemma 2.1.

Proposition 3.1. Let (L,≤, 0, 1) be a bounded lattice
and T be a t-norm on L. If there exist two elements
of L such that these are incomparable, then KL

T ̸= ∅.

Although the set KL
T ̸= ∅, it need not be the case that

elements in L are incomparable. Now, let us investi-
gate the following example.
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Example 3.1. Let T be a t-norm on [0, 1] and the
family (Tλ)λ∈(0,1) of t-norms be given by

Tλ(x, y) =

{
0 , T (x, y) ≤ λ and x, y ̸= 1

T (x, y) , otherwise

Observe that due to (Theorem 15 in [1]) the function
Tλ is a t-norm. Then we have that KTλ

= (0, 1), but
since L is a chain all elements are comparable.

Definition 3.2. Let (L,≤, 0, 1) be a bounded lattice.
The set IL is defined by

IL = {x ∈ L | ∃y ∈ L such that x ∥ y}

Note: Due to the definition of the set KL
T , it is ob-

tained that IL ⊆ KL
T for any t-norm T on L.

Lemma 3.1. Let (L,≤, 0, 1) be a bounded lattice. For
the weakest t-norm TW on L, KL

TW
= L\{0, 1}.

Proposition 3.2. Let (L,≤, 0, 1) be a bounded lattice.
For the infimum t-norm T∧ on L, KL

T∧ = IL.

Remark 3.1. The converse of Proposition 3.2 is not
be true. That is, T is a t-norm on L such that if
KL

T = IL, then need not be T = T∧. The previ-
ous proposition only provides a sufficient and not a
necessary condition for the equality KL

T = IL, as the
following example shows.

Example 3.2. Let L = {0, a, b, c, 1} and consider the
order ≤ on L as follows:

1

b

0

ca

Figure 1: The order ≤ on L

We put T = TW . In this case it is trivial that
KL

TW
= {a, b, c} and IL = {a, b, c}. So it is obtained

that KL
TW

= IL, but clearly T∧ ̸= TW .

Definition 3.3. Let T be a t-norm on (L,≤, 0, 1) and

let IL
T

(c)
for c ∈ L be defined by

IL
T

(c)
= {x ∈ L\{0, 1} | x is incomparable to c

according to ≼T }
Lemma 3.2. Let T be a t-norm on (L,≤, 0, 1). Then

KL
T =

∪
x∈L IL

T
(x)

.

Proposition 3.3. Let T1 and T2 be two t-norms on
a bounded lattice (L,≤, 0, 1). Then for all x ∈ L,

IL
T1

(x)
= IL

T2

(x)
if and only if the t-norms T1 and T2

are equivalent under ∼ in (2).

4 ABOUT AN EQUIVALENCE
RELATION ON THE CLASS OF
T-NORMS ON ANY BOUNDED
LATTICE

The above introduced the set KL
T on any bounded lat-

tice allows us to introduce the next equivalence rela-
tion on the class of all t-norms on (L,≤, 0, 1).

Definition 4.1. Let (L,≤, 0, 1) be a bounded lattice.
Define a relation βL on the class of all t-norms on
(L,≤, 0, 1) by T1βLT2 if and only if

T1βLT2 :⇔ KL
T1

= KL
T2

(3)

If L = [0, 1], then it is trivial to see that βL = β, β in
(3). The next result is obvious.

Lemma 4.1. The relation βL given in Definition 4.1
is an equivalence relation.

Definition 4.2. For a given t-norm T on a bounded
lattice (L,≤, 0, 1), we denote by T the βL equivalence
class linked to T , i.e.,

T = {T ′ | T ′ is a t − norm on L and KL
T = KL

T ′}

In [8], it was shown that an equivalence class of the
infimum t-norm T∧ on L under the relation ∼ in (2)
is the set of all divisible t-norms on L. But according
to the relation βL in (4), an equivalence class of the
infimum t-norm T∧ on L is not the set of all divisible
t-norms on L. To illustrate this claim we shall give
the following example.

Example 4.1. Consider the bounded lattice (L,≤
, 0, 1) with L = {0, a, b, c, 1} as shown in Figure 2.

0

c

1

a

b

Figure 2: The order ≤ on L

We consider T∧ and TW t-norms on L. It is trivial
that KL

T∧ = {a, b, c} and KL
TW

= {a, b, c}. So we have

that KL
T∧ = KL

TW
. By the definition of the relation

βL in (4), the t-norms T∧ and TW are equivalent, i.e.,
T∧βLTW . But the weakest t-norm TW is not divisible
t-norm on L.

Naturally, one can think when an equivalence class of
the infimum t-norm T∧ on L under the relation βL

in (4), is the set of all divisible t-norms on L. As an
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answer to this question, let us investigate the following
Proposition.

Proposition 4.1. If L is a chain, then an equivalence
class of the infimum t-norm T∧ on L under the relation
βL in (4), is the set of all divisible t-norms on L.

Corollary 4.1. The equivalence class of the minimum
t-norm TM on [0, 1] according to the relation βL in (4),
is the set of all divisible t-norms on [0, 1].

Corollary 4.2. The equivalence class of the minimum
t-norm TM on [0, 1] according to the relation βL in
(4), is the set of all continuous t-norms on [0, 1] by
Proposition 2.1.

Remark 4.1. In Corollary 4.2, we have shown that
any two continuous t-norms on [0, 1] = L are equiva-
lent under the relation βL in (4). Naturally, one can
think whether any two left-continuous t-norms are in
the same equivalence class, i.e, any two left-continuous
t-norms are equivalent under the relation βL in (4). To
illustrate that two left-continuous t-norms may not be
equivalent under the relation βL in (4) we shall give
the following example.

Example 4.2. Consider the t-norms on [0, 1] defined
as follows:

TnM (x, y) =

{
0 , if x + y ≤ 1

min(x, y) , otherwise

and

T4(x, y) =





min(x, y) , if max(x, y) ∈ ( 3
4 , 1]

1
4 , if x, y ∈ ( 1

4 , 3
4 ]

0 , otherwise

TnM and T4 are left continuous t-norms [11]. But since
KT nM = (0, 1) and KT4 = (0, 3

4 ], the t-norms TnM and
T4 are not equivalent under βL in (4).

Remark 4.2. One may ask whether any t-norm
equivalent to a left continuous t-norm needs to be left-
continuous, too. The following example shows that
also this need not.

Example 4.3. Let T ⋆ be a function on [0, 1] defined
by

T ⋆(x, y) =

{
1
2 , if x, y = 1

2

TnM (x, y) , otherwise

The function T ⋆ is a t-norm by [10]. We will show that
this t-norm is equivalent to the left-continuous t-norm
TnM , but T ⋆ is not left continuous t-norm.

Proposition 3.3 gives a sufficient and necessary condi-
tion for the t-norms T1 and T2 are equivalent under the
relation ∼ in (2). But the following Proposition only
provides a sufficient and not a necessary condition for
the relation βL in (4).

Proposition 4.2. Let T1 and T2 be two t-norms on

(L,≤, 0, 1). If for all x ∈ [0, 1], IL
T1

(x)
= IL

T2

(x)
, then

the t-norms T1 and T2 are equivalent under βL in (4).

Remark 4.3. The converse of Proposition 4.2 is not
be true. Here is an example illustrating the case that
need not be true.

Example 4.4. Consider the t-norm T : [0, 1]2 → [0, 1]
defined by

T (x, y) =

{
xy
2 , if (x, y) ∈ [0, 1)2

min(x, y) , otherwise

and the t-norm TD on [0, 1]. Then, KT = KTD by [8].
The t-norms T and TD are equivalent under βL in (4)
and we obtained that,

a) a1) IT
(x) = {y ∈ (0, 1) | y ∈ [x

2 , 2x] and x ̸= y}
for x ∈ (0, 1

2 )
and

a2) IT
(x) = {y ∈ (0, 1) | y ∈ [x

2 , 1) and x ̸= y}
for x ∈ [12 , 1)

b) ITD

(x) = {y ∈ (0, 1) | x ̸= y} for x ∈ (0, 1)

5 CONCLUSIONS

We have defined the set of incomparable elements with
respect to the T -partial order for any t-norm on a
bounded lattice (L,≤, 0, 1). Also we have introduced
and studied an equivalence relation βL in (4) defined
on the class of all t-norms on L. We have shown any
two continuous t-norms on [0, 1] are equivalent by the
introduced equivalence relation. As shown by exam-
ples, all left-continuous t-norms on [0, 1] do not form
an equivalence class in our approach. Further that we
have shown when an equivalence class of the infimum
t-norm T∧ on L, is the set of all divisible t-norms on
L.
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Summary

In this paper we develop a data-driven
weight learning method for weighted quasi-
arithmetic means where the observed data
may vary in dimension.
Keywords: Aggregation functions, R-
stability, linear programming, weights learn-
ing

1 INTRODUCTION

A fundamental problem in data analysis is to deter-
mine the influence of variable inputs on an observed
output, however with real world data we acknowledge
that sometimes the dimension of data to be processed
cannot be fully fixed in advance (for example, some ex-
pected data might be lost or corrupted, but also some
unexpected data might arrive).

We assume the existence of a modelling function f :
<n → <, where f depends on a vector of weight-
ing parameters w and fw(x) = y. In the case of
the classical weighted arithmetic mean, y is modeled
as a linear combination of the inputs, i.e. f(x) =
w1x1+w2x2+. . .+wnxn,

∑n
i=1 wi = 1 and each weight

wi reflects the importance of the i-th contributing vari-
able. Learning the weighting vector also allows us to
predict the output for unobserved input vectors. In
some situations however, rather than being dependent
on n values, the dimension of x may vary. In practice,
y may be a function of multiple input sensors, some
of which are turned off or unaccessible at given times,
or in multi-criteria decision making, some observable
inputs may be missing.

The idea of stability (or L-stability, R-stability, LR-
stability) has been proposed for aggregating data of
varying dimension in a consistent way [18, 4], e.g. if

we have a weighted mean given by y = 0.6x1 + 0.4x2
when n = 2, then it would not usually make sense if we
extend this function to 3 variables with y expressed as
y = 0.1x1 + 0.3x2 + 0.6x3, as this now implies that the
first variable is less important than the second. It was
established in [8, 18] that for weighting vectors of n
and (n− 1) dimensions, R-stability, i.e. stability with
respect to adding a new input in the n-th position,
requires:

wni = (1− wnn) · wn−1
i , i = 1, . . . , n− 1, (1)

where wni denotes the i-th weight of the n-dimensional
weighting vector.

In this paper, we consider the problem of learning sta-
ble weighting vectors satisfying this property from ob-
served data.

We will set out the article as follows. We first give
an overview of aggregation functions and stability, as
well as some existing approaches to learning weight-
ing vectors using linear programming techniques. In
Section 3, we look at how weights can be learnt for
data of different dimension, provided we have access
to observed values y. In Section 4, we run some exper-
iments to demonstrate the usefulness of the method,
while in Section 5 we summarize with some discussion
and directions for further research.

2 PRELIMINARIES

This contribution applies weight learning techniques
in order to learn aggregation function tuples whose
weights are stable. As well as providing an overview
of aggregation functions, in this section we will also
recall some results concerning the concept of aggrega-
tion stability and the least absolution deviation fitting
method.

Proceedings of 8th International Summer School on Aggregation Operators (AGOP 2015)

ISBN: 978–83–8012–519–3 49



2.1 AGGREGATION FUNCTIONS

Aggregation functions are core to many decision pro-
cesses, providing a representative output from an n-
dimensional input vector. Overviews of their prop-
erties and some fundamental results can be found in
[5, 15, 21] (also see [2, 7, 9, 13]).

Definition 1 An aggregation function A : [0, 1]n →
[0, 1] is a function increasing in each argument and
satisfying A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Here we are interested particularly in aggregation
functions that are averaging, i.e. that their inputs are
bounded such that for all x ∈ [0, 1]n,

min(x) ≤ A(x) ≤ max(x).

An aggregation functions that generalizes a number of
important families is the quasi-arithmetic mean. We
provide the following definition.

Definition 2 For a strictly monotone continuous
generating function1 g : [0, 1] → [−∞,∞] and weight-

ing vector w such that wi ∈ [0, 1] and
n∑
i=1

wi = 1, the

weighted quasi-arithmetic mean is given by,

QAMw(x) = g−1

(
n∑

i=1

wig(xi)

)
. (2)

Special cases include weighted arithmetic means
(WAM)

∑n
i=1 wixi, where g(t) = t, weighted power

means (
∑n
i=1 wix

p
i )

1
p , where g(t) = tp and weighted

geometric means G(x) =
∏n
i=1 x

wi
i if g(t) = − ln t.

The weights wi are usually non-negative and sum to
one.

2.2 R-STABLE WEIGHTING VECTORS

The idea of strict stability represents a kind of con-
sistency in the aggregation process when aggregation
families are defined for varying dimension. Rojas et al.
proposed the following conditions in [18], using Yager’s
self-identity property [22] as their basis.

Definition 3 Let {An : [0, 1]n → [0, 1], n ∈ N} be a
family of aggregation functions. Then it is said that:

1. {An}n is R-strictly stable if
An(x1, x2, . . . , xn−1, An−1(x1, x2, . . . , xn−1)) co-
incides with An−1(x1, x2, . . . , xn−1).

1See [5] for more information regarding the choice of
generators and their construction. Where g(0) or g(1) ap-
proach ±∞, special care needs to be taken in calculation
with the convention 0 · ∞ = 0 usually adopted. Methods
also exist for using non-continuous and non-strict genera-
tors.

2. {An}n is L-strictly stable if
An(An−1(x1, x2, . . . , xn−1), x1, x2, . . . , xn−1) co-
incides with An−1(x1, x2, . . . , xn−1)

3. {An}n is LR-strictly stable if both properties hold
simultaneously.

The idea that a subset of values can be replaced by
their mean with no effect on the overall output for
quasi-arithmetic means has been well established for
almost a century, e.g. see [1] and the references con-
tained therein. More recently, results have been estab-
lished in [4, 18]. In particular, the geometric means
and arithmetic means with respect to a weighting vec-
tor with equal weights are considered LR-strictly sta-
ble, as too are the maximum, minimum, and median.

For weighted versions of these operators, strict stabil-
ity is dependent on the choice of weights. The basis
result regarding the weights lies in the following propo-
sition.

Proposition 1 Let wn ∈ [0, 1]n, n ∈ N be a sequence

of weighting vectors such that
n∑
i=1

wni = 1 holds ∀n ≥ 2.

Then, the family of weighted means defined by these
weights is R-strictly stable if and only if the weighting
property described by Eq. (1) holds.

Analogous results hold for the additional input being
included in the 1st position or j-th position [4], since
in most cases it is not important where the new in-
put is placed as long as the relationship holds between
corresponding inputs as the arity is increased. It is
more complicated for functions such as the ordered
weighted averaging operator because we cannot gener-
ally predict where the output of An−1 would be placed
when the inputs are reordered. In this paper we will
contain ourselves to functions which do not involve a
reordering step.

2.3 LEARNING WEIGHTS USING
LINEAR PROGRAMMING

In order to analyze the data set and learn weights, we
can use linear programming techniques based on the
minimization of the least absolute deviation (LAD)
of residuals [3, 6]. In the standard case for weight
learning, we have a function fw which is dependent on
w, and a set of observed values yk which we want the
function to predict once we know its parameters. So
we have

Minimize

K∑

k=1

∣∣fw(xk)− yk
∣∣, (3)

subject to any desired constraints.
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The advantage of minimizing the least absolute de-
viation rather than a least-squares approach is that
we convert it into a linear program, and further, the
output set of weights should be less sensitive to out-
liers or extreme data. We represent the absolute
differences between the predicted and observed out-
put values in terms their positive and negative parts,
i.e. rk = |fw(x)k − yk| = r+k + r−k . For each ob-
served input/output pair (xk1, xk2, ..., xkn, yk), one of
the r+k , r

−
k will be zero.

The weight learning can then be performed with the
objective of minimizing the residuals with the follow-
ing program.

Minimize
w

K∑

k=1

r+k + r−k , (4)

s.t. fw(xk)− r+k + r−k = yk, k = 1, . . . ,K,

w1 + w2 + . . .+ wn = 1,

r+k , r
−
k ≥ 0,

wi ≥ 0, i = 1, . . . , n.

The weights for quasi-arithmetic means, including all
their special cases, can be fit in the same manner with
generator transformations to the observed data.

3 LEARNING STABLE WEIGHTS
WITH MISSING INPUT DATA

The problem of varying dimension or missing data is
common in machine learning and classification with
real datasets, e.g. see [11]. New information pertain-
ing to a particular dataset may become available, in-
troducing new variables that are not observable for
the previously collected data. In some cases, it may
be found after the collection phase that some measure-
ments were extremely unreliable, making them useless,
or it may simply be that some variables are not rele-
vant for particular instances. The two standard ways
to approach such situations are:

• to make the data uniform by removing all data
relating to variables that have not been measured
across the dataset;

• to assign a neutral or default value for that par-
ticular variable when it is missing.

The latter case is often preferable, since otherwise we
may lose a lot of information that could be useful for
the task at hand, however it may not always be pos-
sible to assign a ‘neutral’ value. We consider the fol-
lowing example scenario.

Example 1 (Stable student evaluation)
Students competing for a scholarship are evalu-
ated against 4 criteria: exam marks (40 %), interview
(30%), application letter (10%) and 1 written ref-
erence (20%). Due to unforseen circumstances,
however, the decision needs to be made earlier than
anticipated and the reference for many students is
yet to arrive. In order to be as fair as possible,
students with all data available have their scores
aggregated with respect to the full weighting vector
w4 = (0.4, 0.3, 0.1, 0.2), while for those students with a
missing reference, a stable weighting vector is defined,
consistent with Eq. (1) such that w3

i = w4
i /(1 − 0.2).

This gives w3 = (0.5, 0.375, 0.125).

While the results of stability are useful for defining
weighting vectors that are stable or ‘consistent’ across
varying dimensions, we now turn to the problem of
learning such families of weighting vectors when we
only have the observed input/output data and don’t
know the relative importance of each input. Example
2 follows from Example 1.

Example 2 (Learning stable weights) The schol-
arship assessment panel is unconvinced that the pro-
portional importance allocated to the criteria properly
reflects the students’ potential. After the first year,
they have performance data available for all the can-
didates, along with the data used to award the schol-
arships (since the late references were not used, their
score data is still unavailable). An example of such
data is given in Table 1.

Table 1: Scholarship and performance scores with data
missing for some students

Student s1 s2 s3 s4 s5
Exam (x1) 0.5 0.6 0.2 0.5 0.7
Interview (x2) 0.8 0.3 0.7 0.9 0.8
App. Letter (x3) 0.4 0.6 0.1 0.3 0.7
Reference (x4) - 0.6 0.4 - -
Performance (y) 0.51 0.63 0.62 0.71 0.78

The problem is now to learn both a 3- and 4-
dimensional weighting vector (stable with respect to
one another) from the dataset in order to approximate
the importance of each criteria in assessing the aca-
demic potential of each student.

In the following section we develop our approach for
addressing this problem. We note that learning para-
maters for aggregating data of varying dimension has
previously been considered in [16], while aggregation
with missing data has been more recently considered
in [19, 10, 12].
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3.1 FRAMING STABLE WEIGHT
LEARNING AS A BILEVEL
OPTIMIZATION PROBLEM

Suppose we wish to learn a weighted quasi-arithmetic
mean that best fits the data of the form in Table 1.
We note that we are essentially required to learn 7 pa-
rameters, i.e. the aggregation weights that best model
the output y as a function of the respective 3- and
4-dimensional input vectors. If we learn w3 and w4

separately, the weights may not satisfy Eq. (1) and
therefore could not be considered stable - in this case,
they would give conflicting approximations of the im-
portance for each criterion. It would also result in
fewer data with respect to the number of variables we
need to learn. Lastly, the relationship in Eq. (1) is
not linear with respect to the weights and therefore
could not be incorporated into a simple optimization
algorithm.

We therefore consider the problem as the following
bilevel optimization problem.

Minimize
α,wn−1

J∑

j=1

∣∣fw(xj)− yj
∣∣+

K∑

k=1

∣∣fw(xk)− yk
∣∣

where α = (1−wnn), J and K represent the number of
observed data of n− 1 and n dimensions respectively,
and xj ∈ [0, 1]n−1 and xk ∈ [0, 1]n.

In the case of fitting quasi-arithmetic means, for fixed
α, we can still minimize with respect to the same ob-
jective as in (4) and sum the residuals, however we
impose the following constraints.

For xj ∈ [0, 1]n−1, we have

(
n−1∑

i=1

wig(xji)

)
− r+j + r−j = g(yj), (5)

then for xk ∈ [0, 1]n, we can use Eq. (1) and our α,
giving us,

α

(
n−1∑

i=1

wig(xki)

)
+wng(xkn)−r+k +r−k = g(yk). (6)

Since α is a scalar, these constraints remain linear with
respect to wn−1. We remind that wn is obtained di-
rectly from α and hence is also a fixed constant in this
step of the minimization process. We then only require
the constraints such that the weights in wn−1 sum to
1 and the residuals are nonnegative.

3.2 IMPLEMENTATION

We implemented the approach in R [17], adapting ex-
isting libraries we had created for least absolute devi-

ation fitting2.

From a dataset with the structure given in Table 1,
we first build the left hand side of the constraints ar-
ray, comprising the entries g(xki) for each instance k
and i = 1, . . . , n − 1 and coefficients of -1 or 1 for
the residuals. There is also a row for constraining the
sum of weights. We note that these are not depen-
dent on α. For each given α, we then construct the
right hand side of the constraints matrix, with entries
g(yk) − (1 − α) · g(xkn), while the right-hand side for
the weights sum is set to α. We note that while this
is equivalent to implementing Eqs. (5)-(6), it means
that we do not need to keep on rebuilding the left hand
side for each α and this can simply be stored in mem-
ory. We used the one-dimensional Brent method for
optimization which is available as part of the standard
optim function in R and also allows the setting of lower
and upper bounds (in our case 0 ≤ α ≤ 1).

4 EXPERIMENTS

Here we provide some experimental results to demon-
strate the usefulness of our stable-weight learning ap-
proach.

4.1 GENERATED DATASETS

For each run of the experiment, we first set the fifth
weight to a predefined value w5 and randomly gen-
erated the remaining 4 weights along with 50 random
n-dimensional input vectors. We then calculated the y
values based on the weighting vector and added Guas-
sian noise with a mean of 0 and standard deviation of
0.05. We split the data into 25 training and 25 test
data and removed a number of the n-th entries from
0% to 90% in increments of 10% from both datasets.

We compared 3 potential approaches to dealing with
such a dataset:

1 To remove the variable that has missing informa-
tion for some entries;

2 To remove all instances with incomplete informa-
tion;

3 To use the stable weight learning techniques de-
scribed in the previous section so that all in-
stances can be used in both training and testing.

We note that with the first method, the training
dataset will be smaller, discounting any of the 25 train-
ing data with missing information from the learning

2As with the implementation of the optimization proce-
dure described here, the experimental method is also avail-
able from http://aggregationfunctions.wordpress.com.
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Table 2: Average overall error in predicting test data
with increasing percentage of missing data.

% missing method 1 method 2 method 3
0 0.141 0.045 0.044
10 0.142 0.053 0.052
20 0.145 0.065 0.064
30 0.142 0.077 0.075
40 0.143 0.086 0.088
50 0.142 0.094 0.094
60 0.143 0.111 0.107
70 0.141 0.123 0.116
80 0.146 0.144 0.134
90 0.144 0.165 0.137

Table 3: Average overall error in predicting test data
with increasing weight to variable with missing entries

fixed w5 method 1 method 2 method 3
0 0.045 0.055 0.046

0.1 0.052 0.056 0.049
0.2 0.074 0.065 0.059
0.3 0.098 0.076 0.070
0.4 0.126 0.088 0.086
0.5 0.145 0.097 0.094
0.6 0.179 0.112 0.110
0.7 0.208 0.122 0.120
0.8 0.237 0.138 0.133
0.9 0.265 0.153 0.143

algorithm. For the test data, however, we used the fit-
ted n-dimensional vector and then determined a stable
(n − 1)-dimensional weighting vector for the vectors
with missing entries.

4.2 RESULTS

The artificial set simulates a well-behaving dataset
where the data vary in dimension because informa-
tion about a contributing variable is missing. In this
case, the variable is independent of any of the other
contributing inputs and so there is no perfect solution
to dealing with the data we have. The purpose of the
experiments is hence to demonstrate the usefulness of
the approach as a reasonable solution in this scenario.

In some contexts, however, a missing input may not
necessarily represent ignorance about a contributing
variable, and rather the output may depend on in-
put vectors which differ in dimension by construction.
For example, we might consider a nearest-neighbor ap-
proximation method where we include only neighbours
within a given distance of the point we are approximat-
ing. In such cases, the ‘missing’ input is less likely to
be affecting the output. Alternatively, we can think
of aggregating the citations data of a journal or re-
searcher over a given timeframe [20]. With our arti-
ficial dataset however, we chose not to generate data
in this way as it would clearly bias the method of ob-
taining stable weighting vectors.

As would be expected, the method of leaving out the
variable with missing entries has worse error as the im-
portance of the missing variable increases. It is unaf-
fected by changes in the number of missing data (since

it treats the dataset as if all of the entries are missing).
This relationship can be seen clearly in Tables 2-3.

The average error associated with removing the miss-
ing entries as opposed to stable fitting is quite simi-
lar. We could assume that the increase in error with
method 2 mainly revolves around the calculation of the
output associated with 4-dimensional outputs - since
on average, the learned weighting vector should be
close to the true vector. As the number of missing data
increases, however, the training data set gets smaller,
which in turn is likely to affect the accuracy. We note
that in one case, with 90% of the data with a missing
value and w5 = 0.9, this method failed to generate a
model3. Error for method 3, however, can arise in the
actual fitting process, since the 4-dimensional training
data have an output that was actually calculated us-
ing the missing variable. The advantage then, is that
it is still able to use the entire training set to generate
the weights. This is perhaps why it performs slightly
better as the number of missing data gets larger. Com-
parisons of the average error can be seen in Figs. 1-2
and Tables 2-3.

Figure 1: Average absolute error where data is fit by
removing any training data with missing entries (left)
and using proposed method (right) over 10 randomly
generated datasets with w5 and the percentage of x5
entries removed.

5 CONCLUSION

We have developed and demonstrated a method for
learning stable weighting vectors for datasets which
have some data missing with respect to one of the vari-
ables. We conducted some experiments with artificial
datasets to show that the method performs at least as
reliably as other potential approaches to dealing with
missing data pertaining to an independent variable.
The method can obviously be extended to the prob-
lem of missing data pertaining to 2 or more variables,
however with too many incomplete variables, the run-
time may become impractical.

Future research for learning stable weights with miss-

3The error reported for this is hence the average of the
9 other tests.
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ing data should take into account cases where the posi-
tion of missing data cannot be imposed (see, e.g., [14],
where a first attempt was proposed in terms of differ-
ent variations of stability). Moreover, the search for
efficient ways of dealing with missing data should be
associated to the implementation with real datasets.
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[11] J. Dujmović, G. D. Tré, N. Singh, D. Tomasevich,
and R. Yokoohji. Soft computing models in on-
line real estate. In M. Jamshidi, V. Kreinovich,

and J. Kacprzyk, editors, Advance Trends in Soft
Computing, WCSC 2013, Studies in Fuzziness
and Soft Computing 312, pages 77–91. Springer,
2013.
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Summary

The generalized condition of convexity was
proposed by Aumann in 1933 for functions on
intervals. It is convexity with respect to ar-
bitrary binary means M and N (abbreviated
to MN−convexity). We apply the Aumann
condition with aggregation functions M,N
and discuss MN−convex (MN−concave)
functions on complete lattices. We will ex-
amine aggregations of such convex functions
using binary aggregation functions.

Keywords: Convex function, Mean,
MN−convexity, MN−concavity, Aggrega-
tion function, Lattice.

1 INTRODUCTION

The notion of convex functions was introduced in
1905 by Jensen [15]. Then the condition of convex-
ity was generalized by many authors (cf. for ex-
ample [21]). The most general condition of convex-
ity, MN−convexity and M−convexity with respect
to arbitrary means M and N, was proposed in 1933
by Aumann [2]. Recently Krassowska [18] examined
MN−convexity for arbitrary binary operations M
and N and also other authors have dealt with con-
vexity proposed by Aumann [4]. We will consider
MN−convexity with binary aggregation functions M
and N .

For the aggregation functions defined on the intervals
of the real line (cf. [7], [3], [26]) the more general
setting was proposed for some types of aggregation
functions, e.g. means on ordered sets [22], triangu-
lar norms on product lattices [8], triangular norms on
partially ordered sets [27], OWA operators on com-
plete lattices [20]. Specific problems for aggregation

functions and their special types, were also considered,
e.g. decomposability of triangular norms on product
lattices [14], distributivity of triangular norms on com-
plete lattices [16] and extensions of triangular norms
on bounded lattices [24]. Aggregation functions on
bounded partially ordered sets were considered by [9]
and classification of such aggregation functions was
presented in [17]. There was also many papers dealing
with aggregation functions on some special kinds of
lattices (c.f. for example [10] for uninorms in interval-
valued fuzzy set theory).

The aim of this paper is to consider the notion of
MN−convexity (MN−concavity) with respect to ag-
gregation functions M , N on a complete lattice L and
to discuss aggregation of such convex functions with
proposing conditions guaranteeing preservation of such
generalized convexity properties. Firstly, we put defi-
nition of an aggregation function and a mean and recall
the most popular examples and families of means (Sec-
tion 2). We also present (Section 3) some results on
dominance between operations [25], [23] on partially
ordered sets and lattices (cf. [11]). Then, the notion
of MN−convex functions is presented (Section 4) and
diverse operations on MN−convex functions are dis-
cussed with the problem of preservation of such con-
vexity (Sections 5 and 6).

2 BINARY AGGREGATIONS

Throughout the paper we assume that (P,6) is a par-
tially ordered set (a poset for short) and (L,∨,∧) is
a lattice (where necessary additional assumptions will
be pointed out) where ∨,∧ are the supremum and in-
fimum, respectively. In this paper, D will denote the
order interval in P (independently of its type: closed,
open, etc.). Concerning notions from lattice theory we
follow Birkhoff [5]. In a bounded lattice L we use the
notation: 1 = supL, 0 = inf L.

In the literature there are diverse definitions of aggre-
gation functions (cf. [7]). Aggregations on ordered
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sets were considered in [9], [17]. We follow the con-
cept of an aggregation function presented in [13]. To
simplify the notations, we consider binary aggregation
functions only.

Definition 1 (cf. [13]). Let L be a complete lattice
and D ⊂ L,D 6= ∅ be an interval. An aggregation
function in D is a function M : D2 → D which is
isotone, i.e. for any x1, x2, y1, y2 ∈ D:

x1 6 y1, x2 6 y2 ⇒M(x1, x2) 6M(y1, y2), (1)

and fulfils boundary conditions

inf
x,y∈D

M(x, y) = inf D, sup
x,y∈D

M(x, y) = supD. (2)

A function M : D2 → D is called a mean in D if

x ∧ y 6M(x, y) 6 x ∨ y, x, y ∈ D. (3)

Corollary 1. If a function M : D2 → D is isotone
and idempotent, then property (3) is fulfilled (cf. [7],
p. 10). Directly from condition (3) we see that every
mean is idempotent.

However, the Lehmer mean M(x, y) = (x2+y2)/(x+y)
in the lattice ((0,∞),max,min) is not isotone (cf. [21],
pp. 1-2). So there exist means which are not aggrega-
tion functions. And vice versa, there exist aggregation
functions which are not means, for example product
operation · in the lattice ([0, 1],max,min).

Definition 2. Let us consider lattice (R,max,min),
D ⊂ R. An aggregation function M is called homoge-
neous if M(tx, ty) = tM(x, y) for t, x, y ∈ D.
An aggregation function M is called symmetric if
M(x, y) = M(y, x), x, y ∈ D.

Example 1 (cf. [12]). Projections P1(x, y) = x,
P2(x, y) = y for x, y ∈ D and lattice operations ∨
and ∧ are aggregation functions and means on any D.
The most known examples of means (which are also
aggregation functions) in the lattice ((0,∞),max,min)
are arithmetic mean A, geometric mean G, harmonic
mean H, quadratic mean Q, logarithmic mean Mlog,
where

A(x, y) =
x+ y

2
, G(x, y) =

√
xy, H(x, y) =

2xy

x+ y
,

Q(x, y) =

√
x2 + y2

2
, Mlog(x, y) =

{
x−y

logx−logy , x 6= y

x, x = y

for x, y ∈ (0,∞).

All the above means are symmetric. Using λ ∈ [0, 1]
one considers weighted means

Wλ(x, y) = λx+ (1− λ)y, x, y ∈ (0,∞),

which are nonsymmetric for λ 6= 1
2 . In particular,

W1(x, y) = P1(x, y) = x, W0(x, y) = P2(x, y) = y,

where x, y ∈ (0,∞). We may also consider weighted
geometric means Gλ for λ ∈ [0, 1], where

Gλ(x, y) = xλ · y(1−λ), x, y ∈ (0,∞). (4)

Example 2 (cf. [1], p. 287). Typical examples of
means in the lattice ((0,∞),max,min) are quasi-linear
means

M(x, y) = ϕ−1(λϕ(x) + (1− λ)ϕ(y)), x, y ∈ (0,∞),

where λ ∈ (0,∞) and ϕ : (0,∞) → R is a continuous
and strictly monotonic function. If λ = 1

2 , then we
obtain quasi-arithmetic means. Special case of these
means are power means with ϕ(x) = xp which are
denoted by Ap, where p ∈ R,

Ap(x, y) =





(
xp+yp

2

) 1
p

, p 6= 0

G(x, y), p = 0
, x, y ∈ (0,∞). (5)

Example 3. Addition + is an aggregation function
in the lattice (R,max,min). Multiplication · is an ag-
gregation function in the lattices ((0,∞),max,min) or
([0, 1],max,min).

Example 4. Let be given a lattice ([0,∞),max,min).
Since isotone functions in D = [0,∞), f : D → D,
form a lattice, composition of functions K(f, g) = f ◦g
is an aggregation function in the given lattice of isotone
functions.

3 RELATION OF DOMINANCE

We may consider a relation of dominance between bi-
nary aggregations.

Definition 3 ([25], Definition 12.7.2). Let F,G :
D2 → D. Operation F dominates operation G
(F � G), if for any a, b, c, d ∈ D

F (G(a, b), G(c, d)) > G(F (a, c), F (b, d)). (6)

The standard example of dominance property gives the
Minkowski inequality for a, b, c, d > 0 and p > 1 (cf.
[6], p. 147):

(ap + bp)1/p + (cp + dp)1/p > ((a+ c)p + (b+ d)p)1/p,

which means that addition dominates binary opera-
tions Bp for p > 1, where

Bp(x, y) = (xp + yp)1/p, x, y ∈ D.

Similarly, Bp dominates addition for p 6 1, p 6= 0. In
virtue of the Minkowski inequality we obtain
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Lemma 1 ([11], Theorem 8). Let p, q ∈ R. If p 6 q,
then Ap � Aq.

In particular

Corollary 2. If p 6 1, then Ap � +. If p > 1, then
+� Ap (cf. Example 2) in lattice ((0,∞),max,min).

Proof. Let a, b, c, d ∈ (0,∞). Since Ap � A for p 6 1,
we get

Ap(
a+ b

2
,
c+ d

2
) > Ap(a, c) +Ap(b, d)

2
.

Moreover, means Ap are homogeneous, so

Ap(a+ b, c+ d) = 2 · 1

2
·Ap(a+ b, c+ d) =

2 ·Ap(
a+ b

2
,
c+ d

2
) > Ap(a, c) +Ap(b, d).

As a result Ap � +. The proof of the second state-
ment is similar.

Example 5. Let a, b ∈ D. If F ≡ a,G ≡ b (constant
operations), then

F � G⇔ a > b.

Here dominance appears only in the case of compara-
bility.

Lemma 2. Let F : D2 → D be isotone. Then ∧ � F ,
F � ∨, so for a, b, c, d ∈ D ⊂ P we have, respectively

F (a, b) ∧ F (c, d) > F (a ∧ c, b ∧ d), (7)

F (a ∨ b, c ∨ d) > F (a, c) ∨ F (b, d). (8)

Proof. Let a, b, c, d ∈ D ⊂ P . a ∧ c 6 a and a ∧ c 6 c.
Moreover, b∧ d 6 b and b∧ d 6 d. By monotonicity of
F one has F (a∧c, b∧d) 6 F (a, b) and F (a∧c, b∧d) 6
F (c, d), so by the properties of infimum ∧ condition
(7) follows immediately. The second property may be
proven analogically.

Since lattice operations are isotone, we get

Corollary 3. For lattice operations supremum ∨ (in-
fimum ∧) we have

∧ � ∧, ∨ � ∨, ∧ � ∨.

Example 6. Let us consider lattice
((0,∞),max,min). The weighted geometric means
Gλ dominate the product function · (cf. [23], Exam-
ple 5.2). Additionally, it is easy to check that · � Gλ,
especially · � G.

Example 7. It is easy to check that the weighted
arithmetic means Wλ dominate + and vice versa, op-
eration + dominates Wλ.

4 MN−CONVEXITY

We are discussing MN−convexity introduced by Au-
mann with respect to binary aggregation functions
M,N defined on a poset P .

Definition 4 (cf. [2], [18]). A function f : D → D is
called MN−convex with respect to aggregations M ,
N if

f(M(x, y)) 6 N(f(x), f(y)), x, y ∈ D.

Similarly, f is MN−concave if

f(M(x, y)) > N(f(x), f(y)), x, y ∈ D.

In the case M = N we say about M−convexity
(M−concavity) instead of MM−convexity
(MM−concavity).

Example 8. Let f, g : (0,∞)→ (0,∞). As particular
cases of Definition 4 we get for x, y ∈ (0,∞) (cf. for
example [21], Chapter 2):
AA−convexity (AA−concavity) known as Jensen one

f(
x+ y

2
) 6 f(x) + f(y)

2
, g(

x+ y

2
) > g(x) + g(y)

2
,

AG−convexity (AG−concavity) known as logarithmic
one

f(
x+ y

2
) 6

√
f(x)f(y), g(

x+ y

2
) >

√
g(x)g(y),

GG−convexity (GG−concavity) known as geometric
one

f(
√
xy) 6

√
f(x)f(y), g(

√
xy) >

√
g(x)g(y),

Amax−convexity known as quasi-convexity

f(
x+ y

2
) 6 max(f(x), f(y)),

and Amin−concavity known as quasi-concavity

g(
x+ y

2
) > min(g(x), g(y)).

Example 9. Let L be an arbitrary complete lattice,
D ⊂ L, D 6= ∅ be an interval. Constant functions
are MN−convex (MN−concave) for arbitrary means
M , N . Identity function, IL(x) = x for x ∈ D is
M−convex (M−concave) for any aggregation func-
tion M .

Theorem 1. If M is a mean and f : D → D is mono-
tonic (isotone or antitone), then f is M∨-convex.

Proof. If M : D2 → D is a mean, then x ∧ y 6
M(x, y) 6 x ∨ y. If f is antitone, then f(x ∧ y) >
f(M(x, y)) and f(x ∧ y) = f(x) ∨ f(y). Finally,
f(M(x, y)) 6 f(x) ∨ f(y), so f is M∨-convex. Proof
for an isotone function is similar.
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5 BINARY OPERATIONS ON
MN−CONVEX FUNCTIONS

In this section we examine preservation of
MN−convexity (MN−concavity) by aggregation
functions.

Theorem 2. Let M,N,K : D2 → D be aggregation
functions and N � K (K � N). If f, g : D → D are
MN−convex (MN−concave), then function K(f, g)
is MN−convex (MN−concave), where K(f, g)(x) =
K(f(x), g(x)) for x, y ∈ D.

Proof. Let x, y ∈ D. By MN−convexity of f, g and
by assumption N � K we obtain

K(f, g)(M(x, y)) = K(f(M(x, y)), g(M(x, y))) 6

K(N(f(x), f(y)), N(g(x), g(y))) 6
N(K(f(x), g(x)),K(f(y), g(y))) =

N(K(f, g)(x),K(f, g)(y)).

It means that function K(f, g) is MN−convex. The
proof for MN−concave functions is analogous.

Since addition + is an aggregation function in the lat-
tice (R,max,min), then from Theorem 2 we get

Corollary 4. Let L = R, D ∈ {(−∞, 0), (0,∞),R}
and M,N : D2 → D be aggregation functions.
If N � + (+ � N) and f, g : D → D
are MN−convex (MN−concave), then f + g is
MN−convex (MN−concave).

By Theorem 2 and Lemma 2 we obtain

Corollary 5. Let M,N : D2 → D be aggrega-
tion functions. If f, g : D → D are MN−convex
(MN−concave), then h = f ∨ g is MN−convex (h =
f ∧ g is MN−concave).

Example 10. Power means Ap are examples of ag-
gregation functions which dominate + for p 6 1 or
are dominated by + for p > 1 (cf. Corollary 2).
So by Corollary 4 addition of functions preserves
MN−convexity of functions f, g for arbitrary aggre-
gation M , N = Ap and p 6 1 and addition of
functions preserves MN−concavity of functions f, g
for arbitrary aggregation M , N = Ap and p > 1.
Weighted arithmetic means Wλ dominate + (cf. Ex-
ample 7) and min � + (cf. Lemma 2) As a re-
sult, by Corollary 4, addition of functions preserves
MN−convexity of functions f, g for arbitrary aggre-
gation M and N = Wλ (N = min). Operation +
dominates Wλ (cf. Example 7) and + � max (cf.
Lemma 2), so it follows that by Corollary 4, addition
of functions preserves MN−concavity of functions f, g
for arbitrary aggregation M and N = Wλ (N = max).

Example 11. By Corollary 5 supremum preserves
MN−convexity for quasi-linear means M,N and infi-
mum preserves MN−concavity for quasi-linear means
M,N in the lattice (R,max,min).

Since multiplication · is an aggregation function in the
lattice ((0,∞),max,min) or ([0, 1],max,min), then by
Theorem 2 we get

Corollary 6. Let D ∈ {[0, 1], (0,∞)}, M,N : D2 →
D be aggregation functions. If f : D → D is
MN−convex (MN−concave) and N � · (· � N),
then f · g is MN−convex (MN−concave).

Example 12. Let us consider lattice
((0,∞),max,min) or ([0, 1],max,min). The weighted
geometric means Gλ dominate the product function ·
(cf. Example 6) and by Lemma 2, min � ·, so
by Corollary 6 product of functions · preserves
MN−convexity for any aggregation function M
and N = Gλ (N = min). By Lemma 2 one has
· � max. Additionally, · � Gλ (cf. Example 6) so
product of functions · preserves MN−concavity for
any aggregation function M and N = Gλ (N = max).

Next example shows that lack of dominance A� · in
D = (0,∞) involves lack of preservation of convexity
(necessity of the condition).

Example 13. Let be given functions f(x) = x2,
g(x) = expx, f, g : D → D. Functions f, g are convex
(M = N = A). However, f · g is not convex (cf. [19],
p. 124).

6 OTHER OPERATIONS ON
MN−CONVEX FUNCTIONS

Theorem 3. Let L = (R,max,min). Let M,N :
D2 → D be aggregation functions where N is homoge-
neous. If f : D → D is MN−convex (MN−concave),
then αf is MN−convex (MN−concave), where α >
0.

Proof. Let x, y ∈ D, (αf)(x) = αf(x), α > 0. By
MN−convexity of f and by homogeneity of N we get

(αf)(M(x, y)) = αf(M(x, y)) 6 αN(f(x), f(y)) =

N(αf(x), αf(y)) = N((αf)(x), (αf)(y)).

It means that αf is MN−convex. The proof for a
MN−concave function is similar.

Example 14. Power means Ap (e.g. arithmetic, ge-
ometric, quadratic, harmonic) and logarithmic mean
Mlog are homogeneous (cf. [21], p. 2). As a re-
sult, product of a function by a constant preserves
MN−convexity (MN−concavity) for arbitrary aggre-
gation M and N = Ap (N = Mlog).
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In the sequel we will consider the inverse and the com-
position of MN−convex and MN−concave functions.

Theorem 4 (cf. [18], Remark 2). If f : D → D
is an isotone bijection and f is MN−convex
(MN−concave), then f−1 is NM−concave
(NM−convex). If f : D → D is an antitone
bijection and f is MN−convex (MN−concave), then
f−1 is NM−convex (NM−concave).

Proof. Let x, y ∈ D. We will prove that if f : D →
D is an isotone bijection and MN−concave, then
f−1 is NM−convex. By assumption f(M(x, y)) >
N(f(x), f(y)), so M(x, y) > f−1(N(f(x), f(y))).
Since f is a bijection, there exist a, b ∈ D such that
f(x) = a, f(y) = b, a, b ∈ D. As a result, the pre-
vious inequality is equivalent to M(f−1(a), f−1(b)) >
f−1(N(a, b)), which means that f−1 is NM−convex.
The rest of the properties may be justified in a similar
way.

Corollary 7. If f : D → D is an isotone bijec-
tion, then f is MN−convex if and only if f−1 is
NM−concave. If f : D → D is an antitone bi-
jection, then f is MN−convex if and only if f−1 is
NM−convex.

Theorem 5. Let f : D → D. If f is an iso-
tone N−convex (N−concave) function and g : D →
D is MN−convex (MN−concave), then f ◦ g is
MN−convex (MN−concave).

Proof. Let x, y ∈ D, (f ◦ g)(x) = f(g(x)). By
MN−convexity of g and by N−convexity and mono-
tonicity of f we obtain

(f ◦ g)(M(x, y)) = f(g(M(x, y)) 6 f(N(g(x), g(y))) 6

N(f(g(x)), f(g(y))) = N((f ◦ g)(x), (f ◦ g)(y)).

It means that f ◦ g is MN−convex. The proof for the
other property is analogous.

Corollary 8. If f : D → D is an isotone N−convex
(N−concave) function and g : D → D is an isotone
MN−convex (MN−concave) function, then aggrega-
tion K(f, g) = (f ◦g) is MN−convex (MN−concave).

Theorem 6. If f is an antitone N−convex
(N−concave) function and g : D → D
is MN−concave (MN−convex), then f ◦ g is
MN−convex (MN−concave).

Proof. Let x, y ∈ D, (f ◦ g)(x) = f((g(x)). By
MN−concavity of g and monotonicity of f we obtain

(f ◦ g)(M(x, y)) = f(g(M(x, y))) 6 f(N(g(x), g(y))).

And by N−convexity of f we get

f(N(g(x), g(y))) 6 N(f(g(x)), f(g(y))) =

N((f ◦ g)(x), (f ◦ g)(y)),

so finally f ◦g is MN−convex. The proof for the other
condition is similar.

7 CONCLUSIONS

In the paper MN−convex functions, where M,N
are binary aggregation functions on complete lattices,
were considered. Preservation of such convexity prop-
erties by binary aggregations and other typical oper-
ations on functions were discussed. Presented results
coincide with the ones for standard convexity and con-
cavity (cf. [19], Chapter V, p. 124 for addition of func-
tions and Chapter VII for composition of functions and
the converse function). Similar considerations to the
ones presented in this paper my be extended to the
case of n-ary aggregation functions.

Further, we are going to demonstrate applications of
the presented results and provide sufficient conditions
for other classes of functions in the context of preser-
vation of the considered convexity. Moreover, other
types of convexity, for example the ones considered
not necessarily on complete lattices, maybe examined.
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Summary

The condition of MN−convexity was pro-
posed by Aumann in 1933. It is convexity
with respect to arbitrary binary means M
and N (abbreviated to MN−convexity). Re-
cently many authors have considered this no-
tion with suitable pairs of means. We will ex-
amine and compare families of MN−convex
and MN−concave functions.

Keywords: Convex function, Concave func-
tion, Mean, Aggregation, MN−convexity,
MN−concavity, Geometric convexity, Loga-
rithmic convexity, Quasi-convexity.

1 INTRODUCTION

The notion of convex functions was introduced in 1905
by Jensen [12]. Then the condition of convexity was
generalized by many authors. For example, Hardy [10]
introduced the condition of logarithmic convexity in
1915. In 1928, Montel [18] introduced the condition
of geometric convexity (multiplicative convexity) and
von Neumann [19] introduced the condition of quasi-
convexity. Next, more general condition of convexity,
i.e. MN−convexity and M−convexity with respect
to arbitrary means M and N, was proposed in 1933 by
Aumann [3].

Recently many authors have dealt with these gen-
eralizations. In particular, Niculescu [20] com-
pared MN−convexity with relative convexity. An-
dersen et al. [2] examined inequalities implied by
MN−convexity. Matkowski [17] examined inclusions
between classes of MM−convexity. Krassowska [14]
examined MN−convexity with arbitrary binary oper-
ations M and N.

The goal of this paper is a comparison of families of
MN−convex functions for particular values of M and
N , and under some relations between M and N . At
first, we refer to the most popular examples and fami-
lies of aggregation functions (Section 2). Next, we dis-
cuss elementary consequences of Aumann’s definition
(Section 3). Then, some inclusions between families of
MN−convex functions are presented (Sections 4, 5).
Finally, some open problems implied by the results
presented are mentioned.

2 BINARY AGGREGATIONS

In this section and throughout the paper we will con-
sider binary aggregation functions only.

Definition 1. Let D ⊂ R where D is an interval.
An aggregation function in D (cf. [9]) is a func-
tion M : D2 → D which is increasing, i.e. for any
x1, x2, y1, y2 ∈ D:

x1 6 y1, x2 6 y2 ⇒M(x1, x2) 6M(y1, y2), (1)

and fulfils boundary conditions

inf
x,y∈D

M(x, y) = inf D, sup
x,y∈D

M(x, y) = supD. (2)

A function M : D2 → D is called a mean in D if (cf.
[7, 17, 21])

min(x, y) 6M(x, y) 6 max(x, y), x, y ∈ D. (3)

Notice, that if a function M : D2 → D is increas-
ing and idempotent, i.e. M(x, x) = x for all x ∈ D,
then property (3) is fulfilled (cf. [6], p. 10). Di-
rectly from condition (3) we see that every mean is
idempotent. However, the mean M : D2 → D,
M(x, y) = (x2 + y2)/(x+ y) for D = (0,∞) fulfils (3)
but is not increasing (this is one of Lehmer mean, [21],
p. 2). As a result, a mean may not be an aggregation
function. And vice versa, an aggregation function may
not be a mean. Actually, there are many aggregation
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functions which are not means, for example multipli-
cation · in [0, 1] or [0,∞], similarly addition + in [0,∞]
(families of aggregation functions which are not means
one may find in [13]).

A mean M is called symmetric if M(x, y) = M(y, x),
x, y ∈ D. A mean is called homogeneous if for t, x, y ∈
D it holds M(tx, ty) = tM(x, y).

The most useful examples of aggregation function are
means in R, [0,∞], (0,∞) or [0, 1]. Among them
the most known are arithmetic mean A, geometric
mean G, harmonic mean H, quadratic mean Q, loga-
rithmic mean L, maximum and minimum, where for
D = (0,∞)

A(x, y) =
x+ y

2
, G(x, y) =

√
xy, H(x, y) =

2xy

x+ y
,

Q(x, y) =

√
x2 + y2

2
, L(x, y) =

{
x−y

logx−logy , x 6= y

x, x = y
.

All the above means are symmetric. Using λ ∈ [0, 1]
one considers weighted means

Wλ(x, y) = λx+ (1− λ)y, x, y ∈ D,

which are nonsymmetric for λ 6= 1
2 . In particular, we

get projections:

P1(x, y) = W1(x, y) = x, P2(x, y) = W0(x, y) = y,

for x, y ∈ D. We may also consider weighted geometric
means Gλ for λ ∈ D, where

Gλ(x, y) = xλ · y(1−λ), x, y ∈ D. (4)

Lemma 1 ([5], p. 130). The above examples of sym-
metric means are ordered, i.e.

min 6 H 6 G 6 L 6 A 6 Q 6 max .

We use two ordered families of means.

Definition 2 ([5], p.132, 346). Let p ∈ R. By power
means we call binary operations

Ap(x, y) =





(
xp+yp

2

) 1
p

, p 6= 0

G(x, y), p = 0
, x, y ∈ D. (5)

Binary operations given by (6) are called extended log-
arithmic means.

Lp(x, y) =





(
xp+1−yp+1

(p+1)(x−y)

)1/p
, p 6= 0,−1

1
e

(
yy

xx

)1/(y−x)
, p = 0

L(x, y), p = −1

, (6)

where x, y ∈ D = (0,∞), x 6= y, Lp(x, x) = x, x ∈ D
and L0 is called the intristic mean.

It is clear that A1 = A, A−1 = H, A2 = Q and A0 = G
is a limit case for p→ 0. Similarly we have L−2 = G,
L1 = A. Moreover

lim
p→∞

Ap(x, y) = lim
p→∞

Lp(x, y) = max(x, y),

lim
p→−∞

Ap(x, y) = lim
p→−∞

Lp(x, y) = min(x, y).

We also have

Lemma 2 ([11], p. 26). The power means (Ap) are
ordered by index p, i.e. p 6 q ⇔ Ap 6 Aq.

Lemma 3 ([5], p. 346). The extended logarithmic
means (Lp) are ordered by index p, i.e. p 6 q ⇔ Lp 6
Lq.

Example 1 (cf. [1], p. 287). Quasi-linear means are
described in the following way

M(x1, x2) = ϕ−1(λ1ϕ(x1) + λ2ϕ(x2)), x1, x2 ∈ D,

where D = (0,∞), weights λ1, λ2 ∈ D fulfil condition
λ1+λ2 = 1 and ϕ : D → R is a continuous and strictly
monotonic function. If λ1 = λ2 = 1

2 , then we obtain
quasi-arithmetic means. For ϕ(x) = xp (cf. (5)) we
get power means.

3 GENERALIZED CONDITIONS
OF CONVEXITY

We are discussing Aumann’s definition and its elemen-
tary consequences.

Definition 3 ([3], cf. [14]). Let M,N be aggrega-
tion functions. A function f : D → D is called
MN−convex (f ∈ C(M,N)) if

f(M(x, y)) 6 N(f(x), f(y)), x, y ∈ D.

Similarly, f is MN−concave (f ∈ C∗(M,N)) if

f(M(x, y)) > N(f(x), f(y)), x, y ∈ D.

In the case N = M we say about M−convexity (con-
cavity) instead of MM−convexity (concavity).

Example 2. Let f, g : D → D, D = [0,∞]. As par-
ticular cases of Definition 3 we get (cf. e.g. [21], Chap-
ter 2): Jensen convexity (f ∈ C(A,A)) and concavity
(g ∈ C∗(A,A)), where for x, y ∈ D

f(
x+ y

2
) 6 f(x) + f(y)

2
, g(

x+ y

2
) > g(x) + g(y)

2
,

logarithmic convexity (f ∈ C(A,G)) and concavity
(g ∈ C∗(A,G)),

f(
x+ y

2
) 6

√
f(x)f(y), g(

x+ y

2
) >

√
g(x)g(y),
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geometric convexity (f ∈ C(G,G)) and concavity (g ∈
C∗(G,G)),

f(
√
xy) 6

√
f(x)f(y), g(

√
xy) >

√
g(x)g(y),

quasi-convexity (f ∈ C(A,max)) and quasi-concavity
(g ∈ C∗(A,min)),

f(
x+ y

2
) 6 max(f(x), f(y)),

g(
x+ y

2
) > min(g(x), g(y)).

Our goal is a comparison of diverse families of
MN−convex functions with respect to commonly used
means. Let ALL, INC, DEC and CST denote fam-
ilies of all possible, all increasing, all decreasing and
all constant functions f : D → D, respectively. It
helps us in describing examples of function families
from Definition 3.

Example 3. Let c ∈ D, D = [0,∞]. We use the set
inclusion ‘⊂’ as an antisymmetric relation. Directly
from Definition 3 we can see that the constant function
f(x) = c, x ∈ D is MN−convex and MN−concave
for arbitrary means M , N , i.e. CST ⊂ C(M,N),
CST ⊂ C∗(M,N). Similarly, the identity function is
MN−convex or MN−concave if and only if M,N are
comparable means, i.e. it is MN−convex for M 6 N
and MN−concave for N 6M .

For the simplest five means min, max, A, P1, P2 we
consider 50 function families from Definition 3, what
is summarized in Table 1.

For some pairs M,N in Table 1 (M are in rows and N
in columns) for N = min we get C(M,N) = CST ,
e.g. M ∈ {P1, A, P2,max}. On the other hand
C(min,max) = C∗(max,min) = ALL, because

f(min(x, y)) 6 max(f(x), f(y)), x, y ∈ D,

f(max(x, y)) > min(f(x), f(y)), x, y ∈ D.
Simultaneously, C(max,min) = C∗(min,max) =
CST .

Means used in the conditions of quasi-convexity and
quasi-concavity are not identical. Observation shows
that classes C∗(A,max) and C(A,min) are trivial.
They consist of constant functions, what will be ex-
plained now.

We pay attention to the family C(A,min). Let x, y ∈
D, x < y. If y−x 6 min(x, y), then x = (2x−y+y)/2
and y = (x+2y−x)/2. Thus a function f ∈ C(A,min)
fulfils inequalities
f(x) 6 min(f(2x − y), f(y)) 6 f(y), f(y) 6
min(f(x), f(2y − x)) 6 f(x).
Therefore f(x) = f(y) = const.

Table 1: Extremal families of MN−convexity (con-
cavity).

C(M,N) min P1 A P2 max

min INC INC INC INC ALL
P1 CST ALL CST CST ALL
A CST CST Jensen CST quasi
P2 CST CST CST ALL ALL
max CST DEC DEC DEC ALL

C∗(M,N) min P1 A P2 max

min ALL DEC DEC DEC CST
P1 ALL ALL CST CST CST
A quasi∗ CST Jensen∗ CST CST
P2 ALL CST CST ALL CST
max ALL INC INC INC INC

If y − x > min(x, y), then we can introduce the arith-
metic sequence zk = x+kr, k = 0, 1, . . . , n, where r =
(y−x)/n 6 min(x, y). Then zk+1−zk 6 min(zk+1, zk)
and similarly as above we obtain f(zk) = const. =
f(x) = f(y). This proves that C(A,min) = CST and
similarly we get C∗(A,max) = CST .

Let us now consider an example of the family INC.
Let x, y ∈ D, x 6 y. If f ∈ C(min, A), then
f(x) = f(min(x, y)) 6 (f(x) + f(y))/2. Thus 2f(x) 6
f(x) + f(y), which implies f(x) 6 f(y) and f ∈
INC. Conversely, every increasing function belongs
to C(min, A), because min 6 A.

In a similar way we have obtained almost all the cases
from Table 1. Only four cases from Table 1 denoted by:
Jensen, Jensen∗, quasi and quasi∗ coincide with cases
from Example 2. These interesting families were in-
vestigated in many papers (cf. for example references
in [15, 21]).

4 INCLUSIONS BETWEEN
FAMILIES OF MN−CONVEX
FUNCTIONS

Directly from Definition 3 we obtain

Lemma 4. Let M , N1, N2 be arbitrary aggregation
functions. If N1 6 N2, then

C(M,N1) ⊂ C(M,N2), C∗(M,N2) ⊂ C∗(M,N1).

Example 4. Inclusions in the above lemma need not
be strict, because some families in Table 1 are equal,
e.g. C(P1,min) = C(P1, P2) = CST . Since min 6 P1,
then by Lemma 4 and Example 3 we get

CST ⊂ C(P1,min) ⊂ C(P1, P2) = CST.
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Particular examples of strict inclusions were presented
by Anderson et al. ([2], Remark 2.6, Example 2.7):

C(A,H)  C(A,G)  C(A,A),

C(G,H)  C(G,G)  C(G,A),

C(H,H)  C(H,G)  C(H,A).

Dually we get

C∗(A,A)  C∗(A,G)  C∗(A,H),

C∗(G,A)  C∗(G,G)  C∗(G,H),

C∗(H,A)  C∗(H,G)  C∗(H,H).

Because of Lemmas 1, 4 we get many inclusions be-
tween examples of families from Definition 3.

Corollary 1. Let M be arbitrary aggregation func-
tion. Then:

C(M,min) ⊂ C(M,H) ⊂ C(M,G) ⊂ C(M,L)

⊂ C(M,A) ⊂ C(M,Q) ⊂ C(M,max),

C∗(M,max) ⊂ C∗(M,Q) ⊂ C∗(M,A) ⊂ C∗(M,L)

⊂ C∗(M,G) ⊂ C∗(M,H) ⊂ C∗(M,min).

In particular for M = A we have

CST = C(A,min) ⊂ C(A,H) ⊂ C(A,G)

⊂ C(A,L) ⊂ C(A,A),

CST = C∗(A,max) ⊂ C∗(A,Q) ⊂ C∗(A,A),

i.e. some conditions do not generalize Jensen convex-
ity (concavity).

Because A1 = A and L1 = A, then directly from Lem-
mas 2, 3 we get

Theorem 1. Let p ∈ R, D = (0,∞).
• If p < 1, then we get restrictions of Jensen convexity

C(A,Ap) ⊂ C(A,A), C(A,Lp) ⊂ C(A,A).

• If p > 1, then we get extensions of Jensen convexity

C(A,A) ⊂ C(A,Ap), C(A,A) ⊂ C(A,Lp).

• If p < 1, then we get extensions of Jensen concavity

C∗(A,A) ⊂ C∗(A,Ap), C∗(A,A) ⊂ C∗(A,Lp).

• If p > 1, then we get restrictions of Jensen concavity

C∗(A,Ap) ⊂ C∗(A,A), C∗(A,Lp) ⊂ C∗(A,A).

Similar results can be presented for other ordered fam-
ilies of aggregation functions.

5 CLASSES OF MONOTONE
FUNCTIONS

Usually convex real functions are piecewise monotone.
According to Krassowska [14] (Remark 1) we have

Lemma 5. Let M1, M2, N be arbitrary aggregation
functions. If M1 6M2, then

DEC ∩ C(M1, N) ⊂ DEC ∩ C(M2, N),

DEC ∩ C∗(M2, N) ⊂ DEC ∩ C∗(M1, N),

INC ∩ C(M2, N) ⊂ INC ∩ C(M1, N),

INC ∩ C∗(M1, N) ⊂ INC ∩ C∗(M2, N).

Example 5. Inclusions in the above lemma need not
be strict. From Table 1 we see that

CST = DEC ∩ C(A,min) = DEC ∩ C(max,min),

INC = INC ∩ C(A,max) = INC ∩ C(min,max),

DEC = DEC ∩ C∗(max,min) = DEC ∩ C∗(A,min),

CST = INC ∩ C∗(min,max) = INC ∩ C∗(A,max).

Using Lemmas 2, 3 in Lemma 5 we now get

Theorem 2. Let p ∈ R, D = (0,∞). If p < 1, then
• DEC ∩ C(A,Ap) ⊂ DEC ∩ C(A,A),
DEC ∩ C(A,Lp) ⊂ DEC ∩ C(A,A),
• INC ∩ C(A,A) ⊂ INC ∩ C(A,Ap),
INC ∩ C(A,A) ⊂ INC ∩ C(A,Lp) ,
• DEC ∩ C∗(A,A) ⊂ DEC ∩ C∗(A,Ap),
DEC ∩ C∗(A,A) ⊂ DEC ∩ C∗(A,Lp),
• INC ∩ C∗(A,Ap) ⊂ INC ∩ C∗(A,A),
INC ∩ C∗(A,Lp) ⊂ INC ∩ C∗(A,A).
If p > 1, then
• DEC ∩ C(A,A) ⊂ DEC ∩ C(A,Ap),
DEC ∩ C(A,A) ⊂ DEC ∩ C(A,Lp),
• INC ∩ C(A,Ap) ⊂ INC ∩ C(A,A),
INC ∩ C(A,Lp) ⊂ INC ∩ C(A,A) ,
• DEC ∩ C∗(A,Ap) ⊂ DEC ∩ C∗(A,A),
DEC ∩ C∗(A,Lp) ⊂ DEC ∩ C∗(A,A),
• INC ∩ C∗(A,A) ⊂ INC ∩ C∗(A,Ap),
INC ∩ C∗(A,A) ⊂ INC ∩ C∗(A,Lp).

6 CONCLUSIONS

In the paper a comparison of families of MN−convex
functions for particular aggregation functions M , N
were presented. The basic consequences of Aumann
definition were discussed and some inclusions between
families of MN−convex functions were presented.
Typical operations on MN−convex functions were in-
vestigated. The obtained results may be extended to
the case of n-ary aggregation functions [4, 6, 22].
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For the future work it would be interesting to consider
the following tasks:
1. Characterization of pairs M,N for which
C(M,N) = CST or C∗(M,N) = CST . A certain
hint for this problem provides the paper [8], where it
is proved that the equation

f(M(x, y)) = N(f(x), f(y)), x, y ∈ D = (0,∞)

has only constant solutions if one of the means M,N
is quasi-arithmetic and the other one is non quasi-
arithmetic.
2. Characterization of pairs M,N for which
C(M,N) = ALL or C∗(M,N) = ALL.
3. Characterization of families C(M,N) and
C∗(M,N) for incomparable means M,N .

Moreover, it may be interesting to define MN−convex
sets and to check how they behave under intersections,
i.e. to consider if they create a system of generalized
convexity defined in [16].
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Means and their inequalities. D. Reidel Publ.
Com., Dordrecht.

[6] T. Calvo, A. Kolesárová, M. Komorniková,
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Summary

We explore theoretical trends or research
lines to discover new results concerning fu-
sion operators defined on the Cartesian prod-
uct of n ≥ 2 copies of a nonempty given set,
say S, and taking values on the same given
set S. As a remarkable particular case, we
pay attention to internal operators, namely
those which give back (or “select”) as out-
put one of the n inputs involved, so that in
this sense the fusion procedure does not give
rise to new information during the process.
A systematic use of this kind of results may
appear when the given set is the unit inter-
val [0, 1] of the real line. Obviously, all this
is closely related to aggregation of fuzzy sets
of a universe U .

Among the questions to be explored, we con-
sider n-variate operators for n > 2 that are
not “decomposable” as a suitable iteration
of bivariate (e.g.: binary) operators. Also,
we study some topological, combinatorial or
analytical aspects. Among them we analyze
items as: a) continuity, b) possibility of defin-
ing orderings, or means or new binary rela-
tions, c) interpretation of binary operators as
algebraic operations of a certain kind, d) lat-
ticial properties, e) anonimity and unanimity
and/or f) characterizations of n-ary opera-
tors that have some special feature.

Keywords: Aggregation operators, Internal
n-ary operators, Bivariate operators, Decom-
posable operators, Particular features of n-
ary fusion functions.

1 INTRODUCTION AND
MOTIVATION

Let X be a nonempty set. Let n ≥ 2. A n-variate
aggregation operator defined on X is a map f : Xn →
X.

In several contexts coming from the theory of aggrega-
tion operators it is typical to handle fusion mappings
for which the output value must coincide with one of
the coordinates of the vector input. To put an ex-
ample concerning applications, we point out that in
image processing they appear fusion algorithms where
it is natural that the value of the intensity of a given
pixel agrees with the value of the same pixel for some
of the considered images (see e.g. [3, 13]).

This immediately induces the notion of an internal
operator (see e.g. [5, 19]) or n-selector (see e.g.
[15, 14, 9]). Thus, given a nonempty set S we con-
sider mappings f : Sn → S such that for any vector
input (x1, x2, . . . , xn) ∈ Sn it holds true that the out-
put value, namely, f(x1, x2, . . . , xn) ∈ S coincides a
fortiori with some coordinate xi ∈ {x1, x2, . . . , xn}.
Among typical internal operators we could consider
the following:

i) Projections on one of the components: Here, there
exists i ∈ {1, . . . , n} such that f(x1, x2, . . . , xn) =
xi for every (x1, . . . , xn) ∈ Xn.

ii) Medians, maxima and minima, percentiles: Here,
assuming that X is endowed with a linear order ≤,
we rearrange the terms from smallest to biggest
as regards the linear order, say xi1 ≤ xi2 ≤ . . . ≤
xin and then we take the median when n is an
odd number, or a suitable percentile or maybe
the maximum or the minimum with respect to ≤.

iii) Mode: We select the most repeated element (if
any) or, say, the first element if there is a tie.

Classical situations where these kind of operators play
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an important role are related to aggregation functions
of fuzzy sets. Notice that, a fuzzy set X being a map
µX from a universe U into the unit interval [0, 1] of
the real line, given n fuzzy subsets X1, . . . Xn and a
map f : [0, 1]n → [0, 1] the composition that sends an
element u ∈ U to the element f(µX1(u), . . . , µXn(u)) ∈
[0, 1] defines the indicator function of a new fuzzy set,
so that, roughly speaking, the function f fuses the
fuzzy sets X1, . . . , Xn into a new one. For this reason,
the particular case in which the former essential set S
is the unit interval [0, 1] will deserve an special interest.

2 PARTICULAR FEATURES OF
INTERNAL OPERATORS

Let X be a nonempty set. Given n ≥ 2, let f :
Xn → X stand for an internal operator defined on
X. If we bear in mind the idea of “selecting” el-
ements so that given a n-tuple (x1, . . . , xn) ∈ Xn

the output f(x1, . . . , xn), that coincides with some
xi (1 ≤ i ≤ n), should not depend on the order of
the elements x’s that appear as coordinates of the
vector (x1, . . . , xn). In other words, for any rear-
rangement σ of the set {1, . . . , n} it should be true
that f(xσ1 , . . . , xσn) = f(x1, . . . , xn). This property is
technically known as anonimity .

Also, when X is endowed with some topology τ , an-
other typical requirement is that the aggregation op-
erators f : Xn → X considered be continuous with
respect to the given topology τ on X and the corre-
sponding product topology on Xn.

Moreover, another typical property that have inter-
nal operators is technically called unanimity , namely,
f(x, . . . , x) = x for every x ∈ X and any internal op-
erator f : Xn → X. Obviously, this property can
be defined in general –for any kind of operators– and,
in that case, it does not become trivial or taken for
granted.

At this stage, it is very important to remind the
reader the following crucial fact: given a topological
space (X, τ) the existence of a continuous, anonymous
and unanimous aggregation operator1 F : Xn → X
strongly depends on the topology2

1Here, we do not mind if F is internal or not. The result
is general, valid for any mapping F : Xn → X.

2The spaces X on which a continuous, anonymous and
unanimous aggregation operator F : Xn → X exists are
also said spaces with a topological n-mean, and were stud-
ied from an abstract point of view, as a particular kind
of topological spaces, by G. Aumann [2] in the 1940’s.
Then they reappeared in the later 1970’s in contexts com-
ing from applications of Mathematics into Economics and
Social Choice, in which the classical Arrowian approach
in Social Choice was substituted by a different one in the

τ with which the set X has been endowed. (See e.g.
[2, 10, 11, 12, 7, 8, 6] for a further account). Thus, if X
is a topological cellular complex (see e.g. [20, 7, 12]),
the existence of a continuous anonymous and unan-
imous map on X is equivalent to the contractibility
of X, so that X could be continuously deformed to a
point. To put an example, if X is the unit circle S1

endowed with the usual Euclidean topology inherited
from that of the plane R2, even when n = 2 there
is no continuous, unanimous and anonymous bivariate
aggregation operator defined on X.

Fortunately, the unit interval [0, 1] of the real line,
endowed with the usual Euclidean topology is indeed
contractible, and consequently there exist continuous,
anonymous and unanimous maps for every n ≥ 2. An
example is the arithmetic mean (which fails to be an
internal operator). Another example, now internal, is
the maximum mapping, where maxima are taken as
regards the usual order of the real line3.

3 DECOMPOSABILITY OF
AGGREGATION OPERATORS

Assume now that n > 2. Let X be a nonempty set.
Given an aggregation operator f : Xn → X we may
wonder if f can be reached from successive compo-
sition of suitable bivariate mappings from X2 to X.
For instance, we may ask ourselves about the exis-
tence of n − 1 bivariate mappings g1, g2, . . . , gn−1 :
Xn → X accomplishing that f(x1, x2, . . . , xn) =
gn−1(x1, gn−2(x2, gn−3(x3, . . . g1(xn−1, xn))) . . .) holds

search for possibility results. In the new approach, the
mathematical basis on which the problem considered leans
exactly amounts to the existence of this kind of operators
(namely continuous, anonymous and unanimous ones) on
some suitable topological space on which the preferences
are framed. In a battery of papers by Chichilnisky and
Heal (see e.g. [10, 11, 12]), among others, it was proved
again that some topological spaces cannot admit such op-
erators. This is called the Social Choice paradox in this
context. So, first some examples of those “bad” spaces
were furnished –as, e.g., topological spheres–, and then a
general theorem finally appeared. That theorem, namely
the equivalence in suitable topological spaces between con-
tractibility and the existence of a continuous, unanimous
and anonymous operator for any n > 2 is difficult. It
was proved, analyzed and generalized in several papers. In
fact, this has been done by means of a wide sort of quite
different mathematical techniques (namely, foliations, ho-
motopy theory, measure theory, algebraic topology, and so
on.). (See, e.g., [7, 8, 6]).

3This obvious example poses an important question:
when trying to classify or characterize all the possible
n-variate internal operators that could be defined on a
nonempty set X, it is clear that some of them could be
described as “taking the maximum” with respect to some
linear order defined on X. But which n-variate operators
could be described this way?
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for every n-tuple (x1, . . . , xn) ∈ Xn.

A more affordable particular case appears whenever
all the mappings gi (1 ≤ i ≤ n− 1) are the same, say
g, so that f can be reached directly from g through
iterated composition.

To put an example in this direction, if g : X2 → X
is a bivariate mapping such that g(x, x) = x; g(x, y) =
g(y, x) and g(x, g(y, z)) = g(g(x, y), z) hold true for
every x, y, z ∈ X, then we could define a trivariate ag-
gregation operator f : X3 → X, with good properties
as anonymity and unanimity, by just declaring that
f(x, y, z) = g(x, g(y, z)) for every x, y, z ∈ X.

Therefore, in order to be sure that we are studying a
“new theory” it would be crucial to detect, in a way,
which n-variate aggregation operators cannot be de-
composed as suitable composition of bivariate ones.
As a matter of fact, if any n-variate operator could
be reached from bivariate ones, it would happen that
the classical theory of bivariate aggregation operators
would be a tool good enough to interpret that “possi-
ble new” theory of n-variate operators with n > 2.

In this direction, several partial results are well-known
(see e.g. [18, 4]). Thus, if we try to define the notion
of a multivariate triangular norm Tn : [0, 1]→ [0, 1] in
order to extend to n > 2 the classical concept of a bi-
variate triangular norm T : [0, 1] → [0, 1] encountered
in fuzzy set theory, we arrive to the fact that Tn can
always we expressed as an iteration of some bivariate
t-norm T . On the other hand, and looking for some
result in the opposite direction, it can be proved that
when X = {x, y, z}, endowed with a linear order such
that x < y < z, then if f : X3 → X is the median,
f(a, b, c) can never be expressed as g(a, g(b, c)) for
some bivariate map g : X2 → X and any a, b, c ∈ X.
(See [4] for further details).

4 BINARY RELATIONS DEFINED
BY MEANS OF INTERNAL
OPERATORS

Let X be a nonempty set. Let f : X2 → X be an
internal operator, also known as a selector (see e.g.
[15, 1, 14, 9]). Given x, y ∈ X we may define a binary
relation R on X by declaring that xRy ⇔ f(x, y) = y,
for every x, y ∈ X. It is interesting now to analyze to
which kinds of binary relation R belongs. In particu-
lar, it is important here to say if R is a linear order on
X. Questions of this kind have been studied in [9].

In addition R also defines a topology on X (see [16]
for details), a subbasis of which is given by the family
{∅, X}⋃{Lx : x ∈ X}⋃{Rx : x ∈ X}, where Lx =
{y ∈ X : y 6= x; yRx} and Rx = {y ∈ X : y 6=

x; xRy} (x ∈ X). The properties of this topology
may be decisive in order to interpret and characterize
the particular kinds of bivariate operator to which f
belongs. (See e.g. [14, 15, 16] for further details).

Working now with a n-variate internal operator f :
Xn → X, but now with n strictly bigger than 2, we
could try to interpret f in terms of binary relations as,
for instance, the following one, denoted byR and given
by xRy ⇔ f(x, . . . , x, y) = y, for every x, y ∈ X. Here
the n-tuple (x, . . . x, y) has an x in the former n − 1
positions, and y appears in the last position. Again,
the case in which R is a linear order, as well as some
topologies closely related toR (as in the reference [16])
could give new ideas about the properties of the inter-
nal operator f .

5 ALGEBRAIC ASPECTS OF
INTERNAL OPERATORS

Let X be a nonempty set. A binary operator f : X2 →
X, even in the case in which it is not an internal op-
erator or selector), can always be interpreted as a bi-
nary operation, say ∗f , acting on the set X, by just
declaring that x ∗f y = f(x, y) for every x, y ∈ X.
Again, the algebraic properties of ∗f could provide us
with relevant information concerning the structure of
the operator f considered. Some particular cases have
been analyzed in the literature, mainly in the case in
which ∗f acts as the join (or the meet) operation of a
suitable lattice whose ground set is X, that is X can
be given a (semi)-latticial structure by means of ∗f .
(See e.g. [6] for further details).

In this direction, the consideration and study, in the
corresponding specialized literature, of n-variate ag-
gregation operators with n bigger than 2, as algebraic
n-ary operations on a nonempty set X is much more
scarce than the analogous situation in the bivariate
case. (See e.g. [18]).

Moreover, this last problem could be closely related to
the aforementioned questions about decomposability
of n-ary operators as iterations of a suitable bivariate
one4 (see e.g. [6, 9]).

4To put an example, if X is a nonempty set and
f : X2 → X is an operator that satisfiesf(x, x) =
x; f(x, y) = f(y, x) and f(x, f(y, z)) = f(f(x, y), z)
for every x, y, z ∈ X, it can easily be extended to a n-
variate operator, as a new map F : Xn → X given by
F (x1, . . . , xn) = f(x1, f(x2, f(x3, . . . f(xn−1, xn) . . .). This
will have some simplifying properties: for instance, given
x, y ∈ X it holds that any finite sequence of applications
of f in which only the elements x, y are involved finally
amounts to f(x, y) = x ∗f y. But the main question here
would be to discover which n-ary aggregation operators
can indeed be decomposed as an iteration of a suitable bi-
variate operator of this kind, or, equivalently, which n-ary
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6 Functional equations related to
aggregation operators

Another interesting line to be explored at this stage
is that of functional equations that could satisfy a
given n-variate operator f : Xn → X, where X is
a nonempty set and n ≥ 2. To put an example, a bi-
variate operator f is said to be associative provided
that it satisfies the functional equation f(a, f(b, c)) =
f(f(a, b), c) for every a, b, c ∈ X. Many typical op-
erators encountered in fuzzy set theory (e.g., triangu-
lar norms and co-norms) must be associative (see e.g.
[9]). Many other functional equations associated to bi-
variate aggregation functions on the unit interval [0, 1]
are often considered in this context, as, for instance,
bisymmetry, permutability, migrativity or bimigrativ-
ity. (See e.g., [4, 17] for further details).

Once more, the consideration and analysis of func-
tional equations that could be satisfied by n-ary ag-
gregation operators (internal or not) in the case n > 2
would be of crucial interest in order to, by solving those
functional equations, retrieve or characterize the main
properties of the operators involved in the process. In
this direction, we should point out that the theory
of functional equations on more than two variables is
quite scarce.

7 CONCLUDING REMARKS

Our intention, when preparing this note, was not that
of furnishing results. Instead, we wanted to call the
attention of colleagues, and potential readers, on the
fact that in order to analyze well the behavior of n-ary
internal operators, as well as the more general case of
n-ary aggregation functions, when n > 2 there are
many theoretical lines of research that remain quite
unexplored.

Quite probably, a development in depth, in next fu-
ture, of any of the sections of the present manuscript
as a new piece of research could perhaps constitute
by itself a whole article. And, in our opinion, any
of the lines (or trends) commented here in this brief
note could deserve interest enough to be explored and
analyzed.

<<Learn from yesterday, live for today, hope for
tomorrow. The important thing is not to stop
questioning.>>

(Albert EINSTEIN, 1879 – 1955)

algebraic operations can be described as a suitable itera-
tion of a certain binary operation on the same given set.
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Summary

In many decision processes and information
fusion data aggregation is required. There is
often the need to aggregate data of varying
dimension while aggregation operators are of-
ten considered for a fixed number of argu-
ments. In many contexts inputs to be aggre-
gated are of a qualitative nature and some-
times we need to evaluate objects with a scale
that is not totally ordered. This paper ana-
lyzes the evaluation of sequences of ordinal
input and of variable length. We consider
various axioms against which different rank-
ing methods can be compared.
Keywords: Completely distributive lattice,
Aggregation functional, Sugeno integral.

1 INTRODUCTION

Aggregation operators are mathematical functions
that are used to fuse information of several inputs in
a single outcome (see [16] for a general background
on aggregation theory). We focus on aggregation pro-
cesses mapping arbitrary but finitely many argument
from a set X to an object in X which is representa-
tive for the set of arguments itself. There exist a large
number of different aggregation operators that differ
on the assumptions on the inputs and about the infor-
mation that we want to consider in the model.
There are many situations where inputs to be aggre-
gated are qualitative and numerical values are used by
convenience. Sometimes we need to evaluate objects
with a scale that is not totally ordered. As the aim of
this paper is to define and study a class of symmet-
ric aggregation functionals in a purely ordinal context.
We study aggregation functionals based on a complete

lattices and we consider in particular the class of com-
pletely distributive lattices. A general approach to ag-
gregation on bounded posets is considered also in [3],
[12] and [20].
In [5], [6], [7] and [14] are investigated aggregation
operators that consider inputs of variable length and
satisfying a property called arity-monotonicity.
The plan of the paper is the following. In Section 2
we briefly mention some basic concepts and we pro-
vide the necessary definitions. Section 3 formulate our
characterization of lattice aggregation operators while
Section 4 is devoted to symmetric aggregation opera-
tors that are defined by a symmetric Sugeno integral.

2 BASIC NOTIONS AND
PRELIMINARIES

In this section we give some basic notations and termi-
nology and we introduce our framework from an ax-
iomatic point of view. Some interpretations of our
model are presented.

2.1 BACKGROUND IN LATTICE
THEORY

To introduce our general framework we will need some
preliminaries from lattice theory. Much of this termi-
nology is well known and for further background in
lattice theory we refer to, e.g., Birkhoff [2], Davey and
Priestley [12] or Rudeanu [22]. A lattice is an alge-
braic structure (L;∧,∨) where L is a nonempty set
and where ∧ and ∨ are two binary operations, called
meet and join, respectively, which satisfy the following
axioms:

(i) for every a ∈ L, a ∨ a = a ∧ a = a;

(ii) for every a, b ∈ L, a ∨ b = b ∨ a and a ∧ b = b ∧ a;

(iii) for every a, b, c ∈ L, a ∨ (b ∨ c) = (a ∨ b) ∨ c and
a ∧ (b ∧ c) = (a ∧ b) ∧ c;
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(iv) for every a, b ∈ L, a∧(a∨b) = a and a∨(a∧b) = a.

Every lattice L constitutes a partially ordered set en-
dowed with the partial order ≤ such that for every
x, y ∈ L, write x 6 y if x ∧ y = x or, equivalently,
if x ∨ y = y. If for every a, b ∈ L, we have a 6 b or
b 6 a, then L is said to be a chain. A lattice L is said
to be bounded if it has a least and a greatest element,
denoted by 0 and 1, respectively.
A lattice L is said to be distributive, if

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

for every a, b, c ∈ L. Clearly, every chain is distribu-
tive. A lattice L is said to be complete if for every
S ⊆ L, its infimum

∧
S :=

∧
x∈S x and supremum∨

S :=
∨
x∈S x exist. Clearly, every complete lattice

is necessarily bounded.
A complete lattice L is said to be completely distribu-
tive if the following distributive law holds

∧

i∈I

(∨

j∈J
xij

)
=
∨

f∈JI

(∧

i∈I
xif(i)

)
,

for every doubly indexed subset {xij : i ∈ I, j ∈ J}
of L. Note that every complete chain (in particular,
the extended real line and each product of complete
chains) is completely distributive. Moreover, complete
distributivity reduces to distributivity in the case of
finite lattices. Throughout this paper we will assume
that (L;∧,∨) is a bounded and completely distributive
lattice. We indicate by [n] the set [n] = {1, . . . , n}.
The cartesian product Ln also constitutes a lattice by
defining the lattice operations componentwise. Ob-
serve that if L is bounded (distributive), then Ln is
also bounded (resp. distributive).
We denote by 0n and 1n the least and the great-
est elements, respectively, of Ln. For a ∈ L and
x = (x1, . . . , xn) ∈ Ln we define

a ∧ x = (x1 ∧ a, . . . , a ∧ xn)

and
a ∨ x = (a ∨ x1, . . . , a ∨ xn).

Moreover or each A ⊆ [n], we denote by A the char-
acteristic function of A in Ln defined by A(x) = 1
if x ∈ A and A(x) = 0 if x /∈ A. We define
L =

⋃
n∈N L

n. Then L is the set of finite sequence
of elements in L of any length. L is a lattice but not
necessarily complete or bounded.

2.2 LATTICE-VALUED SUGENO
INTEGRALS

The following definitions are natural extensions of the
well known concepts of real-valued fuzzy measures and

their associated integrals. We follow the approach pro-
posed by Greco in [18] and more recently by Ban and
Fechete in [1] for lattice-valued measures and integrals
and we refer to [16]for the standard case. Let (A,A)
be a measurable space and L a lattice (if A is finite we
assume that A = 2A).
A fuzzy measure on A with values in L is a func-
tion m : A → L such that m(X) ≤ m(Y ) whenever
X ⊆ Y . We do not assume necessarily that m(∅) = 0,
m(A) = 1.
A function f : A → L is said to be measurable if the
sets {x : f(x) 6 a} and {x : f(x) > a} are elements of
A for every a ∈ L. We will use {f > x} to indicate the
weak upper level set {t ∈ L : f(t) > x}. We denote by
F the set of the measurable functions f : A→ L.
We are interested in a class of integral functionals de-
fined on a complete lattice. Following the approach in
[18] we consider the functionals Sl, Su defined by :

Sl(m, f) =
∨

t∈L
(t ∧m({f > t})) and

Su(m, f) =
∧

t∈L
(t ∨m({s : f(s) � t}))

where f : A → L is a measurable function. If L is a
completely distributive lattice it can be proved that
S = Sl = Su (see[18]) and then functional S ex-
tends Sugeno integral to an ordinal framework and so
is called the lattice-valued Sugeno integral of f with
respect to m.
The concept of comonotonicity emerges quite natu-
rally in many different fields such as aggregation the-
ory, decision theory. We refer to Denneberg [13] for
the definition as well as for different characterizations
of comonotonicity. In this paper we consider a gene-
ralization of the notion of comonotonicity to the case
of lattice-valued functions (see [4]).

If A is a non empty set and L is a lattice two function
f, g : A→ L are said to be comonotone if

either {f > t} ⊇ {g > t} or {g > t} ⊇ {f > t}

for every t ∈ L. It can be prove (see [4]) that a lattice-
valued Sugeno integral satisfy the following properties:

(i) (homogeneity) S(f ∧a) = S(f)∧a for every a ∈ L
and for every f ∈ F

(iii) (comonotone maxitivity): S(f ∨g) = S(f)∨S(g)
if f, g are comonotone elements of F .

where f : A→ L is a measurable function and a is the
constant map with value a.
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2.3 OUR SETTING

We introduce some classes of aggregation operators de-
fined on lattice L from an axiomatic point of view.
As an example we can refer to social decisions where
different individuals rank alternatives as in the Arro-
vian framework. We are interested in different evalu-
ating situations in which the set of voters might vary.
We consider n voters that are allowed to express their
opinion on the candidates, social alternatives or pro-
posals by a ordering over the set of alternatives and
we want to aggregate the individual preferences in a
social ordering. Also in multicriterial choice alterna-
tives ordered by several criteria can be ordered by the
overall merit.
We can also consider the aggregation of a collection
of individual “judgments” in a social “judgment” as
in[12] where a “judgment” is represented by a set of
sentences in some logical language.
An aggregation operator F : L→ L is said to be non-
decreasing if, for every x, y ∈ Ln such that xi 6 yi, for
every i ∈ A, we have F (x) 6 F (y). In this paper by a
(lattice) aggregation operator on L we mean a nonde-
creasing mapping F : L→ L.
We are particularly interested in certain aggregation
operators that are Sugeno integrals. We also consider
symmetric lattice aggregation operators on L where
symmetry holds if F (x1, . . . , xn) = F (xπ(1), . . . , xπ(n))
for every permutation π of [n].
We note that symmetry is a very natural properties in
our framework (see also [5], [6], [7] and [14] ), in so-
cial choice symmetry is often called anonymity and it
means that every individual is endowed with the same
voting power as it is used in usual voting procedure.

3 SUGENO INTEGRAL BASED
OPERATORS

The following proposition characterizes Sugeno inte-
gral in our framework.

Proposition 1. If (L;∧,∨) is a completely distribu-
tive lattice and F is an aggregation operator F : L→ L
the following conditions are equivalent :

i) for every a ∈ L and x, y ∈ Ln such that xi 6 yi for
every i ∈ [n] we have that

F (x ∨ (a ∧ y)) = F (x) ∨ (a ∧ F (y))

ii) F is nondecreasing and for every x, y ∈ Ln, x,y
comonotone and a ∈ L,

F (a∧x) = a∧F (x) and F (x∨ y) = F (x)∨F (y)

iii) for every A ⊆ [n] there exists m(n,A) ∈ L such

that

F (x) =
∨

A⊆[n]

(
m(n,A) ∧

∧

i∈A
xi

)

for every x ∈ Ln

iv) for every A ⊆ [n] there exists m′(n,A) ∈ L such
that

F (x) =
∧

A⊆[n]

(
m′(n,A) ∨

∨

i∈A
xi

)

for every x ∈ Ln.

Proof. Let (A,A) is a measurable space and F the set
of the measurable functions f : A → L. By Theorem
3.2 in [18] a functional IF : → L is a Sugeno integral
if when f, g : A→ L are two functions such that f ≤ g
and a ∈ L

I (f ∨ (a ∧ g)) = I(f) ∨ (a ∧ I(g)) .

By Theorem 3.2 in [18] if condition i) is satisfied for ev-
ery n ∈ N the functional F in Ln is a Sugeno integral
with respect to a monotone measure defined in [n] and
then condition ii) is verified. Conversely if condition
ii) holds we can prove that x and a∧y are comonotone
if xi > yi for every i ∈ [n] and so condition ii) implies
condition i). In fact if a ≥ t then {x > t} ⊇ {a∧y > t}
and if a � t we get {a∧ y > t} = ∅ and then the func-
tions x, a ∧ y are comonotone.
Hence if the functional F satisfies condition i) or
ii) by Theorem 3.2 in [18] for every n there exists
a fuzzy measure mn : 2[n] → L such that F (x) =∨
t∈L (t ∧mn({x > t})) for every x ∈ Ln. Hence we

can prove that F (x) =
∨
A⊆[n]

(
mn(A) ∧∧i∈A xi

)
for

every x ∈ Ln so condition iii) is easily proved if we de-
fine m(n,A) = mn(A) for every A such that A ⊆ [n].
We note that F (x) =

∧
t∈L (t ∨mn({i : xi � t})) for

every x ∈ Ln by Theorem 3.2 in [18] and that

∧

t∈L
(t ∨mn({i : xi � t})) =

∧

A⊆[n]

(
m([n] \A) ∨

∨

i∈A
xi

)

for every x ∈ Ln as is easily seen.
Then we can prove condition iv) posing m′(n,A) =
mn([n] \A) for every A with A ⊆ [n].
Moreover if an aggregation operator F : L → L is de-
fined by condition iii) or condition iv) we get that the
operator F on Ln satisfies homogeneity and comono-
tone maxitivity conditions.

Note that F (0n) = 0 for every n ∈ N if and only if
m(n, ∅) = 0 for every n ∈ N.
If we assume that L is a complete chain we can prove
the following result.
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Proposition 2. If L is a complete chain and F is an
aggregation operator F : L → L the following condi-
tions are equivalent :

i) for every x, y ∈ Ln such that xi 6 yi for every
i ∈ [n] and a ∈ L if a 6 F (y) we have that
F (x ∨ (a ∧ y)) = F (x) ∨ a and if a > F (y) we
have that F (x ∨ (a ∧ y)) = F (y)

ii) for every A ⊆ [n] there exists m(n,A) ∈ L such
that

F (x) =
∨

A⊆[n]

(
m(n,A) ∧

∧

i∈A
xi

)

for every x ∈ Ln.

Proof. If L is a complete chain for every x, y ∈ Ln and
a ∈ L such that xi 6 yi for every i ∈ [n] or a 6 F (y)
and then F (x) ∨ (a ∧ F (y)) = F (x) ∨ a or a > F (y)
and then F (x) ∨ (a ∧ F (y)) = F (y).

4 SYMMETRIC AGGREGATION
OPERATORS

We introduce some definitions considering the case in
which symmetry holds. If x = (x1, . . . , xn) ∈ Ln and
y = (y1, . . . , ym) ∈ Lm the concatenation (x, y) de-
notes x = (x1, . . . , xn, y1, . . . , ym).
Moreover 1x = x and 2x = (x, x) and nx = (x, (n −
1)x). If (L;∧,∨) is a bounded and completely dis-
tributive lattice and F is a symmetric aggregation op-
erator F : L → L we say that F is arity-monotonic if
F (x) 6 F (x, y) for every x ∈ Ln, y ∈ Lm.
If x ∈ Ln for every i ≤ n we define x(i) by

x(i) =
∨

A⊆[n]|A|=i

∧

j∈A
xj

where |A| is the cardinality of the set A.
Note that inn the Arrovian framework there are i vot-
ers that approve the ranking x(i).
If L is a bounded chain (·) is a permutation on [n]
which arranges the elements of the vector by decreas-
ing values that is such that x(1) ≥ x(2) ≥, . . . ,≥ x(n).
The following proposition consider symmetric aggrega-
tion operators. It can be proved that Sugeno integral-
based symmetric aggregation operators generalize or-
der weighted maximum to lattices setting.

Proposition 3. If (L;∧,∨) is a completely distribu-
tive lattice and F is a symmetric and arity-monotonic
aggregation operator F : L → L the following condi-
tions are equivalent :

i) for every a ∈ L and x, y ∈ Ln such that there exists
a permutation π of [n]such that xπ(i) 6 yi for

every i ∈ [n] we have that

F (x ∨ (a ∧ y)) = F (x) ∨ (a ∧ F (y))

ii) F is nondecreasing and for every x, y ∈ Ln and
a ∈ L,

F (a∧x) = a∧F (x) and F (x∨ y) = F (x)∨F (y)

iii) for every i ∈ N there is an element wi ∈ L such
that if x ∈ Ln,

F (x) =
∨

i≤n
wi ∧ x(i).

Moreover if i ≤ i′ we have wi 6 wi′ .

Proof. We note that if F is a symmetric aggregation
operator two elements of Ln are comonotone and then
if F is comonotone maxitive is maxitive i.e. for every
x, y ∈ Ln we have that F (x ∨ y) = F (x) ∨ F (y).
By Proposition 1 if conditon i) or condition ii) is sat-
isfied F is a Sugeno integral in Ln and then for every
n ∈ N there exists a fuzzy measure mn : 2[n] → L such
that F (x) =

∨
A⊆[n]

(
mn(A) ∧∧i∈A xi

)
.

Since F is a symmetric operator the measure mn(A)
does not depend on n and depends only on the car-
dinality of the set A hence we define wi = mn(A) =
F (A) = F (i1) if |A| = i. We get

∨

|A|=i


wi ∧

∧

j∈A
xj


 = wi ∧ x(i)

and then condition iii) is easily proved. Conversely
conditions iii) implies that F on Ln is non decreasing,
maxitive and homogeneous. Being F arity-monotonic
if i ≤ i′ then F (i1) 6 F (i′1) hence wi 6 wi′ .

If L is a complete chain an arity-monotonic aggrega-
tion operator F : L → L that satisfies the conditions
of Proposition 3 for every i ∈ N there is an element
wi ∈ L such that if x ∈ Ln

F (x) =
∨

i≤n
wi ∧ x(i).

where x(1) ≥ x(2) ≥, . . . ,≥ x(n) then it is an ordered
weighted maximum.
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Summary

The aim of this contribution is to inspect
possible applications of clustering techniques
computed over a set consisting of non-
increasingly ordered vectors of possibly non-
conforming lengths. Such data sets appear
in the field of informetrics, where one needs
to evaluate the quality of information items,
e.g research papers, and their producers. In
this paper we investigate the notion of clus-
ter centers as an aggregated representation of
all vectors from a given cluster and analyze
them by means of aggregation operators.

Keywords: clustering, fuzzy clustering, c-
means algorithm, distance, producers assess-
ment problem

1 INTRODUCTION

The Producers Assessment Problem (PAP, see e.g. [7])
concerns the evaluation of a set of information re-
sources producers according to both number and qual-
ity of their products (e.g. forum posts, research pub-
lications, etc.). More formally, this problem may be
modeled by a set of vectors {x(1), . . . ,x(l)}, where

x(i) = (x
(i)
1 , x

(i)
2 , . . . , x

(i)
ni ), x

(i)
1 ≥ x

(i)
2 ≥ · · · ≥ x

(i)
ni with

possibly ni 6= nj for some i 6= j. Please note that in
this model x(i) represents the state of the i-th producer

and x
(i)
j denotes the quality assessment of his/her j-th

top product. Moreover, in many real life applications,

it is necessary to assume that x
(i)
j ∈ I = (−∞,∞),

cf. [3] for discussion.

Usually, aggregation operators are most often used to
summarize informetric data sets. However, also ma-
chine learning techniques may be applied for this very

purpose. For example, in [13] some algorithms were
applied on several indicators in order to obtain an au-
tomatic categorization of universities. Similarly, in [4]
a data set on the 500 best world universities was di-
vided into groups according to their various biblio-
metric performance indicators. Moreover, Costas, van
Leeuwen, and Bordons in order to split a group of
scientists into 3 clusters (top, medium, low class ones)
used e.g. the h-index [9], number of publications, num-
ber of highly cited papers, median impact factor, etc,
see [5].

Investigation carried out in this paper focuses on clus-
tering techniques. In our previous work [3] we dis-
cussed problems and challenges one may encounter
while performing clustering of informetric data sets.
We also proposed modifications of the well-known met-
rics, so they can be calculated over vectors of noncon-
forming lengths. The obtained measures were then
applied in a hierarchical clustering method. What is
more, the notion of such measures allows to adapt the
k-means algorithm for clustering task. In this paper
we generalize the results obtained in [2]. Moreover, we
focus on centroids of the clusters derived, which can be
conceived as an aggregated representation of the data
set.

The structure of this contribution is as follows. In
the next section the definition of a metric and dissimi-
larity measure for vectors of nonconforming lengths is
recalled. In Sec. 3 the notion of the c-means algorithm
is extended so that it can be computed over PAP data
sets. Next, in Sec. 4, the performance of the obtained
method is investigated. Finally, Sec. 5 concludes the
paper and indicates future research directions.

2 METRICS

For any n ∈ N, let Sn denote the set of non-
increasingly ordered real vectors of length n, i.e. Sn =
{(x1, . . . , xn) ∈ Rn, x1 ≥ · · · ≥ xn}. Moreover, let S≤n
be a set of non-increasingly ordered vectors of length
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at most n, that is S≤n =
⋃n

i=1 Si. Assume that we are
given l producers and k = max{ni : i = 1, 2, . . . , l}.
Obviously, such k is finite and well defined for each
set of producers. Moreover, let x̃ denote the vec-
tor of length k and equivalent to x padded with 0’s,
i.e. x̃ = (x1, x2, . . . , xn, 0, . . . , 0) ∈ Sk.

Let us now recall the definition of a class of metrics
over S≤k (see [3] for more details and a proof). Please
keep in mind, that metric is a function d(x,y) such
that (∀x,y) (a) d(x,y) = 0⇔ x = y and (b) d(x,y) =
d(y,x) and fulfills triangle inequality, i.e. d(x,y) ≤
d(x, z) + d(z,y). Moreover, in case when conditions
(b) and (c) hold and d(x,y) = 0 ⇐ x = y, d is a
pseudometric.

Theorem 1. Let dM : S≤k × S≤k → [0,∞) be such
that dM (x,y) = µ(x̃, ỹ) + ν(x,y), where µ is a metric
on Rk and ν is a pseudo-metric on S≤k. Then dM is
a metric on S≤k if and only if for all x,y such that
x̃ = ỹ it holds ν(x,y) = 0 =⇒ nx = ny.

Because of computational reasons, in some clustering
tasks it is more convenient to consider dissimilarity
measure instead of metric, i.e. a function d(x,y) such
that (∀x,y) (a) d(x,y) ≥ 0, (b) d(x,y) = 0 ⇔ x = y
and (c) d(x,y) = d(y,x). Of course, each metric is a
dissimilarity measure.

3 CLUSTERING

Cluster analysis is a machine learning technique which
allows to partition the general population of objects
into distinguishable – according to some criteria –
groups (clusters). In other words, in the most desired
partitioning scheme, the entities within each group are
as similar as possible and objects in distinct groups dif-
fer as much as possible from each other (see e.g. [8]).

One approach to cluster analysis is to divide the
objects into c nonempty pairwise disjoint sets C =
{C1, C2, . . . , Cc},

⋃c
i=1 Ci = X , so as to minimize the

within-cluster dissimilarity – sum of dissimilarities be-
tween points in the same cluster, i.e.:

C = arg min
partition C of X

c∑

j=1

∑

x∈Cj

d2L2

(
x,µ(j)

)
, (1)

where d2L2
denotes the squared Euclidean distance (a

dissimilarity measure) and µ(j) is the j-th cluster cen-
troid.

On the other hand, in fuzzy clustering, every point
has a degree of belonging to each cluster, rather than
belonging entirely to just one of them, see e.g. [10].
In such a case, given a set of observations X =
{x(1), . . . ,x(l)}, where each x(i) ∈ Rn, we aim to deter-
mine a fuzzy pseudopartition – a family of fuzzy sub-

sets of X : W = {W1, . . . ,Wc}, where wij = Wj(x
(i)),

such that
∑c

j=1Wj(x
(i)) = 1, describes the degree

of belonging of the i-th observation to the j-th clus-
ter. Here, we aim to find the fuzzy pseudopartitioning
which minimizes

arg min
fuzzy partition W of X

l∑

i=1

c∑

j=1

wm
ij d

2
L2

(x(i),µ(j)), (2)

where the m ∈ R, m ≥ 1 is a fuzzifier, cf [1].

Fuzzy c-means algorithm. Clustering tasks can
be solved using various heuristics that differ signifi-
cantly in their structure. Moreover, even when an al-
gorithm converges, the obtained minimum may only
be a local minimum. Also the initial choice of weights
can have a great impact on the results. Investigation
carried out here concerns the fuzzy c-means algorithm
(cf. [1, 10]), which may be viewed as a weighted gen-
eralization of the k-means procedure.

Let us now recall basic steps of the c-means method.

1. Set a number of clusters and randomly assign for
each observation the membership degrees.

2. Until the convergence condition is met, i.e. the
coefficients’ change between two iterations is not
greater than a given sensitivity threshold ε, re-
peat:

(a) Compute the centroid for each cluster µ(j)

with respect to the weighted distance.

(b) For each point x(i), compute its coeffi-
cients (weights, membership) wij of being
in the clusters j = 1, . . . , c as wij =(∑c

u=1

(
d2
L2

(x(i)−µ(j))

d2
L2

(x(i)−µ(u))

)1/(m−1))−1
.

Special attention should be paid when implementing
the above algorithm. The main problems here may
be caused by numerical errors, which can occur dur-
ing the computation of weights. Please note that if
d2L2

(x(i) − µ(u)) = 0 for some u = 1, . . . , c, according
to the formula given above there is division by 0. In
such a case, one may choose as a weight an arbitrary
real number (keeping in mind that the weights must
add up to 1, see e.g [10]).

3.1 DETERMINING THE WEIGHTED
CENTROID

Let us focus on a squared version of an Euclidean-
like metric d2D;pq : S≤k×S≤k, defined as d2D;pq(x,y) =

d2L2
(x̃, ỹ)+p|nrx−nry|, where dL2

denotes the Euclidean

metric in Rk and p, q > 0. Please note that this ap-
proach bases on the idea of padding input vectors with
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zeros. It is because in the standard arithmetic of real
numbers we have |a−0| = |0−a| = |a|. Also note that
by the fact that 0 is a distinguished value in the set
of reals, the introduced metrics can be rewritten as:
the distance between min{nx, ny} observations plus
a norm of the remaining observations in the longer
vector (which is the same as the distance to 0) plus
penalty for the difference in vectors’ lengths. As we
see, for the purpose of the investigation carried out
in this paper, we propose to use the penalty of the
form p|nrx − nry|. Please note that in the considered
scenario 0 has a special meaning – it denotes an item
with quality assessment of 0, e.g. a paper without ci-
tations. Because of that, we are interested in dissim-
ilarity measures that can distinguish vectors, e.g., (1)
and (1, 0, 0, . . . , 0) from each other. This can be done
by including the mentioned penalty term: without it
the dissimilarity between the exemplary vectors would
be equal to 0.

Let w = (w1, w2, . . . , wl) denote the degree of mem-
bership of the observations to a given cluster. Our
task is to find the vector µ which minimizes

arg min
µ∈S

l∑

i=1

wm
i d

2
D;pq(xi,µ),

i.e. the vector which minimizes the objective function
given by Fw(µ) =

∑l
i=1 w

m
i d

2
D;pq(xi,µ).

It is easily seen that such a task is a generalization
of the results presented in [2], where determining the
d2D;pq-centroid was derived for the k-means procedure
with wi = 1 or wi = 0 for all i.

Step 1. For n = 1, 2, . . . , k determine:

µ(n) = arg min
µ∈Sn

Fw(µ). (3)

Step 2. Compute:

µ = arg min
n=1,...,k

Fw(µ(n)). (4)

Let n ∈ [k] := {1, 2, . . . , k} be fixed and let P ⊆ 2[n]

denote the partition of a set [n], such that for each
P, P ′ ∈ P we have P ∩ P ′ = ∅, |P | > 0,

⋃
P∈P = [n]

and {i, j} ∈ P with i ≤ j implies that i+1, i+2, . . . , j−
1 ∈ P . Moreover, let P{i} stand for such P ∈ P that
fulfills {i} ∈ P . By CP[n] we will denote the whole
class of such partitions.

Theorem 2. For some P ∈ CP[n] the vector y ∈ Rn

given by

yi =

∑l
f=1

(
wm

f

∑
j∈Pi

x̃
(f)
j

)

|P{i}|
∑l

f=1 w
m
f

for i = 1, . . . , n,

is a solution to Eq. (3) if y1 ≥ y2 ≥ · · · ≥ yn and for
all i ∈ [n] with i ∈ (P{i} \ {maxP{i}}) we have

i−min P{i} + 1

|P{i}|
l∑

f=1

wm
f

{ ∑

j∈P{i}
x̃
(f)
j

}

−
l∑

f=1

wm
f

{ ∑

j∈P{i},j≤i
x̃
(f)
j

}
> 0.

Proof. The task is to find miny∈Rn Fw(y) with respect
to n− 1 constraints of the form:

gi(y) = yi+1 − yi ≤ 0 for i = 1, . . . , n− 1.

By means of the Karush-Kuhn-Tucker (KKT) theorem
(cf. [12]), we need to find y and λ1, . . . , λn−1 such that

∇Fw(y) +

n−1∑

i=1

λi∇gi(y) = 0,

with λigi(y) = 0 and λi ≥ 0 for i ∈ [n− 1]. Note that
for h ∈ [n] we have:

∂Fw

∂yh
(y) = 2

l∑

i=1

wm
i (yh − x̃ih).

For brevity of notation, let us assume that λ0 := 0
and λn := 0. Thus, our task reduces to solving the
following system of linear equations:




0 = 2
∑l

i=1 w
m
i (y1 − x̃i1) +λ0 −λ1

0 = 2
∑l

i=1 w
m
i (y2 − x̃i2) +λ1 −λ2

...

0 = 2
∑l

i=1 w
m
i (yn−1 − x̃in−1) +λn−2 −λn−1

0 = 2
∑l

i=1 w
m
i (yn − x̃in) +λn−1 −λn

0 = λ1(y2 − y1)
...

0 = λn−1(yn − yn−1)

under constraints λ1 ≥ 0, . . . , λn−1 ≥ 0 and y1 ≥ y2 ≥
· · · ≥ yn.

Thus, let us consider a solution (not necessarily feasi-
ble) that fulfills λ ≥ 0. First of all, let us take u such
that λu−1 = λu = 0. It immediately implies that:

yu =

∑l
f=1 w

m
f x̃

(f)
u

∑l
f=1 w

m
f

.

On the other hand, for each u and p ≥ 2 such that
λu−1 = 0, λu > 0, λu+1 > 0, . . . ,λu+p−2 > 0,
λu+p−1 = 0 we get that yu = · · · = yu+p−1. More
specifically, we have:

yi =

∑l
f=1 w

m
f

∑u+p−1
j=u x̃

(f)
j

p
∑l

f=1 w
m
f

for i = u, . . . , u+ p− 1,
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In such a case, we have that for i = u, . . . , u+ p− 2:

λi = 2
i− u+ 1

p

l∑

f=1

wm
f

( u+p−1∑

j=u

x̃
(f)
j

)

− 2
l∑

f=1

wm
f

( i∑

j=u

x̃
(f)
j

)
> 0,

is a solution to Eq. (3).

See Algorithm 1 for the procedure that computes the
solution to the Eq. (3). Please note that this ap-
proach is a simple generalization of the algorithm in-
cluded in [2], where the proof of its correctness was
included. The main modification concerns the form of
input data. In the scenario considered in this paper,
the algorithm is applied to a list of vectors of the form
x(j) = wm

j x(j)/
∑l

i=1 w
m
j . It is clear to see that when

weights are either 0 or 1, both procedures return the
same result.

Data: A set of l vectors X ⊂ S and n ∈ N.
Result: µ(n) = arg minµ∈SnFw(µ).

Let x̃ be such that x̄i =
∑l

j=1 w
m
j x̃

(j)
i /

∑l
i=1 w

m
i , for

all i ∈ [n];
Let P = ∅;
Let y ∈ Rn;
for k = 1, 2, . . . , n do

yk = x̄k;
Let P := P ∪

{
{k}
}

; (we have P ∈ CP([k]))
while |P| > 1 and yminP (|P|) > ymaxP (|P|−1) do

P :=
((
P \ {P (|P|)}

)
\ {P (|P|−1)}

)
∪

{P (|P|−1) ∪ P (|P|)}; (merge P (|P|−1), P (|P|))

for i ∈ P (|P|) do
Set yi := 1

|P (|P|)|
∑

j∈P (|P|) x̄j ;

end

end

end
return y;

Algorithm 1: An algorithm to determine the solution
to the Eq. (3)

Remark 1. Even though the d2D;11-centroid can be
viewed as an aggregated representation of a set of vec-
tors, in general the procedure given by Theorem 2 is not
a E-monotonic fusion function, where E is the par-
tial ordering described in [7]. For example, let us con-
sider X = {x(1) = (10, 2, 1, 0, 0),x(2) = (−11),x(3) =
(−5,−6,−10)} and Y = {y(1) = (10, 2, 1, 0, 0),y(2) =
(10,−100),y(3) = (−5,−6,−10)}. It is clear to
see that for each i = 1, 2, 3 we have x(i) E y(i).
However, for the corresponding centroids we have
(−1.67,−1.67,−3) 6E (5,−34.67). On the other hand,
if all the input elements are non-negative, then E-
monotonicity always holds.

4 EMPIRICAL ANALYSIS

Let us now consider a data set consisting of citations
received by 5000 scientists1. The data were gathered
from Elsevier’s Scopus (see [6] for details).

Table 1 contains basic sample statistics of the vectors.
Please note that 78% of them are only of length 1 and
among them, 32% are equal to 0.

Table 1: Basic summary statistics of vectors’ lengths
(n), maximal value (max) and sum of all elements
(sum) (Scopus data set).

Min. Median Mean Max.
n 1 1 1.62 98

max 0 3 8.96 791
sum 0 3 12.63 1211

The fuzzy c-means and k-means algorithms were ap-
plied in order to determine 6 clusters (groups). The
closest crisp clustering based on weights from the fuzzy
c-means algorithm, was obtained by assigning each
vector to the cluster with the maximal weight. The
number of common vectors in clusters obtained via the
k-means and fuzzy c-means algorithm are presented in
Table 2.

Table 2: Number of common vectors in clusters ob-
tained via the k-means (columns) and the c-means
(rows) algorithm.

Cluster no. 1 2 3 4 5 6
1 3472 0 0 0 0 0
2 5 1052 6 0 0 0
3 0 2 308 6 0 0
4 0 0 10 100 0 0
5 0 0 0 6 27 0
6 0 0 0 0 0 6

Figure 2 presents the step functions of citation vec-
tors in each cluster. Corresponding centroids are
marked by black ◦ and red × for the k-means and
the fuzzy c-means procedure, respectively. The agree-
ment between these two partitioning schemes, being
equal to 99%, was calculated via the Rand Index,
i.e. A/(A + D), where A denotes the number of all
pairs of data points assigned by both partitions into
the same cluster or into different clusters (both par-
titionings agree for all pairs A) and D denotes the
number of all pairs assigned differently by both parti-
tions (the partitions disagree for all pairs D), cf. [11].
Figure 1 presents the distribution of maximal weights
per each vector. Please note that there are 188 vectors
for which any weight is not greater than 0.5.

1The data set is available at http://cena.rexa-
mine.com/research/.
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Figure 1: The distribution of cluster membership
weights.

Table 3 presents the weighted sum of dissimilarities
between bibliometric indices for the Scopus data set,
i.e.

∑c
j=1

∑l
k,i=1 wijwkj(xi − xk)2. We analyzed the

weights determined by the fuzzy c-means algorithm,
the uniformly distributed membership degrees to all
clusters and weights of the form wij = 1 for x(i) if
the k-means algorithm assigns i-th vector to j-th clus-
ter and wij = 0 otherwise. Here, we consider the
Hirsch index (H), the G-index (G), length (n), max-
imum (max) and the arithmetic mean (mean). Please
note that the weights returned by the fuzzy c-means
algorithm minimizes such a sum for all the considered
indexes.

Table 3: Weighted sum of dissimilarities between the
Hirsch index (H), the G-index (G), length (n), Max
(max) and arithmetic mean (mean) calculated for the
fuzzy c-means output, uniform membership and k-
means partitioning.

c-means uniform membership k-means
G 951.01 2404321.83 1404.00
H 420.33 1763367.67 564.00
n 1347.73 2337926.83 1404.00

max 15865.30 27334939.66 20394.00
mean 10148.87 20259504.16 20207.30

Moreover, Table 4 presents the Hirsch index (H), G-
index (G), length (n), Max operator (max) and the
arithmetic mean (mean) computed for clusters cen-
troids determined by the fuzzy c-means algorithm. We
may see that the first centroid is characterized by a low
H- and G-index and also a small number of publica-
tions. On the other hand, centroids corresponding to
clusters 2, 3 and 4, represent researchers with a rather
small number of publications (between 2 and 4) and a
low H- and G-index, however, the number of citation
given to their most cited paper (max) increase (12.55,
32.74, 68.77). Finally, researchers from clusters 5 and

6, represented by corresponding centroids are charac-
terized with a high number of citations (175.51 and
907.50), and larger number of publications (10 and
24).

Table 4: The Hirsch index (H), G-index (G), length
(n), maximum (max) and the arithmetic mean (mean)
computed for cluster centroids determined by the fuzzy
c-means algorithm.

Cl.no. 1 2 3 4 5 6

G 1.00 2.00 3.00 4.00 10.00 24.00
H 1.00 1.00 2.00 3.00 4.00 12.00
n 1.00 2.00 3.00 4.00 10.00 24.00

max 1.64 12.55 32.74 68.77 127.21 398.21
mean 1.64 7.00 12.67 20.05 17.55 37.81
sum 1.64 13.99 38.00 80.19 175.51 907.50

5 CONCLUSIONS

In this paper applications of the fuzzy c-means clus-
tering algorithm to sets of vectors of possibly noncon-
forming lengths were investigated. First of all, a gen-
eralization of the procedure to compute the centroids
of such sets, with respect to some dissimilarity mea-
sure tailored for vectors of unequal lengths, was pro-
vided. Moreover, the presented approach was verified
by an empirical analysis on a bibliometric data set.
Special attention was paid to the investigation of the
clusters’ centroids as an aggregated representation of a
considered data set. By means of various bibliometric
indexes, we evaluated the degree in which they reflect
the structure of the whole data set.
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Summary

A median algebra is a ternary algebra that
satisfies every equation satisfied by the me-
dian terms of distributive lattices. We
present a characterization theorem for ag-
gregation functions over conservative median
algebras. In doing so, we give a character-
ization of conservative median algebras by
means of forbidden substructures and by pro-
viding their representation as chains.

Keywords: Median algebras, Aggregation
Functions, Distributive lattices.

1 INTRODUCTION AND
PRELIMINARIES

Informally, an aggregation function f : An → B may
be thought of as a mapping that preserves the struc-
ture of A into B. It is common to consider that B
is equal to A and is equipped with a partial order
so that aggregation functions are thought of as order-
preserving maps [8].

If L = 〈L,∧,∨〉 is a distributive lattice then the
ternary term operation defined on L by

m(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) (1.1)

is symmetric and self dual, and is called the median
term over L. If L is a total order, then m(a, b, c) is
the element among a, b and c that is between the two
other ones if a, b, c are mutually distinct, and is the
majority element otherwise.

Median algebras are ternary algebras that were intro-
duced in order to abstract this notion of betweenness.
Formally, a median algebra is an algebra A = 〈A,m〉

with a single ternary operation m that satisfies the
equations

m(x, x, y) = x,

m(x, y, z) = m(y, x, z) = m(y, z, x),

m(m(x, y, z), t, u) = m(x,m(y, t, u),m(z, t, u)),

and that is called a median operation. In particular,
every median algebra satisfies the equation

m(x, y,m(x, y, z)) = m(x, y, z). (1.2)

Examples of median operations are given by median
term operations over distributive lattices. If L is a
distributive lattice and if mL is the operation defined
on L by (1.1) then the algebra 〈L,mL〉 is called the
median algebra associated with L. If A is a median al-
gebra, the median operation is extended to An point-
wise.

A median algebra A = 〈A,m〉 is said to be conserva-
tive if

m(x, y, z) ∈ {x, y, z},
for every x, y, z ∈ A. It is not difficult to observe that a
median algebra is conservative if and only if each of its
subsets is a median subalgebra. Moreover, the median
term associated with a total order is a conservative
median operation. This fact was observed in §11 of
[12], which presents the four element Boolean algebra
as a counter-example.

The results of this paper, which were previously ex-
posed in [5], are twofold. First, we present a de-
scription of conservative median algebras in terms
of forbidden substructures (in complete analogy with
Birkhoff’s characterization of distributive lattices
with M5 and N5 as forbidden substructures and Ku-
ratowski’s characterization of planar graphs in terms
of forbidden minors), and that leads to a representa-
tion of conservative median algebras (with at least five
elements) as chains. In fact, the only conservative me-
dian algebra that is not representable as a chain is the
four element Boolean algebra.
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Second, we characterize functions f : B → C that
satisfy the equation

f(m(x, y, z)) = m(f(x), f(y), f(z)), (1.3)

where B and C are finite products of (non necessar-
ily finite) chains, as superposition of compositions of
monotone maps with projection maps (Theorem 4.5).
Particularized to aggregation functions f : An → A,
where A is a chain, we obtain an Arrow-like theorem:
f satisfies equation (1.3) if and only if it is dictatorial
and monotone (Corollary 4.6).

Throughout the paper we employ the following no-
tation. For each positive integer n, we set [n] =
{1, . . . , n}. Algebras are denoted by bold roman cap-
ital letters A,B,X,Y . . . and their universes by italic
roman capital letters A,B,X, Y . . .. To simplify our
presentation, we will keep the introduction of back-
ground to a minimum, and we will assume that the
reader is familiar with the theory of lattices and or-
dered sets. We refer the reader to [7, 9] for further
background. Proofs of the results presented in the
fourth section are omitted because they rely on argu-
ments involving a categorical duality that are beyond
the scope of this paper. The missing proofs and details
can be found in [6].

2 MEDIAN ALGEBRAS, MEDIAN
SEMILATTICES AND MEDIAN
GRAPHS

Median algebras have been investigated by several au-
thors (see [4, 10] for early references on median alge-
bras and see [2, 11] for some surveys) who illustrated
the deep interactions between median algebras, order
theory and graph theory.

For instance, take an element a of a median algebra A
and consider the relation ≤a defined on A by

x ≤a y ⇐⇒ m(a, x, y) = x.

Endowed with this relation, A is a ∧-semilattice order
with bottom element a [13]: the associated operation
∧ is defined by x ∧ y = m(a, x, y).

Semilattices constructed in this way are called median
semilattices, and they coincide exactly with semilat-
tices in which every principal ideal is a distributive
lattice and in which any three elements have a join
whenever each pair of them is bounded above. The
operation m on A can be recovered from the median
semilattice order ≤a using identity (1.1) where ∧ and
∨ are defined with respect to ≤a. Semilattices as-
sociated with conservative median algebras are called
conservative median semilattices.

Note that if a median algebra A contains two elements
0 and 1 such that m(0, x, 1) = x for every x ∈ A,
then (A,≤0) is a distributive lattice order bounded
by 0 and 1, and where x ∧ y and x ∨ y are given by
m(x, y, 0) and m(x, y, 1), respectively. It is notewor-
thy that equations satisfied by median algebras of the
form 〈L,mL〉 are exactly those satisfied by median al-
gebras. In particular, every median algebra satisfies
the equation

m(x, y, z) = m
(
m
(
m(x, y, z), x, t

)
,

m
(
m(x, y, z), z, t

)
,m
(
m(x, y, z), y, t

))
. (2.1)

Moreover, covering graphs (i.e., undirected Hasse di-
agram) of median semilattices have been investigated
and are, in a sense, equivalent to median graphs. Re-
call that a median graph is a (non necessarily finite)
connected graph in which for any three vertices u, v, w
there is exactly one vertex x that lies on a shortest
path between u and v, on a shortest path between u
and w and on a shortest path between v and w. In
other words, x (the median of u, v and w) is the only
vertex such that

d(u, v) = d(u, x) + d(x, v),

d(u,w) = d(u, x) + d(x,w),

d(v, w) = d(v, x) + d(x,w).

Every median semilattice whose intervals are finite has
a median covering graph [1] and conversely, every me-
dian graph is the covering graph of a median semilat-
tice [1, 13]. This connection is deeper: median semi-
lattices can be characterized among the ordered sets
whose bounded chains are finite and in which any two
elements are bounded below as the ones whose cover-
ing graph is median [3]. For further background see,
e.g., [2].

3 CHARACTERIZATIONS OF
CONSERVATIVE MEDIAN
ALGEBRAS

Let C0 = 〈C0,≤0, c0〉 and C1 = 〈C1,≤1, c1〉 be chains
with bottom elements c0 and c1, respectively. The
⊥-coalesced sum C0⊥C1 of C0 and C1 is the poset
obtained by amalgamating c0 and c1 in the disjoint
union of C0 and C1. Formally,

C0⊥C1 = 〈C0 t C1 /≡, ≤
〉
,

where t is the disjoint union, where ≡ is the equiva-
lence generated by {(c0, c1)} and where ≤ is defined
by

x/≡ ≤ y/≡ ⇐⇒ (x ∈ {c0, c1} or x ≤0 y or x ≤1 y).
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•z′

•
a

•x •y

•z

(d) A4

Figure 1: Examples of ∧-semilattices that are not con-
servative.

Proposition 3.1. The partially ordered sets
A1, . . . ,A4 depicted in Fig. 1 are not conserva-
tive median semilattices.

Proof. The poset A1 is a bounded lattice (also denoted
by N5 in the literature on lattice theory, e.g., in [7, 9])
that is not distributive. In A2 the center is equal to
the median of the other three elements. The poset A3

contains a copy of A2, and A4 is a distributive lattice
that contains a copy of the dual of A2 and thus it is
not conservative as a median algebra.

The following Theorem provides descriptions of con-
servative semilattices with at least five elements, both
in terms of forbidden substructures and in the form
of representations by chains. Note that any semilat-
tice with at most four elements is conservative, but the
poset depicted in Fig. 1(b).

Theorem 3.2. Let A be a median algebra with |A| ≥
5. The following conditions are equivalent.

(1) A is conservative.

(2) For every a ∈ A the ordered set 〈A,≤a〉 does not
contain a copy of the poset depicted in Fig. 1(b).

(3) There is an a ∈ A and lower bounded chains
C0 and C1 such that 〈A,≤a〉 is isomorphic to
C0⊥C1.

(4) For every a ∈ A, there are lower bounded chains
C0 and C1 such that 〈A,≤a〉 is isomorphic to
C0⊥C1.

Proof. (1) =⇒ (2): Follows from Proposition 3.1.

(2) =⇒ (1): Suppose that A is not conservative, that
is, there are a, b, c, d ∈ A such that d := m(a, b, c) 6∈
{a, b, c}. Clearly, a, b and c must be pairwise distinct.
By (1.2), a and b are ≤c-incomparable, and d <c a and
d <c b. Moreover, c <c d and thus 〈{a, b, c, d},≤c〉 is
a copy of A2 in 〈A,≤c〉.
(1) =⇒ (4): Let a ∈ A. First, suppose that for every
x, y ∈ A \ {a} we have m(x, y, a) 6= a. Since A is
conservative, for every x, y ∈ A, either x ≤a y or y ≤a
x. Thus ≤a is a chain with bottom element a, and we
can choose C1 = 〈A,≤a, a〉 and C2 = 〈{a},≤a, a〉.
Suppose now that there are x, y ∈ A \ {a} such that
m(x, y, a) = a, that is, x ∧ y = a. We show that

z 6= a =⇒
(
m(x, z, a) 6= a or m(y, z, a) 6= a

)
, z ∈ A.

(3.1)
For the sake of a contradiction, suppose that
m(x, z, a) = a and m(y, z, a) = a for some z 6= a.
By equation (2.1), we have

m(x, y, z) = m
(
m
(
m(x, y, z), x, a

)
,

m
(
m(x, y, z), z, a

)
,m
(
m(x, y, z), y, a

))
. (3.2)

Assume that m(x, y, z) = x. Then (3.2) is equivalent
to

x = m(x,m(x, z, a),m(x, y, a)) = a,

which yields the desired contradiction. By symme-
try, we derive the same contradiction in the case
m(x, y, z) ∈ {y, z}.
We now prove that

z 6= a =⇒
(
m(x, z, a) = a or m(y, z, a) = a

)
, z ∈ A.

(3.3)
For the sake of a contradiction, suppose that
m(x, z, a) 6= a and m(y, z, a) 6= a for some z 6= a.
Since m(x, y, a) = a we have that z 6∈ {x, y}.
If m(x, z, a) = z and m(y, z, a) = y, then y ≤a z ≤a x
which contradicts x∧y = a. Similarly, if m(x, z, a) = z
and m(y, z, a) = z, then z ≤a x and z ≤a y which also
contradicts x ∧ y = a. The case m(x, z, a) = x and
m(y, z, a) = z leads to similar contradictions.

Hence m(x, z, a) = x and m(y, z, a) = y, and the
≤a-median semilattice arising from the subalgebra
B = {a, x, y, z} of A is the median semilattice as-
sociated with the four element Boolean algebra. Let
z′ ∈ A \ {a, x, y, z}. By (3.1) and symmetry we may
assume that m(x, z′, a) ∈ {x, z′}. First, suppose that
m(x, z′, a) = z′. Then 〈{a, x, y, z, z′},≤a〉 is N5 (Fig.
1(a)) which is not a median semilattice. Suppose then
that m(x, z′, a) = x. In this case, the restriction of ≤a
to {a, x, y, z, z′} is depicted in Fig. 1(c) or 1(d), which
contradicts Proposition 3.1, and the proof of (3.3) is
thus complete.
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Now, let C0 = {z ∈ A | (x, z, a) 6= a}, C1 = {z ∈
A | (y, z, a) 6= a} and let C0 = 〈C0,≤a, a〉 and C1 =
〈C1,≤a, a〉. It follows from (3.1) and (3.3) that 〈A,≤a
〉 is isomorphic to C0⊥C1.

(4) =⇒ (3): Trivial.

(3) =⇒ (1): Let x, y, z ∈ C0⊥C1. If x, y, z ∈ Ci for
some i ∈ {0, 1} then m(x, y, z) ∈ {x, y, z}. Otherwise,
if x, y ∈ Ci and z 6∈ Ci, then m(x, y, z) ∈ {x, y}.

The equivalence between (3) and (1) in Proposition
3.2 gives rise to the following representation of conser-
vative median algebras.

Theorem 3.3. Let A be a median algebra with |A| ≥
5. Then A is conservative if and only if there is a
totally ordered set C such that A is isomorphic to
〈C,mC〉.

Proof. Sufficiency is trivial. For necessity, consider the
universe of C0⊥C1 in condition (3) of Proposition 3.2
endowed with ≤ defined by x ≤ y if x ∈ C1 and y ∈ C0

or x, y ∈ C0 and x ≤0 y or x, y ∈ C1 and y ≤1 x.

As stated in the next result, the totally ordered set C
given in Theorem 3.3 is unique, up to (dual) isomor-
phism.

Theorem 3.4. Let A be a median algebra. If C and
C′ are two chains such that A ∼= 〈C,mC〉 and A ∼=
〈C′,mC′〉, then C is order isomorphic or dual order
isomorphic to C′.

4 HOMOMORPHISMS BETWEEN
CONSERVATIVE MEDIAN
ALGEBRAS

In view of Theorem 3.3 and Theorem 3.4, we introduce
the following notation. Given a conservative median
algebra A (|A| ≥ 5), we denote a chain representation
of A by C(A), that is, C(A) is a chain such that
A ∼= 〈C(A),mC(A)〉, and we denote the corresponding
isomorphism by fA : A→ 〈C(A),mC(A)〉. If f : A→
B is a map between two conservative median algebras
with at least five elements, the map f ′ : C(A)→ C(B)
defined as f ′ = fB ◦ f ◦ f−1A is said to be induced by f .

A function f : A→ B between median algebras A and
B is called a median homomorphism if it satisfies equa-
tion (1.3). We use the terminology introduced above
to characterize median homomorphisms between con-
servative median algebras. Recall that a map between
two posets is monotone if it is isotone or antitone.

Theorem 4.1. Let A and B be two conservative
median algebras with at least five elements. A map
f : A → B is a median homomorphism if and only if
the induced map f ′ : C(A)→ C(B) is monotone.

•

•

•

•

•

•

(a) A monotone map
which is not a median
homomorphism.

•

•

• •

•

•

•

•

•

(b) A median homomorphism
which is not monotone.

Figure 2: Examples for Remark 4.3.

Corollary 4.2. Let C and C′ be two chains. A map
f : C→ C′ is a median homomorphism if and only if
it is monotone.

Remark 4.3. Note that Corollary 4.2 only holds for
chains. Indeed, Fig. 2(a) gives an example of a mono-
tone map that is not a median homomorphism, and
Fig. 2(b) gives an example of median homomorphism
that is not monotone.

Since the class of conservative median algebras is
clearly closed under homomorphic images, we obtain
the following corollary.

Corollary 4.4. Let A and B be two median alge-
bras and f : A → B. If A is conservative, and if
|A|, |f(A)| ≥ 5, then f is a median homomorphism if
and only if f(A) is a conservative median subalgebra
of B and the induced map f ′ : C(A) → C(f(A)) is
monotone.

We are actually able to lift the previous result to finite
products of chains. If fi : Ai → A′i (i ∈ [n]) is a family
of maps, let (f1, . . . , fn) : A1×· · ·×An → A′1×· · ·×A′n
be defined by

(f1, . . . , fn)(x1, . . . , xn) := (f1(x1), . . . , fn(xn)).

The following theorem characterizes median homo-
morphisms between finite products of chains.

Theorem 4.5. Let A = C1 × · · · × Ck and B =
D1 × · · · ×Dn be two finite products of chains. Then
f : A → B is a median homomorphism if and only
if there exist σ : [n] → [k] and monotone maps fi :
Cσ(i) → Di for i ∈ [n] such that f = (fσ(i), . . . , fσ(n)).

As an immediate consequence, it follows that aggre-
gation functions compatible with median functions on
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ordinal scales are dictorial.

If A = A1 × · · · × An and i ∈ [n], then we denote the
projection map from A onto Ai by πAi , or simply by
πi if there is no danger of ambiguity.

Corollary 4.6. Let C1, . . . ,Cn and D be chains. A
map f : C1×· · ·×Cn → D is a median homomorphism
if and only if there is a j ∈ [n] and a monotone map
g : Cj → D such that f = g ◦ πj.

In the particular case of Boolean algebras (i.e., powers
of a two element chain), Theorem 4.5 can be restated
as follows.

Corollary 4.7. Assume that f : 2n → 2m is a map
between two finite Boolean algebras.

(1) The map f is a median homomorphism if and only
if there are σ : [m] → ([n] ∪ {⊥}) and ε : [m] →
{id,¬} such that

f : (x1, . . . , xn) 7→ (ε1xσ1
, . . . , εmxσm

),

where x⊥ is defined as the constant map 0.

In particular,

(2) A map f : 2n → 2 is a median homomorphism if
and only if it is a constant function, a projection
map or the negation of a projection map.

(3) A map f : 2n → 2n is a median isomorphism if
and only if there is a permutation σ of [n] and an
element ε of {id,¬}n such that f(x1, . . . , xn) =
(ε1xσ(1), . . . , εnxσ(n)) for any (x1, . . . , xn) in A.

5 CONCLUDING REMARKS AND
FURTHER RESEARCH
DIRECTIONS

In this paper we have described conservative median
algebras and semilattices with at least five elements
in terms of forbidden configurations and have given
a representation by chains. We have also character-
ized median-preserving maps between finite products
of these algebras, showing that they are essentially de-
termined componentwise. The next step in this line
of research is to extend our results to larger classes of
median algebras and their ordered counterparts.
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Summary

Many theoretical and applied developments
are deeply grounded in the use of linear or-
derings. Examples of such are Choquet and
Sugeno integrals (in a theoretical context),
or decision making and fuzzy classification
(in an applied one). However, linear ordering
becomes significantly more complicated when
it applies to non-scalar or intervalar data. In
this work we propose two methods to con-
struct a particular class of linear orders for
tuples of intervals, which we refer to as ad-
missible orders. Besides, some relations be-
tween both methods are studied.

Keywords: Interval-Valued Fuzzy sets, lin-
ear order, admissible order, Kα operators.

1 INTRODUCTION

The elements in R and, in particular, the elements
in [0, 1] are linearly ordered. This fact turned out to
be crucial in theoretical and applied developments in
the context of fuzzy set theory. When using classi-
cal fuzzy sets, and given two elements of a referen-
tial set U , their membership degree can be compared
and, subsequently, ordered. However, this process be-
comes considerably more complicated when using ex-
tensions of fuzzy sets, examples being interval-valued
fuzzy sets or set-valued fuzzy sets. In such cases, there
can be elements u1, u2 ∈ U whose membership de-
gree is not comparable. Consequently, membership
degrees can not be ordered, hindering the generaliza-
tion of certain tools. Since the advantages of using
such extensions seem to be noticeable for certain ap-
plications [2, 7, 10, 11] we have generated a method to
construct linear orders for vectors of intervals in [0, 1].

As tuples of m intervals can be represented as elements
in R2m, we only consider orders which refine the partial
order on R2m. We refer to these intervals as admissi-
ble orders. Given the relevant role of monotonicity in
the constructions of our orders, aggregation functions
become a useful tool in our construction methods.

The remainder of the paper is organized as follows.
In Section 2 we introduce some known concepts and
previous results. In Section 3 the definition of admissi-
ble orders is presented while in Section 4 two methods
to construct them are introduced. Some concluding
remarks and open problems are included in Section 5.

2 PRELIMINARY NOTIONS

In this paper we aim to generate linear orders in the set
of m real intervals. We expect them to be useful for the
comparison of membership degrees in several exten-
sions of fuzzy sets, including interval-valued fuzzy sets
and in some particular instances of set-valued fuzzy
sets.

We denote L([0, 1]) to the set of all closed subintervals
of the unit interval, that is

L([0, 1]) = {x = [x1, x1]|0 ≤ x1 ≤ x1 ≤ 1} .
and K([0, 1]) ⊂ R2 to the set

K([0, 1]) = {(x, x) ∈ [0, 1]2|x ≤ x}.

Definition 2.1 ([9]) An Interval-Valued Fuzzy
Set(IVFS) A on a universe U is a mapping
A : U → L([0, 1]), where A(u) denotes the membership
degree of the element u to the IVFS A.

2.1 ON ORDERS AND PARTIALLY
ORDERED SETS

Definition 2.2 A partial order � on a set P is a
binary relation which is reflexive, antisymmetric and
transitive. If � is a partial order, the pair (P,�) is
called a partially ordered set (poset).

Proceedings of 8th International Summer School on Aggregation Operators (AGOP 2015)

ISBN: 978–83–8012–519–3 91



Given a poset (P,�), and x, y ∈ P , we say that x and
y are comparable if x � y or y � x. Besides, we call

a) 1P , the top of the poset, if for all x ∈ P it holds
x � 1P ;

b) 0P , the bottom of the poset, if for all x ∈ P it
holds 0P � x.

Notice that, in case 1P and 0P exist, they are unique.

The poset (R2,�2), where ≤2 is given by (p1, p2) ≤2

(q1, q2) if and only if p1 ≤ q1 and p2 ≤ q2, induces a
partial order on L([0, 1]), �2, which is given by

x �2 y if and only if x1 ≤ y1 and x1 ≤ y1. (1)

Example 2.1 Let the intervals x = [0.05, 0.2], y =
[0.1, 0.4] and z = [0, 0.6]. The partial order in Eq. (1)
yields that x �2 y but also that z is incomparable to
both x and y.

Definition 2.3 A linear order ≤ on P is a binary
transitive, antisymmetric and total relation. Equiva-
lently, a linear order is a partial order under which
every pair of elements is comparable.

Example 2.2 Examples of linear orders on L([0, 1])
are the lexicographic orders, given by:

• (lexicographic-1 order) x ≤lex1 y if and only if
x1 < y1 or (x1 = y1 and x1 ≤ y1);

• (lexicographic-2 order) x ≤lex1 y if and only if
x1 < y1 or (x1 = y1 and x1 ≤ y1).

In [4], a special class of linear orders in L([0, 1]) is
defined.

Definition 2.4 ([4]) An order ≤ on L([0, 1]) is said
to be admissible if it is linear and refines the partial
order �2 given in Eq. (1), i.e., if it is a linear order
satisfying that, for all x,y ∈ L([0, 1]) such that x �2 y,
it holds x ≤ y.

Since the membership degrees of IVFSs are in L([0, 1]),
these admissible orders can be used in applications
dealing with IVFSs where a ranking must be calcu-
lated (see [3]). In particular the lexicographic orders
presented in Example 2.2 are admissible.

2.2 AGGREGATION FUNCTIONS

Aggregation functions are a common tool to fuse and
aggregate information.

Definition 2.5 A k-ary aggregation function is an
increasing mapping M : [0, 1]k → [0, 1] such that
M(0, . . . , 0) = 0 and M(1, . . . , 1) = 1.

For further information and some generalizations of
these functions see [8, 6, 1, 5]. In [4], aggregation
functions were used to generate admissible orders on
L([0, 1]).

Proposition 2.1 ([4]) Let B1, B2 : [0, 1]2 → [0, 1] be
two continuous aggregation functions such that, for all
(p1, p2), (q1, q2) ∈ K([0, 1]), B1(p1, p2) = B1(q1, q2)
and B2(p1, p2) = B2(q1, q2) if and only if (p1, p2) =
(q1, q2).

The order ≤B1,B2
on L([0, 1]), given by

x ≤B1,B2
y if and only if B1(x, x) < B1(y, y) or

(B1(x, x) = B1(y, y) and B2(x, x) ≤ B2(y, y)),

is an admissible order on L([0, 1]).

In particular, we are interested in �B1,B2 with B1, B2

being two different Atanassov’s operators for some
α1, α2 ∈ [0, 1], i.e., aggregation functions such that
Bi(x, x) = x+ αi(x− x) with α1 6= α2.

3 ADMISSIBLE ORDERS ON THE
SET OF m INTERVALS

In very special situations, partial orders can com-
pletely sort the elements in a given subset, making it
unnecessary the use of linear orders. However, in the
great majority of the cases, there exist incomparable
elements which demand the design of such orders.

Let Lm([0, 1]) be the set of m-tuples of closed subin-
tervals of [0, 1], that is

Lm([0, 1]) = {([x1, x1], . . . , [xm, xm]) |
0 ≤ xi ≤ xi ≤ 1 for all i ∈ {1, . . . ,m}} ,

and let K2m([0, 1]) be the subset of R2m given by

K2m([0, 1]) = {(x1, x1, x2, x2, . . . , xm, xm) ∈ [0, 1]2m |
xi ≤ xi for all i ∈ {1, . . . ,m}}.

There exist a bijection

g : K2m([0, 1])→ Lm([0, 1])

given by

g((x1, x1, . . . , xm, xm)) = ([x1, x1], . . . , [xm, xm]).

Through this bijection, the partial order on R2m,

(p1, p1, . . . , pm, pm) �2m (q1, q1, . . . , qm, qm)

if and only if

p1 ≤ q1, p1 ≤ q1, . . . , and pm ≤ qm ,
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induces an equivalent partial order on Lm([0, 1]), given
by

([x1, x1], . . . , [xm, xm]) �2m ([y
1
, y1], . . . , [y

m
, ym])

if and only if

x1 ≤ y1, x1 ≤ y1, . . . , and xm ≤ ym. (2)

In this way, (Lm([0, 1]),�2m) is a poset whose bot-
tom and top are 0 = ([0, 0], . . . , [0, 0]) and 1 =
([1, 1], . . . , [1, 1]), respectively.

Definition 3.1 An order ≤ on Lm([0, 1]) is admissi-
ble if it is linear on Lm([0, 1]) refining the order �2m

in Eq. (2).

4 CONSTRUCTION OF
ADMISSIBLE ORDERS ON
Lm([0, 1])

Since admissible orders between intervals have been
already defined and constructed in [4], our first method
to generate admissible orders on Lm([0, 1]) elaborates
on them.

Proposition 4.1 Let �B1,B2
be an admissible or-

der on L([0, 1]), as in Prop. 2.1, and let σ =
(σ(1), . . . , σ(m)) be a permutation. The order �[σ,B]

on Lm([0, 1]), given by

([x1, x1], . . . , [xm, xm]) �[σ,B] ([y
1
, y1], . . . , [y

m
, ym])

if and only if one of the following conditions holds

• [xσ(1), xσ(1)] ≺B1,B2 [y
σ(1)

, yσ(1)]

• [xσ(1), xσ(1)] = [y
σ(1)

, yσ(1)] and

[xσ(2), xσ(2)] ≺B1,B2
[y
σ(2)

, yσ(2)]

. . .

• [xσ(i), xσ(i)] = [y
σ(i)

, yσ(i)] for all i ∈
{1, . . . ,m − 2} and [xσ(m−1), xσ(m−1)] ≺B1,B2

[y
σ(m−1)

, yσ(m−1)]

• [xσ(i), xσ(i)] = [y
σ(i)

, yσ(i)] for all i ∈ {1, . . . ,m−
1} and [xσ(m), xσ(m)] �B1,B2

[y
σ(m)

, yσ(m)]

is an admissible order.

Proof. Direct, since �B1,B2
is an admissible order on

L([0, 1]).

Notice that although we have taken the same admissi-
ble order to compare each interval, there is no problem
in changing and comparing each interval with a differ-
ent admissible order. Next, we present a more general
method to construct admissible orders on Lm([0, 1]).

Definition 4.1 Let A = (A1, A2, . . . , A2m) be 2m
aggregation functions Ai : [0, 1]2m → [0, 1].
The 2m-tuple A is admissible if for all ele-
ments ([x1, x1], . . . , [xm, xm]),([y

1
, y1], . . . , [y

m
, ym]) ∈

Lm([0, 1]),

Ai(x1, x1, . . . , xm, xm) = Ai(y1, y1, . . . , ym, ym)

for all i ∈ {1, . . . , 2m} if and only if

([x1, x1], . . . , [xm, xm]) = ([y
1
, y1], . . . , [y

m
, ym]).

Proposition 4.2 Let A be an admissible 2m-tuple of
aggregation functions. An admissible order �A on
Lm([0, 1]) can be defined as

([x1, x1], . . . , [xm, xm]) ≺A ([y
1
, y1], . . . , [y

m
, ym])

if and only if there is a k ∈ {1, . . . ,m} such that

Ai(x1, x1, . . . , xm, xm) = Ai(x1, x1, . . . , xm, xm)

for all i ∈ S = {1, . . . , k − 1} and

Ak(x1, x1, . . . , xm, xm) < Ak(y1, y1, . . . , ym, ym) ,

provided that k = 1 induces S = ∅.
Besides,

([x1, x1], . . . , [xm, xm]) = ([y
1
, y1], . . . , [y

m
, ym])

if and only if xi = yi and xi = yi for all i ∈ {1, . . . ,m}.

Proof. The order �A refines ≤2m, since every Ai is
an aggregation function. Besides, linearity is assured
since the 2m-tuple is admissible. The transitivity fol-
lows from the transitivity of the order on [0, 1].

Notice that the presented method in Prop. 4.1 is a
particular case of Prop. 4.2 where

A2i−1(x1, x1, . . . , xm, xm) = B1([xσ(i), xσ(i)])

and

A2i(x1, x1, . . . , xm, xm) = B2([xσ(i), xσ(i)])

for all i ∈ {1, . . . ,m}.

Example 4.1 Lexicographic orders are admissible,
and they can be constructed as in Prop. 4.2 choosing
as aggregations functions the projections in R2m (the
projections can not be repeated or they are not an ad-
missible 2m-tuple).

In particular, the lexicographic 1 orders given by
Ai(u1, . . . , u2m) = Πi(u1, . . . , u2m) = ui for all i ∈
{1, . . . , 2m}.
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The main difficulty in using the second construction
method (Prop. 4.2) consists of finding aggregation
functions which satisfy the condition given in Eq. (4.1).
However, once some aggregation functions have been
found, any permutation of them generates another ad-
missible order.

Proposition 4.3 Let A = (A1, A2, . . . , A2m) be 2m
aggregation functions Ai : [0, 1]2m → [0, 1] given by

Ai(x1, x1, . . . , xm, xm) = ai1x1+ai2x1+. . .+ai,2mxm ,

with ai1 + ai2 + . . .+ ai,2m = 1 and let the matrix D,
given by

D =




a11 a12 . . . a1,2m
a21 a22 . . . a2,2m

...
...

. . .
...

a2m,1 a2m,2 . . . a2m,2m


 ,

be a regular matrix. Then the order �A, generated by
A, is an admissible order on Lm([0, 1]).

Proof. Let ([x1, x1], . . . , [xm, xm]) and
([y

1
, y1], . . . , [y

m
, ym]) be in Lm([0, 1]) such that

Ai(x1, x1, . . . , xm, xm) = Ai(y1, y1, . . . , ym, ym) for all
i ∈ {1, . . . , 2m}. Then, D · x = D · y where · denotes
the product of matrices and x = (x1, x1, . . . , xm, xm)t.
Due to the regularity of D, this is true if
([x1, x1], . . . , [xm, xm]) = ([y

1
, y1], . . . , [y

m
, ym])

and consequently the A is an admissible 2m-tuple.

Let D to be block matrix of the form

D =




I11 I12 . . . I1m
I21 I22 . . . I2m
...

...
. . .

...
Im1 Im2 . . . Imm


 ,

where each block Iij is a 2× 2 matrix. If in each row
and in each column, there is only one block which is
different from the nule matrix then, this block is

Ii,k =

(
1− α1 α1

1− α2 α2

)

for some α1, α2 ∈ [0, 1] with α1 6= α2. Then the order
generated as in Prop. 4.3 is the same as in Prop. 4.1
when the order on L([0, 1]) is generated by Atanassov’s
operators (Prop. 2.1). This example is particularly
important, as in Prop. [4] it is proven that different
Atanassov’s operators can yield the same linear order
on intervals. Consequently, there are 2m-tuples of dif-
ferent aggregation functions which generate the same
linear order on Lm([0, 1]).

5 CONCLUSIONS

In this work we have defined and generated admissi-
ble orders on Lm([0, 1]). We have seen two different
construction methods, the former producing particu-
lar instances of those by the latter. The condition we
must impose to aggregation functions in order to gen-
erate admissible 2m-tuples is quite strong.

Besides, by means of Prop. 3.8 we know that differ-
ent weighted arithmetic means (aggregation functions)
which generate matrices as in Eq. (4) yield the same
linear order [4]. As interesting theoretical problems we
open the questions:

• Apart from the weighted arithmetic means, are
there any other examples of aggregation functions
which generate admissible 2m-tuples?

• Are there any other matrices D (not by blocks)
that generate the same linear order?

We want to call the attention that our two construc-
tion methods are just a first approach and some others
methods to construct linear (and admissible) orders
are possible. However, we let a deeper study of the
order for future research.
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Summary

Overlap functions are aggregation opera-
tors used in the overlap problem or when
the associativity is not required. Resid-
ual implications derived from them (RO-
implications) preserve the residuation prop-
erty, and any overlap function O and the re-
spective RO-implication form an adjoint pair,
which is important in many applications.
RO-implications do not necessarily satisfy
certain properties, but only weaker versions
of these properties, e.g., the exchange prin-
ciple. However, in general, such properties
are not demanded for many applications. In
this paper, we analyze the so-called law of
O-Conditionality, O(x, I(x, y)) ≤ y, for any
fuzzy implication I and, in particular, for
RO-implications.

Keywords: Overlap functions, fuzzy
implications, residual implications, O-
Conditionality.

1 INTRODUCTION

Fuzzy implications [3] generalize the classical implica-
tion to fuzzy logic, by considering truth values vary-
ing in the unit interval [0, 1] instead of in the set
{0, 1}. There are different ways for obtaining this gen-
eralization [3] (e.g., S, QL, R, (U,N), RU , and D-
implications [5, 6, 22, 27]). The importance of fuzzy
implications in applications was discussed recently by
Baczyński [2] and other authors [12].

R-implications are generalizations to [0, 1] of Boolean
implications defined by the identity given, for a
universe set X, by A′ ∪ B = (A − B)′ =⋃ {C ⊆ X | (A ∩ C) ⊆ B}, where A,B ⊆ X [3, 5],
where the intersection is generalized by a t-norm.

A t-norm requires the associativity and commuta-

tivity properties, which, in their turn, allow any R-
implication I to satisfy the exchange principle. How-
ever, in the literature, it was shown that the associativ-
ity property is not demanded for many applications,
e.g., in pairwise comparisons, image processing and
mathematical morphology. [7, 12, 18]

Bustince et al. [7] introduced the overlap functions,
a particular case of bivariate continuous aggregation
operators defined by (not necessarily associative) in-
creasing commutative bivariate functions, satisfying
appropriate boundary conditions (see, e.g., [4, 9, 11]).
Overlap functions have been applied in classification
problems, image processing and decision making.

In [10], based on residual implicators of general con-
junctions [16, 20], we introduced the RO-implications,
the residual implications derived from overlap func-
tions O, preserving the residuation property. RO-
implications do not necessarily satisfy certain prop-
erties of R-implications, but only weaker versions of
these properties. However, in general, such properties
are not demanded for many applications. [10]

In this paper we analyze the law of O-Conditionality,
defined by O(x, I(x, y)) ≤ y, for any fuzzy implica-
tion I and overlap function O, and, in particular,
for RO-implications.1 Section 2 presents basic con-
cepts. RO-implications are studied in Sect. 3. The
O-conditionality for fuzzy implications in general is
analysed in Sect. 4, and, in particular, in Sect. 5, for
RO-implications. Section 6 is the Conclusion.

2 PRELIMINARY CONCEPTS

Definition 2.1. A function N : [0, 1]2 → [0, 1] is said
to be a fuzzy negation if the following conditions hold:

(N1) N satisfies the Boundary Conditions: N(0) = 1
and N(1) = 0;

1The O-Conditionality is seen as a generalization of
modus ponens, x ∗O (x → y) ≤ y, which can be under-
stood as x ∧O (x→ y) ` y.
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(N2) N is decreasing: if x ≤ y then N(y) ≤ N(x).

Definition 2.2. A function A : [0, 1]n →
[0, 1] is said to be an n-ary aggregation oper-
ator if: (A1) A is increasing2 in each argu-
ment: for each i ∈ {1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn); (A2)
A satisfies the Boundary conditions: A(0, . . . , 0) =
0 and A(1, . . . , 1) = 1.

Definition 2.3. A bivariate function O : [0, 1]2 →
[0, 1] is said to be an overlap function if it satisfies the
conditions: (O1) O is commutative; (O2) O(x, y) = 0
if and only if xy = 0; (O3) O(x, y) = 1 if and only if
xy = 1; (O4) O is increasing; (O5) is continuous.

Some examples of overlap functions are [4, 9, 10, 11]:

OmM (x, y) = min{x, y}max{x2, y2};

OV
mM (x, y) =

{
1+OmM (2x−1,2y−1)

2 if x, y ∈]0.5, 1];
min{x, y} otherwise;

Op(x, y) = xpyp with p > 0 and p 6= 1.

An overlap function O : [0, 1]2 → [0, 1] satisfies the
property 1-section deflation if O(x, 1) ≤ x. (O6)

An overlap function O : [0, 1]2 → [0, 1] satisfies the
property 1-section inflation if O(x, 1) ≥ x. (O7)

An overlap function O satisfies (O6) and (O7) if and
only if O has 1 as neutral element. Whenever an over-
lap function has a neutral element, then, by (O3), this
element is necessarily equal to 1. An overlap function
O is associative if and only if O is a continuous and
positive t-norm. However, OmM is a non associative
overlap function with 1 as neutral element.

Lemma 2.1. An overlap function O : [0, 1]2 → [0, 1]
satisfies (O6) if and only if O ≤ min.

Proof. It follows that: (⇒) If O satisfies (O6) then,
for all x, y ∈ [0, 1], it holds that O(x, y) ≤ O(x, 1) ≤ x.
On the other hand, O(x, y) = O(y, x) ≤ O(y, 1) ≤ y.
Thus, one has that O(x, y) ≤ min{x, y}. (⇐) It is
immediate.

A function ϕ : [0, 1]→ [0, 1] is said to be an automor-
phism if ϕ is bijective and increasing.

Definition 2.4. A function I : [0, 1]2 → [0, 1] is a
fuzzy implication if, for each x, y, z ∈ [0, 1], it holds
that: (I1) first place antitonicity: if x ≤ y then
I(y, z) ≤ I(x, z); (I2) second place isotonicity: if
y ≤ z then I(x, y) ≤ I(x, z); (I3) boundary condition
1: I(0, 0) = 1; (I4) boundary condition 2: I(1, 1) = 1;
(I5) boundary condition 3: I(1, 0) = 0.

2In this paper, a increasing (decreasing) function does
not need to be strictly increasing (decreasing).

There exist several properties that may be required
for fuzzy implications [3]. In the following, we present
some properties that are used in this paper.

Definition 2.5. A fuzzy implication I : [0, 1]2 → [0, 1]
satisfies: (I6) the ordering property if and only if
∀x, y ∈ [0, 1] : I(x, y) = 1 ⇔ x ≤ y; (I7) the strong
boundary condition for 0 if and only if ∀x ∈ [0, 1] :
x 6= 0 ⇒ I(x, 0) = 0; (I8) the exchange principle
for 1 if and only if ∀x ∈ [0, 1] : I(x, I(y, z)) = 1 ⇒
I(y, I(x, z)) = 1; (I9) the identity principle if and only
if ∀x ∈ [0, 1], I(x, x) = 1; (I10) the pseudo-exchange
principle if and only if ∀x, y, z ∈ [0, 1] : I(x, z) ≥ y ⇔
I(y, z) ≥ x; (I11) the conditional antecedent bound-
ary if only if ∀x, y ∈ [0, 1] : x > y ⇒ I(x, y) < y.

Definition 2.6. The natural fuzzy negation of a fuzzy
implication I : [0, 1]2 → [0, 1] is defined as the function
NI : [0, 1]→ [0, 1], such that NI(x) = I(x, 0).

A fuzzy implication I satisfies (I7) if and only if

NI = N⊥ = N⊥(x) =

{
1 if x = 0
0 if x ∈]0, 1].

(1)

3 RO-IMPLICATIONS

In [10], we studied the class of fuzzy implications called
RO-implications, where O denotes overlap functions,
in the same line of our previous work in [12]. RO-
implications is a sub-class of residual implications de-
rived from fuzzy conjunctions [20, Theorem 2]. Let
O : [0, 1]2 → [0, 1] be an overlap function, and define
IO : [0, 1]2 → [0, 1] by IO(x, y) = max{z ∈ [0, 1] |
O(x, z) ≤ y}, for all x, y ∈ [0, 1]. From [20, Theorem
1, Theorem 2], it is immediate that:

Corollary 3.1 ([10]). The function IO is a fuzzy im-
plication, called the residual implication derived from
an overlap function O, denoted by RO-implication.
O and IO form an adjoint pair, that is, they satisfy
the residuation property, given by: ∀x, y, u ∈ [0, 1] :
O(x, u) ≤ y ⇔ IO(x, y) ≥ u.

For an RO-implication IO, the overlap function O is
said to be the generator of IO. IO is also called as “the
residuum of O”. This class of implications is related to
a residuation concept from the intuitionistic logic. An
example of RO-implications is: [10]

IOV
mM

(x, y) =




min
{

1,max
{ √

2y−1
2
√
2x−1 ,

2y−1
2(2x−1)2

}
+ 1

2

}

ifx ∈]0.5, 1], y ∈ [0.5, 1]
y if y ∈ [0, 0.5[ and x > y
1 ifx ∈ [0, 0.5] and x ≤ y.

which is generated by the overlap functions OV
mM .

In [10], several properties of IO-implications were stud-
ied, e.g., some of the following:
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Proposition 3.1 ([10]). Let O : [0, 1]2 → [0, 1] be an
overlap function. Then it holds that: (i) IO satisfies
(I6) if and only if O satisfies (O6) and (O7); (ii)
IO satisfies (I7); (iii) if IO satisfies (I6) then IO
satisfies (I8); (iv) IO satisfies (I9) if and only if O
satisfies (O6); (v) if IO satisfies (I6) then IO satisfies
(I10); (vi) IO satisfies (I11) if and only if O ≥ min.

Proof. See [10] for the proofs of (i)-(v). So, it re-
mains to prove (vi): (⇒) If O � min, then there exist
x, y ∈ [0, 1] such that O(x, y) < min{x, y}. If x ≥ y
then one has that O(x, y) < y. It holds that IO(x, y) =
max{z ∈ [0, 1] | O(x, z) ≤ y} > y, which is a contra-
diction with (I11). By the commutativity of O, if x <
y, then IO(y, x) > x, which is also a contradiction with
(I11). (⇐) Consider O(x, y) ≥ min{x, y} and suppose
that x > y. Then, one has that O(x, y) ≥ y. It fol-
lows that for all z ∈ [0, 1] it holds that if O(x, z) ≤ y
then z ≤ y, since O is increasing. One concludes that
IO(x, y) = max{z ∈ [0, 1] | O(x, z) ≤ y} ≤ y.

As a consequence, an RO-implication satisfies the
property (I6) if and only if O has 1 as a neutral ele-
ment [10]. In [10], we presented two characterizations
of RO-implications. The first is for RO-implications
derived from the sub-class of overlap functions having
1 as neutral element, denoted by Ox. The second char-
acterization is concerned with RO-implications derived
from a more general sub-class of overlap functions sat-
isfying the property (O6), but not necessarily having
1 as neutral element, denoted by O≤x.

Theorem 3.1 ([10]). Let I : [0, 1]2 → [0, 1] be a right-
continuous (in both variables) fuzzy implication and
consider the function CI : [0, 1]2 → [0, 1], defined by:

CI(x, y) = min{z ∈ [0, 1] | I(x, z) ≥ y}. (2)

(i) If I satisfies (I6), (I7) and (I8), then CI is an
overlap function with 1 as neutral element, i.e.,
CI ∈ Ox;

(ii) If I satisfies (I7), (I9), and (I10) and and ∀y ∈
[0, 1) : I(1, y) < 1, then CI is an overlap function
satisfying (O6), i.e., CI ∈ O≤x.

Theorem 3.2 ([10]). Let I : [0, 1]2 → [0, 1] a right-
continuous fuzzy implication. Then:

Ox-Characterization of RO-implications: I sat-
isfies the properties (I6), (I7) and (I8) if and
only if I is an RO-implication derived from an
overlap function O ∈ Ox, i.e., I = IO;

O≤x-Characterization of RO-implications: I
satisfies the properties (I7), (I9), (I10) and
∀y ∈ [0, 1) : I(1, y) < 1 if and only if I is an
RO-implication derived from an overlap function
O ∈ O≤x, i.e., I = IO.

The derivation of an RO-implication by an overlap
function O ∈ Ox (O ∈ O≤x) is unique, that is
IO = IO′ ⇔ O = O′. [10]

Proposition 3.2. Let O1, O2 : [0, 1]2 → [0, 1] be over-
lap functions. O1 ≤ O2 if and only if IO2 ≤ IO1 .

Proof. O1 ≤ O2 ⇔ ∀x, y, z ∈ [0, 1] : O2(x, z) ≤ y →
O1(x, z) ≤ y ⇔ ∀x, y ∈ [0, 1]:{z∈[0, 1]|O2(x, z)≤y} ⊆
{z∈[0, 1]|O1(x, z)≤y} ⇔ IO2

≤IO1
.

4 FUZZY IMPLICATIONS AND
THE O-CONDITIONALITY

Several axiomatizations of R-implications can be found
in the literature [19]. The first set of axioms was in-
troduced by Pedrycz [23, 24], among them the law of
conditionality, given by T (x, x→T y) ≤ y, where T is
a t-norm and →T is the residuum of T . In this sec-
tion, we study the the law of conditionality for any
fuzzy implication I : [0, 1]2 → [0, 1] and overlap func-
tion O : [0, 1]2 → [0, 1], which we call the law of O-
conditionality.

Definition 4.1. A fuzzy implication I satisfies the
law of O-conditionality for an overlap function O if and
only if, for all x, y ∈ [0, 1], it holds that O(x, I(x, y)) ≤
y. (OC)

In the following, we state under which conditions of I
and O we have that I satisfies (OC) for O.

Proposition 4.1. If a fuzzy implication I satisfies
(I11) and, for all x, y ∈ [0, 1] : x ≤ y ⇒ I(x, y) = 1
(I6⇐), then I satisfies (OC) for any overlap function
O : [0, 1]2 → [0, 1] satisfying (O6).

Proof. If I satisfies (I6⇐), then, for all overlap func-
tion O satisfying (O6), whenever x ≤ y, one has that
O(x, I(x, y)) = O(x, 1) ≤ x ≤ y. On the other hand,
since I satisfies (I11), whenever x > y then, for all
overlap function O satisfying (O6), it follows that
O(x, I(x, y)) ≤ O(x, y) = O(y, x) ≤ O(y, 1) ≤ y.

Proposition 4.2. Considering a fuzzy implication
I, if there exist x, y ∈ [0, 1] such that x > y and
I(x, y) = 1, then I does not satisfy (OC) for any
overlap functions O : [0, 1]2 → [0, 1] satisfying (O7).

Proof. Suppose that there exist x0, y0 ∈ [0, 1]
such that x0 > y0 and I(x0, y0) = 1.
Then, whenever O satisfies (O7), it holds that
O(x0, I(x0, y0))=O(x0, 1)≥x0>y0.

Proposition 4.3. If a fuzzy implication I satisfies
(OC) for some overlap function O : [0, 1]2 → [0, 1],
then NI = N⊥.
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Proof. If x > 0, then O(x,NI(x)) = O(x, I(x, 0)) ≤ 0,
by (OC). Since x > 0, then, by (O2), it holds that
NI(x) = 0. Since NI(0) = 1, one concludes that NI =
N⊥.

Corollary 4.1. If a fuzzy implication I satisfies
(OC) for some overlap function O : [0, 1]2 → [0, 1],
then O(x,NI(x)) = 0.

Proof. If x = 0, then it is immediate that
O(0, NI(0)) = 0. On the other hand, if x > 0,
by Proposition 4.3, it holds that O(x,NI(x)) =
O(x,N⊥(x)) = O(x, 0) = 0.

Proposition 4.4. If a fuzzy implication I satisfies
(OC) for some overlap function O1 : [0, 1]2 → [0, 1],
then I satisfies (OC) for any overlap function O2 :
[0, 1]2 → [0, 1] such that O2 ≤ O1.

Proof. One has that O2(x, I(x, y))≤O1(x, I(x, y))≤y.

Proposition 4.5. If a fuzzy implication I1 : [0, 1]2 →
[0, 1] satisfies (OC) for some overlap function O :
[0, 1]2 → [0, 1], then any fuzzy implication I2 : [0, 1]2 →
[0, 1] such that I2 ≤ I1 satisfies (OC) for O.

Proof. One has that O(x, I2(x, y))≤O(x, I1(x, y))≤y.

Proposition 4.6. If the fuzzy implications I1 :
[0, 1]2 → [0, 1] and I2 : [0, 1]2 → [0, 1] satisfy (OC)
for the same overlap function O : [0, 1]2 → [0, 1], then
the function (I1 ∨ I2) : [0, 1]2 → [0, 1], defined by

(I1 ∨ I2)(x, y) = max{I1(x, y), I2(x, y)},

is a fuzzy implication satisfying (OC) for O.

Proof. Observe that (I1 ∨ I2) is particular case of an
aggregation of fuzzy implications, and then it is also
a fuzzy implication. If (I1 ∨ I2)(x, y) = I1(x, y), then
it holds that O(x, (I1 ∨ I2)(x, y)) = O(x, I1(x, y)) ≤ y.
The proof for (I1∨I2)(x, y) = I2(x, y) is analogous.

Now, we analyse the action of an automorphism on a
fuzzy implications I satisfies (OC) for some overlap
function O.

Proposition 4.7. Let ϕ : [0, 1] → [0, 1] be an auto-
morphism. If a fuzzy implication I satisfies (OC) for
some overlap function O : [0, 1]2 → [0, 1], then Iϕ :
[0, 1]2 → [0, 1] satisfies (OC) for Oϕ : [0, 1]2 → [0, 1].

Proof. Suppose that I satisfies (OC) for some overlap
function O. Then, it follows that:

Oϕ(x, Iϕ(x, y))

= ϕ−1(O(ϕ(x), ϕ(Iϕ(x, y))))

= ϕ−1(O(ϕ(x), ϕ(ϕ−1(I(ϕ(x), ϕ(y))))))

= ϕ−1(O(ϕ(x), I(ϕ(x), ϕ(y))))

≤ ϕ−1(ϕ(y)) = y.

5 RO-IMPLICATIONS AND
O-CONDITIONALITY

In this section, we analyse the law of O-conditionality
for RO-implications. In particular, we state under
which conditions of the overlap functions O1 and O2,
and of the RO-implication IO2

, we have that IO2
sat-

isfies or not the law of O-conditionality for O1 and/or
O2.

Proposition 5.1. Let O1 : [0, 1]2 → [0, 1] be an over-
lap function satisfying (O6) and O2 : [0, 1]2 → [0, 1]
be an overlap function such that O2 ≥ min. Then, the
RO-implication IO2 : [0, 1]2 → [0, 1] satisfies (OC) for
O1.

Proof. If O2 ≥ min, then, by Proposition 3.1 (vi), it
holds that IO2 satisfies (I11), that is, if x > y then
IO2

(x, y) ≤ y. On the other hand, by Lemma 2.1,
it holds that O1(x, y) ≤ min{x, y} ≤ y, and then,
since O1 is increasing, one has that O1(x, IO2

(x, y)) ≤
O1(x, y) ≤ y. Now, if x ≤ y, since O1 satisfies (O6)
and is increasing, then, O1(x, IO2(x, y)) ≤ O1(x, 1) ≤
x ≤ y.

Corollary 5.1. Let O2 : [0, 1]2 → [0, 1] be an overlap
function such that O2 ≥ min. Then IO2

: [0, 1]2 →
[0, 1] satisfies (OC) for any t-norm T : [0, 1]2 → [0, 1].

Proposition 5.2. Let O1, O2 : [0, 1]2 → [0, 1] be
overlap functions. If there exists x ∈ [0, 1] such
that O2(x, 1) < x and O1(x, 1) > x, then the RO-
implication IO2 : [0, 1]2 → [0, 1] does not satisfy (OC)
for O1.

Proof. Consider that IO2 satisfies (OC) for O1.
Suppose that there exists x′ ∈ [0, 1] such that
O2(x′, 1) < x′ and O1(x′, 1) > x′. It follows that
O1(x′, IO2

(x′, x′)) = O1(x′, sup{z ∈ [0, 1] | O2(x′, z) ≤
x′}) = O1(x′, 1) > x′. Thus, IO2

does not satisfy
(OC) for O1.

Theorem 5.1. The RO-implication IO : [0, 1]2 →
[0, 1], derived from the overlap function O : [0, 1]2 →
[0, 1], satisfies (OC) for O.
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Proof. By Corollary 3.1, O and IO form an ad-
joint pair, that is, they satisfy the residuation prop-
erty: ∀x, y, u ∈ [0, 1] : O(x, u) ≤ y ⇔ IO(x, y) ≥
u. Consider u = IO(x, y). Then, it follows that
O(x, IO(x, y)) ≤ y.

Proposition 5.3. For any overlap function O :
[0, 1]2 → [0, 1] satisfying (O6), Imin satisfies (OC)
for O.

Proof. Suppose that x ≤ y. Then, it holds that
O(x, Imin(x, y)) = O(x, 1) ≤ x ≤ y. On the other
hand, if x > y, then, by Lemma 2.1, one has that
O(x, Imin(x, y)) = O(x, y) ≤ min{x, y} = y.

Corollary 5.2. Imin satisfies (OC) for any t-norm
T : [0, 1]2 → [0, 1].

Corollary 5.3. Let O1, O2 : [0, 1]2 → [0, 1] be overlap
functions. If O1 ≤ O2 then IO2 satisfies (OC) for O1.

Proof. From Theorem 5.1, it holds that IO1
satisfies

(OC) for O1. On the other hand, by Proposition 3.2,
one has that if O1 ≤ O2 then IO2 ≤ IO1 . It follows
that O1(x, IO2(x, y)) ≤ O1(x, IO1(x, y)) ≤ y.

Corollary 5.4. Let O1, O2 : [0, 1]2 → [0, 1] be overlap
functions. If IO2 ≤ IO1 then IO2 satisfies (OC) for
O1.

Proof. By Proposition 3.2, one has that if IO2
≤ IO1

then O1 ≤ O2. By Corollary 5.3, IO2 satisfies (OC)
for O1.

Proposition 5.4. Let I1, I2 : [0, 1]2 → [0, 1] be fuzzy
implications. Whenever OI2 is an overlap function, if
I1 ≤ I2 then I1 satisfies (OC) for OI2 .

Proof. By Eq. (2), if I1 ≤ I2, then OI2(x, I1(x, y)) =
inf{z ∈ [0, 1] | I2(x, z) ≥ I1(x, y)} ≤ y.

6 FINAL REMARKS

Overlap function is a special kind of not necessar-
ily associative bivariate aggregation operator used, in
general, in applications involving the overlap problem
and/or when the associativity property is not strongly
required, as in imaging processing and decision mak-
ing based on fuzzy preference relations, respectively.
In those applications, there is no need the use of t-
norms as the combination operator.

On the other hand, when considering fuzzy implica-
tions, there are some properties that may be not de-
manded for certain applications. Then, several def-
initions of fuzzy implications, based on weak opera-
tors, have been introduced in the literature. This is
the case of the RO-implications, which we introduced

in [10]. The present paper presented an analysis of the
O-Conditionality for fuzzy implications and, in partic-
ular, for RO-implications. The awareness of the prop-
erties and restrictions can help the conscious use of
overlaps functions and RO-implications in the develop-
ment of applications, allowing the use of more flexible
operators.

Future theoretical work is concerned with the inves-
tigation of other kinds of fuzzy implications based on
overlap functions, also in the interval-valued setting,
as in [5, 8, 13]. We are also aiming at applications in
the context of hybrid BDI-fuzzy [17]3 agent models,
commonly used in social simulation [1, 21], where the
evaluation of social values and exchanges are of a qual-
itative, subjective, vague nature [14, 15, 25]. Overlap
functions can be used for dealing with indifference and
incomparability when reasoning on the agent’s fuzzy
belief base, where a kind of weak preference relation
may be defined. RO-implications can be used for per-
forming inferences, decision making and in the fuzzy
control of the agents’s intentions.
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Faculty of Mathematics
and Natural Sciences,

University of Rzeszów, Poland
paweldrs@ur.edu.pl

Feng Qin
College of Mathematics

and Information Science,
Jiangxi Normal University,

330022 Nanchang, P.R. China
qinfeng923@163.com

Ewa Rak
Faculty of Mathematics
and Natural Sciences,

University of Rzeszów, Poland
ewarak@ur.edu.pl

Summary

Recently, the distributivity equations have
been discussed in families of certain op-
erations (e.g., triangular norms, conorms,
uninorms and nullnorms). In this paper
we present the solutions of distributivity
equations between semi-t-operators and uni-
norms. Since we omit the assumption about
the commutativity it seems appropriate to
consider left and right distributivity equa-
tions separately.

Keywords: Aggregation operator, Dis-
tributivity equations, Idempotent operation,
Semi-t-operator, Uninorm.

1 INTRODUCTION

The problem of distributivity was posed many years
ago (cf. Aczel [1], pp. 318-319). A new topic of study
in this area is mainly concerned with the distributiv-
ity between triangular norms and triangular conorms
([11], p. 17). Recently, many studies have addressed
the solutions of distributivity equations for aggrega-
tion functions [3, 13], fuzzy implications [2], uninorms
and nullnorms [10, 18, 23, 24], semi-nullnorms and
semi-t-operators [8, 9, 27, 29], which are generaliza-
tions of triangular norms and conorms.

In this study, our aim is to obtain algebraic struc-
tures with weaker assumptions than nullnorms and t-
operators fulfilling left or right distributivity equation.
The characterization is interesting from a theoretical
point of view and also in terms of their applications
because they have proved to be useful in several fields,
such as fuzzy logic framework [15], expert systems,
neural networks [18], fuzzy quantifiers [15] and others

e.g. [16]. This research also complement results of our
previous study [8, 9].

First, we introduce weak algebraic structures (Sec-
tion 2). We then recall the distributivity equations
(Section 3). Next, we characterize the solutions to
distributivity equations from described families (Sec-
tion 4).

2 ASSOCIATIVE, MONOTONIC
BINARY OPERATIONS

We start by giving some basic definitions and facts.

Definition 2.1 ([14]). A triangular semi-norm T is
an increasing operation T : [0, 1]2 → [0, 1] with neu-
tral element 1.
A triangular semi-conorm S is an increasing operation
S : [0, 1]2 → [0, 1] with neutral element 0.
A triangular norm T is a commutative, associative tri-
angular semi-norm.
A triangular conorm S is a commutative, associative
triangular semi-conorm.

Definition 2.2 ([4]). The operation V : [0, 1]2 → [0, 1]
is called a nullnorm if it is commutative, associative,
increasing, has a zero element z ∈ [0, 1] and satisfies

V (0, x) = x for all x ≤ z, (1)

V (1, x) = x for all x ≥ z. (2)

By definition, the case where z = 0 leads back to tri-
angular norms, whereas the case where z = 1 leads
back to triangular conorms (cf. [14]). The next theo-
rem shows that in other cases nullnorm is built from
a triangular norm, a triangular conorm and the zero
element.

Theorem 2.3 ([4]). Let z ∈ (0, 1). A binary operation
V is a nullnorm with zero element z if and only if a
triangular norm T and a triangular conorm S exist
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such that

V (x, y) =





zS
(
x
z ,

y
z

)
if x, y ∈ [0, z]

z + (1− z)T
(

x−z
1−z ,

y−z
1−z

)
if x, y ∈ [z, 1]

z otherwise

.

(3)

S

Tz

z

0 z

z

1

1

Figure 1: Structure of a nullnorm

If we omit assumptions (1) and (2) from the definition
of a nullnorm, it cannot be shown that a commutative,
associative, increasing binary operator V with zero el-
ement z = 0 or z = 1 behaves as a triangular norm
and triangular conorm (see [6]).

In Definition 2.2, the existence of the zero element z
follows from (1) and (2).

Lemma 2.4 (cf. [6]). Let V be an increasing, binary
operation and z ∈ [0, 1] exists such that

V (0, x) = V (x, 0) = x for all x ≤ z, (4)

V (1, x) = V (x, 1) = x for all x ≥ z, (5)

then V (x, y) = z for (x, y) ∈ [0, z]×[z, 1]∪[z, 1]×[0, z],
V |[0,z] is an increasing, binary operation with neutral
element 0 and zero element z. V |[z,1] is an increasing,
binary operation with neutral element 1 and zero ele-
ment z.
Moreover, V is associative (commutative, idempotent)
if and only if V |[0,z] and V |[z,1] are associative (com-
mutative, idempotent).

More general families of operations with zero elements
were examined in [19].
As we know, the structure of a nullnorm is the same
as the structure of a t-operator.

Definition 2.5 ([17]). The operation F : [0, 1]2 →
[0, 1] is called a t-operator if it is commutative, asso-
ciative and increasing such that

F (0, 0) = 0, F (1, 1) = 1 (6)

and the functions F0 and F1 are continuous,
where F0(x) = F (0, x), F1(x) = F (1, x).

(7)

In this definition, the existence of the partial neutral
elements (conditions (1) and (2)) follows from the con-
tinuity of the operation on the boundary of the unit
square ((6) and (7)).

If we omit the commutativity condition from the def-
inition of a nullnorm, then we obtain the operation
given by (3), where the operations T and S are not
necessary commutative.

Definition 2.6 ([7]). The operation V : [0, 1]2 → [0, 1]
is called a semi-nullnorm if it is associative, increasing,
and has a zero element z ∈ [0, 1] that satisfies

V (0, x) = V (x, 0) = x for all x ≤ z, (8)

V (1, x) = V (x, 1) = x for all x ≥ z. (9)

Theorem 2.7 ([7]). Let z ∈ (0, 1). A binary operation
V is a semi-nullnorm with zero element z if and only if
V is given by (3), where S is an associative triangular
semi-conorm and T is an associative triangular semi-
norm. The semi-nullnorm V is idempotent if and only
if it is given by (3) with T = min and S = max (i.e.,
V is an idempotent nullnorm).

This is difference with the case of t-operators. De-
scriptions of the family of this type of operations can
be found in [26], [20] and [7].

Definition 2.8 ([7]). The operation F : [0, 1]2 →
[0, 1] is called a semi-t-operator if it is associative,
increasing, and satisfies (6) such that the functions
F0, F1, F 0, F 1 are continuous, where F0(x) =
F (0, x), F1(x) = F (1, x), F 0(x) = F (x, 0), F 1(x) =
F (x, 1).

Let Fa,b denote the family of all semi-t-operators such
that F (0, 1) = a, F (1, 0) = b.

Remark 2.9. Note that in contrast to the definition
of triangular semi-norms, in the above definition is as-
sumed associativity. However, we keep the definition
of the paper [8], despite the fact that it can be confus-
ing.

Theorem 2.10 ([7]). Let F : [0, 1]2 → [0, 1],
F (0, 1) = a, F (1, 0) = b. The operation F ∈ Fa,b if
and only if an associative triangular semi-norm T and
an associative triangular semi-conorm S exist such
that

F (x, y) =





aS
(
x
a ,

y
a

)
if x, y ∈ [0, a],

b+ (1− b)T
(

x−b
1−b ,

y−b
1−b

)
if x, y ∈ [b, 1],

a if x ≤ a ≤ y,
b if y ≤ b ≤ x,
x otherwise,

(10)
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for a ≤ b and

F (x, y) =





bS
(
x
b ,

y
b

)
if x, y ∈ [0, b],

a+ (1− a)T
(

x−a
1−a ,

y−a
1−a

)
if x, y ∈ [a, 1],

a if x ≤ a ≤ y,
b if y ≤ b ≤ x,
y otherwise,

(11)
for b ≤ a.

�
�

��

a

a

b

b

T

S

x

x

a

b

0 1

1

�
�

��
yy

T

S

a

b

0 1

1

0 b

b

1

1

a

a

Figure 2: Structure of the operations F from Theorem
2.10 (left (10), right (11))

Definition 2.11 ([28]). A binary operation U :
[0, 1]2 → [0, 1] is called a uninorm if it is associative,
commutative, increasing in each variable and there ex-
ists an element e ∈ [0, 1], called the neutral element,
such that U(e, x) = x for all x ∈ [0, 1].

The family of all uninorm with neutral element e ∈
[0, 1] will be denoted by Ue
For any uninorm it is satisfied that U(0, 1) ∈ {0, 1}. A
uninorm with neutral element e = 1 is a t-norm and
a uninorm with neutral element e = 0 is a t-conorm.
For any other value e ∈ ]0, 1[ the operation works as a
t-norm in [0, e]2, as a t-conorm in [e, 1]2 and its val-
ues are between minimum and maximum in the set of
points A(e) given by

A(e) = [0, e[× ]e, 1] ∪ ]e, 1]× [0, e[,

as it is stated in the following theorem (see [12]).

Theorem 2.12 ([12]). Let U be a uninorm with neu-
tral element e ∈ ]0, 1[. Then there exists a triangular
norm TU and a triangular conorm SU such that U is
given by

U(x, y) =

{
eTU (x

e ,
y
e ) if (x, y) ∈ [0, e]2,

e+ (1− e)SU (x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e, 1]2,

and min(x, y) ≤ U(x, y) ≤ max(x, y) for all (x, y) ∈
A(e).

Next we have the description of special classes of uni-
norms.

Theorem 2.13. Let U be a uninorm with neutral el-
ement e ∈]0, 1[ and both functions f(x) = U(x, 1) and
h(x) = U(x, 0) (x ∈ [0, 1]) are continuous except per-
haps at the point x = e. Then U is given by one of the
following forms.
(i) If U(0, 1) = 0, then

U(x, y) =





eTU (x
e ,

y
e ) if (x, y) ∈ [0, e]2;

e+ (1− e)SU (x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e, 1]2;

min(x, y) otherwise

(12)
(ii) If U(0, 1) = 1, then

U(x, y) =





eTU (x
e ,

y
e ) if (x, y) ∈ [0, e]2;

e+ (1− e)SU (x−e
1−e ,

y−e
1−e ) if (x, y) ∈ [e, 1]2;

max(x, y) otherwise.

(13)

Denote by Umin the class of uninorms having form (12)
and Umax the class of uninorms with form (13).

Idempotent uninorms have been characterized by us-
ing terminology of Id-symmetrical functions. Let us
recall some definitions about this topic, that can be
found in [25].

Definition 2.14 ([25]). Let g : [0, 1] → [0, 1] be any
decreasing function and let G be the graph of g, that
is

G = {(x, g(x)) | x ∈ [0, 1]}.

For any discontinuity point s of g, let us denote by
s− and s+ the corresponding lateral limits, that are
s− = limx→s− g(x) and s+ = limx→s+ g(x).
Then, we define the completed graph of g, as the set
Fg = G ∪ {(0, y) | y > g(0)} ∪ {(1, y) | y < g(1)} ∪
{(s, y) | s− ≤ y ≤ s+}.
Definition 2.15 ([25]). A subset F of [0, 1]2 is said
to be Id-symmetrical if for all (x, y) ∈ [0, 1]2 it holds
that

(x, y) ∈ F ⇐⇒ (y, x) ∈ F .

The above definition expresses that a subset F of [0, 1]2

is symmetrical with respect to the diagonal of the unit
square. A similar notion of symmetry is introduced
for decreasing functions (see [25]) as follows.

Definition 2.16 ([25]). A decreasing function g :
[0, 1]→ [0, 1] is called Id-symmetrical if its completed
graph Fg is Id-symmetrical.

Theorem 2.17 ([25]). Consider e ∈ ]0, 1[. U is an
idempotent uninorm with neutral element e if and only
if there exists a decreasing, Id-symmetrical function
g : [0, 1]→ [0, 1] with fixed point e such that U is given
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by

U(x, y) =





min(x, y) if y < g(x) or

y = g(x) and x < g(g(x)),

max(x, y) if y > g(x) or

y = g(x) and x > g(g(x)),

x or y if y = g(x) and x = g(g(x)),

(14)
being commutative on the set of points (x, g(x)) such
that x = g2(x).

3 DISTRIBUTIVITY EQUATIONS

Now, we consider the distributivity equations (cf. [1],
p. 318).

Definition 3.1. Let F,U : [0, 1]2 → [0, 1]. The op-
eration F is distributive over U if the left and right
distributivity conditions are fulfilled

F (x, U(y, w)) = U(F (x, y), F (x,w)), (15)

F (U(y, w), x) = U(F (y, x), F (w, x)), (16)

for all x, y, w ∈ [0, 1].

Lemma 3.2 (cf. [21, 22]). Let F : X2 → X have a
right (left) neutral element e in a subset ∅ 6= Y ⊂ X
(i.e. ∀x∈Y F (x, e) = x (F (e, x) = x)). If operation F
is left (right) distributive over operation U : X2 → X
and satisfying U(e, e) = e, then U is idempotent in Y .

Proof. Let x ∈ Y ⊂ X, y, w = e ∈ Y ⊂ X. If F is dis-
tributive over U , then x = F (x, e) = F (x, U(e, e)) =
U(F (x, e), F (x, e)) = U(x, x). The proof is similar
in the case where operation F has a left neutral ele-
ment.

Corollary 3.3 ([5]). If the operation F : [0, 1]2 →
[0, 1] with neutral element e ∈ [0, 1] is distributive over
operation U : [0, 1]2 → [0, 1] and satisfying U(e, e) = e,
then U is idempotent.

Lemma 3.4 ([21]). Every increasing operation F :
[0, 1]2 → [0, 1] is distributive over max and min.

4 DISTRIBUTIVITY OF F ∈ Fa,b

OVER U ∈ Ue
Our main consideration concerns the distributivity be-
tween the semi-t-operator F ∈ Fa,b and the uninorm
U ∈ Ue.
Now, we start with a case where a ≤ b and left dis-
tributivity (eq. (15)).

Lemma 4.1. Let a, b, e ∈ [0, 1]. If a ≤ b and F ∈
Fa,b is left distributive over U ∈ Ue, then U is an
idempotent uninorm.

Lemma 4.2. Let a, b, e ∈ [0, 1], 0 = a ≤ b, F ∈ Fa,b

and U ∈ Ue be a disjunctive uninorm. If F is left
distributive over U , then e ≤ b.
Theorem 4.3. Let a, b, e ∈ [0, 1], 0 = a ≤ b, F ∈ Fa,b

and U ∈ Ue be a disjunctive uninorm. F is left dis-
tributive over U if and only if e ≤ b and U is idempo-
tent uninorm satisfying U(0, y) = y for all y > b.

Proof. Let 0 = a ≤ b, F ∈ Fa,b be left distribu-
tive over disjunctive uninorm U . Then by Lemma
4.1 U is idempotent uninorm and by Lemma 4.2
e ≤ b. Putting x = 1, y = 0 and z > b in (15)
and using fact, that F (1, 0) = b, F (1, z) = z
we have F (1, U(0, z)) = U(F (1, 0), F (1, z)) =
U(b, z) = z. If U(0, z) = min(0, z) = 0, then
z = F (1, U(0, z)) = F (1, 0) = b, which is a contradic-
tion. So, U(0, z) = max(0, z) = z for all z > b.
Conversely, let U be disjunctive idempotent uni-
norm with U(0, y) = y for all y > b. Then
U(x, y) = max(x, y) for x ∈ [0, e], y > b. To prove
(15) we consider following cases:
1. If x ≤ b, then F (x, U(y, z)) = x = U(x, x) =
U(F (x, y), F (x, z)).
2. Let now x > b
a) If y < b and z < b, then U(y, z) < b and
F (x, U(y, z)) = b = U(b, b) = U(F (x, y), F (x, z)).
b) If y < b and z > b, then F (x, U(y, z)) =
F (x,max(y, z)) = max(F (x, y), F (x, z)) =
U(F (x, y), F (x, z)).
c) If y > b, then distributivity we obtain, as in case
2b).
d) If y = b or z = b, then the proof is similar as in the
case 2a) or 2b).
So, F is left distributive over U .

Lemma 4.4. Let a, b, e ∈ [0, 1], 0 < a ≤ b, F ∈ Fa,b

and U ∈ Ue be a disjunctive uninorm. If F is left
distributive over U , then e < a and F has the following
form

F (x, y) =





S1(x, y) if x, y ∈ [0, e],

S2(x, y) if x, y ∈ [e, a],

A(x, y) if x ∈ [0, e], y ∈ [e, a],

T (x, y) if x, y ∈ [b, 1],

a, if x ≤ a ≤ y,
b if y ≤ b ≤ x,
x if a ≤ x ≤ b,
max(x, y) otherwise,

(17)

where T is isomorphic with an associative triangular
semi-norm, S1 is isomorphic with an associative tri-
angular semi-conorm, e is a right neutral element of
S2 : [e, a]2 → [e, a], 0 is a left neutral element of
A : [0, e] × [e, a] → [e, a] and where A, T , S1, S2 are
increasing operations having common boundary values.
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Lemma 4.5. Let a, b, e ∈ [0, 1], 0 < a ≤ b, F ∈
Fa,b and U ∈ Ue be a disjunctive uninorm. F is left
distributive over U , then g(x) = e for x ∈ [0, e] and
g(x) = 0 for x ∈]e, 1], i.e. U ∈ Umax.

Theorem 4.6. Let a, b, e ∈ [0, 1], 0 < a ≤ b, F ∈
Fa,b and U ∈ Ue be a disjunctive uninorm. F is left
distributive over U if and only if U is an idempotent
uninorm from the class Umax, e < a and F is given by
(17).

��

e

e

a

a

b

b

T

S1

S2A

max

x

x

a

b

0 1

1

maxmax

maxmin

0 1

1

0 e

e

1

1

Figure 3: Structure of the operations F and U from
Theorem 4.6

Similar results we obtain, if we consider the right dis-
tributivity

Lemma 4.7. Let a, b, e ∈ [0, 1]. If b ≤ a and F ∈
Fa,b is right distributive over U ∈ Ue, then U is an
idempotent uninorm.

Lemma 4.8. Let a, b, e ∈ [0, 1], 0 = b ≤ a, F ∈ Fa,b

and U ∈ Ue be a disjunctive uninorm. If F is right
distributive over U , then e ≤ b.
Theorem 4.9. Let a, b, e ∈ [0, 1], 0 = b ≤ a, F ∈
Fa,b and U ∈ Ue be a disjunctive uninorm. F is right
distributive over U if and only if e ≤ a and U is an
idempotent uninorm satisfying U(0, y) = y for all y >
a.

Lemma 4.10. Let a, b, e ∈ [0, 1], 0 < b ≤ a, F ∈ Fa,b

and U ∈ Ue be a disjunctive uninorm. If F is right
distributive over U , then e < b and F has the following
form

F (x, y) =





S1(x, y) if x, y ∈ [0, e],

S2(x, y) if x, y ∈ [e, a],

B(x, y) if x ∈ [e, a], y ∈ [0, e],

T (x, y) if x, y ∈ [b, 1],

a, if x ≤ a ≤ y,
b if y ≤ b ≤ x,
y if a ≤ y ≤ b,
max(x, y) otherwise,

(18)

where T is isomorphic with an associative triangular
semi-norm, S1 is isomorphic with an associative tri-
angular semi-conorm, e is a right neutral element of
S2 : [e, a]2 → [e, a], 0 is a left neutral element of

B : [e, a] × [0, e] → [e, a] and where B, T , S1, S2 are
increasing operations having common boundary values.

Lemma 4.11. Let a, b, e ∈ [0, 1], 0 < b ≤ a, F ∈
Fa,b and U ∈ Ue be a disjunctive uninorm. F is right
distributive over U , then g(x) = e for x ∈ [0, e] and
g(x) = 0 for x ∈]e, 1] i.e. U ∈ Umax.

Theorem 4.12. Let a, b, e ∈ [0, 1], 0 < b ≤ a, F ∈
Fa,b and U ∈ Ue be a disjunctive uninorm. F is right
distributive over U if and only if U is an idempotent
uninorm from the class Umax, e < b and F is given by
(18).

Remark 4.13. Similar results can be obtained if we
consider conjunctive uninorm.

5 CONCLUSIONS

The results of the left distributivity look very similar
to the right distributivity, but the left distributivity of
F and U is considered when a < b, a right distribu-
tivity, where b > a. Furthermore, in the case where
a < b the operation F has a right neutral element in
the subintervals, which add up to the unit interval, so
that the left distributivity gives idempotency of uni-
norm (see. Lemma 3.2). The other hand, the left
neutral element we obtain only on a subset of the unit
interval, which gives only partial results. The next
step of our work will be to complete the remaining
cases, and add some counterexamples.
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Summary

The problem of distributivity is of a great
interest both for particular as well as fun-
damental reasons. It relates for instance to
the theory of binary operators like triangu-
lar norms, conorms and their generalizations,
i.e. uninorms and nullnorms. One of the re-
cent generalizations covering both uninorms
and nullnorms are 2-uninorms, which form
a class of commutative, associative and in-
creasing operators on the unit interval with
an absorbing element separating two subin-
tervals, having their own neutral elements.
This paper is precisely devoted to solve the
distributivity equations of such binary aggre-
gation operators with 2-neutral element with-
out the assumptions of associativity and com-
mutativity. In particular, the solution for one
of the possible subclasses of these operators
depending on the position of its zero and neu-
tral elements is characterized.

Keywords: Aggregation operator, Distribu-
tivity equations, Idempotent operation, 2-
Semi-Uninorm.

1 INTRODUCTION

The functional equations involving aggregation opera-
tors (e.g. [6], [7], [10], [21], [22]) play an important role
in theories of fuzzy sets and fuzzy logic. A new direc-
tion of investigations concerns of distributivity equa-
tion for uninorms and nullnorms and their generaliza-
tions ([5], [11], [12], [14], [15], [18], [22], [24], [25]).
These special aggregation operators have been proven
to be useful in many fields such as fuzzy logic, expert
systems, neural networks, aggregation, utility theory

and fuzzy system modeling (see [13], [17], [19], [20],
[27]).
Our consideration was motivated by logical connec-
tives which generalize the concept of 2-uninorms in-
troduced by P. Akella in [2]. A 2-semi-uninorm be-
longs to the class of binary aggregation operators on
the unit interval with an absorbing element separating
two subintervals having their own neutral elements.
In the case of semi-nullnorms these neutral elements
are respectively 0 and 1 while for 2-semi-uninorms they
lie anywhere in the subintervals. Hence, in the struc-
ture of 2-semi-uninorm we have two operators isomor-
phic with some semi-uninorms, where in the case of
semi-nullnorms these operators are isomorphic with re-
spectively some disjunction operator and conjunction
operator.
This paper is organized as follows. In Section 2, we
considered the algebraic structures of semi-uninorms
and semi-nullnorms. In Section 3, the concept of the
class of 2-semi-uninorms and the characterization of
one of its possible subclasses is introduced. Then, the
functional equations of distributivity is recalled (Sec-
tion 4). In the last (main) section, the solutions of dis-
tributivity equations for described subclass of 2-semi-
uninorms is characterized.

2 SEMI-UNINORMS AND
SEMI-NULLNORMS

We start with basic definitions and facts.

Definition 2.1 (cf. [9]). A (bivariate) aggregation
operator is a mapping F : [0, 1]2 → [0, 1] such that
i) F (0, 0) = 0 and F (1, 1) = 1;
ii) F is increasing with respect to both variables.

Definition 2.2 (cf. [10]). Let e ∈ [0, 1]. By Ne we
denote the family of all aggregation operators
F : [0, 1]2 → [0, 1] with neutral element e ∈ [0, 1] i.e.

F (e, x) = F (x, e) = x for all x ∈ [0, 1].

Definition 2.3 (cf. [28]). An operator F ∈ Ne is
called uninorm if it is associative and commutative.
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We use the following notation De = [0, e) × (e, 1] ∪
(e, 1]× [0, e) for e ∈ (0, 1).

Theorem 2.4 ([10]). Let e ∈ [0, 1]. F ∈ Ne if and
only if

F (x, y) =





A(x, y), (x, y) ∈ [0, e]2

B(x, y), (x, y) ∈ [e, 1]2

C(x, y), (x, y) ∈ De

,

where A : [0, e]2 → [0, e], B : [e, 1]2 → [e, 1] are aggre-
gation operators with neutral element e and C : De →
[0, 1] is increasing and fulfils

min(x, y) ≤ C(x, y) ≤ max(x, y) for (x, y) ∈ De.

Corollary 2.5. Operators A and B from Theorem
2.4 fulfil 0 ≤ A(x, y) ≤ min(x, y), max(x, y) ≤
B(x, y) ≤ 1.

Definition 2.6 ([10]). Let e ∈ [0, 1]. By Nmax
e (Nmin

e )
we denote the family of all operators F ∈ Ne fulfilling
the additional condition:

F (0, x) = F (x, 0) = x for all x ∈ (e, 1]

(F (1, x) = F (x, 1) = x for all x ∈ [0, e)).

Remark 2.7. Nmin
0 = Nmax

0 = N0 (disjunction oper-
ator [4]), Nmin

1 = Nmax
1 = N1 (semi-copula cf. [3] or

conjunction operator [4].

Theorem 2.8 ([10]). We have

F ∈ Nmin
e ⇔ F (x, y) =





A(x, y), (x, y) ∈ [0, e]2

B(x, y), (x, y) ∈ [e, 1]2

min(x, y), (x, y) ∈ De

,

F ∈ Nmax
e ⇔ F (x, y) =





A(x, y), (x, y) ∈ [0, e]2

B(x, y), (x, y) ∈ [e, 1]2

max(x, y), (x, y) ∈ De

,

where A : [0, e]2 → [0, e], B : [e, 1]2 → [e, 1] are aggre-
gation operators with neutral element e.

Definition 2.9. An element a ∈ [0, 1] is called idem-
potent element of an operator F : [0, 1]2 → [0, 1] if
F (a, a) = a. The operator F is called idempotent if
all elements from [0, 1] are idempotent.

Theorem 2.10 (cf. [8], [26]). Let e ∈ [0, 1]. Operators

Umin
e (x, y) =

{
max(x, y), (x, y) ∈ [e, 1]2

min(x, y) otherwise
,

and (1)

Umax
e (x, y) =

{
min(x, y), (x, y) ∈ [0, e]2

max(x, y) otherwise

are unique idempotent uninorms in Nmin
e and Nmax

e ,
respectively.

Definition 2.11 ([24]). Let k ∈ [0, 1]. By Zk we
denote the family of all aggregation operators
F : [0, 1]2 → [0, 1] fulfilling the following conditions:
Z1) ∀x∈[0,k] F (0, x) = F (x, 0) = x,
(neutral element e = 0 on [0, k])
Z2) ∀x∈[k,1] F (1, x) = F (x, 1) = x.
(neutral element e = 1 on [k, 1])

Definition 2.12 ([7]). An operator F ∈ Zk is called
nullnorm if it is associative and commutative.

Remark 2.13. Any operation F ∈ Zk fulfils
Z3) ∀x∈[0,1] F (k, x) = F (x, k) = k. (zero element k)
More general families of operations with zero (absorb-
ing) element are examined in [23].

Theorem 2.14 ([10]). Let k ∈ [0, 1], F : [0, 1]2 →
[0, 1].

F ∈ Zk ⇔ F (x, y) =





A(x, y), (x, y) ∈ [0, k]2

B(x, y), (x, y) ∈ [k, 1]2

k, (x, y) ∈ Dk

,

where A : [0, k]2 → [0, k] and B : [k, 1]2 → [k, 1] are ag-
gregation operators with respectively, neutral element 0
and 1.

3 2-SEMI-UNINORMS

Now we present the definition and some results about
the class of 2-semi-uninorms Nk(e,f).

Definition 3.1. Let k, e, f ∈ [0, 1] and e ≤ k ≤ f .
An aggregation operator F : [0, 1]2 → [0, 1] having
2-neutral elements i.e. fulfilling

∀x≤k F (e, x) = F (x, e) = x

and (2)

∀x≥k F (f, x) = F (x, f) = x

is called a 2-semi-uninorm.
The class of all 2-semi-uninorms we denote by Nk(e,f).

Definition 3.2 (cf. [2]). An operator F ∈ Nk(e,f) is
called 2-uninorm if it is associative and commutative.

Remark 3.3. Any operator F ∈ Nk(e,f) fulfils the
condition

∀x∈[e,f ] F (x, k) = F (k, x) = k (3)

by (2) and monotonicity
k = F (e, k) ≤ F (x, k) ≤ F (f, k) = k and
k = F (k, e) ≤ F (k, x) ≤ F (k, f) = k.

Remark 3.4. • If 0 = k ≤ f = 1 then 2-semi-uninorm
F is a semi-copula with neutral element f = 1.
• If 0 = e ≤ k = 1 then 2-semi-uninorm F is a dis-
junction operation with neutral element e = 0.
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• If 0 = k ≤ f ≤ 1 or 0 ≤ e ≤ k = 1 then 2-semi-
uninorm is an arbitrary semi-uninorm with neutral el-
ement f or e, respectively.
• If e = 0 and f = 1 then 2-semi-uninorm F is a semi-
nullnorm (semi-t-operator) with absorbing element k.

In order to exclude the above subclasses from the class
of 2-uninorms we assume that 0 ≤ e ≤ k ≤ f ≤ 1 but
e = k and k = f can not occur simultaneously.

Lemma 3.5. Let F ∈ Nk(e,f) be a 2-uninorm, 0 ≤
e ≤ k ≤ f ≤ 1. Then two mappings F 1, F 2 ∈ Ne

defined by

F 1(x, y) =
F (kx, ky)

k
for x, y ∈ [0, 1],

F 2(x, y) =
F (k + (1− k)x, k + (1− k)y)

1− k for x, y ∈ [0, 1]

are semi-uninorms with neutral elements e
k and f−k

1−k ,
respectively.

The proof is quite similar to the proof of Lemma 6 in
[2].

Lemma 3.6. Let F ∈ Nk(e,f) be a 2-semi-uninorm,
0 ≤ e ≤ k ≤ f ≤ 1. Then F (0, 1) ∈ {0, k, 1}.

From the above lemma we can set apart one from the
possible subclasses of operators in Nk(e,f) based on its

zero element F (0, 1) = k, denoted by Nk
k(e,f).

F d ∈ Nmax
e

F c ∈ Nmin
fk

k

0 k

k

1

1

Figure 1: Structure of 2-semi-uninorm F ∈ Nk
k(e,f).

Representation of 2-semi-uninorm F ∈ Nk
k(e,f)

Theorem 3.7. Let F ∈ Nk(e,f) be a 2-semi-uninorm,
0 ≤ e ≤ k ≤ f ≤ 1, where F (x, 0) and F (x, 1) are
discontinuous at the points e ∈ (0, k] and f ∈ [k, 1),
respectively. Then F ∈ Nk

k(e,f) if and only if F has the
following form (see Fig. 1)

F (x, y) =





F d(x, y), (x, y) ∈ [0, k]2

F c(x, y), (x, y) ∈ [k, 1]2

k, (x, y) ∈ Dk

, (4)

where F d and F c are operators respectively isomor-
phic with some semi-uninorms from the class Nmax

e

and Nmin
e .

4 FUNCTIONAL EQUATIONS OF
DISTRIBUTIVITY

We consider here the functional equations of distribu-
tivity of two binary aggregation operators. Let us re-
mind some of the most important facts relating to this
topic.

Definition 4.1 (cf. [1], p. 318). Let F,G : [0, 1]2 →
[0, 1]. We say that operator F is left distributive over
G, if for all x, y, z ∈ [0, 1]

F (x,G(y, z)) = G(F (x, y), F (x, z)). (5)

Operator F is right distributive over G, if for all
x, y, z ∈ [0, 1]

F (G(y, z), x) = G(F (y, x), F (z, x)). (6)

If equations (5) and (6) are fulfilled simultaneously
(or F is commutative), we say that operation F is
distributive over G.

Lemma 4.2 (cf. [24]). Let ∅ 6= Y ⊂ X, F : X2 → X,
G : Y 2 → Y . If aggregation operator F with neutral
element e ∈ Y is left or right distributive over ag-
gregation operator G fulfilling G(e, e) = e, then G is
idempotent in Y .

Lemma 4.3 ([24]). Every aggregation operator
F : [0, 1]2 → [0, 1] is left or right distributive over max
and min.

5 DISTRIBUTIVITY EQUATIONS
BETWEEN 2-SEMI-UNINORMS
F,G ∈ Nk

k(e,f)

Now we consider the distributivity between operators
F ∈ Nk1

k1(e1,f1)
and G ∈ Nk2

k2(e2,f2)
distinguishing both

the order of their zero elements as well as their specific
structures.

Theorem 5.1. Let k1, k2 ∈ [0, 1] and k2 ≤ k1. A 2-
semi-uninorm F ∈ Nk1

k1(e1,f1)
is left distributive over a

2-semi-uninorm G ∈ Nk2

k2(e2,f2)
where 0 ≤ e1 ≤ e2 ≤

k2 ≤ k1 ≤ f2 ≤ f1 ≤ 1 if and only if G is idempotent
(i.e. F c = Umin

f2
, F d = Umax

e2 (cf. (1)) in G) and F is
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given by (see Fig. 2)

F (x, y) =





AFd(x, y), (x, y) ∈ [0, e1]2

B1
Fd(x, y), (x, y) ∈ [e1, k2]2

B2
Fd(x, y), (x, y) ∈ [k2, k1]2

B3
Fd(x, y), (x, y) ∈ [e1, k2]× [k2, k1]

F c(x, y), (x, y) ∈ [k1, 1]2

k1, (x, y) ∈ Dk1

max(x, y) otherwise

,

(7)
where B1

Fd : [e1, k2]2 → [e1, k2] has a neutral element
e1, B2

Fd : [k2, k1]2 → [k2, k1] has a right neutral ele-
ment k2, B3

Fd : [e1, k2] × [k2, k1] → [k2, k1] has a left
neutral element e1 and {AFd , B1

Fd , B
2
Fd , B

3
Fd} ∈ Ne.

0 e1

e1

e2

e2

k2

k2

k1

k1

f2

f2

f1

f1

1

1

AFd

B1
Fd

B3
Fd B

2
Fd

AF c

BF c

max

max

min

min
k1

k1

min

max

max

min

min

min

k2

k2

0 1

1

0 e1

e1

e2

e2

k2

k2

k1

k1

f2

f2

f1

f1

1

1

Figure 2: Structures of 2-semi-uninorms from Theo-
rem 5.1 for F ∈ Nk1

k1(e1,f1)
and G ∈ Nk2

k2(e2,f2)
.

Proof. Let F ∈ Nk1

k1(e1,f1)
be left distributive over

G ∈ Nk2

k2(e2,f2)
where k2 ≤ k1.

First we prove that e1 ≤ e2 and f2 ≤ f1. Let us
suppose that 0 ≤ e2 < e1 and f1 < f2 ≤ 1. Then
from increasingness G(e1, e1) ≥ G(e1, e2) = e1 > 0
and G(f1, ff ) ≤ G(f1, f2) = f1 < 1. Assuming
G(e1, e1) < k1, G(f1, ff ) > k1 and putting first x = 0,
y, z = e1 and subsequently x = 1, y, z = f1 in (5), on
account of assumptions of F and G, we obtain
G(e1, e1) = max(0, G(e1, e1)) = F (0, G(e1, e1)) =
G(F (0, e1), F (0, e1)) = G(0, 0) = 0,
G(f1, f1) = min(1, G(f1, f1)) = F (1, G(e1, e1)) =
G(F (1, e1), F (1, e1)) = 1, which in both cases leads
to a contradiction. Hence 0 ≤ e1 ≤ e2 ≤ k2 ≤ k1 ≤
f2 ≤ f1 ≤ 1. Now we show that G(e1, e1) = e1 and
G(f1, f1) = f1. Since e1 < e2 we have G(e1, e1) ≤
G(e1, e2) = e1. Taking y, z = e1 in (5), by (2)
we get x = max(x,G(e1, e1)) = F (x,G(e1, e1)) =
G(F (x, e1), F (x, e1)) = G(x, x) for x ∈ [e1, k1].
In particular, G(e1, e1) = e1.
Now because f2 < f1 we have f1 = G(f1, f2) ≤
G(f1, f1). Then putting y, z = f1 in (5), by (2)
we get x = min(x,G(f1, f1)) = F (x,G(f1, f1)) =
G(F (x, f1), F (x, f1)) = G(x, x) for x ∈ [k1, f1]. Thus
in particular, G(f1, f1) = f1.

Now using twice Lemma 4.2 for Y1 = [0, k2], Y2 =
[k2, 1] and Theorem 2.10 we obtain that F c = Umin

f1

and F d = Umax
e1 in G i.e. G is the idempotent 2-semi-

uninorm from the subclass Nk2

k2(e2,f2)
.

In the next step of the proof we show that

F (x, k2) =

{
k2 for x ∈ [0, k2]

x for x ∈ [k2, k1]
. (8)

First we prove that F (k2, k2) = k2. Assuming
x = z = k2, y = e1 in (5) we have F (k2, k2) =
F (k2, G(e1, k2)) = G(F (k2, e1), F (k2, k2)) =
G(k2, F (k2, k2)) = k2. Therefore, directly
by monotonicity of F for x ∈ [e1, k2] we get
k2 = F (e1, k2) ≤ F (x, k2) ≤ F (k2, k2) = k2.
For x ∈ [k2, k1] we have F (x, k2) ≥ max(x, k2) = x.
Simultaneously, assuming in (5) y = e1, z = k2
from (2) and idempotency of G we obtain
F (x, k2) = F (x,G(e1, k2)) = G(F (x, e1), F (x, k2)) =
min(x, F (x, k2)). Hence F (x, k2) ≤ x for x ∈ [k2, k1].
From the above inequalities we get F (x, k2) = x for
x ∈ [k2, k1], which together with F (x, k2) = k2 for
x ∈ [0, k2] proves (8).
According to Theorem 3.7 the 2-semi-uninorm F
is of the form (4), where the domain of BFd must
be divided to 4 parts set by k2. On account of
increasingness of F , (2), (3) and (8) we consecutively
obtain:
e1 ≤ x = F (x, e1) ≤ F (x, y) ≤ F (x, k2) = k2 for
x, y ∈ [e1, k2];
k2 ≤ x = F (x, k2) ≤ F (x, y) ≤ F (x, k1) = k1 for
x, y ∈ [k2, k1];
k2 ≤ x = F (x, k2) ≤ F (x, y) ≤ F (k2, k1) = k1 for
x ∈ [e1, k2], y ∈ [k2, k1];
x = F (x, e1) ≤ F (x, y) ≤ F (x, k2) = x for x ∈ [k2, k1],
y ∈ [e1, k2], which means F (x, y) = max(x, y) for
x ∈ [k2, k1], y ∈ [e1, k2].
Thus the restrictions B1

Fd = F |[e1,k2]2 ,
B2

Fd = F |[k2,k1]2 and B3
Fd = F |[k2,k1]2 are opera-

tions with the desired properties.
Conversely, let F ∈ Nk1

k1(e1,f1)
be given by (7)

and G ∈ Nk2

k2(e2,f2)
be the idempotent 2-semi-

uninorm i.e. F c = Umin
f1

, F d = Umax
e1 (1) in G and

0 ≤ e1 ≤ e2 ≤ k2 ≤ k1 ≤ f2 ≤ f1 ≤ 1.
Let us observe that in 2-semi-uninorm (7) F |[0,k2]2

corresponds to Nmax
e1 in [0, k2]2 and G |[0,k2]2 corre-

sponds to Nmax
e2 in [0, k2]2, which are left distributive

in accordance with the Theorem 4 in [25]. Moreover,
using the assumption on the common boundary values
F |[k2,1]2 is increasing in suitable rectangular domains.
Then by Lemma 4.3 we get (5) for x ∈ [k2, 1] and
(y, z) ∈ [0, k2]2 ∪ [k2, 1]2. In particular, F |[k1,1]2 cor-

responding to the Nmin
f1 in [k1, 1]2 is left distributive

over G |[k1,1]2 corresponding to the Nmin
f2 in [k1, 1]2 on

the basis of the Theorem 3 in [25].
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In the rest parts of [0, 1]2 we have G(y, z) = k2 and
L = F (x,G(y, z)) = F (x, k2) is given by (8) or equal
to k1. We consider 12 cases for evaluation of the right
side R = G(F (x, y), F (x, z)) in (5).
• If x ≤ e1, y ≤ e1, k2 ≤ z ≤ k1 then
L = F (x, k2) = k2 and R = G(F (x, y),max(x, z)) =
G(F (x, y), z) = k2, where F (x, y) ∈ [0, e1].
• If x ≤ e1, y ≤ e1, z ≥ k1 then L = F (x, k2) = k2
and R = G(F (x, y), k1) = k2, where F (x, y) ∈ [0, e1].
• If x ≤ e1, e1 ≤ y ≤ k2, k2 ≤ z ≤ k1 then
L = F (x, k2) = k2 and R = G(max(x, y),max(x, z)) =
G(y, z) = k2.
• If x ≤ e1, e1 ≤ y ≤ k2, z ≥ k1 then L = F (x, k2) =
k2 and R = G(max(x, y), k1) = G(y, k1) = k2.
• If e1 ≤ x ≤ k2, y ≤ e1, k2 ≤ z ≤ k1 then
L = F (x, k2) = k2 and R = G(max(x, y),max(x, z)) =
G(x, z) = k2.
• If e1 ≤ x ≤ k2, y ≤ e1, z ≥ k1 then L = F (x, k2) =
k2 and R = G(max(x, y), k1) = G(x, k1) = k2.
• If e1 ≤ x ≤ k2, y ≤ e1, k2 ≤ z ≤ k1 then
L = F (x, k2) = k2 and R = G(F (x, y),max(x, z)) =
G(F (x, y), z) = k2, where F (x, y) ∈ [e1, k2].
• If e1 ≤ x ≤ k2, y ≤ e1, z ≥ k1 then
L = F (x, k2) = k2 and R = G(F (x, y), k1) = k2,
where F (x, y) ∈ [e1, k2].
• If k2 ≤ x ≤ k1, 0 ≤ y ≤ k2, k2 ≤ z ≤ k1 then
L = F (x, k2) = x and R = G(max(x, y), S2(x, z)) =
min(x, S2(x, z)) = x, where S2(x, z) ∈ [k2, k1].
• If k2 ≤ x ≤ k1, 0 ≤ y ≤ k2, z ≥ k1 then
L = F (x, k2) = x and R = G(max(x, y), k1) =
min(x, k1) = x.
• If k1 ≤ x ≤ 1, 0 ≤ y ≤ k2, k2 ≤ z ≤ k1 then
L = F (x, k2) = k1 and R = G(k1, k1) = k1.
• If k1 ≤ x ≤ 1, 0 ≤ y ≤ k2, k1 ≤ z ≤ 1 then
L = F (x, k2) = k1 and R = G(k1, F (x, z)) =
min(k1, F (x, z)) = k1, where F (x, y) ∈ [k1, 1].
In all considered cases we get L = R, which proves
(5).

Example 5.2. A 2-semi-uninorm F ∈ N
3
8
3
8 (

1
8 ,

4
5 )

given

by the formula

F (x, y) =





x+ y − xy, (x, y) ∈ ( 1
8 ,

3
8 )× ( 1

4 ,
3
8 )

max(x, y), (x, y) ∈ [ 18 ,
3
8 ]× [0, 14 ]∪

∪[0, 18 ]× [ 18 ,
3
8 ]

1, (x, y) ∈ [ 45 , 1]2

3
8 , (x, y) ∈ D 3

8

min(x, y) otherwise

,

is left distributive over idempotent 2-semi-uninorm

G ∈ N
1
4
1
4 (

3
16 ,

1
2 )

.

Next we deal with the case of distributivity between
F ∈ Nk1

(e1,f1)
and G ∈ Nk2

(e2,f2)
, where k1 < k2. Simi-

larly as in Theorem 5.1 one has

Theorem 5.3. Let k1, k2 ∈ [0, 1] and k1 < k2. A 2-
semi-uninorm F ∈ Nk1

k1(e1,f1)
is left distributive over a

2-semi-uninorm G ∈ Nk2

k2(e2,f2)
where 0 ≤ e1 ≤ e2 ≤

k1 < k2 ≤ f2 ≤ f1 ≤ 1 if and only if G is idempotent
(i.e. F c = Umin, F d = Umax (1) in G) and F is given
by (see Fig. 3)

F (x, y) =





F d(x, y), (x, y) ∈ [0, k1]2

A1
F c(x, y), (x, y) ∈ [k1, k2]2

A2
F c(x, y), (x, y) ∈ [k2, f1]2

A3
F c(x, y), (x, y) ∈ [k1, k2]× [k2, f1]

BF c(x, y), (x, y) ∈ [f1, 1]2

k1, (x, y) ∈ Dk1

min(x, y) otherwise

,

where A1
F c : [k1, k2]2 → [k1, k2] has a left neutral ele-

ment k2, A2
F c : [k2, f1]2 → [k2, f1] has a neutral ele-

ment f1, A3
F c : [k1, k2]× [k2, f1]→ [k2, f1] has a right

neutral element k2 and {A1
F c , A2

F c , A3
F c , BF c} ∈ Ne.
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BF c

max
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min
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k1 min

max

max
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m
i
n

min

k2

k2

0 1

1

0 e1

e1

e2

e2

k1

k1

k2

k2

f2

f2

f1

f1

1

1

Figure 3: Structures of 2-semi-uninorms from Theo-
rem 5.3 for F ∈ Nk1

k1(e1,f1)
and G ∈ Nk2

k2(e2,f2)
.

Remark 5.4. If we consider the right distributivity
equation (6), we obtain similar results to the previous
Theorems 5.1 and 5.3 (see Fig.4).

0 e1

e1

e2

e2

k2

k2
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f2

f2

f1

f1

1

1

AFd

B1
Fd B

4
Fd

B2
Fd

AF c

BF c

max

max

min

min
k1

k1

AFd

BFdmax

max

A1
F cA4

F c

A2
F c

BF cmin

min
k1

k1

0 1

1

0 e1

e1

e2

e2

k1

k1

k2

k2

f2

f2

f1

f1

1

1

Figure 4: Structures of right distributive 2-semi-
uninorms F ∈ Nk1

k1(e1,f1)
(the left part corresponds to

the case k2 ≤ k1 and the right part corresponds to the
case k1 < k2).
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      Summary 

We propose a weighted aggregation algorithm 
for creating a general idempotent weighted 

aggregator of n variables derived from a related 

symmetric idempotent aggregator of two 

variables. This computational method, together 

with interpolative aggregation, can be used for 

the development of general idempotent logic 

aggregators that satisfy a variety of conditions 

necessary for building decision models in the 

area of weighted compensative logic. 
 
Keywords: weights, aggregation, logic. 

 

1 INTRODUCTION  

Idempotent logic aggregators (ILA) are an important class 

of aggregators used for modeling logic operation in 

weighted compensative logic (WCL). In the case of 

adjustable andness/orness ILA support a continuous 

transition from the pure conjunction to the pure 

disjunction. In addition to internality and the adjustability 

of andness/orness, the ILA must support monotonicity, 

compensativeness, any number of inputs, and weights that 

describe the importance of inputs [1][2]. If these 

properties are supported, then ILA can be used for 

building decision models in WCL [3].  

WCL is a seamless generalization of classic Boolean logic 

applicable everywhere inside the unit hypercube [0,1]n . 

WCL and Boolean logic are identical in 2n
vertices of the 

unit hypercube {0,1}n . 

The fundamental logic aggregator in WCL is the 

Generalized Conjunction/Disjunction (GCD) [4][5]. In 

addition to all basic ILA properties, GCD must be capable 

to support hard and soft partial conjunction (HPC and 

SPC) and hard and soft partial disjunction (HPD and 

SPD). In a general case, we would also like to have 

independently adjustable threshold andness (border 

between HPC and SPC) and threshold orness (border 

between HPD and SPD) [3]. 

The list of GCD properties that are observable in 

human reasoning includes internality, monotonicity, 

compensativeness, adjustable andness and orness, 

weights, any number of inputs, hard and soft properties 

(supported and unsupported annihilators 0, 1), and 

adjustability of threshold andness and orness. Therefore, 

these are necessary mathematical properties requested in 

many applications, and we face an obvious question: how 

to make ILA that can support this long list of necessary 

properties? 

Idempotent compensative aggregators support 

internality and consequently must be implemented as 

means [6][7]. Unfortunately, there are no means that 

directly support all the listed ILA properties. Even the 

basic adjustability of andness/orness is supported only by 

a few means (e.g. the power means, exponential means, 

generalized logarithmic means and extended/Stolarsky 

means [7]). To satisfy other properties we are forced to 

use interpolative aggregators [8].  

Creating general forms of ILA is primarily a 

computational problem, and it needs a computational 

solution. If we want to use aggregators that are not 

weighted, or those that are defined as means of only two 

variables, then we need techniques for introducing 

weights and expanding the number of inputs beyond 

limitations of the original means. Naturally, mathematical 

literature (e.g. [1][2]) offers various solutions to this 

problem. Based on the work of Calvo and Mesiar [9] (see 

also [10]) where importance is interpreted as cardinality, 

in [1] we can find methods for incorporating weights into 

symmetric functions by repetition of arguments and a 

survey or research papers in this area. Methods for 

expanding the means of two variables (e.g., such as 

( , ) ( ) / (log log )L x y x y x y   ) to n variables are also 

studied in mathematical literature (e.g. [11][12]).  

In WCL applications we need general asymmetric 

(weighted) GCD aggregators of n variables and 

computational methods for creating such aggregators. 

This paper is focused on solving this computational 

problem using repetition of arguments and binary trees of 

suitable basic binary aggregators. We propose weighted 

aggregation algorithms for making ILA from selected 

basic means, as well as efficient program implementations 

and the corresponding performance analysis of the 

proposed computational solution. 
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2   WEIGHTED AGGREGATIONS BASED 

ON REPETITION OF ARGUMENTS 

AND BINARY AGGREGATION TREES 

Associativity offers a way for transforming binary 

aggregators that use equal weights to aggregators that use 

multiple inputs and different weights. Let us use 

associative ILA based on quasi-arithmetic means (QAM) 

1
1 1 1 1... ( ( ) ... ( ))n n n na x a x f a f x a f x     , 0 1ia  , 

11,..., , ... 1ni n a a     where :[0,1]f   is a 

continuous and strictly monotonic function. Using QAM 

we can easily verify the following basic properties of the 

symbolic ILA notation 1 1 ... n ny a x a x    (note: i ia x  is 

not multiplication, but a symbolic notation specifying that 

the weight ]0,1[ia   corresponds to the argument 

[0,1]ix   in the aggregation process based on the GCD 

operator  ): 

1 1... ( ... )n na x a x a a x x      ,      

1 1 2 2 3 1 1 3 1 2 2( )a x a x a x a a x a x     , 

1 1 2 1 2 2 3 1 1 2 1 2 2 2 3( )a x a b x b x a x a b x a b x     ,  

1 1 2 1 1 2 2 1 2 1 1 2 2 2( ) ( )a x a b x b x a a b x a b x     ,  

1 1 2 2 3 3

1 1 2 3 2 2 3 2 3 2 3 3( )(( / ( )) ( / ( )) )

a x a x a x

a x a a a a a x a a a x

  

    
  

.  

 

 

 

 

 

 

Fig. 1.  Creating a weighted aggregator from aggregators 

that use equal weights 

 

Suppose that we want to transform a symmetric 

(unweighted) binary aggregator 1 2 1 2( , ) 0.5 0.5F x x x x   

that does not have adjustable weights, to its adjustable 

weighted form 1 2(1 )y Wx W x   . That can be achieved 

by using a binary tree of symmetric aggregators 

1 2( , )F x x  that has L levels and 2LN   input arguments 

as exemplified in Fig. 1 for L=3, N=8,  and W=5/8. To 

achieve the effect of weight W, the argument 1x  should be 

repeated K=WN=5 times, and the argument 2x  should be 

repeated (1-W)N=3 times. If we use idempotency to 

simplify the tree as shown in Fig. 1 then the resulting 

aggregator is the following: 

1 1 2 2 1 1 2

1 1 2 1 2

( ( ) ) ( )

1 1 3 5 3

2 8 8 8 8

x x x x x x x

x x x x x

     

    

½ ½ ½ ½ ½ ½ ½ ½ ¼ ¾

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  A binary tree with 16 inputs and its weighted 

aggregation formulas 

 

A general algorithm for creating weighted aggregators 

from symmetric unweighted aggregators can be 

developed using an L-level binary tree with N leaves and 

the technique of repetition of arguments in a way 

exemplified in Fig 2. We want to aggregate two input 

suitability degrees ( 1x and 2x ) using weights W and 1-W 

respectively. The desired weighted aggregator of two 

variables is 1 2(1 )y Wx W x   . We assume 0 1W  . 

The weighted aggregation is achieved by using K inputs 

with value 1x  followed by N-K inputs with value 2x . The 

value of K is proportional to W and can be computed 

using the rounding 1/ 2WN    . The approximate value 

of W and the corresponding relative error are  

1/ 2 , {1,..., 1}

/ 1/ 2 / ,

100( 1/ 2 / ) / [%]

K WN K N

W K N WN N

E WN N W W

     

    

    
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 3 /16 : 2122 ( ( ( ( , ), ), ), )

 4 /16 : 1122 ( ( ( ( , ), ), ), ) ( ( , ), )
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y F F F F x x x x x

y F F F F x x x x x F F F x x x x

y F F F F x x x x x

y F F F F x x x x x F F x x x

y
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1 2 2
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 7 /16 : 2112 ( ( ( ( , ), ), ), )
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y F F F F x x x x x F F F x x x x
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x x

y F F F F x x x x x F F F x x x x

y F F F F x x x x x
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

 
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We assume that weights cannot be 0 or 1. Using L levels 

of a binary tree we get 1N   discrete weights from the 

sequence 1/ ,2 / ,..., ( 1) /N N N N . The distance between 

two adjacent weights is 1/ N  and after rounding the 

maximum absolute error is 0.5/N yielding the maximum 

relative error max (50 / ) / [%]E N W . For example, if 

0.73W   and 4, 16L N   (as in Fig. 2), then 

0.73 16 1/ 2 12.18 12K            .The obtained weight 

approximation is W≈12/16=0.75, the achieved error is 

100(0.75-0.73)/0.73=2.74% and the maximum possible 

error is max 50 / (0.73 16) 4.28 %E    . The precision 

can be increased by using larger values of L. If L=10, 

then 0.73 1024 1/ 2 748K       , the obtained weight 

is W≈748/1024=0.7305, and the errors are E=0.064%, 

max 0.067%E  . It is possible to use larger values of L 

(typically 24 56L  ) and then errors become negligible. 

An efficient algorithm for computation of weighted 

means can be derived by observing Fig. 2. In the case of 

example 0.73W   the first 12 inputs should be 1x  and 

the remaining 4 inputs should be 2x . Of course, due to 

idempotency it is not necessary to compute function in all 

nodes but only in nodes with different inputs. The 

computation can be done according to the algorithm WA2 

shown in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.   The weighted aggregation algorithm WA2 for 

aggregating two variables 

The WA2 algorithm is exemplified in the lower part 

of Fig.2. For 0.73W  , 4L   we have: 

(1) Path index: 40.73 2 1/ 2 1 11B      
  

 

(2) Conversion to the binary sequence 

 

1

2

3

4

10 2 4 3 2 1

11,                11mod 2 1

: 11/ 2 5, 5mod 2 1

: 5 / 2 2,  2mod 2 0

: 2 / 2 1,   1mod 2 1

11 1011

B b

B b

B b

B b

b b b b

  

     

     

     

  

  

(3) The path sequence: 1 2 3 4 1121p p p p p   

(4) Simplification based on idempotency: 

1 2 21t t t   

(5) The resulting weighted aggregator: 

1 2 1 1 2 1

1 2 1 1 2

( ( , ), ) ( )y F F x x x x x x

x x x x x

   

    

½ ½ ½ ½

¼ ¼ ½ ¾ ¼
 

If we need a better accuracy, then the same procedure can 

be performed with larger value of L. For example, the 

same algorithm for 0.73W  , 10L  yields the following: 

(1) Path index: 100.73 2 1/ 2 1 747B      
  

   

(2) Conversion to the binary sequence: 

10 2 10 9 8 7 6 5 4 3 2 1747 1011101011 b b b b b b b b b b   

(3) The path sequence: 

1 2 3 4 5 6 7 8 9 10 1121211121p p p p p p p p p p   

(4) Simplification based on idempotency:  

1 2 3 4 5 6 7 8 21211121t t t t t t t t t   

(5) The resulting weighted aggregator: 

1 2 1 2 1

1 1 2 1

( ( ( ( ( ( ( ( , ), ), ), ),

                                             ), ), ), )

y F F F F F F F F x x x x x

x x x x


. 

The manual computation of weighted aggregators can be 

tedious. Fortunately, an elegant and efficient version of 

the WA2 algorithm can be implemented as shown in Fig. 

4. Note that the time complexity of this algorithm is 

( )O L . 

Let us now investigate a general case of n>1 arguments, 

starting with a simple case of 3 arguments 

1 2 30.48 0.38 0.14y x x x   . This asymmetric weighted 

aggregator should be created using the related symmetric 

binary aggregator 1 2 1 2( , ) 0.5 0.5F x x x x  . The 

technique for creating the asymmetric aggregator consists 

of using a binary tree of desired symmetric aggregators 

and then repeating inputs in proportion to their weight, as 

shown in Fig. 5.  

The number of levels of the binary tree is selected 

according to the desired accuracy of approximation of the 

given aggregator. In our example we use three levels and 

the relative importance (weight) of each input is 

1/23=0.125, because the weight of each leaf is the product 

of weights along the path from the root to the leaf. Then 

WEIGHTED AGGREGATION ALGORITHM WA2  

FOR COMPUTING THE WEIGHTED AGGREGATOR 

1 2(1 )y Wx W x    FROM 1 2 1 2( , ) 0.5 0.5y F x x x x    

(1) Compute the path index value  

1 1/ 2 1B K WN        

(2) Convert B to n-bit binary number (binary sequence)   

       1 1... , {0,1}n n ib b b b  : 

      mod 2 {0,1}; : / 2 , 1,...,ib B B B i n        . 

(3) Transform the binary sequence 1 2... nb b b  to the path  

      sequence 1 2... np p p p , where  2i ip b  , 

      {1,2}, 1,...,ip i n   

(4) Simplification based on idempotency: delete leading  

       1’s from the sequence p so that it starts with 2 and  

       rename the truncated sequence 1 2... mt t t t , 

      1 2,t m n   

(5) The resulting weighted aggregation function is  

1 21(... ( ( , ), ),..., )
mt t ty F F F x x x x  
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we distribute the attributes so that the impact of each 

attribute is close to the desired value of weight. If we use 

four inputs equal to 1x , three inputs equal to 2x  and one 

input equal to 3x , and apply the idempotency as shown in 

Fig. 5, then the desired approximation is: 

1 2 2 3

1 2 2 3

1 2 3

1 2 3 1 2 3

0.5 0.5(0.5 0.5(0.5 0.5 ))

0.5 0.5(0.5 0.25 0.25 )

0.5 0.5(0.75 0.25 )

0.5 0.375 0.125 0.48 0.38 0.14

x x x x

x x x x

x x x

x x x x x x

  

   

  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  A function that implements the WA2 algorithm 

 

 

 

 

 

 

 

 

Fig. 5.  Creating a weighted aggregator with multiple 

inputs from a binary aggregator with equal weights 

 

The method presented in Fig. 2 can be generalized to 

include n variables 1,..., nx x and different weights 

1,..., nW W . As in the case of 2 variables, a general 

weighted aggregator of n variables 1 1 ... n ny W x W x    

can be derived using a related symmetric binary 

aggregator 1 2 1 2( , ) 0.5 0.5F x x x x  , as shown in Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6   A general weighted aggregation structure 

 

This method requires idempotency, but does not need ILA 

associativity. The idea is that each node preserves the 

characteristics of the base symmetric ILA and weights are 

represented by the numbers of repeated inputs. So, in this 

case the weights are represented and adjusted as follows: 

1 1, 1,..., 1, ...i i n nK W N i n K N K K          ½

A different approach to creating a general WAn algorithm 

for n>2 variables is to use the associativity of quasi-

arithmetic means and to realize WAn by repeating n-1 

times the WA2 algorithm as follows: 

1 2 2 1

2 2 2 2 2

                                              

                             ...                

n

n n

y WA WA WA WA WA x

x x x x 

     

      

Indeed, the quasi-arithmetic means support the following 

form of associativity: 

 1
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1
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1

1
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1
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 

    
         

 

Using this form of QAM associativity we can write a fast 

O[(n-1)L] iterative WAn algorithm shown in Fig.7. 

Two basic components of the performance of WA 

algorithms are the accuracy and speed of computation. 

The performance can be analyzed using as a benchmark 

the simple symmetric power mean of two variables 

1/
1 2 1 2

( , ) (0.5 0.5 )r r rF x x x x   to implement the target 

weighted power mean (WPM) of n variables 

 // WEIGHTED AGGREGATION ALGORITHM WA2  

 // (the iterative case of 2 variables) 

 // Function F is the symmetric base  

 // aggregator.  

 // Input x1 has the weight W  

 // Input x2 has the weight 1-W 

 // L = number of binary tree levels 

 // Run time = O(L) 

 

 double WA2(double x1,double x2,double W,  

        double(*F)(double,double),int L) 

 { 

   int B = int(W*pow(2.,L)+0.5) - 1; 

   double y = x1; 

   while(L--) 

   { 

      y = F(y, B%2 ?  x1 : x2); 

      B/=2; 

   }                     

   return y;             

 }   
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[ ] 1/
1 1

( ; ) ( ... )r r r r
n nM W x W x  x W . For the analysis of 

accuracy of WA2, we can compute the number of 

accurate significant decimal digits delivered by the WA2:   

[ ]
1 2( ) | log | 2( , , , , ) ( ; ) | / log10 |rD L WA x x W F L M  x W .

If we use uniformly distributed random values of 

1 2, ,  and x x W r  then a simulation model with 107 

samples creates results shown in Fig. 8. The mean number 

of accurate significant decimal digits is a linear function 

of the number of levels,   0.301 1.5233aveD L L  . 

Thus, each level contributes one correct bit of mantissa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7  A function that implements the WAn algorithm 

 

3  USING WAn TO EXTEND GEOMETRIC 

AND LOGARITHMIC MEANS 

To verify the functionality of the WAn algorithm let us 

use two related symmetric two variable means: the 

geometric mean ( , )G x y xy  and the logarithmic mean 

( , ) ( ) / (log log )L x y x y x y   . The geometric mean is a 

special case of the power mean and has natural extension 

to weighed n-tuples: 1
1 1

( ,..., ; ) ... nWW
n nG x x x xW . Both 

( , )G x y  and ( , )L x y  are hard partial conjunction 

threshold aggregators: ( , )G x y  defines the threshold 

andness of power means θα ( ) 0.667PM   and ( , )L x y  

defines the threshold andness of generalized logarithmic 

means θα ( ) 0.614GLM  . In addition, both ( , )G x y  and 

( , )L x y are special cases of the generalized logarithmic 

mean and the Stolarsky mean [7]. The logarithmic mean 

does not have obvious extension to weighed n-tuples, but 

there are proposals for such extensions [11], [12]. Our 

WAn algorithm is one of such extensions. 
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Fig. 8.  The number of accurate decimal digits D(L) 

generated by WA2  
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Fig. 9. Weighted geometric and weighted logarithmic 

means generated using the WAn algorithm with L=32 

Let us now use ( , )G x y  and ( , )L x y  to create a weighted 

GCD aggregator 1 1 ... n ny W x W x   . For n=2 Fig. 9 

shows the weighted aggregator of two variables 

y Wx W x  , 1 ,  1x x W W    for weights from 0.1 

to 0.9. In the case of geometric mean, WAn generates the 

output that is identical to ( , ; ) W WG x x W x x . Of course, 

 // WEIGHTED AGGREGATION ALGORITHM WAn  

 // (the iterative case of n>=2 variables) 

 // Function F is the symmetric base  

 // aggregator. 

 // W[ ] = array of weights of inputs x[ ] 

 // L = number of binary tree levels 

 // Run time = O[(n-1)L] 

 

 double WAn(double x[],double W[], 

    int n, double(*F)(double,double),int L) 

 {  

   --n; 

   double Wsum = W[n], y = x[n]; 

   while(n)  

   { --n;  

     y = WA2(x[n],y, W[n]/(W[n]+Wsum),F,L);  

     Wsum += W[n]; 

   } 

   return y; 

 }   
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that is expected because WAn is based on associative 

properties of QAM. In contrast, the logarithmic mean is 

not a descendant of QAM and not associative, but the 

result is nevertheless very similar to the extended 

geometric mean showing that WAn preserves the nature 

of the symmetric base mean and provides a viable method 
for extending symmetric means to support weights. 

The case n>2 can be analyzed using an aggregator with 

increasing weights, 1 2 3 40.1 0.2 0.3 0.4y x x x x    , that we 

can implement using ( , )G x y  or ( , )L x y  and WAn. The 

characteristics of resulting aggregators can be visualized 

using the following four sensitivity functions: 

1 2 3 4( ) 0.1 0.2 0.3 0.4

,   0.5,  ,   0 1,  1,2,3,4

i

i j

y x x x x x

x x x j i x i

   

     
 

The sensitivity functions presented in Fig. 10 show 

remarkable similarity and verify the usefulness of the 

WAn algorithm. In the case of geometric mean, WAn 

correctly transforms xy  to 
0.1 0.2 0.3 0.4
1 2 3 4

( )G x x x xX . 
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Fig. 10.  Sensitivity curves for weighted geometric and 

logarithmic means of 4 variables generated using WAn 

4 CONCLUSIONS 

Each symmetric idempotent aggregator (i.e. each mean) 

of two variables can be expanded to weighted aggregator 

(weighted mean) of n variables using the WAn algorithm 

introduced in this paper. WAn is based on QAM 

associativity and for all QAM aggregators it generates 

correct results. However, our experiments show that WAn 

generates viable results also for non-associative non-

QAM aggregators. To what extent is QAM associativity 

applicable outside the QAM world is an open question. 

 WAn is a general, simple and elegant iterative algorithm 

that can be implemented in any programming language 
using just a few lines of code. The accuracy of WAn, 

expressed as the number of significant decimal digits, is a 

linear function of the number of levels L in the binary 

aggregation tree. Each level contributes 1 accurate bit of 

mantissa, i.e. 10log (2) 0.301  significant decimal digits. 

Assuming a constant value of L (e.g. L=24) WAn is a fast 

linear algorithm with the run time T=O(n). That is a fully 
acceptable solution. Since all computations are done in 

nodes of a balanced L-level binary tree, parallel level-

wise computations are also possible, but it is unlikely that 

further speedup might have significant practical effects. 
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Summary

In this paper, we provide a framework for
aggregating heterogeneously interrelated in-
puts and introduce a family of aggregation
functions to capture such kind of interrela-
tionship in the aggregation process. We find
that Bonferroni mean and its extension are
special cases of this new family of aggregation
functions. We also investigate its properties.

Keywords: Aggregation function, Hetero-
geneous Relationship, Extended Bonferroni
Mean.

1 INTRODUCTION

The central issue in aggregation technique is to fuse
the information that are coming from different sources,
according to their interrelationship patterns and pro-
duces an output which not only be an representative
of the input information but also reflects the inter-
relationship among aggregated arguments. Different
interrelationship patterns may lead to different aggre-
gated values for same input information and that may
affect the final result of the system [3]. Therefore,
taking account of interrelationships of information in
aggregation process is immensely important.

Various types of aggregation functions have been in-
troduced in the literature and their properties have
also been studied extensively [7, 4]. Also, some of the
aggregation functions have been designed to capture
a specific relationship among the inputs or to model
specific requirement of particular scenario, such as,
Prioritize aggregation function [9], Power aggregation
function [8], etc. However, most of the aggregation
functions produce reliable outputs under the assump-
tions that there is no interrelationship among the ag-

gregated arguments except few aggregation functions,
such as, Choquet integral [6], Generalized Bonferroni
mean [10, 5], extended Bonferroni [3] mean. The ba-
sic difference between Choquet integral and Bonfer-
roni mean is that the former captures interrelation-
ship based on the subjective fuzzy measure, whereas
the latter relies on the direct conjunction of interre-
lated inputs. In this study, we will focus on direct
conjunction of interrelated inputs for taking account
of interrelationship among the arguments in the ag-
gregation process.

By interrelationship, we mean a heterogeneous con-
nection among the inputs, i.e., some of the inputs are
related to a subset of rest of the inputs and others have
no relation with the remaining inputs.

Figure 1: Heterogeneous interrelationships among in-
puts where ai − aj represents that ai is related to aj .
The attributes {ah1 , ah2 , . . . , ahu} are dependent and
each ahi ∈ C is related to a subset Bhi of C..
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Let a = (a1, a2, . . . , an) be the set of inputs, where
ai’s are non-negative real numbers from the interval
[0, 1]. Then, this kind of heterogeneous relationship
among the inputs can be described as in Fig. 1. Such
kind of interaction among the inputs exists in many
real-life problems. For instance, attributes of a multi-
attribute decision making problem may be interrelated
in such fashion, data sources, like different sensors may
have such heterogeneous connections, at the time of
forming social opinion, individuals may have this kind
of connections.

In this work, we provide a general framework for cap-
turing this kind of interrelationship among inputs in
the aggregation process and define a composite aggre-
gation function to aggregate inputs with this kind of
relationship patterns. To do this, the rest of the pa-
per is drafted as follows. In section 2, we provide a
brief overview of the aggregation functions and some
of its properties. Section 3, introduces a framework for
describing relationship among the inputs and a com-
posite aggregation function. Properties of new com-
posite aggregation function are also studied in section
3. Several special cases are also analyzed.

2 PRELIMINARIES

In this section, we provide some useful concepts of ag-
gregation functions [7], which are the basis of our pro-
posal.

Definition 1. An aggregation function in [0, 1]n is a
function A : [0, 1]n → [0, 1] that

• is non-decreasing in each argument

A(x) ≤ A((x′)) for any x,x′ ∈ [0, 1]n with x ≤ x′

• satisfies the boundary conditions

A(0, 0, . . . , 0) = 0 and A(1, 1, . . . , 1) = 1

Definition 2. The diagonal section of any aggregation
function A : [0, 1]n → [0, 1] is the unary function δA :
[0, 1] → [0, 1] defined as

δA(x) = A(x, x, . . . , x) for all x ∈ [0, 1]

Definition 3. An aggregation function A : [0, 1]2 →
[0, 1] is said to have an inverse diagonal if the inverse
of the diagonal section δA exists, i.e., there exists a
function δ−1

A : [0, 1] → [0, 1] such that δ−1
A (δA(x)) = x

Definition 4. An aggregation function A : [0, 1]n →
[0, 1] is said to be idempotent if δA = id, i.e.,

A(x, x, . . . , x) = x for all x ∈ [0, 1]

Definition 5. Let A : [0, 1]n → [0, 1] be an aggregation
function, then

• A is conjunctive if A(x) ≤ Min(x)

• A is disjunctive if Max(x) ≤ A(x)

• A is averaging if Min(x) ≤ A(x) ≤ Max(x)

3 NEW AGGREGATION
FUNCTIONS

In this section, we define a general composite aggrega-
tion function to aggregate a set of inputs with hetero-
geneous relationship as described in Fig. 1.

The conventional aggregation technique is based on
the common hypothesis that information is passed to
an aggregation function as an ordered sequence of real
numbers together with its weight information and that
works pretty well in most of the aggregation functions.
But sometimes we need additional information regard-
ing inputs to fuse the data intelligently. For instance,
in induced OWA operator [11], an additional informa-
tion is passed to the aggregation function via inducing
variables which defines the permutation among the in-
puts. Similarly, in order to capture the heterogeneous
relationship among the inputs as described in Fig. 1
intelligently, it is needed to pass the interrelationship
information to the aggregation function. For this pur-
pose, the heterogeneous relationship among the inputs
can be described as below.

Let Ii be the set of indices of inputs which are related
to ai. We have considered only one level of dependency
of ai with the elements of Ii. The mutual dependency
of the elements of Ii are not accounted here. The na-
ture of the set Ii, determines the input ai is related
to any other inputs or not. If Ii = ∅, the input ai

has no connection to any other inputs (that means ai

belongs to D as in Fig. 1). Otherwise, ai is related
to the inputs whose indices are in Ii (that means ai

belong to C as in Fig. 1 and if i = h1 then the in-
dices of the inputs of Bh1 are in Ii). Therefore, the
input ai with additional information Ii can describe
its relationship with other inputs completely. Now,
we need to group the inputs based on the fact that
whether Ii is empty or not. Without loss of general-
ity, we assume that first n1 inputs have some sort of
connection with a subset of the rest of the inputs, i.e.,
Ii ̸= ∅ for i = 1, 2, . . . , n1 and each of the remaining
inputs (n−n1) have no connection with the remaining
inputs, i.e., Ii = ∅ for i = n1 + 1, . . . , n. Such kind of
grouping may be viewed as pre-processing of inputs.
The heterogeneous relationship information of inputs
with the set of inputs can be transmitted to the ag-
gregation function as a sequence of ordered pairs as
(⟨I1, a1⟩, ⟨I2, a2⟩, . . . , ⟨In, an⟩). The cardinality of the
set Ii is denoted by |Ii|.
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Now, our intention is to aggregate this information
taking logical conjunction of interrelated inputs. The
logical architecture of the aggregation system can be
described as follows:

Agg(Agg1(interrelated inputs), Agg2(independent inputs))

where, Agg1(interrelated inputs) implies aggregation
of conjunctions of interrelated inputs, i.e.,

Agg1(ai AND Agg3(inputs which belong to Ii))

Here, Agg, Agg1,Agg2 and Agg3 represent aggrega-
tion of information by different aggregation functions.
That is, we divide our task of aggregation into two par-
allel sub-tasks of aggregation on two different chunks
of information of the inputs based on the interrelation-
ship pattern of inputs. Based on this logical frame-
work, we mathematically define the new aggregation
function as follows:

Definition 6. Let (⟨I1, a1⟩, ⟨I2, a2⟩, . . . , ⟨In, an⟩) be
the set of heterogeneously related inputs with corre-
sponding interrelationship information and Ii ̸= ∅
for i = 1, 2, . . . , n1. Let A : [0, 1]2 → [0, 1], A1 :
[0, 1]n1 → [0, 1] and A2 : [0, 1]n−n1 → [0, 1]. Let
E1 : [0, 1]|I1| → [0, 1],. . . ,En1 : [0, 1]|In1 | → [0, 1] be
the aggregation functions and K : [0, 1]2 → [0, 1] be
a conjunctive aggregation function. Then the func-
tion H ≡ A(A1(K(a1, E1), . . . ,K(an1 , En1)), A2) :
[0, 1]n → [0, 1] given by

H(⟨I1, a1⟩, ⟨I2, a2⟩, . . . , ⟨In, an⟩)
= A(A1(K(a1, E1(ai|i ∈ I1)), . . . , K(an1

, En1
(ai|i ∈ In1

)))

, A2(an1+1, . . . , an)) (1)

is a composite n-ary heterogeneously related informa-
tion combining function. Here, we take the convention
that aggregation of no information as zero (if n1 = n,
then this concerns with aggregation function A2 and
when n1 = 0, this concerns with aggregation function
A1).

To clarify the definition consider the following exam-
ple.

Example 1. Let a = (a1, a2, a3, a4, a5, a6) be the set
of heterogeneously related inputs. Suppose the input a1

is related to {a2, a3}, input a2 is related to {a1, a4},
input a3 is related to {a1, a4}, input a4 is related to
{a2, a3} and inputs {a5, a5} have no relation with the
remaining ones. This heterogeneous relationship can
be describe via Ii as follows: I1 = {2, 3}, I2 = {1, 4},
I3 = {1, 4}, I4 = {2, 3}, I5 = ∅ and I6 = ∅. So for the
given heterogeneously inputs, the function H becomes

as follows:

H(⟨I1, a1⟩, ⟨I2, a2⟩, ⟨I3, a3⟩, ⟨I4, a4⟩, ⟨I5, a5⟩⟨I6, a6⟩)
= A(A1(K(a1, E1(a2, a3)), K(a2, E2(a1, a4)),

K(a3, E3(a1, a4)),K(a4, E4(a2, a3))), A2(a5, a6))
(2)

In Definition 1, conjunctive aggregation function K
models the conjunction of ai with its interrelated in-
puts while aggregation function A1 provides the ag-
gregated value of different interrelated inputs. On the
other hand, A2 aggregates the independent inputs and
finally, aggregation function A produces combined ag-
gregated values of interrelated inputs and independent
inputs. By assigning different aggregation functions
to do different aggregation tasks, we can model the
requirements of the specific scenario. Moreover, selec-
tion of aggregation functions A, A1, A2 and K depend
on the user’s behavior towards the aggregation and
specific requirement of the decision scenario. As the
requirement of satisfaction levels of different interre-
lated inputs sets (Ii(i = 1, 2, . . . n1)) may not be same,
the choice of E1, . . . , En1 are made independently.

One of the attracting feature of H is that the nature
of the aggregation function H may be determined by
the nature of the aggregation functions A, A1, A2, K
and E1, . . . , En1 .

Proposition 1. The composite n-ary function H is
an aggregation function.

Proof. The boundary conditions H(⟨I1, 0⟩, ⟨I2, 0⟩,
. . . , ⟨In, 0⟩) = 0 and H(⟨I1, 1⟩, ⟨I2, 1⟩, . . . , ⟨In, 1⟩) = 1,
and the property non-decreasing in each argument of
H follows from the same property possesses by the ag-
gregation functions A, A1, A2, K and E1, . . . , En1 .

Example 2. Let a = (a1, a2, a3, a4) be the set of in-
puts with heterogeneous interrelationships of inputs de-
scribed as I1 = {2, 3}, I2 = {1}, I3 = {1} and I4 = ∅.
Let us take A, A1 and A2 as simple arithmetic means,
the conjunctive aggregation function K(x, y) = xy,
and aggregation functions E1(x, y) = x with E2 and
E3 as identity. Then the aggregation H for aggregat-
ing heterogeneously related inputs H turns into

H(⟨I1, a1⟩, ⟨I2, a2⟩, ⟨I3, a3⟩, ⟨I4, a4⟩)
= A(A1(K(a1, E1(a2, a3)),K(a2, E2(a1)),

K(a3, E3(a1))), A2(a4))

= A(A1(a1a2, a2a1, a3a1), A2(a4))

= A((2a1a2 + a1a3)/3, a4)

=
(2a1a2 + a1a3)/3 + a4

2
.
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From the above example, one may note that H does
not possess unanimity property (idempotency) even
though the aggregation functions A, A1, A2 and
E1, . . . , En1 possess the unanimity property. That is
due to the conjunctive aggregation function K which
does not satisfy the unanimity property. The una-
nimity property is important from many applications
point of view, such as, in the context of the formation
of social opinion unanimity implies the sovereignty of
participants. To preserve the unanimity property, we
add the existence of inverse diagonal property to K
and modify the Definition 6 as follows:

Definition 7. Let (⟨I1, a1⟩, ⟨I2, a2⟩, . . . , ⟨In, an⟩) be
the set of heterogeneously related inputs with corre-
sponding interrelationship information and Ii ̸= ∅
for i = 1, 2, . . . , n1. . Let A : [0, 1]2 → [0, 1],
A1 : [0, 1]n1 → [0, 1] and A2 : [0, 1]n−n1 → [0, 1].
Let E1 : [0, 1]|I1| → [0, 1],. . . ,En1 : [0, 1]|In1 | → [0, 1]
be the aggregation functions and K : [0, 1]2 → [0, 1]
be a conjunctive aggregation function having the in-
verse diagonal δ−1

K . Then the aggregation function
H1 ≡ A(δ−1

K (A1(K(a1, E1), . . . ,K(an1 , En1))), A2) :
[0, 1]n → [0, 1] given by

H1(⟨I1, a1⟩, ⟨I2, a2⟩, . . . , ⟨In, an⟩)
= A(δ−1

K (A1(K(a1, E1(ai|i ∈ I1)), . . . , K(an1

, En1(ai|i ∈ In1)))), A2(an1+1, . . . , an)) (3)

is an composite n-ary aggregation function for com-
bining inputs with heterogeneous relationship.

Example 3. Consider the same set of inputs as in
Example 2 with same interrelationship pattern. Now
taking same set of aggregation functions as in Example
2, we have

H1(⟨I1, a1⟩, ⟨I2, a2⟩, ⟨I3, a3⟩, ⟨I4, a4⟩)
= A(δ−1

K (A1(K(a1, E1(a2, a3)), K(a2, E2(a1)),

K(a3, E3(a1)))), A2(a4))

= A(δ−1
K A1(a1a2, a2a1, a3a1), A2(a4))

= A(((2a1a2 + a1a3)/3)1/2, a4)

=
((2a1a2 + a1a3)/3)1/2 + a4

2

Clearly, H1 possesses unanimity property as
H1(⟨I1, a1⟩, ⟨I2, a1⟩, ⟨I3, a1⟩, ⟨I4, a1⟩) = a1.

Proposition 2. The composite n-ary aggregation
function H1, satisfies the idempotent property for any
conjunctive function having inverse diagonal, if the
idempotency property holds for the aggregation func-
tions, A, A1, A2, and E1, . . . , En.

Proof. Since the aggregation functions A2, and

E1, . . . , En are idempotent

H(⟨I1, a⟩, ⟨I2, a⟩, . . . , ⟨In, a⟩)
= A(δ−1

K (A1(K(a, a)), . . . , K(a, a)), a)

= A(δ−1
K (K(a, a), a)), as A1 is idempotent

= A(a, a), as K(a, a) = δK(a) and δ−1
K (δK(a)) = a

= a

Proposition 3. The composite n-ary aggregation
function H1 is an averaging aggregation function.

Proof. Boundedness of H1 directly follows from the
non-decreasing and idempotent properties of H1.
Hence, H1 is an averaging aggregation function.

We consider some specific form of the aggregation
functions A, A1, A2, K, and E1, . . . , En1 in H1 to re-
cover some well known extension of Bonferroni mean
as follows:

(i) When A = (w1x
p + w2y

p)1/p with w1 = n1/n
and w2 = (n − n1)/n, A1 = arithmetic mean
Ei = ( 1

|Ii|
∑

i∈Ii
aq

i )
1/q for i = 1, 2, . . . , n1, A2 =

(n−n1

n

∑n
i=n1+1 ap

i )
1/p and K(x, y) = xpyq, we ob-

tain extended Bonferroni mean [3]

EBMp,q(a1, a2, . . . , an)

=

(
n1

n

(
1

n1

n1∑

i=1

ap
i

(
1

|Ii|
∑

j∈Ii

aq
j

)) p
p+q

+

n − n1

n

(
1

n − n1

∑

i∈I′

ap
i

)) 1
p

(ii) When A = w1x + w2y with w1 = n1/n and
w2 = (n − n1)/n, A1 = arithmetic mean, A2 =
geometric mean, Ei = geometric mean for all i
and K(x, y) = xy, then H1 becomes

H1(⟨I1, a1⟩, ⟨I2, a2⟩, . . . , ⟨In, an⟩)

=

(
n1

n

(
1

n1

n1∑

i=1

ai

( ∏

j∈Ii

aj

) 1
|Ii|

)1/2

+

n − n1

n

( ∏

i∈I′

ai

) 1
n−n1

)

(iii) When every input is related to the rest of the in-
puts, i.e., n1 = n and Ii = {1, 2, . . . , i − 1, i +
1, . . . , n} for all i, with A(x, y) = x, A1 = arith-
metic meanEi = ( 1

|Ii|
∑

i∈Ii
aq

i )
1/q and K(x, y) =
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xpyq, we obtain Bonferroni mean aggregation
function [9]

BMp,q(a1, a2, . . . , an) =

(
1

n(n − 1)

n∑

i,j=1
i̸=j

ap
i a

q
j

) 1
p+q

(iv) When every input is related to the rest of the
inputs, i.e., n1 = n and Ii = {1, 2, . . . , i − 1, i +
1, . . . , n} for all i, with A(x, y) = x, A1 = M1

be an n-ary aggregation function, Ei = M2 be an
n − 1-ary aggregation function for all i and K is
any 2-ary conjunctive aggregation function having
an inverse diagonal, we get generalized Bonferroni
mean [8]

BM(a) = δ−1
K (M1(K(a1,M2(ai ∈ I1), . . . ,

K(an,M2(ai ∈ In)))))

4 CONCLUSIONS

In this paper, we have developed a new family of aggre-
gation functions for aggregating heterogeneously re-
lated inputs. The interrelationship among the inputs
are captured in the aggregation process by taking di-
rect conjunctions of “ai AND Agg3 (inputs related to
ai)”. We have analyzed averaging behavior of this new
family of aggregation functions in the light of the be-
havior of involved aggregation functions A, A1, A2, K,
and E1, . . . , En1 . By choosing the aggregation func-
tions A, A1, A2, K, and E1, . . . , En1 appropriately,
we can model the requirement of a specific scenario.
We have also found that this new class of aggregation
functions has the capability to generalize Bonferroni
mean and its all extension.

Further investigation is needed to explore its modeling
capability and behavior. Another issue is that how to
learn such kind of interrelationship pattern from in-
puts. The similarity measure may be a tool for learn-
ing such interrelationship patterns. It would be also
interesting to investigate the aggregation of informa-
tion with variable data dimension and heterogeneously
interrelated sources by the help of idea of recursive rule
[12, 1]. Also, the management of sequential aggrega-
tion of interrelationships of each input may be tackled
by the theory of bags [2].
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Summary

The aggregation theory usually takes an in-
terest in summarizing a predefined number of
points in the real line. In many applications,
like in statistics, data analysis, and mining,
the notion of a mean – a nondecreasing, in-
ternal, and symmetric fusion function – plays
a key role. Nevertheless, when it comes to
aggregating a set of points in higher dimen-
sional spaces, the componentwise extension
of monotonicity and internality might not be
the best choice. Instead, the invariance to
certain classes of geometric transformations
seems to be crucial in such a case.

Keywords: Aggregation, centroid, Tukey
median, 1-center, 1-median, convex hull,
affine invariance, orthogonalization.

1 INTRODUCTION

For fixed d, let us consider a fusion function
F : (Rd)n → Rd that takes a set of n vectors
x(1), . . . ,x(n) ∈ Rd aggregates them into one vector
in Rd. In other words, F is such that:

F







x
(1)
1

x
(1)
2
...

x
(1)
d



, . . . ,




x
(n)
1

x
(n)
2
...

x
(n)
d







=




y1
y2
...
yd


 .

From now on we assume that all vectors are column
vectors. Hence, we may conceive F as a function acting
on a d× n real matrix,

X = [x(1) x(2) · · · x(n)].

Note that in data analysis, x(i) is often called an obser-
vation (and represent an object or experimental unit),

whereas x
(i)
j denotes the results of measuring the jth

variable or feature (like temperature, weight, etc.) of
the ith observation (e.g., a person).

Example 1. Let us take any three non-colinear points
in R2. Even in such a simple case many ways to aggre-
gate a triad exist in the literature, see [16]. The notion
of a triangle center function, cf. [3], when rewritten
in terms of vertex coordinates, leads us to a fusion
function which is – among others – rotation and scale
invariant (see below). Among the most well-known
triangle centers we find the centroid, in-, circum-, and
orthocenter. What is interesting, C. Kimberling’s En-
cyclopedia of Triangle Centers1 as of May 1, 2015 lists,
names, and characterizes over 7373 such aggregation
methods.

Identifying sine qua non conditions that F should fulfill
in order to be useful in a particular application area
is important, as the class of all fusion functions is of
course too broad. The aim of this short contribution is
to attract the aggregation theoreticians’ attention to
the multidimensional data fusion task, which is from
time to time explored in the fields like computational
statistics and computational geometry. It should be
noted that the in-depth study of unidimensional data
aggregation methods successfully led to numerous in-
teresting results which allowed to understand many
data fusion processes much better, see [1, 13]. We be-
lieve that it might also be the case when we assume
that d > 1.

In Section 2 we recall the typical axiomatization of
a mean (aggregation function), which – in the d = 1
case – is the classic object of interest of the aggregation
theory. It turns out that componentwise extensions
of two important properties, namely the monotonicity
and internality, is not a good choice in a higher di-

1Available online at http://faculty.evans-
ville.edu/ck6/encyclopedia/.
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mension space. Instead of them, in Section 3 we focus
our attention to invariance to particular classes of ge-
ometric transformations. We indicate, among others,
a quite general way to construct an orthogonal invari-
ant fusion function.

In Section 4 we present a few ideas on how to sym-
metrize multidimensional fusion functions. As we will
see, it is not a trivial task, as for d > 1 we do not have
a natural linear ordering of the input values. Finally,
Section 5 concludes the paper and presents some other
issues one may encounter in multidimensional data fu-
sion tasks.

2 MULTIDIMENSIONAL
EXTENSIONS OF
MONOTONICITY AND
INTERNALITY

As it was already noted, in the aggregation theory, we
mostly focus on the d = 1 case. The notion of a mean
(internal aggregation function) F : Rn → R, which
may be used to determine the “most typical observa-
tion” among a given set of values typically requires the
fulfillment of the three following properties (see [1, 13]
and also [4, 18, 25]):

• symmetry, i.e. for any permutation σ of the set
{1, . . . , n} it holds:

F(x
(1)
1 , . . . , x

(n)
1 ) = F(x

(σ(1))
1 , . . . , x

(σ(n))
1 ),

• nondecreasingness, which requires that whenever

x
(i)
1 ≤ x

′(i)
1 for all i = 1, . . . n, we have:

F(x
(1)
1 , . . . , x

(n)
1 ) ≤ F(x

′(1)
1 , . . . , x

′(n)
1 ),

• internality, that is:

F(x
(1)
1 , . . . , x

(n)
1 ) ∈

[
n∧

i=1

x
(i)
1 ,

n∨

i=1

x
(i)
1

]
.

Note that, under monotonicity, internality is equiv-
alent to idempotence, i.e., (∀x ∈ R) it holds
F(x, x, . . . , x) = x. Also please notice that the choice
of the above properties, as well as the set R in which
the vectors’ elements reside is particularly sound in
statistics and data analysis. From now on we assume
in this paper that only these two practical domains
attract our interest. This is because, e.g., a decision
making or fuzzy reasoning task is of a much different
nature.

Let us extend the above properties in such a way
that they are valid for any d. Symmetry is the

least problematic one: we may simply assume that
F(x(1), . . . ,x(n)) = F(x(σ(1)), . . . ,x(σ(n))) must hold
for any σ. The easiest and perhaps the most natu-
ral approach to extend the other two is by applying
them in a componentwise manner.

First of all, note that the ordering structure on R
may easily be extended to Rd by determining the so-
called product order. The partial order ≤d is defined
so as to for x,x′ ∈ Rd we have x ≤d x′ if and only
if (∀i ∈ {1, . . . , d}) xi ≤ x′i. This leads to the con-
cept of ≤d (componentwise)-nondecreasingness. Such
an approach is often used when the topic of aggre-
gation on products of lattices/chains is explored, see
e.g. [5, 7, 19].

On the other hand, componentwise internality may be
defined by requiring that F(x(1), . . . ,x(n)) belongs to
the set:

[
n∧

i=1

x
(i)
1 ,

n∨

i=1

x
(i)
1

]
× · · · ×

[
n∧

i=1

x
(i)
d ,

n∨

i=1

x
(i)
d

]
,

which is basically the bounding (hyper)rectangle of a
given set of input points, compare also [27].

Here are two exemplary fusion functions that fulfill
these three properties.

Example 2. The componentwise extension of the arith-
metic mean,

CwMean(x(1), . . . ,x(n)) =




1
n

∑n
i=1 x

(i)
1

...
1
n

∑n
i=1 x

(i)
d


 ,

also called the centroid (barycenter, geometric center)
of a set of points, is a point such that

y = arg min
y∈Rd

n∑

i=1

d2(x(i),y)2,

where d2 is the Euclidean distance. This notion is cru-
cial e.g. in the definition of the k-means [22] clustering
algorithm.

Example 3. The componentwise extension of the sam-
ple median, Med, namely:

CwMed(x(1), . . . ,x(n)) =




Med
(
x
(1)
1 , . . . , x

(n)
1

)

...

Med
(
x
(1)
d , . . . , x

(n)
d

)


 ,

is sometimes used, cf. [30], as a robust estimate of a
multidimensional probability distribution’s median.

Yet, the following fusion functions are not ≤d-
nondecreasing.
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Example 4. The Euclidean 1-center (smallest enclos-
ing ball, bounding sphere) problem aims at finding:

1centerd2
(x(1), . . . ,x(n)) = arg min

y∈Rd

n∨

i=1

d2(x(i),y).

It was first proposed by James Sylvester in 1857 [31].
Such a formulation is used in many real-world applica-
tions, see e.g. [11], like patter recognition (finding ref-
erence points), computational biology (proteine analy-
sis), graphics (ray tracing, culling), data mining (e.g.,
support vector machines, high-dimensional clustering,
nearest neighbor search). This is also the case of the
facility location problem, which aims to seek for a lo-
cation of a distribution center that minimizes the dis-
tance to a customer that is situated the farthest away.
Unfortunately, there is no analytic solution to the Eu-
clidean 1-center problem, cf. [12] for a discussion and
an algorithm.

Euclidean 1-center is not componentwise monotone.
Consider n = 3 and d = 2 with x(1) = [1,−1]T ,
x(2) = [−1, 1]T , x(3) = [−

√
2, 0]T . We have

1centerd2
(. . . ) = [0, 0]T . Letting x′(1) = x(1) + [3, 0]T

we get 1centerd2
(. . . ) ≈ [1.3,−0.5]T 6≥2 [0, 0]T .

Example 5. Ca. 1650, Evangelista Torricelli proposed
a solution to a problem posed by Pierre de Fermat in
the early 17th century: given three points in a plane,
find the fourth point for which the sum of its distances
to the three given points is as small as possible, cf. [20].
This task can be formulated for arbitrary number of
points as follows. Find y such that:

1mediand2(x(1), . . . ,x(n)) = arg min
y∈Rd

n∑

i=1

d2(x(i),y).

Such a point, called in the literature the 1-median, ge-
ometric median, spatial median, L1-median, Fermat-
Weber, or Torricelli point, generalizes the concept of a
one-dimensional median (assuming that the minimum
is unique). In statistics, these are also known as L1

estimators. Again, no analytic formula is known here.

Also 1-median is not componentwise monotone. Take
d = 2, n = 3, and x(1) = [0, 0]T , x(2) = [0, 1]T , x(3) =
[1, 0]T . We have 1mediand2(. . . ) ' [0.211, 0.211]T .
However, when we take x′(3) = x(3) + [0, 2]T , then
we get 1mediand2

(. . . ) = [0, 1]T 6≥2 [0.211, 0.211]T .

Example 6. Tukey [32] introduced the concept of the
halfplane location depth of y relative to a given set
of points in Rd. It is the smallest number of x(i)’s
contained in any closed halfhyperplane with boundary
line through y. In other words:

tdepthd(y; x(1), . . . ,x(n))

= minu∈Rd,|u|=1 |{i : uTx(i) ≥ uTy}|.

As the deepest point in d = 1 generalizes the concept of
a median, a deepest value in higher dimensions can be
thought of as a multidimensional median: the center of
gravity of the deepest depth region is called the Tukey
median, TkMed. In fact, a bagplot, a bivariate version
of the box-and-whisker plot, bases on such a notion
[29]. For other multidimensional generalizations of the
median, like the Oja or the Liu medians, please refer
e.g. to [28, 30].

Tukey median is not componentwise monotone. Con-
sider n = 4 and d = 2 with x(1) = [0, 0]T , x(2) =
[1, 0]T , x(3) = [1, 1]T , and x(4) = [0, 1]T . We have
TkMed(. . . ) = [0.5, 0.5]T . Letting x′(4) = x(4) + [1, 0]T

we get TkMed(. . . ) = [2/3, 1/3]T 6≥2 [0.5, 0.5]T .

What is more, monotonicity is not the only prop-
erty that is somehow problematic. It may be ob-
served that the above extension of internality is not
a necessarily nice generalization of ordinary internal-
ity. Even though all the above-presented fusion func-
tions fulfill it, it seems to be too weak. Let d = 2,
n = 3 and consider x(1) = [1, 0]T , x(2) = [0, 0]T ,
x(3) = [0, 1]T . If a fusion function CwG is a com-
ponentwise extension of, e.g., G(y1, . . . , yn) =

∨n
i=1 yi,

then CwG(x(1),x(2),x(3)) = [1, 1]T . Wee see that this
is rather not plausible.

Remark 7. The Euclidean 1-center, 1-median, cen-
troid, and componentwise median may be expressed
as minimizers of some penalty function. A generaliza-
tion of the latter two – componentwise cases – have
been studied in a product lattice framework in [5].

3 TRANSLATION, SCALE,
ORTHOGONAL, AND AFFINE
INVARIANCE

Instead of considering monotonicity and internality,
researchers in fields like computational statistics and
geometry most often focus on invariances with respect
to specific classes of geometrical transformations, see
e.g. [9]. Namely, one might be interested in finding a
fusion function F which fulfills for all input vectors:

• translation invariance: for all t ∈ Rd,

F(x(1) + t, . . . ,x(n) + t) = F(x(1), . . . ,x(n)) + t,

• scale invariance: for all s ∈ R,

F(sx(1), . . . , sx(n)) = sF(x(1), . . . ,x(n)),

• orthogonal invariance: for all orthogonal matri-
ces A ∈ Rd×d, i.e. matrices such that ATA =
AAT = I, or equivalently AT = A−1,

F(Ax(1), . . . ,Ax(n)) = AF(x(1), . . . ,x(n)),
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and/or

• affine invariance: for all matrices A ∈ Rd×d of full
rank and all t ∈ Rd,

F(Ax(1)+t, . . . ,Ax(n)+t) = AF(x(1), . . . ,x(n))+t.

Note that orthogonal invariance implies invariance to
all possible rotations of input points (and reflections
against the axes). On the other hand, affine invariance
implies translation, scale, and orthogonal invariance.
Moreover, it also covers the case of scaling the coordi-
nates differently in each direction. It is quite useful, as
in the practice of data analysis, one often standardizes
the variables:

xi 7→
xi − x̄i
sdi

,

where x̄i and sdi denotes the arithmetic mean and
standard deviation, respectively, with respect to the
ith coordinate, i = 1, . . . , d. Also, some machine learn-
ing methods (like the Principal Component Analysis)
assume that the data points may freely be rotated.

It can be noted that, e.g., the centroid and the Tukey
median (as well as the Oja and Liu medians) are affine
invariant. On the other hand, e.g., the componentwise
median is not even orthogonal invariant, see Table 1.
In fact, from [13, Proposition 2.116] it follows that
the only continuous, symmetric, and componentwise
fusion function is CwMean.

Table 1: Exemplary fusion functions and the proper-
ties they fulfill: M – componentwise monotonicity, T
– translation, S – scale, O – orthogonal, and A – affine
invariance.

Function M T S O A
CwMean X X X X X
CwMed X X X
TkMed X X X X
1center X X X
1median X X
OrMed X X X

3.1 ORTHOGONALIZATION

Orthomedian [14] is a nice example of orthogonaliza-
tion of the componentwise median. It is defined as an
averaged median of all orthogonally transformed in-
put data sets. As the group O(d) of orthogonal d× d
matrices is compact, we may define:

OrMed(x(1), . . . ,x(n))

=

∫

O(d)

A−1CwMed({Ax(i)}i=1,...,n) dA.

This fusion function is orthogonal invariant (by
construction). Interestingly, it is no more ≤d-
nondecreasing, so this new property is introduced at
some cost.

The above construction is general and can be applied
on any fusion function CwG that is a componentwise
extension of G : Rn → R. However, it is not easy to
compute numerically (e.g., Monte Carlo methods may
be used for this purpose, see [8, Sec. 3] for a random
uniform – with respect to the Haar measure, see [8] –
orthogonal matrix generation algorithm). Thus, here
we propose another approach which is valid if (∀xi)
G(x1, . . . , xn) = −G(−x1, . . . ,−xn).

Let X = [x(1) x(2) · · · x(n)] and assume that: Xc =
X−CwMean(x(1), . . . ,x(n)) is a centered version of X.
Let us consider the singular value decomposition of
XT
c = UDVT , where U is an n×n orthogonal matrix,

D is a n× d diagonal matrix, and V is a d× d orthog-
onal matrix. The eigenvectors v(i) are called princi-
pal component directions of Xc, see e.g. [15, Sec. 3.4
and Sec. 14.5]. The first principal component direc-
tion v(1) has the property that z(1) = XT

c v(1) is of the
largest sample variance, d21/n among all normalized
linear combinations of Xc’s rows. Subsequent prin-
cipal components have maximum variance subject to
being orthogonal to the earlier ones. Thus,

OrG(x(1), . . . ,x(n))

=V−1
T
CwG

(
VT (X− CwMean(X))

)
+ CwMean(X)

is surely orthogonal and translation invariant.

As for the monotonicity, if G is nondecreasing, then
OrG is nondecreasing with respect to the direction
that has the maximal variance (and other directions
that orthogonal to it and also maximize the remain-
ing variance). Also, if G is internal, then G fulfills the
bounding box-based internality.

3.2 A NOTE ON INTERNALITY

Let us recall the notion of the convex hull
CH(x(1), . . . ,x(n)) of a finite set of points. It is the
smallest convex set (polytope) that includes all the
provided points. Equivalently, it is the set of all con-
vex combinations of x(1), . . . ,x(n):

CH(x(1), . . . ,x(n)) =
{∑n

i=1 wix
(i) :

for all vectors w ≥ 0 with
∑n
i=1 wi = 1

}
.

Having in mind that for d = 1 the convex hull is a real
interval, the definition of internality may be extended
to d ≥ 2 by using this very notion, which seems far
more adequate. Here, we could require that

F(x(1), . . . ,x(n)) ∈ CH(x(1), . . . ,x(n)).
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Interestingly, it might be shown that if F : (Rd)n →
Rd is rotation and translation invariant, then the
bounding-box based internality and the convex hull-
based one coincide. This is because the convex hull is
invariant to rotations and translations and that it is
a subset of the bounding box. Moreover, the convex
hull may be expressed as the intersection of appropri-
ate halfspaces [10]. The points may always be rotated
so that any convex hull’s face is aligned within the
axes. Then the hyperplane that includes such a face
coincides with the hyperplane including the bounding
box’s face.

4 ORDERED FUSION FUNCTIONS

Given a non-symmetric unidimensional function, one
may easily symmetrize it by referring to the notion of
an order statistic, i.e. the ith smallest value among a
set of input elements. It is because, cf. [13, Thm. 2.34],
F : Rn → R is symmetric if and only if there exists a
function G : Rn → R such that

F(x(1), . . . ,x(n)) = G(x(σ(1)), . . . ,x(σ(n))),

where σ is an ordering permutation the input values.
In such a way, e.g., a weighted arithmetic mean be-
comes the OWA operator. Such a construction is only
valid, however, in the d = 1 case, as here a natural
linear order ≤ is defined.

If d > 1, then it is not easy to determine which values
are “small” or “large”, especially if we allow a set of
points to be orthogonally transformed.

For this purpose, one may order the input values with
respect to increasing distances from a fixed point, e.g.,
the set’s componentwise mean. More elaborate ap-
proaches may base on the concept of the so-called data
depth. For instance, the affine invariant Oja depth [26]
(or the simplical volume depth) for any given y ∈ Rd
is given by:

odepth(y; x(1), . . . ,x(n))

=
1

1 +
∑

(i1,...,id)
volume(CH(y,x(i1), . . . ,x(id)))

.

Other affine invariant data depth measures include the
already mentioned Tukey depth, simplical depth [21]:

sdepth(y; x(1), . . . ,x(n))

=
∣∣{(i1, . . . , id+1) : y ∈ CH(x(i1), . . . ,x(id+1))

}∣∣

or the zonoid data depth [9]:

zdepth(y; x(1), . . . ,x(n))

= sup{α ∈ [0, 1] : y ∈ Dα(x(1), . . . ,x(n))},

where Dα is the α-trimmed region of the empirical
distribution generated by x(1), . . . ,x(n), i.e.:

Dα(x(1), . . . ,x(n))

=
{∑n

i=1 λix
(i) :

∑n
i=1 λi = 1, (∀i)αλi ≤ 1/n

}
.

With them, the points x(i), i = 1, . . . , n, may be
ordered with respect to their decreasing depths. In
other words, we may make use of a permutation σ of
{1, . . . , n} such that σ(i) ≤ σ(j) implies that for i < j:

d(x(σ(i)); x(1), . . . ,x(n)) ≤ d(x(σ(j)); x(1), . . . ,x(n)),

where d is some data depth measure.

Having an ordered version of the input set of points,
one may easily define, e.g., multidimensional versions
of trimmed or winsorized means, cf. [24].

5 CONCLUSIONS

We briefly explored a few issues in aggregation of mul-
tidimensional data. We recalled some interesting fu-
sion functions used in computational statistics and ge-
ometry.

It turns out that some of the main ideas of unidimen-
sional aggregation cannot be simply extended to the
multidimensional case. The most important one con-
cerns the componentwise monotonicity. Notably, re-
cently the necessity of the notion of monotonicity is
being put into question in the classical framework too,
see e.g. [2, 6]. In the d = 1 case it seems quite nat-
ural and moreover it simplifies the way the analytic
results are derived. Thus, further studies concerning
this notion for d > 1 shall be conducted.

Instead of focusing on monotonicity, it seems that
researchers in computational statistics and geometry
rather focus on invariances to particular classes of ge-
ometric transformations. In this contribution, for ex-
ample, we presented a simple way to guarantee trans-
lation and orthogonal invariance. Also note that a
recent contribution on measures of dispersion of mul-
tidimensional data [17] (some of them base on the no-
tion of multidistances’ [23] minimizers) also focuses on
translation and rotation invariance.

We additionally noted that some other concepts, like
internality or a fusion function’s symmetrization also
need some more elaborate approaches.

Another problem with multidimensional fusion func-
tions is that many of the tools encountered in the
literature cannot be expressed by analytic formulas.
This drastically complicates the theoretical studies on
them. Even though it is possible to characterize some-
how all unidimensional fusion functions that fulfill
some of the properties discussed here, things definitely
get more complicated in higher dimensions.
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Summary

The aim of this paper is to analyze the be-
haviour of uninorms with a given neutral el-
ement e ∈ ]0, 1[, which contain a zoomed-
out uninorm in a square ]a, b[2 (a < e < b)
and which are constant on [0, a[ 2, ]b, 1]2,
]0, a[× ]b, 1[ and ]b, 1[× ]0, a[. Some illustra-
tive examples of such uninorms are provided.

Keywords: Uninorm, Conjunctive uni-
norm, Not locally internal uninorm on the
boundary, Pre-order induced by uninorm.

1 PRELIMINARIES

In 1996 Yager and Rybalov [11] proposed uninorms as
a natural generalisation of both t-norms and t-conorms
(for details on t-norms and their duals, t-conorms, see,
e.g., [8]). Since that time researchers study properties
of several distinguished families of uninorms. In the
paper we focus on a particular class of uninorms which
are not locally internal on the boundary. These uni-
norms, with a given neutral element e ∈ ]0, 1[, contain
a zoomed-out uninorm in a square ]a, b[2 (a < e < b)
and are constant on [0, a[ 2, ]b, 1]2, ]0, a[× ]b, 1[ and
]b, 1[× ]0, a[. We study their behaviour in the rect-
angles [0, a] × [a, b], [a, b] × [0, a], [a, b] × [b, 1] and
[b, 1] × [a, b]. Moreover, we provide some illustrative
examples of such uninorms.

Definition 1 ([11]). An associative, commutative and
increasing operation U : [0, 1]2 → [0, 1] is called a uni-
norm, if there exists e ∈ [0, 1], called the neutral ele-
ment of U, such that

U(x, e) = x for all x ∈ [0, 1].

In the theory of fuzzy measures and integrals with

respect to fuzzy measures, uninorms play the role of
pseudo-multiplication [9].

An overview of basic properties of uninorms can be
found in [1]. Because of lack of space we provide only
a very brief introduction to uninorms.

A uninorm U is said to be conjunctive if U(x, 0) = 0,
and U is said to be disjunctive if U(1, x) = 1, for all
x ∈ [0, 1].

A uninorm U is called representable if it can be written
in the form

U(x, y) = g−1(g(x) + g(y)) ,

where g : [0, 1] → [−∞,∞] is a continuous strictly
increasing function with g(0) = −∞ and g(1) = ∞.
Note that for every generator g there exist two dif-
ferent uninorms depending on convention we take:
∞−∞ = ∞, or ∞−∞ = −∞. In the former case
we get a disjunctive uninorm, in the latter case a con-
junctive uninorm.

Representable uninorms are ”almost continuous”, i.e.,
they are continuous everywhere on [0, 1]2 except of
points (0, 1) and (1, 0) (see, e.g., [3]).

A class of uninorms continuous on ]0, 1[ 2 was charac-
terized by Hu and Li [5] and later a mistake in that
paper was corrected by Drygaś [2].

Conjunctive and disjunctive uninorms are dual to each
other in the following way

Ud(x, y) = 1− Uc(1− x, 1− y) ,

where Uc is an arbitrary conjunctive uninorm and Ud

its dual disjunctive uninorm. Assuming Uc has a neu-
tral element e, the neutral element of Ud is 1− e.
For an arbitrary uninorm U and arbitrary (x, y) ∈
]0, e[× ]e, 1]∪ ]e, 1]× ]0, e[ we have

min{x, y} ≤ U(x, y) ≤ max{x, y} . (1)

We say that a uninorm U contains a ”zoomed-out”
uninorm Uz in a square ]a, b[2 for 0 ≤ a < e < b ≤ 1
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(where a 6= 0 and/or b 6= 1), if

U(x, y) = h−1(Uz(h(x), h(y))) for x, y ∈ ]a, b[ (2)

and

h(x) =

{
x−a
e−a e for x ∈ ]a, e],
x−e
b−e (1− e) + e for x ∈ ]e, b[.

If a uninorm U contains a zoomed-out uninorm Uz in
]a, b[ 2 (given by formula (2)), we will denote

Us = U � ]a, b[ 2. (3)

In [7] a partial order �T induced by a t-norm T was
introduced and some properties of �T were studied.
In [4] a relation �U was introduced as a generalization
of �T for uninorms.

Definition 2 ([4]). Let U be a uninorm. By �U we
denote the following relation

x �U y if there exists ` ∈ [0, 1] such that U(y, `) = x .

Associativity of U implies transitivity of �U . The ex-
istence of a neutral element e implies reflexivity of �U .
However, anti-symmetry of �U is rather problematic.

Since for representable uninorm U and for arbitrary
x ∈ ]0, 1[ and y ∈ [0, 1] there exists `y such that
U(x, `y) = y, the relation �U is, for representable
uninorms, not anti-symmetric. There exist also other
types of uninorms (e.g., all uninorms which are con-
tinuous on ]0, 1[ 2) for which �U is not anti-symmetric
(see also [4]).

Lemma 1 ([4]). Let U be a uninorm. The relation
�U is a pre-order.

We introduce a relation ∼U .

Definition 3. Let U be a uninorm. We say that x, y ∈
[0, 1] are U -indifferent if

x �U y and y �U x .

If x, y are U -indifferent, we write x ∼U y.

Finally, we will need the following technical notion.

Definition 4. Let U be a uninorm. Assume that a ∈
[0, 1] is fixed. We say that U has a-divisors if there
exist x, y ∈ [0, 1], x 6= a, y 6= a, such that U(x, y) = a.

Definition 5. Let U be a uninorm. We say that U is
locally internal on the boundary if for all x ∈ [0, 1] we
have

U(1, x) ∈ {1, x}, U(0, x) ∈ {0, x}.

2 MAIN RESULTS

Assume that U contains a zoomed-out uninorm in
]a, b[ 2 (we remind that Us is the notation for the
zoomed-out part) and e ∈ ]a, b[ is its neutral element
of U . Our aim is to construct a uninorm U : [0, 1]2 →
[0, 1] such that

U(x, y) =





Us(x, y) for (x, y) ∈ ]a, b[2,

1 for (x, y) ∈ ]b, 1]2,

0 for (x, y) ∈ [0, a[ 2,

and if min{x, y} = 0,

a for (x, y) ∈ ]0, a[× ]b, 1]

and for (x, y) ∈ ]b, 1]× ]0, a[ ,

is fulfilled in case U is conjunctive. If U is dis-
junctive we change its values for b if (x, y) ∈
[0, a[× ]b, 1[∪ ]b, 1[× [0, a[ and for 1 if max{x, y} = 1.
This means that uninorms we are interested in, are not
locally internal on the boundary.

We are going to study the behaviour of U in the rect-
angle [0, a]× [a, b] (because of commutativity of U we
get immediately the rectangle [a, b]× [0, a]).

The behaviour of U in the rectangles [a, b]× [b, 1] and
[b, 1]× [a, b] we get by duality.

For arbitrary x ∈ ]0, a[ we denote by Ux : [a, b]→ [0, b]
the partial function Ux(y) = U(x, y), and for arbitrary
y ∈ ]a, b[ we denote by Uy : [0, a] → [0, b] the partial
function Uy(x) = U(x, y).

Remark 1. • If we construct a conjunctive uni-
norm then we can assume rng(Ux) ⊂ [0, a] as
well as rng(Uy) ⊂ [0, a] for all x ∈ ]0, a[ and all
y ∈ ]a, b[. But in general we have rng(Ux) ⊂ [0, b]
and rng(Uy) ⊂ [0, b].

• If Us has a-divisors, then necessarily U(x, y) = a
for (x, y) ∈ {a} × [a, e] ∪ [a, e]× {a}. Similarly, if
Us has b-divisors, then necessarily U(x, y) = b for
(x, y) ∈ {b}× [e, b]∪ [e, b]×{b}. This may lead to
some problems which we are not going to solve in
this paper. We show one example of a conjunctive
uninorm where the zoomed-out uninorm Us has
a-divisors.

Let us observe some properties of the partial functions
Ux and Uy.

Lemma 2. Let y1, y2 ∈ ]a, b[. If y1 ∼Us y2 then

rng(Uy1) = rng(Uy2).

As a direct corollary to Lemma 2 and the Us-
indifference relation we get the following assertion.
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Proposition 1. Let y1, y2 ∈ ]a, b[ be such that y1 ∼Us

y2. Assume that x1 ∈ ]0, a[ is a discontinuity point of
Uy1 with lateral limits

lim
x→x1−

Uy1(x) = x`, lim
x→x1+

Uy1(x) = xr.

Then there exists x2 ∈ ]0, a[ which is a discontinuity
point of Uy2 and has the same lateral limits at x2 as
Uy1 has at x1.

Proposition 2. Let y1, y2 ∈ ]a, b[ be such that y2 �Us

y1. Assume that I ⊂ ]0, a[ is an interval of constant-
ness of Uy1 . Then there exists an interval J such that
I ⊂ J ⊂ ]0, a[ and J is an interval of constantness of
Uy2 .

Directly by Propositions 1 and 2 we get the following.

Corollary 1. Let y1 ∈ ]a, b[ be such that y1 ∼Us
e.

Then Uy1 is a bijection of [0, a] onto itself.

Now, we will analyze partial functions Ux.

Proposition 3. Let x1, x2 ∈ ]0, a[ be arbitrarily cho-
sen. Further assume that x2 ∈ rng(Ux1

). Then the
partial function Ux2

is uniquely given by Ux1
.

Just to illustrate Proposition 3, we show the com-
putation of a partial function Ux2 given Ux1 , where
x2 ∈ rng(Ux1): assume that x2 = U(x1, y1). Then

U(x2, y2) = U (x1, U(y1, y2)) . (4)

Proposition 4. Let x1 ∈ ]0, a[ be arbitrarily chosen
and y1 ∈ ]a, b[ be a discontinuity point of Ux1

. Denote

lim
z→y1−

Ux1
(z) = y`, lim

z→y1+

Ux1
(z) = yr.

Then the following holds.
(a) If yr < e and TUs

= Us � ]a, e]2 is continuous
and without idempotent elements on ]a, e[, then values
Ux(y) are uniquely defined for all x ∈ ] lim

z→a+

Ux1(z), x1]

and y ≤ e. Moreover, the partial functions Uy are
constant on [y`, yr] for y ∈ ]a, e[.
(b) If y` > e and SUs

= Us � [e, b[ 2 is continuous
and without idempotent elements on ]e, b[, then values
Ux(y) are uniquely defined for all x ∈ [x1, lim

z→b−
Ux1(z)[

and y ≥ e. Moreover, the partial functions Uy are
constant on [y`, yr] for y ∈ ]e, b[.

Proposition 5. Let us take x1 ∈ ]a, b[ and the corre-
sponding partial function Ux1

. Assume that Ux1
has

an interval of constantness I. Then:
(a) if Ux1(y) = x2 < x1 for y ∈ I then the partial
functions Ux are constant on I for all x ∈ rngUx1

,
x ≤ x1,
(b) if Ux1

(y) = x2 > x1 for y ∈ I then the partial
functions Ux are constant on I for all x ∈ rngUx1 ,
x ≥ x1.

Proposition 6. Assume that for all y ∈ ]a, b[ the par-
tial functions Uy are bijections of [0, a] onto itself.
Further assume that for no x ∈ ]0, a[ Ux is continu-
ous and strictly increasing. Then for every x ∈ ]0, a[
one of the following properties is satisfied.
(a) Ux is constant.
(b) Ux has countably many intervals of constantness
and these intervals induce a partition of ]a, b[ into a
countable system of equivalence classes {Ei}i∈N such
that for all i, j ∈ N there exists k ∈ N fulfilling formula
such that for all i, j ∈ I there exists k ∈ I fulfilling

(∀y1 ∈ Ei)(∀y2 ∈ Ej)(Us(y1, y2) ∈ Ek). (5)

Proposition 7. Assume that there exists x0 ∈ ]0, a[
such that Ux0

is continuous and strictly increasing.
Denote Ux0(a) = x1 and Ux0(b) = x2 ≤ a. Then:
(a) if Us is continuous on ]a, b[ 2 then U is continuous
on [x1, x2]× ]a, b[ and on ]a, b[×[x1, x2],
(b) if Us is strictly increasing on ]a, b[ 2 then
U is strictly increasing on ]x1, x2[× ]a, b[ and on
]a, b[× ]x1, x2[.

Lemma 3. Let Us be representable. Assume that
there exists x0 ∈ ]0, a[ such that Ux0

is continuous and
strictly increasing fulfilling Ux0

(a) = 0 and Ux0
(b) = a.

Then for all x ∈ ]0, a[ the partial functions Ux are con-
tinuous and strictly increasing fulfilling Ux(a) = 0 and
Ux(b) = a.

3 ILLUSTRATIVE EXAMPLES

In all examples we will assume that the neutral element
of constructed uninorms is e = 1

2 .

Example 1. In [4] we constructed a conjunctive uni-
norm which has a zoomed-out representable uninorm
Ur on ] 14 ,

3
4 [ 2. On the rectangle [0, 14 [×[ 14 ,

3
4 ] the values

of U1 are given by the partial function U 1
8
(z) =

z − 1
4

2
.

The explicit formula for the uninorm U1 is the follow-
ing

U1(x, y) =





0 if min{x, y} = 0

or if max{x, y} ≤ 1
4 ,

1 if min{x, y} ≥ 3
4 ,

1
4 if 0 < min{x, y} ≤ 1

4

and if max{x, y} ≥ 3
4 ,

or if min{x, y} = 1
4

and max{x, y} > 1
4 ,

Ur(x, y) if (x, y) ∈ ] 14 ,
3
4 [2,

max{x, y} if 1
4 < min{x, y} < 3

4

and max{x, y} ≥ 3
4 ,

and values on ]0, 14 [× ] 14 ,
3
4 [ and ] 14 ,

3
4 [× ]0, 14 [ are

given by formula (4) and by the partial function U 1
8
.
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The uninorm U1 and its level-set functions of levels
1
16 ,

1
8 ,

3
16 are sketched on Fig. 1.

Ur

0

11
4

1
4

max

max

1
4 e = 1

2
3
4

1
4

3
4

1
2

Figure 1: Uninorm U1

Example 2. Let Us be a uninorm zoomed-out into
] 14 ,

3
4 [ 2 and continuous on ] 14 ,

3
4 [ 2. Particularly assume

that

Us(x, y) =

{
min{x, y} if min{x, y} ≤ 3

8 ,

Ur(x, y) otherwise,

where Ur is a representable uninorm zoomed-out into
the square ] 38 ,

3
4 [ 2. Then the following function U2 :

[0, 1]2 → [0, 1] is a uninorm:

U2(x, y) =





Us(x, y) if (x, y) ∈] 14 ,
3
4 [ 2,

0 if min{x, y} ≤ 1
4

or if min{x, y} = 0,
1
4 if min{x, y} ≤ 1

4

and max{x, y} ≥ 3
4 ,

or if min{x, y} = 1
4

and max{x, y} ∈ ] 14 ,
3
4 [,

1 if max{x, y} ≥ 3
4 ,

3
4 if min{x, y} ∈ ] 14 ,

3
4 [,

and max{x, y} = 3
4 ,

and for (x, y) ∈ ]0, 14 [× ] 14 ,
3
4 [∪ ] 14 ,

3
4 [× ]0, 14 [ the values

of U2 are defined by U 1
8
(y) =

y − 1
4

2
and by formula

(4), and for (x, y) ∈ ] 34 , 1[× ] 14 ,
3
4 [∪ ] 14 ,

3
4 [× ] 34 , 1[ the

values of U2 are defined by U 7
8
(y) =

y + 5
4

2
and by for-

mula (4). The uninorm U2 and its level-set functions
of levels 1

32 , 1
16 , 25

32 and 13
16 (‘L’-shaped), and of levels

3
32 , 1

8 , 3
16 , 27

32
7
8 and 15

16 are sketched on Fig. 2.

Example 3. In this example we first construct by
‘paving’ a zoomed-out uninorm Us : ]0.2, 0.8[ 2 which
will be strictly increasing on ]0.2, 0.8[ 2 (see [6]) and

Ur

min

0

11
4

1
4

1
4 e = 1

2
3
4

1
4

3
4

1
2

Figure 2: Uninorm U2

then we will proceed with defining values of a uninorm
U3 : [0, 1]2 outside of the square ]0.2, 0.8[ 2.

First, we split the interval ]0.2, 0.8[ into countably
many sub-intervals in the following way:
we set I1 =]0.5, 0.6], I2 =]0.6, 0.65], I3 =]0.65, 0.7] and
for k ∈ {4, 5, 6, . . . } we set

Ik =
]
0.8− 0.1 · 2−k+4, 0.8− 0.1 · 2−k+3

]
.

Further, I0 = ]0.4, 0.5], I−1 = ]0.35, 0.4], I−2 =
]0.3, 0.35] and for k ∈ {−3,−4,−5, . . . } we set

Ik =
]
0.2 + 0.1 · 2k+2, 0.2 + 0.1 · 2k+3

]
.

Let ϕk : Ik →]0, 1] be increasing bijections for all k ∈
Z. Then we define

Us(x, y) = ϕ−1i+j (ϕi(x) · ϕj(y)) , (6)

where x ∈ Ii and y ∈ Ij .
Now, we can proceed by defining vales of U4 on
]0, 0.2]× ]0.2, 0.8[ (and on ]0.2, 0.8[× ]0, 0.2]). Again,
we split the interval ]0, 0.2[ into countably many sub-
intervals:

Jk =





]0.05, 0.15] if k = 0,

]0.2− 0.1 · 2−k, 0.2− 0.1 · 2−k−1] if k > 0,

]0.1 · 2k−1, 0.1 · 2k] if k < 0.

By ψm,n : Jm → Jn we denote increasing bijections
of Jm onto Jn where ψm,m are identities and ψm,n ◦
ψn,k = ψm,k. We set

UJ(x, y) = ψm,n+m(x) for x ∈ Jm and y ∈ In.

Similarly we split the interval ]0.8, 1[ into countably
many sub-intervals:

Lk =





]0.85, 0.95] if k = 0,

]1− 0.1 · 2−k, 1− 0.1 · 2−k−1] if k > 0,

]0.8 + 0.1 · 2k−1, 0.8 + 0.1 · 2k] if k < 0.
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By χm,n : Lm → Ln we denote increasing bijections
of Lm onto Ln where χm,m are identities and χm,n ◦
χn,k = χm,k. We set

UL(x, y) = χm,n+m(x) for x ∈ Lm and y ∈ In.

We are now ready to define the uninorm U3:

U3(x, y) =





Us(x, y) if (x, y) ∈ ]0.2, 0.8[ 2,

0 if max{x, y} ≤ 0.2

or if min{x, y} = 0,

1 if min{x, y} ≥ 0.8

or if max{x, y} = 1

and min{x, y} > 0.2,

0.2 if min{x, y} ≤ 0.2

and max{x, y} ≥ 0.8,

or if min{x, y} = 0.2

and max{x, y} ∈ ]0.2, 0.8[,

0.8 if max{x, y}0.8
and min{x, y} ∈ ]0.2, 0.8[,

UJ(x, y) if (x, y) ∈ J̃ ,

UL(x, y) if (x, y) ∈ L̃,

where J̃ = ]0, 0.2]× ]0.2, 0.8[∪ ]0.2, 0.8[× ]0, 0.2] and
L̃ = ]0.8, 1[× ]0.2, 0.8[∪ ]0.2, 0.8[× ]0.8, 1[.

In the following example we show the discussed con-
struction in case that the underlying t-norm of the
uninorm Us has 0-divisors.

Example 4. Let Us be a uninorm zoomed-out into
[0.35, 0.8] 2 such that

Us(x, y) =





max{x+ y − 1
2 , 0.35} if (x, y) ∈ [0.35, 0.5]2,

max{x, y} if (x, y) ∈ ]0.5, 0.8]2,

min{x, y} otherwise.

Since Us(x, y) = 0.35 for (x, y) ∈ [0.35, 0.8]2 such that
x + y − 1

2 ≤ 0.35, we have that Us(0.35, 0.35) = 0.35
to keep the associativity of Us. On the other hand,
if we set U4(x, y) = 0.35 for all x ∈ ]0, 0.35] and all
y ∈ ]0.8, 1], we get

0.35 = U4(U4(x, y), 0.35) = U4(x, U4(y, 0.35))

= U4(x, 0.35) ≤ x

and hence the associativity is violated. For this rea-
son we define function U4 : [0, 1]2 → [0, 1] (except of
rectangles [0, 0.35[× [0.35, 0.8] ∪ [0.35, 0.8] × [0, 0.35[)

by

U4(x, y) =





Us(x, y) if (x, y) ∈ [0.35, 0.8]2,

0 if max{x, y} < 0.35,

or if min{x, y} = 0,

0.3 if 0 < min{x, y} < 0.3

and max{x, y} > 0.8,

min{x, y} if min{x, y} ∈ [0.35, 0.5[

and max{x, y} > 0.8,

or if min{x, y} ∈ ]0.3, 0.35[

and max{x, y} ≥ 0.35,

max{x, y} if min{x, y} ∈ [0.5, 0.8]

and max{x, y} > 0.8,

1 if (x, y) ∈ ]0.8, 1]2.

Further we introduce the following partial function
U0.15 : [0.35, 0.8]→ [0, 0.3]

U0.15(y) =

{
0 if y < 0.4,
y
2 − 0.1 if y ∈ [0.4, 0.8].

The partial function U0.15 is discontinuous at 0.4 with
the following lateral limits

lim
z→0.4−

U0.15(z) = 0, lim
z→0.4+

U0.15(z) = 0.1.

The underlying t-norm TUs is continuous and with-
out idempotent elements on ]0.35, 0, 5[. This im-
plies (Proposition 4) that U4 is uniquely defined on
[0, 0.15]× [0.35, 0.5] ∩ [0.35, 0.5]× [0, 0.15]. But is still
undefined on ]0, 0.1[× ]0.5, 0.8]∪ ]0.5, 0.8]× ]0, 0.1[.

In these two rectangles, we may define U4 as

U4(x, y) =





min{x, y} if x ∈ ]0, 0, 1[

and y < 0.8− 3x,

or if y ∈ ]0, 0, 1[

and x < 0.8− 3y,

0.1 if x ∈ ]0, 0.1[

and y ≥ 0.8− 3x,

or if y ∈ ]0, 0, 1[

and x ≥ 0.8− 3y.

The uninorm U4 is sketched on Fig. 3. To make this
figure better readable we give explicit borders of par-
ticular regions for (x, y) ∈ [0, 0.8] × [0, 0.35[ and for
(x, y) ∈ [0, 0.35[×[0, 0.8].

• U4(x, y) = 0 if min{x, y} = 0 or if (x, y)
is an inner point of the polygon with ver-
tices (0, 0), (0.5, 0), (0.5, 0.1), (0.4, 0.1), (0.4, 0.3),
(0.35, 0.3), (0.35, 0.35), (0.3, 0.35) (0.3, 0.4),
(0.1, 0.4), (0.1, 0.5), (0, 0.5).
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Figure 3: Uninorm U4

• U4(x, y) = 0.1 if (x, y) is a point of the trian-
gle with vertices (0.1, 0.5), (0.1, 0.4), (0.15, 0.4),
respectively (0.5, 0.1), (0.4, 0.1), (0.4, 0.15), or
if (x, y) lies on the segment with endpoints
(0.4, 0.15), (0.4, 0.3), respectively with endpoints
(0.15, 0.4), (0.3, 0.4), or if (x, y) is a point of
the triangles with vertices (0, 0.8), (0.1, 0.5),
(0.1, 0.8) and (0.8, 0), (0.8, 0.1), (0.5, 0.1) (ex-
cept of points (0.8, 0) and (0.8, 0) where the
value is equal to 0), and on segments with end-
points (0.1, 0.5), (0.15, 0.4),, (0.15, 0.4), (0.3, 0.4),
(0.4, 0.3), (0.4, 0.15), (0.4, 0.15), (0.5, 0.1), but ex-
cept of at points (0.3, 0.4) and (0.4, 0.3) where the
value is equal to 0.3.

• U4(x, y) = min{x, y} if (x, y) ∈ [0.1, 0.15] ×
[0.3, 0.8] ∪ [0.3, 0.8]× [0.1, 0.15] and if (x, y) is an
inner point of the triangles with vertices (0, 0.8),
(0, 0.5), (0.1, 0.5), and (0.8, 0), (0.5, 0), (0.5, 0.1)
(the dark-grey areas on Fig. 3), or if (x, y) ∈
]0.3, 0.35[×[0.35, 0.8] ∪ [0.35, 0.8]× ]0.3, 0.35[.

• The values of U4 vary within the interval
[0.15, 0.3] on the area ]0.15, 0.3] × [0.5, 0.8] ∪
[0.5, 0.8]× ]0.15, 0.3] with ‘L’-shaped level-set
functions, as sketched on Fig. 3.

• On the triangular areas with vertices (0.1, 0.5),
(0.15, 0.5), (0.15, 0.4) and (0.5, 0.1), (0.5, 0.15),
(0.4, 0.15) the values of U4 vary within the interval
[0.1, 0.15], with level-set functions parallel with
the segment with endpoints (0.1, 0.5), (0.15, 0.4),
respectively parallel with the segment with end-
points (0.5, 0.1), (0.4, 0.15).

• On rectangles ]0.15, 0.3[× ]0.4, 0.5[ and
]0.4, 0.5[× ]0.15, 0.3[ the values of U4 vary
within the interval ]0.1, 0.15[, with level-set func-
tions parallel with the segment with endpoints
(0.15, 0.4), (0.3, 0.4), respectively parallel with
the segment with endpoints (0.4, 0.15), (0.4, 0.3).
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[6] M. Kalina, P. Krá̌l (2015). Construction of com-
mutative and associative operations by paving.
Proceeding of IFSA-EUSFLAT Conference 2015,
Atlantis-Press, Gijon, in press.
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Summary

We analyze the existence of fuzzy sets of
a universe that are convex with respect to
certain particular classes of fusion operators
that merge two fuzzy sets. In addition, we
study aggregation operators that preserve
various classes of generalized convexity on
fuzzy sets.

We study the existence of such sets with re-
spect to different classes of aggregation op-
erators (the corresponding functions F ), and
preserving F -convexity under aggregation of
fuzzy sets. Among those typical classes, tri-
angular norms T will be analyzed, giving
rise to the concept of norm convexity or T -
convexity, as a particular case of F -convexity.

Other different kinds of generalized convexi-
ties will also be discussed as a by-product.

Keywords: Fuzzy sets, generalized convex-
ities, fusion operators, triangular norms, real
line.

1 INTRODUCTION

Convexity, as one of the most important notions in
geometry, has been studied thoroughly from different
points of view and has been generalized in different
ways. One of the most important generalizations is
based on its crucial property, namely, convexity is pre-
served under set intersection. Based on that property,
systems of subsets of a given set, that define a struc-
ture called a “generalized convexity” have been defined
and studied in depth in [7].

Our aim is to study convexity for fuzzy sets keeping in
mind the classical geometrical interpretation of convex

sets in an Euclidean space (e.g. the real plane, the real
space, etc.), where for each pair of points of a convex
set the whole line segment that joins them also belongs
to that set. However, for fuzzy sets we have to specify
the notion of the membership. The unifying idea, in
our considerations and approach in this manuscript,
will be the fact that the grade of membership for the
points on a line segment that joints two points depends
on the grade of memberships of those two boundary
points.

We will also pay attention to the problem of charac-
terizing the existence of such fuzzy sets, depending on
functions of two variables given a priori. Furthermore,
we will also analyze conditions under which suitable
functions create a generalized convexity. We will for-
mulate our main results not only for the intersection
of fuzzy sets, but for an arbitrary aggregation of fuzzy
sets.

2 PREVIOUS CONCEPTS AND
RESULTS ABOUT DIFFERENT
KINDS OF CONVEXITIES

We start by recalling the standard definition of a fuzzy
set.

Definition 1 ([13]). Let X be a nonempty set, usually
called the universe. A fuzzy set A in X is defined by
means of a map µA : X → [0, 1]. The map µA is said
to be the membership function of A.

The support of A is the crisp set Supp(A) = {t ∈ X :
µA(t) 6= 0} ⊆ X, whereas the kernel of A is the crisp
set Ker(A) = {t ∈ X : µA(t) = 1} ⊆ X. The fuzzy set
A is said to be normal provided that it has nonempty
kernel.

Given α ∈ (0, 1], the crisp subset of X defined by
Aα = {t ∈ X : µA(t) ≥ α} is said to be the α-cut
(level set) of the fuzzy set A.

In the literature that deals with fuzzy sets, perhaps the
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most common definition for the concept of a convexity
(as a matter of fact, usually called “quasi-convexity”)
has been introduced in [1] as follows:

Definition 2. Let X be a linear space. A fuzzy subset
A of the universe X is said to be quasi-convex if for
all x, y ∈ X, λ ∈ [0, 1] it holds true that

µA(λx+ (1− λ)y) ≥ min{µA(x), µA(y)},

where µA stands here for the membership function of
the fuzzy set A.

In models arising in fuzzy logic, the minimum repre-
sents the classical conjunction. From this point of view
Definition 2 can be read as the statement – if x and y
are in the fuzzy set A then any point between them is
also in A. However, if we use a different model for the
conjunction, then the connective and is represented
by some triangular norm. This leads to the notion of
T-convexity or convexity with respect to a triangular
norm T , discussed later.

Another similar concept may by inspired by ideas from
[12]. Here the notion of a weakly convex fuzzy set has
been defined in the following way:

Definition 3. A fuzzy subset A of a linear space X
is said to be weakly quasi-convex if for all x, y that
belong to the support of µA there exists λ ∈ (0, 1) such
that µA(λx+ (1− λ)y) ≥ min{µA(x), µA(y)}.

The condition of weak quasi-convexity is mild, not too
restrictive (see [6]). However, its underlying idea can
be developed further. Roughly speaking, we keep in
mind that the value of the membership function at an
“inner point” may depend on the values that it takes
at the “endpoints”. This can be interpreted, defined
and/or understood in a more general way than the
(more restrictive) one introduced in Definition 2 and
Definition 3.

As it has already been mentioned, we will deal with
systems preserving convexity, thus we recall the defi-
nition of a generalized convexity from [7].

Definition 4. A system C of subsets of the universe
X for which ∅ and X belong to C and C is closed under
arbitrary intersections is a generalized convexity on
X.

As we will work with fuzzy sets, the system of fuzzy
subsets of the universe fulfilling the properties from
Definition 4 we will also denote as a generalized con-
vexity on X.

3 CONVEXITIES WITH RESPECT
TO TRIANGULAR NORMS AND
AGGREGATION OPERATORS IN
TWO VARIABLES

The notion of quasi-convexity has been widely studied
and applied. However, it could still be too restrictive
in several situations, especially in frameworks arising
from fuzzy logic. In those contexts, it is typical to find
models in which a triangular norm (a t-norm) other
than the minimum is used. By this reason, the notion
of convexity with respect to triangular norms (or T -
convexity, for short) was launched in [5], as follows:

Definition 5. Let X be a linear space and let T be a
t-norm. A fuzzy set A of the universe X is said to be
T -convex if for all x, y ∈ X, λ ∈ [0, 1] it holds that
µA(λx+ (1− λ)y) ≥ T (µA(x), µA(y)).

Notice that here, the triangular norm T has assumed
the role of the minimum. In Definition 5, T could
be any triangular norm. Nevertheless, both concepts,
namely quasi-convexity and T -convexity are close and
deeply related. They coincide in the case of normal
fuzzy sets as it is proven in the next proposition.

Proposition 1. Let X be a linear space. Let A be a
fuzzy set of the universe X. If A is quasi-convex, then
it is T -convex for any t-norm T . Moreover, if A is
normal, the converse also holds true.

Proof. Since the minimum t-norm is the biggest tri-
angular norm, we have that T ≤ min holds for any
t-norm T . Therefore, quasi-convexity trivially implies
T -convexity, for any triangular norm T . Conversely, if
A is normal, then there exists at least one element
a ∈ X such that µA(a) = 1. Thus, for any pair
(x, y) ∈ X ×X and any linear combination of its co-
ordinates x, y, that is, λx + (1 − λ)y, it follows that
λx+ (1− λ)y ≤ a or, alternatively, λx+ (1− λ)y ≥ a.
Let us suppose that x ≤ y. Then we have

µA(λx+ (1− λ)y) ≥ T{µA(x), µA(a)}

or
µA(λx+ (1− λ)y) ≥ T{µA(a), µA(y)}.

Since µA(a) = 1 and 1 is the neutral element of any
t-norm, we conclude that

µA(λx+ (1− λ)y) ≥ min{µA(x), µA(y)}.

While T -convexity may reflect the use of a particular
t-norm T playing the role of the conjunction in a cer-
tain fuzzy logic model, notice that none of the special
properties of a triangular norm has been mentioned in
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Definition 5. Indeed, only one of such classical proper-
ties has been used in the proof of Proposition 1. This
suggests the study of convexity in an even more general
form, in which we will introduce a further generaliza-
tion of the concept of T -convexity.

The following results are for fuzzy subsets of the real
line. They could be easily generalized for Rn.

Definition 6. Let F : [0, 1]2 → [0, 1] be an arbitrary
mapping. A fuzzy subset A of the real line is said
to be convex with respect to the map F (or F -
convex), if for each x, y, z ∈ R such that x ≤ y ≤ z it
holds that µA(y) ≥ F (µA(x), µA(z)), where µA is the
membership function of the fuzzy set A.

Similarly to Definition 3 we can also consider here a
linear combination of the points x, z in place of y.

For an infinite collection of fuzzy sets we will have to
assume the upper semicontinuity of F , i.e. fulfilling

F ( inf
i∈A

αi, inf
i∈A

βi) = inf
i∈A

F (αi, βi)

for an arbitrary index set A. However, this require-
ment on F will be explicitly mentioned when neces-
sary.

Clearly for F (α, β) = min{α, β} we have the usual
quasi-convexity, while by replacing F by a triangular
norm T we obtain the notion of T -convexity intro-
duced above.

In the following proposition we show that the only
reasonable results we can obtain appear for maps F
accomplishing that F (α, β) ≤ min{α, β} for every
0 ≤ α, β ≤ 1 (we write F ≤ min, for short). Indeed,
this happens even in the case in which we require the
fulfillment of the inequality that arises in Definition 6
only for inner points of the interval [x, z].

Proposition 2. Let F : [0, 1]2 → [0, 1] be an arbitrary
mapping. Assume that F (α, β) > min{α, β} holds true
for every 0 ≤ α, β ≤ 1. Then, there is no fuzzy subset
A of R with the property µA(y) ≥ F (µA(x), µA(z)) for
all x, y, z ∈ [a, b], x < y < z, where [a, b] is an interval
of real numbers.

Proof. Let µA be the membership function of a fuzzy
set with the required property for some F , where F >
min. Let a, b ∈ R, a < b. Consider the value

S = sup{µA(x), x ∈ [a, b]}.
Suppose first that the supremum S is attained, i.e.
there is a point z ∈ [a, b] such that µ(z) = S. Clearly
such z is unique, because of the condition for µA: no-
tice that if there would exist two such points z1 6= z2

(suppose z1 < z2), then for any y ∈ [z1, z2] we would
have

µA(y) ≥ F (µA(z1), µA(z2)) >

> min{µA(z1), µA(z2)} = S

which is a contradiction. Hence, either z 6= a or z 6= b.
Suppose that z > a. Take arbitrary points x, y such
that a ≤ x < y < z. Then it follows that

µA(y) ≥ F (µA(x), µA(z)) > min{µA(x), S} = µA(x).

We can see that µA is increasing on [a, z). From the
condition on the membership function µA we also see
that it is discontinuous (from the right) at each x ∈
[a, z). This is a contradiction to Froda’s theorem (see
e.g. [3, 8] or [11], Problem 7 in Ch. 20), claiming that
the set of discontinuity points for a monotone function
is at most countable.

Now let us suppose that S is not attained. Then
there is a sequence {xn}∞n=1 in [a, b] such that
limn→∞ µA(xn) = S. Taking into account the topolog-
ical properties of sequences in closed and bounded (i.e
compact) intervals (see e.g. [2]) we may assume with-
out loss of generality that this sequence is increasing
and limn→∞ xn = y. By the same argumentation as
above we see that the sequence {µA(xn)}∞n=1 is also
increasing. Using Froda’s theorem again we see that
for each n ∈ N the set

{x ∈ [a, y];µA(x) < µA(xn)}

is countable. Hence also the set

∪∞n=1{x ∈ [a, y];µA(x) < µA(xn)} =

{x ∈ [a, y];µA(x) < S}
is countable. So, there should be at least one (in fact
uncountably many ones) point z ∈ [a, y) such that
µA(z) = S which is a contradiction. Hence no fuzzy
set with required property can exist.

Example 1. Hence, as a consequence of Proposition
2, reasonable results can be achieved only for functions
F that satisfy the additional condition F ≤ min. As
an example we can consider the fuzzy set A whose
membership function µA is given as follows:

µA(x) =

{
1
2 (x− 1)2 + 1

2 , x ∈ [0, 2],

0, x ∈ R \ [0, 2].

This is an F -convex fuzzy subset of the real line, where
F (α, β) = 1

2 min{α, β}. Clearly the fuzzy set A is
neither quasi-convex nor T -convex for any t-norm T ,
since µA(1) = 1

2 6≥ T (µA(0), µA(2)) = T (1, 1) = 1
holds for any t-norm T .

In the sequel, for a fixed mapping F : [0, 1]2 → [0, 1]
let us denote by CF the system of all F -convex fuzzy
sets. As a consequence of the Proposition 2 we get the
following result.
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Proposition 3. Let F : [0, 1]2 → [0, 1] be an arbitrary
map. If the condition F (α, β) > min{α, β} holds for
every 0 ≤ α, β ≤ 1, then the set CF is empty, otherwise
CF 6= ∅.

Proof. The emptiness of CF for F > min follows from
the Proposition 2, while for F ≤ min at least the
fuzzy set µA = 0 belongs to CF , because, in such case
F (0, 0) = 0.

In order to study generalized convexities from now on
we will work only with mappings F with the property
F (α, β) ≤ min{α, β} (0 ≤ α, β ≤ 1). Considering
F as an aggregation function, we restrict ourselves to
those maps that are conjunctive (see [4]).

From Definition 6 it is also clear that given two
maps F,G such that or all α, β ∈ [0, 1] it holds that
F (α, β) ≤ G(α, β), then CG ⊆ CF . Furthermore, we
can see that the extreme cases are obtained whenever
F (α, β) = 1 for all α, β ∈ [0, 1], so that CF = {0R, 1R},
as well as for F (α, β) = 0 for all α, β ∈ [0, 1], so that
CF = F(X) (the system of all fuzzy subsets of X).
Observe also that, for F (α, β) = min{α, β} the set CF
is exactly the system of all quasi-convex fuzzy subsets
of R.

Perhaps the most important property of classical con-
vex sets is that they create a generalized convexity
system, or, in other words, convexity is preserved un-
der intersections. Keeping this in mind, we are also
interested in conditions under which an intersection
of F -convex fuzzy sets is again an F -convex fuzzy set.
We will analyze this problem not only for intersections
(represented by triangular norms), but also (and more
generally) for arbitrary aggregations of fuzzy sets.

As usually, by a (binary) aggregation function on [0, 1]
we will understand a mapping A : [0, 1]2 → [0, 1]
such that A(0, 0) = 0, A(1, 1) = 1 and, in addi-
tion, A s monotone in both variables. By an aggre-
gation of fuzzy sets A1, A2 whose membership func-
tions are, respectively, µA1

and µA2
we understand the

fuzzy set B whose membership function is µB(x) =
A(µA1

(x), µA2
(x)). We usually denote it as follows:

µB = A(µA1 , µA2)

To formulate our following result we recall the notion
of domination for real valued mappings of two vari-
ables. For more details on aggregation functions see
[4], more information on domination can be found e.g.
in [10].

Definition 7. Let F,G : [0, 1]2 → [0, 1] denote two
arbitrary mappings. Then we say that F dominates
G (F � G) if for any α1, α2, β1, β2 ∈ [0, 1] it holds

that

F (G(α1, β1), G(α2, β2)) ≥ G(F (α1, α2), F (β1, β2)).

The next proposition provides a sufficient and neces-
sary condition for the preservation of convexity with
respect to a mapping F .

Proposition 4. Let F : [0, 1]2 → [0, 1] be an arbitrary
mapping, let A be a binary aggregation function on
[0, 1]. Then the following are equivalent:

1. A(µA1
, µA2

) is F -convex for any F -convex fuzzy
subsets A1, A2 of the real line,

2. A dominates F .

Proof. Let F : [0, 1]2 → [0, 1] be a mapping, let A be
an arbitrary binary aggregation function on the unit
interval. Since throughout this proof we will work with
F -convex subsets of the real line, due to the result
already stated in Proposition 2 we will assume that
F (α, β) ≤ min{α, β} (0 ≤ α, β ≤ 1).

First we suppose that for any F -convex fuzzy sub-
sets A1, A2 of R their aggregation function of mem-
bership, namely A(µA1

, µA2
) is F -convex. Thus, let

α1, α2, β1, β2 ∈ [0, 1]. Consider a fixed interval [a, b] ⊆
R, and the following fuzzy sets A1, A2 such that

µA1(x) =





α1, x = a,

F (α1, α2), x ∈ (a, b),

α2, x = b,

µA2
(x) =





β1, x = a,

F (β1, β2), x ∈ (a, b),

β2 x = b

and µA1(x) = µA2(x) = 0 for x ∈ R \ [a, b].

We observe that both A1 and A2 are F -convex (here
we make use of the assumption F ≤ min). Hence
the fuzzy set A(µA1 , µA2) is also F -convex. In other
words, for any z ∈ (a, b) it follows that

A(µA1
, µA2

)(z) ≥ F (A(µA1
, µA2

)(a), A(µA1
, µA2

)(b))

which is equivalent to

A(µA1
(z), µA2

(z)) ≥

F (A(µA1
(a), µA2

(a)), A(µA1
(b), µA2

(b)))

or

A(F (α1, α2), F (β1, β2)) ≥ F (A(α1, β1), A(α2, β2))

and thus A� F .
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To prove the converse assume that A� F . Let A1, A2

be arbitrary F -convex fuzzy subsets of the real line.
Take x, y, z ∈ R such that x < y < z. Then we have
that

µA1
(y) ≥ F (µA1

(x), µA1
(z)),

µA2
(y) ≥ F (µA2

(x), µA2
(z))

and from the monotonicity of the map A we obtain

A(µA1 , µA2)(y) = A(µA1(y), µA2(y)) ≥
A(F (µA1(x), µA1(z)), F (µA2(x), µA2(z))) ≥
F (A(µA1

(x), µA2
(x)), A(µA1

(z), µA2
(z)) =

F (A(µA1
, µA2

)(x), A(µA1
, µA2

)(z)).

Therefore the aggregation of µA1 and µA2 is also F -
convex.

This proposition shows in fact that the intersection of
a finite collection of T -convex fuzzy sets based on the
t-norm T is again T -convex, as the minimum t-norm
dominates any other t-norm (see [9]).

Proposition 5. If F � min and F is upper semicon-
tinuous, the system CF (assuming intersections based
on the minimum t-norm) is a generalized convexity.

Proof. Clearly the fuzzy sets with membership func-
tions µA = 0, µB = 1 belong to CF . Let Γ be an
arbitrary index set, let for each γ ∈ Γ the set Aγ be
F -convex. Then for arbitrary x ≤ y ≤ z there is

µAγ
(y) ≥ F (µAγ

(x), µAγ
(z))

for all γ ∈ Γ. From the upper semicontinuity of F we
get

inf
γ∈Γ

µAγ
(y) ≥ F ( inf

γ∈Γ
µAγ

(x), inf
γ∈Γ

µAγ
(z)),

hence the standard intersection of the collection
{Aγ}γ∈Γ is F -convex.

Another similar condition to achieve the same conclu-
sion is the monotonicity of F , as shown in the next
proposition.

Proposition 6. If F ≤ min and F is upper semicon-
tinuous, then CF is a generalized convexity if and only
if F is increasing.

Proof. If F is increasing then by the results from [9]
F � min and by Proposition 5 CF is a generalized
convexity.

Assume, by contradiction, that F fails to be increas-
ing. Then there are α1, α2, β1, β2 ∈ [0, 1] such that
α1 ≤ β1, α2 ≤ β2, but F (α1, α2) > F (β1, β2). Take an

arbitrary interval [a, b] ∈ R and the fuzzy sets A1 and
A2 whose membership functions are

µA1
(x) =





α1, x = a,

F (α1, α2), x ∈ (a, b),

α2, x = b,

µA2
(x) =





β1, x = a,

F (β1, β2), x ∈ (a, b),

β2 x = b

and µA1
(x) = µA2

(x) = 0 for x ∈ R \ [a, b]. We may
notice that both A1 and A2 are F -convex fuzzy sets.
However, their intersection is the fuzzy set defined by
means of the membership function

(µA1
∩ µA2

)(x) =





α1, x = a,

F (β1, β2), x ∈ (a, b),

α2, x = b,

which is not F -convex. The reason is that, for any
y ∈ (a, b), we have that

(µA1
∩ µA2

)(y) = F (β1, β2) 6≥ F (α1, α2) =

F ((µA1 ∩ µA2)(a), (µA1 ∩ µA2)(b)).

We conclude that CF is not a generalized convexity.

Finally, in the next proposition we explain the rela-
tionship between F -convex fuzzy sets and crisp con-
vex sets (here we consider crisp sets as a special case
of fuzzy sets).

Proposition 7. Let C denote the system of all crisp
convex subsets of the real line R and let F = {F :
[0, 1]2 → [0, 1];F (1, 1) > 0}, F being a map. Then
C = ∩F∈F (CF ∩ {0, 1}R).

Here we consider crisp convex subsets of the real line
(i.e. intervals) represented by their characteristic func-
tions.

Proof. Suppose C ∈ C. Let F ∈ F . We will show that
C is F -convex. To do so, take x, y, z ∈ R, x ≤ y ≤ z.
If C(y) = 0, then from its convexity at least one
of the values C(x), C(z) should be zero. Hence
F (C(x), C(z)) = 0 too. If C(y) = 1 then the inequal-
ity C(x) ≥ F (C(x), C(z)) is fulfilled for any F ∈ F .
Thus C is F -convex for any F .

Now let C be an F -convex crisp set for any F ∈ F .
Suppose C is not convex. Then there are x, y, z ∈
R with x < y < z, and such that C(x) = C(z) =
1, C(y) = 0. Consider a mapping F ∈ F . From the
F -convexity of C we have

0 = C(y) ≥ F (C(x), C(z)) = F (1, 1) > 0

which is a contradiction. This concludes the proof.
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4 SUGGESTIONS FOR FURTHER
RESEARCH

A former suggestion for a further development of these
ideas could be trying to avoid working with linear
spaces, and defining generalized convexities (see [7])
on a nonempty set U , called universe, as suitable map-
pings f : U × U × [0, 1] → U that accomplish certain
conditions (e.g.: f(x, y, α) = f(y, x, 1 − α) for every
x, y ∈ U and α ∈ [0, 1]) so that f(x, y, α) could play
the role of the point “α ·x+ (1−α) · y” that is typical
in the case in which U is a linear space.

Another suggestion could be trying to work with some
more general kinds of fuzzy sets, as, for instance, those
in which the membership function takes values in a
lattice, instead of the unit interval [0, 1].
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Summary

Transformations of special classes of binary
aggregation functions based on real functions
of three variables are studied. Our attention
is focused on functional transformations of
averaging and conjunctive aggregation func-
tions as well as on transformations of copu-
las based on quadratic polynomials and their
stochastic interpretation.

Keywords: Aggregation function, copula,
transformation.

1 INTRODUCTION

In this contribution we will deal with function-based
transformations of aggregation functions. Recall that
a function A: [0, 1]n → [0, 1] is called an n-ary aggrega-
tion function (n ∈ N, n ≥ 2) whenever it is increasing
in each variable and satisfies the boundary conditions
A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1. We will mostly
deal with binary aggregation functions (n = 2). The
set of all binary aggregation functions will be denoted
by A, and when no confusion can arise, we will call
them simply aggregation functions.

Considering some additional properties, special classes
of aggregation functions can be obtained, such as
weighted arithmetic means, OWA operators, t-norms,
copulas, uninorms, etc. For more details on these
classes of aggregation functions we refer the reader,
e.g., to [1, 2, 6, 8, 9, 14].

If we consider a fixed binary aggregation function A,
at each point (x, y) ∈ [0, 1]2 we have three values as a
basic information: the values x, y and z = A(x, y), all
from the unit interval [0, 1]. If f : [0, 1]3 → [0, 1] is a
function of three variables, then a composite function

Af : [0, 1]2 → [0, 1],

Af (x, y) = f(x, y,A(x, y)) (1)

is well defined. Clearly, if f is a ternary aggregation
function then Af is a binary aggregation function for
any A ∈ A. On the other hand, for some special ag-
gregation functions A, Af can belong to A though
f is not a ternary aggregation function. For exam-
ple, this is true in the case of the class L of all bi-
nary 1-Lipschitz aggregation functions and the func-
tion f : [0, 1]3 → [0, 1],

f(x, y, z) = x+ y − z. (2)

Recall that an aggregation function A: [0, 1]2 → [0, 1]
is said to be 1-Lipschitz if for all x1, x2, y1, y2 ∈ [0, 1],

|A(x1, y1)−A(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|. (3)

By [10], for each A ∈ L and f defined in (2), the func-
tion Af is a 1-Lipschitz aggregation function. How-
ever, as f is decreasing in the third variable, f is not
an aggregation function.

The aim of this contribution is to study under what
constraints imposed on f , the function Af defined by
(1) is an aggregation function from some special sub-
class B ⊂ A for each A ∈ B. In other words, our aim
is, for a chosen class B ⊂ A, to characterize functions
f with the property that the assignment A 7→ Af is
a B → B mapping. The contribution is organized as
follows. In the next section, some special classes of ag-
gregation functions, which will be discussed later, are
characterized. In Section 3, we introduce some gen-
eral properties of functions f generating the studied
transformations. In Section 4, we discuss function-
based transformations of averaging aggregation func-
tions, including transformations of some special sub-
classes of averaging aggregation functions. Similarly,
in Section 5, transformations of conjunctive aggrega-
tion functions are studied, including transformations
of some their special subclasses. Section 6 is devoted
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to the quadratic constructions of copulas and their
stochastic interpretation. Finally, some concluding re-
marks are provided.

2 SOME SPECIAL CLASSES OF
AGGREGATION FUNCTIONS

This section contains a classification of aggregation
functions and a brief summary of special classes of ag-
gregation functions which we will work with. We first
recall that for each A ∈ A, its dual Ad ∈ A is given by

Ad(x, y) = 1−A(1− x, 1− y)

and clearly, for each A ∈ A,
(
Ad
)d

= A.

The basic classification of aggregation functions pro-
posed by D. Dubois and H. Prade [4] distinguishes

• conjunctive aggregation functions,
Con = {A ∈ A |A ≤Min},

• disjunctive aggregation functions,
Dis = {A ∈ A |A ≥Max},

• averaging aggregation functions,
Av = {A ∈ A |Min ≤ A ≤Max},

• mixed aggregation functions,
R = A \ (Con ∪ Dis ∪ Av).

Note that the classes Av and R are closed under du-
ality, while A ∈ Con if and only if Ad ∈ Dis. This fact
allows us to rewrite straightforwardly all results valid
for conjunctive aggregation functions into the corre-
sponding results for disjunctive aggregation functions.

In this contribution we will work with special classes
of aggregation functions, namely, with the class of all:

• semicopulas S: aggregation functions with neutral
element e = 1 (i.e., satisfying the property A(x, 1) =
A(1, x) = x for each x ∈ [0, 1]); S ⊂ Con.

• quasicopulas Q: Q = L ∩ S, i.e., 1-Lipschitz aggre-
gation functions with neutral element e = 1;

• copulas C: quasicopulas characterized by supermod-
ularity

A(x ∨ y) +A(x ∧ y) ≥ A(x) +A(y)

for all x,y ∈ [0, 1]2.

• weighted arithmetic meansW: aggregation functions
characterized by additivity. Recall that A ∈ W if and
only if A(x, y) = cx+ (1− c)y for some fixed c ∈ [0, 1]
and all x, y ∈ [0, 1]. W ⊂ Av.

• OWA operators OWA: aggregation functions char-
acterized by symmetry and comonotone additivity.
Recall that A ∈ OWA if and only if

A(x, y) = cMin(x, y) + (1− c)Max(x, y)

for some fixed c ∈ [0, 1] and all x, y ∈ [0, 1]. It holds
that OWA ⊂ Av.

• aggregation functions having a neutral element e ∈
]0, 1[. This class will be denoted by Ae. Distinguished
members of Ae are, for example, uninorms Ue. It holds
that Ae ⊂ R.

More details on the mentioned classes of aggregation
functions and their properties can be found, e.g., in
[1, 2, 5, 6, 8].

3 FUNCTIONAL
TRANSFORMATIONS OF
AGGREGATION FUNCTIONS

For any subclass ∅ 6= B ⊆ A, denote by FB the set
of all functions f : [0, 1]3 → [0, 1] such that Af ∈ B for
each A ∈ B, i.e. the mapping A 7→ Af , where Af is
given by (1), defines a transformation on the class B.
Clearly, FB is closed under the composition ∗ given by

(f ∗ g)(x, y, z) = f(x, y, g(x, y, z)).

Moreover, if the class B is convex, then FB is also a
convex set.

Due to the boundary conditions of aggregation func-
tions, for an arbitrary B and each f ∈ FB it holds that
f(0, 0, 0) = 0 and f(1, 1, 1) = 1. Let F denote the set
of all functions f : [0, 1]3 → [0, 1] satisfying these two
properties. Note that the function f given by (2) be-
longs to F . Next, let A3 denote the class of all ternary
aggregation functions. Clearly, A3 ⊂ F , and as was
already mentioned, A3 ⊂ FA. With the previous no-
tation, we can formulate the following stronger claim.

Proposition 1 It holds that FA = A3.

The only function f ∈ F such that f ∈ FB for any
subclass ∅ 6= B ⊆ A, is the third projection given by
f(x, y, z) = z. In that case, Af = A for any A ∈ A.
On the other hand, if for A ∈ A, we write fA for the
function fA: [0, 1]3 → [0, 1] defined by fA(x, y, z) =
A(x, y), then fA ∈ F . Moreover, for any subclass
∅ 6= B ⊆ A it holds that

∅ 6= {fA | A ∈ B} ⊆ FB.
In some cases, the properties of functions f are impor-
tant on some subdomain of [0, 1]3 only. For example,
if A ∈ L then for each (x, y) ∈ [0, 1]2 it holds [10] that

max{0, x+ y − 1} ≤ A(x, y) ≤ min{1, x+ y},
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and hence the properties of Af only depend on the
properties of f on the subdomain D,

D = {(x, y, z) ∈ [0, 1]3 |

max{0, x+ y − 1} ≤ z ≤ min{1, x+ y}}. (4)

Proposition 2 Let f ∈ F . Then f ∈ FL if and only
if f is 1-Lipschitz on the set D (defined in (4)) and
satisfies the inequalities

∂f

∂x
≥ 0,

∂f

∂y
≥ 0, 0 ≤ ∂f

∂x
+
∂f

∂z
≤ 1,

and 0 ≤ ∂f

∂y
+
∂f

∂z
≤ 1

at each point from the interior of D where the partial
derivatives exist.

Note that the function f given by (2) is in FL and
satisfies the properties

∂f

∂x
=
∂f

∂y
= 1 and

∂f

∂z
= −1

at any interior point of D. In general, if f ∈ F is
a linear function, i.e., if f(x, y, z) = ax + by + cz for
some real constants constrained by the condition a +
b + c = 1, then f ∈ FL if and only if a, b ∈ [0, 1] and
c = 1−a−b. In what follows, we will denote the set of
all such linear functions by F∗L. Note that FL\F∗L 6= ∅.
As an example of a non-linear function f ∈ FL we can
consider f ∈ F , given by f(x, y, z) = z(x+ y − z).

4 FUNCTIONAL
TRANSFORMATIONS OF
AVERAGING FUNCTIONS

Let B be any class of averaging functions. Considering
a transformation of an aggregation function A ∈ B
based on a function f ∈ F , the values of f at the
points which are out of the subdomain

DAv =
{

(x, y, z) ∈ [0, 1]3 | min{x, y} ≤ z ≤ max{x, y}
}

are not entering into the construction (1). Let Av3,
W3, OWA3 denote the set of all ternary averaging
functions, weighted arithmetic means and OWA oper-
ators, respectively. For a subdomain ∅ 6= D ⊂ [0, 1]3

and a class D ⊆ A3, let

FD,D = {f ∈ F | f |D = A|D for some A ∈ D}.

Then, keeping the previous notation, we can formulate
the following results.

Proposition 3 For averaging aggregation functions it
holds that FAv = FDAv,Av3 .

Proposition 4 For weighted arithmetic means it
holds that FW = FDAv,F∗L .

Proposition 5 For OWA operators it holds that

FOWA = {f ∈ F | ∃g ∈ FW ,
f(x, y, z) = g (Min(x, y, z),Max(x, y, z),Med(x, y, z))}.

Example 1 Consider the function f ∈ F given by
(2). Then f ∈ F∗L and thus f ∈ FW , too. The f -
based transformation, which was defined in (1), ap-
plied to a weighted arithmetic mean Wλ ∈ W given by
Wλ(x, y) = λx+ (1− λ)y yields

(Wλ)f (x, y) = f(x, y, λx+ (1− λ)y)

= x+y−(λx+(1−λ)y) = (1−λ)x+λy = W1−λ(x, y),

i.e., Wλ = W1−λ.

Consider the function h induced by f and defined by

h(x, y, z) = min{x, y}+ max{x, y} −med{x, y, z}.
Note that h ∈ FOWA and h|DAv = f |DAv. For an
OWA operator OWAλ given by

OWAλ(x, y) = λmin{x, y}+ (1− λ) max{x, y}
it holds that

(OWAλ)h (x, y) = min{x, y}+ max{x, y}
−(λmin{x, y}+ (1− λ) max{x, y}) = OWA1−λ(x, y),

i.e., (OWAλ)h = OWA1−λ.

5 FUNCTIONAL
TRANSFORMATIONS OF
CONJUNCTIVE AGGREGATION
FUNCTIONS

In the case of conjunctive aggregation functions, an
important role is played by the domain

DCon = {(x, y, z) ∈ [0, 1]3 | z ≤ min{x, y}}.
Let K denote the class of all ternary aggregation func-
tions A such that A ≤Med. Then we have:

Proposition 6 FCon = FDCon,K.

Proposition 7 For the class S of all semicopulas it
holds that

FS = {f ∈ FCon | f(x, 1, x) = x and f(1, y, y)

= y for all x, y ∈ [0, 1]}.

Proposition 8 For the class Q of all quasicopulas it
holds that

FQ ⊂ FS ∩ FL.

Proceedings of 8th International Summer School on Aggregation Operators (AGOP 2015)

147



Example 2 Define f, g, h: [0, 1]3 → [0, 1] by

f(x, y, z) = z
√
xy, g(x, y, z) =

√
xyz

and
h(x, y, z) = z(x+ y − z).

Then

f ∈ FCon \ FS , g ∈ FS \ FQ, and h ∈ FQ. Consider
the smallest copula W , W (x, y) = max{x + y − 1, 0}.
Note that W is also the smallest quasicopula. Then
the function Wf given by

Wf (x, y) =
√
xymax{x+ y − 1, 0}

is conjunctive, but as Wf (1, y) = y
√
y, Wf /∈ S. Next,

Wg given by

Wg(x, y) =
√
xymax{x+ y − 1, 0}

is a semicopula, but it is not 1-Lipschitz and thus Wg /∈
Q. Finally, Wh = W , i.e., Wh is a copula (and hence
also a quasicopula).

6 QUADRATIC
TRANSFORMATIONS OF
COPULAS

Consider quadratic polynomials pa,b: [0, 1]3 → R with
a, b ∈ [0, 1] defined by

pa,b(x, y, z) = axy + bz + (1− a− b)z(x+ y − z).

Evidently, pa,b(0, 0, 0) = 0 and pa,b(1, 1, 1) = 1, how-
ever, the range of pa,b need not be contained in [0, 1].
If we restrict the domain of pa,b to DCon, i.e., if z ≤
min{x, y}, then pa,b(x, y, z) ∈ [0, 1] for all a, b ∈ [0, 1],
and thus we can transform an arbitrary conjunctive
aggregation function A into Apa,b

, though pa,b need
not be from F . Obviously, defining fa,b: [0, 1]3 → [0, 1]
by

fa,b = min(1,max(0, pa,b)),

we can see that fa,b ∈ F , and Afa,b
= Apa,b

for any
A ∈ Con.

Proposition 9 Let H = {fa,b | a, b ∈ [0, 1]}. Then

H ⊂ FC ∩ FQ ∩ FS ,

i.e., for any copula (quasicopula, semicopula) A, the
function Afa,b

is a copula (quasicopula, semicopula)
for any a, b ∈ [0, 1].

Note that the polynomial class P = {pa,b | a, b ∈ [0, 1]}
is convex, and it can be viewed as a convex closure of
the extremal points p0,0, p0,1, p1,0 and p1,1. Note that,

due to [11] and [12], for any copula (quasicopula, semi-
copula) A the corresponding transformations (written
by means of the transforming functions fa,b) are given
by

Af0,0(x, y) = A(x, y).(x+ y −A(x, y)),

Af0,1(x, y) = A(x, y),

Af1,0(x, y) = xy,

and

Af1,1(x, y) = xy −A(x, y).(x+ y − 1−A(x, y)).

Based on the results of [3], in the case of copulas we
have the next stochastic interpretation of the above
transformations.

Let (X1, Y1) and (X2, Y2) be two independent pairs
of continuous random variables (all four being uni-
formly distributed over ]0, 1[) which are identically dis-
tributed, and let the stochastic dependence of their
components be described by a copula C. Then:

• The copula Cf0,0 describes the stochastic dependence
structure of the random vector (Z1, Z2),

(Z1, Z2) =





(min(X1, X2),max(Y1, Y2))
with probability 1/2,

(max(X1, X2),min(Y1, Y2))
with probability 1/2.

• The copula Cf0,1 = C describes the stochastic de-
pendence structure of the random vector (X1, Y1).

• The copula Cf1,0 describes the stochastic dependence
structure of the random vector (X1, X2).

• The copula Cf1,1 describes the stochastic dependence
structure of the random vector (T1, T2), given by

(T1, T2) =





(min(X1, X2),min(Y1, Y2))
with probability 1/2,

(max(X1, X2),max(Y1, Y2))
with probability 1/2.

Note also that copulas invariant with respect to the
fa,b-based transformations are just the Plackett copu-
las [15], for more details see [11].

7 CONCLUDING REMARKS

We have introduced and discussed function-based
transformations of binary aggregation functions. In
some cases there is only a trivial identity transforma-
tion that preserves the considered classes of aggrega-
tion functions. This is, for example, the case of the
class Ae, e ∈ ]0, 1[. In some cases we have obtained
interesting original results, for example for quadratic
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constructions of copulas. There are still several open
problems. For example, a complete description of the
classes FQ and FC is still missing.
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Summary

In this paper, we synthesize and substan-
tially extend our recent investigations of spe-
cific class of perturbations of bivariate cop-
ulas and their effects on tail dependencies
(along both diagonal sections). We show that
those perturbations do not change the coeffi-
cients of tail dependencies along the main di-
agonal but linearly reduce their values along
the second diagonal. An interesting possi-
ble application for analysing of dependencies
along the second diagonal of copulas repre-
sent insurance data, where censoring intro-
duces a negative dependence between the in-
vestigated components of the claims.

As a by–product, we present a new class of
perturbations of copulas that linearly reduce
the more popular coefficients of tail depen-
dencies along the main diagonal, while pre-
serving their values along the second diago-
nal.

Keywords: Copula; Perturbation of copula;
Tail dependence; Survival copula; Reflections
of copulas.

1 INTRODUCTION

Fitting of an appropriate copula to real data is one of
major tasks in application of copulas. For this pur-
pose, a large buffer of potential copulas has been de-
signed (mainly parametric families of copulas). Once
we know approximately a copula C appropriate to
model the observed data, we look for a minor per-
turbation of C which fit them better then C itself.

The paper is organized as follows. The second section
is presenting a brief overview of the theory of copu-

las. In the third section we discuss perturbations of
bivariate copulas. The fourth section is devoted to an
overview of the tail dependence coefficients and con-
tains the main result of this paper.

2 COPULAS

Copula represents a multivariate distribution that cap-
tures the dependence structure among random vari-
ables. It is a great tool for building flexible multi-
variate stochastic models. Copula offers the choice
of an appropriate model for the dependence between
random variables independently from the selection of
marginal distributions. This concept was introduced
in the late 50’s and became popular in several fields
beyond statistics and probability theory, such as fi-
nance, actuarial science, fuzzy set theory, hydrology,
civil engineering, etc.

Definition 1. A function C : [0, 1]2 → [0, 1] is called
a (bivariate) copula whenever it is

i) 2–increasing, i.e.,
VC ([u1, u2]× [v1, v2]) =

= C(u1, v1)+C(u2, v2)−C(u1, v2)−C(u2, v1) ≥ 0

for all 0 ≤ u1 ≤ u2 ≤ 1, 0 ≤ v1 ≤ v2 ≤ 1 (recall
that VC ([u1, u2]× [v1, v2]) is the C–volume of the
rectangle [u1, u2]× [v1, v2]);

ii) grounded, i.e., C(u, 0) = C(0, v) = 0 for all u, v ∈
[0, 1];

iii) it has a neutral element e = 1, i.e., C(u, 1) = u
and C(1, v) = v for all u, v ∈ [0, 1].

Recall that for a 2–dimensional random vector (X,Y )
with a joint distribution function FXY and continuous
marginal distribution functions FX , FY a copula C sat-
isfying the relations FXY (x, y) = C(FX(x), FY (y)) is
the distribution function of the random vector (U, V ),
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where U = FX(X) and V = FY (Y ) have uniform dis-
tributions on [0, 1]. For more details we recommend
monographs Joe(1997) [5] and Nelsen(2006) [8].

For a better specifications of the tails of a bivariate
distribution, Joe [5] introduced the lower (left) and
upper (right) tail dependence coefficients λL and λU .
The tail dependence coefficients can be calculated from
the copula C of random vector (X,Y ).

Definition 2. Let X and Y be continuous random
variables with distribution functions FX and FY and
with copula C, then the lower tail dependence coeffi-
cient is defined by

λL(C) = lim
δ→0+

Pr (FY (y) ≤ δ |FX(x) ≤ δ) = (1)

= lim
δ→0+

C(δ, δ)

δ
= lim
δ→0+

Pr (FX(x) ≤ δ |FY (y) ≤ δ)

(provided that the above indicated limits exist), and
upper tail dependence coefficient is defined by

λU (C) = lim
δ→0+

Pr (FY (y) ≥ 1− δ | FX(x) ≥ 1− δ) =

(2)

= lim
δ→0+

2δ − 1 + C(1− δ, 1− δ)
δ

=

= lim
δ→0+

Pr (FX(x) ≥ 1− δ | FY (y) ≥ 1− δ) ,

(provided that the above indicated limits exist).

It is well known (see e.g. [4]) that the values of λU
and λL for Normal and Frank copulas are equal to 0
and the Gumbel copula CGθ , θ ≥ 1 and Clayton copula
CClθ , θ > 0 satisfy the relation (see, e.g., [5, 8])

λU (CGθ ) = 2− 2
1
θ , λL(CGθ ) = 0

and
λU (CClθ ) = 0, λL(CClθ ) = 2−

1
θ .

We follow the approach of Patton [9] and consider a
so–called survival copula derived from a given copula
C corresponding to the couple (X,Y ) by

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v) (3)

which is the copula corresponding to the couple
(−X,−Y ) with the marginal distribution functions

F−X(x) = 1− FX(−x+)

and
F−Y (y) = 1− FY (−y+).

Obviously, the relations

λL(Ĉ) = λU (C) and λU (Ĉ) = λL(C)

hold.

Another natural transformations of the copula C are
copulas LC and RC corresponding to the couples
(−X,Y ) and (X,−Y ), respectively.

They have the form

LC(u, v) = v − C(1− u, v)

and
RC(u, v) = u− C(u, 1− v).

We will call the copulas LC and RC the left and the
right reflections of the copula C, respectively (see, e.g.

[1]). Since the survival copula Ĉ can be obtained in
the form of the right reflection of the copula LC as
well as the left reflection of the copula RC, we in-
cluded Ĉ also in the family of the reflections of the
copula C. Observe that if C is an absolutely contin-
uous copula with density function cC(u, v), then also
all its reflections are absolutely continuous with the
respective density functions

cLC(u, v) = cC(1− u, v),

cRC(u, v) = cC(u, 1− v)

and
cĈ(u, v) = cC(1− u, 1− v).

We recall the definitions of upper–lower and lower–
upper tail dependencies for the copula C (c.f. [6]) by

λUL(C) = λU (LC) = lim
u→0+

u− C(u, 1− u)

u
(4)

and

λLU (C) = λL(LC) = lim
v→0+

v − C(1− v, v)

v
. (5)

Obviously, for any copula C we have

λUL(LC) = λLU (RC) = λU (C) (6)

and
λLU (RC) = λLU (LC) = λL(C). (7)

Hence for a Gumbel copula C = CGθ the equalities

λUL(LC) = λLU (RC) = λU (C) = 2− 2
1
θ

hold. Moreover, λUL(C) = λLU (C) = 0 (see [6]).

Similarly, for the Clayton copula C = CClθ we have

λUL(RC) = λLU (LC) = λL(C) = 2−
1
θ

as well as λUL(C) = λLU (C) = 0.

It is well known that for the convex sums of copulas,
the corresponding density function is the convex sum
(with the same weights) of incoming density functions.
The same kind of mixing behaviour can be observed
for the coefficients of tail dependencies λU , λL, λLU
and λUL.
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3 PERTUBATION OF BIVARIATE
COPULAS

We will consider the bivariate copulas CH that can be
expressed in the form

CH(u, v) = C(u, v) +H(u, v),

where C is a fixed copula and H : [0, 1]2 → < is a
continuous function. The function H is called a per-
turbation factor and copula CH is called a perturbation
of C by means of H (see, e.g. [3]).

In [7] the next perturbation method (valid for any cop-
ula C ) was introduced.

Theorem 1. Let C : [0, 1]2 → [0, 1] be a copula and
define HC

α : [0, 1]2 → <, α ∈ [0, 1] by

HC
α (u, v) = α (u− C(u, v)) (v − C(u, v)). (8)

Then CHCα : [0, 1]2 → [0, 1] given by

CHCα (u, v) = C(u, v) +HC
α (u, v) (9)

is a copula for each α ∈ [0, 1] and any copula C.

Observe that the perturbed copula CHC1 has a follow-
ing stochastic interpretation:

Consider two independent identically distributed
continuous random vectors (X1, Y1) and (X2, Y2),
C(X1,Y1) = C(X2,Y2) = C. Then CHC1 = C(T1,T2) is a

copula characterizing the random vector (T1, T2) given
by

(T1, T2) =

=

{
(min(X1, X2),min(Y1, Y2)) with probability 0.5,

(max(X1, X2),max(Y1, Y2)) with probability 0.5.

For more details see [2].

Concerning the perturbed copulas CHCα , α ∈ [0, 1],
they can be seen as a convex sum of the original copula
C and the copula CHC1 ,

CHCα = (1− α)C + αCHC1 .

Remark 1. It is straightforward to show that the fol-
lowing relation hold

LCHCα (u, v) = LC(u, v)(1− αRC(1− u, 1− v)) (10)

and

RCHCα (u, v) = RC(u, v) (1−αLC(1−u, 1−v)). (11)

Proof.

LCHCα (u, v) = v − CHCα (1− u, v) = v − [C(1− u, v)+

+α (1− u− C(1− u, v)) (v − C(1− u, v))] =

= −αC(1− u, v)2 − αuC(1− u, v) + αvC(1− u, v)+

+αC(1−u, v)−C(1−u, v)+αuv−αv+v = v−C(1−u, v)−

−α (1− u− C(1− u, v)) (v − C(1− u, v)) =

= LC(u, v)− αLC(u, v)RC(1− u, 1− v) =

= LC(u, v)(1− αRC(1− u, 1− v)).

Similarly

RCHCα (u, v) = u− CHCα (u, 1− v) = u− [C(u, 1− v)+

+α (u− C(u, 1− v)) (v − C(u, 1− v))] =

= −αC(u, 1− v)2 + αuC(u, 1− v)− αvC(u, 1− v)+

+αC(u, 1− v)− C(u, 1− v)− αu+ αuv + u =

= u−C(u, 1−v)−α(u−C(u, 1−v))(1−v−C(u, 1−v)) =

= RC(u, v)− αRC(u, v)LC(1− u, 1− v) =

= RC(u, v) (1− αLC(1− u, 1− v)).

In the next section we will investigate tail dependen-
cies for given perturbed copulas.

4 TAIL DEPENDENCE OF
PERTURBED COPULAS

C is said to have lower (upper) tail dependence if and
only if λL 6= 0 (λU 6= 0). As it can bee seen from Defi-
nition 2, the tail dependence coefficients are connected
with the diagonal section of the bivariate copula C,
which is defined by the function

δC : [0, 1]→ [0, 1] , δC(u) = C(u, u). (12)

Combining (12) with (3) we obtain

δĈ(u) = 2u− 1 + δC(1− u, 1− u)

δC(u) = 2u− 1 + δĈ(1− u, 1− u) (13)

(because of
̂̂
C = C).

The coefficients of tail dependence (if they exist) can
be expressed by means of formulas

λL(C) = δ
′
C(0+) (14)

and (using (2))

λU (C) = 2− δ′
C(1−). (15)
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Example 1. We will consider Farlie–Gumbel–
Morgenstern (FGM)

(
CFGMα

)
α∈[−1,1] family of copu-

las given by

CFGMα (u, v) = u v+αu (1−u) v (1− v), α ∈ [−1, 1].

We have

δ(u) = u2 [1 + α (1− u)2] for α ∈ [−1, 1].

Obviously, δ
′
(0+) = 0 and δ

′
(1−) = 2. Hence

λU (Cα) = λL(Cα) = 0.

Remark 2. For α ∈ [0, 1]

CFGMα (u, v) = u v + αu (1− u) v (1− v) =

= u v + α (u− u v) (v − u v) = ΠHΠ
α
,

i.e., for α ∈ [0, 1] is CFGMα the perturbation of Π.

However, we can not expect that (8) and (9) will yield
copula HC

α for any copula C and α < 0. For ex-
ample, for the minimal copula Cmin = W given by
W (u, v) = max(u+v−1, 0) (which is the copula related
to any couple (X,−X) with a continuous distribution
function FX) we get for 0 < u, 0 < v and v < 1 − u,
the value W (u, v) = 0 and HW

α (u, v) = αu v < 0.
Hence HW

α can not be extended using (8) and (9) for
an arbitrary copula C and α < 0.

Theorem 2. Let C be a copula and λL(C), λU (C)
exist. Let CHCα be a copula given by (8) and (9). Then

λL(CHCα ) = λL(C) (16)

and
λU (CHCα ) = λU (C). (17)

Proof.

λL(CHCα ) = δ
′
CHCα

(0+) = δ
′
C(0+)+α

d [u− δC(u)]
2

du
|(0+).

We have 0 ≤ u − δC(u) ≤ u for u ∈ [0, 1] and thus
d [u−δC(u)]2

du |(0+) = 0. Hence

λL(CHCα ) = δ
′
C(0+) = λL(C).

The upper tail dependence is given by

λU (CHCα ) = 2− δ′
CHCα

(1−) =

= 2−
(
δ
′
C(1−) + α

d [u− δC(u)]
2

du
|(1−)

)
. (18)

Combining (18) with (13) and substituting u = 1 − v
we obtain

u− δC(u) = v − δĈ(v)

and thus

d [u− δC(u)]2

du
|(1−) =

d [v − δĈ(v)]2

dv
|(0+) = 0.

Therefore,

λU (CHCα ) = 2− δ′
C(1−) = λU (C).

Thus, the perturbations HC
α do not change the values

of the coefficients of tail dependence along the first
(main) diagonal.

The following result shows that the effect of those per-
turbations is much different along the second diagonal.

Theorem 3. Let for a copula C the coefficients λLU
and λUL given by (5) and (4) exist. Let CHCα be given
by (8) and (9). Then the relations

λUL
(
CHCα

)
= λUL(C) (1− α) (19)

and
λLU

(
CHCα

)
= λLU (C) (1− α). (20)

hold.

Proof. For D : [0, 1]2 → [0, 1] we define

βD : [0, 1]→ [0, 1] , βD(u) = D(u, 1− u). (21)

Let C be a copula and λUL(C) and λLU (C) exist. Us-
ing (4), we get

λUL(C) = 1− β′C(0+),

similarly, from (5) we get

λLU (C) = 1 + β′C(1−).

Since

HC
α (u, v) = α (u− C(u, v)) (v − C(u, v)) ,

CHCα (u, v) = C(u, v)+HC
α (u, v) = C(u, v)+αHC

1 (u, v).

λUL
(
CHCα

)
= λUL(C)− αβ′HC1 (0+). (22)

βHC1 (u) = (u− C(u, 1− u)) ((1− u)− C(u, 1− u)) ,

β′HC1 (0+) =
(
1− β′C(0+)

)
1+0

(
0− β′C(0+)

)
= λUL(C).

(23)
Combining (22) with (23) we get that (19) holds. Sim-
ilarly,

β′HC1 (1−) = 0
(
1− β′C(1−)

)
+1

(
−1− β′C(1−)

)
= −λLU (C),

and thus

λLU
(
CHCα

)
= λLU (C)+αβ′HC1 (1−) = λLU (C) (1−α),

hence (20) holds.
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Corollary 1. The above relations imply (together
with (8) and (9)) the following equalities:

λLU
(
LCHCα

)
= λL

(
CHCα

)
= λL (C)

λLU
(
RCHCα

)
= λU

(
CHCα

)
= λU (C)

λUL
(
LCHCα

)
= λU

(
CHCα

)
= λU (C)

λUL
(
RCHCα

)
= λL

(
CHCα

)
= λL (C)

Moreover, from (6), (7), (19) and (20) we obtain

λU
(
LCHCα

)
= (1− α)λU (LC)

λL
(
LCHCα

)
= (1− α)λU (LC)

λU
(
RCHCα

)
= (1− α)λU (RC)

λL
(
RCHCα

)
= (1− α)λU (RC).

Remark 3. Note that our approach allows to intro-
duce a parametric class of perturbed copulas with lin-
early varying lower and upper tail dependencies, too.
Indeed, consider a copula C with lower and upper tail
dependencies λL and λU , respectively. Then

λUL(C) = λU (LC)

and

λLU (C) = λL(LC).

Now, for the perturbed copulas LCHLCα it holds

λU (LLCHLCα ) = λUL(LCHLCα ) = (1− α)λUL(LC) =

= (1− α)λU (LLC) = (1− α)λU (C),

and similarly

λL(LLCHLCα ) = (1− α)λL(C).

Observe that if α = 0 then LCHLC0
= LC and thus

LLCHLC0
= LLC = C.

If we denote the new class of perturbations as

Dα = LLCLCα , (24)

we get

λUL(Dα) = λU
(
LCLCα

)
= λU (LC) = λUL(C).

Similarly,

λLU (Dα) = λL
(
LCLCα

)
= λL(LC) = λLU (C).

Thus the class Dα given by (24) does not change the
values of the tail dependencies along the second di-
agonal, while it reduces them linearly along the main
diagonal.

5 CONCLUSIONS

We have shown that the investigated class of pertur-
bations that was introduced in [7] as a (partial) gener-
alization of the FMG class of copulas does not change
the values of the coefficients of tail dependencies along
the main diagonal. However, it (quit surprisingly)
yields their reduction along the second diagonal. In-
spired by suggestions of Radko Mesiar, we introduced
another class of perturbations that reduce linearly the
coefficients of tail dependencies along the main diago-
nal while preserving their values along the second di-
agonal.
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Summary

The article deals with the notion of fuzzy
equivalence, whose definition depends on a
fuzzy conjunction and implication. More-
over, the preservation of properties of such
(C, I)-equivalences during aggregation pro-
cess is considered and the way of generating
new fuzzy equivalences from the given ones
is indicated.
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1 INTRODUCTION

Aggregation functions can be useful in a variety of
information fusion problems [3, 8]. The problem of
aggregation of diverse mathematical objects is rather
well known. We may aggregate for example fuzzy re-
lations and consider the problem of preservation of
fuzzy relation properties during aggregation process
(e.g. [6, 11, 14, 15]) or examine fuzzy connectives and
preservation of their axioms or properties by aggrega-
tion functions (e.g. [2, 5, 7, 10]).

Examination of preservation of axioms and proper-
ties of fuzzy connectives finds its applications in de-
cision making, approximate reasoning and fuzzy con-
trol. Moreover, preservation in the aggregation process
not only individual properties, but all axioms of given
fuzzy connectives shows a way of generating a new
fuzzy connective of the same kind. In this context,
some of the fuzzy connectives (negation, conjunction,
disjunction and implication) were examined for exam-
ple in [7], a fuzzy implication was examined in [5],
diverse kind of a fuzzy equivalences were considered in
[2, 10].

In this paper, the definition of (C, I)-equivalence, as
one of fuzzy connectives, generated by a fuzzy conjunc-
tion and implication is presented. Besides, the preser-
vation of the various properties of (C, I)-equivalence
during aggregation process is indicated and a way of
generating new fuzzy equivalences from the given ones
is presented.

In Section 2, basic notions useful in the paper are pre-
sented. In Section 3, fuzzy equivalences are discussed,
and in Section 4, aggregation of fuzzy equivalences are
examined.

2 PRELIMINARIES

Here we recall basic notions and their properties which
will appear in the sequel. In particular, we consider
fuzzy conjunctions, fuzzy implications and aggregation
functions.

2.1 FUZZY CONJUNCTIONS

First, the definition and some properties of a fuzzy
conjunction is presented.

Definition 1 ([7]). An operation C : [0, 1]2 → [0, 1]
is called a fuzzy conjunction if it is increasing with
respect to each variable and

C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0.

Directly from the definition we obtain a useful prop-
erty of a fuzzy conjunction.

Corollary 1. Any fuzzy conjunction has a zero ele-
ment z = 0.

Example 1. Consider the following family of fuzzy
conjunctions for α ∈ [0, 1]

Cα(x, y) =





1, if x = y = 1

0, if x = 0 or y = 0

α otherwise

.
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Operations C0 and C1 are the least and the greatest
fuzzy conjunction, respectively. Well-known t-norms
TM , TP , TL, TD are other examples of fuzzy conjunc-
tion.

2.2 FUZZY IMPLICATIONS

Next, we recall the notion of a fuzzy implication.

Definition 2 ([1], pp. 2,9). A binary operation
I : [0, 1]2 → [0, 1] is called a fuzzy implication if it is
decreasing with respect to the first variable and in-
creasing with respect to the second variable and

I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0.

Corollary 2. A fuzzy implication has the right ab-
sorbing element 1 and fulfils the condition

I(0, y) = 1, y ∈ [0, 1].

We can also consider other properties of a fuzzy im-
plications (for more information see e.g. [1]). For this
contribution one of these is especially important.

Definition 3 ([1], pp. 9). We say that a fuzzy impli-
cation I fulfils the identity principle (IP) if

I(x, x) = 1, x ∈ [0, 1]. (IP)

Example 2 (cf. [1], pp. 4,5). Let us present the
following family of fuzzy implications for α ∈ [0, 1]

Iα(x, y) =





0, if x = 1, y = 0

1, if x = 0 or y = 1

α otherwise

.

The operations I0 and I1 are the least and the greatest
fuzzy implication, respectively, where

I0(x, y) =

{
1, if x = 0 or y = 1

0, otherwise
,

I1(x, y) =

{
0, if x = 1, y = 0

1, otherwise
.

The following are the other examples of fuzzy implica-
tions.

ILK(x, y) = min(1− x+ y, 1),

IGD(x, y) =

{
1, if x ≤ y
y, if x > y

,

IRC(x, y) = 1− x+ xy,

IDN(x, y) = max(1− x, y),

IGG(x, y) =

{
1, if x ≤ y
y
x , if x > y

,

IRS(x, y) =

{
1, if x ≤ y
0, if x > y

,

IYG(x, y) =

{
1, if x, y = 0

yx, else
,

IFD(x, y) =

{
1, if x ≤ y
max(1− x, y), if x > y

,

IWB(x, y) =

{
1, if x ≤ 1

y, if x = 1
,

IDP(x, y) =





y, if x = 1

1− x, if y = 0

1 otherwise

.

The implications fulfilling the property (IP) are: I1,
ILK, IGD, IGG, IRS, IWB, IFD, IDP.

2.3 AGGREGATION FUNCTIONS

Now, we recall the notion of aggregation function.

Definition 4 (cf. [4], pp. 6-22, [12], pp. 216-218).
Let n ∈ N. A function A : [0, 1]n → [0, 1] which is
increasing, i.e. for xi, yi ∈ [0, 1], xi 6 yi, i = 1, . . . , n

A(x1, . . . , xn) 6 A(y1, . . . , yn)

is called an aggregation function if

A(0, . . . , 0) = 0, A(1, . . . , 1) = 1.

Example 3 (cf. [4], pp. 44-56, [9]). A0, A1 are the
least and the greatest aggregation functions, where

A0(x1, . . . , xn) =

{
1, (x1, . . . , xn) = (1, . . . , 1)

0, (x1, . . . , xn) 6= (1, . . . , 1)
,

A1(x1, . . . , xn) =

{
0, (x1, . . . , xn) = (0, . . . , 0)

1, (x1, . . . , xn) 6= (0, . . . , 0)
,

x1, . . . , xn ∈ [0, 1]. Other simple examples of aggrega-
tion function are projections

Pk(x1, . . . , xn) = xk, for k = 1, 2, . . . , n, (1)

and weighted means

Aw(x1, . . . , xn) =
n∑

k=1

wkxk, (2)

for wk > 0,
∑n
k=1 wk = 1.
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3 FUZZY EQUIVALENCES

In this section the definition of (C, I)-equivalence is
presented. Moreover, the properties of such a fuzzy
connective are examined according to axioms of other,
well-known, notions of a fuzzy C-equivalence [13] as
well as a fuzzy equivalence introduced by Fodor and
Roubens [11].

In the literature one can meet various definitions of
a fuzzy equivalence. A trivial case used in many
contributions, for example those concerning general-
ized logical laws, is an equality, that is the function
E : [0, 1]2 → [0, 1] given by the formula (relation of
identity)

E(x, y) =

{
1, if x = y

0, if x 6= y
. (3)

Usually it is expected that such notion of a fuzzy
equivalence is a generalization of the equivalence of
classical propositional calculus, that is the function
E : [0, 1]2 → [0, 1] that fulfils conditions E(0, 1) =
E(1, 0) = 0, E(0, 0) = E(1, 1) = 1. Here the approach
will be applied in the proposed definition of a fuzzy
(C, I)-equivalence as well as in other definitions of a
fuzzy equivalence chosen from many other well-known
notions.

Let us consider a fuzzy equivalence defined on the pat-
tern of the following law of classical propositional cal-
culus

(p⇔ q)⇔ [(p⇒ q) ∧ (q ⇒ p)].

Definition 5. Let C, I be a fuzzy conjunction and
implication, respectively. The function E : [0, 1]2 →
[0, 1] given by the formula

EC,I(x, y) = C(I(x, y), I(y, x)), x, y ∈ [0, 1] (4)

will be called (C, I)-equivalence.

Remark 1. Let us notice that the function (4) fulfils
zero-one table of crisp equivalence. Indeed,

EC,I(0, 0) = C(I(0, 0), I(0, 0)) = C(1, 1) = 1,

EC,I(1, 1) = C(I(1, 1), I(1, 1)) = C(1, 1) = 1,

EC,I(0, 1) = C(I(0, 1), I(1, 0)) = C(1, 0) = 0,

EC,I(1, 0) = C(I(1, 0), I(0, 1)) = C(0, 1) = 0.

Additionally, if I fulfils (IP), then EC,I(x, x) = 1, as
in this case we have EC,I(x, x) = C(I(x, x), I(x, x)) =
C(1, 1) = 1 for any x ∈ [0, 1]. Besides, if C is a commu-
tative fuzzy conjunction, then we obtain EC,I(x, y) =
C(I(x, y), I(y, x)) = C(I(y, x), I(x, y)) = EC,I(y, x)
for any x, y ∈ [0, 1], which means that EC,I is also
commutative.

Example 4. Let us consider the greatest fuzzy impli-
cation I1 and an arbitrary fuzzy conjunction C. Then

EC,I1(x, y) =

{
0, if {x, y} = {0, 1}
1 otherwise

.

For other examples of (C, I)-equivalences see Example
5.

Now, let us focus on the notion of fuzzy equivalence
considered in [11].

Definition 6 ([11], p. 33). A fuzzy equivalence is a
function E : [0, 1]2 → [0, 1] which fulfils

E(0, 1) = 0, (5)

E(x, x) = 1, x ∈ [0, 1], (6)

E(x, y) = E(y, x), x, y ∈ [0, 1], (7)

E(x, y) 6 E(u, v), x 6 u 6 v 6 y, x, y, u, v ∈ [0, 1].
(8)

There exists a characterization of such defined fuzzy
equivalence by the use of fuzzy implications fulfilling
(IP).

Theorem 1 ([11], p. 33). A function E : [0, 1]2 →
[0, 1] is a fuzzy equivalence if and only if there exists
such a fuzzy implication I fulfilling (IP) that

EI(x, y) = min(I(x, y), I(y, x)), x, y ∈ [0, 1]. (9)

Corollary 3 ([11], p. 34). A function E : [0, 1]2 →
[0, 1] is a fuzzy equivalence if and only if there exists
such a fuzzy implication I fulfilling (IP) that

EI(x, y) = I(max(x, y),min(x, y)), x, y ∈ [0, 1]. (10)

By Theorem 1 we obtain as follows.

Corollary 4. Any fuzzy equivalence (Definition 6) is
(C, I)-equivalence.

Remark 2. A fuzzy equivalence is (C, I)-equivalence,
however, it is not necessary C = min, what shows Ex-
ample 4. Thus, (C, I)-equivalence is a generalization
of a fuzzy equivalence.

Example 5. The following table presents examples
of fuzzy equivalences as well as (min, I)-equivalences
generated by the use of formula (10) and these of the
fuzzy implications from Example 2 that fulfil (IP). For
example, we will show how to obtain the fuzzy equiv-
alence EGG. Let us notice that for any x, y ∈ [0, 1] we
have max(x, y) 6 min(x, y) ⇔ x = y. Thus, for any
x, y ∈ [0, 1] we have

EGG(x, y) =

{
1, if x = y
min(x,y)
max(x,y) , if x 6= y

=





1, if x = y
x
y , if x < y
y
x , if x > y

.
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Let us also see, that in the case of a fuzzy equivalence
generated by the fuzzy implication IRS we obtain the
fuzzy equivalence ERS , which is the fuzzy equality (3).

I EI
ILK ELK(x, y) = 1− |x− y|

IGD EGD(x, y) =





1, if x = y

x, if x < y

y, if x > y

IGG EGG(x, y) =





1, if x = y
x
y , if x < y
y
x , if x > y

IRS ERS(x, y) =

{
1, if x = y

0, if x 6= y

IWB EWB(x, y) =





1, if x 6= 1, y 6= 1

x, if y = 1

y, if x = 1

IFD EFD(x, y) =





1, if x = y

max(1− y, x), if x < y

max(1− x, y), if x > y

IDP EDP (x, y) =





x, if y = 1

y, if x = 1

1− x, if y = 0

1− y, if x = 0

1 otherwise

I1 E(x, y) =

{
0, if {x, y} = {0, 1}
1 otherwise

The next definition follows from the notion of a fuzzy
equivalence relation, namely relation which is reflexive,
symmetric and transitive.

Definition 7 (cf. [13], p. 33). Let C be a fuzzy
conjunction. A fuzzy C-equivalence is a function
E : [0, 1]2 → [0, 1] fulfilling the conditions (5)–(7) and
C-transitivity, i.e.

C(E(x, y), E(y, z)) 6 E(x, z), x, y, z ∈ [0, 1]. (11)

In the cited monograph [13] property (5) is omitted.
However, in this case the constant function E(x, y) =
1, x, y ∈ [0, 1] fulfils the definition of a fuzzy equiva-
lence although it is not a generalization of crisp equiv-
alence. This is why this assumption is added to the
definition.

Let us notice that one may weaken conditions put onto
a fuzzy C-equivalence by replacing the C-transitivity
property with the appropriate weaker transitivity con-
dition. Such considerations have already been pre-
sented e.g. in [2, 10].

Theorem 2. Let C,C1 be arbitrary fuzzy conjunc-
tions. (C, I0)-fuzzy equivalence is C1-transitive.

Proof. Let x, y, z ∈ [0, 1]. First, we consider the left
and right sides of the transitivity equation (11).

L = C1(EC,I0(x, y), EC,I0(y, z)) =

= C1(C(I0(x, y), I0(y, x)), C(I0(y, z), I0(z, y))),

R = EC,I0(x, z) = C(I0(x, z), I0(z, x)).

Let us notice, that if x = y = z = 0 or x = y =
z = 1, then all of the values I0(x, y), I0(y, x), I0(y, z),
I0(z, y), I0(x, z), I0(z, x) are equal to 1. Thus, L =
R = 1. Otherwise, by the formula of the fuzzy impli-
cation I0, at least one of the values I0(x, y), I0(y, x),
I0(y, z), I0(z, y) is equal to 0, and then, by Corollary
1, L = 0 6 R.

Example 6. Let C,C1 be arbitrary fuzzy conjunc-
tions. (C, I1)-fuzzy equivalence is not C1-transitive.

Proof. Let x = 0, y = 0.5, z = 1. On one hand we
have

L = C1(EC,I1(0, 0.5), EC,I1(0.5, 1)) =

C1(C(I1(0, 0.5), I1(0.5, 0)), C(I1(0.5, 1), I1(1, 0.5))) =

C1(C(1, 1), C(1, 1)) = C1(1, 1) = 1.

On the other hand R = EC,I1(0, 1) = 0.
Thus L = 1 > 0 = R and (C, I1)-fuzzy equivalence is
not C1-transitive.

4 PRESERVATION OF FUZZY
EQUIVALENCES IN
AGGREGATION PROCESS

Here we consider aggregation of fuzzy connectives de-
fined in the previous section.

Definition 8 (cf. [11], p. 14). Let n ∈ N, A be an
arbitrary aggregation function, Ek : [0, 1]2 → [0, 1] for
k = 1, . . . , n. For given binary operations E1, . . . , En,
we consider a binary operation E : [0, 1]2 → [0, 1] such
that for all x, y ∈ [0, 1]

E(x, y) = A(E1(x, y), . . . , En(x, y)). (12)

We say that an aggregation function A preserves a
property of the given binary operations if the oper-
ation E defined by (12) has such a property for any
E1, . . . , En fulfilling this property.

At first we recall or prove some facts concerning preser-
vation of given property of a binary operation.

Lemma 1 ([7]). Any aggregation function preserves
binary truth tables of aggregated fuzzy connectives of
the same type.

Lemma 2 ([7]). Any aggregation function preserves
symmetry of aggregated binary operations.
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Lemma 3 ([7]). Any aggregation function preserves
the property (6) of aggregated binary operations.

Lemma 4. Any aggregation function preserves the
property (8) of the binary operations operations.

Proof. Let E1, . . . , En be binary operations fulfilling
conditions (8). According to (12), for any aggregation
function A one has for any x, y, u, v ∈ [0, 1] such that
x 6 u 6 v 6 y

E(x, y) = A(E1(x, y), . . . , En(x, y)) 6
6 A(E1(u, v), . . . , En(u, v)) = E(u, v),

as Ek(x, y) 6 Ek(u, v) for k = 1, . . . , n and by mono-
tonicity of A.

Next, let us notice that in the following theorem the
notion of dominance is involved. Some characteriza-
tions and many examples of the dominance between
aggregation functions and fuzzy conjunctions can be
found in [2].

Theorem 3 (cf. [10]). Let C be a fuzzy conjunction.
An aggregation function A : [0, 1]n → [0, 1] preserves
condition (11) of the aggregated binary operations if
and only if A dominates C, i.e.

A(C(a1,1, a1,2), . . . , C(an,1, an,2)) >
C(A(a1,1, . . . , an,1), A(a1,2, . . . , an,2)).

Remark 3. By Lemma 1 it follows that the opera-
tion E defined by (12) is a generalization of the equiv-
alence of classical propositional calculus without any
additional assumptions on an aggregation function A.

By Lemmas 1–4 it follows the following result.

Theorem 4. Any aggregation function preserves ax-
ioms (5)–(8) of a fuzzy equivalence presented in Defi-
nition 6.

Remark 4. By above theorem we see that formula
(12) gives possibility of generating new fuzzy equiva-
lences from given ones.

Example 7. Let us consider a binary weighted mean,
that is an aggregation function given by (2) for n=2,
where w1 = w2 = 0.5. By Theorem 4, from fuzzy
equivalences E1 = ELK and E2 = EGD, by the use of
formula (12) we obtain a new fuzzy equivalence (Def-
inition 6).

E(x, y) = A(ELK(x, y), EGD(x, y)) =




1, if x = y

0.5 + x− 0.5y, if x < y

0.5− 0.5x+ y, if x > y

.

By Lemmas 1–3 and Theorem 3 we obtain the follow-
ing result.

Theorem 5 (cf. [2]). Let C be a fuzzy conjunc-
tion, A an aggregation function such as A dominates
C. A preserves axioms (5)–(7), (11) of a fuzzy C-
equivalence.

Corollary 5. Any aggregation function preserves
additional properties, such as (5)–(8) of (C, I)-
equivalence. An aggregation function that dominates
a fuzzy conjunction C preserve supplementary C-
transitivity of (C, I)-equivalence.

5 CONCLUSIONS

In the paper, the definition of a fuzzy equivalence that
depends on a fuzzy conjunction and implication is pro-
posed. Some of its properties according to axioms of
other notions o fuzzy equivalence are examined. More-
over, the preservation of the properties in aggregation
process are considered. As further work, other prop-
erties of (C, I)-equivalences may be examined taking
into consideration additional properties of generators
C and I.
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Summary

In our previous work, we proved that the
only continuous operations on fuzzy sets ful-
filling the principle of inclusion and exclu-
sion are Gödel and product operations and
their ordinal sums. We have made a similar
observation on t-representable measures on
interval-valued fuzzy sets and IF-sets. Here
we complete these results and discuss also op-
erations which are not t-representable.

Keywords: Principle of inclusion and ex-
clusion, fuzzy set, interval-valued fuzzy set,
IF-set, (Atanassov’s) intuitionistic fuzzy set.

1 THE PRINCIPLE OF INCLUSION
AND EXCLUSION

We say that a function m and operations
.∪,∩. satisfy

the principle of inclusion and exclusion if the following
equation holds for any A1, . . . , An:

m

( .⋃n

i=1
Ai

)
−

n∑

i=1

m(Ai) +
n−1∑

i=1

n∑

j=i+1

m(Ai ∩. Aj)

− · · ·+ (−1)nm

(⋂
.

n

i=1
Ai

)
= 0 . (1)

For n = 2, (1) reduces to the valuation property (see [2]
or [17])

m(A
.∪B)−m(A)−m(B) +m(A ∩. B) = 0 .

The classical result is that the principle of inclusion
and exclusion holds if

.∪,∩. are the set-theoretical union

and intersection and m is the cardinality of sets or a
measure on an algebra of sets.

Example 1.1 Formula (1) holds if A1, . . . , An are

numbers, m the identity mapping, and
.∪,∩. one of the

following couples of operations:

1. the disjunction and conjunction on {0, 1},

2. the maximum and minimum on any set of reals,

3. the product t-conorm (probabilistic sum) x
P∨ y =

x+ y − x · y and the product on [0, 1].

We shall show that these results have the same prin-
ciple, which can be expressed by their common gen-
eralization, the principle of inclusion and exclusion
for fuzzy sets. Moreover, we further generalize it to
IV-sets (interval-valued fuzzy sets) and IF-sets and
show the limitations of this principle.

2 BASIC NOTIONS

Let us first introduce basic notions on fuzzy sets. See
[11, 18, 19] for more details.

2.1 Fuzzy set operations

We fix a non-empty set (universe) X and a σ-algebra
S of subsets of X. A fuzzy set A is described by an
S-measurable membership function µA : X → [0, 1].
The set of all S-measurable fuzzy subsets of X will be
denoted by F . In particular 1X , 0X ∈ F are the con-
stant functions on X with values 1, 0, respectively. An
element A ∈ F is called sharp if A : X → {0, 1}. They
form a subalgebra of F isomorphic to the σ-algebra S.

We shall restrict attention to continuous opera-
tions (fuzzy unions and intersections), thus the
S-measurability is preserved. The same applies to gen-
eralizations of fuzzy sets studied in the following sec-
tions. Most of the preceding papers studied only the
collections of all fuzzy subsets of the given universe,
i.e., the special case where S is the power set of X.
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We denote by ∧. and
.∨ a general t-norm and t-conorm.

Particular types will be distinguished by indices in
place of dots. We shall use mainly the following
t-norms:

x ∧
G
y = min(x, y) , (Gödel )

x ∧
P
y = x · y , (product)

x ∧
L
y = max(x+ y − 1, 0) . ( Lukasiewicz)

The respective t-conorms,
G∨, P∨, L∨, are obtained by

duality with respect to the standard fuzzy negation
¬α = 1 − α. Fuzzy unions and intersections are de-
fined by the pointwise application of the respective
t-conorms and t-norms:

µ
A
.∪B(x) = µA(x)

.∨ µB(x) , (2)

µA∩.B(x) = µA(x) ∧. µB(x) . (3)

The notation
.∪ and ∩. is used for a general union and

intersection. Particular types will be distinguished by
the same indices as the corresponding t-conorms and
t-norms.

For the definition of a measure, the notion of conver-
gence will be needed. The sign ↗ will appear in con-
nection with objects of two different types, but in a
similar sense: For fuzzy sets A,Ai (i ∈ N),

Ai ↗ A ⇐⇒ (Ai ⊆ Ai+1 ∀i ∈ N and
G⋃∞
i=1

Ai = A)

and for α, αi ∈ R (i ∈ N),

αi ↗ α ⇐⇒ (αi ≤ αi+1 ∀i ∈ N and

∞∨

i=1

αi = α) .

2.2 Interval-valued fuzzy sets and IF-sets

There are more generalizations of fuzzy sets. One of
them is the concept of interval-valued fuzzy sets pro-
posed by Zadeh (see [29]), which is based on the idea
of ill-known membership degree. An interval-valued
fuzzy set (IV-set) A on the universe X is described by
two S-measurable functions µA, %A : X → [0, 1], where
µA(x) ≤ %A(x) for all x ∈ X. Another approach is
the concept of IF-sets (derived from Atanassov’s in-
tuitionistic fuzzy sets1). An IF-set is given by two
S-measurable functions µA, νA : X → [0, 1] satisfying
the condition µA(x) + νA(x) ≤ 1 for all x ∈ X. Func-
tions µA and νA are called the membership function
and the non-membership function, respectively.

1The name “intuitionistic fuzzy sets” was introduced
by K. Atanassov [1]. Due to criticism of this terminology
in [9], we use the term “IF-sets”.

Although the motivation is different, formally the
IV-sets and IF-sets are isomorphic. The bijection is
given by

%A = 1X − νA (4)

and vice versa. Thus we consider these as two alterna-
tive descriptions of the same object. For an IV-set (or
IF-set) A, functions µA, νA, %A are defined and linked
by (4). The set of all such objects (IV-sets or IF-sets
on a universe X) will be denoted by IF . The fol-
lowing results are mostly formulated for IV-sets, while
IF-sets were used, e.g. in [12]. Ordinary fuzzy sets
can be canonically embedded into IF by the homo-
morphism which, for a fuzzy set A ∈ F with a mem-
bership function µA, defines additionally %A = µA,
νA = 1X − µA. Thus we consider F as a subset of IF
containing ordinary fuzzy sets (such an A ∈ F satisfies
µ(A) = %(A) = 1X − ν(A)). The elements of IF \ F
are called genuine IV-sets.

When seen as interval-valued fuzzy sets, elements of
IF can be alternatively represented by S-measurable
mappings from X into the set J = {[µ, %] : 0 ≤ µ ≤
% ≤ 1} of all closed subintervals of [0, 1]. The partial
ordering on J is componentwise, i.e.

[µ1, %1] ≤ [µ2, %2] ⇐⇒ µ1 ≤ µ2 and %1 ≤ %2 .

The partial ordering is extended to IF so that A ≤ B
iff any of the following two equivalent conditions holds:

µA ≤ µB and %A ≤ %B ,
µA ≤ µB and νA ≥ νB .

We denote by Z the least element of IF ,

µZ = 0X , %Z = 0X , νZ = 1X ,

and by U the greatest element,

µU = 1X , %U = 1X , νU = 0X .

An intersection ∩. and union
.∪ on IF are defined by

the pointwise application of the respective t-norm u.
and t-conorm u. on J :

µA∩.B(x) = µA(x) u. µB(x) , (5)

µ
A
.∪B(x) = µA(x)

.t µB(x) , (6)

where t-norms and t-conorms on J are defined by
the usual requirements: commutativity, associativity,
monotonicity, and neutral elements [1, 1] (of u. ) and

[0, 0] (of
.t). We distinguish by notation t-norms and

t-conorms on [0, 1] and on J because the former are
used in definitions of the latter ones.
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3 MEASURES

3.1 Measures on systems of fuzzy sets

Definition 3.1 [2] A mapping m : F → [0, 1] is called
a state if the following properties are satisfied:

(M1) m(1X) = 1, m(0X) = 0,

(M2) m(A
L∪B) = m(A) +m(B)−m(A ∩

L
B),

(M3) An ↗ A⇒ m(An)↗ m(A).

States were characterized by D. Butnariu and E. P.
Klement in [2]:

Theorem 3.2 Every state m is of the form

m(A) =

∫
µA dP , (7)

where P is a state (probability measure) on the Boolean
σ-algebra of sharp elements of F (P is the restriction
of m).

A state of the form (7) is also called an integral state.
It has been used in many previous studies, even in the
pioneering work by Zadeh [28]. However, it was usu-
ally introduced without any deeper motivation. The
axiomatic approach of Butnariu and Klement proves
that the only states are integral states. We refer to [27]
for an overview of different approaches to measures on
systems of fuzzy sets and to [17] for the explanation
of the particular role of  Lukasiewicz operations in the
definition of a state.

3.2 Measures on systems of IV-sets

The following definition comes from Riečan [20].

Definition 3.3 A mapping m : IF → [0, 1] is called
a state if the following properties are satisfied for all
A,B,An ∈ IF (n ∈ N):

1. m(U) = 1, m(Z) = 0,

2. A ∩
L
B = Z ⇒ m(A

L∪B) = m(A) +m(B),

3. An ↗ A⇒ m(An)↗ m(A),

In [4], Ciungu and Riečan have proved the following
representation theorem (see also [5, 22, 24, 26]):

Theorem 3.4 [4] For any state m : IF → [0, 1] there
exist probability measures P,Q : S → [0, 1] and α ∈
[0, 1] such that P ≥ αQ and, for all A ∈ IF ,

m(A) =

∫

X

µA dP + α

(
1−

∫

X

(µA + νA) dQ

)
. (8)

We need another formulation:

Theorem 3.5 For any state m : IF → [0, 1] there ex-
ist probability measures R,Q : S → [0, 1] and α ∈ [0, 1]
such that, for all A ∈ IF ,

m(A) = (1− α)

∫

X

µA dR+ α

∫

X

%A dQ .

Proof: We take the representation from Theorem 3.4.
Then we find a state R satisfying

P = αQ+ (1− α)R .

If α = 1, R can be arbitrary (e.g., Q). Otherwise, we
define

R =
P − αQ

1− α .

Due to the assumption P ≥ αQ, R is non-negative.
For each B ∈ S, its complement, B′ = X \B, satisfies

0 ≤ (1− α)R(B′) = P (B′)− αQ(B′)

= 1− P (B)− α (1−Q(B))

= 1− α−
(
P (B)− αQ(B)

)
≤ 1− α .

Thus R ≤ 1. The σ-additivity and other conditions are
obviously preserved, so R is a state. We reformulate
(8):

m(A) =

∫

X

µA dP + α

(
1−

∫

X

(µA + νA) dQ

)

=

∫

X

µA dP − α
∫

X

µA dQ+ α

(
1−

∫

X

νA dQ

)

=

∫

X

µA d(P − αQ) + α

∫

X

(1− νA) dQ

= (1− α)

∫

X

µA dR+ α

∫

X

%A dQ .

�

Theorem 3.5 says that each state is a convex combina-
tion of two states, one depending only on µA, the other
only on %A for each A. We acknowledge that this ob-
servation was made, under different formulation, also
in [22].

In particular, all constant functions X → J form a
sublattice of S isomorphic to J . For a state m on J ,
there is an α ∈ [0, 1] such that

m([µ, %]) = (1− α)µ+ α% .

This means that a state on J is just a convex combi-
nation of the entries.

As an alternative, Grzegorzewski and Mrówka [10] de-
fined a probability P of each A ∈ IF by the interval

P(A) =

[∫

X

µA dP, 1−
∫

X

νA dP

]
,
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where P is a probability measure on the σ-algebra S.
A more general axiomatic approach to probability on
IF was proposed by Riečan [21]. The main conclusion
is that P(A) =

[
P[(A),P](A)

]
, where P[,P] : F →

[0, 1] are states and P[ ≤ P]. The principal conclusion
is that both bounds depend linearly on µ(A), %(A).
Here we restrict attention to states and refer to [12, 13]
for details on the approach based on probabilities.

4 THE PRINCIPLE OF INCLUSION
AND EXCLUSION FOR FUZZY
SETS

It is natural to ask whether the principle of inclusion
and exclusion holds for fuzzy sets. This question has
many aspects because we can consider different fuzzy
unions and intersections. We ask which operations.∪,∩. satisfy (1) for all A1, . . . , An and all states m.

We require this for all underlying σ-algebras S, thus
avoiding trivial cases satisfying the principle of inclu-
sion and exclusion because of degenerate S.

Using the integral representation of states, the princi-
ple of inclusion and exclusion requires that the follow-
ing expression must be zero:

0 = m
( .⋃n

i=1
Ai

)
−

n∑

i=1

m(Ai) +
n−1∑

i=1

n∑

j=i+1

m(Ai ∩. Aj)

− · · ·+ (−1)nm
(⋂
.

n

i=1
Ai

)

=

∫ (
µ .∪n

i=1 Ai
−

n∑

i=1

µAi
+
n−1∑

i=1

n∑

j=i+1

µAi∩.Aj

− · · ·+ (−1)n µ∩. ni=1 Ai

)
dP

=

∫ ( .∨n

i=1
µAi
−

n∑

i=1

µAi
+
n−1∑

i=1

n∑

j=i+1

µAi
∧. µAj

− · · ·+ (−1)n
∧
.

n

i=1 µAi

)
dP .

This integral has to be zero for all fuzzy sets
A1, . . . , An. This means that the integrand has to be
zero P -almost everywhere:

0 =

.∨n

i=1
µAi −

n∑

i=1

µAi +

n−1∑

i=1

n∑

j=i+1

µAi ∧. µAj

− · · ·+ (−1)n
∧
.

n

i=1 µAi
.

The membership degrees can be replaced by any con-
stants, µAi := ai:

0 =

.∨n

i=1
ai −

n∑

i=1

ai +

n−1∑

i=1

n∑

j=i+1

ai ∧. aj

− · · ·+ (−1)n
∧
.

n

i=1 ai . (9)

Validity of equation (9) for any a1, . . . , an ∈ [0, 1] is
equivalent to the validity of the principle of inclusion
and exclusion in the form (1) for the respective fuzzy
set operations. The complete answer for continuous
fuzzy operations was given in [15] (we refer to [11,
25] for the definition and notation of ordinal sums of
t-norms and t-conorms):

Theorem 4.1 Let
.∪,∩. be a fuzzy union and inter-

section on F corresponding (by (2),(3)) to a contin-

uous t-conorm
.∨ and a continuous t-norm ∧. . Then

.∪,∩. satisfy the principle of inclusion and exclusion iff

there is a (possibly empty) collection of disjoint in-

tervals ((aα, bα))α∈I in [0, 1] such that ∧. and
.∨ are

ordinal sums

∧. = (〈aα, bα,∧
P
〉)α∈I , (10)

.∨ = (〈aα, bα,
P∨〉)α∈I . (11)

5 THE PRINCIPLE OF INCLUSION
AND EXCLUSION FOR IV- AND
IF-SETS

Further, the principle of inclusion and exclusion was
generalized to IV- and IF-sets. In previous papers,
e.g., [3, 4, 5, 10, 12, 23], only the Gödel, product, or
 Lukasiewicz operations were considered (with the pos-
itive answer for the first two and the negative answer
for  Lukasiewicz operations).

5.1 The principle of inclusion and exclusion
for t-representable operations on IF

For A,B ∈ IF , t-representable intersections are com-
puted by the following formulas:

µA∩.B(x) = µA(x) ∧
1
µB(x) , (12)

%A∩.B(x) = %A(x) ∧
2
%B(x) , (13)

νA∩.B(x) = νA(x)
2∨ νB(x) ,

where ∧
1
,∧

2
are t-norms on [0, 1] satisfying ∧

1
≤ ∧

2
and

2∨ is the t-conorm dual to ∧
2
. Dually, t-representable

unions are computed by

µ
A
.∪B(x) = µA(x)

3∨ µB(x) , (14)

%
A
.∪B(x) = %A(x)

4∨ %B(x) , (15)

ν
A
.∪B(x) = νA(x) ∧

4
νB(x) ,

where
3∨, 4∨ are t-conorms on [0, 1] satisfying

3∨ ≤
4∨ and ∧

4
is the t-norm dual to

4∨. These formu-

las are special cases of (5), (6) for a t-representable
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t-norm u. and a t-representable t-conorm
.t. Notice

that t-representable operations may result in genuine
IV-sets even if the arguments are ordinary fuzzy sets.

Only operations which satisfy the conditions of The-
orem 4.1 give a chance to satisfy the principle of in-
clusion and exclusion on IF . In [12], the principle
of inclusion and exclusion on IF was proved for the
Gödel and product operations, i.e. for the pair of op-

erations (
G∪,∩

G
) or (

P∪,∩
P

) chosen for (
.∪,∩. ) in (1). We

obtained the following generalization:

Theorem 5.1 [16] Let
.∪,∩. be a fuzzy union

and intersection on IF corresponding (by
(12),(13),(14),(15)) to continuous t-norms ∧

1
,∧

2

and continuous t-conorms
3∨, 4∨. Then

.∪,∩. satisfy

the principle of inclusion and exclusion iff there is
a (possibly empty) collection of disjoint intervals

((aα, bα))α∈I in [0, 1] such that ∧
1

= ∧
2

and
3∨ =

4∨ are

given by (10), (11), respectively.

5.2 The principle of inclusion and exclusion
for operations on IF which are not
t-representable

There are t-norms and t-conorms on IF-sets which are
not t-representable. The first example was published
in [6], we generalize it:

Example 5.2 Let
.∨ : [0, 1]2 → [0, 1] be a continuous

t-conorm. Then the operation
.t : J 2 → J , defined by

[µ1, %1]
.t [µ2, %2]

=





[µ1, %1] if [µ2, %2] = [0, 0],
[µ2, %2] if [µ1, %1] = [0, 0],

[%1
.∨ %2, %1

.∨ %2] otherwise,

(16)

is a t-conorm on J .

Notice that the t-conorm
.t from (16) results often in

ordinary fuzzy sets even if the arguments are genuine
IV-sets. The first published example of a t-conorm
which is not t-representable [6] is its special case for
.∨ =

G∨ (Gödel t-conorm).

The remaining examples in [7, 8], when restricted to
ordinary fuzzy sets, coincide with the  Lukasiewicz op-
erations. As the principle of inclusion and exclusion
does not hold for  Lukasiewicz operations on ordinary
fuzzy sets, there is no chance to satisfy it for these op-
erations on IF . However, we generalized one of them:

Example 5.3 Let
.∨ : [0, 1]2 → [0, 1] be a continuous

t-conorm. Then the operation
.t : J 2 → J defined by

[µ1, %1]
.t [µ2, %2] =

[
min(µ1

.∨ %2, %1
.∨ µ2), %1

.∨ %2
]

is a t-conorm on J .

Nevertheless, none of the operations from Examples
5.2 and 5.3 satisfies the principle of inclusion and ex-
clusion due to the following result:

Theorem 5.4 Let a union
.∪ : IF2 → IF be based on

a t-conorm
.t : J 2 → J (via (6)). Suppose that there

exist µ, %, %1, %2 such that

[µ, %] = [0, %1]
.t [0, %2]

and µ > 0. Then there is no intersection ∩. : IF2 →
IF such that (

.∪,∩. ) satisfy the principle of inclusion

and exclusion.

6 CONCLUSIONS

We have proved that the only continuous operations
on fuzzy sets which satisfy the principle of inclusion
and exclusion are the Gödel ones (minimum and max-
imum), the product operations, and some of their or-
dinal sums. The same holds for t-representable op-
erations on IV-sets. We restricted the possibility of
satisfying the principle of inclusion and exclusion by
operations on IV-sets which are not t-representable.
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Summary

In this note, we discuss a pair of special
pseudo-addition and pseudo-multiplication
associated with the parameter λ (λ > 0),
which constitutes a commutative isotonic
semiring. We show that on λ-measure spaces
(special types of monotone measure spaces)
the pan-integral based on the commutative
isotonic semiring coincides with the fuzzy in-
tegral introduced by Kruse [R. Kruse, Fuzzy
Sets and Systems 10(1983)].

Keywords: λ-measure, Pan-integral, Kruse
integral.

1 INTRODUCTION

In [20] the pan-integral was established based on a spe-
cial type of commutative isotonic semiring (R+,⊕,�)
(see also [19]). Sugeno and Murofushi [17] and Ichi-
hashi et al. [3] defined the operations of pseudo-
addition and pseudo-multiplication, respectively, and
established integrals based on their own operations,
respectively. The several kinds of common integrals,
as the Riemann integral, the Lebesgue integral, the
Sugeno integral [16] and Shilkret integral [15], were
all special instance of pan-integral. A related concept
of generalizing Lebesgue integral based on a general-
ized ring (R+,⊕,⊗) (the commutativity of ⊗ is not
required) , which is called generalized Lebesgue inte-
gral, was proposed and discussed in [21]. The above-
mentioned several types of integrals are all covered by
the generalized Lebesgue integral [21].

In 1982 Kruse [5] showed that there exists a rela-
tionship between probability measures and λ-additive

∗Corresponding author. Tel./fax: +86-10-65783583.

measures. This relationship was used to give the def-
inition of a so called ”fuzzy integral” of a fuzzy event
with respect to λ-additive fuzzy measure, which gener-
alizes the Lebesgue integral canonically ([6]). We call
so kinds of fuzzy integrals introduced by Kruse [6] as
Kruse integral (for short, K-integral).

In this paper, we introduce a pair of special pseudo-
addition and pseudo-multiplication (⊕λ,⊗λ) associ-
ated with the parameter λ (λ > 0). They form a com-
mutative isotonic semiring (R+,⊕λ,⊗λ). We can use
the pseudo-addition ⊕λ to reformulate λ-additive mea-
sures. We shall show that on λ-measure spaces (see
[19], special typse of monotone measure spaces) the
Kruse-integral coincides with the pan-integral based
on (R+,⊕λ,⊗λ), i.e., the Kruse-integral is a special
type of pan-integral.

2 PAN-INTEGRALS

Let X 6= ∅ be a universe of discourse, Σ a σ-algebra
of subsets of X, µ : Σ → [0,∞] be a monotone set
function with µ(∅) = 0 (it is also known as monotone
measure [19]), F+ denote the set of all finite nonnega-
tive Σ-measurable functions on X, and P̂ be the set of
all finite partitions of (X,Σ). Unless stated otherwise,
all the subsets mentioned are supposed to belong to
Σ.

The concept of a pan-integral [19, 20] involves two bi-
nary operations, the pseudo-addition ⊕ and pseudo-
multiplication ⊗ of real numbers. We recall a com-
mutative isotonic semiring [19] (see also [1, 2, 3, 8, 9,
13, 17, 18]). Without mentioning explicitly, in this pa-
per, R+ = [0,+∞), R+ = [0,+∞], a, b, c, d, ai, bi(i =
1, 2, · · ·) and at(t ∈ T , where T is any given index set)
are all elements in R+.

Definition 2.1 A binary operation ⊕ on R+ is called
a pseudo-addition on R+ if and only if it satisfies the
following requirements:
(PA1) a⊕ b = b⊕ a;
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(PA2) (a⊕ b)⊕ c = a⊕ (b⊕ c);
(PA3) a ≤ b =⇒ a⊕ c ≤ b⊕ c for any c;
(PA4) a⊕ 0 = a;
(PA5) an → a and bn → b ⇒ an ⊕ bn → a⊕ b.

From associativity (PA2), we may write a1⊕a2⊕· · ·⊕
an as

n⊕
i=1

ai, and denote
∞⊕
i=1

ai = lim
n→∞

n⊕
i=1

ai.

Definition 2.2 A binary operation ⊗ on R+ is
called a pseudo-multiplication (with respect to pseudo-
addition ⊕) on R+ if and only if it fulfills the following
conditions:
(PM1) a⊗ b = b⊗ a;
(PM2) (a⊗ b)⊗ c = a⊗ (b⊗ c);
(PM3) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c);
(PM4) a ≤ b =⇒ a⊗ c ≤ b⊗ c for any c;
(PM5) a⊗ b = 0⇐⇒ a = 0 or b = 0;
(PM6) there exists e ∈ R+, such that e ⊗ a = a for
any a ∈ R+;
(PM7) a, b ∈ (0,+∞), an → a and bn → b =⇒
an ⊗ bn → a⊗ b.

When ⊕ is a pseudo-addition on R+ and ⊗ is a pseudo-
multiplication (with respect to ⊕) on R+, the triple
(R+,⊕,⊗) is called a a commutative isotonic semiring
(on R+), and (X,Σ, µ,R+,⊕,⊗) is called a pan-space
[19].

Definition 2.3 ([19, 20]) Let (X,Σ, µ,R+,⊕,⊗) be a
pan-space. For any f ∈ F+, A ∈ Σ, the pan-integral
of f over A with respect to µ, is defined by

(Pan)

∫ (⊕,⊗)

A

fdµ = sup
E∈P̂

{
sf (E |A,⊕,⊗)

}
, (2.1)

where

sf (E |A,⊕,⊗) =
⊕

E∈E

[(
inf

x∈A∩E
f(x)

)
⊗ µ(A ∩ E)

]
.

Note that in the case commutative isotonic semiring
(R+,∨,∧), Sugeno integral [16] is recovered, while for
(R+,∨, ·), Shilkret integral [15] is covered by formula
(2.1).

3 λ-MEASURES AND THE KRUSE
INTEGRALS

In this section, we shall discuss a pair of special
pseudo-addition and pseudo-multiplication (⊕λ,⊗λ)
(associated with the parameter λ, λ > 0), and use
the pseudo-addition ⊕λ to reformulate λ-additive mea-
sures. We recall a kinds of fuzzy integrals with respect
to λ-additive measure introduced by Kruse [6]. Theo-
rem 3.1 presents our main result. It is shown that on

λ-measure spaces (λ > 0) the Kruse-integral and the
pan-integral based on (R+,⊕λ,⊗λ) coincide.

Let (X,Σ) be a measurable space, λ ≥ 0. A set func-
tion gλ : Σ→ R+ is called

(i) λ-additive [16, 19], if for any A,B ∈ Σ, A ∩ B = ∅,
we have

gλ(A ∪B) = gλ(A) + gλ(B) + λgλ(A)gλ(B);

(ii) σ-λ additive [6, 16, 19], if for any disjoint sequence
of sets {An} in Σ,

gλ(
∞⋃
n=1

An) =





1
λ{
∞∏
n=1

[1 + λgλ(An)]− 1} λ 6= 0,

∞∑
n=1

gλ(An) λ = 0.

(iii) λ-measure [19], if gλ is σ-λ additive with
gλ(∅) = 0.

In the following we introduce a pair of special pseudo-
addition and pseudo-multiplication on R+. For any
given λ > 0, we define two binary operators ⊕λ and
⊗λ on R+, as follows:

a⊕λ b =

{
a+ b+ λab, a, b ∈ [0,+∞),

+∞, otherwise,

and

a⊗λ b =





1
λ

[(
1 + λa

)log1+λ(1+λb) − 1
]
,

if a, b ∈ [0,+∞),

0, if a = 0, b = +∞ or
a = +∞, b = 0,

+∞, otherwise.

It is easy to verify that ⊕λ is a pseudo-addition in
the sense of Definition 2.1, while ⊗λ is a pseudo-
multiplication (with respect to ⊕λ) in the sense of
Definition 2.2. Thus (R+,⊕λ,⊗λ) is a commutative
isotonic semiring on R+.

In particular, we have

∞⊕

n=1

λ ai =
1

λ

[ ∞∏

i=1

(
1 + λai

)
− 1
]

(3.1)

and, for any an ≥ 0, bn < +∞, n = 1, 2, · · ·
∞⊕

n=1

λ

(
ai ⊗λ bi

)
=

1

λ

[ ∞∏

n=1

(
1 + λan

)log1+λ(1+λbn) − 1
]
.

(3.2)

We can reformulate λ-additivity and λ-measure by us-
ing the pseudo-addition ⊕λ.
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Proposition 3.1 Let λ > 0.
(i) gλ is λ-additive if and only if gλ is ⊕λ-additive,
i.e.,

gλ(A ∪B) = gλ(A)⊕λ gλ(B).

(ii) gλ is λ-measure if and only if gλ is σ-⊕λ-
decomposable measure, i.e., µ(∅) = 0 and for any dis-
joint sequence of sets {An},

gλ(
∞⋃

n=1

An) =
∞⊕

n=1

λ gλ(An).

Proposition 3.2 Let h(x) be an extended real valued
function on R+ and be defined by

h(x) =

{
log1+λ(1 + λx) x ∈ R+,

∞ x = +∞,

then the inverse of h is

h−1(x) =

{
1
λ [(1 + λ)x − 1] x ∈ R+,

∞ x = +∞.

Furthermore, for ai and bi ∈ R+, i = 1, 2, · · · , n, we
have

(i) h
[ n⊕
i=1

λ (ai
⊗

λ bi)
]

=
n∑
i=1

h(ai) · h(bi);

(ii) h−1
[ n∑
i=1

(aibi)
]

=
n⊕
i=1

λ

[
h−1(ai)

⊗
λ h
−1(bi)];

(iii) h and h−1 are both self-isomorphic on (R+,∨)
and (R+,∧), i.e., for {at}t∈T ⊂ R+, where T is an
arbitrary index set, we have

h(
∨

t∈T
)at =

∨

t∈T
h(at),

h(
∧

t∈T
)at =

∧

t∈T
h(at),

h−1(
∨

t∈T
)at =

∨

t∈T
h−1(at),

h−1(
∧

t∈T
)at =

∧

t∈T
h−1(at).

Proof. (i) follows directly from (3.2). So we have
merely to show (ii) and (iii) holds.

(ii) From (i), we can immediately obtain that

h
{ n⊕

i=1

λ [h−1(ai)⊗λ h−1(bi)]
}

=

n∑

i=1

ai · bi.

So we have

n⊕

i=1

λ

[
h−1(ai)⊗λ h−1(bi)

]
= h−1

( n∑

i=1

ai · bi
)
.

(iii) We only prove the first equality, and the others can
be proved similarly. On the one hand, suppose that
{an} is a subsequence of {at}t∈T satisfying an ↑

∨
t∈T

at.

Thus, from the continuity of h we have

h(
∨

t∈T
at) = lim

n→∞
h(an) ≤

∨

t∈T
h(at).

On the other hand, since ∀ t ∈ T, ∨
t∈T

at ≥ at, it fol-

lows from the monotone increasing of h that ∀ t ∈ T ,
h(
∨
t∈T

at) ≥ h(at). Therefore we have

h(
∨

t∈T
at) ≥

∨

t∈T
h(at).

The proof is completed.

The following result is due to Kruse [5].

Proposition 3.3 Let gλ be a λ-measure on Σ. De-
note

g∗λ(A) = log1+λ

(
1 + λgλ(A)

)
, ∀A ∈ Σ, (3.3)

then g∗λ is a classical measure on Σ. On the contrary,
if m is a classical measure on Σ, then mλ defined by

mλ(A) =
1

λ

[(
1 + λ

)m(A) − 1
]
, ∀A ∈ Σ, (3.4)

is a λ-measure on Σ.

In [6] Kruse introduced a special type of fuzzy integral
by using the relationship between classical measures
and λ-measures described in Proposition 3.3. We call
so kinds of fuzzy integrals as Kruse integral (for short,
K-integral), as follows:

Definition 3.1 Let (X,Σ) be a measurable space, gλ
a λ-measure on Σ, f ∈ F+, and A ∈ Σ, then the Kruse
integral of f over A, is defined by

(K)

∫

A

fdgλ =
1

λ

[(
1 + λ

)∫
A

log1+λ(1+λf)dg
∗
λ − 1

]
,

where g∗λ is described by (3.3), and
∫
A

log1+λ(1 +
λf)dg∗λ is the Lebesgue integral of log1+λ(1 +λf) over
A with respect to g∗λ.

The following is our main result.

Theorem 3.1 Let (X,Σ, gλ, R+,⊕λ,⊗λ) be a pan-
space, where gλ is a λ-measure on Σ and λ > 0, and
f ∈ F+, A ∈ Σ, then

(Pan)

∫ (⊕λ,⊗λ)

A

fdgλ = (K)

∫

A

fdgλ.
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Proof. Denote

sf
(
E |A,⊕λ,⊗λ

)

=
⊕

E∈E
λ

[(
inf

x∈A∩E
f(x)

)
⊗λ gλ(A ∩ E)

]
,

from Proposition 3.2 (i), we have

h
[
(sf
(
E |A,⊕λ,⊗λ

)]

= h

{⊕

E∈E
λ

[(
inf

x∈A∩E
f(x)

)
⊗λ gλ(A ∩ E)

]}

=
∑

E∈E

(
inf

x∈A∩E
h(f(x))

)
· h(gλ(A ∩ E))

=
∑

E∈E

(
inf

x∈A∩E
(h(f(x))

)
· g∗λ(A ∩ E).

Noting that g∗λ is a classical measure on Σ and
h(f(x)) = log1+λ(1 + λf(x)), we have

sup
E∈P̂

{
h
[
sf
(
E |A,⊕λ,⊗λ

)]}

= sup
E∈P̂

{∑

E∈E

(
inf

x∈A∩E
(h(f(x))

)
· g∗λ(A ∩ E)

}

= (L)

∫

A

(h(f(x))dg∗λ

= (L)

∫

A

log1+λ(1 + λf)dg∗λ.

Therefore

(Pan)

∫ (⊕λ,⊗λ)

A

fdgλ

= sup
{
sf
(
E |A,⊕λ,⊗λ

)
| E ∈ P̂

}

= h−1
(

sup
{
h
[
sf
(
E |A,⊕λ,⊗λ

)]
| E ∈ P̂

})

= h−1
(

(L)

∫

A

log1+λ(1 + λf)dg∗λ

)

=
1

λ

[(
1 + λ

)(L)∫
A

log1+λ(1+λf)dg
∗
λ − 1

]

= (K)

∫

A

fdgλ.

The proof of the theorem is completed.

4 CONCLUSIONS

We have shown that on λ-measure spaces (λ > 0) the
Kruse integral coincides with the pan-integral based
on (R+,⊕λ,⊗λ).

Observe that for a general automorphism g : [0,∞]→
[0,∞], Pap has introduced a g-integral [7, 12, 13],
which is based on a generated ring (R,⊕g,⊗g), where

x⊕g y = g−1(g(x) + g(y))

and
x⊗g y = g−1(g(x) · g(y)).

Kruse integral is a particular case of g-integral, and all
our results can be extended to g-integrals. Summariz-
ing, it can be shown that, considering ⊕g−measures,
g-integral coincide with PAN-integral related to the
generated ring (R,⊕g,⊗g).
We also point out that Ichihashi et. al. [3] defined
pseudo-addition and pseudo-multiplication on interval
[a, b], and then put forward a kind of fuzzy integral
based on these two operators. Let [a, b] = [0,+∞] =
R+, then if we define pseudo-addition and pseudo-
multiplication on [a, b] in the similar way as we have
done in Section 3, we shall obtain a pair of operators–
pseudo-addition and pseudo-multiplication (with re-
spect to Ichihashi et. al.’s [3]). In such case, the inte-
gral in the sense of Ichihashi et. al. [3] coincides with
K-integral.

Mesiar et al. introduced pseudo-concave integrals [10]
(see also [11]) and pseudo-concave Benvenuti integrals
[4] by means of the pseudo-addition ⊕ and pseudo-
multiplication ⊗ of reals based on a generalized ring
(R+,⊕,⊗) (see also [1, 2]). In next deeper study,
we shall investigate the relationships among these
two integrals and K-integral based on the pan-space
(X,Σ, gλ, R+,⊕λ,⊗λ), where gλ is a λ-measure.
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[8] R. Mesiar, J. Rybárik (1995). Pan-operations
structure. Fuzzy Sets and Systems 74, pp 365-369.

[9] R. Mesiar (1995). Choquet-like integrals. J. Math.
Anl. Appl. 194, pp 477-488.

[10] R. Mesiar, J. Li, E. Pap (2011). Pseudo-concave
integrals. in: NLMUA2011, in: Adv. Intell. Syst.
Comput. 100, Springer-Verlag, Berlin Heidelberg,
pp. 43–49.

[11] R. Mesiar, J. Li, E. Pap (2013). Discrete pseudo–
integrals. International Journal of Approximative
Reasoning 54, pp 357–364.

[12] E. Pap (1993). g-calculus, Univ. u Novom Sadu,
Zb. rad Prirod.–Mat. Fak. Ser. Mat. 23(1) pp 93–
101.

[13] E. Pap (1995). Null-additive Set Functions.
Kluwer, Dordrecht.

[14] E. Pap (2002). Pseudo-additive measure and their
application. Handbook of Measure Theory, E.
Pap, ed., Elsevier, Amsterdam, pp 1403-1468.

[15] N. Shilkret (1971). Maxitive measure and integra-
tion. Indag. Math. 33, pp 109-116.

[16] M. Sugeno (1974). Theory of fuzzy integrals and
its application. Ph. D. Thesis, Tokyo Institute of
Technology, 1974.

[17] M. Sugeno, T. Murofushi (1987). Pseudo-additive
measures and integrals. J. Math. Anal. Appl. 122,
pp 197-222.

[18] X. Tong, M. Chen, HX. Li (2004). Pan-
operations structure with non-idempotent pan-
addition. Fuzzy Sets and Systems 145, pp 463-
470.

[19] Z. Wang, G. J. Klir (2009). Generalized Measure
Theory, Springer, 2009.

[20] Q. Yang (1985). The pan-integral on fuzzy mea-
sure space. Fuzzy Mathematics 3, pp 107-114 (in
Chinese).

[21] Q. Zhang, R. Mesiar, J. Li, P. Struk (2011). Gen-
eralized Lebesgue integral. International Journal
of Approximate Reasoning 52, pp 427-443.

Proceedings of 8th International Summer School on Aggregation Operators (AGOP 2015)

173





SUBJECTIVE LINGUISTIC PREFERENCE RELATIONS AND
THEIR APPLICATION IN GROUP DECISION MAKING

Sebastia Massanet, Juan Vicente Riera
and Joan Torrens

Dept. Mathematics and Computer Science
University of the Balearic Islands

Palma de Mallorca, Spain
{s.massanet,jvicente.riera,jts224}@uib.es

Enrique Herrera-Viedma
Dept. Computer Science and Artificial Intelligence

University of Granada
Granada, Spain

viedma@decsai.ugr.es

Summary

In a medical system, experts have to take
many critical decisions to choose which can
be the best treatment for a concrete patient
with a particular disease. Several group deci-
sion making problems have been applied with
a relative success to this problem, usually
based on preference relations. The aim of
this paper is to introduce a new class of fuzzy
preference relation based on subjective eval-
uations in the discrete fuzzy numbers frame-
work and to present a group decision making
problem based on these relations. Finally, an
illustrative example of the model is given.
Keywords: Preference relation, discrete
fuzzy number, subjective linguistic evalua-
tion, aggregation operator.

1 INTRODUCTION

A general decision making (GDM) problem [14] may
be defined as a decision problem with several alterna-
tives and experts that try to achieve a common so-
lution taking into account all their opinions. These
opinions are often based on the use of preferences ex-
pressed by the experts, usually through the so-called
preference relations. Depending on the nature or com-
plexity of the problem, these preference relations can
be expressed in different ways, many times embedded
in a fuzzy environment (see for instance [9]). Interval-
valued fuzzy preference relations, linguistic interval
fuzzy preference relations or incomplete fuzzy linguis-
tic preference relations are interesting examples of
preference relations among many others [7, 9, 14, 21].
Thereby, for each problem, the most suitable class of
fuzzy preference relations should be chosen. This fact
is one of the main reasons why a great number of ex-
perts have investigated new families of fuzzy prefer-
ence relations in recent years. In this sense, with the

aim of better describing the experts’ opinions allow-
ing them to be more flexible, the concept of subjective
evaluations is considered in [2, 3, 10, 13, 16, 17] as
a kind of discrete fuzzy numbers whose support is a
subinterval of the finite chain Ln = {0, 1, . . . , n}. This
class of fuzzy subsets can be interpreted as a flexi-
bilization of linguistic expressions such as better than
Good, between Fair and Very Good or even more com-
plex expressions. Indeed, they have already been used
successfully in decision making problems [3, 13, 16, 17].

On the other hand, the modelling of medical decision
making has been among the leading research objectives
for decades [11, 20]. From the early work in 1979 by
E. Sanchez [19] who introduced the concept of med-
ical knowledge studying relationships between symp-
toms and diseases by means of fuzzy relations until
nowadays, many authors have proposed different ap-
proaches [1, 5, 11] (fuzzy cognitive maps, fuzzy soft
sets, intuitionistic fuzzy sets...) in medical diagnoses.
Thus, in this paper the authors propose a new class of
fuzzy preference relations based on subjective evalua-
tions. Some properties of them are studied and then a
GDM model based on subjective linguistic preference
relations is presented. Finally, a concrete application
to medical decision is given.

2 PRELIMINARIES

In this section we will present the main concepts re-
lated to discrete fuzzy numbers that will be used later.

By a fuzzy subset of R, we mean a function A : R →
[0, 1]. For each fuzzy subset A, let Aα = {x ∈ R :
A(x) ≥ α} for any α ∈ (0, 1] be its α-level set (or α-
cut). By supp(A), we mean the support of A, i.e. the
set {x ∈ R : A(x) > 0}.

Definition 1 [23] A fuzzy subset A of R with mem-
bership mapping A : R → [0, 1] is called a discrete
fuzzy number if its support is finite, i.e., there exist
x1, ..., xn ∈ R with x1 < x2 < ... < xn such that
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supp(A) = {x1, ..., xn}, and there are natural numbers
s, t with 1 ≤ s ≤ t ≤ n such that:

1. A(xi)=1 for all i with s ≤ i ≤ t. ( core)

2. A(xi) ≤ A(xj) for all i, j with 1 ≤ i ≤ j ≤ s.

3. A(xi) ≥ A(xj) for all i, j with t ≤ i ≤ j ≤ n.

From now on, we will denote by ALn1 the set of discrete
fuzzy numbers whose support is a subinterval of the
finite chain Ln = {0, 1, . . . , n}.
Let A,B ∈ ALn1 be two discrete fuzzy numbers. Note
that the supports of A and B and their α-cuts are
subintervals of Ln. Let Aα = [xα1 , xαp ], Bα = [yα1 , yαk ]
be the α-level cuts for A and B, respectively.

The authors showed in [2] that ALn1 is a bounded dis-
tributive lattice while the set of discrete fuzzy numbers
in general is not. Aggregation functions defined on Ln
have been extended to ALn1 (see for instance [3, 16])
according to the next result.

Theorem 1 [3, 16] Let consider a binary aggregation
function F on the finite chain Ln. The binary opera-
tion on ALn1 defined as follows

F : ALn1 ×ALn1 −→ ALn1
(A,B) 7−→ F(A,B)

being F(A,B) the discrete fuzzy number whose α-cuts
are the sets

{z ∈ Ln | minF (Aα, Bα) ≤ z ≤ maxF (Aα, Bα)}

for each α ∈ [0, 1] is an aggregation function on ALn1 .
This function will be called the extension of the dis-
crete aggregation function F to ALn1 . In particular, if
F is a t-norm, a t-conorm, a uninorm, a nullnorm or
a compensatory aggregation function, so is its exten-
sion F .

Remark 1 Note that the previous result allows us, in
this framework, to easily handle different classes of ag-
gregation functions such as t-norms, t-conorms, null-
norms, uninorms or compensatory functions [12].

Next proposition proposes a method to obtain a nega-
tion function on the bounded distributive lattice ALn1
from the unique strong negation NC(x) = n−x on the
finite chain Ln.

Proposition 2 [3] Let us consider the strong nega-
tion NC on the finite chain Ln = {0, 1, . . . , n}. The
mapping

N : AL1 −→ AL1
A 7→ N (A)

is a strong negation on ALn1 where N (A) is the dis-
crete fuzzy number such that has as α-level cuts the
sets N (A)α = [NC(xαp ), NC(xα1 )] for each α ∈ [0, 1]
(being Aα = [xα1 , xαp ] the α-cuts of A).

3 LINGUISTIC MODEL BASED ON
DISCRETE FUZZY NUMBERS

In this section we recall the fuzzy linguistic model
based on discrete fuzzy numbers whose support is an
interval of the finite chain Ln = {0, 1, . . . , n}.
First of all, note that we can consider a bijective map-
ping between the ordinal scale L = {s0, . . . , sn} and
the finite chain Ln which keeps the original order. Fur-
thermore, each normal discrete convex fuzzy subset
defined on the ordinal scale L can be considered like
a discrete fuzzy number belonging to ALn1 , and vice-
versa.

For example, consider the linguistic hedge

L = {EB, V B,B, F,G, V G,EG} (1)

where the letters refer to the linguistic terms Ex-
tremely Bad, Very Bad, Bad, Fair, Good, Very Good
and Extremely Good and they are listed in an increas-
ing order:

EB ≺ V B ≺ B ≺ F ≺ G ≺ V G ≺ EG

and the finite chain L6. Thus, the discrete fuzzy num-
ber A = {0.6/2, 0.7/3, 1/4, 0.8/5} ∈ AL6

1 can be also
expressed as A = {0.6/B, 0.7/F, 1/G, 0.8/V G} (see
Figure 1). Note that this discrete fuzzy number, A,
can be interpreted as a possible flexibilization of the
linguistic label G (Good). Furthermore, in [10] and
[15] it was shown that discrete fuzzy numbers can play
also the role of a possible generalization of a Hesitant
Fuzzy Linguistic Term Set (HFLTS) (see [18] and [22]
for details). For instance, the discrete fuzzy number
B = {0.5/1, 1/2, 1/3, 1/4, 0.2/5} is a possible flexibi-
lization of the HFLTS “between Bad and Good” (see
Figure 2).

From the above discussion, we can introduce the defi-
nition of a subjective evaluation.

Definition 2 Let Ln = {0, . . . , n} be a finite chain.
We call a subjective evaluation to each discrete fuzzy
number belonging to the partially ordered set ALn1 .

According to the previous comments, a subjective eval-
uation can be interpreted equivalently like a normal
convex fuzzy subset defined on the ordinal scale L.

Moreover, our approach presents some interesting
properties [10, 13]. Thus, a first aspect about the lin-
guistic interpretation based on subjective evaluations
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1

0
EB VB B F G VG EG

Figure 1: Graphical representation of a subjective
evaluation that can interpret the linguistic label
“Good”.

0 1 2 3 4 5 6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

EB VB B F G VG EG

Figure 2: Graphical representation of a subjective
evaluation that can interpret the linguistic expression
“Between Bad and Good”.

is that it does not need making previous transforma-
tions when we wish to aggregate the information. Each
subjective evaluation considered by an expert is di-
rectly interpreted as a discrete fuzzy number of the
bounded setALn1 and by this reason we can handle this
information directly according to Theorem 1. Also,
our approach allows more flexibilization of the linguis-
tic term sets. In this way, it is possible to define differ-
ent flexibilizations of a linguistic expression (see Fig-
ures 1 and 2). Finally, it is worth to mention that
this linguistic model [13] permits that experts can use
different representation formats to express their pref-
erences. In this sense, experts can use linguistic scales
with different granularity (see Figure 3) in order to
make their corresponding assessment. The model is
capable of expressing a final decision encompassing all
the assessments expressed in these different linguistic
scales.

4 THE GDM PROBLEM BASED
SUBJECTIVE LINGUISTIC
PREFERENCE RELATIONS

In a classical Group Decision Making situation
[9], there is a set of possible alternatives, X =
{x1, . . . , xn}(n ≥ 2) and a group of experts, E =
{e1, . . . , em}(m ≥ 2), characterized by their back-

0 1 2
s3

0 s3
1 s3

2

0 1 2 3 4
s5

0 s5
1 s5

2 s5
3 s5

4

0 1 2 3 4 5 6 7 8
s9

0 s9
1 s9

2 s9
3 s9

4 s9
5 s9

6 s9
7 s9

8

Figure 3: Linguistic hierarchy of three, five and nine
linguistic terms.

ground and knowledge, who express their opinions
about X to achieve a common solution. Preference
relations are a common method to model experts’ pref-
erences in group decision making problems. It is well
known that there exist different types of preference re-
lations that can be used according to the considered
domain to evaluate the intensity of the preference [9].
Now, in this paper we introduce a new linguistic pref-
erence relation where the degree of the linguistic pref-
erence of the alternative xi over xj is expressed as a
subjective evaluation.

Definition 3 A subjective linguistic preference rela-
tion P on a finite set of alternatives X is characterized
by a membership function µPei : X ×X → ALn1 where
µPei (xl, xk) = plki ∈ ALn1 denotes the linguistic pref-
erence for the alternative xl over the alternative xk
expressed by the expert ei.

When the cardinality ofX is small, these preference re-
lations may be represented by the matrix Pei = (plki ).
Furthermore, from now on we will assume that n is
even, m = n/2 and that 1a denotes the discrete fuzzy
number whose support is the singleton {a} for any
a ∈ Ln. With these assumptions, subjective linguistic
preferences will be interpreted as follows:

• The linguistic preference plki = 1m indicates indif-
ference between xl and xk.

• If the subjective evaluation plki 6= 1m and its sup-
port is a subinterval of [m,n] ((m,n]) then xl is
preferred (strictly preferred) to xk. In particular,
the linguistic preference plki = 1n indicates that
xl is absolutely preferred to xk.

• If the subjective evaluation plki 6= 1m and its sup-
port is a subinterval of [0,m] ([0,m)) then xk is
preferred (strictly preferred) to xl. In particular,
the linguistic preference plki = 10 indicates that
xk is absolutely preferred to xl.

• Finally, if the support of the subjective evaluation
plki contains values less than m and greater than
m at the same time, then the expert has some
hesitation about his preference.
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In this work we will use subjective linguistic preference
relations that satisfy the reciprocity property given in
the next definition.

Definition 4 A subjective linguistic preference rela-
tion P satisfies the reciprocity property if for all
plki , p

kl
i ∈ P the following identities hold:

alk,α1 + bkl,α2 = n

alk,α2 + bkl,α1 = n for all α ∈ [0, 1]

being [alk,α1 , alk,α2 ] and [blk,α1 , blk,α2 ] the α-cuts of the
subjective evaluations plki , pkli respectively.

Remark 2 It is worth to point out that this condition
is similar to the classical one considered in the interval
fuzzy preference relations. Also, note that if P satisfies
the reciprocity property then pkli = N (plki ), where N is
the extension in ALn1 of the unique strong negation N
in Ln (see [3]).

Next example shows a reciprocal linguistic preference
relation given by an expert e1 on the preference set
X = {x1, x2, x3} where each subjective evaluation is
expressed in L = {EB,B, F,G,EG}, where the letters
refer to the same linguistic terms of the chain (1).

Example 1

Pe1 =



− p12

1 p13
1

p21
1 − p23

1
p31

1 p32
1 −




where

p12
1 = {0.5/0, 1/1} = {0.5/EB, 1/B},
p13

1 = {0.6/3, 1/4} = {0.6/G, 1/EG},
p23

1 = {0.3/1, 0.6/2, 1/3} = {0.3/B, 0.6/F, 1/G},
p21

1 = N (p12
1 ) = {1/3, 0.5/4} = {1/G, 0.5/EG},

p31
1 = N (p13

1 ) = {1/0, 0.6/1} = {1/EB, 0.6/B},
p32

1 = N (p23
1 ) = {1/1, 0.6/2, 0.3/3}

= {1/B, 0.6/F, 0.3/G}.

Remark 3 Note that when the support of each one
of the values of the matrix Pei = (plki ) are discrete
fuzzy numbers whose support coincides with the core,
the subjective linguistic preference relation is a lin-
guistic interval fuzzy preference relation in the sense
of [21]. That is, our model can be interpreted as a
possible generalization of the linguistic interval fuzzy
preference relation.

As the experts’ opinions can be expressed in different
linguistic scales, a first step is to unify each one of
these preferences into a single linguistic domain.

4.1 MAKING THE LINGUISTIC
INFORMATION UNIFORM

In this phase, all experts’ multi-granular linguistic
preferences are unified into a single linguistic domain.
For this reason, it is necessary to construct a transfor-
mation function among the levels of a linguistic hierar-
chy. These transformation functions will be based on
the concept of completion of a discrete fuzzy number
[13]. In this work, we will use the α-completion (see
[13] for details). Let us show an example of this step.

Example 2 Consider the subjective evaluation of Ex-
ample 1. The expression of this assessment in the
linguistic scale L8, identified with the linguistic scale
L = {D,EB, V B,B, F,G, V G,EG,P}, where the la-
bels have the same meaning as in (1) and D denotes
Dreadful and P denotes Perfect corresponding to the
third level of the linguistic hierarchy given in Figure 3,
is as follows:

P̃e1 =



− p̃12

1 p̃13
1

p̃21
1 − p̃23

1
p̃31

1 p̃32
1 −


 (2)

where

p̃12
1 = {0.5/0, 0.5/1, 1/2},
p̃13

1 = {0.6/6, 0.6/7, 1/8},
p̃23

1 = {0.3/2, 0.3/3, 0.6/4, 0.6/5, 1/6},
p̃lk1 = N (p̃kl1 ) with k = 1, 2, l = 2, 3 and k < l.

4.2 RESOLUTION PROCESS OF THE
GDM PROBLEM

Once the linguistic information is uniform, the reso-
lution process of the GDM problem usually relies on
obtaining a set of solution alternatives from the pref-
erences given by the experts. This selection process is
composed by two procedures [6, 8]: aggregation and
exploitation.

• Aggregation phase
In this phase, a collective subjective linguis-
tic preference relation Pc = (P ij) is obtained
by means of the aggregation of all the indi-
vidual subjective linguistic preference relations
{Pe1 , . . . , Pem} at the level of pairs of alternatives.
This aggregation is carried out using the method
proposed in Theorem 1.

• Exploitation phase
In this phase, the global and collective informa-
tion about the alternatives is transformed into a
global ranking among them and after that, we
can choose the set of solution alternatives. To
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do so, firstly we compute for each preference xi
the choice function, according to [7], given by the
expression

pxi = F(P i1, . . . , P in) (3)

where P ii is not considered. Finally, if we use a
ranking method, we obtain a classification of the
alternatives through

if pxi > pxj then xi is preferable to xj .

There exist a great number of ranking methods. For
instance, we can highlight the one proposed by L. Chen
and H. Lu in [4] or the centroid method.

5 APPLICATION TO MEDICAL
DECISION: AN ILLUSTRATIVE
EXAMPLE

Suppose that a group of three oncologists E =
{e1, e2, e3} hesitate about the best treatment,
X = {x1=chemotherapy, x2 = radiation therapy,
x3=hormonal therapy}, to deliver the highest quality
possible patient care. For this reason, each oncologist
provides his subjective linguistic preference relations.

The first expert provides his preference Pe1 , which has
the same expression of Example 1. The other two on-
cologists e2 and e3 use the linguistic scale L8 and their
preferences are the next ones:

Pe2 =



− p12

2 p13
2

p21
2 − p23

2
p31

2 p32
2 −


 , Pe3 =



− p12

3 p13
3

p21
3 − p23

3
p31

3 p32
3 −




p12
2 = {1/0, 0.8/1, 0.7/2},
p13

2 = {0.5/0, 0.8/1, 1/2, 0.9/3},
p23

2 = {0.6/5, 0.8/6, 1/7, 0.7/8},
p12

3 = {0.4/0, 0.5/1, 1/2, 0.6/3},
p13

3 = {0.6/3, 0.7/4, 1/5, 0.9/6},
p23

3 = {0.7/5, 0.8/6, 0.9/7, 1/8},
plki = N (pkli ) with k = 1, 2, l, i = 2, 3, and k < l.

According to Section 4.1, the first step is making uni-
form the valuations of each expert. In our case, if we
consider L8 as the common linguistic scale then, we
must only transform the valuations of the first expert.
Example 2 shows this transformation. Then, the fol-
lowing two steps are:

Aggregation: For instance, we consider the extension
F in ALn1 of the kernel function [12], a compen-
satory class of aggregation functions on the finite
chain Ln given by F (x1, . . . , xm) =

max{min{x1, . . . , xm},max{x1, . . . , xm} − k}.

Thus, taking k = 4, the collective relation Pc is
expressed as

Pc =



− P 12 P 13

P 21 − P 23

P 31 P 32 −




where P ij = F(p̃ij1 , p
ij
2 , p

ij
3 ) with i < j, i, j =

1, 2, 3 and

P 12 = {1/0, 0.8/1, 0.7/2},
P 13 = {0.6/2, 0.6/3, 1/4},
P 23 = {0.3/2, 0.3/3, 0.6/4, 0.7/5, 1/6},
P 21 = N (P 12) = {0.7/6, 0.8/7, 1/8},
P 31 = N (P 13) = {1/4, 0.6/5, 0.6/6},
P 32 = N (P 23) = {1/2, 0.7/3, 0.6/4, 0.3/5, 0.3/6}.

Exploitation: We compute for each preference the
values of the choice functions:

px1 = F(P 12, P 13) = {1/0, 0.8/1, 0.7/2},
px2 = F(P 21, P 23) = {0.3/2, 0.3/3, 0.6/4, 0.7/5, 1/6},
px3 = F(P 31, P 32) = {1/2, 0.7/3, 0.6/4, 0.3/5, 0.3/6}.

Finally, if we use the ranking method proposed
by L. Chen and H. Lu in [4] we obtain for any
β ∈ [0, 1]

px2 > px3 > px1 .

According to this ranking, based on the experts’
opinions, the system recommends the radiation
therapy as the highest quality patient care of the
considered ones.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we have presented a new class of fuzzy
preference relations based on subjective evaluations
(interpreted as discrete fuzzy numbers whose support
is an interval of the finite chain Ln = {0, . . . , n}) called
subjective linguistic preference relations. In addition,
we have proposed a resolution process for group deci-
sion making problems based on these new fuzzy prefer-
ences relations. Finally, an example of the application
of the model to a medical decision making problem is
given. As a future work, we want to propose a con-
sensus procedure for our model with this kind of new
preference relations to apply to group decision making
problems.
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Summary

Copulas have been deeply investigated be-
cause of their applications in many fields.
From the theoretical point of view, a key
point in this research lies in the search of new
construction methods of parametrized fami-
lies of copulas. This paper presents some of
these construction methods based on fuzzy
implication functions. The ideas come from
recent papers by P. Grzegorzewski, where
some construction methods of implication
functions from copulas were introduced.
Keywords: Fuzzy implication function,
copula, t-conorm, survival copula.

1 INTRODUCTION

Aggregation functions and fuzzy implication functions
are two types of operations extremely related between
them and in fact, there are many published works deal-
ing with this relationship (see [3, 15] and references
therein). In particular, many authors have investi-
gated methods to construct fuzzy implication func-
tions from aggregation functions and vice versa. A well
known example of these methods comes from the fam-
ily of residual implications or R-implications in short.
Indeed, one of the earliest methods for obtaining impli-
cations was from conjunctions as their residuals, and
many different classes of conjunctions have been used
in this line. Mainly, left-continuous t-norms [15], left-
continuous conjunctive uninorms (leading to the so-
called RU -implications) [1, 7], but also semi-copulas
and copulas [9] and many other types of conjunctive
aggregation functions (see [17] and references therein).
In the major part of these cases, it is also possible to
construct the initial conjunction from the correspond-
ing residual implication.

Another construction method comes from the ma-
terial implications. In this case, given a negation
N it is possible to construct an implication function
from a t-conorm S, obtaining the well known (S,N)-
implications, and vice versa [3, 4]. Again, one can
use a disjunctive uninorm instead of a t-conorm (ob-
taining the so-called (U,N)-implications) [5], and also
many other kinds of disjunctive aggregation functions
(see [17] and references therein), and again the pro-
cess can be done in both directions, from disjunctions
to implications and vice versa.

Recently, some different ways to obtain implication
functions from copulas have appeared in [8, 11, 12,
13, 14] and some properties have been studied in [2].
The common thread in these articles is the search for
a type of implication functions that “takes into con-
sideration both imprecision modelled by fuzzy concepts
and randomness described by tools originated by proba-
bility theory” [11]. Trying to give adequate answers to
this problem, the so-called probabilistic implications,
probabilistic S-implications, survival implications, and
survival S-implications appeared in the successive pa-
pers [11, 12, 13, 14]. However, in all these works only
one direction was investigated, that is, the way of ob-
taining implication functions from copulas.

In this paper we want to deal with the reverse direc-
tion, that is, we want to study how to construct cop-
ulas from implication functions, just by reversing the
methods given in the papers mentioned before. It is
well known through the Sklar Theorem that copulas
link the joint distribution function of two random vari-
ablesX,Y , to their one-dimensional marginal distribu-
tions. In this sense, we know that a copula C expresses
the dependence among these two random variables.
This is the main interest of copulas and for this reason
they have also been studied from a theoretical point of
view. In particular, the research of different methods
to construct copulas with appropriate properties is a
constant in this theoretical investigation. Thus, this
paper is also located in this line of research, since we
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will present some new methods to construct copulas,
this time from fuzzy implication functions.

The paper is organized as follows. First some pre-
liminaries on copulas and implication functions are
recalled in Section 2. Section 3 and 4 are devoted
to the construction of copulas from fuzzy implication
functions with examples and properties, by reversing
the methods used in probabilistic S-implications and
survival probabilistic S-implications, respectively. We
end the paper with a section devoted to conclusions
and future work.

2 PRELIMINARIES

We will suppose the reader to be familiar with the ba-
sic results on t-norms, t-conorms and fuzzy negation
functions (for details see [15]). We recall here only
some concepts on copulas and fuzzy implication func-
tions in order to make the work as self-contained as
possible. To see more details on copulas see [18] and
for more details on implications see [3, 17].

Definition 1 ([18]) A function C : [0, 1] × [0, 1] →
[0, 1] is a copula if it satisfies:

• C(0, x) = C(x, 0) = 0 for all x ∈ [0, 1].

• C(1, x) = C(x, 1) = x for all x ∈ [0, 1].

• C is 2-increasing, that is, for all x′ ≤ x and y′ ≤ y
it satisfies C(x, y′)+C(x′, y) ≤ C(x′, y′)+C(x, y).

Definition 2 ([18]) Given a copula C, the corre-
sponding survival copula is another copula C∗ that is
given by

C∗(x, y) = x+y−1+C(1−x, 1−y), for all x, y ∈ [0, 1].

Definition 3 ([16]) A copula C is said to be radially
symmetric or invariant with respect to the construction
of the survival copula (invariant for short), whenever
C∗ = C.

Definition 4 ([3, 10]) A binary operation I : [0, 1]2 →
[0, 1] is said to be a fuzzy implication function, or a
fuzzy implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].

(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].

(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) =
1 and I(x, 1) = 1 for all x ∈ [0, 1] whereas the sym-
metrical values I(x, 0) and I(1, x) are not derived from
the definition. Let us recall here only two properties
that will be used along the paper.

Definition 5 ([3, 10]) Let I be a fuzzy implication.

• The function NI defined by NI(x) = I(x, 0) for
all x ∈ [0, 1], is called the natural negation of I
and it is always a fuzzy negation.

• It is said that I satisfies the left neutrality prin-
ciple whenever I(1, y) = y for all y ∈ [0, 1].

The following four construction methods of fuzzy im-
plication functions from copulas were presented in
[11, 12, 13, 14].

Proposition 1 ([11, 14]) Let C be a copula. The
function IC : [0, 1]2 → [0, 1] given by

IC(x, y) =
{

1 if x = 0,
C(x,y)
x if x > 0,

is an implication function if and only if C(x1, y)x2 ≥
C(x2, y)x1 for all x1 ≤ x2. In this case, IC is called a
probabilistic implication (based on copula C).

Proposition 2 ([14]) Let C be a copula. The function
ĨC : [0, 1]2 → [0, 1] given by

ĨC(x, y) = C(x, y)− x+ 1 for all x, y ∈ [0, 1]

is always an implication function, which is called a
probabilistic S-implication (based on copula C).

Proposition 3 ([13]) Let C be a copula. The function
I∗C : [0, 1]2 → [0, 1] given by

I∗C(x, y) =
{

1 if x = 0,
x+y−1+C(1−x,1−y)

x if x > 0,

is an implication function if and only if

C(1−x1, 1−y)x2−C(1−x2, 1−y)x1 ≥ (1−y)(x2−x1)

for all x1 ≤ x2. In this case, IC is called a survival
implication (based on copula C).

Proposition 4 ([13]) Let C be a copula. The function
Ĩ∗C : [0, 1]2 → [0, 1] given by

Ĩ∗C(x, y) = y + C(1− x, 1− y) for all x, y ∈ [0, 1]

is always an implication function, which is called a
survival S-implication (based on copula C).

3 PROBABILISTIC
S-IMPLICATION COPULAS

In this work we want to deal with the construction
of copulas from fuzzy implication functions. We want
to study the possibility of reversing the methods used
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in the construction of probabilistic S-implications and
survival S-implications. We think that the cases of
probabilistic implications and survival implications are
also worth to be studied, but we left them for a future
work because of lack of space.

Let us begin with the case of probabilistic S-
implications defined by ĨC(x, y) = C(x, y)−x+1. We
can obtain the following definition by reversing this
method.

Definition 6 Let I be a fuzzy implication function.
We define the probabilistic S-implication function
(PSI-function for short) derived from I, CPSII , as the
function defined by

CPSII (x, y) = I(x, y) + x− 1 for all x, y ∈ [0, 1].

When CPSII is in fact a copula, it will be called a PSI-
copula.

Note that we always have ĨCPSI
I

= I and CPSI
ĨC

= C

for any copula C and fuzzy implication function I, by
construction.

However, it is clear that the function CPSII is not al-
ways a copula. For instance, it is obvious that the
implication function I must be continuous in order to
derive a copula. In fact, the following theorem gives
necessary and sufficient conditions on a fuzzy implica-
tion function I, to obtain a copula via the PSI-function
defined before.

Theorem 5 Let I be a fuzzy implication function and
CPSII its derived PSI-function. Then CPSII is a copula
if and only if the following items hold:

i) The natural negation of I is Nc(x) = 1− x.

ii) I satisfies the left-neutrality principle.

iii) I is 2-increasing.

Among all classes of fuzzy implication functions we
want to deal with (S,N)-implication functions given
by I(x, y) = S(N(x), y), whenever S is a t-conorm
and N is a fuzzy negation. In this case, it is clear
that condition ii) in the previous theorem is always
satisfied and, to satisfy condition i) we must take N
the classical negation Nc. Thus, the only condition to
be checked is concerning the 2-increasingness.

Remark 1 Since any copula C is always continuous,
it is clear that the implication function I must be also
continuous in order to CPSII be a copula (note that
continuity of I follows from the three conditions stated
in Theorem 5). In the case of (S,N)-implications,
since N must be Nc, the t-conorm used to construct
the implication must be continuous.

Theorem 6 Let S be a t-conorm, IS the (S,N)-
implication given by IS(x, y) = S(1 − x, y) for all
x, y ∈ [0, 1], and CPSIIS

the PSI-function derived from
IS. Then the following conditions are equivalent:

i) CPSIIS
is a copula.

ii) S is 2-decreasing, that is, S(x1, y1)− S(x1, y2)−
S(x2, y1)+S(x2, y2) ≤ 0 for all x1 ≤ x2 and y1 ≤
y2.

iii) S satisfies the Lipschitz property with constant 1,
that is,

S(x2, y)− S(x1, y) ≤ x2 − x1

for all x1, x2, y ∈ [0, 1] such that x1 ≤ x2.

From the theorem above we can derive the follow-
ing corollary that characterizes all (S,N)-implications
such that their derived PSI-function is a copula.

Corollary 7 Let S be a t-conorm, N a fuzzy negation,
I the corresponding (S,N)-implication and CPSII the
PSI-function derived from I. Then CPSII is a copula
if and only if N = Nc and S is one of the following
t-conorms: the maximum, an Archimedean t-conorm
with convex additive generator or an ordinal sum of
Archimedean t-conorms with convex additive genera-
tors.

Let us now show some illustrative examples. First we
recall the examples given in [14] using the three ba-
sic copulas: the minimum (upper Fréchet-Hoeffding
bound) copula M , the product copula Π and the
 Lukasiewicz (lower Fréchet-Hoeffding bound) copula
W .

Example 1 i) It was proved in [14] that the
 Lukasiewicz implication (which is the (S,N)-
implication obtained from Nc and the  Lukasiewicz
t-conorm) is obtained from the copula M . Conversely,
it is easy to see that CPSII is the copula M when we
start from the  Lukasiewicz implication.

ii) Similarly, the Reichenbach implication (which is
the (S,N)-implication obtained from Nc and the proba-
bilistic sum t-conorm) can be obtained from the copula
Π. Conversely, it is easy to see that CPSII is the copula
Π when we start from the Reichenbach implication.

iii) Finally, the Kleene-Dienes implication (which is
the (S,N)-implication obtained from Nc and the max-
imum t-conorm) can be obtained from the copula W .
Conversely, it is easy to see that CPSII is the copula
W when we start from the Kleene-Dienes implication.

Of course, from Corollary 7 we can obtain copulas from
many different (S,N)-implications taking for instance
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Archimedean or ordinal sums t-conorms from some
well known families, like Schweizer-Sklar, Hamacher,
Frank, Yager, Dombi, Sugeno-Weber, Alsina-Sklar, or
Mayor-Torrens t-conorms (see [15]). Let us detail here
the copulas from three of these families.

Example 2 i) It is well known that the Hamacher-
family of t-norms, TH

λ , with λ ∈ [0, 2] are also copulas
known as the family of Ali-Mikhail-Haq copulas (see
[15]). All of them are strict with convex additive gen-
erator and so, their dual t-conorms, given by

SH
λ (x, y) =

{
1 if λ = 0 and x = y = 1,
x+y−xy−(1−λ)xy

1−(1−λ)xy otherwise,

are also strict with convex additive generator. Con-
sequently, it is possible to derive PSI-copulas from
the corresponding (S,N)-implications with N = Nc.
An easy computation shows that this family of PSI-
copulas, denoted by CPSIλ,H , is given by

CPSIλ,H (x, y) =
{

0 if λ = x = 0 and y = 1,
λxy+(1−λ)x2y
1−(1−λ)(1−x)y otherwise,

and it will be called the family of Hamacher PSI-
copulas. Note that for λ = 1 the Hamacher t-conorm
is the probabilistic sum and then the corresponding
Hamacher PSI-copula is the copula Π.

ii) Another well known family of t-norms that are cop-
ulas is the family of Sugeno-Weber t-norms, TSW

λ with
λ ∈ [0,+∞]. In this case, all of them are nilpotent (ex-
cept for λ = +∞ when the product t-norm is reached)
and so their dual t-conorms SSW

λ with λ ∈ [−1, 0],
given by

SSW
λ (x, y) = min(x+ y + λxy, 1) for all x, y ∈ [0, 1],

are also nilpotent (except for λ = −1 leading to the
probabilistic sum) with additive convex generator. So,
we can derive again suitable (S,N)-implications with
N = Nc to generate a family of PSI-copulas. This
family, denoted by CPSIλ,SW, is given by

CPSIλ,SW(x, y) = min(x, y(1+λ−λx)) for all x, y ∈ [0, 1],

and it will be called the family of Sugeno-Weber PSI-
copulas. In this case we obtain a parametrized family
of copulas from the copula Π (λ = −1) to the copula
M (λ = 0).

iii) Finally, a well known family of t-norms given by
ordinal sums that are also copulas is the family of
Mayor-Torrens t-norms, TMT

λ with λ ∈ [0, 1]. They
are given by ordinal sums of only one  Lukasiewicz
summand. Their dual t-conorms, which are given by

SMT
λ (x, y) =

{
min(x+ y − λ, 1) if x, y ∈ [λ, 1],
max(x, y) otherwise,

where λ ∈ [0, 1], are consequently suitable to gen-
erate PSI-copulas from the corresponding (S,N)-
implications with N = Nc. This family of PSI-copulas,
denoted by CPSIλ,MT, is given by

CPSIλ,MT(x, y) =
{

min(x, y − λ) if 1− x, y ∈ [λ, 1],
max(0, x+ y − 1) otherwise,

and it will be called the family of Mayor-Torrens PSI-
copulas. In this case we obtain a parametrized family
of copulas from the copula M (λ = 0) to the copula W
(λ = 1).

The structure of Mayor-Torrens PSI-copulas can be
viewed in Figure 1. Note that these copulas are in
fact W -ordinal sums as defined in [6].

0

λ

1− λ 1

1

�
�
�
�
�
�
��

@
@
@@

0

x

y − λ x+ y − 1

Figure 1: Structure of Mayor-Torrens PSI-copulas
given in Example 2, taking λ < 1

2 .

Another well known family of implication functions is
the family of residual implications derived from left-
continuous t-norms, also called R-implications. How-
ever, from this family we can derive only one PSI-
copula as the following result shows.

Theorem 8 Let T be a left-continuous t-norm, IT
its R-implication and CPSIIT

the PSI-function derived
from IT . Then CIT is a copula if and only if T
is the  Lukasiewicz t-norm. In this case, IT is the
 Lukasiewicz implication and CPSIIT

is the copula M .

4 SURVIVAL S-IMPLICATION
COPULAS

In this section we will deal with the case of survival
S-implications defined, from a copula C, by I∗C(x, y) =
y + C(1− x, 1− y) for all x, y ∈ [0, 1]. It is clear that
we can obtain the following definition by reversing this
method.

Definition 7 Let I be a fuzzy implication function.
We define the survival S-implication function (SSI-
function for short) derived from I, CSSI as the func-
tion defined by

CSSII (x, y) = I(1−x, 1−y)+y−1 for all x, y ∈ [0, 1].
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When CSSII is in fact a copula, it will be called a SSI-
copula.

Example 3 The three classical copulas can be ob-
tained as SSI-copulas from the same implication func-
tions as in the case of PSI-copulas. That is, we obtain
the copula W from the Kleene-Dienes implication, the
copula Π from the Reichenbach implication, and the
copula M from the  Lukasiewicz implication.

As in the section above, the function CSSII is not al-
ways a copula. In fact, the following theorem gives
necessary and sufficient conditions on a fuzzy implica-
tion function I, to obtain a copula via the SSI-function
defined before.

Theorem 9 Let I be a fuzzy implication function and
CSSII its derived SSI-function. Then the following con-
ditions are equivalent:

i) CSSII is a copula.

ii) The natural negation of I is Nc, I satisfies the
left-neutrality principle and I is 2-increasing.

iii) CPSII is a copula.

Moreover, the relation between CPSII and CSSII is ex-
tremely closed as the following theorem shows.

Theorem 10 Let I be a fuzzy implication function
such that CPSII is a copula. Then CSSII is also a cop-
ula and the following conditions are equivalent:

i) CSSII (x, y) = CPSII (y, x) for all x, y ∈ [0, 1].

ii) I satisfies contraposition with respect to Nc, that
is, I(x, y) = I(1− y, 1− x) for all x, y ∈ [0, 1].

From Theorem 9, the fuzzy implication functions from
which we can obtain PSI-copulas and those from we
can obtain SSI-copulas are exactly the same. Thus,
if we deal with R-implications only the copula M is
available from the  Lukasiewicz implication (see Theo-
rem 8). However, if we deal with (S,N)-implications
we derive the following obvious corollary.

Corollary 11 Let S be a t-conorm, N a fuzzy nega-
tion, I the corresponding (S,N)-implication and CSSII

the SSI-function derived from I. Then CSSII is a cop-
ula if and only if N = Nc and S is one of the following
t-conorms: the maximum, an Archimedean t-conorm
with convex additive generator or an ordinal sum of
Archimedean t-conorms with convex additive genera-
tors.

Now, we can derive also examples from (S,N)-
implications with S a t-conorm in one of the families
in Example 2, obtaining new parametrized families of
copulas. Note that, since (S,N)-implications obtained
from any t-conorm S and Nc always satisfy contrapo-
sition with respect to Nc, these new copulas will coin-
cide with the symmetric copulas of those obtained in
Example 2 (see Theorem 10).

Example 4 i) If we consider the Hamacher family
of t-conorms SH

λ and their (S,N)-implications with
N = Nc, the corresponding SSI-copulas are given by
CSSIλ,H (x, y) = CPSIλ,H (y, x). That is,

CSSIλ,H (x, y) =
{

0 if λ = y = 0 and x = 1,
λxy+(1−λ)xy2

1−(1−λ)x(1−y) otherwise.

ii) When we take the Sugeno-Weber t-conorms
SSW
λ and their (S,N)-implications with N =
Nc, the Sugeno-Weber SSI-copulas again satisfy
CSSIλ,SW(x, y) = CPSIλ,SW(y, x) and so they are given by

CSSIλ,SW(x, y) = min(x(1+λ−λy), y) for all x, y ∈ [0, 1].

iii) Finally, if we consider the Mayor-Torrens t-
conorms SMT

λ and their (S,N)-implications with
N = Nc, the Mayor-Torrens SSI-copulas satisfy
CSSIλ,MT(x, y) = CPSIλ,MT(y, x) and so they are given by

CSSIλ,MT(x, y) =
{

min(x− λ, y) if x, 1− y ∈ [λ, 1],
max(0, x+ y − 1) otherwise.

From Theorem 9, we also obtain the following inter-
esting characterization of invariant copulas.

Theorem 12 Let I be a fuzzy implication function
such that CPSII is a copula (and then also CSSII is a
copula). Then the following conditions are equivalent:

i) CPSII is an invariant copula.

ii) CPSII = CSSII .

iii) CPSII is commutative.

Applying this last result to the case of (S,N)-
implications we have the following proposition.

Proposition 13 Let S be a t-conorm with the Lip-
schitz property, N = Nc and I the corresponding
(S,N)-implication. Let CPSII and CSSII the corre-
sponding PSI-copula and the SSI-copula derived from
I. Then CPSII (or CSSII ) is an invariant copula if and
only if

S(1− x, y) + x = S(x, 1− y) + y for all x, y ∈ [0, 1].
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It is worth to study the functional equation given in
the previous proposition for continuous t-conorms. As
a first step note that the set of solutions includes at
least the three basic t-conorms: maximum, probabilis-
tic sum and the  Lukasiewicz t-conorm. This can be
easily viewed directly or as a direct consequence of
Examples 1 and 3.

5 CONCLUSIONS AND FUTURE
WORK

Based on ideas on probabilistic S-implications and sur-
vival S-implications introduced in [13, 14] we have pre-
sented in this work two new methods of constructing
copulas from fuzzy implication functions. We have
dealt with (S,N) and R-implications leading to some
new families of parametrized copulas. As a future
work, other kinds of implications can be considered
and we are also working in a similar study for proba-
bilistic implications and survival implications.
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Summary

In this paper the characterization of all fuzzy
implications with continuous α-natural nega-
tion that satisfy the law of importation with
a given uninorm U is resumed. The cases
when the considered uninorm U is continu-
ous in the open unit square or when U is an
idempotent uninorm are studied separately
and characterizations of those implications
with continuous α-natural negation that sat-
isfy the law of importation with a uninorm
in these classes can be derived.

Keywords: Fuzzy implication, law of im-
portation, uninorm, fuzzy negation.

1 INTRODUCTION

Fuzzy implication functions are used in fuzzy control
and approximate reasoning to perform fuzzy condi-
tionals [8, 12, 17] and also to perform forward and
backward inferences in any fuzzy rules based sys-
tem through the inference rules of modus ponens and
modus tollens or through the similarity based reason-
ing [11, 17, 22].

Moreover, fuzzy implication functions have proved to
be useful not only in fuzzy control and approximate
reasoning, but also in many other fields like fuzzy re-
lational equations [17], fuzzy DI-subsethood measures
and image processing [2, 3], fuzzy morphological oper-
ators [6, 7, 13] and data mining [24], among others. In
each one of these fields, there are some additional prop-
erties that the fuzzy implication functions to be used
should have to ensure good results in the mentioned
applications. The analysis of these additional proper-
ties of fuzzy implication functions is one of the most
important topics in this field, and usually reduces to

the solution of specific functional equations involving
implication functions.

One of the most studied properties in this area is the
so-called Law of Importation, which is extremely re-
lated to the exchange principle (see [18]) and it has
proved to be useful in simplifying the process of apply-
ing the compositional rule of inference in many cases,
see [1] and [10]. The law of importation can be written
as

I(T (x, y), z) = I(x, I(y, z)) for all x, y, z ∈ [0, 1],
(LI)

where T is a t-norm, or a more general conjunction (for
instance a conjunctive uninorm) and I is a fuzzy impli-
cation function. The law of importation has been stud-
ied by many authors in the last years [1, 10, 15, 16, 18],
dealing with different aspects of this property and with
different classes of implication functions. In particu-
lar, in [18] the law of importation has been used to give
new characterizations of some classes of implications
like (S,N)-implications and R-implications. Finally,
it has been a crucial property to characterize Yager’s
implications in [19].

Despite of all these works devoted to the law of im-
portation, there are still some open problems involving
this property. In particular, given any t-norm T (con-
junctive uninorm U), it is an open problem to find all
fuzzy implications I such that they satisfy the law of
importation with respect to this fixed t-norm T (con-
junctive uninorm U). Recently, the authors have stud-
ied this problem, for implications with continuous nat-
ural negation, in the cases of the minimum t-norm and
any continuous Archimedean t-norm (see [20]). Simi-
larly, the characterization of implications with contin-
uous α-natural negation for some α ∈]0, 1[ satisfying
the law of importation with a uninorm in Umin and
with a representable uninorm was done in [21].

As a second part of this latest work [21], in this paper
we want to deal with this problem in the cases when U
is a conjunctive uninorm lying in the class of uninorms
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continuous in the open unit square, and when U lies in
the class of idempotent uninorms. We will give again
partial solutions in the sense that we will find all solu-
tions involving fuzzy implications with the additional
property of having continuous α-natural negation for
some α ∈]0, 1[ related to the neutral element of the
uninorm U .

2 PRELIMINARIES

We will suppose the reader to be familiar with the
theory of t-norms and t-conorms (all necessary results
and notations can be found in [14]) and uninorms (see
[5] and Chapter 5 in [1]). To make this work self-
contained, we recall here some of the concepts and
results used in the rest of the paper.

As we have already said, with respect to uninorms we
will only focus on idempotent uninorms and conjunc-
tive uninorms continuous in the open unit square.

Definition 1 A binary operator U : [0, 1]2 → [0, 1] is
said to be idempotent whenever U(x, x) = x for all
x ∈ [0, 1].

The idempotent uninorms have been recently charac-
terized in [23]. We recall here only the conjunctive
case.

Theorem 2 ([23, Theorem 4]) Consider
e ∈ (0, 1). The following items are equivalent:

(i) U is an idempotent uninorm with neutral element
e.

(ii) There exists a decreasing function g : [0, 1] →
[0, 1], symmetric with respect to the identity, with
fixed point e such that U is given by U(x, y) =




min{x, y} if y < g(x) or (y = g(x)
and x < g(g(x))),

max{x, y} if y > g(x) or (y = g(x)
and x > g(g(x))),

x or y if y = g(x) and x = g(g(x)),

being commutative on the set of points (x, g(x))
such that x = g(g(x)).

In this case, such a uninorm is conjunctive if and only
if g(0) = 1.

Any idempotent uninorm U with neutral element e
and associated function g, will be denoted by U ≡
〈g, e〉ide and the class of idempotent uninorms will be
denoted by Uide.

Definition 3 ([5]) Let e be in ]0, 1[. A binary oper-
ation U : [0, 1]2 → [0, 1] is a representable uninorm if

and only if there exists a strictly increasing function
h : [0, 1]→ [−∞,+∞] with h(0) = −∞, h(e) = 0 and
h(1) = +∞ such that

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} and U(0, 1) =
U(1, 0) ∈ {0, 1}. The function h is usually called an
additive generator of U .

A more general class containing representable uni-
norms are those continuous in the open unit square
]0, 1[2, that were characterized in [9] as follows.

Theorem 4 ([9]) Suppose U is a uninorm continu-
ous in ]0, 1[2 with neutral element e ∈]0, 1[. Then ei-
ther one of the following cases is satisfied:

(a) There exist u ∈ [0, e[, λ ∈ [0, u], two continu-
ous t-norms T1 and T2 and a representable uninorm
R such that U can be represented as U(x, y) =




λT1

(
x
λ
, y
λ

)
if x, y ∈ [0, λ],

λ+ (u− λ)T2

(
x−λ
u−λ ,

y−λ
u−λ

)
if x, y ∈ [λ, u],

u+ (1− u)R
(
x−u
1−u ,

y−u
1−u

)
if x, y ∈ ]u, 1[,

1 if min(x, y) ∈ ]λ, 1]

and max(x, y) = 1,

min(x, y) or 1 if (x, y) ∈ {(λ, 1), (1, λ)},
min(x, y) elsewhere.

(1)

(b) There exist v ∈]e, 1], ω ∈ [v, 1], two continuous
t-conorms S1 and S2 and a representable uninorm R
such that U can be represented as U(x, y) =




v + (ω − v)S1

(
x−v
ω−v ,

y−v
ω−v

)
if x, y ∈ [v, ω],

ω + (1− ω)S2

(
x−ω
1−ω ,

y−ω
1−ω

)
if x, y ∈ [ω, 1],

vR
(
x
v
, y
v

)
x, y ∈ ]0, v[,

0 if max(x, y) ∈ [0, ω[

and min(x, y) = 0,

max(x, y) or 0 if (x, y) ∈ {(0, ω), (ω, 0)},
max(x, y) elsewhere.

(2)

The class of all uninorms continuous in ]0, 1[2 will be
denoted by Ucos. A uninorm as in (1) will be de-
noted by U ≡ 〈T1, λ, T2, u, (R, e)〉cos,min and the class
of all uninorms continuous in the open unit square
of this form will be denoted by Ucos,min. Analo-
gously, a uninorm as in (2) will be denoted by U ≡
〈(R, e), v, S1, ω, S2〉cos,max and the class of all uninorms
continuous in the open unit square of this form will be
denoted by Ucos,max. Now, we give some definitions
and results concerning fuzzy negations.

Definition 5 ([4, Definition 1.1]) A decreasing
function N : [0, 1] → [0, 1] is called a fuzzy negation,
if N(0) = 1, N(1) = 0. A fuzzy negation N is called
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(i) strict, if it is strictly decreasing and continuous,

(ii) strong, if it is an involution, i.e., N(N(x)) = x
for all x ∈ [0, 1].

Next lemma plays an important role in the results pre-
sented in this paper. Essentially, given a fuzzy nega-
tion, it defines a new fuzzy negation which in some
sense can perform the role of the inverse of the origi-
nal negation.

Lemma 6 ([1, Lemma 1.4.10]) If N is a continu-
ous fuzzy negation, then the function RN : [0, 1] →
[0, 1] defined by

RN (x) =

{
N (−1)(x) if x ∈ (0, 1],
1 if x = 0,

where N (−1) stands for the pseudo-inverse of N given
by N (−1)(x) = sup{z ∈ [0, 1] | N(z) > x} for all x ∈
[0, 1], is a strictly decreasing fuzzy negation. Moreover,

R
(−1)
N = N , N ◦RN = id[0,1] and RN ◦N |Ran(RN ) =

id|Ran(RN ), where Ran(RN ) stands for the range of
function RN .

Now, we recall the definition of fuzzy implications.

Definition 7 ([4, Definition 1.15]) A binary oper-
ator I : [0, 1]2 → [0, 1] is said to be a fuzzy im-
plication if it is non-increasing in the first variable,
non-decreasing in the second variable and it satisfies
I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) =
1 and I(x, 1) = 1 for all x ∈ [0, 1] whereas the sym-
metrical values I(x, 0) and I(1, x) are not derived from
it. Fuzzy implications can satisfy additional properties
coming from tautologies in crisp logic. In this paper,
we are going to deal with the law of importation, al-
ready presented in the introduction.

The natural negation with respect to α of a fuzzy im-
plication will be also useful in our study.

Definition 8 ([1, Definition 5.2.1]) Let I be a
fuzzy implication. If I(1, α) = 0 for some α ∈ [0, 1),
then the function Nα

I : [0, 1]→ [0, 1] given by Nα
I (x) =

I(x, α) for all x ∈ [0, 1], is called the natural negation
of I with respect to α.

Remark 9 1. If I is a fuzzy implication, N0
I is al-

ways a fuzzy negation.

2. Given a binary function F : [0, 1]2 → [0, 1], we
will denote by Nα

F (x) = F (x, α) for all x ∈ [0, 1]
its α-horizontal section. In general, Nα

F is not a
fuzzy negation. In fact, it is trivial to check that
Nα
F is a fuzzy negation if, and only if, F (x, α) is

a non-increasing function satisfying F (0, α) = 1
and F (1, α) = 0.

3 ON THE SATISFACTION OF (LI)
WITH A GIVEN UNINORM U

In this section, the main goal is the characterization of
all fuzzy implications with a continuous natural nega-
tion with respect to e ∈ [0, 1) which satisfy the Law of
Importation (LI) with a fixed conjunctive uninorm U .
It was proved in [21] that the property:

if N(y) = N(y′) for some y, y′ ∈ [0, 1],
then N(U(x, y)) = N(U(x, y′)) for all x ∈ [0, 1],

(3)
plays a key role in this problem as the following propo-
sition shows.

Proposition 10 ([21]) Let I : [0, 1]2 → [0, 1] be a bi-
nary function such that Nα

I is a fuzzy negation for
some α ∈ [0, 1). If I satisfies (LI) with a conjunctive
uninorm U , then Nα

I and U satisfy Property (3).

Moreover, the following characterization was done for
the general case of a conjunctive uninorm U .

Theorem 11 ([21]) Let I : [0, 1]2 → [0, 1] be a binary
function with Nα

I a continuous fuzzy negation for some
α ∈ [0, 1) and U a conjunctive uninorm with neutral
element e such that Nα

I (e) = α. Then I satisfies (LI)
with U if and only if Nα

I and U satisfy Property (3)
and I is given by

I(x, y) = Nα
I (U(x,RNαI

(y))).

Note that, from this characterization, it remains to
know when Nα

I and U satisfy Property (3), for each
concrete conjunctive uninorm U . We will study it for
some classes of uninorms in the following section.

4 ON THE SATISFACTION OF
PROPERTY (3) FOR SOME
UNINORMS

First of all, we want to stress again that the goal of
this paper is to characterize all fuzzy implications with
a continuous natural negation with respect to some
α ∈ [0, 1) satisfying (LI) with a concrete conjunctive
uninorm U . Therefore, there are other implications
satisfying (LI) with a conjunctive uninorm U than
those given in the results of this section. Of course,
these implications must have non-continuous natural
negations with respect to any α ∈ [0, 1) such that
I(1, α) = 0. An example of an implication with this
property is the least fuzzy implication.

Proposition 12 Let ILt be the least fuzzy implication
given by

ILt(x, y) =

{
1 if x = 0 or y = 1,
0 otherwise.
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Then ILt satisfies (LI) with any conjunctive uninorm
U .

Consequently, although ILt satisfies (LI) with any con-
junctive uninorm U , we will not obtain this implication
in the next results since it has no continuous natural
negation at any level α ∈ [0, 1).

4.1 IDEMPOTENT UNINORMS

Let us deal in this section with conjunctive idempo-
tent uninorms U ≡ 〈g, e〉ide ([23]). First, we will set a
negation and determine some necessary conditions on
the uninorm.

Proposition 13 Let N be a continuous fuzzy nega-
tion that is constant, N(x) = k, in an interval [a, b],
where a = min{x ∈ [0, 1] | N(x) = k} and b =
max{x ∈ [0, 1] | N(x) = k} and let U ≡ 〈g, e〉ide be
a conjunctive uninorm in Uide such that U and N sat-
isfy Equation (3). Then one of the following items
holds:

i) {g(x) | x ∈ [0, 1]} ∩ ]a, b[= ∅ whenever a ≥ e or
b ≤ e.

ii) {g(x) | x ∈ [0, 1] \ [a, b]} ∩ ]a, b[= ∅ whenever
a < e < b.

Moreover, if g(x) = a for some x ∈ [0, 1] then it must
be U(x, a) = max(x, a), whereas if g(x) = b for some
x ∈ [0, 1] then it must be U(x, b) = min(x, b).

Now, let us set the uninorm and determine necessary
conditions on the negation. In the case when g has a
discontinuity point s, we will denote the corresponding
lateral limits by s− and s+.

Proposition 14 Let N be a continuous fuzzy nega-
tion and U ≡ 〈g, e〉ide be a conjunctive uninorm in
Uide such that U and N satisfy Equation (3).

• If g is continuous and strictly decreasing on an
interval ]a, b[ then N is also strictly decreasing on
that interval.

• If g is constant on an interval ]a, b[, or s is a
discontinuity point of g with s+ = a and s− = b,
then N can be any continuous decreasing function
on the interval [a, b] with the only two restrictions:

- If N is constant in a subinterval [a, c] with
c ≤ b and g(x) = a for some x, then U(x, a) =
max(x, a).

- If N is constant in a subinterval [c, b] with
c ≥ a and g(x) = b for some x, then U(x, b) =
min(x, b).

Now, if we fix a conjunctive idempotent uninorm
U ≡ 〈g, e〉ide, those continuous negations N that sat-
isfy equation (3) with U can be easily characterized
using the previous propositions. Finally, using Theo-
rem 11, we can derive all fuzzy implications satisfying
(LI) with U .

4.2 UNINORMS CONTINUOUS IN THE
OPEN UNIT SQUARE

In this section we deal with uninorms continuous in
the open unit square and we divide our study into two
cases, one for uninorms in Ucos,min and the other for
uninorms in Ucos,max.

4.2.1 UNINORMS IN Ucos,min

In this case all uninorms are conjunctive and we have
the following results which follow a similar pattern to
the previous subsection.

Proposition 15 Let N be a continuous fuzzy nega-
tion and U ≡ 〈T1, λ, T2, u, (R, e)〉cos,min be a conjunc-
tive uninorm in Ucos,min. Suppose that N(x) = 1 in an
interval [0, a] where 0 < a = max{x ∈ [0, 1] | N(x) =
1}. If U and N satisfy Equation (3) then λ ≥ a. More-
over, if λ = a, then U(1, λ) = λ.

Proposition 16 Let N be a continuous fuzzy nega-
tion and U ≡ 〈T1, λ, T2, u, (R, e)〉cos,min be a conjunc-
tive uninorm in Ucos,min. Suppose that N is con-
stant, N(x) = k with 0 < k < 1, in an interval
[a, b], where a = min{x ∈ [0, 1] | N(x) = k} and
b = max{x ∈ [0, 1] | N(x) = k}. If U and N sat-
isfy Equation (3) then one of the following cases hold:

1. λ ≥ b and T1 = TM . Moreover, if λ = b, then
U(1, λ) = λ.

2. λ ≤ a < b ≤ u and T2 = TM . Moreover, if λ = a,
then U(1, λ) = 1.

Proposition 17 Let N be a continuous fuzzy nega-
tion and U ≡ 〈T1, λ, T2, u, (R, e)〉cos,min be a conjunc-
tive uninorm in Ucos,min. Suppose that N(x) = 0 in a
interval [a, 1] where 1 > a = min{x ∈ [0, 1] | N(x) =
0}. Then there is no such uninorm U satisfying Equa-
tion (3) with N .

Proposition 18 Let N be a continuous fuzzy nega-
tion with constant regions {([ai, bi], ki)}i∈I where ki >
0, ai = min{x ∈ [0, 1] | N(x) = ki} and
bi = max{x ∈ [0, 1] | N(x) = ki} and let U ≡
〈T1, λ, T2, u, (R, e)〉cos,min be a conjunctive uninorm in
Ucos,min such that U and N satisfy Equation (3). Then
for each i ∈ I, either [ai, bi] ⊆ [0, λ] or [ai, bi] ⊆ [λ, u]
and the following restrictions hold:

Proceedings of 8th International Summer School on Aggregation Operators (AGOP 2015)

190



• If U(1, λ) = 1, then for all ai < λ, it must be
bi < λ.

• If U(1, λ) = λ, then for all bi > λ, it must be
ai > λ.

• If T1 is an Archimedean t-norm, there is only one
possible constant region with bi ≤ λ and in this
case, ai = 0 and ki = 1.

• If T2 is an Archimedean t-norm, then bi ≤ λ for
all i ∈ I.

Now, if we fix a conjunctive uninorm
U ≡ 〈T1, λ, T2, u, (R, e)〉cos,min in Ucos,min with
Archimedean or minimum t-norms, those continuous
negations N that satisfy Equation (3) with U can be
easily characterized using the previous propositions.
Finally, again using Theorem 11, we can derive all
fuzzy implications satisfying (LI) with U .

4.2.2 UNINORMS IN Ucos,max

There is a family of uninorms that are conjunctive
although they lie in Ucos,max. They are those uni-
norms of the form (2) with parameter ω = 1 and
U(ω, 0) = U(1, 0) = 0. A uninorm in this class will
be denoted by U ≡ 〈(R, e), v, S〉cos,max

Proposition 19 Let N be a continuous fuzzy nega-
tion and U ≡ 〈(R, e), v, S〉cos,max be a conjunctive uni-
norm in Ucos,max. Suppose that N(x) = 1 in a interval
[0, a] where 0 < a = max{x ∈ [0, 1] | N(x) = 1}. Then
necessarily v ≤ a. Moreover, if S is Archimedean then
it must be v = a.

Proposition 20 Let N be a continuous fuzzy nega-
tion and U ≡ 〈(R, e), v, S〉cos,max be a conjunctive
uninorm in Ucos,max. Suppose that N is constant,
N(x) = k with 0 < k < 1, in an interval [a, b], where
a = min{x ∈ [0, 1] | N(x) = k} and b = max{x ∈
[0, 1] | N(x) = k}. Then necessarily v ≤ a. Moreover,
if S is Archimedean this case can not be done.

Proposition 21 Let N be a continuous fuzzy nega-
tion and U ≡ 〈(R, e), v, S〉cos,max be a conjunctive uni-
norm in Ucos,max. Suppose that N(x) = 0 in a interval
[a, 1] where 1 > a = min{x ∈ [0, 1] | N(x) = 0}. Then
necessarily v ≤ a.

With all the previous results it can be easily char-
acterized when N and U satisfy Equation (3) in the
case of conjunctive uninorms in Ucos,max with S an
Archimedean or maximum t-conorm as follows.

Proposition 22 Let N be a continuous fuzzy nega-
tion and U ≡ 〈(R, e), v, S〉cos,max be a conjunctive uni-
norm in Ucos,max.

• If S = Max then U and N satisfy Equation (3)
if and only if N is constant or strictly decreasing
on the interval [0, v].

• If S is Archimedean, let us denote a = min{x ∈
[0, 1] | N(x) = 0}. Then U and N satisfy Equa-
tion (3) if and only if one of the following cases
holds:

- N(x) = 1 for all x ∈ [0, v] and N is strictly
decreasing on the interval [v, a].

- N is strictly decreasing on the interval [0, a].

Finally, again using Theorem 11, we can derive all
fuzzy implications with a continuous α-natural nega-
tion satisfying (LI) with U .

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we have resumed the study of the charac-
terization of all fuzzy implication functions satisfying
(LI) with a conjunctive uninorm U when the natu-
ral negation of the implication with respect to some
α ∈ [0, 1) is continuous. In particular, we have anal-
ysed the problem when the conjunctive uninorm U
is continuous in the open unit square or when U is
an idempotent uninorm. From the results obtained
in this paper, the expression of the fuzzy implication
functions satisfying (LI) with a conjunctive uninorm
U of one of these two classes can be derived.

As a future work, we want to study the more general
case when U is a uninorm with continuous underlying
t-norm and t-conorm. In addition, we want to estab-
lish the relation between the new class of implications
introduced in this paper in Theorem 11 and (U,N)-
implications.
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Summary

The ordered weighted average sum is an ag-
gregation operator that provides a parame-
terized family of sums between the minimum
sum and the maximum one. It is a particu-
lar case of the OWA norm when the function
used is a sum. Some key properties and par-
ticular cases are studied including the aver-
age sum, the olympic sum and the centered
sum. A simple numerical example is also pre-
sented. Further extensions are presented in-
cluding the generalized OWAS operator and
the Choquet integral sum.

Keywords: OWA operators, Norm aggrega-
tions, Sums.

1 INTRODUCTION

The ordered weighted average (OWA) [20] is an aggre-
gation operator that analyzes the information provid-
ing a parameterized family of aggregation operators
between the minimum and the maximum. Since its
introduction, many authors have developed many ex-
tensions and applications [1,4,25-26].

The OWA operator can be extended and general-
ized in different ways. Recently, Yager, suggested the
use of norms in the OWA operator [23], obtaining
a more general representation that included a wide
range of particular cases including distance measures
[7,12,18]. This work was extended by Merigó and
Yager [14] by using induced aggregation operators.
They also presented a generalization that considered a
unified framework between the OWA operator and the
weighted average. Some other studies have also con-
sidered the use of norms in other frameworks including
situations with heavy aggregation operators [10]. The

work of Merigó and Yager [14] found a wide range of
particular cases of great interest including the OWA
sum, the OWA subtraction and the OWA multiplica-
tion. However, this was only a result in the analysis
of the OWA operators with norms.

The aim of this paper is to analyze the use of sums
in the OWA operator. For doing so, the aggregation
with sums is seen from the perspective of the OWA
norm (OWAN). However, it is also possible to build it
following the methodology used with OWA distances
and other related operators [9,13]. The article presents
the OWA sum (OWAS). It is an aggregation operator
that provides a parameterized family of aggregation
operators from the minimum sum to the maximum
one. It is very useful to aggregate a set of sums. Some
key properties are studied. Several particular types
of OWAS operators are presented including the aver-
age sum, the minimum sum, the maximum sum, the
olympic sum and the centered sum. The main advan-
tage is the flexibility to adapt to the specific needs of
the problem considered. Moreover, it does not loose
information in the analysis because it considers any
scenario from the minimum to the maximum one.

The applicability of the OWAS operator is studied.
The OWAS is useful in aggregating a set of sums in
order to provide a final result. This is very common in
real life because the aggregation of data many times
depends on sums. Some key examples are mentioned
including the sum of costs, sales and incomes. A sim-
ple numerical example is also presented in order to
understand the usefulness of the new approach. Fur-
ther generalizations are also developed by using gen-
eralized means. The result is the generalized OWAS
(GOWAS) operator. The main advantage of this op-
erator is that it is much more general than the OWAS
being able to consider geometric and quadratic aggre-
gations. Another generalization when using Choquet
integrals is also presented obtaining the Choquet inte-
gral sum (CIS).

The paper is organized as follows. Section 2 briefly
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reviews some basic preliminaries. Section 3 introduces
the OWAS operator. Section 4 studies the GOWAS
operator and Section 5 the CIS operator. Section 6
summarizes the main findings and conclusions of the
paper.

2 PRELIMINARIES

This Section briefly presents the OWA operator and
the OWA norm.

2.1 OWA OPERATOR

The OWA operator [20] is a well-known aggregation
operator that aggregates the information providing a
parameterized system of aggregation operators that
fluctuate between the minimum and the maximum.
The OWA operator is defined as follows.

Definition 1. An OWA operator of dimension n is
a mapping OWA: Rn → R that has an associated
weighting W of dimension n with

∑n
j=1 wj = 1 and

wj ∈ [0, 1], such that:

OWA(a1, ..., an) =
n∑

j=1

wjbj , (1)

where bj is the jth largest of the ai.

The OWA operator is commutative, monotonic,
idempotent and bounded by the minimum and the
maximum. In order to characterize the weighting
vector of the OWA operator, several measures have
been suggested including the orness measure [20] and
the entropy of dispersion [20] which follows a similar
methodology than the Shannon entropy [15].

2.2 NORMS WITH OWA OPERATORS

A norm is a representation that allows the use of func-
tions and other related techniques in order to deal with
a set of data. A norm is a function Rn → [0,∞) that
has the following properties [23]:

1) f(x1, x2, ..., xn) = 0 if and only if all xi = 0 and
xi > 0.

2) f(aX) = |a| f(X).

Moreover, note that an important property to con-
sider is the triangle inequality: f(X)+f(Y )f(X+Y ).
However, it is not a requirement for a norm to accom-
plish this property since some norms may violate this
axiom.

Norms can be used in the aggregation of the infor-
mation by using averaging operators. When using the
weighted average in the aggregation of norms, the for-

mulation is as follows:

f (a1, . . . , an) = G (|a1| , . . . , |an|) =
n∑

i=1

|ai|, (2)

where wi is the ith weight of the weighted average and
ai is the norm used in the aggregation function G for
two sets of elements X = x1, ..., xn and Y = y1, ..., yn.
Note that ifwi = 1/n for all i, the weighted average
norm becomes the simple average norm.

Recently, Yager [23] has suggested the use of OWA
operators in norm aggregations. This aggregation can
be expressed in the following way:

f (a1, . . . , an) = G (|a1| , . . . , |an|) =
n∑

j=1

wjNj , (3)

where Nj is the jth largest of the |ai| arguments of the
aggregation function G.

Further extensions can be developed by using in-
duced aggregations [14], heavy aggregations [10] and a
unified framework between the weighted average and
the OWA operator [14].

3 THE OWA SUM

The ordered weighted average sum (OWAS) is an ag-
gregation operator that aggregates a set of sums from
the minimum sum to the maximum one. It is very
useful for dealing with complex scenarios taking into
account the attitude of the decision maker in the anal-
ysis and considering sums in the aggregation process.
This is very common in business and economics when
dealing with the sum of the costs, sales, benefits and
assets. The OWAS operator can be defined as follows
for two sets X = x1, , xn and Y = y1, , yn.

Definition 2. An OWAS operator of dimension n is a
mapping OWAS: Rn×Rn → R that has an associated
weighting vector W of dimension n with

∑n
j=1 wj = 1

and wj ∈ [0, 1], such that:

OWAS ([x1 + y1] , . . . , [xn + yn]) =

n∑

j=1

wjbj , (4)

where bj is the jth largest of the [xi + yi].

The OWAS operator is commutative, monotonic,
idempotent and bounded. It is commutative because
f([x1 + y1], ..., [xn + yn]) = f([c1 + d1], ..., [cn + dn])
where ([x1 + y1], ..., [xn + yn]) is any permutation of
the arguments ([c1 + d1], ..., [cn + dn]). It also accom-
plishes the commutativity because f([x1+y1], ..., [xn+
yn]) = f([y1 + x1], ..., [yn + xn]). It is monotonic
because if [xi + yi] ≥ [ci + di], for all i, then,
f([x1 +y1], ..., [xn+yn]) ≥ f([c1 +d1], ..., [cn+dn]). It
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is bounded by the minimum and the maximum sum.
Therefore, min [xi + yi] ≤ f([x1 + y1], ..., [xn + yn]) ≤
max [xi + yi]. It is idempotent because if [xi+yi] = a,
for all i, then f([x1 + y1], ..., [xn + yn]) = a. Note
that the neutral (or identity) element is 0 because
f([x1 + 0], ..., [xn + 0]) = f(x1, ..., xn).

The OWAS operator is ordered in a descending way
although it is possible to consider an ascending version
by using wj = w∗

n−j+1, where wj is the jth weight of
the DOWAS operator and w∗

n−j+1 the jth weight of
the AOWAS operator.

Observe that if the weighting vector does not sum
up to one, i.e., W =

∑n
j=1 wj 6= 1, then, the OWAS is

formulated as follows:

OWAS([x1 + y1], ..., [xn + yn]) =
1

W

n∑

j=1

wjbj , (5)

The weights used in the OWAS aggregation represent
the attitudinal character of the decision maker rather
than weighting some specific variables. In order to
characterize the weights of the OWAS operator, let us
present the measures commonly used in the OWA op-
erator [20]. The degree of orness (degree of optimism)
is used in the OWAS as follows:

α(W ) =
n∑

j=1

wj

(
n− j
n− 1

)
, (6)

The entropy of dispersion of the OWAS weighting
vector is defined as:

H (W ) = −
n∑

j=1

wj ln (wj) , (7)

Finally, the balance operator of the OWAS operator
is:

BAL (W ) =
n∑

j=1

(
n+ 1− 2j

n− 1

)
wj , (8)

In order to understand numerically the OWAS op-
erator, let us look into a numerical example. Assume
the sales of a company are classified in two regions
The enterprise wants to forecast the sales for the next
period considering that five scenarios or states of na-
ture may occur. The expected sales in the two re-
gions depending on the state of nature that occur are
X = (30, 80, 90, 80, 20) and Y = (70, 30, 40, 60, 40).
The decision maker does not know the probability that
the states of nature occur. Therefore, he uses a weight-
ing vector that represents his attitudinal character:
W = (0.3, 0.3, 0.2, 0.1, 0.1). He aggregates the infor-
mation using the OWAS operator as follows.

OWAS = 0.3× (80 + 60) + 0.3× (90 + 40) + 0.2×

(80 + 30) + 0.1× (30 + 70) + 0.1× (20 + 40) = 119.

Note that the OWAS develops a descending order of
the individual sums. Thus, 140 ≥ 130 ≥ 110 ≥ 100 ≥
60.

Note that the aggregation of sums is very common
in real life problems. For example, in business and
economics there are many operations that require the
sum of variables including the sum of sales, costs, as-
sets, products and benefits. Therefore, this approach
may have a huge potential in real world applications.

Next, let us look into some of the main families of
OWAS operators [11,21]. The maximum sum is found
if w1 = 1 and wj = 0 for all j 6= 1. The minimum
sum is obtained if wn = 1 andwj = 0 for all j 6= n.
From a general point of view, if wk = 1 and wj = 0
for all j 6= k, we get the step-OWAS operator. If
wj = 1/n for all i, the OWAS operator becomes the
simple average sum (AS) which is formulated as:

AS([x1 + y1], ..., [xn + yn]) =
1

n

n∑

i=1

(xi + yi), (9)

Although it is not strictly a particular case of the
OWAS operator, it is also interesting to mention the
weighted average sum which is defined as follows:

WAS([x1 + y1], ..., [xn + yn]) =
n∑

i=1

wi(xi + yi), (10)

The olympic-OWAS operator is obtained if w1 =
wn = 0, and for all others, wj∗ = 1/(n − 2). More
generally [11], wj = 0forj = 1, 2, ..., k, n, n− 1, ..., n−
k + 1; and for all others, wj∗ = 1/(n − 2k), where
k < n/2.

Another type of family that could be considered is
the S-OWAS operator. The generalized S-OWAS oper-
ator is obtained when w1 = (1/n)(1−(α+β))+α, wn =
(1/n)(1− (α+ β)) + β , and wj = (1/n)(1− (α+ β))
for j = 2 to n − 1, where α, β ∈ [0, 1] and α + β ≤ 1.
If α = 0, the generalized S-OWAS operator becomes
the andlike S-OWAS operator, and if β = 0, the orlike
S-OWAS operator.

Finally, the centered-OWAS operator [11] is ob-
tained if the aggregation is symmetric, strongly decay-
ing and inclusive. It is symmetric if wj = wj+n−1. It
is strongly decaying if i < j ≤ (n+1)/2, then wi < wj ,
and if i > j ≥ (n+1)/2, then wi < wj . It is inclusive if
wj > 0. Note that it is possible to consider a softening
of the second condition by using wi ≤ wj instead of
wi < wj (softly decaying centered-OWAS operator).

Note that many other particular types of OWAS op-
erators could be studied following the OWA literature
[8,21].
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Finally, note that in Eq. (4), the OWAS operator
has been defined for two sets X and Y. However, it is
possible to use as many sets as needed in the aggrega-
tion by using the following definition for m sets.

Definition 3. An OWAS operator of dimension n is
a mapping OWAS: Rn ×Rn × ...×Rn → R that has
an associated weighting vector W of dimension n with∑n
j=1 wj = 1 and wj ∈ [0, 1], such that:

f([x11 + ...+ xm1 ], ..., [x1n + ...+ xmn ]) =

n∑

j=1

wjbj , (11)

where bj is the jth largest of the [x1i + ...+ xmi ].

4 GENERALIZED OWAS
OPERATOR

The OWAS operator can be generalized by using gen-
eralized means [22]. The result is the generalized
OWAS (GOWAS) operator. Its main advantage is that
it provides a more general framework that includes ge-
ometric, quadratic and harmonic aggregations. It can
be defined as follows for two sets X = x1, , xn and
Y = y1, , yn.

Definition 4. A GOWAS operator of dimension n
is a mapping GOWAS: Rn × Rn → R that has an
associated weighting vector W of dimension n with∑n
j=1 wj = 1 and wj ∈ [0, 1], such that:

GOWAS([x1 + y1], ..., [xn + yn]) =




n∑

j=1

wjb
λ
j




1/λ

(12)

where bj is the jth largest of the [xi + yi] and λ is a
parameter such that λ ∈ (−∞,∞)− {0}.

Following Eq. (11), the GOWAS operator could be
expressed as:

f([x11 + ...+xm1 ], ..., [x1n + ...+xmn ]) =




n∑

j=1

wjb
λ
j




1/λ

.

(13)

By using a different value in the parameter the
GOWAS operator can form a wide range of particu-
lar cases. For example:

• If λ = 1, the GOWAS becomes the usual OWAS
operator.

• If λ = 2, we get the quadratic OWAS (OWQAS)

operator.

OWQAS([x1 + y1], ..., [xn + yn]) =

√√√√√




n∑

j=1

wjb2j


.

(14)

• If λ −→ 0, we get the geometric OWAS (OWGAS)
operator.

OWGAS([x1 + y1], ..., [xn + yn]) =

n∏

j=1

bj
wj . (15)

• If λ = −1, we get the harmonic OWAS (OWHAS)
operator.

OWHAS([x1 + y1], ..., [xn + yn]) =
1

n∑
j=1

wj

bj

. (16)

• If λ = 3, we get the cubic OWAS (OWCAS) op-
erator.

OWCAS([x1 + y1], ..., [xn + yn]) =




n∑

j=1

wjb
3
j




1/3

.

(17)

Note that a lot of other particular cases could be
studied [8,11]. Finally, let us present a further gener-
alization by using quasi-arithmetic means forming the
Quasi-OWAS operator.

Definition 5. A Quasi-OWAS operator of dimension
n is a mapping QOWAS: Rn × Rn → R that has
an associated weighting vector W of dimension n with∑n
j=1 wj = 1 and wj ∈ [0, 1], such that:

f([x1 + y1], ..., [xn + yn]) = g−1




n∑

j=1

wjg(bj)


 , (18)

where bj is the jth largest of the [xi + yi] and g is a
strictly continuous monotonic function.

5 CHOQUET INTEGRALS WITH
THE OWAS OPERATOR

The OWAS operator can also be extended with Cho-
quet integrals following a similar methodology as other
authors have followed in previous work [2,9]. In this
case, we get the Choquet integral sum (CIS). It is very
similar to the OWAS operator but not it follows the
Choquet integral aggregation process. Before intro-
ducing the CIS operator, let us briefly recall the con-
cept of a fuzzy measure. The fuzzy measure is also
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known as non-additive measure and can be defined as
follows [6,16].

Definition 6. Let X be a universal set X =
x1, x+ 2, ..., xn and P (X) the power set of X. A fuzzy
measure on X is a set function on m: P (X) −→ [0, 1]
that accomplishes the following conditions:

1. m(∅) = 0,m(X) = 1 (boundary conditions).

2. If A,B ∈ P (X) and A ⊆ B, then m(A) ≤ m(B)
(monotonicity).

Another basic definition important to remark is the
Choquet integral [3] in its discrete form:

Definition 7. Let f be a positive real-valued function
f : X → R+ and m be a fuzzy measure on X. The
discrete Choquet integral of f with respect to m is:

Cm (f1, f2, . . . , fn) =

n∑

i=1

f(i)
[
m(A(i))−m(A(i−1))

]
,

(19)
where f(i) is the ith largest value in the set
f1, f2, ..., fn; A(i) = x(1), ..., x(i) i ≥ 1; and A(0) = ∅.

Next, let us look into some extensions of the Cho-
quet integral when using the OWAS operator. First,
it is possible to consider the CIS operator which is a
Choquet aggregation where the set of arguments are
formed by subsets of sums. The CIS operator is de-
fined as follows.

Definition 8. Let m be a fuzzy measure onX. A
Choquet integral sum (CIS) operator of dimensionn is
a function CIS: Rn ×Rn → R, such that:

CIS ([x1 + y1] , [x2 + y2] , . . . , [xn + yn]) =

=
n∑
j=1

bj
[
m(A(j))−m(A(j−1))

] ,

(20)

where bj is the jth largest of the [xi + yi] value, the
[xi + yi] is the argument variable represented in the
form of individual sums; A(j) = x(1), ..., x(j) j ≥ 1;
and A(0) = ∅.

This approach can be generalized by using general-
ized and quasi-arithmetic means [5,8]. For example,
by using quasi-arithmetic means, we get the quasi-
arithmetic Choquet integral sum (Quasi-CIS) opera-
tor, which is defined as follows.

Definition 9. Let m be a fuzzy measure on X. A
quasi-arithmetic Choquet integral sum (Quasi-CIS) of
dimension n is a function QCIS: Rn ×Rn → R, such
that:

Quasi− CIS ([x1 + y1] , . . . , [xn + yn]) =

= g−1

(
n∑
j=1

g(bj)
[
m(A(j))−m(A(j−1))

]
)
,

(21)

where g is a strictly continuous monotonic function
and the rest is equivalent to Eq. (20).

Note that if g = bλ, the Quasi-CIS operator is equiv-
alent to the generalized CIS (GCIS) operator. Form
here, we could consider arithmetic aggregations when
λ = 1, quadratic ones when λ = 2 and geometric ones
when λ→ 0.

6 CONCLUSIONS

This article has presented the OWAS operator. It is
an aggregation operator that aggregates a set of data
assessed with sums providing a complete representa-
tion of the information from the minimum sum to the
maximum one. Some general properties are studied
including those coming from the OWA operator and
those from the norm aggregation. The OWAS operator
includes many particular cases including the simple av-
erage sum, the minimum sum and the maximum sum.
These operators are useful for some specific situations
according to the needs of the problem considered.

Some extensions have been considered by using gen-
eralized aggregation operators and Choquet integrals.
The GOWAS operator is more general than the OWAS
operator because it includes many other particular
cases including the quadratic OWAS and the geometric
OWAS. The CIS operator gives a more formal repre-
sentation to the OWAS operator. The CIS has also
been extended with quasi-arithmetic operators form-
ing the Quasi-CIS operator.

This approach is very useful in a wide range of real
world problems that deals with sums. Some interest-
ing examples are the forecast of business and economic
variables such as the sales and costs that are formed
from a set of scenarios that sums different costs and
sales. In future research, other additional develop-
ments will be considered by using other type of frame-
works including induced [24] and weighted aggrega-
tion operators [17,19]. Some real world applications
will be considered in decision making, economics and
business.
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[10] J.M. Merigó, M. Casanovas, S.Z. Zeng (2014).
Distance measures with heavy aggregation op-
erators. Applied Mathematical Modelling 38, pp
3142-3153.
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ON THE FUNCTIONAL EQUATION
f(m1(x + y)) = m2(f(x) + f(y))

FOR INJECTIVE FUNCTION m2
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Institute of Mathematics, University of Silesia

40-007 Katowice, ul. Bankowa 14, Poland
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Summary

Recently, in some considerations connected
with the distributivity laws of fuzzy implica-
tions over triangular norms and conorms, the
following functional equation

f(min(x+ y, a)) = min(f(x) + f(y), b),

connected with the Cauchy equation, ap-
peared, where a, b are finite or infinite non-
negative constants (see [4]). In [7] we have
considered a generalized version of this equa-
tion in the case when both a and b are finite,
namely the equation

f(m1(x+ y)) = m2(f(x) + f(y)),

where m1,m2 are functions defined on some
finite intervals of R satisfying additional as-
sumptions. In this article we consider the
above equation when m1,m2 are defined on
some finite or infinite sets and satisfy only
one additional assumption: m2 is injective.

Keywords: Fuzzy connectives, fuzzy im-
plication, distributivity, functional equation,
Jensen equation.

1 PRELIMINARIES

Distributivity of fuzzy implication functions over dif-
ferent fuzzy logic connectives has been thoroughly in-
vestigated in recent past by many authors (see [1, 19,
8, 17, 18, 4, 2, 3, 16, 15, 5]). In general we can consider
four such distributivity equations:

I(x,C1(y, z)) = C2(I(x, y), I(x, z)), (D1)

I(x,D1(y, z)) = D2(I(x, y), I(x, z)), (D2)

I(C(x, y), z) = D(I(x, z), I(y, z)), (D3)

I(D(x, y), z) = C(I(x, z), I(y, z)), (D4)

satisfied for all x, y, z ∈ [0, 1], where I is some gener-
alization of classical implication, C, C1, C2 are some
generalizations of classical conjunction and D, D1, D2

are some generalizations of classical disjunction.

The importance of such equations in Fuzzy Con-
trol and Fuzzy Systems has been first emphasized by
Combs and Andrews [11], wherein they exploit the fol-
lowing classical tautology

(p ∧ q)→ r ≡ (p→ r) ∨ (q → r)

in their inference mechanism towards reduction in the
complexity of fuzzy “IF-THEN” rules. Subsequently,
there were many discussions [9, 10, 12, 14], most of
them pointing out the need for a theoretical investiga-
tion required for employing such equations.

If we use continuous Archimedean t-norms and t-
conorms in above distributivity laws (D1) – (D4), then
from their representation theorems (see [13]) we obtain
the following four equations

fx(min(t1(y) + t1(z), t1(0)))

= min(fx(t1(y)) + fx(t1(z)), t2(0)),

gx(min(s1(y) + s1(z), s1(1)))

= min(gx(s1(y)) + gx(s1(z)), s2(1)),

hz(min(t(x) + t(y), t(0)))

= min(hz(s(x)) + hz(s(y)), s(1)),

kz(min(s(x) + s(y), s(1)))

= min(kz(t(x)) + kz(t(y)), t(0)),

where

• t1, t2, t are functions occurring in the representa-
tions of T1, T2, T , respectively,
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• s1, s2, s are functions occurring in the representa-
tions of S1, S2, S, respectively,

• fx( · ) = t2 ◦ I(x, t−11 ( · )), for a fixed x ∈ [0, 1],

• gx( · ) = s2 ◦ I(x, s−11 ( · )), for a fixed x ∈ [0, 1],

• hz( · ) = s ◦ I(x, t−1( · )), for a fixed z ∈ [0, 1],

• kz( · ) = t ◦ I(x, s−1( · )), for a fixed z ∈ [0, 1].

Observe that the first equation may be written in the
following form

fx(min(u+ v, t1(0))) = min(fx(u) + fx(v), t2(0)),

where u, v ∈ [0, t1(0)], and fx is an unknown function.
Similarly, the second equation may be written in the
form

gx(min(u+ v, s1(1))) = min(gx(u) + gx(v), s2(1)),

where u, v ∈ [0, s1(1)], and gx is an unknown function.
The other two equations can be written in the similar
way. Thus, in the papers [4, 2], authors have found
the solutions of the following functional equations

f(min(x+ y, r1)) = min(f(x) + f(y), r2),

f(min(x+ y, r1)) = f(x) + f(y),

f(x+ y) = min(f(x) + f(y), r2),

f(x+ y) = f(x) + f(y),

when in the first case f : [0, r1]→ [0, r2], in the second
case f : [0,∞] → [0, r2], in the third case f : [0, r1] →
[0,∞] and finally in the last case f : [0,∞] → [0,∞].
Observe that the last equation is in fact the Cauchy
equation, while the other equations can be seen as
some modifications of classical Cauchy equation.

In the articles [6, 7] we considered the generalized
version of the first equation i.e., we have replaced
both functions min(·, r1), min(·, r2) occurring directly
in this equation, by functions m1,m2 satisfying some
assumptions. This means that we studied there the
following equation

f(m1(x+ y)) = m2(f(x) + f(y)). (1)

In this article we continue these investigations and we
show the solutions of the equation (1) when m1,m2

are defined on some finite or infinite sets and satisfy
only one additional assumption: m2 is injective.

2 SOME NEW RESULTS
PERTAINING TO JENSEN
EQUATION

In this section we would like to present new results
connected to Jensen equation

f(x) + f(y) = 2f(
x+ y

2
). (J)

We consider here few cases where domain or codomain
are extended to the infinity. Results from this section
will be used in the main theorems of the next section.

Lemma 2.1. Let D ⊂ RN be convex set such that
intD 6= ∅, and let f : D → R be a solution of Jensen
equation (J). If f is bounded above or bounded below
on D, then

f(x) = cx+ a, x ∈ D, (2)

for some constants c ∈ RN , a ∈ R.

Proof. This lemma is a simple corollary from results
stated in [13]. First, since f is a solution of the equa-
tion (J) and it is a bounded function (from above or
from below), thus f is continuous [see [13, Theorem
XIII.2.3]]. And then, by [13, Theorem XIII.2.2], we
have that f takes the form (2).

Proposition 2.2. Let f : [0,∞] → [0, b], for some fi-
nite b ∈ [0,∞). Then the following statements are
equivalent:

(i) Function f satisfies the Jensen equation (J) for
all x, y ∈ [0,∞].

(ii) Function f is constant, i.e., there exists d ∈ [0, b],
such that f = d.

Proof. (i) ⇐ (ii) It is obvious that every constant
function satisfies (J).

(i)⇒ (ii) Let us define function g : [0,∞)→ [0, b] as a
truncation f to real domain, i.e., g = f

∣∣
R. Obviously

function g satisfies Jensen equation (J) as well, and
since g is bounded, thus from Lemma 2.1 there exist
c, d ∈ R such that

g(x) = cx+ d, x ∈ [0,∞).

Of course c and d are nonnegative, since f ≥ 0. There-
fore f(x) = cx + d, for x ∈ [0,∞), as well. Putting
x = 0 and y = ∞ to the equation (J) for function f ,
we get

f(0) + f(∞) = 2f

(
0 +∞

2

)

⇐⇒ d+ f(∞) = 2f(∞),

thus f(∞) = d, since f is finite. Now putting any
x ∈ (0,∞) and y =∞ to the equation (J) we get

f(x) + f(∞) = 2f

(∞+ x

2

)

⇐⇒ (cx+ d) + d = 2f(∞) = 2d,

thus c = 0. Therefore the only solution is f = d, for
d ∈ [0,∞).
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Proposition 2.3. For a function f : [0,∞) → [0,∞]
the following statements are equivalent:

(i) Function f satisfies the Jensen equation (J) for
all x, y ∈ [0,∞).

(ii) Either f =∞, or there exists d ∈ [0,∞) such that

f(x) =

{
d, if x = 0,

∞, if x > 0,
(3)

or there exist c, d ∈ [0,∞) such that

f(x) = cx+ d, (4)

for all x ∈ [0,∞).

Proof. (i)⇐ (ii) It is a direct calculation that all the
above functions satisfy the equation (J).

(i) ⇒ (ii) First let us assume that f takes only real
values, i.e., f : [0,∞) → [0,∞). Function f is non-
negative and satisfies (J), thus from Lemma 2.1 there
exist c, d ∈ [0,∞) such that

f(x) = cx+ d, x ∈ [0,∞).

This way we get the solution (4).
In the opposite case, there exists x∞ ∈ [0,∞) such that
f(x∞) =∞. Putting, to the equation (J), x = x∞ and
y = 2z − x∞, for any z ≥ 1

2x∞, we get

f(x∞)+f(2z − x∞) = 2f

(
x∞ + (2z − x∞)

2

)

⇐⇒ ∞+ f(2z − x∞) = 2f(z)

⇐⇒ ∞ = f(z).

Therefore f(z) = ∞ for all z ≥ 1
2x∞. Now let us

assume that f([ 1
2nx∞,∞)) = {∞} for some n ∈ N.

Then for any z ≥ 1
2n+1x∞ we have (2z − 1

2nx∞) ≥ 0
and

∞ = f(
1

2n
x∞) + f(2z − 1

2n
x∞) = 2f(z).

Thus f(z) = ∞, which gives us f([ 1
2n+1x∞,∞)) =

{∞}. This way we have proved by an induction that
f([ 1

2nx∞,∞)) = {∞} for any n ∈ N. Therefore
f((0,∞)) = {∞}, since for any z ∈ (0,∞) there ex-
ists n ∈ N such that z > 1

2nx∞. The remaining value
for 0 is not specified, thus we can get f = ∞ or the
solution (3).

Proposition 2.4. Let f : [0, a] → [0,∞], for some
finite a ∈ [0,∞). Then the following statements are
equivalent:

(i) Function f satisfies the Jensen equation (J) for
all x, y ∈ [0, a].

(ii) Either f =∞, or there exists d ∈ [0,∞) such that

f(x) =

{
d, if x = 0,

∞, if x > 0,
(5)

or

f(x) =

{
∞, if x < a,

d, if x = a,
(6)

or there exist nonnegative c, d ∈ R such that

f(x) = cx+ d, (7)

for all x ∈ [0, a].

Proof. (i)⇐ (ii) It is a direct calculation that all the
above functions satisfy the equation (J).

(i)⇒ (ii) First, as in the proof of Proposition 2.3, let
us assume that f takes only real values, i.e., f : [0, a]→
[0,∞). Function f is nonnegative and satisfies (J),
thus from Lemma 2.1 there exist c, d ∈ [0,∞) such
that f(x) = cx+ d, for all x ∈ [0, a]. This way we get
the solution (7).
Next let us assume that there exists x∞ ∈ [0, a] such
that f(x∞) =∞. Putting x = x∞ and y = a− x∞ to
the Jensen equation (J) we get

∞ = f(x∞) = f(x∞) + f(a− x∞)

= 2f

(
x∞ + a− x∞

2

)
= 2f

(a
2

)
.

Then putting x = 0, y = a to the Jensen equation (J)
we get f(0) + f(a) = 2f(a

2 ) = ∞, thus f(0) = ∞ or
f(a) =∞.

1) f(0) = ∞. First observe that for any x ∈ [0, a2 ]
we have

∞ = f(0) + f(2x) = 2f(x),

thus f(x) = ∞ and we have f([0, a2 ]) = {∞}.
Next we can easily prove by an induction that
f([0, 2

n−1
2n a]) = {∞}, for any n ∈ N. Therefore

f([0, a)) = {∞}, since for any x ∈ [0, a) there
exists n ∈ N such that x < 2n−1

2n a. The remaining
value for a is not specified, thus we can get f =∞
or the solution (6).

2) f(a) =∞. In a similar way as in 1) we get f =∞
or the solution (5).

Proposition 2.5. For a function f : [0,∞] → [0,∞]
the following statements are equivalent:

(i) Function f satisfies the Jensen equation (J) for
all x, y ∈ [0,∞].
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(ii) Either f = ∞, or f = d for some d ∈ [0,∞), or
there exists d ∈ [0,∞) such that

f(x) =

{
d, if x = 0,

∞, if x > 0,
(8)

or there exist c, d ∈ [0,∞) such that

f(x) =

{
cx+ d, if x <∞,
∞, if x =∞, (9)

for all x ∈ [0,∞].

Proof. (i)⇐ (ii) It is a direct calculation that all the
above functions satisfy the equation (J).

(i) ⇒ (ii) Here we apply Proposition 2.3 for f
∣∣
R and

then analyze the remaining values f of ∞. We omit
the details of that proof, since they are quite similar
to previous cases.

3 SOLUTIONS OF EQUATION
f(m1(x + y)) = m2(f(x) + f(y)) WHEN
m2 IS INJECTIVE

In this section we characterize solutions to the equa-
tion (1) for different domains and codomains of func-
tions f , m1 and m2, namely when m1 : [0, 2r1] →
[0, r1], m2 : [0, 2r2] → [0, r2] and f : [0, r1] → [0, r2],
where constants r1, r2 ∈ [0,∞] may be finite or infi-
nite. All the time we have only one additional assump-
tion that m2 is injective.

First we want to recall the lemma that we obtained
in [7]. The only difference here is that the constants
r1 and r2 may also be infinite, but the proofs in these
additional cases are very similar.

Lemma 3.1 (cf [7, Lemma 2.1]). Let r1, r2 ∈ [0,∞] be
some numbers, finite or infinite, and let m1 : [0, 2r1]→
[0, r1],m2 : [0, 2r2] → [0, r2] be given functions. If m2

is injective and a function f : [0, r1] → [0, r2] satisfies
the functional equation (1), then f satisfies the Jensen
equation (J).

Next, we consider four cases corresponding to all pos-
sible combinations of finite and infinite values of r1, r2.
First one, when both r1 and r2 are finite, was solved
in [7].

Theorem 3.2 (cf. [7, Theorem 2.2]). Let r1, r2 ∈
[0,∞) be some numbers and let m1 : [0, 2r1] → [0, r1],
m2 : [0, 2r2]→ [0, r2], f : [0, r1]→ [0, r2] be given func-
tions. Further, let m2 be injective. Then the following
statements are equivalent:

(i) The triple of functions m1,m2, f satisfies the
equation (1) for all x, y ∈ [0, r1].

(ii) Either f = d for some d ∈ [0, r2] and m2(2d) = d,
or f(x) = cx + d for some c, d ∈ R, c 6= 0 such
that cx+ d ∈ [0, r2] for all x ∈ [0, r1] and

m1(x) =
m2(cx+ 2d)− d

c
.

Obviously all the solutions in the last theorem are con-
tinuous as they will be in the next case, when r1 =∞,
but r2 stays finite.

Theorem 3.3. Let r2 ∈ [0,∞) be some number and
let m1 : [0,∞] → [0,∞], m2 : [0, 2r2] → [0, r2] and
f : [0,∞]→ [0, r2] be given functions. Further, let m2

be injective. Then the following statements are equiv-
alent:

(i) The triple of functions m1,m2, f satisfies the
equation (1) for all x, y ∈ [0,∞].

(ii) f = d, for some d ∈ [0, r2], and m2(2d) = d.

Proof. (i)⇐ (ii) It is a direct calculation.

(i)⇒ (ii) From Lemma 3.1 we have that f satisfies the
Jensen equation (J). Then from Proposition 2.2 we get
that function f is constant, i.e., there exists d ∈ [0, r2]
such that f = d. Finally, from the equation (1) we
have m2(2d) = d.

In the following two cases, when we extend a codomain
of a function f to the infinity, there appear also dis-
continuous solutions.

Theorem 3.4. Let r1 ∈ [0,∞) be some number and
let m1 : [0, 2r1] → [0, r1], m2 : [0,∞] → [0,∞] and
f : [0, r1]→ [0,∞] be given functions. Further, let m2

be injective. Then the following statements are equiv-
alent:

(i) The triple of functions m1,m2, f satisfies the
equation (1) for all x, y ∈ [0, r1].

(ii) Either f = ∞ and m2(∞) = ∞, or there exists
d ∈ [0,∞) such that

f(x) =

{
d, if x = 0,

∞, if x > 0,
x ∈ [0, r1], (10)

and (m1(0) = 0,m1(x) > 0 for all x > 0,
m2(2d) = d and m2(∞) = ∞), or (m1(0) >
0,m1(x) = 0 for all x > 0, m2(2d) = ∞ and
m2(∞) = d), or

f(x) =

{
∞, if x < r1,

d, if x = r1,
x ∈ [0, r1], (11)

and (m1(2r1) = r1,m1(x) < r1 for all x < 2r1,
m2(2d) = d and m2(∞) = ∞), or (m1(2r1) <
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r1,m1(x) = r1 for all x < 2r1, m2(2d) = ∞ and
m2(∞) = d), or there exist c, d ∈ [0,∞) such that

f(x) = cx+ d, (12)

and m2(2d) = d, if c = 0, while

m1(x) =
m2(cx+ 2d)− d

c
,

for all x ∈ [0, r1], if c > 0.

Proof. (i) ⇐ (ii) It is quite easy to check that these
functions satisfy (1). However, this is kind of a tedious
work and we omit it here.

(i) ⇒ (ii) From Lemma 3.1 we have that f satisfies
the Jensen equation (J). Then from Proposition 2.4
we get that f = ∞ or f takes the form (10), (11) or
(12). Let us consider all those four possibilities.

1) f = ∞. Then the equation (1) takes the form
∞ = m2(∞).

2) f takes the form (10). Putting x = y = 0 to the
equation (1) we get

f(m1(0)) = m2(f(0) + f(0)) = m2(2d).

Two cases are possible:

(A1) m1(0) = 0, and then m2(2d) = f(0) = d;

(A2) m1(0) > 0, and then m2(2d) =∞.

Next, let us put to the equation (1) x, y ∈ [0, r1]
such that x + y > 0. Assume x > 0, without
losing generality. We have then f(m1(x + y)) =
m2(∞+ f(y)) = m2(∞), which is equivalent to

f(m1(x)) = m2(∞),

for all x ∈ (0, 2r1]. If there exists x1 ∈
(0, 2r1] such that m1(x1) = 0, then m2(∞) =
f(m1(x1)) = f(0) = d. And if there exists
x2 ∈ (0, 2r1] such that m1(x2) > 0 then m2(∞) =
f(m1(x2)) = ∞. Obviously, existence of x1 and
x2 at the same time leads to the contradiction,
thus we have two possibilities:

(B1) m1(x) = 0 for all x ∈ (0, 2r1], and then
m2(∞) = d;

(B2) m1(x) > 0 for all x ∈ (0, 2a], and then
m2(∞) =∞.

Since m2 is injective and d 6=∞, thus (A1) cannot
occur together with (B1), and (A2) cannot occur
together with (B2). The remaining combinations
(A1) with (B2) and (A2) with (B1) complete the
thesis for f in the form (10).

3) f takes the form (11). We can analyze this case
in a similar way as the last one. We omit here the
details.

4) f takes the form (12), i.e., there exist c, d ∈ [0,∞)
such that f(x) = cx+d for all x ∈ [0, r1]. If c = 0
then f = d and the equation (1) takes the form
d = m2(2d). On the other hand, if c > 0 then
the equation (1) takes the form cm1(x+ y) + d =
m2(cx + d + cy + d) = m2(c(x + y) + 2d), for all
x, y ∈ [0, r1], which is equivalent to

m1(x) =
m2(cx+ 2d)− d

c
,

for all x ∈ [0, 2r1]. That completes the proof.

Finally we consider the last case when both r1 and r2
are infinite.

Theorem 3.5. Let m1,m2, f : [0,∞] → [0,∞] be
given functions. Further, let m2 be injective. Then
the following statements are equivalent:

(i) The triple of functions m1,m2, f satisfies the
equation (1) for all x, y ∈ [0,∞].

(ii) Either f = ∞ and m2(∞) = ∞, or there exists
d ∈ [0,∞) such that f = d and m2(2d) = d, or

f(x) =

{
d, if x = 0,

∞, if x > 0,
x ∈ [0,∞], (13)

and (m1(0) = 0,m1(x) > 0 for all x > 0,
m2(2d) = d and m2(∞) = ∞), or (m1(0) >
0,m1(x) = 0 for all x > 0, m2(2d) = ∞ and
m2(∞) = d), or

f(x) =

{
d, if x <∞,
∞, if x =∞, x ∈ [0,∞], (14)

and (m1(∞) = ∞,m1(x) < ∞ for all x < ∞,
m2(2d) = d and m2(∞) = ∞), or (m1(∞) <
∞,m1(x) = ∞ for all x < ∞, m2(2d) = ∞ and
m2(∞) = d), or there exist c, d ∈ [0,∞), c 6= 0,
such that

f(x) =

{
cx+ d, if x <∞,
∞, if x =∞, x ∈ [0,∞], (15)

and

m1(x) =
m2(cx+ 2d)− d

c
,

for all x ∈ [0,∞].
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4 CONCLUSIONS

In this article we have discussed some solutions of the
functional equation f(m1(x+ y)) = m2(f(x) + f(y)),
which generalizes some equations connected with the
solutions of the distributivity laws for fuzzy implica-
tions over triangular norms and triangular conorms. It
would be interesting to find applications of our solu-
tions in fuzzy control and/or fuzzy logic. As a byprod-
uct we obtained solutions of the Jensen equation in
few cases when domain or codomain of f is extended
to the infinity. Note that Baczyński, Jayaram in [4]
and Baczyński in [2] did similar work with the Cauchy
equation. It is of our interest to analyze the connec-
tions between those results.
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Summary

The problem of measuring the degree of in-
clusion and similarity measure for two intu-
itionistic interval-valued fuzzy sets is consid-
ered. Moreover, some properties of inclusion
and similarity measure and some correlation,
between them are examined.

Keywords: Degree of inclusion, Fuzzy
set, Similarity, Interval-valued intuitionistic
fuzzy set.

1 INTRODUCTION

In this paper interval-valued intuitionistic fuzzy sets
are studied. Many new approaches and theories treat-
ing imprecision and uncertainty have been proposed
since fuzzy set were introduced by Zadeh. As exten-
sions of classical fuzzy set theory, intuitionistic fuzzy
sets [1], interval-valued fuzzy sets are very useful in
dealing with imprecision and uncertainty. Especially,
interval-valued intuitionistic fuzzy set introduced by
Atanassov [2], as a combining concept of intuition-
istic fuzzy set and interval-valued fuzzy set, greatly
furnishes the additional capability to deal with vague
information and model non-statistical uncertainty by
providing a membership interval and a nonmember-
ship interval. Therefore, interval-valued intuitionis-
tic fuzzy sets have played a significant role in the un-
certain system and received much attention from re-
searchers. Recently many scholars have investigated
interval-valued intuitionistic fuzzy sets and obtained
some meaningful results in the fields of multicriteria
decision making [18] and group decision making with
interval-valued intuitionistic fuzzy sets [22]. Many re-
searchers have examined different types of transitiv-
ity and have proposed some distance measures, sim-
ilarity measures ([4], [5], [11], [12], [13], [14], [15],

[16], [21] or [23]) and correlation measures of interval-
valued intuitionistic fuzzy sets ([22], [25]) moreover
there were presented applications of such considera-
tions to real-life problems involving pattern recogni-
tion, medical diagnosis and decision-making. Addi-
tionally, some inclusion measures of intuitionistic fuzzy
sets and interval-valued intuitionistic fuzzy sets have
been proposed in [19], which also play important roles
in the application areas such as approximate reason-
ing, statistical inference and decision making. Thus
the motivation of the present paper is to propose a
more natural tools for estimating the degree of inclu-
sion between interval-valued intuitionistic fuzzy sets
and explore their properties. The paper is organized
as follows. In Section 2 we recall basic information
on interval-valued intuitionistic fuzzy sets. We also
show there crisp definition of inclusion. In Section 3
we present some inclusion measure for interval-valued
intuitionistic fuzzy sets. Then some properties of in-
clusion measure for interval-valued intuitionistic fuzzy
sets are examined. Section 4 is concerning similar-
ity measure and properties connected with transitivity
and bisymmetry properties.

2 INTERVAL-VALUED
INTUITIONISTIC FUZZY SETS

Throughout this paper the discourse set is denoted as
X = {x1, x2, . . . , xn}, P (X) stands for the set of all
crisp subsets in X, respectively. A fuzzy set ρ in X is
defined as the set of ordered pairs

ρ = {< xi, R(xi) >: xi ∈ X},

where ρ : X → [0, 1] is the membership function of
ρ and R(xi) is the grade of belongingness of xi into
ρ. A family of all fuzzy sets in X will be denoted
by FS(X). According to Zadeh seminal paper [24]
introducing fuzzy sets we define inclusion for two fuzzy
sets ρ and σ in X as follows

ρ ⊂ σ ⇔ R(xi) ≤ S(xi) (1)
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for each i ∈ {1, ..., n}, n ∈ N, where we denote mem-
bership functions of the sets ρ = {< xi, R(xi) >: xi ∈
X} and σ = {< xi, S(xi) >: xi ∈ X}, respectively.
For each fuzzy set ρ the grade of nonbelongingness of
x into ρ is automatically equal to 1 − R(xi). How-
ever, in real life the linguistic negation does not al-
ways identify with logical negation. This situation is
very common in natural language processing, comput-
ing with words and their applications in many areas.
Thus, although fuzzy set theory provides useful tools
for dealing with uncertain information, Atanassov [1]
suggested a generalization of classical fuzzy set, called
an interval-valued intuitionistic fuzzy set.

Definition 1 ([3]). An interval-valued intuitionistic
fuzzy set ρ in the finite universe X can be expressed
in the form

ρ = {< xi, R(xi),R(xi) >: xi ∈ X},

where R(xi) = [R(xi), R(xi)] is called the interval
membership degree of an element xi to interval-valued
intuitionistic fuzzy set ρ, while R(xi) = [R(xi),R(xi)]
is the interval non-membership degree of this element
to the set, and the condition 0 ≤ R(xi) + R(xi) ≤ 1
must hold for any xi ∈ X.

For shorter notation of an interval-valued intuitionistic
fuzzy set we use a pair ρ = (R,R). The family of
all interval-valued intuitionistic fuzzy sets described
in the given sets X is denoted by IV IFS(X).

The boundary elements in IVIFS (X) are 1. = (1,0)
and 0. = (0,1), where 0 = [0, 0],1 = [1, 1]. Basic
operations for ρ = (R,R), σ = (S,S) ∈ IV IRS(X)
are the union, the intersection and the complement,
respectively

ρ ∨ σ = ([R ∨ S,R ∨ S], [R ∧S,R ∧S]),

ρ ∧ σ = ([R ∧ S,R ∧ S], [R ∨S,R ∨S]),

ρ′ = (R, R).

Moreover, the order is defined by

ρ ≤ σ ⇔ (R ≤ S,R ≤ S, S ≤ R,S ≤ R). (2)

The pair (IV IFS(X),≤) is a partially ordered set.
Operations ∨,∧ are the binary supremum and infimum
in the family IV IFS(X), respectively. The family
(IV IFS(X),∨,∧) is a complete, distributive lattice.

Similarly to [5], [14], [16] or [23] we will examine the
transitivity property and equivalence relation, i.e. a
relation ψ ⊂ X ×X is an F -equivalence relation if it
fulfils

• reflexivity, ψ(x, x) = 1;

• symmetry, ψ(x, y) = ψ(y, x);

• F -transitivity, F (ψ(x, z), ψ(z, y)) ≤ ψ(x, y) for
x, y, z ∈ X.

3 INCLUSION MEASURE

Firstly, we recall some definition of aggregation oper-
ators.

Definition 2 ([9]). An operation A : Ln → L is called
an aggregation function on a bounded lattice L if it is
increasing and

A(0L, ..., 0L︸ ︷︷ ︸
n×

) = 0L, A(1L, ..., 1L︸ ︷︷ ︸
n×

) = 1L.

Especially we have

Definition 3 ([10]). A triangular norm T on a
bounded lattice L is an increasing, commutative, as-
sociative operation T : L2 → L with a neutral ele-
ment 1L.
A triangular conorm S on L is an increasing, commu-
tative, associative operation S : L2 → L with a neutral
element 0L.

Now, we recall the definition of an overlap function
which generalizes intersection operators such as the
minimum. Overlap functions are special kinds of ag-
gregation operators that have been recently proposed
for applications involving the overlap problem and/or
when the associativity property is not strongly re-
quired, as in imaging processing and decision mak-
ing based on fuzzy preference relations, respectively.
Therefore, in those cases, it is not necessary the use of
t-norms or t-conorms as the combination/separation
operators. For example, overlap functions allowed
the development of some construction methods for the
concepts of indifference and incomparability, as intro-
duced by Bustince et al. in [7]. The notions of over-
lapping arise from a common problem in many fields:
how to assign a given element or object to exactly one
class among several available. The notion of overlap
function was presented in [6] and [20] to address the
former difficulty in the context of image processing.
So it will be interested to examine similarity measure
create from the overlap functions.

Definition 4. G0 : [0, 1]2 → [0, 1] is an overlap func-
tion if
(GO1) GO(x, y) = GO(y, x) for all x; y ∈ [0, 1];
(GO2) GO(x, y) = 0 if and only if x = 0 or y = 0;
(GO3) GO(x, y) = 1 if and only if x = y = 1;
(GO4) GO is increasing;
(GO5) GO is continuous.

For our further considerations the most important will
be the condition (GO3) which justifies the choice of the
overlap function to create a similarity measure. Many
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researches tried to relax the rigidity of Zadeh definition
(1) of inclusion to get a soft approach which is more
compatible with the spirit of fuzzy logic. Instead of
binary discrimination: being or not being a subset,
they proposed several indicators giving the degree to
which an interval-valued intuitionistic fuzzy set is a
subset of another interval-valued intuitionistic fuzzy
set. More precisely, let us consider a mapping Inc :
IV IFS(X)× IV IFS(X)→ [0, 1], called an inclusion
measure (or subsethood measure) such that the value
Inc(ρ, σ) quantifies the degree of inclusion of ρ into σ.

Definition 5 (cf. [27]). Let ρ, σ ∈ IV IFS(X). We
denote Inc : IV IFS(X) × IV IFS(X) → [0, 1] as in-
clusion measure if it satisfies the following conditions:
(IM1) If ρ = 1., σ = 0., then Inc(ρ, σ) = 0;
(IM2) Inc(ρ, σ) = 1⇔ ρ ≤ σ;
(IM3) If ρ ≤ σ ≤ γ, then Inc(γ, ρ) ≤ Inc(σ, ρ) and
Inc(γ, ρ) ≤ Inc(γ, σ).

Definition 6 (cf. [26]). Let ρ, σ ∈ IV IFS(X). We
denote IncH : IV IFS(X) × IV IFS(X) → [0, 1] as
hybrid monotonic inclusion measure if it satisfies the
following conditions:
(HIM1) If ρ = 1., σ = 0., then Inc(ρ, σ) = 0;
(HIM2) Inc(ρ, σ) = 1⇔ ρ ≤ σ;
(HIM3) If ρ ≤ σ, then Inc(σ, γ) ≤ Inc(ρ, γ) and
Inc(γ, ρ) ≤ Inc(γ, σ).

Here are some examples of inclusion measures:

(i)

Inc∧(ρ, σ) =





1, if ρ(x) = σ(x) = 0.,

∀x ∈ X
|ρ∧σ|
|ρ| , otherwise

,

where |ρ| = ∑xi∈X
R+R+2−R−R

4 .

(ii) The inclusion description via inclusion indicator
comprises formally Zadehs definition (1), because
we may define

Incz(ρ, σ) =

{
1, if ρ(x) ≤ σ(x),∀x ∈ X
0, otherwise

.

Now, we examine the transitivity property using the
overlap functions.

Proposition 1 ([17]). Incz is a partially ordered re-
lation with ∧-transitivity.
Proposition 2. Incz is a partially ordered operation
with G0-transitivity, where G0 is an overlap function.

Proof. Reflexivity is obvious. We consider antisymme-
try. We examine the following implication:

Incz(ρ, σ) = Incz(σ, ρ)⇒ ρ = σ.

1. If ρ ≤ σ and Incz(ρ, σ) = Incz(σ, ρ), then
Incz(ρ, σ) = 1 = Incz(σ, ρ), so σ ≤ ρ. Thus ρ = σ.
2. If ρ ≥ σ and Incz(ρ, σ) = Incz(σ, ρ), then
Incz(ρ, σ) = 0 = Incz(σ, ρ), so σ ≥ ρ and we ob-
tain a contradiction. Thus the considered implication
is true.
Now, we consider G0-transitivity, i.e.

G0(Incz(ρ, σ), Incz(σ, γ)) ≤ Incz(ρ, γ).

1. If ρ ≤ σ ≤ γ, then G0(Incz(ρ, σ), Incz(σ, γ)) =
G0(1, 1) = 1 ≤ 1 = Incz(ρ, γ).
2. If ρ ≤ γ ≤ σ, then G0(Incz(ρ, σ), Incz(σ, γ)) =
G0(1, 0) = 0 ≤ 1 = Incz(ρ, γ).
3. If σ ≤ ρ ≤ γ, then G0(Incz(ρ, σ), Incz(σ, γ)) =
G0(0, 1) = 0 ≤ 1 = Incz(ρ, γ).
4. If σ ≤ γ ≤ ρ, then G0(Incz(ρ, σ), Incz(σ, γ)) =
G0(0, 1) = 0 ≤ 0 = Incz(ρ, γ).
5. If γ ≤ ρ ≤ σ, then G0(Incz(ρ, σ), Incz(σ, γ)) =
G0(1, 0) = 0 ≤ 0 = Incz(ρ, γ).
6.If γ ≤ σ ≤ ρ, then G0(Incz(ρ, σ), Incz(σ, γ)) =
G0(0, 1) = 0 ≤ 0 = Incz(ρ, γ).
So Incz is a partially ordered operation.

Remark 1. If G0 ≤ ∧, then IncH has G0-transitive
property, where G0 is an overlap function.

4 SIMILARITY MEASURE

The similarity measure is employed to indicate the
similarity degrees of two models or two rules in a sys-
tem. In this section, we first recall definition of the
similarity measure.

Definition 7 ([27]). A real function Sim :
IV IFS(X) × IV IFS(X) → [0, 1] is named a simi-
larity measure of IVIFSs on universe X, if it satisfies
the following properties:
(SM1) Sim(ρ, ρ′) = 0, if ρ ∈ P (X);
(SM2) Sim(ρ, σ) = 1⇔ ρ = σ;
(SM3) Sim(ρ, σ) = Sim(σ, ρ);
(SM4) If ρ ≤ σ ≤ γ, then Sim(ρ, γ) ≤ Sim(ρ, σ) and
Sim(ρ, γ) ≤ Sim(σ, γ).

Here are some examples of inclusion measures:

(i) Simd(ρ, σ) =
1− 1

n

∑n
i=1 max(|R(xi)− S(xi)|,

|R(xi)−S(xi)|, |R(xi)−S(xi)|, |R(xi)−S(xi)|),

(ii) Sim∧(ρ, σ) = Inc(ρ, σ) ∧ Inc(σ, ρ).

We observe an interesting connection between the sim-
ilarity and the inclusion measure.

Proposition 3 ([27]). Inc(ρ, σ) = Sim(σ, ρ∨σ) is an
inclusion measure.
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Moreover, we present some similarity measures

Proposition 4. Let G0 be an overlap function.

SimG0(ρ, σ) = G0(Incz(ρ, σ), Incz(σ, ρ))

is a similarity measure.

Proof. The proof of (SM1) is obvious. By (GO3) we
have

SimG0
(ρ, σ) = 1⇔ G0(Incz(ρ, σ), Incz(σ, ρ)) = 1

⇔ Incz(ρ, σ) = 1

and
Incz(σ, ρ) = 1⇔ ρ ≤ σ, σ ≤ ρ.

Thus ρ = σ, which proves (SM2).
Now, we consider (SM3). Let ρ ≤ σ ≤ γ. Then by
properties of Incz and (GO2) we obtain

SimG0
(ρ, γ) = G0(Incz(ρ, γ), Incz(γ, ρ))

= G0(1, 0) = 0.

In a similar way we obtain SimG0
(ρ, σ) = 0 and

SimG0
(σ, γ) = 0. Thus (SM3) holds.

Proposition 5. If G0 is an overlap function with the
neutral element 1, then

SimG0(ρ, σ) = G0(IncH(ρ, σ), IncH(σ, ρ))

is a similarity measure.

Proof. (SM1) and (SM2) hold. We consider (SM3).
Let ρ ≤ σ ≤ γ and 1 be the neutral element of G0.
Then

SimG0
(ρ, γ) = G0(IncH(ρ, γ), IncH(γ, ρ))

= G0(1, IncH(γ, ρ)) = IncH(γ, ρ).

In a similar way we obtain

SimG0(ρ, σ) = IncH(σ, ρ),

SimG0
(σ, γ) = IncH(γ, σ).

Now, by (HIM3) we have IncH(γ, ρ) ≤ IncH(σ, ρ)
and IncH(γ, ρ) ≤ IncH(γ, σ). So SimG0

(ρ, γ) ≤
SimG0

(ρ, σ) and SimG0
(ρ, γ) ≤ SimG0

(γ, σ). Thus
we finished the proof.

Moreover, we consider, when the similarity measure is
a G0-equivalence relation.

Proposition 6. Let G0 be a bisymmetric overlap
function. Then

SimG0(ρ, σ) = G0(Incz(ρ, σ), Incz(σ, ρ))

is the G0-equivalence relation.

Proof. Let G0 be a bisymmetric overlap function. If
ρ = σ, then

SimG0(ρ, σ) = G0(Incz(ρ, ρ), Incz(ρ, ρ))

= G0(1, 1) = 1.

So SimG0
has the reflexivity property.

Now, we consider the symmetry property. By symme-
try of G0 we obtain

SimG0(ρ, σ) = G0(Incz(ρ, σ), Incz(σ, ρ))

= G0(Incz(σ, ρ), Incz(ρ, σ))

= SimG0(σ, ρ).

If G0 has bisymmetry property, then we can prove G0-
transitivity:

G0(SimG0
(ρ, σ), SimG0

(σ, δ)) ≤ SimG0
(ρ, δ).

By G0-transitivity of Incz we have

G0(Incz(ρ, σ), Incz(σ, δ)) ≤ Incz(ρ, δ)
and

G0(Incz(δ, σ), Incz(σ, ρ)) ≤ Incz(δ, ρ)

Then by non-decreasingness, symmetry and bisym-
metry property of G0 we calculate
G0(G0(Incz(ρ, σ), Incz(σ, δ)), G0(Incz(δ, σ), Incz(σ, ρ)))
≤ G0(Incz(ρ, δ), Incz(δ, ρ))

⇔

G0(G0(Incz(ρ, σ), Incz(σ, ρ)), G0(Incz(σ, δ), Incz(δ, σ)))
≤ G0(Incz(ρ, δ), Incz(δ, ρ)),
which finishes the proof.

Remark 2. LetG0 be a bisymmetric overlap function,
G0 ≤ ∧. Then

SimG0
(ρ, σ) = G0(IncH(ρ, σ), IncH(σ, ρ))

is the G0-equivalence relation.

5 CONCLUSIONS

In this paper we comment on the existing axiomati-
cal definitions of similarity measures for IVIFSs. In
Definitions 4-6 we follow the literature but in future
work we would like to consider other order relations (≤
- more compatible with the semantic of the relation
of inclusion and similarity) and other interval struc-
tures. Some general formula calculating the similarity
between IVIFSs have been proposed. The relation-
ships among the similarity measures and the inclusion
measures of IVIFSs and G0-transitivity have been in-
vestigated. In future, we would like to examine some
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modifies of IncZ by using an admissible order defined
by Bustince [8], where the order is constructed by ag-
gregation functions, and finally we would like to pro-
pose definitions of similarity with the above inclusion
measure. Furthermore, another transitivity properties
and their connection with similarity will be examined.
Moreover, dependence between similarity and prefer-
ence property will be investigated.
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Summary

Overlap and grouping functions have been
used in different fields and for various pur-
poses, namely for instance in image process-
ing, classification problems and also in de-
cision making. Thus, motivated by practi-
cal and fundamental reasons, we propose in
this paper to apply the distributive property
on overlap and grouping functions, which are
dual to each other, and to analyze their be-
havior on the unit interval [0, 1].

Keywords: Fuzzy connectives, Distributiv-
ity, Aggregations, Overlaps, Groupings.

1 INTRODUCTION

Constructing the membership degree is one of the
main challenges in the context of Fuzzy Set Theory
since its introduction by Zadeh in 1965 [24]. More-
over, many generalizations of the logical connectives
have been proposed and their properties have also
been discussed and analyzed. The distributive prop-
erty, for instance, has been studied for many years
and has a lot of aspects considered diversely [1, 3, 4].
Some of the approaches which examine the aforemen-
tioned property can be found within triangular norms
and conorms [2, 10], aggregation functions and quasi-
arithmetic means [14], fuzzy implications [5], etc.

Overlap functions were presented in [12] in order to
deal with the difficulty of assigning a membership de-
gree to an element belonging to more than one class
simultaneously in the context of image processing.
Thereafter, grouping functions were introduced in [13]
as the dual notion of overlaps. In this sense, our main
goal in this work is to provide an initial analysis of the

behavior of these functions concerning the distributiv-
ity law as well as the subdistributivity and superdis-
tributivity inequalities. Thus we take some examples
of overlap and grouping functions, which are dual to
each other, and then we analyze their behavior on the
unit interval [0, 1].

The structure of this paper is given as follows. In
the subsequent section we recall some preliminary con-
cepts which will be used throughout the paper, then
in the third section we present the formal definitions
of overlap and grouping functions providing some ex-
amples. Sections 4 and 5 contain our main contribu-
tions, that is, the results of the analysis proposed and a
study on the class of distributive overlap and grouping
functions. Finally, we present our conclusions, future
works and references.

2 PRELIMINARIES

In this section we review some concepts which will be
used throughout this paper.

2.1 AGGREGATION FUNCTIONS

Definition 2.1 Let m ∈ N such that m ≥ 2. A func-
tion A : [0, 1]m → [0, 1] is a m-ary aggregation opera-
tor,

i. If xi ≤ yi for each i = 1, . . . ,m, then
A(x1, . . . , xm) ≤ A(y1, . . . , ym), for each
x1, . . . , xm, y1, . . . , ym ∈ [0, 1];

ii. A(0, . . . , 0) = 0;

iii. A(1, . . . , 1) = 1.

2.2 DISTRIBUTIVITY

Definition 2.2 Let A,B be binary aggregation oper-
ators. We say A distributes over B if both of the fol-
lowing laws hold:
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(LD) A is left distributive over B, that is
A(x,B(y, z)) = B(A(x, y),A(x, z)) for all
x, y, z ∈ [0, 1].

(RD) A is right distributive over B, that is
A(B(y, z), x) = B(A(y, x),A(z, x)) for all
x, y, z ∈ [0, 1].

Definition 2.3 Let A,B be binary aggregation opera-
tors:

• A left subdistributes over B if A(x,B(y, z)) ≤
B(A(x, y),A(x, z)) for all x, y, z ∈ [0, 1].

• A left superdistributes over B if A(x,B(y, z)) ≥
B(A(x, y),A(x, z)) for all x, y, z ∈ [0, 1].

Observe that the right subdistributivity and right
superdistributivity can be defined analogously. No-
tice that whenever an aggregation function is com-
mutative, then the concept of left and right
(sub,super)distributivity coincide.

2.3 AUTOMORPHISMS AND
NEGATIONS

Automorphisms play an important role in fuzzy logic
and its extensions as they allow a simple characteri-
zation of some classes of operators (for instance, the
ones proposed in [6, 8, 9, 23]).

Definition 2.4 [20, 22] A mapping ϕ : [0, 1]→ [0, 1],
is an automorphism if it is bijective and monotonic,
i.e. x ≤ y ⇒ ϕ(x) ≤ ϕ(y).

An equivalent definition was given in [11]:

Definition 2.5 Automorphisms are continuous and
strictly increasing functions ϕ : [0, 1]→ [0, 1] such that
ϕ(0) = 0 and ϕ(1) = 1.

Automorphisms are closed under composition, i.e.,
taking the set Aut([0, 1]) as the set of all automor-
phisms on [0, 1], if ϕ1, ϕ2 ∈ Aut([0, 1]) then ϕ1 ◦
ϕ2(x) = ϕ1(ϕ2(x)) ∈ Aut([0, 1]). Besides, the inverse
ϕ−1 of an automorphism ϕ is also an automorphism.

Definition 2.6 [7] The action of an automorphism ϕ
on a function f : [0, 1]n → [0, 1] and denoted by fϕ is
called the conjugate of f and is defined as:

fϕ(x1, . . . , xn) = ϕ−1(f(ϕ(x1), . . . , ϕ(xn))).

A strict negation ([23]) is a continuous and strictly
decreasing mapping, i.e., N : [0, 1] → [0, 1], such that
N(0) = 1 and N(1) = 0. A strict negation N is strong
if N(N(x)) = x, for all x ∈ [0, 1].

3 OVERLAP AND GROUPING
FUNCTIONS

The idea of overlap functions introduced in [12]
emerged in the context of image processing and the
inherent difficult of classifying pixels of an image con-
taining an object on a background. In some situations,
it is a hard task to decide whether a pixel belongs to
the class of the object (background) either because the
separation between the classes is unclear or due to an
overlap between classes. Thus, overlap functions pro-
vide a way to measure to what extent a pixel belongs
to both (object and background) classes. In the same
way, grouping functions were introduced in [13] as the
dual form of overlap functions and they were used to
measure to what extent a pixel belongs to at least one
of the classes.

The formal definitions of overlap and grouping are
given as follows.

Definition 3.1 An operator O : [0, 1]2 → [0, 1] is an
overlap if it is: commutative, increasing, continuous,
and satisfies the boundary conditions:

• O(x, y) = 0 if and only if x = 0 or y = 0, and

• O(x, y) = 1 if and only if x = y = 1.

Definition 3.2 An operator G : [0, 1]2 → [0, 1] is a
grouping if it is: commutative, increasing, continuous,
and satisfies the boundary conditions:

• G(x, y) = 0 if and only if x = y = 0, and

• G(x, y) = 1 if and only if x = 1 or y = 1.

Remark 1 [21] Note that by the boundary conditions
given in Definitions 3.1 and 3.2, a grouping can never
be less than an overlap and not always for all x, y ∈
[0, 1] the following inequality holds: O(x, y) ≤ G(x, y).

Bustince et al. (in [13]) demonstrated the relation be-
tween grouping and overlap functions through the fol-
lowing theorem.

Given a negation N , and a function F : [0, 1]2 → [0, 1].
The N -dual of F is the function FN : [0, 1]2 → [0, 1]
defined by

FN (x, y) = N(F(N(x), N(y))).

Theorem 3.3 [13] Let O be an overlap function, G be
a grouping function and N be a strict negation. Then
it holds:

1. ON (x, y) = N(G(N(x), N(y))) is an overlap func-
tion;
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2. GN (x, y) = N(O(N(x), N(y))) is a grouping func-
tion.

Now, we provide some examples of overlap and group-
ing functions (dual to each other) which were given by
Dimuro et al. in [15, 16, 17, 18].

Example 3.4 Some examples of overlap functions:

i.
OmM (x, y) = min{x, y}max{x2, y2}.

ii.

ODB(x, y) =

{
2xy
x+y

if x + y 6= 0,

0 if x + y = 0.

iii.
OP (x, y) = xpyp, with p > 0.

iv.

OV (x, y) =

{
1+(2x−1)2(2y−1)2

2
if x, y ∈ [0.5, 1],

min{x, y} otherwise.

v.
Omin(x, y) = min{x, y}.

Note thatOmM ,ODB andOV are examples of overlaps
that are not t-norms. OP is not a t-norm if p > 1 and
if p = 1, then we have the product t-norm which is
an overlap. The last example (Omin) is actually the
minimum t-norm.

Example 3.5 Some examples of grouping functions:

vi.

GmM (x, y) = 1−min{1−x, 1−y}max{(1−x)2, (1−y)2}.

vii.

GDB(x, y) =

{
x+y−2xy
2−(x+y)

if x 6= 1 or y 6= 1,

1 if x = y = 1.

viii.

GP (x, y) = 1− (1− x)p(1− y)p, with p > 0.

ix.

GVmM (x, y) =

{GmM (2x,2y)
2

if x, y ∈ [0, 0.5[,

max{x, y} otherwise.

x.
Gmax(x, y) = max{x, y}.

We can also note that GmM ,GDB ,GP and GVmM are
examples of groupings that are not t-conorms, and the
last one (Gmax) is the maximum t-conorm.

4 ANALYSIS OF THE
DISTRIBUTIVITY OF
OVERLAP/GROUPING
FUNCTIONS

As previously mentioned, our main goal is to analyze
the behavior of overlap and grouping functions regard-
ing the distributivity law. However, we should firstly
recall two important results, items (a) and (b) given
below, presented by Fodor and Roubens in [19] con-
cerning the distributivity law.

Let T be a t-norm, Tmin be the minimum t-norm, S
be a t-conorm and Smax be the maximum t-conorm,
then for all x, y, z ∈ [0, 1], we have:

(a) S(x, T (y, z)) = T (S(x, y), S(x, z)) holds if and
only if T = Tmin;

(b) T (x, S(y, z)) = S(T (x, y), T (x, z)) holds if and
only if S = Smax.

So, in our analysis, we take the overlaps and groupings
presented on examples 3.4 and 3.5, respectively, and
study the distributivity property on each possible com-
bination among the ten examples. Or, in other words,
we compared A(x,B(y, z)) and B(A(x, y),A(x, z)) and
organized the results in Table 1, where = means both
functions distribute over one another, such that for all
x, y, z ∈ [0, 1], (1) A(x,B(y, z)) = B(A(x, y),A(x, z)).
Analogously, ≤ means that A subdistributes over
B, such that (2) A(x,B(y, z)) ≤ B(A(x, y),A(x, z)),
for all x, y, z ∈ [0, 1]; ≥ means that A superdis-
tributes over B, such that (3) A(x,B(y, z)) ≥
B(A(x, y),A(x, z)) for all x, y, z ∈ [0, 1]; and, finally,
‖ means that functions A and B are not compara-
ble, i.e. (4) A(x,B(y, z)) ‖ B(A(x, y),A(x, z)) for all
x, y, z ∈ [0, 1]. We state that, in some cases, func-
tions A and B cannot be compared as they have differ-
ent behavior concerning the distributivity, in the sense
that either A may subdistribute over B or A may su-
perdistribute over B depending on the values chosen
for x, y, z ∈ [0, 1] (see Example 4.4).

In order to understand more clearly the results shown
in Table 1, we will discuss some results and provide
examples as follows. On the first row, for instance, it
is clear that GmM subdistributes over GmM ,GP ,GVmM

and ODB ; distributes over Gmax and Omin; and can-
not be compared with GDB ,OmM ,OP and OV . In the
same way, on the second row we see that GDB just
subdistributes over ODB ; superdistributes over OmM

and OP ; distributes over Gmax and Omin; and cannot
be compared with GmM ,GDB ,GP ,GVmM and OV . Fi-
nally, some numerical examples (4.1, 4.2, 4.3 and 4.4)
are given below. Notice that despite showing the ex-
amples for specific points in [0, 1], the computation of
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Table 1: Distributivity on overlap and grouping functions
A�B GmM GDB GP GVmM Gmax OmM ODB OP OV Omin

GmM ≤ ‖ ≤ ≤ = ‖ ≤ ‖ ‖ =
GDB ‖ ‖ ‖ ‖ = ≥ ≤ ≥ ‖ =
GP ≤ ≤ ≤ ‖ = ‖ ‖ ‖ ‖ =

GVmM ‖ ‖ ‖ ‖ = ≥ ‖ ‖ ‖ =
Gmax ≤ ≤ ≤ ‖ = ≥ ≤ ≥ ≥ =
OmM ‖ ‖ ‖ ‖ = ≥ ‖ ≥ ≤ =
ODB ≤ ≥ ≤ ‖ = ‖ = ‖ ‖ =
OP ‖ ‖ ‖ ‖ = ≥ ≥ ≥ ≤ =
OV ≤ ≥ ‖ ≤ = ≤ ‖ ≥ ≥ =
Omin ≤ ≥ ≤ ≤ = ≥ ≥ ≥ ≥ =

all values in the range between 0 and 1 was done to
check the distributivity among the functions.

Example 4.1 We see in Table 1 that OP distributes
over Gmax, i.e. (1). Let us take, for instance, x = 0.1,
y = 0.5, z = 0.6 and p = 2. We have:

OP (0.1,Gmax(0.5, 0.6)) = 0.0036 =
Gmax(OP (0.1, 0.5),OP (0.1, 0.6)).

Example 4.2 We can also observe in Table 1 that
GmM subdistributes over ODB, i.e. (2). Let us take
x = 0.7, y = 0.2 and z = 1. We have:

GmM (x,ODB(y, z)) ∼= 0.867 ≤
ODB(GmM (x, y),GmM (x, z)) ∼= 0.894.

Example 4.3 In Table 1, note that OmM superdis-
tributes over OmM , i.e. (3). Let us take x = 0.2,
y = 0.5 and z = 1. We have:

OmM (x,OmM (y, z)) = 0.05 ≥
OmM (OmM (x, y),OmM (x, z)) = 0.002.

As previously mentioned, some of the functions cannot
be compared regarding the distributivity. This occurs
because some of them can both subdistribute and su-
perdistribute for different values of x, y, z taken on the
interval [0, 1], as pointed out in the following example.

Example 4.4 We can say GmM cannot be compared
with OP , i.e. (4). Take, for instance x1 = 0.5, y1 =
0.2, z1 = 0.9 and p = 2, we have:

GmM (x,OP (y, z)) ∼= 0.5318 ≥
OP (GmM (x, y),GmM (x, z)) ∼= 0.4395.

However, if we take x2 = 0.8, y2 = 0.6, z2 = 0.8 and
p = 2, we have:

GmM (x,OP (y, z)) ∼= 0.8815 ≤
OP (GmM (x, y),GmM (x, z)) ∼= 0.9221.

5 A STUDY ON THE CLASS OF
DISTRIBUTIVE
OVERLAP/GROUPING
FUNCTIONS

In this section we can draw some conclusions from the
distributive property applied on overlap and grouping
functions.

As shown in Table 1, any considered aggregation func-
tion is distributive over Omin and Gmax. We have the
following results:

Theorem 5.1 Let A : [0, 1]2 → [0, 1] be an aggrega-
tion function. Then:

(A1) A(x,O(y, z)) = O(A(x, y),A(x, z)) holds if and
only if O = Omin;

(A2) A(x,G(y, z)) = G(A(x, y),A(x, z)) holds if and
only if G = Gmax.

Proof. It is immediate, since any aggregation function
is monotonic. �

Proposition 5.2 Let G : [0, 1]2 → [0, 1] be a grouping
function with 0 as neutral element and O : [0, 1]2 →
[0, 1] an overlap function. If G is distributive over O,
then O is idempotent.

Proof. If G is distributive over O, then, for all x ∈ [0, 1]
it holds that:

x = G(x,O(0, 0)) = O(G(x, 0),G(x, 0)) = O(x, x),

since 0 is the neutral element of G. �
Analogously, one can prove that:

Proposition 5.3 Let O : [0, 1]2 → [0, 1] be an overlap
function with 1 as neutral element and G : [0, 1]2 →
[0, 1] a grouping function. If O is distributive over G,
then G is idempotent.
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Observe that the converse of the two previous proposi-
tions does not hold. For example, according to Table 1,
GmM is a grouping function with 0 as neutral element,
which is not distributive over the idempotent overlap
function ODB . Also, OmM is an overlap function with
1 as neutral element, which is not distributive over the
idempotent grouping function GDB .

Proposition 5.4 Let O : [0, 1]2 → [0, 1] be an overlap
function, G : [0, 1]2 → [0, 1] be a grouping function and
ϕ : [0, 1]→ [0, 1] be an automorphism. Then it holds:

1. O is (sub,super)distributive over G if and only if
Oϕ is (sub,super)distributive over Gϕ;

2. G is (sub,super)distributive over O if and only if
Gϕ is (sub,super)distributive over Oϕ.

Proof. One has that:

1. If O is distributive over G, then it follows that:

Oϕ(x,Gϕ(y, z))

= ϕ−1(O(ϕ(x), ϕ(ϕ−1(G(ϕ(y), ϕ(z))))))

= ϕ−1(G(O(ϕ(x), ϕ(y)),O(ϕ(x), ϕ(z))))

= Gϕ(Oϕ(x, y),Oϕ(x, z)).

On the other hand, if Oϕ is distributive over Gϕ,
then by the previous paragraph, it follows that
(Oϕ)ϕ

−1

= O is distributive over (Gϕ)ϕ
−1

= G.

For the subdistributivity and superdistributivity
the proofs are analogous.

2. It is analogous to item 1. �

Proposition 5.5 Let N : [0, 1] → [0, 1] be a strong
negation, and let O : [0, 1]2 → [0, 1] and G : [0, 1]2 →
[0, 1] be an overlap function and a grouping function,
respectively, defined according to Theorem 3.3. Then
it holds:

1. O is (sub,super)distributive over G if and only if
ON is (sub,super)distributive over GN ;

2. G is (sub,super)distributive over O if and only if
GN is (sub,super)distributive over ON .

Proof. (⇒)

1. If O is distributive over G, then by Theorem 3.3

we have that:

ON (x,GN (y, z))

=N(G(N(x), N(GN (y, z))))

=N(G(N(x), N(N(O(N(y), N(z))))))

=N(G(N(x),O(N(y), N(z))))

=N(O(G(N(x), N(y)),G(N(x), N(z))))

=N(O(N(N(G(N(x), N(y)))),

N(N(G(N(x), N(z))))))

=GN (ON (x, y),ON (x, z)).

(⇐) Conversely, if the grouping ON is distribu-
tive over the overlap GN , then by the previous
item it follows that the overlap (ON )N = O is
distributive over the grouping (GN )N = G. Anal-
ogously, when the overlap GN is distributive over
the grouping GN , then by the previous item it fol-
lows that the grouping (GN )N = G is distributive
over the overlap (ON )N = O.

For the subdistributivity and superdistributivity
the proofs are analogous.

2. It is analogous to item 1. �

6 CONCLUSIONS

Our main goal in this work was to present an initial
study about the distributivity property on overlap and
grouping functions.

The open question that remain is: “Is there any idem-
potent overlap function O, different from Omin, such
that any grouping function G having 0 as neutral ele-
ment distributes overO? If not, is there an idempotent
overlap function O, different from Omin, and a group-
ing function G having 0 as neutral element, such that
G distributes over O?”

Similar questions may be posed for idempotent group-
ing functions different from Gmax and overlap functions
having 1 as neutral element.

Observe that, if the above open questions have a pos-
itive answer, then it would be important to develop a
characterization of distributive overlap/grouping func-
tions, which is let for further work.
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Department of Mathematics
Faculty of Civil Engineering
Slovak Univ. of Technology

Radlinského 11
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Summary

Two construction methods for aggregation
functions based on a restricted a priori known
decomposition set and decomposition weight-
ing function are introduced and studied.
The outgoing aggregation functions are ei-
ther superadditive or subadditive. Several
examples, including illustrative figures, show
the potential of the introduced construction
methods.

Keywords: aggregation function, subaddi-
tive transformation, superadditive transfor-
mation.

1 INTRODUCTION

Aggregation functions play an important rôle in many
domains where an n-dimensional input representation
is represented by a single value. For more information
and details we recommend monographs [1], [2]. Recall
that for n ∈ N a monotone function A : [0, 1]n → [0, 1]
is called an aggregation function whenever it satisfies
two boundary conditions A(0, ..., 0) = A(0) = 0 and
A(1, ..., 1) = A(1) = 1. Observe that we will not con-
sider the usual convention A(x) = x for 1-dimensional
aggregation functions. Note also that, in general, some
other interval I can be considered instead of the unit
interval [0, 1]. However, our results related to [0, 1]
domain can be easily generalized to the domain I.

In several practical situations, the aggregation func-
tion A is not known on its full domain [0, 1]n, but only
on a subdomain H ⊆ [0, 1]n. More often the bound-
ary condition A(1) = 1 is not important, i.e., A and
λA gives the same information for the user, indepen-
dently of λ ∈]0,∞[. This is, e.g., the case when A is
considered as a utility function. The above facts have

inspired us to introduce two construction methods for
aggregation functions when only a partial information
is known. Our approach was motivated by the ideas
from [3] dealing with superadditive and subadditive
transformations of aggregation functions on [0,∞[.

Our contribution is organized as follows. In Section 2,
we introduce superadditive and subadditive functions
B∗ and B∗, and the related aggregation functions
AH,B and AH,B , including some preliminary results.
In Section 3, we exemplify the functions B∗ and B∗
for several decomposition pairs (H, B). Finally, some
concluding remarks are added.

2 SUPER- AND SUBADDITIVE
CONSTRUCTIONS OF
AGGREGATION FUNCTIONS

In what follows, an arbitrary subset H of [0, 1]n such
that 0 ∈ H will be called a decomposition set. A func-
tion B : H → [0, 1], not identically equal to zero, with
B(0) = 0 and such that B(x) ≤ B(y) whenever x ≤ y
for x,y ∈ H, will be called a decomposition weighing
function.

Although a decomposition weighing function is defined
only on H which, in the extreme case, may consist
besides 0 just of a single point, one may introduce
its transformation to the entire unit n-cube [0, 1]n

by letting (with the convention that inf ∅ = ∞ and
sup ∅ = 0)

B∗(x) = inf

{
k∑

i=1

B(y(i)) |

(y(i))ki=1 ∈ Hk;
k∑

i=1

y(i) ≥ x

}
(1)
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and

B∗(x) = sup

{
k∑

i=1

B(y(i)) |

(y(i))ki=1 ∈ Hk;

k∑

i=1

y(i) ≤ x

}
. (2)

Observe that, in general, B∗ and B∗ are mappings
from [0, 1]n → [0,∞]. The pair (H, B) will be called
subadmissible if B∗(1) ∈]0,∞[, and superadmissible if
B∗(1) ∈]0,∞[. The set of all subadmissible and super-
admissible pairs will be denoted simply by Subn and
Supern, respectively.

For any subadmissible (superadmissible) pair (H, B)
we may introduce normalized versions of the transfor-
mation of B introduced above by letting

AH,B : [0, 1]n → [0, 1]; x 7→ B∗(x)/B∗(1) (3)

and

AH,B : [0, 1]n → [0, 1]; x 7→ B∗(x)/B∗(1), (4)

where in both cases 1 ∈ [0, 1]n denotes the all-one
vector.

Quite expectedly, these normalized versions are sub-
additive and superadditive, respectively:

Proposition 1. If (H, B) is a subadmissible pair, then
AH,B is a subadditive aggregation function. Analo-
gously, if (H, B) is a superadmissible pair, then AH,B

is a superadditive aggregation function.

We illustrate our proporsals in the next simple ex-
ample. Let n = 1 and consider a trivial decomposi-
tion system H = {0, 1/t} for some fixed positive in-
teger t. Further, let B be a decomposition weighing
function defined by B(0) = 0 and B(1/t) = b > 0.
Obviously, B∗(0) = 0. For any x ∈]0, 1], letting
k = dtxe (the ceiling of tx) we have x ∈](k−1)/t, k/t],
so that B∗(x) = kb and hence B∗(1) = tb; it fol-
lows that AH,B(x) = B∗(x)/B∗(1) = dtxe/t, which
is a subadditive aggregation function. By the same
token, letting ` = btxc (the floor of tx) we have
x ∈ [`t, (` + 1)t[, so that B∗(x) = `b, B∗(x) = tb,
and AH,B(x) = B∗(x)/B∗(1) = btxc/t, which is a su-
peradditive aggregation function.

Proposition 2. If (H, B) is a subadmissible pair, then
AH,B = B if and only if H = [0, 1]n and B is subad-
ditive, with B(1) = 1. Analogously, if (H, B) is a
superadmissible pair, then AH,B = B if and only if
H = [0, 1]n and B is superadditive, with B(1) = 1.

Observe that on the space of subadmissible pairs Subn
we have a natural partial order �Sub defined by

(H1, B1) �Sub (H2, B2) if and only if

H1 ⊇ H2 and B1|H2 ≤ B2 . (5)

Similarly, on the space of superadmissible pairs
Supern we have a natural partial order �Super defined
by

(H1, B1) �Super (H2, B2) if and only if

H1 ⊆ H2 and B1 ≤ B2|H1 . (6)

This allows us to compare the values of the correspond-
ing aggregation functions as follows.

Proposition 3. Let (H1, B1), (H2, B2) ∈ Subn
and (H1, B1) �Sub (H2, B2). If (B1)∗(1) =
(B2)∗(1), then AH1,B1

≤ AH2,B2
. Analogously,

if (H1, B1), (H2, B2) ∈ Supern are such that
(H1, B1) �Super (H2, B2). If B∗1(1) = B∗2(1), then
AH1,B1 ≤ AH2,B2 .

Remark. The above result will not be valid in
general if, say, in the Supern case, the assumption
B∗1(1) = B∗2(1) is dropped. To see this, for n = 1,
H1 = {0, 1/2}, H2 = {0, 1/2, 1}, B1(1/2) = 1 and
B2(1/2) = 1, B2(1) = 4, so that B∗1(1) = 2 and
B∗2(1) = 4. It is then easy to see that, for example,
AH1,B1(1/2) = 1/2, while AH2,B2(1/2) = 1/4, violat-
ing the inequality AH1,B1 ≤ AH2,B2 .

We continue with an auxiliary result in dimension 1.

Proposition 4. Let H ⊆ [0, 1] be a decomposition set
and let B : H → [0, 1] be a decomposition weighing
function of dimension 1. Then,

(a) (H, B) ∈ Sub1 if and only if inf{B(x)/x | x ∈
H \ {0}} > 0, and

(b) (H, B) ∈ Super1 if and only if sup{B(x)/x | x ∈
H \ {0}} <∞.

Proposition 5. Let H ⊂ [0, 1]n be a decomposition
set and let B : H → [0, 1] be a decomposition weighing
function of dimension n ≥ 1. Then,

(a) (H, B) ∈ Subn if and only if for each i ∈
{1, ..., n} there is an x ∈ H such that (x)i > 0

and inf
{

B(x)
(x)i

| x ∈ H, (x)i > 0
}
> 0 for some i ∈

{1, . . . , n};

(b) (H, B) ∈ Supern if and only if

sup
{

B(x)
max(x) |x ∈ H \ {0}

}
<∞.
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3 EXAMPLES

In this section we will present examples of functions
B∗ and B∗ for specific decomposition sets and related
decomposition weighting functions.

Example 1. Let H ={(0, 0), (0.1, 0.1)} and B(y)=
y1, where y1 is the first coordinate of y. Values of
B∗ and B∗ are depicted in Figure 1 and Figure 2,
respectively. Observe that

∑k
i=1 y(i) appearing in ex-

pression (1) and (2) always have the form k(0.1, 0.1)
for k ∈ {0, 1, ..., 10}, because the only vector that can
be used for summation is (0.1, 0.1). This explains the
shape of the graphs in Figure 1 and Figure 2.

Figure 1: B∗ from Example 1

Figure 2: B∗ from Example 1

Example 2. Let H={(0, 0), (0.8, 0.3), (0.2, 0.7)} and
let B(0.8, 0.3) = 0.8, B(0.2, 0.7) = 0.6. It can be
shown that in this case we have B∗(1, 1) = B∗(1, 1) =
1.4. The corresponding values of B∗ and B∗ are de-
picted in Figure 3 and Figure 4, respectively.

Example 3. Let H = {(0, 0), (0.2, 0.3), (0.5, 0.7)} and
let B =

∏
. A schematic description of B∗ is in Fig-

ure 5.

Example 4. In this example we will use a segment for
H by letting H = {(x, y)| x ∈ [0.1, 1], y = 0.1 − x} ∪

Figure 3: B∗ from Example 2

Figure 4: B∗ from Example 2

Figure 5: B∗ from Example 3

{(0, 0)}. The aggregation function is defined as follows
B : H \ {0, 0} → 0.05. The function B∗ is depicted in
Figure 6 (2D) and in Figure 7 (3D).

4 CONCLUDING REMARKS

We have introduced two methods of constructing ag-
gregation functions on [0, 1] in situation when only a
partial information is available. We have exemplified
the superadditive functions B∗ and the subadditive
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Figure 6: Contour lines of B∗ from Example 4

Figure 7: 3D plot of B∗ from Example 4

functions B∗, having in mind that the related aggre-
gation functions AH,B and AH,B are easily obtained
by normalization of B∗ and B∗, respectively. We ex-
pect applications of our approach in economics, social
sciences, etc., and especially in multicriteria decision
support.
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Summary

Mixture functions represent a special class of
weighted averaging functions whose weights
are determined by continuous weighting func-
tions which depend on the input values. If
they are non-decreasing (standard) mono-
tone, they also belong to the important class
of aggregation functions. This paper presents
properties of selected mixture functions with
special stress on their standard, weak and di-
rectional monotonicity.

Keywords: Mixture function, Standard
monotonicity, Weak monotonicity, Direc-
tional monotonicity.

1 INTRODUCTION

Standard monotonicity of mixture functions and their
generalizations was studied in several papers, for ex-
ample, [1], [5], and [8], [9]. We also studied this prob-
lem in papers [6], [7] and [10], where we provided sev-
eral sufficient conditions for standard non-decreasing
monotonicity of mixture functions.
However, standard monotonicity is violated in the case
of several fusion techniques frequently applied in real
data processing, in the case of implications, which
are characterized by hybrid monotonicity or the mode
function or various types of means [1]. Nevertheless,
in many applications it is sufficient if processing func-
tions are weakly monotone, see [14] and [15].
The property of weak monotonicity is very useful for
calculating representative values of clusters of data in
the presence of outliers. According to [13], cluster
structure may change when only some inputs are in-
creased (or decreased), but it does not change when
all inputs are changed by the same value.

Moreover, regarding the generalization of the concept
of aggregation functions, in [3], authors introduced and
discussed so-called fusion functions and their direc-
tional monotonicity. Their results generalize the re-
sults of [15] concerning so-called weak monotonicity.
In our recent research, we have focused our attention
not only on the study of the standard non-decreasing
monotonicity of mixture functions but also on their
weak and directional monotonicity. The latest results
of our investigation in this area can be found in [2],
[11] and [12].
The paper consists of four sections. Section 1 presents
an overview of the latest results concerning on mono-
tonicity of mixture functions. Section 2 contains the
basic definitions related to standard, weak and direc-
tional monotonicity. Section 3 provides sufficient con-
ditions of standard and weak monotonicity of mixture
functions and presents the latest sufficient conditions
of weak and directional monotonicity and relevant re-
sults concerning this topic. The attention is mainly
focused on three types of monotonicity of the mix-
ture functions generated by selected weighting func-
tions. Conclusion summarizes the presented results
and brings some ideas for the future research.

2 PRELIMINARIES

Throughout the paper, the following notations will be
used. Consider any closed non-empty interval I =
[a, b] ⊂ R = [−∞, ∞]. Then In = {x = (x1, . . . , xn) |
xi ∈ I, i = 1, . . . , n} is the set of all input vectors x.
In this section, we provide definitions of functions
whose properties will be studied. Firstly, we recall
the definitions of aggregation and mixture functions.

Aggregation functions

Definition 2.1 A function A : In → I is called an
aggregation function if it is monotone non-decreasing
in each variable and satisfies the boundary conditions
A(a) = a, A(b) = b, where a = (a, a, . . . , a), b =
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(b, b, . . . , b).

Mixture functions

Definition 2.2 A mapping Mg : In → I given by

Mg(x1, . . . , xn) =

n∑
i=1

g(xi) · xi

n∑
i=1

g(xi)
, (1)

where g : I → [0, ∞[ is a continuous weighting func-
tion, is called a mixture function.

In the following part, we discuss three types of
the monotonicity of mixture functions, namely, stan-
dard monotonicity, weak monotonicity and directional
monotonicity.

2.1 MONOTONICITY

In this part, we start by recalling the basic definitions.

Standard monotonicity

Definition 2.3 A function A : In → I is monotone
non–decreasing if and only if, for all x, y ∈ In, such
that x ≤ y, it holds that A(x) ≤ A(y).

Weak monotonicity

Definition 2.4 ([15]) A function A : In → I is
weakly monotone non-decreasing if A(x + k1) ≥ A(x)
for all x and for any k > 0, 1 = (1, 1, · · · , 1︸ ︷︷ ︸

n times

), such

that x, x + k1 ∈ In.

It is clear that each monotone non-decreasing function
is also weakly monotone non-decreasing.

Here, we also recall the definition of shift-invariantness
that is related to weak monotonicity.

Shift-invariance

Definition 2.5 A function A : In → I is shift–
invariant if A(x+k1) = A(x)+k whenever x, x+k1 ∈
In and A(x) + k ∈ I.

It is easy to see that each shift-invariant function A is
also weakly monotone non-decreasing, [15].

Inspired by the notion of weak monotonicity the re-
searchers have recently opened investigation of the so-
called directional monotonicity of In → I functions
which is defined as follows:

Directional monotonicity

Definition 2.6 ([3]) Let r be a real n-dimensional
vector, r ̸= 0. A function A : In → I is r-non-
decreasing if for all x ∈ In and all k > 0 such that
x + kr ∈ In, it holds that A(x + kr) ≥ A(x).

Vectors r ̸= 0 are called directions. It is clear, that
weakly monotone functions are r-non-decreasing in the
direction of vector r = (1, 1, . . . , 1).
The monotone non-decreasingness of a function A :
In → I is equivalent to the ei-directional non-
decreasingness of A for each i = 1, 2, . . . , n, where ei

is the vector, whose ith coordinate is equal to 1, and
other coordinates are equal to 0.

2.2 SUFFICIENT CONDITIONS OF
MONOTONICITY

In this part, we mention sufficient conditions of stan-
dard and weak monotonicity of mixture functions.

2.2.1 Standard monotonicity of mixture
functions

In case I = [0, 1], Ribeiro and Marques Pereira in [8]
showed that any non-decreasing differentiable weight-
ing function g : [0, 1] → [0, ∞[ such that

g ≥ g′ (2)

yields a non-decreasing mixture function (1).

The non-decreasing monotonicity of mixture functions
we studied deeply in [10]. We provided there more gen-
eral sufficient conditions ensuring the non-decreasing
monotonicity than that one in (2). For the convenience
of the reader we repeat the relevant results from [10].

Theorem 2.7 Mixture function Mg : In → I, I =
[0, 1], given by (1), with non-decreasing piecewise dif-
ferentiable weighting function g, is monotone non-
decreasing if the weighting function g satisfies at least
one from the following conditions:

1.

g(x) ≥ g′(x), (3)

2.

g(x) ≥ g′(x) · (1 − x), (4)

3. for a fixed n, n > 1,

g2(x)

(n − 1)g(1)
+ g(x) ≥ g′(x) · (1 − x). (5)

Other sufficient conditions of the standard monotonic-
ity of mixture functions and their generalizations can
be found in [10].
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2.2.2 Weak monotonicity of mixture
functions

Weak monotonicity of mixture functions and their gen-
eralizations we studied in [2], [11] and [12]. Here, we
give a sufficient condition of weak monotonicity of mix-
ture functions.

Theorem 2.8 ([12]) Let Mg : In → I, be a mix-
ture function (1) with differentiable weighting function
g : I → [0, ∞[. Then Mg is weakly monotone non-
decreasing if

(
n∑

i=1

g(xi)

)2

+

(
n∑

i=1

g(xi)

)
·
(

n∑

i=1

xi · g′(xi)

)
(6)

−
(

n∑

i=1

xi · g(xi)

)
·

n∑

i=1

g′(xi) ≥ 0

for all x ∈ In.

Proof is based on non-negativity of directional deriva-

tive of Mg, i.e., D1(Mg)(x) =
1√
n

n∑
i=1

∂Mg

∂xi
≥ 0. �

3 MONOTONICITY OF MIXTURE
FUNCTIONS

In this section, we give our latest results and introduce
sufficient conditions of weak and also directional mono-
tonicity of mixture functions with selected weighting
functions.
We concentrate our investigation on mixture functions
generated by shift-invariant linear weighting function
g(x) = x + l, l ≥ 0; and special linear function in the
shape g(x) = cx + 1 − c, c ≥ 0.

3.1 MIXTURE FUNCTION WITH
SHIFT-INVARIANT LINEAR
WEIGHTING FUNCTION

Using the following sufficient conditions of standard
and weak monotonicity, we can show that the weak
monotonicity gives us a wider choice of coefficients l,
i.e., it gives us a wider choice of aggregations by mix-
ture functions.

Proposition 3.1 Let Mg : [0, 1]n → [0, 1] be a mix-
ture function defined by (1), and g : [0, 1] → [0, ∞[ be
a weighting function given by g(x) = x + l, l ≥ 0.
Then Mg is:

1. standard monotone non-decreasing for l ≥ 1;

2. for a fixed n:

a) [11] standard monotone non-decreasing for

l ≥
√

n − 1

n
;

b) [11], [14] weakly monotone non-decreasing
for

l ≥ n − 2

n
.

Proof

1. With respect to (3) and (4).

2. a) With respect to (5) and also Definition 2.3.

b) With respect to (6) and also Definition 2.4.

�

The next theorem expresses the global bound of coef-
ficient l in weighting function g(x) = x + l for weak
monotonicity of mixture function (1). In fact, based
on the number of input values, we can obtain a lower

bound for l smaller than

√
2 − 1

2
, which can be seen

from conditions in Proposition 3.1.

Theorem 3.2 ([2]) Let Mg : [0, 1]n → [0, 1] be a
mixture function defined by (1) with shift-invariant
weighting function g(x) = x + l, l ≥ 0. Then Mg

is weakly monotone non-decreasing for

l ≥
√

2 − 1

2
. (7)

In the next theorem, we introduce our initial results
related to directional monotonicity of mixture func-
tions.

Theorem 3.3 Let Mg : [0, 1]2 → [0, 1] be a mixture
function defined by (1) with shift-invariant weighting
function g(x) = x + l, l ≥ 0. Then Mg is directionally
monotone non-decreasing only for vectors r = (r1, r2)
which satisfy the condition

r1 = r2 > 0.

Proof Let r = (r1, r2) ̸= 0. Let x = (x, y) ∈ I2 and
k > 0 such that x + kr ∈ I2.
From Definition 2.6 we get

(x + kr1)(x + kr1 + l) + (y + kr2)(y + kr2 + l)

x + y + 2l + k(r1 + r2)
≥

≥ x(x + l) + y(y + l)

x + y + 2l
,
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whence

(x + y + 2l)
(
2(xr1 + yr2) + k(r2

1 + r2
2) + l(r1 + r2)

)
≥

≥ (r1 + r2)(x
2 + y2 + l(x + y)).

Without loss of generality, for k → 0 and after some
modification, we obtain inequality

(x2 − y2)(r1 − r2) + 2xy(r1 + r2) + 4l(xr1 + yr2) +

+2l2(r1 + r2) ≥ 0.

Without loss of generality, for r1 > 0, r2 > 0, x →
0, y → 1 or x → 1, y → 0, we obtain consequently the
conditions

l2 + 2
r2

r1 + r2
l +

r2 − r1

r1 + r2
≥ 0

l2 + 2
r1

r1 + r2
l +

r1 − r2

r1 + r2
≥ 0

For l → 0, the conditions r2 ≥ r1 and r2 ≤ r1 must
be satisfied. This means that the considered mixture
function is directionally monotone increasing only in
the direction (r1, r2) where r1 = r2 > 0. �

Corollary 1 Let Mg : [0, 1]2 → [0, 1] be a mixture
function defined by (1) with shift-invariant weighting
function g(x) = x + l, l ≥ 0. Then Mg is directionally
monotone non-decreasing only in the direction (1, 1),
and in no other directions, i.e., it is only weakly mono-
tone non-decreasing.

Remark 1 From Corollary 1 we can state that the

Lehmer mean LeM(x, y) =
x2 + y2

x + y
is only weakly

monotone non-decreasing.

3.2 MIXTURE FUNCTIONS WITH
SPECIAL LINEAR WEIGHTING
FUNCTION

This part focusses on all mentioned types of mono-
tonicity of mixture function with g(x) = cx + 1 − c,
c ∈ [0, 1].
On the basis of the mentioned sufficient conditions of
standard and weak monotonicity, we can show that a
weak monotonicity gives us a wider choice of coeffi-
cients c on aggregation.

Proposition 3.4 Let Mg : [0, 1]n → [0, 1] be a mix-
ture function defined by (1) with the weighting function
g(x) = cx + 1 − c, c ∈ [0, 1]. Then Mg is monotone
non-decreasing:

1. for c ∈ [0, 0.5],

2. for a fixed n:

• n = 2 c ∈ [0, 0.585786],

• n = 3 c ∈ [0, 0.550510],

3. weakly monotone non-decreasing for:

• n = 2 c ∈ [0, 1],

• n = 3 c ∈ [0, 0.878679].

Proof

1. With respect to (3) and (4).

2. With respect to (5).

3. With respect to (6) and the Mathematica 8 sys-
tem.

�

Similarly, as in Proposition 3.2, we can determine mi-
nimal interval of c, to be mixture function (1) weakly
monotone non-decreasing. This interval of c can be
written as follows.

Proposition 3.5 Let Mg : [0, 1]n → [0, 1] be a mix-
ture function defined by (1) with the weighting func-
tion g(x) = cx + 1 − c, c ∈ [0, 1]. Then Mg is weakly
monotone non-decreasing for

c ∈ [0, 2
√

2 − 2]. (8)

Proof Using sufficient condition (6), we get

(c
n∑

i=1

xi + n − nc)2 + (c
n∑

i=1

xi + n − nc)(c
n∑

i=1

xi) −

−(

n∑

i=1

xi(cxi + 1 − c))na ≥ 0,

which can be written as

c2

[
2(

n∑

i=1

xi)
2 − n

n∑

i=1

x2
i − 2n

n∑

i=1

xi + n2

]
+ (9)

+c(2n

n∑

i=1

xi − 2n2) + n2 ≥ 0.

Since we consider mixture function on the unit cube,
we can formulate minimization of the left-hand side of
the previous inequality at the vertices of the unit cube,
see [2], [4].
Assume, let (1, 1, . . . , 1,︸ ︷︷ ︸

k-times

0, 0, . . . , 0︸ ︷︷ ︸
(n−k)-times

) be the input vec-

tor, at which the expression on left-hand side attains
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the smallest value. Using substitution z = x̄ = k
n we

can rewrite condition (9) as

c2(2z2 − 3z + 1) + 2c(z − 1) + 1 ≥ 0. (10)

The expression 2z2 − 3z + 1 is positive for z ∈ [0, 1
2 [.

We need to find the smallest value of

c2(2z2 − 3z + 1) + 2c(z − 1) + 1

such that z ∈ [0, 1
2 [. Therefore, we assume a root of

the quadratic expression in the shape

c =
−z + 1 −

√
z − z2

2z2 − 3z + 1
,

and it has minimal value for z = 1
4 (2−

√
2). It follows

that c ≤ 2
√

2 − 2, and hence c ∈ [0, 2
√

2 − 2[ ensures
weak monotonicity of the mentioned mixture function
Mg.

We recall that c = 2
√

2−2 represents global minimum,
what means that this number can be exceeded. For
instance, if z = 1

2 , we get the condition c ≤ 1, which
is consistent with our result in Proposition 3.1 and
Theorem 3.3. �

The next proposition gives us the sufficient condition
of non-decreasing directional monotonicity of mixture
function (1) generated by g(x) = cx + 1 − c, c ∈ [0, 1].

Proposition 3.6 Let Mg : [0, 1]2 → [0, 1] be a mix-
ture function defined by (1) with the weighting function
g(x) = cx + 1 − c, c ∈ [0, 1]. Then Mg is directionally
non-decreasing for vectors r = (r1, r2) which satisfy
conditions

• for c ∈ [0, 2 −
√

2[,

r2 ≥ c2 − 4c + 2

c2 − 2
r1 and r2 ≥ c2 − 2

c2 − 4c + 2
r1; (11)

• for c ∈]2 −
√

2, 1],

r2 ≥ c2 − 4c + 2

c2 − 2
r1 and r2 ≤ c2 − 2

c2 − 4c + 2
r1; (12)

• for c = 2 −
√

2, r1 ≥ 0 and r2 ≥ 0.

Proof On the basis of Definition 2.6, let

(x + kr1)(c(x + kr1) + 1 − c)(y + kr2)(c(y + kr2) + 1 − c)

c(x + y) + 2 − 2c + ck(r1 + r2)

≥ x(cx + 1 − c) + y(cy + 1 − c)

c(x + y) + 2 − 2c
.

c=0

c = 2- 2

c=0.7

c=1

r1

r2

Figure 1: Space of directional non-decreasing mono-
tonicity of Mg with g(x) = cx + 1 − c.

Without loss of generality, for k → 0, we get

c2((x2 − y2)(r1 − r2) + 2xy(r1 + r2) (13)

−4(xr1 + yr2) + 2(r1 + r2))

+4c(r1(x − 1) + r2(y − 1)) + 2(r1 + r2) ≥ 0,

and so we write (13), for x → 0, y → 1, and sub-
sequently for x → 1, y → 0, we obtain the condi-
tions

(r1 − r2)c
2 − 4r1c + 2(r1 + r2) ≥ 0

and

(r2 − r1)c
2 − 4r2c + 2(r1 + r2) ≥ 0.

From the previous inequalities it follows that

r2 ≥ −c2 − 4c + 2

2 − c2
r1

and

r2 ≥ − c2 − 2

c2 − 4c + 2
r1, for c ∈ [0, 2 −

√
2[;

or

r2 ≤ − c2 − 2

c2 − 4c + 2
r1, for c ∈]2 −

√
2, 1].

�

This means that the considered mixture function is
directionally monotone non-decreasing, for example:

1. for c = 0 in all directions r ̸= 0 from the half-
plane highlighted in Figure 1;

2. for c = 2 −
√

2 in all directions in the first quad-
rant;

3. for c = 0.7 in all directions in the highlighted the
acute angle.
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From our proof, as well as from Figure 1, it is clear that
the space of directionally non-decreasing monotonicity
decreases gradually from upper half-plane bounded by
line r2 = −r1 (for c = 0) to half line r2 = r1 (for
c = 1).

4 CONCLUSIONS

In the paper, we have provided sufficient conditions
for the standard and weak non-decreasing monotonic-
ity of mixture functions generated by selected weight-
ing functions. Moreover, we introduced new sufficient
conditions for their weak and also directional mono-
tonicity.
In our future research, we intend to continue in a deep
study of weak and directional monotonicity of mixture
functions generated by special types of weighting func-
tions, e.g., by Gaussian weighting functions g(x) =

exp
{

−
(

x−c
σ

)2}
, c, σ ∈ R, shift-invariant exponential

functions of the form g(x) = qcx+d, q > 0, c, d ∈ R,
as well as power functions g(x) = xm + l, m, l ∈ R.
We expect the obtained results to be used in image
processing applications.
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Weighted aggregation operators based on mini-
mization, Information Sciences, Volume 17, Issue
4, pp 1133-1140.

[8] R. A. Ribeiro, R. A. Marques Pereira (2003). Gen-
eralized mixture operators using weighting func-
tions: A comparative study with WA and OWA,
European Journal of Operational Research, 145,
pp 329-342.

[9] R. A. Ribeiro, R. A. Marques Pereira (2003) Ag-
gregation with generalized mixture operators us-
ing weighting functions, Fuzzy sets and systems,
137, pp 43-58.
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[12] J. Špirková (2015). Induced weighted operators
based on dissimilarity functions. Information Sci-
ences, Volume 294, pp 530-539.

[13] T. Wilkin (2013). Image reduction operators
based on no-monotonic averaging functions. In:
Proceedings of the 10th IEEE Int. Conf. on Fuzzy
Systems, pp 1-8.

[14] T. Wilkin, G. Beliakov, T. Calvo (2014).
Weakly monotone averaging functions. Informa-
tion Processing and Management of Uncertainty
in Knowledge-Based Systems Communications in
Computer and Information Science, Volume 444,
pp 364-373.

[15] T. Wilkin, G. Beliakov (2014). Weakly monotonic
averaging functions. International Journal of In-
telligent Systems, Vol. 30, Issue 2, pp 144-169.

Proceedings of 8th International Summer School on Aggregation Operators (AGOP 2015)

226



PRESERVATION OF THE EXCHANGE PRINCIPLE UNDER
LATTICE OPERATIONS ON FUZZY IMPLICATIONS

Nageswara Rao Vemuri and Balasubramaniam Jayaram
Department of Mathematics

Indian Instititute of Technology Hyderabad
Yeddumailaram, India 502205.
{ma10p001,jbala}@iith.ac.in

Summary

In this work, we solve an open problem re-
lated to the exchange principle of fuzzy im-
plications [Problem 3.1, Fuzzy Sets and Sys-
tems 261(2015) 112-123]. We show that two
important generalizations of the exchange
principle, namely, the generalized exchange
principle(GEP) and the mutual exchange-
ability(ME) are sufficient conditions for the
solution of the problem. We also show that,
under some conditions, these are necessary
too. Finally, we investigate the pairs (I, J)
from different families of fuzzy implications
such that the exchange principle is preserved
under the join and meet operations.

Keywords: Fuzzy implication, the exchange
principle, the generalized exchange princi-
ple, the mutual exchangeability, lattice op-
erations.

1 INTRODUCTION

Fuzzy implications are one of the important logical
connectives in fuzzy logic. These operators general-
ize the classical implication from {0, 1}-setting to the
[0, 1]- setting. They are defined as follows:

Definition 1.1 ([1], Definition 1.1.1). A function
I : [0, 1]2 −→ [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the follow-
ing conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), (I1)

if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), (I2)

I(0, 0) = 1, I(1, 1) = 1, I(1, 0) = 0. (I3)

Let I denote the set of all fuzzy implications defined on
[0, 1]. Fuzzy implications have many applications in
fuzzy logic, approximate reasoning, decision making,

fuzzy image processing, fuzzy control etc. Due to their
applicational value it is always essential to generate
fuzzy implications that satisfy various properties and
functional equations.

However, it is always not straight-forward to gener-
ate fuzzy implications that preserve the desirable basic
properties. For example, the lattice operations pro-
posed by Bandler and Kohout as follows

(I ∨ J)(x, y) := max(I(x, y), J(x, y)),

(I ∧ J)(x, y) := min(I(x, y), J(x, y)),

do not always preserve the exchange principle, which
is defined as follows:

Definition 1.2 ([1], Definition 1.3.1). A fuzzy impli-
cation I is said to satisfy the exchange principle (EP),
if for all x, y, z ∈ [0, 1]

I(x, I(y, z)) = I(y, I(x, z)). (EP)

For more about the lattice operations of fuzzy impli-
cations and the preservation of the basic properties,
please see Chapter 6 of [1].

Thus this fact has become the main motivation to pro-
pose the following open problem.

Problem 1.3 ([3], Problem 3.1). Characterize the
subfamily of all fuzzy implications ((S,N)-implications,
R-implications, etc.) which preserve (EP) for lattice
operations.

In this paper, we investigate the solutions of Prob-
lem 1.3 in a more general context, i.e., we attempt to
characterize all fuzzy implications which preserve (EP)
under the lattice operations.

Towards this end, in Section 2, we present some ex-
amples of I, J ∈ I such that I ∨ J and I ∧ J pre-
serve (EP) and investigate some basic conditions for
a pair (I, J) to satisfy the same. We also recall some
important generalizations of the exchange principle,
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viz., the generalized exchange principle(GEP) and the
mutual exchangeability(ME). Following this, in Sec-
tion 3, we show that either of (GEP) or (ME) is a
sufficient condition for I ∨ J and I ∧ J to preserve
(EP). Later on, in Section 4, we show that the prop-
erties (GEP) and (ME) are also necessary under some
conditions, namely, the Lattice Exchangeability In-
equlaities (LEI). Finally, we present some results per-
taining to the solutions of fuzzy implications I, J that
satisfy (ME) and (GEP) separately in Sections 5 and
6, respectively.

2 PRELIMINARIES

In this section, we first show that there exist solutions
of Problem 1.3. Following this, we investigate the basic
characterizations of pairs (I, J) of fuzzy implications
that become the solutions of Problem 1.3. Finally, we
recall two important generalizations of (EP), namely,
(GEP) and (ME), that will be helpful in obtaining the
solutions of Problem 1.3.

Example 2.1. (i) Let I, J ∈ I satisfy (EP) and
I ≤ J under the usual point-wise ordering of func-
tions. Clearly, I∨J = J and I∧J = I, which sat-
isfy (EP). Thus when I, J are comparable, I ∨ J
and I ∧ J always preserve (EP).

(ii) Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

sin(πy2 ), if x > 0,

and J(x, y) =

{
1, if x = 0,

y2, if x > 0.

Then it is easy to see that the implications I, J, I∨
J , and I ∧J satisfy (EP). Note also that I, J are
not comparable.

In fact, one can generalize Example 2.1(ii) to obtain
further solutions of Problem 1.3 as in the following.

Remark 2.2. Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

ϕ(y), if x > 0,

and J(x, y) =

{
1, if x = 0,

ψ(y), if x > 0,

where ϕ,ψ : [0, 1] −→ [0, 1] are increasing bijections
such that ϕ(0) = 0 = ψ(0) and ϕ(1) = 1 = ψ(1). Then
it is easy to see that the implications I, J, I ∨ J, I ∧ J
satisfy the exchange principle. In the case, if ϕ,ψ are
incomparable then I, J are also incomparable.

From Example 2.1, it follows that lattice operations of
comparable fuzzy implications always preserve (EP)
and there exist some incomparable fuzzy implications
whose lattice operations also preserve the same.

Now, in the following we present some important re-
sults that will be useful in the investigations of pairs
(I, J) of fuzzy implications such that I ∨ J and I ∧ J
preserve (EP).

Proposition 2.3 ([1], Propositions 7.2.15 and 7.2.26).
For a function I : [0, 1]2 → [0, 1] the following state-
ments are equivalent:

(i) I is increasing in the second variable, i.e., I sat-
isfies (I2).

(ii) I satisfies I(x,min(y, z)) = min(I(x, y), I(x, z))
for all x, y, z ∈ [0, 1].

(iii) I satisfies I(x,max(y, z)) = max(I(x, y), I(x, z))
for all x, y, z ∈ [0, 1].

From the above result the following Lemma follows
directly.

Lemma 2.4. Let I, J ∈ I satisfy (EP). Then the
following statements are equivalent:

(i) Ai(I, J) satisfies (EP), where A1(I, J) = I ∧ J
and A2(I, J) = I ∨ J .

(ii) Ai(I(x, I(y, z)), I(x, J(y, z)), J(x, I(y, z)), J(x, J(y, z))) =
Ai(I(y, I(x, z)), I(y, J(x, z)), J(y, I(x, z)), J(y, J(x, z))),
for i = 1, 2, where A1 = min and A2 = max.

In the following, we recall two important generaliza-
tions of (EP) proposed in different contexts, which
play an important role in the sequel.

Definition 2.5 (cf. [4], Proposition 5.5). A pair (I, J)
of fuzzy implications is said to satisfy the generalized
exchange principle (GEP), if for all x, y, z ∈ [0, 1],

I(x, J(y, z)) = I(y, J(x, z)),

J(x, I(y, z)) = J(y, I(x, z)).

}
(GEP)

Remark 2.6. Note that, in the original definition of
(GEP) in [4], the pair (I, J) satisfies (GEP) if only the
first of the above two conditions, viz., I(x, J(y, z)) =
I(y, J(x, z)), is true. In that sense, given I, J ∈ I, our
definition requires both the pairs (I, J) and (J, I) to
satisfy (GEP). However, to avoid cumbersome repeti-
tions, we continue to consider the definition given in
Definition 2.5 in this work.

Example 2.7. Let I, J ∈ I be defined as follows:

I(x, y) =

{
1, if x = 0,

y3, if x > 0,
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and J(x, y) =

{
1, if x = 0,

y4, if x > 0.

Then it is easy to see that the pair (I, J) satisfies
(GEP).

Definition 2.8 ([8], Definition 3.9). A pair (I, J) of
fuzzy implications is said to be mutually exchangeable,
if for all x, y, z ∈ [0, 1],

I(x, J(y, z)) = J(y, I(x, z)). (ME)

From Remark 3.10 in [7], it follows that (GEP) is dif-
ferent from (ME).

3 SUFFICIENT CONDITIONS ON
I, J SUCH that I ∨ J, I ∧ J
PRESERVE (EP)

In this section, we show that either of (GEP) and
(ME) is a sufficient condition for a pair (I, J) to be
a solution of Problem 1.3.

Theorem 3.1. Let I, J ∈ I satisfy (EP). If the pair
(I, J) satisfies either (GEP) or (ME), then both I ∨J
and I ∧ J satisfy (EP).

Proof. Let I, J ∈ I satisfy (EP).

(i) Let the pair (I, J) satisfy (GEP). Let K1 = I ∨J
amd x, y, z ∈ [0, 1]. Now, from (EP), (GEP) of
I, J and Lemma 2.4, it follows that

K1(x,K1(y, z)) = max(I(x, I(y, z)), I(x, J(y, z)),

J(x, I(y, z)), J(x, J(y, z)))

= max(I(y, I(x, z)), I(y, J(x, z)),

J(y, I(x, z)), J(y, J(x, z)))

= K1(y,K1(x, z)),

or equivalently, K1 = I ∨ J satisfies (EP). Simi-
larly, one can show that I ∧ J also satisfies (EP).

(ii) Let the pair (I, J) satisfy (ME). Now, from (ME)
it follows that

I(y, J(x, z)) = J(x, I(y, z)), x, y, z ∈ [0, 1].

Now let x, y, z ∈ [0, 1]. Then, once again, by using
(EP) and (ME) of I, J and Lemma 2.4, we get

K1(x,K1(y, z)) = max(I(x, I(y, z)), I(x, J(y, z)),

J(x, I(y, z)), J(x, J(y, z)))

= max(I(y, I(x, z)), J(y, I(x, z)),

I(y, J(x, z)), J(y, J(x, z)))

= K1(y,K1(x, z)).

Thus K1 = I ∨ J satisfies (EP). Similarly, one
can show that I ∧ J also satisfies (EP).

4 NECESSARY CONDITIONS ON
I, J SUCH THAT I ∨ J, I ∧ J
PRESERVE (EP)

In Theorem 3.1, we have shown that either (GEP) and
(ME) of I, J is a sufficient condition for I∨J and I∧J
to preserve (EP). In this section, we show that these
properties also become necessary under some condi-
tions.

Towards this end, we define the following:

Definition 4.1. Let I, J ∈ I satisfy (EP). Then we
say that the pair (I, J) satisfies Lattice Exchange-
able Inequalities (LEI) if it satisfies the following
inequalities: For all x, y, z ∈ [0, 1],

max(I(x, I(y, z)), J(x, J(y, z))) ≤
max(I(x, J(y, z)), J(x, I(y, z))), (LEI-1)

min(I(x, I(y, z)), J(x, J(y, z))) ≥
min(I(x, J(y, z)), J(x, I(y, z))). (LEI-2)

Example 4.2. It can be easily verified that the pair
of fuzzy implications (I1, J1) does satisfy the (LEI) in-
equalities, while the pair (I2, J2) does not:

I1(x, y) =





1, if x = 0 or y = 1,

0, if x = 1 and y = 0,

0.4, otherwise,

J1(x, y) =





1, if x = 0 or y = 1,

0, if x = 1 and y = 0,

0.6, otherwise,

I2(x, y) =

{
1, if x ≤ 0.4,

y2, if x > 0.4,

J2(x, y) =

{
1, if x ≤ 0.6,

y4, if x > 0.6.

Lemma 4.3. Let I, J ∈ I satisfy (EP). (LEI-1) is
equivalent to (LEI-1’):

max(I(x, I(y, z)), J(x, J(y, z))) ≤
max(I(y, J(x, z)), J(y, I(x, z))), (LEI-1’)

and (LEI-2) is equivalent to (LEI-2’):

min(I(x, I(y, z)), J(x, J(y, z))) ≥
min(I(y, J(x, z)), J(y, I(x, z))). (LEI-2’)
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Proof. Let I, J ∈ I satisfy (EP). In the following we
show that (LEI-1) is equivalent to (LEI-1’), since the
proof for the other can be similarly obtained.

(LEI-1) =⇒ (LEI-1’): Let the pair (I, J) satisfy
(LEI-1). From (LEI-1), one can always write

max(I(y, I(x, z)), J(y, J(x, z))) ≤
max(I(y, J(x, z)), J(y, I(x, z))). (1)

Since I, J satisfy (EP), the inequality (1) becomes

max(I(x, I(y, z)), J(x, J(y, z))) ≤
max(I(y, J(x, z)), J(y, I(x, z))),

which is equal to (LEI-1’).

(LEI-1’) =⇒ (LEI-1): Follows similarly.

Theorem 4.4. Let I, J, I ∨ J, I ∧ J ∈ I satisfy (EP).
If the pair (I, J) satisfies (LEI) then it also satisfies
the following equations:

max(I(x, J(y, z)), J(x, I(y, z))) =

max(I(y, J(x, z)), J(y, I(x, z))), (2)

min(I(x, J(y, z)), J(x, I(y, z))) =

min(I(y, J(x, z)), J(y, I(x, z))). (3)

Proof. Let I, J, I ∨ J, I ∧ J ∈ I satisfy (EP). Let the
pair (I, J) also satisfy (LEI). In the following, we prove
only the equation (2), since the proof for (3) can be
obtained similarly. Let x, y, z ∈ [0, 1]. Since I ∨ J
satisfies (EP), from Lemma 2.4, the pair (I, J) satisfies
the equation in Lemma 2.4(ii), with i = 2. Thus we
have, for all x, y, z ∈ [0, 1],

max
{
I(x, I(y, z)), I(x, J(y, z)),

J(x, I(y, z)), J(x, J(y, z))
}

= max
{
I(y, I(x, z)), I(y, J(x, z)),

J(y, I(x, z)), J(y, J(x, z))
}
. (∗)

Since the pair (I, J) also satisfies (LEI), from (LEI-1),
we get

L.H.S. of (∗) = max(I(x, J(y, z)), J(x, I(y, z)))

= L.H.S. of (2).

Since I, J satisfy (EP) from Lemma 4.3, it follows that
(LEI-1) is equivalent to (LEI-1’), from whence we ob-
tain that

R.H.S. of (∗) = max(I(y, J(x, z)), J(y, I(x, z)))

= R.H.S. of (2).

Let I ∨ J, I ∧ J preserve (EP) and I, J satisfy (LEI).
Then from Theorem 4.4, it follows that the pair (I, J)
satisfies (2) and (3). In other words, this fact implies
that the solutions of the equations (2), (3) also become
the solutions of Problem 1.3. In the following, we in-
vestigate the solutions of (2) and (3). Before doing so,
we recall the following important result which is useful
in the sequel.

Lemma 4.5 ([2], page. 366). Let L be any distributive
lattice. Let a, b, c ∈ L satisfy

max(a, b) = max(a, c), (4)

min(a, b) = min(a, c). (5)

Then b = c.

Remark 4.6. Since ([0, 1],≤,∨,∧) is also a distribu-
tive lattice, Lemma 4.5 is also true for all a, b, c ∈
[0, 1].

Remark 4.7. Let a, b, c, d ∈ [0, 1] satisfy

max(a, b) = max(c, d), (6)

min(a, b) = min(c, d). (7)

Then either a = c or a = d. Further,

(i) if a = c then b = d.

(ii) if a = d then b = c.

Lemma 4.8. Let the pair (I, J) ∈ I satisfy the equa-
tions (2) and (3). Then it satisfies either (GEP) or
(ME).

Proof. Follows from Remark 4.7.

Theorem 4.9. Let I, J, I∨J, I∧J ∈ I satisfy (EP) and
let the pair (I, J) satisfy (LEI). Then the pair (I, J)
satisfies either (GEP) or (ME).

Proof. Follows from Theorem 4.4 and Lemma 4.8.

Theorem 4.10. Let I, J ∈ I satisfy (EP) and (LEI).
Then the following statements are equivalent:

(i) I ∨ J, I ∧ J satisfy (EP).

(ii) The pair (I, J) satisfies either (GEP) or (ME).

Proof. Follows from Theorems 4.9 and 3.1.

Remark 4.11. Let I, J ∈ I satisfy (EP). If the pair
(I, J) satisfies (LEI) then from Theorem 4.10, it fol-
lows that I ∨ J, I ∧ J satisfy (EP). However, the con-
verse need not be true. For example, take I = I2 and
J = J2 of Example 4.2.
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Since (ME) and (GEP) play an important role in the
characterizations of solutions of Problem 1.3, it is of
interest to know the pairs (I, J) of fuzzy implications
that do satisfy (ME) or (GEP). We take up this in-
vestigation in the following sections.

5 PAIRS OF FUZZY
IMPLICATIONS SATISFYING
(ME)

Due to the variety of fuzzy implications and the com-
plexity of the functional equation, it is not an easy task
to investigate the pairs of fuzzy implications that do
satisfy (ME). However, Vemuri [5] has investigated the
solutions of (ME), but only for the families of fuzzy im-
plications whose characterizations are well established.
In the following, we recall some of the most impor-
tant results that give the solutions of (ME) and thus
the solutions of Problem 1.3. For details about def-
initions, properties, characterizations and representa-
tions of different families of fuzzy implications, please
see [1].

5.1 (S,N)-IMPLICATIONS SATISFYING
(ME)

Proposition 5.1 ([5], Proposition 4.1). Let I be an
(S,N)-implication whose negation N has trivial range,
i.e., N(x) ∈ {0, 1} for all x ∈ [0, 1]. Then I satisfies
(ME) with every J ∈ I.

From Proposition 5.1, it follows that if at least one of
I, J is an (S,N)-implication with trivial range nega-
tion N then the pair (I, J) satisfies (ME) and hence
becomes the solution of Problem 1.3.

In the case if I, J are two (S,N)-implications with
continuous negations and satisfy (ME) then as the fol-
lowing result suggests the two t-conorms involved in
the definition must be the same.

Theorem 5.2 ([7], Theorem 6.7). Let I(x, y) =
S1(N1(x), y), J(x, y) = S2(N2(x), y) be two (S,N)-
implications such that N1, N2 are continuous nega-
tions. Then the following statements are equivalent:

(i) The pair (I, J) satisfies (ME).

(ii) S1 = S2.

5.2 R-IMPLICATIONS SATISFYING (ME)

Theorem 5.3 ([5], Theorem 5.1). Let I = IT1
and

J = IT2
be two R-implications generated from left-

continuous t-norms T1, T2 respectively. Then the fol-
lowing statements are equivalent:

(i) The pair (I, J) satisfies (ME).

(ii) I = J .

Before presenting the solutions of f and g-implications
that satisfy (ME), we recall two important definitions
that will be useful in the sequel.

Definition 5.4 ([6, 7]). For any I, J ∈ I, we define
I ~ J : [0, 1]2 → [0, 1] as

(I ~ J)(x, y) = I(x, J(x, y)), x, y ∈ [0, 1].

Definition 5.5 ([8], Definition 5.1). Let I ∈ I. For
any n ∈ N, we define the n-th power of I w.r.t. the
binary operation ~ as follows: For n = 1,

I
[n]
~ = I,

and for n ≥ 2,

I
[n]
~ (x, y) = I

(
x, I

[n−1]
~ (x, y)

)
= I

[n−1]
~ (x, I(x, y)) ,

for all x, y ∈ [0, 1].

5.3 f-IMPLICATIONS SATISFYING (ME)

Theorem 5.6 ([5], Theorem 6.6). Let I, J be two f -
implications. Then the following statements are equiv-
alent:

(i) The pair (I, J) satisfies (ME).

(ii) J = I
[n]
~ for some n ∈ N.

5.4 g-IMPLICATIONS SATISFYING (ME)

Theorem 5.7 ([5], Theorem 7.4). Let I, J be two g-
implications. Then the following statements are equiv-
alent:

(i) The pair (I, J) satisfies (ME).

(ii) J = I
[n]
~ for some n ∈ N.

6 PAIRS OF FUZZY
IMPLICATIONS SATISFYING
(GEP)

In this section, we attempt to find the pairs (I, J)
of fuzzy implications that do satisfy (GEP). Once
again keeping the complexity of the functional equa-
tion (GEP) in mind, we restrict ourselves to do so for
the families (S,N)-, R-, f - and g- of fuzzy implica-
tions.

Note that all of these families of fuzzy implications
satisfy the following left neutrality property (NP):
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Definition 6.1 (cf. [1], Definition 1.3.1). An I ∈ I is
said to satisfy the left neutrality property (NP) if

I(1, y) = y, y ∈ [0, 1]. (NP)

Lemma 6.2. Let I, J ∈ I satisfy (NP). If the pair
(I, J) satisfies (GEP) then I = J .

Proof. The substitution of x = 1 in (GEP) and (NP)
of I, J ∈ I will yield I = J .

From the above results, it is clear that if I, J ∈ I belong
to one of the following families of fuzzy implications,
viz.,(S,N)-, R-, f -, g- implications, and satisfy (GEP),
then I = J and hence it trivially follows that both I∨J
and I ∧ J preserve (EP).

7 CONCLUSIONS

In this paper, we have investigated the solutions of an
open problem [Problem 3.1, Fuzzy Sets and Systems
261(2015) 112-123] related to the preservation of the
exchange principle (EP) of fuzzy implications under
lattice operations. Our study has shown the impor-
tance of two of the generalizations of (EP), viz., (GEP)
and (ME) in obtaining the solutions of the problem.

While (GEP), (ME) are independently sufficient for
the lattice operations of fuzzy implications to preserve
(EP), these conditions are not necessary. However, the
newly proposed pair of inequalities, namely the Lattice
Exchangeable Inequalities (LEI-1) and (LEI-2) make
(GEP) and (ME) also a necessity for a pair of fuzzy
implications to be a solution of Problem 1.3.

Since the pairs (I, J) of fuzzy implications satisfying
either (GEP) or (ME) are the most general solutions of
the problem, we have investigated them but for some
well known families of fuzzy implications. However,
this problem has to be investigated in the most general
setting. Further, the solutions of (LEI) are worthy of
study. We intend to explore these in detail in the near
future.
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Summary

The aim of this paper is to present a class of
measures for information reception on crisp
and fuzzy setting. Then, some aggregation
operators for this reception are proposed.
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1 INTRODUCTION

The goal of this paper is to introduce a class of mea-
sures of information reception on crisp and fuzzy set-
ting. The structure of the paper is the following: in
Section 2 we recall some preliminaries about general
information given by Kampé De Fériet and Forte for
crisp sets and by Benvenuti and ourselves for fuzzy
sets. This information is called general because it is
defined without probability or fuzzy measure. In Sec-
tion 3 we introduce the definition of information re-
ception. In Section 4 we present an hypothesis for
measure of information reception with its properties
expressed in a system of functional equations and in-
equalities. This system is solved in Section 5. Finally,
in Section 6, we give some forms of aggregation oper-
ators for information reception. Section 7 is devoted
to the conclusions.

2 PRELIMINARIES

In this paragraph, we present some preliminaires on
crisp and fuzzy setting.

2.1 CRISP SETTING

Let Ω be an abstract space and A a σ−algebra of all
subsets of Ω, such that (Ω,A) is measurable. We refer
to [6] for all knowledge about crisp sets.

Following Kampé de Fériet, Forte and Benvenuti
[10, 7, 9, 5, 8], we recall that measure J(·) of general
information (i.e. without probability) is a mapping

J(·) : A → [0,+∞]

such that ∀ A,A′ ∈ A :

(i) A
′ ⊃ A⇒ J(A

′
) ≤ J(A),

(ii) J(∅) = +∞,
(iii) J(Ω) = 0.

2.2 FUZZY SETTING

Let X be an abstract space and F a σ−algebra of all
fuzzy sets of X, such that (X,F) is measurable. We
refer to [19, 12] for all knowledge about fuzzy sets.

In 1990, in [1], we introduced measure of general infor-
mation Ĵ(·) (i.e. without probability or fuzzy measure)
on fuzzy setting as a mapping

Ĵ(·) : F → [0,+∞]

such that ∀ F, F ′ ∈ F :

(̂i) F
′ ⊃ F ⇒ Ĵ(F

′
) ≤ Ĵ(F ),

(îi) Ĵ(∅) = +∞,
(îii) Ĵ(X) = 0.

3 STATEMENT OF THE PROBLEM

3.1 CRISP AND FUZZY SETTING

Given an information J on A or Ĵ on F , we can ask to
us if it has been received. In fact, it is possible that in-
formation has not been received well, for this reason we
introduce the reception of information J (or informa-
tion reception) of a crisp event A : R(J(A)), or infor-
mation reception Ĵ of a fuzzy set F : R(Ĵ(F )). Shortly,
from now on, we put R(J(A)) = RJ(A), R(Ĵ(F )) =
RĴ(F ), respectively .
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Moreover, if information has not been received or it
has been received completely, we say, in the first case,
that information reception of an event is null, in the
second one we assume that the information reception
of an event gives us the whole information of the event
itself. Finally, we think that information reception is
an increasing function with respect to information of
the given set.

Let J be the family of information measures on crisp
setting as in Sect.2.1.

So, we introduce the following:

Definition 3.1. Given a set A ∈ A and an informa-
tion measure J ∈ J , information reception RJ is a
mapping

RJ : J → [0, J(A)]

such that ∀J, J ′ ∈ J :

J ≤ J ′ ⇒ RJ(A) ≤ RJ′(A).

It is clear that:

RJ(Ω) = J(Ω) = 0, RJ(∅) = J(∅) = +∞.

On fuzzy setting the meaning of information reception
is the same.

Let Ĵ be the family of information measure on fuzzy
setting as in Sect.2.2.

Definition 3.2. Given a set F ∈ F and an informa-
tion measure Ĵ ∈ Ĵ , information reception RĴ is a
mapping

RĴ : Ĵ → [0, Ĵ(F)]

such that ∀Ĵ , Ĵ ′ ∈ Ĵ :

Ĵ ≤ Ĵ ′ ⇒ RĴ(F ) ≤ RĴ′(F ).

It is clear that:

RĴ(X) = Ĵ(X) = 0, RĴ(∅) = Ĵ(∅) = +∞.

4 THE FUNCTIONS Ψ and Φ

In this paragraph we should like to find some particular
forms of information reception. Given an information,
we think that information reception is linked not only
to information but also to the degree of accepting of
reception which we express through a parameter k, k ∈
[0, 1]. Maximum value of k is k = 1 and minimum
k = 0. For the meaning of information and of k we
must exclude the cases:

k = 0 when J(A) = +∞, ∀ A ∈ A, (1)

k = 0 when Ĵ(F ) = +∞, ∀ F ∈ F .

4.1 CRISP SETTING

For reasons expressed above, given A ∈ A, we are
going to look for information reception as a function
Ψ depending on information J(A) and the parameter
k :

RJ(A) = Ψ

k, J(A)


, (2)

where Ψ : [0, 1]× [0,+∞]→ [0,+∞], and continuous.

From the previous properties, ∀ J, J ′ ∈ J and ∀ k, k′ ∈
[0, 1] the continuous function Ψ is defined axiomati-
cally in the following way:

p1. Ψ(0, J(A)) = 0,

p2.Ψ(1, J(A)) = J(A),

p3. k ≤ k′ =⇒ Ψ(k, J(A)) ≤ Ψ(k′, J(A)),

p4. J(A) = 0 =⇒ Ψ(k, 0) = 0,

p5. J(A) = +∞ and k 6= 0 =⇒ Ψ(k,+∞) = +∞,
p6. J ≤ J ′ =⇒ Ψ(k, J(A)) ≤ Ψ(k, J ′(A)).

It is clear that p5. translates the condition (1).

Now, we are going to introduce the properties above
[p1. − p6.] in a system of functional equations and
inequalities: setting J(A) = x, J ′(A) = x′, x, x′ ∈
[0,+∞], k, k′ ∈ [0, 1] we have





P1. Ψ(0, x) = 0,
P2. Ψ(1, x) = x,
P3. Ψ(k, x) ≤ Ψ(k′, x) k ≤ k′,
P4. Ψ(k, 0) = 0,
P5. Ψ(k,+∞) = +∞ k 6= 0,
P6. Ψ(k, x) ≤ Ψ(k, x′) x ≤ x′.

We are looking for an universal continuous solution of
the system above in ever proper space.

4.2 FUZZY SETTING

In analogous way, given a fuzzy set F , we propose that
information reception RĴ of is a function Φ of Ĵ(F )
and k, where the parameter k has the same meaning
as in the crisp case:

RĴ(F ) = Φ

k, Ĵ(F )


, (3)

where Φ : [0, 1] × [0,+∞] → [0,+∞], and continuous
and it satisfies the conditions [p1.− p6.].

5 THE SOLUTIONS

5.1 CRISP SETTING

On a crisp setting, we are going to consider the solu-
tion Ψ for separation of variables, as a product of two
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function α(k) and f(x) :

Ψ(k, x) = α(k) · f(x), (4)

with α : [0, 1] → [0, 1] and f : [0,+∞] → [0,+∞]. By
substituting (4) in the system, the conditions P1. and
P3. give α(0) = 0 and α increasing, respectively. For
P2., α(1)f(x) = x⇐⇒ α(1) = 1 and f(x) = x. If α(k)
is continuous, a function as been found satisfies also
[P4.− P6.].

So, we have the following

Proposition 5.1. The function Ψ(k, x) = α(k) · f(x)
is a solution of the system [P1.− P6.] if and only if

a)f(x) = x, x ∈ [0,+∞],

b)α : [0, 1] → [0, 1], increasing, continuous, α(0) =
0, α(1) = 1,

i.e.

Ψ(k, x) = α(k)x, x ∈ [0,+∞], (5)

with the condition b).

Proof. It is easy to see that the function (5) with the
condition b) is solution of the system [P1.− P6.]. The
viceversa has been shown above.

Moreover, it is possible to generalize the previous re-
sult in

Proposition 5.2. A class of solutions of the system
[P1.− P6.] are the functions

Ψh(k, x) = h−1

α(k)h(x)


, (6)

if and only if

a) h : [0,+∞]→ [0,+∞], strictly increasing, continu-
ous with h(0) = 0, h(+∞) = +∞,
b) α : [0, 1] → [0, 1], increasing, continuous, with
α(0) = 0, α(1) = 1.

For h(x) = x, we have Proposition 5.1.

5.2 FUZZY SETTING

In a fuzzy setting, we are going to find the function Φ
solution of the system [P1.−P6.]. The previous Propo-
sitions 5.1 and 5.2 are valid also in a fuzzy setting:

Proposition 5.3. The function Φ(k, x) = α(k) · f(x)
is a solution of the system [P1.− P6.] if and only if

a)f(x) = x, x ∈ [0,+∞],

b) α : [0, 1] → [0, 1], increasing, continuous, α(0) =
0, α(1) = 1,

i.e.

Φ(k, x) = α(k)x, x ∈ [0,+∞], (7)

with the condition b).

Proposition 5.4. A class of solutions of the system
[P1.− P6.] are the functions

Φg(k, x) = g−1

α(k)g(x)


, (8)

if and only if

a) g : [0,+∞] → [0,+∞], strictly increasing, continu-
ous, with g(0) = 0, g(+∞) = +∞,
b) α : [0, 1] → [0, 1] increasing, continuous, α(0) =
0, α(1) = 1.

6 SOME AGGREGATION
OPERATORS

Many authors have introduced the aggregation oper-
ators L, with the properties of idempotence, mono-
tonicity and continuity from below [3, 4, 11]. We have
introduced aggregation operators in particular cases
[13, 14, 15, 16, 18].

6.1 CRISP SETTING

Given an information J and n crisp events Ai, i =
1, ..., n with their information receptions RJ(Ai), i =
1, ..., n following the procedure presented in [2], it is
possible to obtain the following result:

Proposition 6.1. Some aggregation operators of n
crisp events Ai, i = 1, ..., n with information reception
ai = RJ(Ai), i = 1, ..., n are

L

a1, ..., ai, ..., an


 =

n∨

i=1

ai,

L

a1, ..., ai, ..., an


 =

n∧

i=1

ai,

L

a1, ..., ai, ..., an


 =

h−1

∑n

i=1 h(ai)



n
,

with h : [0, 1] → [0,M ], (0 ≤ M ≤ +∞) continuous,
strictly increasing, h(0) = 0, h(1) = M.

6.2 FUZZY SETTING

In analogous way, given an information Ĵ , m fuzzy
events Fl, l = 1, ...m, with information receptions
RĴ(Fl), l = 1, ...,m, we obtain the same result:
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Proposition 6.2. Some aggregation operators of m
fuzzy events Fl, l = 1, ...,m with information reception
bl = RĴ(Fl), l = 1, ...,m are

L

b1, ..., bl, ..., bm


 =

m∨

l=1

bl,

L

b1, ..., bl, ..., bm


 =

m∧

l=1

bl,

L

b1, ..., bl, ..., bm


 =

h−1

∑m

l=1 h(bl)



m
,

with h : [0, 1] → [0,M ] (0 ≤ M ≤ +∞) continuous,
strictly increasing, h(0) = 0, h(1) = M.

7 CONCLUSIONS

In this paper, for crisp and fuzzy sets, we have in-
troduced information reception depending on a given
information measure and a parameter: we have found
some classes of reception, from Propositions 5.1 and
5.2:

RJ(A) = α(k)J(A),∀ A ∈ A,

with α : [0, 1]→ [0, 1], increasing, continuous, α(0) =
0, α(1) = 1, and

RJ,h(k, J(A)) = h−1

α(k)h(J(A))


,

with h : [0,+∞]→ [0,+∞], strictly increasing, contin-
uous, h(0) = 0, h(+∞) = +∞, and α : [0, 1] → [0, 1]
increasing, continuous, α(0) = 0, α(1) = 1 .

From Propositions 5.1 and 5.2:

RĴ(F ) = α(k)Ĵ(F ),∀ F ∈ F

α : [0, 1] → [0, 1], α(0) = 0, α(1) = 1, increasing,
continuous, and

R̂Ĵ,g(k, Ĵ(F )) = g−1

α(k)g(Ĵ(F ))


,

with g : [0,+∞] → [0,+∞], strictly increasing, con-
tinuous, g(0) = 0, g(+∞) = +∞, α : [0, 1] → [0, 1],
increasing, continuous, α(0) = 0, α(1) = 1.

Then, we have presented some aggregation operators
of these information receptions.
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[9] J. Kampé De Fériet, P. Benvenuti (1969). Sur
une classe d’informations. Comptes Rendus de
l’Académie des Sciences Paris 269A, pp. 97-101.
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Summary

In the paper we present experimental results
on the problem of an effective decision mak-
ing on incomplete data. In order to investi-
gate this problem we examined a variety of
interval aggregation methods. Exemplary re-
sults are based on a medical diagnosis sup-
port system. Our research shows that an ap-
plication of the aggregation in this problem
leads to promising results.
Keywords: interval-valued aggregation,
missing data, incomplete information, deci-
sion making under uncertainty, supporting
medical diagnosis.

1 INTRODUCTION

According to recent statistics, the annual numbers of
deaths due to ovarian cancer in some countries are
alarmingly high and still grow. The correct diagnosis
became a serious problem that the medicine is trying
to face. The correct classification of a tumor as malig-
nant or benign is particularly important since a given
type of the tumor determines whether the patient must
undergo a surgery. Moreover, incorrect indication of
malignant tumor as benign, in the longer term causes
deterioration of the patient’s health and results in a
high risk of failure of the surgery.

For this reason, a wide range of preoperative diagnos-
tic models have been developed, where the goal is to
predict the type of malignancy. Both the sensitivity
and specificity of the models rarely exceeds 90% in ex-
ternal evaluation [14, 8]. The Table 1 presents six most
common ones (two based on scoring systems [1, 11] and
four based on logistic regressions [13, 12, 7]) and a list
of used attributes. The attributes are divided into two

groups: objective medical history and the rest (which
are subjective medical history, ultrasound and blood
markers).

Our previous research indicated possible problems
with collecting all the data by a physician during ex-
aminations [15, 10]. It is common that some exam-
inations might be omitted by a gynaecologist, either
due to the their unavailability or because of medical
reasons. The possible lack of data can be due to e.g.
the technical limitations of the health care unit, high
costs of medical examination and high risk of patient’s
health deterioration after potential examination. Ob-
viously, lack of data hinders making a final decision.

The main issue we investigate in this paper is how to
overcome the problem of low-quality diagnosis in the
presence of missing data. The approach presented in
the following sections focuses on aggregating knowl-
edge that comes from many diagnostic scales, in order
to minimise the impact of incomplete data. In Section
2 we introduce notions of an interval-based model of
a patient, a diagnostic scale and aggregation operator.
In Section 3 we describe an aggregation strategy that
allows to improve a diagnosis and we give a methodol-
ogy of calculating, analysing and compering different
aggregation methods. Section 4 concludes our results.

2 DESCRIPTION OF THE
PROBLEM

2.1 INTERVAL-VALUED PATIENT
MODEL

In a classical approach, a patient is modelled as a vec-
tor p = (p1, p2, ..., pn) in a space P = D1×D2×...×Dn,
where D1, D2, ..., Dn are real closed intervals denoting
domains of attributes that describe patients.
We extend this representation by introducing a possi-
bility to model incomplete data. Each attribute Di is
substituted by its interval version D̂i = IDi . Analo-
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Table 1: Attributes used by most common preoperative diagnostic models.

group attribute
diagnostic models

SM [11] Alc. [1] LR1 [13] LR2 [13] Timm. [12] RMI1 [7]
m1 m2 m3 m4 m5 m6

objective
medical
history

age - - X X - X
menopausal status X - - - X X
ovarian cancer in family - - X - - -
hormonal therapy - - X - - -
hysterectomy - - - - - X

other

pain during examination - - X - - -
lesion volume X - X - - -
internal cyst walls X - X X - -
septum thickness X - - - - -
echogenicity X X - - - -
localisation X - - - - X
ascites X - X X - X
papillary projections - X - - X -
solid element size - X X X - X
blood flow location - X X X - -
resistance index - X - - - -
acoustic shadow - - X X - -
amount of blood flow - - X - X -
CA-125 blood marker - - - - X X
lesion quality class - - - - - X

gously as before we define P̂ = D̂1 × D̂2 × ... × D̂n.
Consequently, for each vector p∗ ∈ P ∗ we can de-
fine its interval equivalent p̂ ∈ P̂ that has a form
p̂ =

(
[p1, p1], ..., [p

n
, pn]

)
, where

p
i

=

{
pi if pi 6= ∅
min
d∈Di
d if pi = ∅ , pi =

{
pi if pi 6= ∅
max
d∈Di
d if pi = ∅ . (1)

2.2 INTERVAL-VALUED DIAGNOSTIC
SCALES

Diagnostic scale can be formalised as a function
m : P → [0, 1]. Values returned by a function indi-
cate malignancy of a tumor and are interpreted in the
following way:

• m(p) > 0.5 – diagnosis towards malignant;

• m(p) < 0.5 – diagnosis towards benign;

• m(p) = 0.5 – indicates the impossibility of deter-
mining the nature of malignancy.

We construct an extended diagnostic scale m̂ : P̂ →
I[0,1] defined as:

m̂(p̂) =
{
m(p) : ∀1≤i≤n p

i
≤ pi ≤ pi

}
=

[
min
p∈p̂

m(p),max
p∈p̂

m(p)
]

(2)

where by p ∈ p̂ we denote that p is an embedded
vector of p̂.

Such extended diagnostic scale is able to operate on
interval-valued representation of a patient. The resul-
tant interval represents all the possible diagnoses that
can be made basing on a patient description, in which
every missing value was substituted with all possible
values for that attribute. The more incomplete de-
scription, the more uncertain the diagnosis. However,
worth noticing is that in many cases it is still possi-
ble to make a proper diagnosis, since some amount of
missing values is acceptable and would not affect the
final result significantly.

2.3 INTERVAL-VALUED AGGREGATION

A diagnosis in a form of an interval (2) has its advan-
tages and drawbacks. An advantage is that such model
gives a diagnosis even in the presence of missing data.
A drawback is that the diagnosis is often uncertain and
not so easy to apply by a physician. A main problem is
thus how to efficiently support a physician in making
a final diagnosis under incomplete information.

In order to solve this problem we make a following
observation. As presented in Table 1 different scales
denoted by m1, . . .mn use different attributes describ-
ing the patient, and therefore are subjected to different
levels of uncertainty. The main idea is thus to improve
the final diagnosis by taking advantage of the diver-
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sity of diagnostic scales. Given n scales m̂1, . . . m̂n we
construct a function Agg : I[0,1]

n → I[0,1]. Its re-
sult Agg(m̂1, . . . m̂n) is an interval that gathers and
integrates information from the input sets. Thanks to
this interpretation we immediately see the relationship
with the issue of group decision making and informa-
tion aggregation [3].

An n-argument interval–valued aggregation operator
is a mapping Agg : I[0,1]

n → I[0,1] with the following
properties [6]:

1. if x̂i � ŷi for all i ∈ 1, ..., n, then Agg(x̂1, ..., x̂n) �
Agg(ŷ1, ..., ŷn),

2. Agg([1, 1], ..., [1, 1]) = [1, 1] ,

3. Agg([0, 0], ..., [0, 0]) = [0, 0] ,

where relation � is defined as follows:

[x1, x2] � [y1, y2] ⇐⇒ x1 ≤ y1 and x2 ≥ y2 .

Recent research has led to the construction of many
interval–valued aggregation methods [16, 5, 6, 2]. The
most commonly used aggregation methods in group
decision making are based on the weighted arithmetic
average [3]. We propose to use various aggregation
methods to improve the quality of diagnosis as well
as minimise the impact of the lack of data and uncer-
tainty in decision making.

In medical decision making problem, final diagnosis
obtained from aggregation must indicate whether tu-
mor is malignant or not. However, supporting decision
in the case when there is not enough information may
led to wrong diagnosis. Thus we accept situation when
no diagnosis recommendation is made. The conversion
of interval diagnosis into final diagnosis (binarization)
is very important and may influence overall efficacy.

3 AGGREGATION PROCESS

3.1 METHODOLOGY DESCRIPTION

The proposed methodology is aimed at evaluating ag-
gregation operators for coping with the lack of data.
For this purpose, an essential element of the method-
ology is to simulate different levels of missing data. In
order to better reflect the reality we have divided the
attributes that describe the patient into two separate
groups: those that were subjected to obscuration and
those that were not. This separation naturally exists
in many problems, including the problem of medical
diagnosis because some data about the patient, such as
age and other objective data from the medical history,
are always available to the physician.

The results of all diagnostic scales are represented as
intervals. The list of those intervals forms an input
to the aggregation operators. Each operator synthe-
sise input diagnoses in accordance with its principle
of operation. The result of the aggregation is an in-
terval representing the synthesised diagnosis. In order
to make the final diagnosis it is required to perform
the binarization process. Resulting diagnoses are com-
pared to reference values in order to calculate the nec-
essary statistics. The final statistics for a given level
of missing data are calculated by averaging the results
of all iterations.

Our study group was 268 women diagnosed and
treated due to ovarian tumor in the Division of Gynae-
cological Surgery, Poznań University of Medical Sci-
ences between 2005 and 2012. Among them, 62% was
diagnosed with a benign tumor and 38% with a ma-
lignant one. In each iteration we chose 50 patients for
positive and negative groups. All patients had no miss-
ing values in attributes required by diagnostic scales.
Whole dataset is described in details in [8].

In evaluation we used six different diagnostic scales
m̂1, ..., m̂6 obtained from basic scales listed in Table 1.

3.2 AGGREGATION STRATEGY

For the experiment we chose the simplest methods of
aggregation, which base on weighted average, sum and
intersection of sets, and majority vote. Such methods
are most often used in the problem of group decision
making [3]. However, the authors are aware that these
methods do not cover recent research in that field (e.g.
[4]).

A construction of a certain method of aggregation
consists in choices of aggregation strategy and bina-
rization strategy. Moreover, methods which base on
weighted average require definition of weight of inter-
vals. We chose 10 methods of aggregation presented
in Table 2.

First group of aggregation operators (A–C ) is based
on arithmetic mean with use of interval arithmetic:

Agg(x̂1, x̂2, ..., x̂n) =
∑n
i=1 ω(x̂i)× x̂i∑n

i=1 ω(x̂i)
.

Second group of the operators (D–G) is based on
weighted mean which is calculated with reference to
a representative (rep) of the interval. Selected strate-
gies in choosing representatives are minimum, maxi-
mum and centre of a interval:

Agg(x̂1, x̂2, ..., x̂n) =
∑n
i=1 ω(x̂i) · rep(x̂i)∑n

i=1 ω(x̂i)
.

Next two operators (H–I ) are based on sum and in-
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Table 2: Selected aggregation methods.

ID strategy of
aggregation weight calc. binarization

A Interval avg. width margin
B Interval avg. entropy no margin
C Interval avg. constant no margin

D Lower bound avg. width margin
E Upper bound avg. width margin
F Center avg. width margin
G Center avg. entropy margin

H Intersection - no margin
I Sum - no margin

J Majority vote - margin

tersection from the set theory:

Agg(x̂1, x̂2, ..., x̂n) =
n⋃

i=1
x̂i

and
Agg(x̂1, x̂2, ..., x̂n) =

n⋂

i=1
x̂i .

Last method (J ) differs from former in a way that
it firstly binarizes input intervals, and after that it
chooses a diagnose which appeared more frequently.
In case of draw, the diagnosis is not taken.

3.3 WEIGHT CALCULATION STRATEGY

In our evaluation we selected three strategies for choos-
ing weights:

• constant value: ω([a, b]) = 1 ,

• interval length: ω([a, b]) = b− a ,

• normalised interval distance from 0.5 (entropy):

ω([a, b]) =





0 if a ≤ 0.5 ≤ b
2(a− 0.5) if a ≥ 0.5
2(0.5− b) otherwise .

3.4 BINARIZATION STRATEGY

In our research we chose the simplest variant of interval
binarization:

τε([a, b]) =





0 if b < 0.5 + ε

1 if a ≥ 0.5− ε
NA otherwise .

(3)

In this approach, an instance is classified as a positive
when whole interval is greater than 0.5 with respect

to ε margin. The negative case is defined similarly.
In case when first or second conditions are not met,
it is not possible to make a decision. For example,
diagnosis [0.1, 0.3] will be classified as benign, but for
interval [0.1, 0.6] it is not possible to make a decision,
when margin is set to ε = 0.025.

In our evaluation we arbitrarily chose two values for ε:
0 (no margin) and 0.025.

3.5 EVALUATION

Statistical evaluation as well as implementation of pro-
posed methodology were performed using R software,
version 3.1.1 [9]. We set levels of missing data to vary
from 0% to 50% with 5% step. For each level we made
1000 repeats of random data obscuration with other
calculations. With such number of repeats, the aver-
aged results are stable, so that it is possible to reliably
analyse them. We set a baseline to 69% accuracy that
is achieved by a classifier based only on menopausal
status – all methods of aggregation should be better
than a baseline classifier and single diagnostic scales.

The most significant results are presented on Fig. 1.
The figure presents how the aggregators and single di-
agnostic scales perform with increasing level of miss-
ing data. Sub-figure (a) presents diagnostic accuracy
(ACC) and sub-figure (b) presents percentage of pa-
tients for whom the decision could be made. Upper
and lower bounds of the shaded regions correspond to
the biggest and the smallest values achieved among
diagnostic scales.

The diagrams show that preserving high diagnosabil-
ity frequently prevent models from achieving high ac-
curacy – and vice versa.

4 RESULTS AND CONCLUSIONS

The developed methodology led us to conclusion that
in the case of our medical diagnosis problem, aggrega-
tion is useful as a tool to solve the problem of missing
data. Even the simplest methods presented in this pa-
per received efficacy which exceed individual diagnos-
tic scales, both in terms of accuracy and the number
of diagnosed patients, despite missing data. There are
three interesting cases:

1. result of an aggregation is an achievement of very
high and stable accuracy (over 95%, regardless to
level of missing data) at the expense of small num-
ber of patients, in which it was possible to make
a diagnose (below 50%, less than individual diag-
nostic scales) – see e.g. I aggregation operator,

2. result of an aggregation is an achievement of very
high diagnosability (over 90%) regardless of the
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Figure 1: Results of evaluation of selected aggregation methods. Shaded region indicates bounds of single
diagnostic methods. A dashed horizontal line in sub-figure (a) indicates accuracy of the baseline classifier.

level of missing data, at the expense of decreasing
accuracy with respect to increasing level of miss-
ing data (accuracy might be even lower than these
achieved by individual diagnostic scales) – see e.g.
E and F aggregation operators,

3. result of an aggregation is an achievement of per-
sistent high accuracy which is comparable to those
achieved by individual diagnostic scales, with si-
multaneous high level of diagnosability (signifi-
cantly higher than those achieved by individual
diagnostic scales) – see e.g. F i G.

In the problem of ovarian tumor diagnosis, it seems
that the most promising results were obtained by ag-
gregation operator F. It is capable of maintaining high
accuracy and diagnosability. Its little sensitivity to
the lack of data makes it a promising candidate in the
search for robust aggregation operators.

An interesting result is obtained in the case of the
aggregation operator H, which is based on a set in-
tersection. In the case of complete data it is not able
to make any decision. This is due to the fact that in
such situation the intervals are degenerated to a single
points, and the intersection of such intervals is mostly
an empty set.

The authors are aware that since the evaluation was
performed on the whole dataset with arbitrarily cho-
sen binarization margins, general conclusions on the
performance of the presented aggregation operators
should not be drawn. To make the results more re-
liable, the performance should be validated on a sep-
arate dataset with optimised aggregation parameters.

In the future work, we are going to study broader range
of aggregation methods and determine guidelines on
their applicability to various problems.

The presented results are promising and show that the
competent selection and use of aggregation methods
can significantly improve the quality of decisions taken
by a diagnostic system. The problem is particularly
significant when the knowledge is based on incomplete
information. Proper selection of the method of aggre-
gation is essential for weakening the negative impact
of the incomplete data on the quality of decisions. Be-
cause the design of aggregation method depends on the
particular problem, each time its extensive evaluation
is needed. It can be done using our proposed method.
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