
Using An Instrumentation based Approach to
Detect Inter-Component Leaks in Android Apps

Li Li, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon
SnT, University of Luxembourg, Luxembourg

{li.li, tegawende.bissyande, jacques.klein, yves.letraon}@uni.lu

I. INTRODUCTION

The success of the Android OS in its user base as well as in
its developer base can partly be attributed to its communication
model, named Inter-Component Communication (ICC), which
promotes the development of loosely-coupled applications. By
dividing applications into components that can exchange data
within a single application and across several applications, An-
droid encourages software reuse, and thus reduces developer
burden.

Unfortunately, the ICC model, which provides a message
passing mechanism for data exchange among components,
can be misused by malicious apps to threaten user privacy.
Indeed, researchers have shown that Android apps frequently
send users private data outside the device without their prior
consent. Those applications are said to leak private data [2].
However, there is still a lack of a comprehensive study on
the characteristics of the usage of ICCs by Android malware.
Typically, what is the extent of the presence of privacy leaks
in Android malware?

To answer such a question, an Android analysis tool has to
be developed for tracking privacy leaks. Although, most of the
privacy leaks are simple, i.e., easily identifiable as they oper-
ate within a single component. Thus, analyzing components
separately is not enough to detect leaks: it is necessary to
perform an inter-component analysis of applications. Android
app analysts could leverage such a tool to identify malicious
apps that leak private data. For the tool to be useful, it has to
be highly precise and minimize the false positive rate when
reporting applications leaking private data.

Thus, we propose IccTA1 , an Inter-component communica-
tion Taint Analysis tool, for a sound and precise detection of
ICC links and leaks. Although our approach is generic and can
be used for any data-flow analysis, we focus in this paper on
using IccTA to detect ICC-based privacy leaks. we test IccTA
on 15,000 real-world apps randomly selected from Google
Play market in which we detect 337 apps with 2,395 ICC leaks.
We also launch IccTA on the MalGenome [5] set containing
1260 malware, where IccTA reports 108 apps with 534 ICC
leaks. By comparing the detecting rate r = # of detected apps

of tested apps

of the two data sets, we found that rMalGenome = 8.6% is
much higher than rGoogleP lay = 2.2%. Thus, we can conclude
that malware are using ICC to leak private data more than
benign apps, making ICC a potential feature for malware

1 https://sites.google.com/site/icctawebpage/

detection. This paper is an extended abstract version of our
research paper [3], where interested readers can find more
details of this work.

II. ICC PROBLEM

We define a privacy leak as a path from sensitive data,
called source, to statements sending this data outside the
application or device, called sink. A path may be within a
single component or across multiple components.

1 //TelephonyManager telMnger; (default)
2 //SmsManager sms; (default)
3 class Activity1 extends Activity {
4 void onCreate(Bundle state) {
5 Button to2 = (Button) findViewById(to2a);
6 to2.setOnClickListener(new OnClickListener(){
7 void onClick(View v) {
8 String id = telMnger.getDeviceId();
9 Intent i = new

Intent(Activity1.this,Activity2.class);
10 i.putExtra("sensitive", id);
11 Activity1.this.startActivity(i);
12 }});}}
13 class Activity2 extends Activity {
14 void onStart() {
15 Intent i = getIntent();
16 String s = i.getStringExtra("sensitive");
17 sms.sendTextMessage(number,null,s,null,null);
18 }}

Listing 1: A Running Example.

Listing 1 illustrates the concept of ICC leak through a
concrete example. The code snippets present two Activi-
ties: Activity1 and Activity2. Activity1 registers an
anonymous button listener for the to2 button (lines 5-11). An
ICC method startActivity is used by this anonymous
listener. When button to2 is clicked, the onClick method is
executed and the user interface will change to Activity2.
An Intent containing the device ID (lines 15), considered as
sensitive data, is then exchanged between the two components
by first attaching the data to the Intent with the putExtra

// modifications of Activity1
- Activity1.this.startActivity(i);
+ IpcSC.redirect0(i);

(A)

// creation of a helper class
+class IpcSC {
+ static void redirect0(Intent i) {
+ Activity2 a2 = new Activity2(i);
+ a2.dummyMain();
+ }
+}

(B)

// modifications in Activity2
+public Activity2(Intent i) {
+ this.intent_for_ipc = i;
+}
public Intent getIntent() {

+ return this.intent_for_ipc;
}

+public void dummyMain() {
+ // lifecycle and callbacks
+ // are called here
+}

(C)

Fig. 1: Handling startActivity ICC method.

https://sites.google.com/site/icctawebpage/

String id = telMnger.getDeviceId();

i.putExtra(”sensitive”, id);

ipcSC.redirect0(i);

return-site;

Activity2 a2 = new Activity2(i);

return-site;

a2.dummyMain();

return-site;

this.intent for ipc = i;

onCreate(null);

return-site;

return this.intent for ipc;

Intent i = getIntent();

return-site;

String s = i.getStringExtra(”sensitive”);

sendTextMessage(s);

normal edge call-to-start edge call-to-return edge exit-to-return edge

(1)

(2)

(6) (11)

(12)

(3)

(4)

(7)

(8)

(9)

(10)(5)

Fig. 2: The control-flow graph of the instrumented running example.

method (lines 10) and then by invoking the ICC method
startActivity (lines 11). Note that the Intent is created
by explicitly specifying the target class (Activity2).

In this example, sendTextMessage is systematically
executed when Activity2 is loaded since onStart is in
the execution lifecycle of an Activity. The data retrieved
from the Intent is thus sent as a SMS message to the spec-
ified phone number: there is an ICC leak triggered by button
to2. When to2 is clicked, the device ID is transferred from
Activity1 to Activity2 and then outside the application.

III. INSTRUMENTATION BASED APPROACH

In this section we briefly introduce our instrumentation
based approach, IccTA, which first modifies an Android app’s
code representation to directly connect components (through
ICC links [4]) and then uses a modified version of Flow-
Droid [1] to build a complete control-flow graph (CFG) of
the whole application. This allows propagating the context
(e.g., the value of Intents) between Android components and
yielding a highly precise data-flow analysis.

Fig. 1 shows the code transformation done by
IccTA for the ICC link between Activity1

and Activity2 of our running example.
IccTA first creates a helper class named IpcSC (B in
Fig. 1) which acts as a bridge connecting the source and
destination components. Then, the startActivity ICC
method is removed and replaced by a statement calling the
generated helper method (redirect0) (A).

In (C), IccTA generates a constructor method taking an
Intent as parameter, a dummyMain method to call all
related methods of the component (i.e., lifecycle and callback
methods) and overrides the getIntent method. An Intent is
transferred by the Android system from the caller component
to the callee component. We model the behavior of the
Android system by explicitly transferring the Intent to the
destination component using a customized constructor method,
Activity2(Intent i), which takes an Intent as its
parameter and stores the Intent to a newly generated field
intent_for_ipc. The original getIntent method asks
the Android system for the incoming Intent object. The new
getIntent method models the Android system behavior
by returning the Intent object given as parameter to the new

constructor method.
The helper method redirect0 constructs an object of

type Activity2 (the target component) and initializes the
new object with the Intent given as parameter to the
helper method. Then, it calls the dummyMain method of
Activity2.

To resolve the target component, i.e., to automatically infer
what is the type that has to be used in the method redirect0
(in our example, to infer Activity2), IccTA uses the ICC
links extracted by our extended Epicc [4] in which not only
the explicit Intents but also the implicit Intents are resolved.
Therefore, there is no difference for IccTA to handle explicit
or implicit Intents based ICCs.

Fig. 2 represents the CFG of the instrumented running ex-
ample presented in Listing 1. In the CFG, getDeviceId is a
source method in the anonymous OnClickListener class
(line 6) called by Activity1. Method sendTextMessage
is a sink in Activity2. There is an intra-component tainted
statement path from the source method to sink method (repre-
sented by edges 1 to 12). Fig. 2 also shows that IccTA builds
a precise cross-component control-flow graph. Since we use
an technique instrumenting the code to build the CFG, the
context of a static analysis is kept between components. This
enables IccTA to analyze data-flows between components and
thereby enables IccTA to have a better precision than existing
approaches.

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. “FlowDroid: Precise Context, Flow, Field, Object-sensitive
and Lifecycle-aware Taint Analysis for Android Apps”. In: PLDI. 2014.

[2] Li Li, Alexandre Bartel, Jacques Klein, and Yves Le Traon. “Automati-
cally Exploiting Potential Component Leaks in Android Applications”.
In: IEEE TrustCom. 2014.

[3] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves
Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien
Octeau, and Patrick Mcdaniel. “IccTA: Detecting Inter-Component Pri-
vacy Leaks in Android Apps”. In: Proceedings of the 37th International
Conference on Software Engineering (ICSE 2015). 2015.

[4] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel,
Eric Bodden, Jacques Klein, and Yves Le Traon. “Effective inter-
component communication mapping in android with epicc: An essential
step towards holistic security analysis”. In: USENIX Security. 2013.

[5] Yajin Zhou and Xuxian Jiang. “Dissecting android malware: Charac-
terization and evolution”. In: IEEE Security and Privacy. 2012.

	Introduction
	ICC Problem
	Instrumentation based Approach

