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The Faculties
The University of Luxembourg (UL)     

• focuses on informatics, engineering, mathematics, life 
sciences, physics and material science 

• Exceptional academic programs in Law, Economics and 
Finance  

• Established as cooperation of CRP-Gabriel Lippmann and 
Luxembourg School of Finance

• Mission to study and accompany the development of the 
society in its social, economic, cultural, political and 
educational aspects 



APPLICATIONS

PERSONALISED	
  MEDICINE ENGINEERING

Computer-­‐aided	
  
surgery

Durability	
  &	
  
Sustainability Energy AerospaceComputer-­‐aided	
  

diagnos:cs	
  

Computational mechanics & computational 
materials sciences Multiscale/field interface problems

COMPETENCES

MULTI-­‐SCALE	
  FRACTURE	
  
aerospace	
  composites,	
  
polycrystalline	
  materials 

COUPLED	
  PROBLEMS	
  
biofilms,	
  liquid	
  crystals,	
  
fluid-­‐structure,	
  ba7eries 

QUALITY	
  &	
  ERROR	
  
CONTROL	
  
op8mise	
  

computa8onal	
  8me	
  
given	
  an	
  accuracy	
  level

INTERACTIVITY	
  
Reduce	
  

computa8onal	
  costs	
  
by	
  several	
  orders	
  of	
  

magnitude

DISCRETISATION	
  
discrete	
  and	
  con8nuum	
  

approaches
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Real-time simulation of cutting during brain surgery

http://legato-team.eu  —  stephane.bordas@uni.lu S. Bordas, B. Peters, A. Zilian and S. Belouettar (LIST)

http://legato-team.eu
mailto:stephane.bordas@uni.lu


APPLICATIONS

Personalised	
  Medicine Engineering

Fracture	
  over	
  mulBple	
  scales	
   Coupled	
  
problems

Quality	
  and	
  error	
  control InteracBvity	
  and	
  model	
  order	
  reducBon

Computer-­‐aided	
  
surgery

Durability	
  &	
  
Sustainability Energy AerospaceComputer-­‐aided	
  

diagnos:cs	
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Durability of Pb-free solders

Mesh-free and discrete approaches 
to fracture 

DiscreBsaBon

Biofilm growthAdaptive multi-scale methods

Error estimates for fracture



Research	
  Strategy	
  of	
  the	
  Legato	
  ComputaBonal	
  
Mechanics	
  Group	
  

 
DATA-­‐DRIVEN	
  SoluBon	
  of	
  PDEs

APPLICATIONS

TOOLS	
  

Leverage	
  the	
  commonality	
  of	
  mathemaBcal	
  formulaBons	
  across	
  various	
  problem	
  domains	
  

BAYESIAN	
  INFERENCE STATISTICAL	
  INVERSE	
  PROBLEMS

Personalised	
  Medicine Engineering

Computer-­‐aided	
  
surgery

Computer-­‐aided	
  
diagnos:cs	
  

MODEL	
  LEARNING

Structural	
  health	
  
monitoring

Adap:ve	
  	
  “smart”	
  
structures
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Patient-specific simulations Tumour detection - inverse
problem Crack detection and self-healing structures 



FUNDERS	
  8	
  million	
  euros	
  since	
  2006PARTNERS

Academia

Industry

Funding



Some motivation 
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Surgical simulation (real time/interactivity)

SimLearning AssistancePlanning

Precision

Computa8on	
  8me	
  

RealTcut  

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

Motivation (1/2) - 
generate and solve models of patients: FAST!

17

‣ Reduce the problem size while maintaining accuracy in solving very large 
multiscale mechanics problems  

complex 
microstructure

Courtecuisse et al. PBMB 2011

Discretise

mailto:email@cardiff.ac.uk
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…not exactly brain surgery

Deep-­‐brain	
  s8mula8on
Courtesy Alexandre Bilger, PhD thesis, Inria, 2014



19       Karol Miller 

Courtesy  
Prof. Wies Nowinski,  
A-Star, Singapore 

The brain is  
complicated… 
 
But we only  
wish to  
compute  
displacements 
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Motivation (2/2) - similar problems occur in aerospace

20

Advanced early-stage design simulations

[Allix, Kerfriden, Gosselet 2010]

Discretise

0.125 mm
50 mm

100 plies

courtesy: EADS

‣ Large	
  number	
  of	
  parametric	
  studies,	
  e.g.	
  load	
  cases	
  
‣ Account	
  for	
  the	
  variability	
  of	
  the	
  material

‣ Large	
  gradients	
  
‣ Explicit	
  mesostructure	
  descrip8on

➡ Models and discretisations must be reduced

mailto:email@cardiff.ac.uk
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Ways to reduce the models

• Homogenisa8on	
  (FE^2,	
  etc.)	
  -­‐	
  Hierarchical	
  	
  

• Concurrent	
  and	
  hybrid	
  (bridging	
  domain,	
  ARLEQUIN,	
  etc.)	
  

• Enrichment	
  (PUFEM,	
  XFEM,	
  GFEM)	
  

• Model	
  reduc8on	
  (algebraic)

21
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Reduction methods based on homogenisation

22
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Coupling of macroscopic and microscopic levels 
The volume averaging theorem is postulated for: 
  1) Strain tensor: 
  
  2) Virtual work  (Hill-Mandel condition): 
 
  3) Stress tensor: 

Definition of  an RVE 

mailto:email@cardiff.ac.uk
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Hierarchical multi-scale approaches (FE^2)

24

In softening regime: 
•  Lack of scale separation 
•  Macroscale mesh dependence 

The macroscopic constitutive law is not 
required 
Non-linear material behaviour can be simulated 
Microscale behaviour of material is monitored 
at each load step 
 
 

Advantages and abilities: Drawbacks: 

mailto:email@cardiff.ac.uk
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Reduction methods based on algebraic reduction
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Illustration of the method of separated representation
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Illustration of the method of separated representation

30

C

1 = sin(0.01x)

C

2 = (x� 500)3

↵1 = e�0.02 t

↵2
= cos(

p
t)
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Illustration of the method of separated representation
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+

=

C

1 = sin(0.01x)

C

2 = (x� 500)3

↵1 = e�0.02 t

↵2
= cos(

p
t)

C1↵1 + C2↵2

Very rich approximations!

mailto:email@cardiff.ac.uk
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Data compression: get the nose with the POD!
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)� ū(x
i

, y

j

))2

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

Data compression: get the nose with the POD!
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of order 2 is 
enough)
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Data compression: get the nose with the POD!
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Method of separated representation

• Search	
  for	
  the	
  solu8on	
  in	
  space	
  /	
  8me	
  /	
  parameter	
  in	
  a	
  product	
  space:	
  

• Op8mality	
  of	
  an	
  expansion	
  of	
  order	
  nc	
  with	
  respect	
  to	
  a	
  par8cular	
  metric	
  defined	
  
on	
  	
  

➡ different	
  metrics	
  lead	
  to	
  different	
  methods,	
  which	
  have	
  their	
  pro/cons	
  

➡ Choice	
  strongly	
  dependent	
  on	
  the	
  context	
  

‣ Data	
  compression:	
  POD	
  (Proper	
  Orthogonal	
  Decomposi8on)	
  is	
  a	
  classical	
  
choice	
  in	
  dimension	
  2	
  

‣ Data	
  compression	
  in	
  many	
  dimensions:	
  mulBlinear	
  POD	
  
‣ Solver	
  in	
  many	
  dimensions	
  without	
  a	
  priori	
  knowledge	
  of	
  the	
  solu8on:	
  PGD	
  
‣ Model	
  order	
  reduc8on:	
  Snapshot	
  POD,	
  Snapshot	
  PGD	
  
‣ Ini8aliser,	
  precondi8oners:	
  low-­‐order	
  POD,	
  low-­‐order	
  PGD,	
  Snapshot	
  POD
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Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

Ci 2 Rn

�i : T ! R, 8i 2 J1, nCK ,
�i : P ! R, 8i 2 J1, nCK ,

Usep
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a posteriori model order reduction. Idea: search for the solution as a 
linear combination of a set of pre-calculated representative solutions 

36
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Reduced basis: family of representative 
solutions

C1

C2

C3

C =
�
U1 U2 ... UnC

�

(1)	
  Solve	
  FINE	
  for	
  n_S	
  parameters	
  (EXPENSIVE!)	
  

S =
�
S1 S2 ... SnS

�

(3)	
  Trunca8on	
  

Solution
Coefficients

Family of  
representative solutions

Approximation of the 
solution in a space of 
small dimension (nc)

F
Int

(U) + F
Ext

= 0

Initial set of equations

(4)	
  Galerkin	
  orthogonality	
  

S = U⌃VT =
nSX

k=1

⌃k Uk VkT

(⌃k)k2J1 nSKwhere                           in decreasing order

nS solutions, sorted by relevance

(2)	
  Singular	
  value	
  decomposi8on	
  

mailto:email@cardiff.ac.uk


• P.	
  Kerfriden,	
  P.	
  Gosselet,	
  S.	
  Adhikari,	
  and	
  
S.	
  Bordas.	
  Bridging	
  proper	
  orthogonal	
  
decomposi:on	
  methods	
  and	
  augmented	
  
Newton-­‐Krylov	
  algorithms:	
  an	
  adap:ve	
  
model	
  order	
  reduc:on	
  for	
  highly	
  
nonlinear	
  mechanical	
  problems.	
  
Computer	
  Methods	
  in	
  Applied	
  
Mechanics	
  and	
  Engineering,	
  200(5-­‐8):
850-­‐866,	
  2011.

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

Limitations: case of highly non-linear fracture mechanics 
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This solution is not 
in the snapshot !
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Application to a parametric fracture problem

38
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Application to a parametric fracture problem

39

‣ The	
  POD	
  solu8on	
  is	
  
not	
  able	
  to	
  reproduce	
  
the	
  solu8on	
  in	
  the	
  
cracked	
  area	
  

‣ Due	
  to	
  lack	
  of	
  
correla8on	
  introduced	
  
by	
  crack	
  growth	
  

‣ Leads	
  to	
  a	
  local	
  
projec8on	
  error

mailto:email@cardiff.ac.uk
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Parametric / stochastic multiscale fracture mechanics

40

➡ Reduced order modelling?➡ Direct numerical simulation: efficient preconditioner?

➡ Adaptive coupling?

First realisation Second realisation

Highly correlated solution fields

Localisation of fracture, uncorrelated

mailto:email@cardiff.ac.uk


THE RETURN OF THE MONKEY! 
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What can we do to address this lack of separation 
of scales/reducibility? 
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How we got to this point...

43
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Data compression: fracture

44

POD order 1

POD order 3

“Exact” solution

Snapshot POD (snapshot space is spanned by 
the ensemble of solutions at all time steps)

mailto:email@cardiff.ac.uk
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Partitioned POD/DDM

45
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Reduced DDM-POD

46

‣ Decompose	
  the	
  structure	
  into	
  
subdomains	
  

‣ Perform	
  a	
  reduc8on	
  in	
  the	
  
highly	
  correlated	
  region	
  

‣ Couple	
  the	
  reduced	
  to	
  the	
  non-­‐
reduced	
  region	
  by	
  a	
  primal	
  
Schur	
  complement

mailto:email@cardiff.ac.uk


Order of the POD transforms
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Choice of the reduced subdomains: local error estimation 
by “leave one out cross-validation” (LOOCV)

• Reduced	
  subspaces	
  are	
  independent	
  and	
  we	
  assume	
  a	
  
snapshot	
  is	
  a	
  priori	
  available	
  
‣ (1)	
  Dimension	
  of	
  the	
  local	
  space	
  for	
  each	
  subdomain?	
  
‣ (2)	
  Is	
  a	
  given	
  subdomain	
  is	
  reducible?	
  

• (1)	
  and	
  (2)	
  will	
  be	
  treated	
  by	
  cross-­‐valida8on	
  (e.g.	
  W.	
  J.	
  
Krzanowski.	
  Cross-­‐valida8on	
  in	
  principal	
  component	
  
analysis.	
  Biometrics,	
  43(3):575-­‐584,	
  1987.)	
  
‣ Training	
  set:	
  snapshot	
  
‣ ValidaBon	
  set:	
  set	
  of	
  addi8onal	
  finescale	
  solu8ons	
  
‣ Independent	
  training/valida8on	
  avoids	
  overfipng	
  	
  
‣ Cross	
  valida8on	
  emulates	
  independence.	
  Error	
  

calculated	
  using	
  the	
  local	
  reduced	
  basis	
  obtained	
  by	
  a	
  
snapshot	
  POD	
  transform	
  of	
  all	
  the	
  available	
  snapshot	
  
solu8ons	
  except	
  the	
  one	
  corresponding	
  to	
  the	
  value	
  of	
  
the	
  summa8on	
  variable.	
  

• NOTE:	
  If	
  the	
  snapshot	
  is	
  not	
  assumed	
  a	
  priori	
  then	
  
‣ Assess	
  whether	
  the	
  snapshot	
  contains	
  sufficient	
  informa8on,	
  and	
  

generate	
  addi8onal,	
  suitable,	
  data	
  if	
  required	
  
‣ Most	
  analysis	
  (mostly	
  by	
  sta8s8cians)	
  assume	
  the	
  snapshot	
  is	
  

known	
  a	
  priori.	
  Recent	
  review:	
  Hervé	
  Abdi	
  and	
  Lynne	
  J.	
  Williams.	
  
Principal	
  component	
  analysis.	
  Wiley	
  Interdisciplinary	
  Reviews:	
  
Computa8onal	
  Sta8s8cs,	
  2(4):433{459,	
  2010.

47
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Order of the POD transforms
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Performance: load angle 40 | 27 - 121 nodes

• Rela8ve	
  error

49

40o 27o
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Performance: load angle 40 | 27 - 256 nodes

50

40o 27o

• Rela8ve	
  error
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Performance: load angle 40 | 27 - 441 nodes

• Rela8ve	
  error
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Performance: load angle 40 | 27 - 961 nodes
• Rela8ve	
  error
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• Rela8ve	
  error
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Conclusions and perspectives

• Domain	
  coupling	
  using	
  the	
  primal	
  Schur-­‐complement	
  domain	
  decomposi8on	
  method.	
  	
  

• Local	
  subproblems	
  have	
  been	
  reduced	
  by	
  projec8on	
  in	
  low-­‐dimensional	
  subspaces	
  
obtained	
  by	
  the	
  snapshot	
  POD.	
  	
  

• This	
  approach	
  permits	
  to	
  flexibly	
  reduce	
  the	
  computa8onal	
  cost	
  associated	
  with	
  highly	
  
nonlinear	
  problems.	
  In	
  par8cular:	
  
‣ the	
  local	
  reduced	
  spaces	
  are	
  generated	
  independently,	
  and	
  have	
  independent	
  

dimensions,	
  which	
  allows	
  us	
  to	
  focus	
  the	
  numerical	
  effort	
  where	
  it	
  is	
  most	
  needed.	
  	
  
‣ subdomains	
  that	
  are	
  close	
  to	
  highly	
  damaged	
  zones	
  need	
  a	
  richer	
  model	
  to	
  account	
  

for	
  the	
  effect	
  of	
  topological	
  changes.	
  The	
  local	
  POD	
  transforms	
  automaBcally	
  
generate	
  local	
  reduced	
  spaces	
  of	
  larger	
  dimension	
  in	
  these	
  zones.	
  

‣ the	
  domain	
  decomposi8on	
  framework	
  enables	
  us	
  to	
  switch	
  from	
  reduced	
  local	
  
solvers	
  to	
  full	
  local	
  solvers	
  in	
  a	
  transparent	
  manner.	
  This	
  is	
  par8cularly	
  useful	
  for	
  the	
  
subdomains	
  that	
  contain	
  process	
  zones,	
  as	
  a	
  solu8on	
  obtained	
  by	
  projec8on	
  would	
  
be	
  more	
  expensive	
  than	
  a	
  direct	
  solu8on	
  for	
  a	
  desirable	
  accuracy.	
  

‣ the	
  transi8on	
  between	
  ``offline''	
  and	
  ``online''	
  computa8ons	
  becomes	
  flexible.	
  The	
  
reduced	
  models	
  can	
  be	
  used	
  in	
  the	
  zones	
  where	
  the	
  local	
  reduced	
  spaces	
  converge	
  
quickly	
  when	
  enriching	
  the	
  snapshot	
  space,	
  while	
  s8ll	
  compu8ng	
  snapshots	
  and	
  
refining	
  the	
  reduced	
  models	
  via	
  a	
  direct	
  local	
  solver	
  in	
  the	
  remaining	
  subdomains.
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Perspectives 

• Further	
  work	
  related	
  to	
  domain	
  decomposi8on	
  
‣ load	
  balancing	
  mismatch	
  would	
  occur	
  when	
  using	
  such	
  a	
  strategy	
  in	
  parallel.	
  CPUs	
  which	
  

support	
  domains	
  that	
  are	
  not	
  reduced,	
  or	
  domains	
  for	
  which	
  the	
  corresponding	
  
subproblems	
  need	
  to	
  be	
  projected	
  in	
  a	
  space	
  of	
  rela8vely	
  high	
  dimension,	
  would	
  require	
  
to	
  perform	
  more	
  opera8ons.	
  The	
  domain	
  par88oning	
  itself	
  should	
  be	
  performed	
  jointly	
  
with	
  the	
  model	
  reduc8on	
  in	
  order	
  to	
  distribute	
  the	
  load	
  evenly.	
  

‣ the	
  interface	
  problem	
  itself	
  was	
  not	
  reduced	
  here,	
  to	
  guarantee	
  the	
  interface	
  kinema8c	
  
compa8bility.	
  

➡ Subop8mal	
  reduced	
  order	
  model.	
  Would	
  generate	
  expensive	
  communica8ons	
  
in	
  parallel	
  

➡ A	
  reduc8on	
  of	
  the	
  interface	
  problem	
  using	
  the	
  POD	
  can	
  be	
  done	
  but	
  is	
  neither	
  
elegant	
  nor	
  easy	
  

➡ Dual	
  Schur-­‐complement	
  domain	
  decomposi8on	
  method	
  would	
  allow	
  the	
  
kinema8c	
  approxima8on	
  of	
  the	
  subproblems	
  to	
  include	
  the	
  interface.	
  However,	
  
this	
  would	
  only	
  deflect	
  the	
  difficulty	
  to	
  the	
  necessary	
  reduc8on	
  of	
  the	
  interface	
  
Lagrange	
  mul8plier	
  space.	
  This	
  issue	
  is	
  our	
  current	
  direc8on	
  of	
  research.
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Cutting in real time on GPU

• Dr	
  Hadrien	
  Courtecuisse
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Isogeometric	
  boundary	
  element	
  analysis	
  
• complete	
  suppression	
  of	
  mesh	
  genera8on	
  
• exact	
  treatment	
  of	
  the	
  geometry	
  
• facilitates	
  shape	
  op8miza8on

Advanced	
  
discreBzaBon

Theme:	
  simplify	
  the	
  CAD-­‐>analysis	
  transi8on	
  (1/2)

MA	
  Sco7,	
  RN	
  Simpson,	
  JA	
  Evans,	
  S.	
  Lipton,	
  S.P.A.	
  Bordas,	
  TJR	
  Hughes,	
  and	
  TW	
  
Sederberg.	
  Isogeometric	
  boundary	
  element	
  analysis	
  using	
  unstructured	
  T-­‐splines.	
  
Computer	
  Methods	
  in	
  Applied	
  Mechanics	
  and	
  Engineering,	
  254:197–221,	
  2013.	
  

direct	
  calculaBon	
  

meshing	
  

calculaBon

CAO

stress analysis
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Simplify	
  the	
  CAD-­‐>analysis	
  transi8on	
  (2/2)

Implicit	
  surface	
  representaBon	
  
•from	
  CAD	
  parameteriza8on	
  	
  
•including	
  ver8ces	
  and	
  sharp	
  edges	
  
•with	
  error	
  control

5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

Figure 5.28 – Champs de contraintes (a) et de déplacements (b).

Figure 5.29 – Approximation géométrique d’une microstructure contenant des inclusions
en forme de tore indépendamment de la taille du maillage ÉF.
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5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

(c)

Figure 5.27 – Approximation géométrique d’une microstructure contenant des inclusions
lenticulaires. (a) maillage grossier de l’approximation ÉF. (b) raffinement par un sous-
maillage gradué (SMG) de niveau (n = 7) à l’intérieur de chaque élément de frontière EB.
(c) approximation de la géométrie indépendamment de la taille h du maillage.
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theses	
  Moumnassi	
  (w/	
  CRP)	
  
et	
  Nadal	
  (w/	
  UPV)
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In	
  other	
  words,	
  use	
  the	
  CAD	
  as	
  a	
  model…
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5.2. Analyse de convergence en maillage non-conforme aux frontières courbes

(a) (b)

Figure 5.28 – Champs de contraintes (a) et de déplacements (b).
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60       Karol Miller 

Our main motivation - image-guided 
neurosurgery   Image of brain tumour (green) 

    is superimposed on patient as 
    an aid to surgical planning and 
       navigation 

Courtesy of SPL, Harvard 
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c)                                       

d)                                       e)                                       

Patient-Specific Finite  
Element Meshes 
Joldes et al. (2009), MICCAI 2009,  
Part II, LNCS 5762, pp. 300-307 
 

Karol Miller
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Neuroimage as a computational model?

2D MRI slice   “Hard” segmentation   Assignment of  
       mechanical  
       properties based 
       on statistical  
       tissue classification 

!
 !

0!

3000!

 [Pa] 
6000 
!

Tumour 
Brain 

Ventricle 
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3D patient-specific meshless computational  
grid of the brain 

Miller et al. (2012), J. Biomech. 45(15), pp. 2698-2701 

Green – parenchyma 
 
Red – ventricles 
 
Blue - tumour 



64       Karol Miller 

Evaluation of accuracy for 
three cases 

Left column: Finite Element 
Models, with parenchyma, tumour 
(red) and ventricle (blue) modelled 
separately. 

Middle column: Fuzzy Mesh-free 
Model without explicitly separating 
the tumour and ventricles, fuzzy 
tissue classifications of tumour 
(red), and ventricle (blue) are shown 
as cloud superimposed on the 
image; Nodes are shown as
green dots. 

Right column: Difference of the 
simulation results (computed 
deformation field) from the two 
models over the whole problem 
domain [mm].



In	
  other	
  words,	
  use	
  the	
  image	
  as	
  a	
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• Research Area 
Computational Mechanics & Computational Materials Science 

Professor of Computational Mechanics  
University of Luxembourg & Cardiff University  
stephane.bordas@uni.lu, bordasS@cardiff.ac.uk  
http://legato-team.eu 

Principal	
  Interests	
  &	
  ExperBse	
  	
  
• Free	
  and	
  moving	
  interfaces	
  
• Mul8-­‐scale	
  methods	
  for	
  fracture	
  
• Mul8-­‐field	
  coupled	
  problems	
  
• Inverse	
  problems	
  (Bayesian)	
  
• Real-­‐8me	
  methods,	
  model	
  order	
  reduc8on	
  
• Error	
  es8ma8on	
  and	
  simula8on	
  quality	
  
• Meshless	
  methods	
  
• Extended	
  Finite	
  Element	
  Methods	
  

RepresentaBve	
  Papers	
  	
  

• A	
  par88oned	
  model	
  order	
  reduc8on	
  approach	
  to	
  raBonalise	
  computaBonal	
  expenses	
  in	
  nonlinear	
  fracture	
  mechanics,	
  
Computer	
  Methods	
  in	
  Applied	
  Mechanics	
  and	
  Engineering,	
  (2013)	
  

• Isogeometric	
  boundary	
  element	
  analysis	
  using	
  unstructured	
  T-­‐splines,	
  Computer	
  Methods	
  in	
  Applied	
  Mechanics	
  &	
  
Engineering	
  (2013)	
  	
  

• Effects	
  of	
  elas8c	
  strain	
  energy	
  and	
  interfacial	
  stress	
  on	
  the	
  equilibrium	
  morphology	
  of	
  misfit	
  parBcles	
  in	
  heterogeneous	
  
solids,	
  J.	
  Journal	
  of	
  the	
  Mechanics	
  &	
  Physics	
  of	
  Solids	
  (2013)	
  

• Real-­‐8me	
  simula8on	
  of	
  contact	
  and	
  cu^ng	
  of	
  heterogeneous	
  so_-­‐Bssues,	
  Medical	
  Image	
  Analysis	
  (2014)	
  
• A	
  combined	
  extended	
  finite	
  element	
  and	
  level	
  set	
  method	
  for	
  biofilm	
  growth,	
  Int.	
  J.	
  Num.	
  Meth.	
  Engng.	
  (2008)	
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Thank you very much for your kind attention. 

CISM school on Theoretical 

Computational and Experimental Fracture 
Mechanics 

in Udine, Italy, September 2015 
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Contact

stephane.bordas@uni.lu / gmail.com / 
alum.northwestern.edu  

http://www.legato-team.eu 
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Model

• Lapce	
  model	
  
‣ Euler-­‐Bernoulli	
  beams	
  

‣ Elas8c	
  damageable	
  cons8tu8ve	
  law	
  
-­‐ Helmholtz	
  free	
  energy:	
  

-­‐ Generalised	
  stress	
  and	
  Driving	
  forces	
  

-­‐ Evolu8on	
  law	
  (non-­‐associated	
  model)	
  

• Random	
  packing	
  following	
  Fuller	
  distribu8on	
  curve	
  
‣ Par8cles	
  10	
  8mes	
  s8ffer	
  than	
  interface	
  and	
  matrix,	
  no	
  damage	
  
‣ fracture	
  toughness	
  of	
  interface	
  4	
  8mes	
  lower	
  than	
  matrix
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Nonlinear solver

• Discre8sa8on	
  
‣ space:	
  third	
  order	
  polynomial	
  for	
  deflec8on,	
  first	
  order	
  for	
   

normal	
  displacement 

‣ 8me:	
  

➡ 	
  	
  

• Newton	
  /	
  arc-­‐length	
  /	
  Line	
  Search	
   
[Lorentz	
  and	
  Badel	
  ’04,	
    
Alfano	
  and	
  Crisfield	
  ’03]
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1. Multiscale fracture model  |  2. POD | 3. Local/global MOR

find (u|tn)n2J0,ntK
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F
Ext

+ F
Int

(U|tn +C↵) = R|tn
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Projection-based Model Order Reduction

• Non-­‐linear,	
  8me	
  dependant	
  (rate-­‐independent),	
  parameter	
  dependent	
  	
  set	
  of	
  balance	
  equa8ons	
  

• Approxima8on	
  of	
  the	
  solu8on	
  in	
  a	
  reduced	
  space:	
  

• Approxima8on	
  of	
  the	
  balance	
  equa8ons	
  (Galerkin	
  for	
  instance)

73

�U|tn+1
=

nsX

i=1

Ci↵i = C↵

C =
�
C1 C2 ... Cnc

�

Approximation of the 
solution increment in a space 
of small dimension (nc).

Galerkin

nc balance equations

�U|tn+1 = U|tn+1
�U|tnwhere

CT
⇣
F

Ext

+ F
Int

(U|tn +C↵)
⌘
= 0

Global vectors of nodal values corresponding 
to piecewise polynomial global basis 
functions, as opposed to locally supported in 
finite element).

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR
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Model Order Reduction using Snapshot POD

74

Ki
T,R

= CT
@FInt(U|tn +C↵)

@↵

����
↵=↵i

Ki
T,R

�↵i+1 = �Ri
R

➡ 	
  	
  

• Solver	
  at	
  each	
  Bme	
  increment:	
  Newton	
  /	
  arc-­‐length	
  /	
  Line	
  Search	
  (idem	
  ini8al	
  problem) 
 

‣ tangent	
  of	
  the	
  reduced	
  balance	
  equa8ons: 

‣ residual	
  of	
  the	
  reduced	
  balance	
  equa8ons:

CT
⇣
F

Ext

+ F
Int

(U|tn +C↵)
⌘
= 0

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR
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Projection-based Model Order Reduction

75

=

C2

Solution at arbitrary 
angle using the 
reduced model

approximated by

α1·

+

+

α2·

α3·

✓ = 30o

✓ 2 [15o 45o]

initial crack

Construction of reduced order model

Reduced basis

≈

Parametrised fracture model

large number of 
unknowns

Reduced system

CT
⇣
F

Ext

+ F
Int

(U|tn +C↵)
⌘
= 0

very few 
unknowns (αi)

very few equations, 
possibly cheap solution

C1

C3
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Questions

• Choice	
  of	
  reduced	
  space	
  
‣ basis	
  vectors?	
  
‣ dimension	
  

• Choice	
  of	
  system	
  approximaBon	
  

• Error	
  control	
  

➡ Should	
  be	
  driven	
  by	
  opBmality,	
  consistency	
  and	
  stability	
  considera8ons	
  [Farhat	
  ’09],	
  in	
  order	
  to	
  achieve	
  a	
  
significant	
  speed-­‐up
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Method of separated representation

• Search	
  for	
  the	
  solu8on	
  in	
  space	
  /	
  8me	
  /	
  parameter	
  in	
  a	
  product	
  space:

77

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

Ci 2 Rn

�i : T ! R, 8i 2 J1, nCK ,
�i : P ! R, 8i 2 J1, nCK ,
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Proper Orthogonal Decomposition (POD)

• Search	
  for	
  the	
  solu8on	
  in	
  a	
  product	
  space	
  of	
  two	
  spaces	
  (space	
  /	
  8me):	
  

• that	
  minimises	
  a	
  distance	
  with	
  respect	
  to	
  the	
  exact	
  solu8on	
  (POD	
  (Pearson	
  ’01,	
  Hotelling	
  ’33,	
  Karhunen	
  
‘47,	
  Loeve	
  ’63))	
  

‣ with	
  the	
  norm	
  on	
  	
  	
  	
  	
  	
  :	
  

‣ ill-­‐posed,	
  add	
  the	
  constraint

78

J̃POD(C,↵) = kU� ŪkV

Ū(t) =
nCX

i=1

Ci ↵i(t) = C↵(t)

Ū : V = Rn ⇥ T ! Rn

kXkV =

Z

t2T
kX(t)k22 dtV

CTC = I
d
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Proper Orthogonal Decomposition (POD)

• Search	
  for	
  the	
  solu8on	
  in	
  a	
  product	
  space	
  of	
  two	
  spaces	
  (space	
  /	
  8me):	
  

• that	
  minimises	
  a	
  distance	
  with	
  respect	
  to	
  the	
  exact	
  solu8on	
  (POD	
  (Pearson	
  ’01,	
  Hotelling	
  ’33,	
  Karhunen	
  
‘47,	
  Loeve	
  ’63))	
  

‣ with	
  the	
  norm	
  on	
  	
  	
  	
  	
  	
  :	
  

‣ ill-­‐posed,	
  add	
  the	
  constraint	
  

• Set	
  the	
  func8onal	
  deriva8ve	
   

79

J̃POD(C,↵) = kU� ŪkV

Ū(t) =
nCX

i=1

Ci ↵i(t) = C↵(t)

Ū : V = Rn ⇥ T ! Rn

kXkV =

Z

t2T
kX(t)k22 dtV

↵ = CTU

CTC = I
d

�J̃POD

�↵(t)
= 0

is the orthogonal projection of     onto Im(C)Ū U
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Multi-dimension: GPOD and Multilinear POD / SVD

• Global	
  POD	
  (not	
  very	
  fancy	
  but	
  straigh~orward)	
  

‣ Miminise	
  

➡ 	
  

80

K�k = �k�kC =
�
�1 �2 ... �nc

�

(�k)k2J0,nK                          in decreasing order

JGPOD(C) =

Z

µ2P

Z

t2T
kU(t, µ)�CCTU(t, µ)k22 dt dµ

Ū(t, µ) =
nCX

i=1

Ci ↵i(t, µ) = C↵(t, µ)

Ū : V = Rn ⇥ (T ⇥ P) ! Rn

CTC = I
d

K =

Z

µ2P

Z

t2T
U(t, µ)U(t, µ) dt dµ

mailto:email@cardiff.ac.uk


bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut

Multi-dimension: GPOD and Multilinear POD / SVD

• Global	
  POD	
  (not	
  very	
  fancy	
  but	
  straigh~orward)	
  

‣ Miminise	
  

➡ 	
  	
  

• Mul8linear	
  POD:	
  Search	
  for	
  the	
  solu8on	
  in	
  space	
  /	
  8me	
  /	
  parameter	
  in	
  a	
  product	
  space:	
  

‣ minimise	
  

➡ interes8ng	
  for	
  separa8on	
  8me	
  /	
  parameter	
  in	
  fracture,	
  TODO

81

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

K�k = �k�kC =
�
�1 �2 ... �nc

�

(�k)k2J0,nK                          in decreasing order

JGPOD(C) =

Z

µ2P

Z

t2T
kU(t, µ)�CCTU(t, µ)k22 dt dµ

Ū(t, µ) =
nCX

i=1

Ci ↵i(t, µ) = C↵(t, µ)

Ū : V = Rn ⇥ (T ⇥ P) ! Rn

CTC = I
d

K =

Z

µ2P

Z

t2T
U(t, µ)U(t, µ) dt dµ

J̃MLPOD(C) =

Z

µ2P

Z

t2T
kU(t, µ)� Ū(t, µ)k22 dt dµ
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One word about the Proper Generalized Decomposition 

• If	
  one	
  does	
  not	
  want	
  to	
  calculate	
  the	
  exact	
  solu8on,	
  or	
  cannot	
  obtain	
  it	
  (intractable)	
  

• Least-­‐square	
  PGD

82

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

J(C,�,�) = argminkRk2V

J(C,�,�) = argmin

Z

t2T , µ2P
R(Ū(t, µ))TR(Ū(t, µ)) dt dµ
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One word about the Proper Generalized Decomposition 

• If	
  one	
  does	
  not	
  want	
  to	
  calculate	
  the	
  exact	
  solu8on,	
  or	
  cannot	
  obtain	
  it	
  (intractable)	
  

• Least-­‐square	
  PGD	
  

• Galerkin	
  PGD:	
  	
  

➡ Does	
  not	
  lead	
  to	
  a	
  classical	
  eigen	
  value	
  problem,	
  needs	
  to	
  be	
  associated	
  with	
  an	
  algorithm	
  to	
  find	
  a	
  quasi-­‐
op8mum	
  (progressive	
  PGD)	
  [Ladeveze,	
  Nouy]	
  

➡ Fixed-­‐point	
  algorithms	
  permits	
  to	
  obtain	
  an	
  itera8ve	
  solu8on	
  by	
  solving	
  separate	
  problems	
  in	
  each	
  
dimension	
  [Chinesta,	
  Ammar]

83

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

J(C,�,�) = argminkRk2V

J(C,�,�) = argmin

Z

t2T , µ2P
R(Ū(t, µ))TR(Ū(t, µ)) dt dµ

Z

t2T , µ2P
�Ū

T
R(Ū(t, µ)) dt dµ = 0 8 �Ū 2 V
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Using the separation of variables in practice

• From	
  the	
  knowledge	
  of	
  such	
  a	
  decomposi8on	
  one	
  can	
  derive:	
  
‣ Fast	
  evalua8on	
  of	
  solu8on	
  by	
  just	
  “plugging	
  in”	
  the	
  values	
  of	
  the	
  parameters	
  (data	
  compression)	
  

‣ Ini8alisers	
  /	
  precondi8oners	
  of	
  solvers	
  for	
  par8cular	
  realisa8ons	
  of	
  the	
  parameters	
  

➡ The	
  decomposi8on	
  does	
  not	
  need	
  to	
  be	
  “converged”	
  or	
  very	
  accurate	
  

➡ Does	
  not	
  need	
  to	
  be	
  complete	
  (valid	
  for	
  all	
  range	
  of	
  parameters).	
  An	
  availability	
  for	
  discrete	
  values	
  of	
  the	
  
parameters	
  can	
  be	
  enough	
  (Snapshots).	
  Interpola8on	
  can	
  be	
  performed	
  (“gappy	
  reconstruc8ons”)	
  

‣ Model	
  Order	
  Reduc8on	
  (closely	
  linked	
  to	
  the	
  previous	
  bullet	
  point)	
  

➡ Keep	
  only	
  one	
  part	
  of	
  the	
  decomposi8on	
  an	
  compute	
  the	
  remaining	
  one	
  for	
  the	
  desired	
  realisa8on	
  of	
  the	
  
parameters	
  (example:	
  generate	
  an	
  op8mal	
  space	
  basis	
  in	
  the	
  snapshot	
  space	
  and	
  use	
  it	
  in	
  the	
  framework	
  of	
  
classical	
  MOR)	
  

➡ Again,	
  no	
  need	
  to	
  have	
  a	
  very	
  accurate	
  /	
  complete	
  decomposi8on.	
  The	
  reduced	
  model	
  will	
  “fill	
  the	
  gaps”

84

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,
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Model Order Reduction using the separation of variables

85

CT
⇣
F

Ext

+ F
Int

(U|tn +C↵)
⌘
= 0

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR
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Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,

Optimal state variable for a particular realisation, 
compensate the inaccuracy in the global decomposition
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Model order reduction using the separation of variables

• One	
  does	
  not	
  have	
  the	
  exact	
  solu8on	
  for	
  all	
  parameters	
  /	
  8me	
  steps,	
  only	
  for	
  some	
  snapshots.	
  

• Snapshot	
  POD	
  (Sirovich	
  ’87)	
  

➡ generate	
  an	
  op8mal	
  space	
  basis	
  in	
  the	
  snapshot	
  space	
  and	
  use	
  it	
  in	
  the	
  framework	
  of	
  classical	
  MOR	
  

➡ Same	
  thing	
  could	
  be	
  done	
  with	
  MLPOD	
  or	
  PGD

86

Ū : Usep = Rn ⇥ T ⇥ P ! Rn

Ū(t, µ) =
nCX

i=1

Ci �i(t)�i(µ) ,
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Snapshot Proper orthogonal decomposition

• Modified	
  func8onal	
  

‣ find	
  an	
  orthonormal	
  family	
  of	
  vectors	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  such	
  that 
 
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  minimum	
  	
  

‣ SVD:	
   
	
  	
  	
  	
  	
  

‣ New	
  projecBon	
  basis: 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C1

C2

C3

S = U⌃VT =
nSX

k=1

⌃k Uk VkT

C =
�
U1 U2 ... UnC

�

(⌃k)k2J1 nSKwhere                           in decreasing order

Snapshot

nc < ns

87

(Ck)k2J1,ncK

Reduced basis
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−3

−2
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6

UD

FD1 FD2
FDnC

S1

S =
�
S1 S2 ... Snc

�

compression

bJ(C1, . . . ,Cnc) =
nsX

j=1

�����S
j �

ncX

i=1

⇣
CiTSj

⌘
Ci

�����

2

2

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR

Sj = U(tj , µj)with snapshots
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Snapshot Proper orthogonal decomposition

• Modified	
  func8onal	
  

‣ find	
  an	
  orthonormal	
  family	
  of	
  vectors	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  such	
  that 
 
and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  minimum	
  	
  

‣ SVD:	
   
	
  	
  	
  	
  	
  

‣ New	
  projecBon	
  basis: 

‣ Error	
  in	
  snapshot:	
  

➡ 	
  	
  

➡ thin	
  SVD	
  much	
  cheaper	
  than	
  the	
  eigenvalue	
  problem	
  of	
  the	
  POD	
  (original	
  idea	
  of	
  Sirovich) 

S = U⌃VT =
nSX

k=1

⌃k Uk VkT

C =
�
U1 U2 ... UnC

�

(⌃k)k2J1 nSKwhere                           in decreasing order

nc < ns

88

(Ck)k2J1,ncK

bJ(C1, . . . ,Cnc) =
nsX

j=1

�����S
j �

ncX

i=1

⇣
CiTSj

⌘
Ci

�����

2

2

⌫SVD =

0

@
nsX

j=1

�����S
j �

ncX

i=1

⇣
CiTSj

⌘
Ci

�����

2
1

A

1
2

0

@
nsX

j=1

��Sj
��2
1

A

1
2

=

 
nsX

i=nc+1

�i

! 1
2

 
nsX

i=1

�i

! 1
2

bJ(C1, ...,Cnc) =
nsX

i=nc+1

p
⌃k =

nsX

i=nc+1

�k

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR

Sj = U(tj , µj)with snapshots
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Compute particular realisations 
(snapshots) 

, 10 time steps α1·

+

+

α2·

α3·

Compression of 
snapshot space

✓ = 15o

,10 time steps ✓ = 45o

Construction of reduced order model

Reduced basis

POD
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Model Order Reduction using Snapshot POD

89

=

Solution at arbitrary angle using the reduced model
✓ = 30o

Parametrised fracture model

✓ 2 [15o 45o]

initial crack
large number of 

unknowns

≈
very few 

unknowns

R
ed

uc
ed

 s
ys

te
m
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Data compression: fracture

90

POD order 1

POD order 3

“Exact” solution

Snapshot POD (snapshot space is spanned by 
the ensemble of solutions at all time steps)
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Data compression: fracture

91
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Data compression: parametric (random) fracture

92

“Exact” solution Global POD order 3

Global Snapshot POD (snapshot space is 
spanned by the ensemble of solutions at all time 
steps for successive realisations)
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Data compression: parametric (random) fracture

➡ Number	
  of	
  modes	
  required	
  to	
  achieve	
  a	
  certain	
  error	
  increases	
  linearly	
  with	
  the	
  number	
  of	
  realisa8ons.	
  	
  

➡ Uncorrelated!	
  

93

0 50 100 150 200 250 300 350 400 450 500
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0 10 20 30 40 50 60 70 80 90 100
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

⌫ P
O
D

nc

⌫ P
O
D

nc

1 2 3 5 10

Number of realisations

Zoom

mailto:email@cardiff.ac.uk


bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut 94

Can we do something about it?
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Error in one particular realisation

• Yes	
  (ouf...),	
  the	
  error	
  is	
  local!	
  
‣ Error	
  in	
  the	
  First	
  of	
  ten	
  realisa8ons	
  used	
  to	
  build	
  the	
  reduced	
  model

95

✏j =
⇣
Sj �CCTSj

⌘
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Global error

96
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✏ =
nsX

j=1

⇣
Sj �CCTSj

⌘

• 10	
  realisa8ons
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Master/slave reduced order modelling

• Solu8on	
  increment	
  decomposed	
  into	
  two	
  contribu8ons	
  

• Approxima8on	
  of	
  the	
  slave	
  part:	
  

➡ 	
  	
  

➡ Reduced	
  state	
  variables:	
  

• Galerkin	
  orthogonality	
  

97

�U = P(r)C↵+E(f)T g�U
(f)

g�U
(r)

=
⇣
E(r)C

⌘
↵

AT
⇣
F

Int

⇣
�U(X) +U|tn

⌘
+ F

Ext

⌘
= 0

�U = �U(r) +�U(f) where

8
<

:
�U(r) = E(r)T g�U

(r)

�U(f) = E(f)T g�U
(f)

“fully resolved” (master): cannot or should not be approximated in a Ritz 
basis

extractor

X =

 
↵

g�U
(f)

!

A =
⇣
P(r)C E(f)T

⌘
where

P(r) = E(r)TE(r)where

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR
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Example

final damage steps 
obtained in 30 time steps

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR
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Example: snapshot

99
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Snapshot: solution of a nearby problem 
(30 time steps)

Different location of the 
applied forces
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➡ extrac8on	
  of	
  a	
  coarse	
  approxima8on	
  
space	
  by	
  a	
  SVD	
  (3	
  basis	
  vectors)

1. Multiscale fracture model  |  2. POD | 3. Local/global MOR
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Local/global splitting

• master	
  degrees	
  of	
  freedom	
  corresponding	
  to	
  the	
  nodes	
  connected	
  to	
  elements	
  undergoing	
  significant	
  
damage	
  increments	
  

➡ requires	
  some	
  mechanical	
  understanding	
  of	
  the	
  behaviour	
  of	
  the	
  model	
  

• Update	
  at	
  each	
  8me	
  increment
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The monkey is back
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Results: no global correction 
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• Idea:	
  if	
  the	
  norm	
  of	
  the	
  residual	
  of	
  the	
  full	
  problem	
  is	
  too	
  large,	
  enrich	
  the	
  ROM	
  before	
  the	
  next	
  Newton	
  
itera8on	
  by	
  a	
  coarse	
  iteraBve	
  soluBon	
  of	
  the	
  full	
  linearized	
  problem	
  

• Tool:	
  projected	
  conjugate	
  gradient	
  [Dostal	
  ‘88]	
  on	
  the	
  linearized	
  problem	
  

‣ splipng	
  of	
  the	
  search	
  space: 
 

‣ Orthogonality	
  insured	
  by	
  a	
  projector	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   

“On-the-fly” enrichment via Krylov iterations

Rnu = Im(C)� Im(C)?K
T

�U = �UC + �UK where

(
�UC = C �↵ 2 Im(C)

�UK 2 Im(C)?K
T = Ker(CTK

T
)

K
T
�U = R
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• Idea:	
  if	
  the	
  norm	
  of	
  the	
  residual	
  of	
  the	
  full	
  problem	
  is	
  too	
  large,	
  enrich	
  the	
  ROM	
  before	
  the	
  next	
  Newton	
  
itera8on	
  by	
  a	
  coarse	
  iteraBve	
  soluBon	
  of	
  the	
  full	
  linearized	
  problem	
  

• Tool:	
  projected	
  conjugate	
  gradient	
  [Dostal	
  ‘88]	
  on	
  the	
  linearized	
  problem	
  

‣ splipng	
  of	
  the	
  search	
  space: 
 

‣ Orthogonality	
  insured	
  by	
  a	
  projector	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   

‣ Yields	
  two	
  uncoupled	
  systems: 

-­‐ coarse	
  scale,	
  solved	
  by	
  a	
  direct	
  solver:	
  

➡ linear	
  predic8ons	
  performed	
  on	
  the	
  reduced	
  problem 
(i.e.:	
  when	
  solved	
  by	
  the	
  basic	
  snapshot-­‐POD)	
  

-­‐ fine	
  scale,	
  solved	
  approximately	
  by	
  the	
  conjugate	
  gradient:	
  

➡ correc8on	
  used	
  to	
  enrich	
  the	
  Ritz	
  basis	
   
(KT-­‐orthogonal	
  to	
  the	
  previous	
  Ritz	
  basis	
  by	
  construc8on)

“On-the-fly” enrichment via Krylov iterations

Rnu = Im(C)� Im(C)?K
T

�U = �UC + �UK where

(
�UC = C �↵ 2 Im(C)

�UK 2 Im(C)?K
T = Ker(CTK

T
)

⇣
PT K

T
P
⌘
�UK = PT R

(CT K
T
C) �↵ = CT R

K
T
�U = R

) �UC = C(CT K
T
C)�1CT R

�U = C �↵+P �UK P = I
d
�C(CTK

T
C)�1CTK

Twhere
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• Idea:	
  if	
  the	
  norm	
  of	
  the	
  residual	
  of	
  the	
  full	
  problem	
  is	
  too	
  large,	
  enrich	
  the	
  ROM	
  before	
  the	
  next	
  Newton	
  
itera8on	
  by	
  a	
  coarse	
  iteraBve	
  soluBon	
  of	
  the	
  full	
  linearized	
  problem	
  

• Tool:	
  projected	
  conjugate	
  gradient	
  [Dostal	
  ‘88]	
  on	
  the	
  linearized	
  problem	
  

‣ splipng	
  of	
  the	
  search	
  space: 
 

‣ Orthogonality	
  insured	
  by	
  a	
  projector	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   

‣ Yields	
  two	
  uncoupled	
  systems: 

-­‐ coarse	
  scale,	
  solved	
  by	
  a	
  direct	
  solver:	
  

➡ linear	
  predic8ons	
  performed	
  on	
  the	
  reduced	
  problem 
(i.e.:	
  when	
  solved	
  by	
  the	
  basic	
  snapshot-­‐POD)	
  

-­‐ fine	
  scale,	
  solved	
  approximately	
  by	
  the	
  conjugate	
  gradient:	
  

➡ correc8on	
  used	
  to	
  enrich	
  the	
  Ritz	
  basis	
   
(KT-­‐orthogonal	
  to	
  the	
  previous	
  Ritz	
  basis	
  by	
  construc8on)

“On-the-fly” enrichment via Krylov iterations

Rnu = Im(C)� Im(C)?K
T

�U = �UC + �UK where

(
�UC = C �↵ 2 Im(C)

�UK 2 Im(C)?K
T = Ker(CTK

T
)

⇣
PT K

T
P
⌘
�UK = PT R

(CT K
T
C) �↵ = CT R

K
T
�U = R

) �UC = C(CT K
T
C)�1CT R

�U = C �↵+P �UK P = I
d
�C(CTK

T
C)�1CTK

Twhere
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Results: with global corrections 
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Solution algorithm

• Not	
  a	
  reduced	
  order	
  model	
  anymore	
  (ROM	
  of	
  only	
  one	
  part	
  of	
  the	
  DOF)!	
  

➡ solu8on	
  algorithm	
  might	
  become	
  inefficient	
  (compare	
  to	
  basic	
  POD)	
  if	
  not	
  thought	
  of	
  carefully	
  

➡ Idea:	
  use	
  the	
  reduced	
  order	
  model	
  to	
  accelerate	
  the	
  solu8on	
  algorithm.	
  

• Successive	
  linearisa8on	
  in	
  the	
  Newton	
  process:	
  

• Linear	
  solver?	
  
‣ direct:	
  the	
  informa8on	
  from	
  the	
  snapshot	
  is	
  not	
  used	
  
‣ iteraBve	
  with	
  reduced	
  order	
  model	
  as	
  a	
   

precondiBoner
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@RR(X)

@X

����
X=Xi

�Xi+1 = �Ri
R

 
K(rr),i

T,R
K(rf),i

T,R

K(fr),i
T,R

K(ff),i
T,R

! 
�↵i

g�U
(f),i

!
= �

 
R(r),i

R

R(f),i
R

!
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MOR-based preconditioner

• CondensaBon	
  on	
  the	
  master	
  degrees	
  of	
  freedom	
  

➡ Any	
  solu8on	
  sa8sfy	
  the	
  reduced	
  balance	
  equa8ons	
  of	
  the	
  “slave”	
  degrees	
  of	
  freedom

108

S(f)
P

�U(f) = R(f)
C

8
><

>:

S(f)
P

= K(ff)
T,R

�K(fr)
T,R

⇣
K(rr)

T,R

⌘�1
K(rf)

T,R

R(f)
C = R(f)

R �K(fr)
T,R

⇣
K(rr)

T,R

⌘�1
R(r)

R

where

�↵ =
⇣
K(rr)

T,R

⌘�1 ⇣
R(r)

R �K(rf)
T,R

�U(f)
⌘

�U(r) = P(r)C �↵ with 
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MOR-based preconditioner

• CondensaBon	
  on	
  the	
  master	
  degrees	
  of	
  freedom	
  

➡ Any	
  solu8on	
  sa8sfy	
  the	
  reduced	
  balance	
  equa8ons	
  of	
  the	
  “slave”	
  degrees	
  of	
  freedom	
  

• Projected	
  conjugate	
  gradient	
  on	
  the	
  condensed	
  problem	
  

‣ splipng	
  of	
  search	
  space	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  where 

‣ Projector	
  	
  

‣ Two	
  uncoupled	
  systems:	
  

➡ Ini8a8on	
  by	
  the	
  reduced	
  order	
  model	
  

➡ Itera8ve	
  computa8on	
  of	
  a	
  correc8on  
by	
  a	
  Krylov	
  solver	
  in	
  a	
  space 
orthogonal	
  to	
  Im(C)
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where

�↵ =
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K(rr)

T,R

⌘�1 ⇣
R(r)

R �K(rf)
T,R

�U(f)
⌘

�U(r) = P(r)C �↵ with 

C(f) = E(f)C

�U(f)
C = C(f)(C(f)TS(f)

P
C(f))�1C(f)TR(f)
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Results: MOR-based preconditioner
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Conjugate gradient iteration
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Weighted GPOD

111

JPOD(C,↵) =

Z

µ2T

Z

t2T
�((t, µ))kU(t)�C↵)(t, µ)k2L dt dµ

kXk2L = XTLX

L diagonal operator with non-negative entries

JWPOD(C,↵) =

Z

µ2T

Z

t2T
�((t, µ))kU(t)�C↵)(t, µ)k2L dt dµ
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Progressive Weighted GPOD

• Find	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  minimising	
  	
  

• Update	
  the	
  weights	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  so	
  that 
decreases	
  sufficiently	
  

• convergence	
  check

112

(C,↵)

�
�(t, µ), L

�
JPOD(C,↵)

JWPOD(C,↵) =

Z

µ2T

Z

t2T
�((t, µ))kU(t)�C↵)(t, µ)k2L dt dµ
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Progressive Restricted GPOD

• In	
  our	
  case:	
  	
  

• Update:	
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P
R
= E

R
E

R
T

P
R
 P

R
P

Up

JWPOD(C,↵) =
X

µ2P,t2T
✏(t, µ)TP

R
✏(t, µ)

JWPOD(C,↵) =
X

µ2P,t2T

nX

i=1

✏2i (t, µ)PRii =
nX

i=1

X

µ2P,t2T
✏2i (t, µ)PRii

PUpii = (1� �ij) j = argmaxi2J1,nK
X

µ2P,t2T
✏2i (t, µ)PRii

JWPOD(C,↵) =
X

µ2P, t2T
kU(t)�C↵(t, µ)k2P

R

diagonal boolean matrix, starting with identity
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