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Scientific landscape in Luxembourg
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The University of Luxembourg (UL)

The Faculties

Faculty of Science,
Technology and
Communication

« focuses on informatics, engineering, mathematics, life
sciences, physics and material science
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Computational mechanics & computational
materials sciences Multiscale/field interface problems
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COUPLED PROBLEMS

DISCRETISATION

discreigand iont(i?wuum MULTI-SCALE FRACTURE biofilms, liquid crystals,

h aerospace composites, fluid-structure, batteries
approaches polycrystalline materials
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QUALITY & ERROR INTERACTIVITY
CONTROL Reduce
optimise computational costs

computational time by several orders of

given an accuracy level magnitude
\\ _/ Real-time simulation of cutting during brain surgery N )
4 APPLICATIONS .
C PERSONALISED MEDICINE ) ( ENGINEERING )

Computer-aided Computer-aided Durability & Ener Aerospace
surgery diagnostics Sustainability 9y P
k %

http://legato-team.eu — stephane.bordas@uni.lu S. Bordas, B. Peters, A. Zilian and S. Belouettar (LIST)
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Discretisation )

Fracture over multiple scales) Coupled
problems
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Durability of Pb-free solders Error estimates for fracture

( APPLICATIONS )

C Personalised Medicine ) C Engineering
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surgery diagnostics Sustainability .




Research Strategy of the Legato Computational

Mechanics Group

TOOLS

( BAYESIAN INFERENCE ) ( STATISTICAL INVERSE PROBLEMS ) (

MODEL LEARNING

)

Leverage the commonality of mathematical formulations across various problem domains

APPLICATIONS

Personalised Medicine

X

Engineering
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Computer-aided \
surgery

Patient-specific simulations

/
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4 Computer-aided )
diagnostics

Tumour detection - inverse
problem
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4 Structural health N

\_

monitoring

structures

Crack detection and self-healing strugtyres

4 Adaptive “smart” )
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Some motivation




'» Motivation (1/2) - uni.l

. generate and solve models of patients: FAST! e

=
B EKEd

Computation time

Surgical simulation (real time/interactivity)

P Reduce the problem size while maintaining accuracy in solving very large

multiscale mechanics problems
Courtecuisse et al. PBMB 2011

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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...not exactly brain surgery

Deep-brain stimulation

Courtesy Alexandre Bilger, PhD thesis, Inria, 2014

18



The brain is
complicated...

But we only

wish to
compute
displacements

Courtesy
Prof. Wies Nowinski,
A-Star, Singapore

Karol Miller
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T Motivation (2/2) - similar problems occur in aerospace RIVERSIT DU

Advanced early-stage dgsign simulations

P Large gradients
» Explicit mesostructure description

» Large number of parametric studies, e.g. load cases
»  Account for the variability of the material

B \lodels and discretisations must be reduced

erc bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Ways to reduce the models

PRIFYSCOL
CQRDY®

Homogenisation (FE*2, etc.) - Hierarchical
Concurrent and hybrid (bridging domain, ARLEQUIN, etc.)
Enrichment (PUFEM, XFEM, GFEM)

Model reduction (algebraic)

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Localisation

Detinition of an RVE

1°>> 17> 19

‘ -
Microscale

Coupling of macroscopic and microscopic levels

The volume averaging theorem is postulated for:

1) Strain tensor: € = ! / u @, ndl
12(x°)] Jaaxe)
. o _ o . . 1
2) Virtual work (Hill-Mandel condition): o€ 5 — . tf . suf dr
€2(x°)] oQ(x°)
3) Stress tensor: 1

of = t/ @ x/ dr
©2(x€)] /ag(xc)

3] bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut
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Hierarchical multi-scale approaches (FE/2) .l
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Macro-level Micro-level

Advantages and abilities: Drawbacks:

The macroscopic constitutive law 1s not
required

Non-linear material behaviour can be simulated
Microscale behaviour of material is monitored
at each load step

In softening regime:
. Lack of scale separation
. Macroscale mesh dependence

3o bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut
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load

UNIVERSITE DU
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displacement

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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load

O

displacement

i bordasS@cardiff.ac.uk

stephane.bordas@alum.northwestern.edu
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A limit point

load

displacement

3o bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Reduction methods based on algebraic reduction
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lllustration of the method of separated representation
(ARDY®
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] .

C' = sin(0.01 )

(V1)

100

erc

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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! : siné(O.'Ol x)

1000

100 100

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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! : siné(O.'Ol x)

1000

100

Very rich approximations!

(319 bordasS@cardiff.ac.uk

stephane.bordas@alum.northwestern.edu Reaﬂ'c UJ[
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Data compression: get the nose with the POD!
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100 150 200 250 300 350 400 450 500

nc=1
Wi, y:) = Y Chlx:) Ch(yi)

=1
(CL, Cl)icin.g = argmin ¥ Y (u(wy, y;) — (i, y5))”
s yj

{319 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Data compression: get the nose with the POD! il
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Got the nose
(rectangle,
approximation
of order 2 is
enough)

Neg = 1 Ne¢ = 2

W g . i iy h A
50 100 150 200 250 300 350 400 450 500

(s, y;) = Z Ci(@:) Cy (yi)

(Ciu C )1,6[1 ne] — argmln Z Z x’w yj (:U’b yj))2

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Got the nose
(rectangle,
approximation
of order 2 is
enough)

. . . . 1 . .
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300

nc=1 nc=2

.
350 400 450 500

Converges
slowly locally
(idem fracture)

N = Nec = 10
u(zi, yi) = ZQ;(%)Q;(%)

(Ciuc")ze[[l ne] — argmmzz :U”Layj (:U'wyj))2

{319 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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® Search for the solution in space / time / parameter in a product space:

U: Uep=R"xTxPR" C'eR"
¥ . .
B BZ:T%R, VzE[[l,nc]],
Ut,p) =Y C;Bilt)vi(n), vi:P SR, Vie[l,nc],
1=1

® Optimality of an expansion of order n. with respect to a particular metric defined
on Usep

» Data compression: POD (Proper Orthogonal Decomposition) is a classical
choice in dimension 2

Data compression in many dimensions: multilinear POD

Solver in many dimensions without a priori knowledge of the solution: PGD
Model order reduction: Snapshot POD, Snapshot PGD

Initialiser, preconditioners: low-order POD, low-order PGD, Snapshot POD

VvV vV vV Vv

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu RealTcut
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. : i ng loads (1) Solve FINE for n_S parameters (EXPENSIVE!)
lEDl R

v v X S=(s'" s .. 8")
(2) Singular value decomposition

ns
S=Uxv’ =) stutvt

A M k=1 ng solutions, sorted by relevance

Up
where (Ek>ke[[1 ns] in decreasing order
(3) Trutreation
Initial set of equations Reduced basis: family of representative
solutions
EInt @_'_ EExt =0
Family of
(4) Galerkin orthogonality ‘/representatlve solutions
Ca
Lo ]
T T Solution o
C' Fint (C a) +C ' Foy =0 Coefficients
Approximation of the
solution in a space of
small dimension (nc)

3o bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Limitations: case of highly non-linear fracture mechanics nni.lu

UNIVERSITE DU
LUXEMBOURG

Reduced Ritz basis

0.07 1

0.06 I

0.05

0.04

0.03

Error
Maximum damage /20

0.02

0.01

® P. Kerfriden, P. Gosselet, S. Adhikari, and
S. Bordas. Bridging proper orthogonal
decomposition methods and augmented
Newton-Krylov algorithms: an adaptive
model order reduction for highly
nonlinear mechanical problems.

20

Time step

bordasS@cardiff.ac.uk

L L
25 30 35 40 45 50

Computer Methods in Applied
Mechanics and Engineering, 200(5-8):
850-866, 2011.

stephane.bordas@alum.northwestern.edu
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Application to a parametric fracture problem il
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Initial crack

Z
<
/
/
/
/
/
/
/
<
<
/
/
/
/
<
-

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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———  Application to a parametric fracture problem |
(NRD'® e

_ Reduced basis
Compute particular

» The POD solution is
not able to reproduce
the solution in the

realisations (snapshots)

§ = 15°, 10" (last) time step
1

£ s
5 ; = S—
< 7 b N cracked area
2 7 SSE - » Due to lack of
~ 1
’ ' -  POD correlation introduced
—

0 = 45°, 10** time step by crack growth
P Leadsto a local

projection error

10 solutions

NN SANNNNNNANS

LA

Solution at arbitrary angle using the reduced model

'

NV th i , "
0 e, 10 (.llll'.\hp Solution of the l\.(’\l

Y
. ™
4 J
i
44 ':ﬁy'
-

Solution to the

full, unreduced,
moxlel ,;

RealTcut
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Highly correlated solution fields

e
L pp— p
i.':v '“0 "'ro@ 0 @

"”: < y , *@0
B 2o ¢ .¢ 4‘-0 “‘ ”G “ﬁ

A . . .
First realisation Second realisation
0 5 10 15 20
Localisation of fracture, uncorrelated
m» Direct numerical simulation: efficient preconditioner? B Reduced order modelling?

B Adaptive coupling?

{319 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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THE RETURN OF THE MONKEY!
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What can we do to address this lack of separation

of scales/reducibility?
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P. Kerfriden, P. Gosselet, S. Adhikari, and S. Bordas. Bridging proper orthogonal decomposition
methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly

nonlinear mechanical problems. Computer Methods in Applied Mechanics and Engineering, 200(5-
8):850-866, 2011.

P. Kerfriden, J.C. Passieux, and S. Bordas. Local/global model order reduction strategy for the
simulation of quasi-brittle fracture. International Journal for Numerical Methods in Engineering,
89(2):154-179, 2011.

P. Kerfriden, K.M. Schmidt, T. Rabczuk, and Bordas S.P.A. Statistical extraction of process

zones and representative subspaces in fracture of random composites. Accepted for publication in
International Journal for Multiscale Computational Engineering. arXiv:1203.2487v2, 2012.

{319 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Snapshot POD (snapshot space is spanned by 10}
the ensemble of solutions at all time steps) \ POD order 1
]!
10} . ‘I .'."-v.’.'—-ﬂ'
“Exact” solution i ®% mxe o' rall @ 0
8t B ® ..'e'..’- ‘:4.0‘ 3
o S %295 ¥ et il
6
4t & " _ &
- ' p— < -
2 6% mas o*s '.o@"’ Qﬂo
5 :.v.' Q,“‘ 0“" ° 10
o
0 ) ““QQ ? "0’0“‘“0 -
< - 8
2
]
4l | POD order 3
. '. . = - .- -t '
6 : 0" Swxe @ 0,‘..000
o9 '.. '.“;“.‘“ @
0 5 10 15 20 ' X

erc bordasS@cardiff.ac. stephane.bordas@alum.
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Original Domain

Domain Partitioning

\,lal

-

'I"i
“"b

erc
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Partitioned reduced basis

Compute particular realisations

P Decompose the structure into
subdomains

» Perform a reduction in the
highly correlated region

P Couple the reduced to the non-
reduced region by a primal
Schur complement

(cost intensive) using domain
decomposition (snapshots)

10" (last) timestep

|

. SO

SAONSNSNANNANAS

f

SONSSASAANANSS

~

~ =
approximated by

§ 0 = 30° é_‘ (=>

S~
~

Locally non correlated:
no reduction

{319 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Cross-validation error estimate

erc

SCOL

CVRDY®

2 &
b.‘l
A = - 3

-}r A .,: < g

i = T4

{ \ X
i \

{ -

} W

i Wl
-5

] “
6l

{

1
-7 .

0 5 10

- ‘-
@
o—6-a—-og—b8—65—0-5
h-

T .
. - =(e)dpm) - ~"rl.| )
U (ty, p) - 2 (QU . Q,(f,,.p)) Cy, "

subdomain 6

subdomain 4

X090

subdonsain 2
l‘\ subdomain ¥

poi— OO OO

S

A -aal

15 20

2, 2

L, ETH pePe

bordasS@cardiff.ac.uk

WU, (tn, )13

Choice of the reduced subdomains: local error estimation il
by “leave one out cross-validation” (LOOCV) e

® Reduced subspaces are independent and we assume a

snapshot is a priori available

4
4

(1) Dimension of the local space for each subdomain?
(2) Is a given subdomain is reducible?

(1) and (2) will be treated by cross-validation (e.g. W. J.
Krzanowski. Cross-validation in principal component
analysis. Biometrics, 43(3):575-584, 1987.)

>

>
4
4

»

»

Training set: snapshot

Validation set: set of additional finescale solutions
Independent training/validation avoids overfitting
Cross validation emulates independence. Error
calculated using the local reduced basis obtained by a
snapshot POD transform of all the available snapshot
solutions except the one corresponding to the value of
the summation variable.

» ® NOTE: If the snapshot is not assumed a priori then

Assess whether the snapshot contains sufficient information, and
generate additional, suitable, data if required

Most analysis (mostly by statisticians) assume the snapshot is
known a priori. Recent review: Hervé Abdi and Lynne J. Williams.
Principal component analysis. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(4):433{459, 2010.

stephane.bordas@alum.northwestern.edu
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Cross-validation error estimate

Domain Partitioning

vi®
-

subdomain 6
subdomain 4

subdomain 2

B>X0o

subdomain 7

-2 \
\ IO~ :
>—0—0——6—6——ob-o6—0o—o0-—0——a
AN B
- - G-
&_\ - o -
\I » S—
2 \ % 8—6—g-oag—og-pn-o0—5
\‘n
L!a,&>‘_“
\3-2 - -um,i
- B e
S “-———*- " ~—‘*-
&<“‘“‘ 4»_'3_ .
-6 -
—A—A —A [HEeE
e
ol J 1 1 i
0 5 10 15

O rdar nf the POD trancfAarme

UNIVERSITE DU
LUXEMBOURG



mailto:email@cardiff.ac.uk

CARDIFF

UNIVERSITY

—===  Performance: load angle 40 | 27 - 121 nodes il

C‘"‘l Rl )“lv UNIVERSITE DU

LUXEMBOURG

® Relative error

a ! ex ! 2
)~ [UPP(t, p1) — U™ (tn. 1)l
1/“PP.(II)(H3PP)2 = tnETT

e 2
Z ”Q x(’n-/’)”‘z

th€TH
40° 27°
107 107
) —w— Partitioned POD + SA —w— Partitioned POD + SA
=@ Partitioned POD el Partitionesd POD
=© = Full Scale Inexact =0 = [ull Scale Inexact
10°°
5 z
T v -3
4 210 ¢
5 z
4 =l =
-~ - ~°
\
\
= . . . S , 10-4 . . -
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(a) Relative error for the different models using 121 nodes (a) Relative error for the different models using 121 no
per subdomain per subdomain
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® Relative error

a ! ex ! 2
)~ [UPP(t, p1) — U™ (tn. 1)l
1/“PP.(II)(H3PP)2 = tnETT

e 2
Z ”Q x(’n-/’)”‘z

tn€THh
o (0]
40 _ 27
10 ¢ — 1072,
—w— Partitioned POD + SA - M Prrtitioned POD + SA |
== Partitioned POD = Partitionod POD
=© =Full Scale Inexact =© = Full Scale [necact
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~107? LN
.
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Y
Y
.
.
~
.
. :C ¢ A i . 3
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runtime

(b) Relative error for the different models using 256 nodes
(b) Relative error for the different models using 256 nodes  per subdomain

per subdomain
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® Relative error

Z ”gupp(tn-/l) — U (tn, /l)llg

‘ h
,,apn(n)(Uupp)z _ €T
_ ex 2
E , ”Q (’n-/’)”2
tn€THh
40° 27°
107
*ﬁmitimu{ %B + SA 1072
== artition [ — —
=© = Full Scale Inexact Tt S + SA
=@ = Full Scale Inexact
10°°
=
5 :
P s 3
- 210
= oo
? E
s A3 -~ ;f,
10 .
~\
‘\
~
~
‘o
'O 4 A A A A 10 4 A A A A A‘\ 4
0 100 200 300 400 0 S0 100 150 200 250 300
runtime runtime

(¢) Relative error for the different models using 441 nodes

(¢) Relative error for the different models using 441 nodes :
per subdomain

per subdomain
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® Relative error

> UPP (., ) — U™t 1)l
I/RPP-(Il)(guPP)Q = tnETT

e 2
> U (tn )l

tn€TH

40° 10 27°
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(d) Relative error for the different models using 961 nodes (d) Relative error for the different models using 961
per subdomain per subdomain
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® Domain coupling using the primal Schur-complement domain decomposition method.

® Local subproblems have been reduced by projection in low-dimensional subspaces

obtained by the snapshot POD.

® This approach permits to flexibly reduce the computational cost associated with highly

nonlinear problems. In particular:

» the local reduced spaces are generated independently, and have independent
dimensions, which allows us to focus the numerical effort where it is most needed.

» subdomains that are close to highly damaged zones need a richer model to account
for the effect of topological changes. The local POD transforms automatically
generate local reduced spaces of larger dimension in these zones.

» the domain decomposition framework enables us to switch from reduced local
solvers to full local solvers in a transparent manner. This is particularly useful for the
subdomains that contain process zones, as a solution obtained by projection would
be more expensive than a direct solution for a desirable accuracy.

P the transition between “offline" and “online" computations becomes flexible. The
reduced models can be used in the zones where the local reduced spaces converge
quickly when enriching the snapshot space, while still computing snapshots and
refining the reduced models via a direct local solver in the remaining subdomains.

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu Reaﬂ'c UJ[
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® Further work related to domain decomposition

P load balancing mismatch would occur when using such a strategy in parallel. CPUs which
support domains that are not reduced, or domains for which the corresponding
subproblems need to be projected in a space of relatively high dimension, would require
to perform more operations. The domain partitioning itself should be performed jointly
with the model reduction in order to distribute the load evenly.

P the interface problem itself was not reduced here, to guarantee the interface kinematic
compatibility.
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® Dr Hadrien Courtecuisse
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How can we build models fast?




Theme: simplify the CAD->analysis transition (1/2)

/ Advancec
(" . . : discretization
Isogeometric boundary element analysis -.
® complete suppression of mesh generation
® exact treatment of the geometry

® facilitates shape optimization
CAO

calculation

MA Scott, RN Simpson, JA Evans, S. Lipton, S.P.A. Bordas, TJR Hughes, and TW
Sederberg. Isogeometric boundary element analysis using unstructured T-splines.
Computer Methods in Applied Mechanics and Engineering, 254:197-221, 2013.

\§




Simplify the CAD->analysis transition (2/2)

g Implicit surface representation
® from CAD parameterization

® including vertices and sharp edges
® with error control

VAVQ’
l?
" % .%

et Nadal (w/ UPV)

theses Moumnassi (w/ CRP)

. diseretization

oCT image
ediscretization
ecomputation

Advanced

5
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A
Our main motivation - image-guided
neurosurgery Image of brain tumour (green)

IS superimposed on patient as
an aid to surgical planning and
: navigation

> Intraoperative
Courtesy of SPL, Harvard Karol Miller
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[Pa]
600C
Ventricle
300(
0
2D MRl shice “Hard” segmentation Assignment of
<L mechanical
Ventricles propertles based

g on statistical
tissue classification

\Tumour/ Karol Miller
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3D patient-specific meshless computational

grid of the brain

parenchyma

c
@
@
S

o

Red - ventricles

- tumour

Blue

Karol Miller

pp. 2698-2701

)

45(15

Miller et al. (2012), J. Biomech.



Evaluation of accuracy for
three cases

Left column: Finite Element
Models, with parenchyma, tumour
(red) and ventricle (blue) modelled
separately.

Middle column: Fuzzy Mesh-free

Model without explicitly separating
the tumour and ventricles, fuzzy
tissue classifications of tumour
(red), and ventricle (blue) are shown
as cloud superimposed on the
image; Nodes are shown as

green dots.

Right column: Difference of the
simulation results (computed
deformation field) from the two
models over the whole problem

domain [mm]. Karol Miller



In other words, use the image as a
model...
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* Free and moving interfaces

* Multi-scale methods for fracture

* Multi-field coupled problems

* Inverse problems (Bayesian)

e Real-time methods, model order reduction
* Error estimation and simulation quality

* Meshless methods : g A
* Extended Finite Element Methods Real-time simulation of cutting during brain surgery
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» A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics,
Computer Methods in Applied Mechanics and Engineering, (2013)

» Isogeometric boundary element analysis using unstructured T-splines, Computer Methods in Applied Mechanics &
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» Effects of elastic strain energy and interfacial stress on the equilibrium morphology of misfit particles in heterogeneous
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Computational and Experimental Fracture
Mechanics

in Udine, ltaly, September 2015
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® Lattice model

»  Euler-Bernoulli beams

»

Elastic damageable constitutive law

Helmholtz free energy:

1 s
ea =5 (ES (1 - d1%> W2 + EI(1— dy) 9?8)

,S

Generalised stress and Driving forces

N\ _ [ BS(1—dy =%e=%) 0
M ) 0 EI(1—dy)
{ Yl = —g—g‘f = ES —<u1;58>+ ’LL,2S
_ deg __ 2
Y; =52 = EIf?,

Evolution law (non-associated model)
Y = (Y +yY)le

Y — Yy \?
d—dl—d2—(m>

® Random packing following Fuller distribution curve
4

Particles 10 times stiffer than interface and matrix, no damage
4

fracture toughness of interface 4 times lower than matrix

(319 bordasS@cardiff.ac.uk
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space: third order polynomial for deflection, first order for
normal displacement Oy P .-
Nn
ut(Q) = {u(z) | u(z) = Ni(z) yz} ‘,
i=1
> t‘lmﬂnd (@|tn)n€[[0,nt]] ; .,

=g, (&, (U)o u) + Fp (b1, ) = 0

® Newton / arc-length / Line Search
[Lorentz and Badel '04,
Alfano and Crisfield ‘03]

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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® Non-linear, time dependant (rate-independent), parameter dependent set of balance equations

Fi,, (&, (Ue) . u) + By, (b1, ) = 0

® Approximation of the solution in a reduced space:

AU, = Zgiai =Ca where AU, =Ug, ., U,
=1
T c=(c ¢ .. c“)
Approximation of the Global vectors of nodal values corresponding
solution increment in a space to piecewise polynomial global basis
of small dimension (n¢). functions, as opposed to locally supported in

finite element).

® Approximation of the balance equations (Galerkin for instance)

Fpw + Fry (E|tn + QQ) = E’|tn

c” (EExt +Fr (H|tn + gﬂ)) =0

nc balance equations

3o bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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%T (EExt +F (H|tn + gg)) =0

® Solver at each time increment: Newton / arc-length / Line Search (idem initial problem)

4

tangent of the reduced balance equations: i r OFL (U, +Ca)
Err=E o

»

a=a’
residual of the reduced balance equations:

_E = gT <EExt + Fin (E|tn + QQZ))

erc
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Construction of reduced order model
Reduced basis - 4 Reduced system )
X -
Parametrised fracture model C" (Fgx + Frp(Up, +Ca)) =0
7 & :
7/
Z initial crac DY o2
7 large number of =0
2 unknowns —
A
X3
very few very few equations,
unknowns () possibly cheap solution
\_ J

Solution at arbitrary
angle using the
reduced model

SONANNNNNANNANNANN
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@® Choice of reduced space

»  basis vectors?
» dimension

@® Choice of system approximation

@® Error control

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu


mailto:email@cardiff.ac.uk

CARDIFF

UNIVERSITY

——— Method of separated representation
(ARDY®

® Search for the solution in space / time / parameter in a product space:
U: Uep=R"XT xP—=R" Ci e R”
nc S 5
= B’L:T_)IRa VZE[[LTLC]],
U(t,p) = E;Q Bi(t)vi(n) v PSR, Vie[lnd],
1=

erc

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu



mailto:email@cardiff.ac.uk

CARDIFF

UNIVERSITY

PRIFYSCOL

Proper Orthogonal Decomposition (POD)
(ARDY®

® Search for the solution in a product space of two spaces (space / time):
U: V=R"xT - R"
nc
U(t) =) C;ai(t) = Calt)
=1

® that minimises a distance with respect to the exact solution (POD (Pearson 01, Hotelling ’33, Karhunen
‘47, Loeve '63))

Jron(C, ) = U~ Ully

4 withthenormonV: HK”V: teTHX(t)H%dt

T _
4 ill-posed, add the constraint g g =1

erc
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Proper Orthogonal Decomposition (POD)
(ARDY®

® Search for the solution in a product space of two spaces (space / time):
U: V=R"xT - R"
nc
U(t) =) C;ai(t) = Calt)
=1

® that minimises a distance with respect to the exact solution (POD (Pearson 01, Hotelling ’33, Karhunen
‘47, Loeve '63))

Jrop(C, a) = |[U - U}y

4 withthenormonV: HK”V: teTHX(t)H%dt

T
4 ill-posed, add the constraint CC=1

® Set the functional derivative

a=C'U

Q is the orthogonal projection of dnto Im(C)

RealTcut

erc
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erc

.l
® Global POD (not very fancy but straightforward)
U: V=R"x (T xP)—=R"
nc
U(t, p) = ZQi ai(t,p) = Calt, u)
 wiminse Joron(@ = [ [ JUn) -CCUEWIBdd  CTC=1,
HEP JteT T -
g:

= / U, 1) U(t, p) dt dp
peEP JteT

(A")kefo,n] in decreasing order

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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_ Multi-dimension: GPOD and Multilinear POD / SVD
CVRDY®

.l
® Global POD (not very fancy but straightforward)
U: V=R"x (T xP)—=R"
nc
U(t, p) = ZQi ai(t,p) = Calt, u)
 wiminse Joron(@ = [ [ |Us) -CCOEWIGdd 7O =1
HEP JteT T

|@

= / U, 1) U(t, p) dt dp
peEP JteT

(A")kefo,n] in decreasing order

® Multilinear POD: Search for the solution in space / time / parameter in a product space

U:

Usep:R”xTxP—)R”

U(t Z ,

>  minimise JMLPOD(Q)

/ / 10 (¢, 1) — (¢, )3 dt dp
neEP JteT

(3 bordasS@cardiff.ac.uk

stephane.bordas@alum.northwestern.edu
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® |If one does not want to calculate the exact solution, or cannot obtain it (intractable)

U: Uep=R"xT xP—R"

U(t,p) = ZQi Bi(t)yi(p)

_ - 2
@® Least-square PGD J(C, B, L) = argmin||R/};;

J(C, 8,T) = argmin / o R(U(t, 1)) R(U(t, ) dt dp
te’l, p

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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® |If one does not want to calculate the exact solution, or cannot obtain it (intractable)

U: Uep=R"xT xP—R"

U(t,p) = ZQi Bi(t)yi(p)

_ - 2
@® Least-square PGD J(C, B, L) = argmin||R/};;

- teT, peP
_ T _ B
O| Galerkin PGD: /teT,ueP oU R(U(t,pu))dtdp=0  VoéU€eV

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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U: Uep=R"xT xP—R"

U(t,p) = ZQi Bi(t)yi(p)

® From the knowledge of such a decomposition one can derive:
)

Fast evaluation of solution by just “plugging in” the values of the parameters (data compression)

P Initialisers / preconditioners of solvers for particular realisations of the parameters

»  Model Order Reduction (closely linked to the previous bullet point)

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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Model Order Reduction using the separation of variables
(ARDY®

il
U: Uep=R"xTxP —R"
nc
U(t, ) =Y CiBilt)n(p),
z‘=1/
CT

C" (B +Erni(Uy, +C)) =0

T

Optimal state variable for a particular realisation,
compensate the inaccuracy in the global decomposition

erc
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U: Uep=R"xT xP—R"

U(t,p) = ZQi Bi(t)yi(p)

® One does not have the exact solution for all parameters / time steps, only for some snapshots.

® Snapshot POD (Sirovich ’'87)

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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® Modified functional

»  find an orthonormal family of vectors (Q )ke[sugh that Ne < Ng
and J(C!,...,C") = Z S’ (CZ Sl?i>1®"("wm with snapshots S’ = U(#, u/)
7j=1
ns
4 SVD:§ = g;xT = »kuk X where (X")jcq1 ngp in decreasing order
k=1

1 2 n
g: ( v u .. Ur ) Reduced basis

{3 bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu
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® Modified functional

»  find an orthonormal family of vectors (Q )ke[sugh that Ne < Ng
and J(C!,...,C") = Z S’ (CZ Sl?i>1®"("wm with snapshots S’ = U(#, u/)
7j=1
ns
> svD S=Uxv’'=) zFU* VF' where (X%)ke[1 ng] in decreasing order
k=1
»  New projection basis c= ( Ul 2 gre )
»  Errorinsnapshot: . e e
J(C',...C™)= > Vyk= Y N\

N

NS
C’ ) ( 3 )\i>
. 1=n.+1

(imﬂ'ﬁ)é (ZA)
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"

Fy -
G\l Rl )\ UNIVERSITE DU
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6 € [15° 45°]

initial crack 2
large number of 5

unknowns

>

ASS U RNNNRSNNSNNSY

.

A

SOONNNNNANNANNN
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Compute particular realisations
v (snapshots)
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Data compression: fracture i
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——="  Data compression: parametric (random) fracture il
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Global Snapshot POD (snapshot space is
spanned by the ensemble of solutions at all time
steps for successive realisations)
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Can we do something about it?
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Error in one particular realisation il
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® Yes (ouf...), the error is local!

»  Errorin the First of ten realisations used to build the reduced model
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® 10 realisations
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® Solution increment decomposed into two contributions

AU = AU" + AUY)  where = ()

T— extractor

“fully resolved” (master): cannot or should not be approximated in a Ritz
basis

(r)

® Approximation of the slave part: AU = (E”g) a

AU =P"Ca+ EDOT AT where P = E(T)TE(T)
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final damage steps
obtained in 30 time steps
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e Example: snapshot TTIRIT
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Snapshot: solution of a nearby problem
A (30 time steps)

Different location of the
applied forces
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® master degrees of freedom corresponding to the nodes connected to elements undergoing significant
damage increments

® Update at each time increment

Time step 4 Time step 30
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Results: no global correction
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® Idea: if the norm of the residual of the full problem is too large, enrich the ROM before the next Newton
iteration by a coarse iterative solution of the full linearized problem

® Tool: projected conjugate gradient [Dostal ‘88] on the linearized problem K dU=R

4 splitting of the search space: R = Im(g) ® Im(g)LéT
§U = 6U. + 66U, wh 9Uc = Cda € Im(C)
— O e TR MIIC | 5Uy € Im(C) M = Ker(CTK,,)

4 Orthogonality insured by a projector
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® Idea: if the norm of the residual of the full problem is too large, enrich the ROM before the next Newton
iteration by a coarse iterative solution of the full linearized problem

® Tool: projected conjugate gradient [Dostal ‘88] on the linearized problem K dU=R

Mo _ 1k
4 splitting of the search space: R™ = Im(g) ® Im(g) Er

8U. = Cda € Im(C)
dUy € Im(C) =r = Ker(C'K,.

~—

0U =46U- + 46U, where {

4 Orthogonality insured by a projector U = gd + EJ_UK where 2 = ;d — g(gTéTg)_lngT

> Yields two uncoupled systems:

coarse scale, solved by a direct solver:

fine scale, solved approximately by the conjugate gradient: (
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® Not areduced order model anymore (ROM of only one part of the DOF)!

® Successive linearisation in the Newton process:

aX X=X o -

(rr)yi (rf),i i r),i
() () ()
Kirn Erig’ ou Ry ™

® Linear solver?

» direct: the information from the snapshot is not used

P iterative with reduced order model as a
preconditioner
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———  MOR-based preconditioner
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® Condensation on the master degrees of freedom
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———  MOR-based preconditioner
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® Condensation on the master degrees of freedom
1
(f) — w(ff) (fr) (rr) (rf)
sOou =RY | where s} - K - K7D (K7R) K4
f f) r rr)\ T)
RO - RY K7 (K57) B

dU") = P"Csa with da = (g;";i) B (Bg) —Eﬁ{)‘s—Um)

® Projected conjugate gradient on the condensed problem

n Lo
splitting of search space R/ = Im(g(f)) &) Im(C(f))Wﬁgfre c) = E(f)g

() _ (D) g (D) ")
su = sug + ouy o =L ea GIm(C 7)
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Two uncoupled systems:
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T (f) _ pTy(f)
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erc

bordasS@cardiff.ac.uk, stephane.bordas@alum.northwestern.edu


mailto:email@cardiff.ac.uk

CARDIFF

UNIVERSITY

PRIFYSCOL

CQRDY®

Results: MOR-based preconditioner
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Jwrop(C, a) = /

/ B((t, 1) [U(E) — Ce)(ts )| ar
nET JteT -

IX[IE = X"LX

é diagonal operator with non-negative entries

Jrop(C, o) = /

pneT

/Mcp((t, I — Ca)(t, 1)L at ap
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o rind (€ Q) minimising

Jwron(C.a) = [ . / (6 m)IU) ~ Ce)(t ) et

® Update the weights (@(t, 1), &) that JPOD(27 a)
decreases sufficiently

® convergence check
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® Inourcase:

Jweon(C,) = ) [[U(®H) - gg(t,u)IER

HEP,teT

ER = ER ER diagonal boolean matrix, starting with identity

® Update:

P — ER EUP

Jwron(C ) = Y e(t, ) Pe(t, )
BEPtET

JWPOD C a Z Z t 2 PRzz Z Z t y PRu
BHEPteT i=1 1=1 peP,teT

Pup;; = (1 —04) J = argmax;cq n] Z €; (t, 1) Pry;

BEPtET
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