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Highlights 
 

·  We propose a new inverse tangent shear deformation theory (ITSDT) for laminated 

composite-material plates. 

·  The method does not require any shear correction factors due to using high-order 

deformation plate theory (HSDT). 

·  Static, free vibration and buckling plate models based on ITSDT are numerically 

solved using an isogeometric analysis (IGA) 

·  The proposed formulation requires C1-continuity generalized displacements and 

hence basis functions used in IGA fulfill this requirement. 

·  Intensive numerical studies have been conducted to show excellent performance of 

the present method.  
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Abstract

This paper presents a new inverse tangent shear deformation theory (ITSDT) for the static, free
vibration and buckling analysis of laminated composite and sandwich plates. In the present theory,
shear stresses are vanished at the top and bottom surfaces of the plates and shear correction factors
are no longer required. A weak form of the static, free vibration and buckling models for laminated
composite and sandwich plates based on ITSDT is then derived and is numerically solved using
an isogeometric analysis (IGA). The proposed formulation requiresC1-continuity generalized dis-
placements and hence basis functions used in IGA ful�ll this requirement. Numerical examples are
provided to show high ef�ciency of the present method compared with other published solutions.

Keywords: Isogeometric analysis, laminated composite and sandwich plates, inverse
trigonometric shear deformation theory

1. Introduction

In the past few decades, developments in science and technology have created motivations for
researchers to �nd on new structural materials such as composite and sandwich. These materials
have been used in various engineering disciplines such as aerospace engineering, automotive en-
gineering, civil engineering, etc. Plates are an important part of many structures. Laminated com-
posite plates are often made of several orthotropic layers and bonded together to achieve superior
properties such as high stiffness and strength-to-weight ratios, long fatigue life, wear resistance,
lightweight, etc. Especially, for sandwich plates, inner layers are replaced by a core which has low
stiffness. Therefore, a good understanding of bending behavior, stress distribution, dynamic and
buckling responses of the plates is necessary for researchers and users.

� Corresponding author. Email address: nxhung@hcmus.edu.vn (H. Nguyen-Xuan)
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Several laminated plate theories have been investigated for composite and sandwich plates. The
classical laminate plate theory (CLPT) [1] is only suitable for thin plates. The �rst-order shear de-
formation theory (FSDT) [2], which shear deformation effect is regarded, can be applied for both
moderately thick and thin plates. The FSDT does not satisfy free boundary conditions on the lower
and upper surface of the plates, and hence shear correction factors need to be involved. To avoid
using shear correction factors, many higher order shear deformation theories have been devised
by the researchers, e.g, Ambartsumian [3], Reissner [4], Levinson [5], Reddy [6], Soldatos [7],
Karamaet al. [8] and Aydogdu [9], etc. Classically, �rst-order and higher-order theories are used
the equivalent single-layer models (ESL), which consider the same degrees of freedom for all lam-
inate layers. In addition, several other equivalent-single-layer models for laminated plates have
been proposed accounting for zig-zag effects and ful�llment of interlaminar continuity. Among
these the one by Mau [10], Chou and Carleone [11], Di Sciuva [12], Toledano and Murakami [13],
Ren [14] and Castroet al. [15] are herein mentioned. Mixed layer-wise and equivalent-single-
layer theories based on Reissener Mixed Variational Theorem have been discussed by Carrera
[16, 17, 18]. A historical review encompassing early and recent developments of advanced theo-
ries for laminated beams, plates and shells was revisited in [19]. Interested readers are addressed
to that last paper for a more complete review on relevant topics.

In the effort to development of advanced computational methodologies, Hugheset al. [20] have
recently proposed an isogeometric analysis (IGA) that bridges the gap between Computer Aided
Design (CAD) and Finite Element Analysis (FEA). It means that the IGA uses basis functions
generated from Non-Uniform Rational B-Splines (NURBS) in order to describe both the geom-
etry and the unknown variables of the problem. Therefore, the process of meshing in IGA can
be omitted and the two models for CAD and FEA integration into one. The main advantages of
IGA are ability to represent exactly domains being conic sections and higher order approximation
with arbitrarily high smoothness. In IGA, the exact geometry is maintained at the coarsest level of
discretization and re-meshing is performed on this level without any further communication with
CAD geometry. Furthermore, B-splines (or NURBS) provide a �exible way to perform re�ne-
ment (orh-re�nement), and degree elevation [21]. Isogeometric analysis has been applied to a
wide range of practical mechanics problems such as structural vibrations [22], nearly incompress-
ible linear and nonlinear problems [23], structural shape optimization [24], Kirchhoff-Love shell
[25, 26, 27], isotropic Reissner-Mindlin shell [28], laminated composite/functionally graded plates
based on FSDT [29, 30, 31]/HSDT [32, 33], and rotation-free shells [34], etc.

In this paper, an effectively approximate formulation based on a NURBS-based isogeometric
analysis associated with a new inverse tangent shear deformation theory (ITSDT) is presented for
static, free vibration and buckling analysis of laminated composite and sandwich plates. An in-
verse tangent function can be expressed by means of Taylor expansion, that has more general form
than the classical polynomial. Generalized displacements are constructed using the NURBS basis
functions that can yield higher-order continuity and ful�ll easily the requirement ofC1-continuity
of the HSDT models. Several numerical examples are illustrated to show high effectiveness of
the present method. Obtained results are well compared with exact three-dimensional elasticity,
analytical or semi-analytical and other numerical solutions.

The paper is arranged as follows: a brief on the B-spline and NURBS surface is described in

2
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section 2. Section 3 presents a formulation of a NURBS-based isogeometric analysis for composite
sandwich plates. Several numerical examples are provided in section 4. Finally we close our paper
with some concluding remarks.

2. A brief of NURBS functions

2.1. Knot vectors and basis functions

Let X =
�
x1;x2; :::;xn+ p+ 1

�
be a nondecreasing sequence of parameter values,xi � xi+ 1; i =

1; :::;n+ p. Thexi are called knots, andX is the set of coordinates in the parametric space. If all
knots are equally spaced the knot vector is called uniform. If the �rst and the last knots are repeated
p+ 1 times, the knots vector is described as open. A B-spline basis function isC¥ continuous inside
a knot span andCp� 1 continuous at a single knot. A knot value can appear more than once and is
then called a multiple knot. At a knot of multiplicityk the continuity isCp� k. Given a knot vector,
the B-spline basis functionsNi;p(x ) of orderp = 0 are de�ned as follows

Ni;0(x ) =

(
1 xi � x < xi+ 1

0 otherwise
(1)

The basis functions of orderp > 0 is de�ned by the following recursion formula [35]

Ni;p (x ) =
x � xi

xi+ p � xi
Ni;p� 1 (x )+

xi+ p+ 1 � x
xi+ p+ 1 � xi+ 1

Ni+ 1;p� 1 (x ) with p = ( 1;2;3; :::) (2)

For p = 0 and 1, the basis functions of isogeometric analysis are identical to those of standard
piecewise constant and linear �nite elements, respectively. In IGA, the basis functions withp � 2
are considered [20]. Fig. 1 illustrates a set of one-dimensional and two-dimensional cubic B-spline
basis functions for open uniform knot vectorsX = f 0;0;0;0; 1

2;1;1;1;1g.

0 1/2 1
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0.1

0.2

0.3

0.4

0.5

0.6
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(a) 1D (b) 2D

Figure 1: 1D and 2D cubic B-spline basis functions.
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2.2. NURBS surface

The B-spline curve is de�ned as

C(x) =
n

å
i= 1

Ni;p (x ) Pi (3)

wherePi are the control points,n denotes the number of control points andNi;p (x ) is thepth-degree
B-spline basis function de�ned on the open knot vector.

Given two knot vectorsX =
�

x1;x2; :::;xn+ p+ 1
	

andH =
�

h1;h2; :::;hm+ q+ 1
	

and a control
netPi; j , a tensor-product B-spline surface is de�ned as

S (x ;h ) =
n

å
i= 1

m

å
j= 1

Ni;p (x ) M j ;q (h ) Pi; j (4)

whereNi;p (x ) andM j ;q (h ) are the B-spline basis functions de�ned on the knot vectorsX andH ,
respectively.

In a �nite element context, we identify the logical coordinates (i, j) of the B-spline surface with
the traditional notation of a “node”I [28] and rewrite Eq. (4) as follows

S (x ;h ) =
n� m

å
I

Nb
I (x ;h ) PI (5)

whereNb
I (x ;h ) = Ni;p (x ) M j ;q (h ) is the shape function associated with a nodeI . The superscript

b indicates thatNb
I (x ;h ) is a B-spline shape function.

Non-uniform rational B-splines (NURBS) are obtained by augmenting every point in the con-
trol meshPI with the weightswg

I . The weighting function is constructed as follows

wg (x ;h ) =
n� m

å
I= 1

Nb
I (x ;h ) wg

I (6)

The NURBS surfaces are then de�ned by

S (x ;h ) =

n� m
å

I= 1
Nb

I (x ;h ) wg
I PI

wg (x ;h )
=

n� m

å
I= 1

NI (x ;h )PI (7)

whereNI (x ;h ) = Nb
I (x ;h ) wg

I =wg (x ;h ) are NURBS basis functions.

3. An isogeometric laminated plate formulation using a new inverse tangent shear deforma-
tion theory

3.1. The displacements, strains and stresses in plates

Let W be the domain inR2 occupied by the mid-plane of the plate andu0, v0, w and b =
(bx;by)T denote the displacement components in thex;y;z directions and the rotations in thex� z
andy� z planes (or the-y and the-x axes), respectively, see Fig. 2. A generalized �ve-parameter

4
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Table 1: Several trigonometric shear deformation theories
Theory f (z)
Arya [38] (2002) sin

� pz
h

�

Touratier [39] (1991) h
p sin

� pz
h

�

Soldatos [7] (1992) hsinhz
h� zcosh( 1

2)
Proposed model harctan

� 2z
h

�
� z

displacement �eld based on higher-order shear deformation theories [7, 9, 36, 37] are de�ned as
follows

u(x;y;z) = u0 (x;y) � z
¶w
¶x

+ f (z) bx (x;y)

v(x;y;z) = v0 (x;y) � z
¶w
¶y

+ f (z) by (x;y)

w(x;y;z) = w(x;y)

(8)

Figure 2: Geometry of a plate.

wheref (z) is shape function determining the distribution of the transverse shear strains and stresses
through the thickness of plates. This distribution function is chosen so that tangential stress-free
boundary conditions at the top and bottom surfaces of the plates are satis�ed. In the present formu-
lation, an inverse tangent function is proposed. Several trigonometric shape functions derived by
other researchers are listed in Table 1. Shape functions and derivation of its through the thickness
of the plate are illustrated in Fig. 3. It be can seen that the zeros shear stress conditions at the top
and bottom surfaces of the plates are obtained.
The in-plane strain vectorep =

�
exx eyy gxy

� T can be rewritten as

ep = e0 + ze1 + f (z)e2 (9)

where

5
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Figure 3: Shape functionsf (z)) and its derivation through the thickness of the plate.

e0 =

2

6
6
6
6
6
4

¶u0

¶x
¶v0

¶y
¶u0

¶y
+

¶v0

¶x

3

7
7
7
7
7
5

; e1 =

2

6
6
6
6
6
6
4

�
¶2w
¶x2

�
¶2w
¶y2

� 2
¶2w
¶x¶y

3

7
7
7
7
7
7
5

; e2 =

2

6
6
6
6
6
4

¶bx

¶x
¶by

¶y
¶bx

¶y
+

¶by

¶x

3

7
7
7
7
7
5

and the transverse shear strain vectorg = [ gxz gyz]
T has the following form

[gxz gyz]
T = g(z)es (10)

where

es =
�

bx
by

�
; g(z) =

d f (z)
dz

Neglectingsz for each orthotropic layer, the constitutive equation of an orthotropic layer in the
local coordinate system is derived from Hookes law for a plane stress by

8
>>>>>><

>>>>>>:

s (k)
1

s (k)
2

t (k)
12

t (k)
13

t (k)
23

9
>>>>>>=

>>>>>>;

=

2

6
6
6
6
4

Q11 Q12 0 0 0
Q12 Q22 0 0 0
0 0 Q33 0 0
0 0 0 Q55 0
0 0 0 0 Q44

3

7
7
7
7
5

(k)
8
>>>>>><

>>>>>>:

e(k)
1

e(k)
2

g(k)
12

g(k)
13

g(k)
23

9
>>>>>>=

>>>>>>;

(11)

where subscripts 1 and 2 are the directions of the �ber and in-plane normal to �ber, respectively,
subscript 3 indicates the direction normal to the plate; and the reduced stiffness components,Q(k)

i j ,

6
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are given by

Q(k)
11 = E(k)

1

1� n(k)
12 n(k)

21

;Q(k)
12 = n(k)

12 E(k)
2

1� n(k)
12 n(k)

21

; Q(k)
22 = E(k)

2

1� n(k)
12 n(k)

21

Q(k)
33 = G(k)

12 ; Q(k)
55 = G(k)

13 ; Q(k)
44 = G(k)

23

(12)

in whichE(k)
1 , E(k)

2 , G(k)
12 , G(k)

23 , n(k)
12 andn(k)

21 are independent material properties for each layer.
The laminate is usually made of several orthotropic layers. Each layer must be transformed into
the laminate coordinate system (x;y;z). The stress - strain relationship is given as

8
>>>><

>>>>:

sxx
syy
t xy
t xz
t yz

9
>>>>=

>>>>;

(k)

=

2

6
6
6
6
4

Q̄11 Q̄12 Q̄16 0 0
Q̄21 Q̄22 Q̄26 0 0
Q̄61 Q̄62 Q̄66 0 0
0 0 0 Q̄55 Q̄54
0 0 0 Q̄45 Q̄44

3

7
7
7
7
5

(k)8
>>>><

>>>>:

exx
eyy
gxy
gxz
gyz

9
>>>>=

>>>>;

(k)

(13)

whereQ̄i j is the transformed material constant matrix (see [40] for more details).

3.2. Weak form

A weak form of the static model for composite sandwich plates using HSDT can be brie�y
expressed as Z

W
deT

pD̄epdW+
Z

W
des

TDsesdW=
Z

W
dwp̄dW (14)

wherep̄, ep =
�

e0 e1 e2
� T andes are the transverse loading per unit area, in-plane strains and

transverse shear strains vector, respectively, and

D̄ =

2

4
A B E
B D F
E F H

3

5

�
Ai j ;Bi j ;Di j ;Ei j ;Fi j ;Hi j

�
=

Rh=2
� h=2

�
1;z;z2; f (z);z f(z); f 2(z)

�
Q̄i j dz (i; j = 1;2;6)

Ds
i j =

Rh=2
� h=2

�
g2(z)

�
Q̄i j dz (i; j = 4;5)

For the free vibration analysis of composite sandwich plates using HSDT, a weak form may be
derived from the dynamic form of the principle of virtual work

Z

W
deT

pD̄epdW+
Z

W
des

TDsesdW=
Z

W
dũTm¨̃udW (15)

where

m =

2

4
I1 I2 I4
I2 I3 I5
I4 I5 I6

3

5 ; (I1; I2; I3; I4; I5; I6) =
Rh=2

� h=2 r
�
1;z;z2; f (z);z f(z); f 2(z)

�
dz

in which ũ =
�

u0 u1 u2
� T and
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u0 =

2

4
u0
v0
w

3

5 ; u1 =

2

6
6
6
4

�
¶w
¶x

�
¶w
¶y
0

3

7
7
7
5

; u2 =

2

4
bx
by
0

3

5

In the case of in-plane buckling analysis and assuming pre-buckling stressesŝ 0, nonlinear
strains are taken into account in the weak form as

Z

W
deT

pD̄epdW+
Z

W
des

TDsesdW+ h
Z

W
ÑTdwŝ 0ÑwdW= 0 (16)

whereÑT = [ ¶=¶x ¶=¶y] and ŝ 0 =
�

s 0
x t 0

xy
t 0

xy s 0
y

�
are the gradient operator and in-plane pre-

buckling stresses, respectively.
Using NURBS basis functions, the �eld variables are the in-plane extensions, transverse de-

�ection and the rotations at all control points, which can be expressed as

u =

8
>>>><

>>>>:

u0
v0
w
bx
by

9
>>>>=

>>>>;

=
n� m

å
I= 1

2

6
6
6
6
4

NI 0 0 0 0
0 NI 0 0 0
0 0 NI 0 0
0 0 0 NI 0
0 0 0 0 NI

3

7
7
7
7
5

8
>>>><

>>>>:

uI
vI
wI
bxI
byI

9
>>>>=

>>>>;

=
n� m

å
I= 1

NIqI (17)

wheren� mis the number basis functions,NI andqI = [ uI vI wI bxI byI]T are rational basis
functions and the degrees of freedom ofu associated with a control pointI , respectively.

The in-plane strains, shear strains and geometrical strains are written as:

�
ep g

� T =
n� m

å
I= 1

�
Bb0

I Bb1
I Bb2

I Bs
I

� T
qI =

n� m

å
I= 1

BIqI ; eg =
n� m

å
I= 1

Bg
I qI (18)

where

Bb0
I =

2

4
NI ;x 0 0 0 0
0 NI ;y 0 0 0

NI ;y NI ;x 0 0 0

3

5 ; Bb1
I =

2

4
0 0 � NI ;xx 0 0
0 0 � NI ;yy 0 0
0 0 � 2NI ;xy 0 0

3

5 ; Bb2
I =

2

4
0 0 0 NI ;x 0
0 0 0 0 NI ;y
0 0 0 NI ;y NI ;x

3

5

and

Bs
I =

�
0 0 0 NI 0
0 0 0 0 NI

�
; BI =

�
Bb0

I Bb1
I Bb2

I Bs
I

� T

For static analysis, the stiffness formulation is written as

Kq = f; (19)

For free vibration analysis, one forms
�
K � w2M

�
q = 0; (20)
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And for buckling analysis, we have

(K � l crKg) q = 0 (21)

whereK is the global stiffness matrix

K =
Z

W

8
><

>:

2

4
Bb0

Bb1

Bb2

3

5

T 2

4
A B E
B D F
E F H

3

5

2

4
Bb0

Bb1

Bb2

3

5 + ( Bs)T DsBs

9
>=

>;
dW (22)

f =
Z

W
p̄NdW (23)

in which f is the load vectors andM is the global mass matrix

M =
Z

W

8
><

>:

2

4
N0
N1
N2

3

5

T 2

4
I1 I2 I4
I2 I3 I5
I4 I5 I6

3

5

2

4
N0
N1
N2

3

5

9
>=

>;
dW (24)

where

N0 =

2

4
NI 0 0 0 0
0 NI 0 0 0
0 0 NI 0 0

3

5 ; N1 =

2

4
0 0 � NI ;x 0 0
0 0 � NI ;y 0 0
0 0 0 0 0

3

5 ; N2 =

2

4
0 0 0 NI 0
0 0 0 0 NI
0 0 0 0 0

3

5

and the global geometrical stiffness matrixKg is

Kg =
Z

W
(Bg)T t BgdW; t = hŝ 0 (25)

in which r , h, w andl cr are the mass density, the thickness, the natural frequency and the critical
buckling load, respectively.

3.3. Essential boundary conditions

In this part, we show how to impose essential boundary conditions of the isogeometric ap-
proach. For the sake of simplicity we consider several following Dirichlet boundary conditions
(BCs):

� Simply supported rectangular plates:

u0(xD) = v0(xD) = w(xD) = bn(xD) = 0 (26)

wherebn(xD) is the normal rotation constraint andxD are control points that de�ne the
essential boundary.

� Simply supported plates with curved boundaries:

u0(xD) = v0(xD) = w(xD) = 0 (27)

9
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� Clamped plate model:

u0(xD) = v0(xD) = w(xD) = bx(xD) = by(xD) = w;n(xD) = 0 (28)

It is worth noting that the enforcement of Dirichlet BCs onu0;v0;w;bx and by is treated as in
the standard FEM. This procedure involves only control points that de�ne the essential boundary.
However, for the derivativesw;x, w;y occurred in (8), the enforcement of Dirichlet BCs can be
solved in a special way based on stream function formulation proposed by Auricchioet al. [41].
To end this, the derivativesw;x, w;y can be included in a compact form of the normal slope at the
boundary as follows

¶w
¶n

= lim
Dn! 0

w(n(xD) + Dn) � w(n(xD))
Dn

= 0 (29)

Due tow(n(xD)) = 0 atxD, Eq.(29) implies that in the framework of IGA we impose simply same
boundary values, i.e, zero values, on the de�ection variable at control pointsxA adjacent to the
boundary control pointsxD [41]. It be can observed that essential boundary condition using this
way is very simple to implement in the isogeometric approach in comparison with other numerical
methods. We will show in the next section that this procedure results in a high accuracy for analysis
of multilayered plates.

4. Numerical results and discussion

Several examples of the laminated composite and sandwich plates for static, free vibration and
buckling analysis have been presented to demonstrate the performance of the proposed theory. For
the sake of simplicity and without loss of generality, we only consider the IGA with using NURBS
cubic basis functions (p = 3). Additionally, besides the proposed model, the IGA is also applied
for the �rst time to three different trigonometric shear deformation theory models [38, 39, 7]. The
results obtained from the present solutions have been compared with other published ones.
The material parameters used in this study are listed below:

� MaterialI :
E1 = 25E2, , G12 = G13 = 0:5E2, G23 = 0:2E2, n12 = 0:25,r = 1.

� MaterialII [42]:
Face sheets:
E1 = 172:375 GPa, E2 = E3 = 6:895 GPa, G12 = G13 = 3:448 GPa, G23 = 1:379 GPa,
n12 = n23 = n13 = 0:25.
Core:
E1 = 0:2758GPa, E2 = 0:2758GPa, E3 = 3:4475GPa, G12 = G13 = G23 = 0:4137GPa,
n12 = 0:25,n23 = n13 = 0:02.

� MaterialIII : [43]
E1 = 40E2, G12 = G13 = 0:6E2, G23 = 0:5E2, n12 = 0:25,r = 1.

10
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� MaterialIV [44]:
Face sheets:
E1 = 131 GPa, E2 = E3 = 10:34 GPa, G12 = G23 = 6:895 GPa, G13 = 6:205 GPa, n12 =
n13 = 0:25;n23 = 0:49,r = 1627kg=m3.
Core:
E1 = 6:89MPa, E2 = 6:89MPa, E3 = 6:89MPa, G12 = G13 = G23 = 3:45MPa, n12 = n23 =
n13 = 0, r = 97kg=m3.

� MaterialV: [45]
E1 = 2:45E2, G12 = G13 = 0:48E2, G23 = 0:2E2, n12 = 0:23,r = 1.

� MaterialV I [46]:
Face sheets:
E1=E2 = 19,G12=E2 = G13=E2 = 0:52,G23=E2 = 0:338,n12 = n13 = 0:32,n23 = 0:49.
Core:
E1=E f

2 = 3:2� 10� 5, E2=E f
2 = 2:9� 10� 5, E3=E f

2 = 0:4, G12=E f
2 = 2:4� 10� 3.

G13=E f
2 = 7:9� 10� 2, G23=E f

2 = 6:6� 10� 2, n12 = 0:99,n23 = n13 = 3� 10� 5.
in whichE f

2 refers to that of face sheets.

4.1. Static analysis

4.1.1. Four layer[00=900=900=00] square laminated plate under sinusoidally distributed load
We now consider a simply supported square laminated plate subjected to a sinusoidal loadq,

see Fig. 4. The length to width ratios isa=b=1 and the length to thickness ratios area=h= 4, 10,
20, 100. MaterialI is used. The normalized displacement and stresses are de�ned as

v = ( 100E2h3)w( a
2; a

2;0)=(qa4); s̄xx = h2

qb2sxx(a=2;a=2;h=2)

s̄yy = h2

qb2syy(a=2;a=2;h=4); t̄ xy = h2

qb2sxy(0;0;h=2)

t̄ xz = h
qbsxz(0;b=2;0); t̄ yz = h

qbsyz(a=2;0;0)

We �rst investigate the convergence of the normalization displacement and stresses ata=h =4. The
plate is modeled with 9� 9, 13� 13 and 17� 17 elements as shown in Fig. 5. The exact 3D elas-
ticity solution of this problem was given by Pagano [47]. Table 7 shows the convergence of the
normalization displacement and stresses of the IGA based on the present theory and the different
trigonometric shear deformation theories (dTrSDTs) [38, 39, 7]. The relative error percentages
compared with the exact 3D elasticity solution [47] are given in a parentheses. It be can observed
that the obtained results agree very well with the exact values. Compared to the different trigono-
metric shear deformation theories, the IGA using the present theory produces more accurate results
for both displacement and stresses.
For a comparison, the normalized displacement and stresses of a four layer simply supported square
plate are computed using 17� 17 B-spline elements. The obtained results of the IGA based on the
present theory are compared with those of the several other methods based on other higher-order
shear deformation theories such as the closed form solution (CSF) based on the HSDT by Reddy
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[6], the �nite strip method (FSM) based on HSDT by Akhraset al.[48], the multiquadric radial ba-
sis function method (RBFs) based on a �nite point formulation and HSDT by Ferreiraet al. [49],
the closed form solution based on a trigonometric shear deformation theory (TrSDT) by Mantari
et al. [50], the closed form solution based on an exponential shear deformation theory (ESDT)
by Karamaet al. [51], the IGA based on the dTrSDTs [38, 39, 7] and an exact 3D elasticity ap-
proach studied by Pagano [47]. Table 3 is provided the comparison between the present method
and other methods. It is seen that the IGA based on the present theory shows a strong competitor
to other reference ones for all ratiosa=h. The normalized displacement and stresses of the present
approach are in excellent agreement with the exact solution [47]. It is seen for thick plate cases
(a=h = 4;10) that the ITSDT yields better results than the HSDT [6, 48, 49], ESDT [51] and the
dTrSDTs [38, 39, 7] in comparison with the exact solution [47]. For thin plate case (a=h = 100),
the difference between the solutions are not signi�cant for all displacement and stresses. Fig. 6
plots the distribution of stresses through the thickness of a four-layer the square plate witha=h
= 4 and 10, respectively. It is worth noting that the present ITSDT model re�ects well the shear
stresses pro�les through the plate thickness. From Table 3, it is worth noting that results derived
from two published models in [38] and [39] are coincided. Therefore in next examples, only the
model provided in [38] is illustrated.

Figure 4: Geometry of a square laminated plate under sinusoidally and uniformly distributed load.

(a) (b) (c)

Figure 5: Meshes and control net of a square plate using cubic elements: a) 9� 9; b) 13� 13 and c) 17� 17.

12



ACCEPTED MANUSCRIPT

Table 2: The convergence of the normalized displacement and stresses of a four-layer[00=900=900=00] laminated
composite square plate (a=h = 4)

Method Nor. sol. Mesh
9� 9 13� 13 17� 17

IGA (Arya [38]) w̄ 1.9086 (2:32%) 1.9087 (2:32%) 1.9088 (2:31%)
IGA (Toutatier [39]) 1.9086 (2:32%) 1.9087 (2:32%) 1.9088 (2:31%)
IGA (Soldatos [7]) 1.8919 (3:18%) 1.8920 (3:17%) 1.8920 (3:17%)
IGA (present) 1.9256 (1:45%) 1.9257 (1:45%) 1.9258 (1:44%)
Elasticity [47] - - 1.954

IGA (Arya [38]) s̄xx 0.6863 (4:68%) 0.6845 (4:93%) 0.6839 (5:01%)
IGA (Toutatier [39]) 0.6863 (4:68%) 0.6845 (4:93%) 0.6839 (5:01%)
IGA (Soldatos [7]) 0.6669 (7:37%) 0.665 (7:64%) 0.6644 (7:72%)
IGA (present) 0.7186 (0:19%) 0.7169 (0:43%) 0.7164 (0:50%)
Elasticity [47] - - 0.720

IGA (Arya [38]) s̄yy 0.6337 (4:85%) 0.6344 (4:74%) 0.6346 (4:71%)
IGA (Toutatier [39]) 0.6337 (4:85%) 0.6344 (4:74%) 0.6346 (4:71%)
IGA (Soldatos [7]) 0.6307 (5:30%) 0.6314 (5:20%) 0.6316 (5:17%)
IGA (present) 0.6372 (4:32%) 0.6378 (4:23%) 0.6381 (4:19%)
Elasticity [47] - - 0.666

IGA (Arya [38]) s̄xy 0.0450 (3:64%) 0.0450 (3:64%) 0.0450 (3:64%)
IGA (Toutatier [39]) 0.0450 (3:64%) 0.0450 (3:64%) 0.0450 (3:64%)
IGA (Soldatos [7]) 0.0439 (6:00%) 0.0439 (6:00%) 0.0439 (6:00%)
IGA (present) 0.0467 (0:00%) 0.0467 (0:00%) 0.0467 (0:00%)
Elasticity [47] - - 0.0467

IGA (Arya [38]) s̄xz 0.2163 (19.89%) 0.2162 (19:93%) 0.2162 (19:93%)
IGA (Toutatier [39]) 0.2163 (19.89%) 0.2162 (19:93%) 0.2162 (19:93%)
IGA (Soldatos [7]) 0.2056 (23:85%) 0.2055 (23:89%) 0.2055 (23:89%)
IGA (present) 0.2397 (11:22%) 0.2396 (11:26%) 0.2396 (11:26%)
Elasticity [47] - - 0.270

IGA (Arya [38]) s̄yz 0.2462 (15:40%) 0.2461 (15:43%) 0.2461 (15:43%)
IGA (Toutatier [39]) 0.2462 (15:40%) 0.2461 (15:43%) 0.2461 (15:43%)
IGA (Soldatos [7]) 0.2383 (18:11%) 0.2382 (18:14%) 0.2382 (18:14%)
IGA (present) 0.2624 (9:83%) 0.2624 (9:83%) 0.2624 (9:83%)
Elasticity [47] - - 0.291
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Table 3: The normalized displacement and stresses of a supported simply[00=900=900=00] square laminated plate
under a sinusoidally distributed load.

a=h Method w̄ s̄xx s̄yy s̄xy s̄xz s̄yz

4 CFS-HSDT [6] 1.8939 0.6806 0.6463 0.0450 0.2109 0.2390
FSM-HSDT [48] 1.8937 0.6651 0.6322 0.0440 0.2064 -
RBFs-HSDT [49] 1.8864 0.6659 0.6313 0.0433 0.1352 -
CFS-TrSDT [50] 1.921 0.74 0.635 0.048 0.254 0.269
CFS-ESDT [51] 1.919 0.699 0.636 0.0459 0.226 0.253
Elasticity [47] 1.954 0.720 0.666 0.0467 0.270 0.291
IGA (Arya ) 1.9088 0.6839 0.6346 0.0450 0.2162 0.2461
IGA (Touratier [39]) 1.9088 0.6839 0.6346 0.0450 0.2162 0.2461
IGA (Soldatos ) 1.8920 0.6644 0.6316 0.0439 0.2055 0.2382
IGA (present) 1.9258 0.7164 0.6381 0.0467 0.2396 0.2624

10 CFS-HSDT [6] 0.7149 0.5589 0.3974 0.0273 0.2697 0.1530
FSM-HSDT [48] 0.7147 0.5456 0.3888 0.0268 0.2640 -
RBFs-HSDT [49] 0.7153 0.5466 0.4383 0.0267 0.3347 -
CFS-TrSDT [50] 0.730 0.561 0.395 0.028 0.335 0.176
CFS-ESDT [51] 0.724 0.553 0.393 0.027 0.294 0.163
Elasticity [47] 0.743 0.559 0.403 0.0276 0.301 0.196
IGA (Arya ) 0.7198 0.5486 0.3905 0.0270 0.2787 0.1582
IGA (Touratier [39]) 0.7198 0.5486 0.3905 0.0270 0.2787 0.1582
IGA (Soldatos ) 0.7142 0.5449 0.3881 0.0267 0.2627 0.1526
IGA (present) 0.7272 0.5552 0.3937 0.0273 0.3133 0.1704

20 CFS-HSDT [6] 0.5061 0.5523 0.311 0.0233 0.2883 0.1230
FSM-HSDT [48] 0.5060 0.5393 0.3043 0.0228 0.2825 -
RBFs-HSDT [49] 0.5070 0.5405 0.3648 0.0228 0.3818 -
CFS-TrSDT [50] 0.510 0.542 0.306 0.023 0.323 0.132
CFS-ESDT [51] 0.509 0.541 0.306 0.023 0.316 0.131
Elasticity [47] 0.517 0.543 0.309 0.0230 0.328 0.156
IGA (Arya ) 0.5075 0.5395 0.3046 0.0228 0.2989 0.1272
IGA (Touratier [39]) 0.5075 0.5395 0.3046 0.0228 0.2989 0.1272
IGA (Soldatos ) 0.5059 0.5385 0.3038 0.0228 0.2810 0.1231
IGA (present) 0.5098 0.5412 0.3058 0.0229 0.3372 0.1366

100 CFS-HSDT [6] 0.4343 0.5507 0.2769 0.0217 0.2948 0.1120
FSM-HSDT [48] 0.4343 0.5387 0.2708 0.0213 0.2897 -
RBFs-HSDT [49] 0.4365 0.5413 0.3359 0.0215 0.4106 -
CFS-TrSDT [50] 0.435 0.539 0.271 0.021 0.332 0.119
CFS-ESDT [51] 0.435 0.538 0.27 0.021 0.324 0.118
Elasticity [47] 0.4347 0.539 0.271 0.0214 0.339 0.141
IGA (Arya ) 0.4344 0.5380 0.2705 0.0213 0.3069 0.1148
IGA (Touratier [39]) 0.4344 0.5380 0.2705 0.0213 0.3069 0.1148
IGA (Soldatos ) 0.4343 0.5379 0.2704 0.0213 0.2882 0.1114
IGA (present) 0.4345 0.5380 0.2705 0.0213 0.3467 0.1229
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Figure 6: The distribution of stresses through the thickness of a four-layer[00=900=900=00] square plate under a
sinusoidally distributed load.
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4.1.2. Three layer[00=900=00] square laminated plate under sinusoidally distributed load
A three-layer[00=900=00] simply supported square laminated plate subjected to a sinusoidal

loadq as previous example is considered. The length to thickness ratios area=h= 4, 10, 20, 100,
respectively. MaterialI is also used. The normalized displacement and stresses of a square plate
are de�ned as:

v = ( 100E2h3)w( a
2; a

2;0)=(qa4); s̄xx = h2

qb2sxx(a=2;a=2;h=2)

s̄yy = h2

qb2syy(a=2;a=2;h=6); t̄ xy = h2

qb2sxy(0;0;h=2)

t̄ xz = h
qbsxz(0;b=2;0); t̄ yz = h

qbsyz(a=2;0;0)

Table 4 lists the results of the IGA based on present theory using 17� 17 cubic B-Spline elements.
Numerical solutions are compared to those reported in the literature such as the closed form solu-
tion based on HSDT by Reddy [6], the closed form solution based on ESDT by Karamaet al. [51],
the closed form solution based on TrSDT by Mantariet al. [50], the closed form solution based
on inverse hyperbolic shear deformation theory (IHSDT) by Groveret al. [52], the IGA solution
based on the dTrSDTs [38, 7] and an exact elasticity solution by Pagano [47]. The obtained results
indicate a reasonably good agreement with other available ones for alla=h ratios. The normalized
displacement and stresses derived from the present theory are more accuracy than those of HSDT
[6] and ESDT [51]. Also, the stresses pro�les through the thickness of the three-layer square lam-
inated plate witha=h = 4 and 10, respectively, are again displayed in Fig. 7.

4.1.3. Sandwich(00=core=00) square plate subjected under sinusoidally distributed load
Let us consider a sandwich(00=core=00) simply supported square plate subjected to a sinu-

soidally distributed load. The thickness of each face sheet is �xed ath=10. The length to thickness
ratios are used asa=h= 4;10;20;50;100. MaterialII is used in this example. The plate is modeled
by 17� 17 B-spline elements. The normalized transverse displacement and stresses are de�ned as
follows

w̄ = 100h3E2w(
a
2

;
a
2

;
h
2

)=q0a4, s̄x = h2sx(
a
2

;
a
2

;
h
2

)=q0a2,

s̄y = h2sy(
a
2

;
a
2

;
h
2

)=q0a2, s̄xy = h2sxy(0;0;
h
2

)=q0a2,

s̄xz = hsxz(0;
b
2

;0)=a, s̄yz = hsyz(
a
2

;0;0)=a.

Table 5 summarizes normalized transverse displacement and stresses derived from the IGA based
on present theory in comparison with the exact elasticity solution by Pagano [47], the closed form
solution by Kant and Swaminathan [42] based on FSDT & HSDT and our isogeometric approach
based on the dTrSDTs [38, 7]. Again, the present results are in good agreement with the ex-
act elasticity one [47] and also the analytical one [42]. It is evident that FSDT model leads to
inaccurate results compared to other models when the plate becomes thicker. Henceforth, this
shortcoming motivates the development of higher order shear deformation theories. It is worth
noting that our proposed method is completely relied on the numerical approximation and can
provide strongly competitive solutions to well-known analytical approaches. Fig. 8 exhibits the
distribution of stresses through the thickness of the plate using the present theory and the dTrSDTs
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Table 4: The normalized displacement and stresses of a supported simply[00=900=00] square laminated plate under a
sinusoidally distributed load

a=h Method w̄ s̄xx s̄yy s̄xy s̄yz s̄xz

4 CFS-HSDT [6] 1.9218 0.734 - - 0.183 -
CFS-TrSDT [50] 1.9434 0.823 0.497 0.0536 0.201 0.245
CFS-ESDT [51] 1.944 0.775 0.502 0.0516 0.191 0.220
CFS-IHSDT [52] 1.955 0.8079 0.5015 0.0532 0.2019 0.2438
Elasticity [47] 2.006 0.755 0.556 0.0505 0.217 0.282
IGA (Arya) 1.9346 0.7562 0.5029 0.0507 0.1877 0.2113
IGA (Soldatos) 1.9204 0.7333 0.5023 0.0496 0.1828 0.2016
IGA (present) 1.9515 0.7955 0.5020 0.0526 0.1974 0.2331

10 CFS-HSDT [6] 0.7125 0.568 - - 0.103 -
CFS-TrSDT [50] 0.7342 0.588 0.276 0.0288 0.115 0.314
CFS-ESDT [51] 0.723 0.576 0.272 0.0281 0.108 0.272
CFS-IHSDT [52] 0.7329 0.5845 0.2757 0.0286 0.1148 0.3091
Elasticity [47] 0.7405 0.590 0.288 0.0289 0.123 0.357
IGA (Arya) 0.7180 0.5723 0.2705 0.0279 0.1059 0.2583
IGA (Soldatos) 0.7120 0.5675 0.2685 0.0276 0.1031 0.2435
IGA (present) 0.7289 0.5809 0.2740 0.0284 0.1119 0.2924

20 CFS-TrSDT [50] 0.5113 0.551 0.206 0.0233 0.090 0.331
CFS-ESDT [51] 0.508 0.548 0.205 0.0231 0.086 0.285
CFS-IHSDT [52] 0.5102 0.5503 0.2065 0.0233 0.0903 0.3252
Elasticity [47] - 0.552 0.210 0.0234 0.094 0.385
IGA (Arya) 0.5057 0.5464 0.2046 0.0231 0.0842 0.2697
IGA (Soldatos) 0.5040 0.5452 0.2039 0.0230 0.0824 0.2536
IGA (present) 0.5089 0.5487 0.2058 0.0232 0.0883 0.3069

100 CFS-HSDT [6] 0.4342 0.539 - - 0.075 -
CFS-TrSDT [50] 0.4353 0.539 0.181 0.0214 0.081 0.337
CFS-ESDT [51] 0.435 0.538 0.18 0.0213 0.078 0.289
CFS-IHSDT [52] 0.4344 0.5392 0.1807 0.0214 0.0813 0.3309
Elasticity [47] - 0.539 0.181 0.0213 0.083 0.395
IGA (Arya) 0.4343 0.5383 0.1804 0.0213 0.0763 0.2738
IGA (Soldatos) 0.4342 0.5382 0.1803 0.0213 0.0749 0.2572
IGA (present) 0.4344 0.5384 0.1804 0.0214 0.0796 0.3121
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Figure 7: The distribution of stresses through the thickness of three layer[00=900=00] square plate under a sinusoidally
distributed load.
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[38, 7]. It is event that the present HSDT model produce truly the mechanical characterization of
the sandwich plates.

4.1.4. Three-layer sandwich square plate subjected to a uniform load
Let us consider a simply supported sandwich square plate proposed by Srinivas [53] subjected

to a uniform transverse loadq, as shown in Fig. 9. Length to thickness ratio,a=h, is taken as
10. The core thicknesshc to face sheet thickness ratiohf is �xed at 8 (hc=hf = 8). The laminate
sandwich plate is made of one inner layer (core), which has the following properties

Q̄core =

2

6
6
6
6
4

0:999781 0:231192 0 0 0
0:231192 0:524886 0 0 0

0 0 0:262931 0 0
0 0 0 0:266810 0
0 0 0 0 0:159914

3

7
7
7
7
5

and two outside layers (skins) are calculated as

Q̄skin = RQ̄core

The normalized displacement and stresses of the plate are de�ned as

w̄ = 0:999781w(
a
2

;
a
2

;0)=hq, s̄ 1
xx = s 1

xx(
a
2

;
a
2

;
h
2

)=q,

s̄ 2
xx = s 1

xx(
a
2

;
a
2

;
2h
5

)=q, s̄ 3
xx = s 2

xx(
a
2

;
a
2

;
2h
5

)=q,

s̄ 1
yy = s 1

yy(
a
2

;
a
2

;
h
2

)=q, s̄ 2
yy = s 1

yy(
a
2

;
a
2

;
2h
5

)=q, s̄ 3
yy = s 2

yy(
a
2

;
a
2

;
2h
5

)=q.

The exact solution of this problem was given by Srinivas [53]. For a comparison, we compute
the normalized displacement and stresses of the sandwich square plate using 17� 17 B-spline
elements. Obtained results from the IGA based on ITSDT are compared with those of the FEM
based on HSDT reported by Pandya and Kant [54], the multiquadric radial basis function method
(RBFs) based on a �nite point formulation and HSDT by Ferreiraet al. [49], the multiquadric
radial basis function method (RBFs) relied on the layerwise deformation theory (LW) by Ferreira
[55], the closed form solution based on IHSDT by Groveret al. [37], the closed form solution based
on ESDT by Mantariet al.[36], exact solution by Srinivas [53] and the IGA based on dTrSDTs
[38, 7]. The results with respect to various values ofR (R = 5;10;15) are given in Table 6. It is
observed that the obtained results from the IGA based on present theory and the dTrSDTs [38, 7]
are in close agreement with the exact solution and those solutions for all displacement and stresses.

4.2. Free vibration analysis

4.2.1. Square plates
4.2.1.1 Laminated composite square plate

Let us consider a four-layer[00=900=900=00] plate with simply supported boundary conditions.
Material III is used. The effects of the length to thicknessa=h and elastic modulus ratiosE1=E2
are studied. To show the convergence of the present approach, the length to thicknessa=h = 5 and
elastic modulus ratiosE1=E2 = 40 are chosen. As shown in Table 7, the normalized frequency are
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Table 5: The normalized displacement and stresses of a sandwich(00=core=00) simple supported square plate under a
sinusoidally distributed load

a=h Method w̄ s̄x s̄y s̄xy s̄xz s̄yz

4 CFS-HSDT [42]a 7.0551 1.5137 0.2648 0.1379 - -
CFS-HSDT [42]b 7.0873 1.4182 0.2365 0.1383 - -
CFS-FSDT [42]c 4.7666 0.8918 0.1562 0.0907 - -
Elasticity [47] - 1.512 0.2533 0.1437 - -
IGA (Arya [38]) 7.0928 1.4420 0.2379 0.1394 0.2832 0.1211
IGA (Soldatos [7]) 7.0849 1.4226 0.2359 0.1381 0.2697 0.1164
IGA (present) 6.9609 1.4587 0.2378 0.1397 0.3082 0.1283

10 CFS-HSDT [42]a 2.0798 1.1523 0.1100 0.0685 - -
CFS-HSDT [42]b 2.0629 1.1300 0.1030 0.0679 - -
CFS-FSDT [42]c 1.5604 1.0457 0.0798 0.0552 - -
Elasticity [47] - 1.152 0.1099 0.0707 - -
IGA (Arya [38]) 2.0681 1.1336 0.1032 0.0682 0.3465 0.0598
IGA (Soldatos [7]) 2.0621 1.1296 0.1028 0.0679 0.3287 0.0576
IGA (present) 2.0465 1.1382 0.1027 0.0680 0.3780 0.0633

20 CFS-HSDT [42]a 1.1933 1.1110 0.0705 0.0504 - -
CFS-HSDT [42]b 1.1876 1.1039 0.0679 0.0502 - -
CFS-FSDT [42]c 1.0524 1.0830 0.0612 0.0466 - -
Elasticity [47] - 1.1100 0.0700 0.0511 - -
IGA (Arya [38]) 1.1891 1.1037 0.0679 0.0502 0.3640 0.0421
IGA (Soldatos [7]) 1.1873 1.1026 0.0677 0.0501 0.3451 0.0407
IGA (present) 1.1835 1.1050 0.0677 0.0501 0.3971 0.0447

50 CFS-HSDT [42]a 0.9296 1.1005 0.0578 0.0445 - -
CFS-HSDT [42]b 0.9284 1.0980 0.0565 0.0445 - -
CFS-FSDT [42]c 0.9063 1.0947 0.0554 0.0439 - -
Elasticity [47] - 1.0990 0.0569 0.0446 - -
IGA (Arya [38]) 0.9286 1.0967 0.0565 0.0445 0.3697 0.0364
IGA (Soldatos [7]) 0.9283 1.0965 0.0565 0.0444 0.3504 0.0351
IGA (present) 0.9277 1.0969 0.0565 0.0444 0.4032 0.0387

100 CFS-HSDT [42]a 0.8913 1.0990 0.0560 0.0436 - -
CFS-HSDT [42]b 0.8908 1.0973 0.0549 0.0436 - -
CFS-FSDT [42]c 0.8852 1.0964 0.0546 0.0435 - -
Elasticity [47] - 1.098 0.0550 0.0437 - -
IGA (Arya [38]) 0.8908 1.0957 0.0548 0.0436 0.3705 0.0355
IGA (Soldatos [7]) 0.8908 1.0957 0.0548 0.0436 0.3512 0.0343
IGA (present) 0.8906 1.0958 0.0548 0.0436 0.4041 0.0378

a 12 degrees of freedom per node (DOFs/node);b 5 DOFs/node;c 5 DOFs/node;
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Figure 8: The distribution of stresses through the thickness of a sandwich(00=core=00) plate under a sinusoidally
distributed load.
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Figure 9: Geometry of a sandwich plate.

Table 6: The normalized displacement and stresses of a square sandwich plate under a uniform load
R Method w̄ s̄ 1

x s̄ 2
x s̄ 3

x s̄ 1
y s̄ 2

y s̄ 3
y

5 FEM-HSDT [54] 256.130 62.380 46.910 9.382 38.930 30.330 6.065
RBFs-HSDT [49] 257.110 60.366 47.003 9.401 38.456 30.242 6.048
RBFs-Layerwise [56] 258.179 60.063 46.393 9.279 38.364 30.029 6.006
CFS-IHSDT [37] 255.644 60.675 47.055 9.411 38.522 30.206 6.041
CFS-ESDT [36] 256.706 60.525 47.061 9.412 38.452 30.177 6.035
Exact [53] 258.970 60.353 46.623 9.340 38.491 30.097 6.161
IGA (Arya [38]) 256.998 60.375 46.953 9.390 38.449 30.213 6.042
IGA (Soldatos [7]) 256.957 60.314 46.966 9.393 38.422 30.217 6.043
IGA (present) 256.212 60.495 46.990 9.398 38.456 30.196 6.039

10 FEM-HSDT [54] 152.33 64.650 51.310 5.131 42.830 33.970 3.397
RBFs-HSDT[49] 154.658 65.381 49.973 4.997 43.240 33.637 3.364
RBFs-Layerwise [56] 158.912 64.993 48.601 4.860 43.491 33.409 3.341
CFS-IHSDT [37] 154.550 65.741 49.798 4.979 43.400 33.556 3.356
CFS-ESDT [36] 155.498 65.542 49.708 4.971 43.385 33.591 3.359
Exact [53] 159.38 65.332 48.857 4.903 43.566 33.413 3.500
IGA (Arya [38]) 155.025 65.366 49.822 4.982 43.267 33.601 3.360
IGA (Soldatos [7]) 154.439 65.306 49.926 4.993 43.183 33.597 3.360
IGA (present) 154.954 65.509 49.771 4.977 43.317 33.574 3.357

15 FEM-HSDT [54] 110.430 66.620 51.970 3.465 44.920 35.410 2.361
RBFs-HSDT [49] 114.644 66.919 50.323 3.355 45.623 35.167 2.345
RBFs-Layerwise [56] 121.347 66.436 48.011 3.201 46.385 34.965 2.331
CFS-IHSDT [37] 115.820 67.272 49.813 3.321 45.967 35.088 2.339
CFS-ESDT [36] 115.919 67.185 49.769 3.318 45.910 35.081 2.339
Exact [53] 121.720 66.787 48.299 3.238 46.424 34.955 2.494
IGA (Arya [38]) 115.438 66.876 50.048 3.337 45.715 35.143 2.343
IGA (Soldatos [7]) 114.400 66.837 50.280 3.352 45.548 35.120 2.341
IGA (present) 116.048 67.009 49.847 3.323 45.858 35.129 2.342
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Table 7: The convergence of non-dimensional frequency parameterv =
�
wa2=h

�
(r =E2)1=2 of four-layer

[00=900=900=00] simply supported laminated square plate (a=h = 5)
Method Modes

9� 9 13� 13 17� 17
IGA (Arya [38]) 10.7933 10.7931 10.7930

IGA (Touratier [39]) 10.7933 10.7931 10.7930

IGA (Soldatos [7]) 10.7876 10.7874 10.7873

IGA (present) 10.8430 10.8428 10.8428

computed using meshes of 9� 9, 13� 13 and 17� 17. It can be observed that the differences of
normalized frequencies between meshes of 13� 13 and 17� 17 are not signi�cant. Hence, for a
comparison with other methods, a mesh of 13� 13 cubic elements can be chosen.

The �rst normalized frequency derived from the IGA based on the present theory (ITSDT) is
listed in Table 8 corresponding to various modulus ratiosE1=E2 anda=h = 5. The obtained results
are compared with the closed form solution based on HSDT [57, 58], the moving least squares dif-
ferential quadrature method (DQM) [43] based on FSDT, the meshfree method using multiquadric
radial basis functions (RBFs) [59] & wavelets function [60] based on FSDT and our isogeometric
approach based on dTrSDTs [38, 7]. It is found that the obtained results from the IGA based on
ITSDT and dTrSDTs are in good agreement with the published ones. And the �rst normalized
frequency of the IGA based on ITSDT is slightly larger the IGA based on dTrSDTs [38, 7].

The in�uence of the length to thickness ratios is also considered, as shown in Table 9. The ob-
tained results are compared with those of Zhen and Wanji [61] based on a global-local higher-order
theory (GLHOT), Whu and Chen [62] based on a local higher-order theory (LHOT), Matsunaga
[63] based on a glocal-local higher-order theory, Choet al. [64] based on HSDT. As expected, a
good agreement with other published solutions is obtained.

4.2.1.2 Composite sandwich square plate
Let us a �ve-layer(00=900=core=00=900) anti-symmetry sandwich square plate with a simply

supported boundary condition. MaterialIV is used and the plate is modeled by 13� 13 B-spline el-
ements. First, the changes of the length to thickness ratio and thickness of core to thickness of face
sheet ratio are considered. The normalized frequencies are de�ned asv =

�
wb2=h

� q
(r =E2) f ace.

For various length to thickness ratios varying from 2 to 100, the �rst normalized frequency is listed
in Table 10. The results obtained are compared with analytical solutions provided in [44] based
on HSDT & FSDT and our isogeometric approach based on dTrSDTs [7, 38]. We observed that
present results are in good agreement with analytical ones from HSDT model (12 DOFs/node) re-
ported in [44] and are more accuracy than those of HSDT (5 DOFs/node) & FSDT (5 DOFs/node)
[44]. It is clear that the difference between results of using FSDT model and HSDT model is very
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Table 8: A non-dimensional frequency parameterv =
�
wa2=h

�
(r =E2)1=2 of a [00=900=900=00] simply supported

laminated square plate (a=h=5)
Method E1=E2

10 20 30 40
RBFs-FSDT[59] 8.2526 9.4974 10.2308 10.7329
Wavelets-FSDT[60] 8.2794 9.5375 10.2889 10.8117
DQM-FSDT [43] 8.2924 9.5613 10.3200 10.8490
CFS-HSDT[58, 57] 8.2982 9.5671 10.3260 10.8540
IGA (Arya [38]) 8.2737 9.5302 10.2769 10.7931
IGA (Soldatos [7]) 8.2719 9.5263 10.2719 10.7874
IGA (present) 8.2944 9.5650 10.3206 10.8428

Table 9: A non-dimensional frequency parameterv =
�
wa2=h

�
(r =E2)1=2 of a [00=900=900=00] simply supported

laminated square plate (E1=E2 = 40)
Method/Authors a=h

4 5 10 20 25 50 100
Zhen and Wanji [61] 9.2406 10.7294 15.1658 17.8035 18.2404 18.9022 19.1566
Whu and Chen [62] 9.193 10.682 15.069 17.636 18.055 18.670 18.835
Matsunaga [63] 9.1988 10.6876 15.0721 17.6369 18.0557 18.6702 18.8352
Choet al. [64] - 10.673 15.066 17.535 18.054 18.670 18.835
IGA (Arya [38]) 9.3295 10.7931 15.1130 17.6492 18.0638 18.6724 18.8358
IGA (Soldatos [7]) 9.3236 10.7874 16.8498 17.6465 18.0619 18.6718 18.8357
IGA (present) 9.3781 10.8428 15.1552 17.6677 18.0766 18.6760 18.8367
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Table 10: The �rst normalized frequencyv =
�
wb2=h

� q
(r =E2) f of an antisymmetry(00=900=core=00=900) sand-

wich square plate withhc=hf = 10

a=h HSDT [44]a HSDT [44]b FSDT [44]c IGA [38] IGA [7] IGA (present)
2 1.1941 1.6252 5.2017 1.4858 1.6806 1.2133
4 2.1036 3.1013 9.0312 2.8122 3.2115 2.2298
10 4.8594 7.0473 13.8694 6.4640 7.2607 5.2038
20 8.5955 11.2664 15.5295 10.6397 11.4827 9.0830
30 11.0981 13.6640 15.9155 12.8874 13.5273 11.5583
40 12.6821 14.430 16.0577 14.0938 14.5536 13.0645
50 13.6899 15.0323 16.1264 14.7811 15.1159 13.9958
60 14.3497 15.3868 16.1612 15.1997 15.4503 14.5939
70 14.7977 15.6134 16.1845 15.4701 15.6631 14.9940
80 15.1119 15.7660 16.1991 15.6536 15.8061 15.2721
90 15.3380 15.8724 16.2077 15.7832 15.9064 15.4720
100 15.5093 15.9522 16.2175 15.8780 15.9794 15.6200

a 12 DOFs/node;b 5 DOFs/node;c 5 DOFs/node;

signi�cant for thick sandwich plates. It is therefore necessary to use HSDT model. Table 11 lists
several higher frequencies for moderately thick and thin plates. It can be found that present results
agree well with those obtained by HSDT models for both thick (a=h = 10) and thin (a=h = 100)
sandwich plate whereas FSDT model leads to over-stiffness of the natural frequencies. The �rst
six mode shapes are illustrated in Fig. 10.

Next, the in�uence of the thickness of core to the thickness of face sheet ratiohc=hf on the
natural normalized frequency is resulted in Table 12. For the range ofhc=hf from 4 to 100, The
natural frequency values based on FSDT model [65] are very high compared to the results based
on HSDT model [65]. As expected, the present method is in good agreement with the analytical
solution based on HSDT [65] (12 DOFs/node) and is also more accuracy than that of HSDT [65]
(5 DOFs/node). The natural frequencies of the plate decrease as the ratiohc=hf increases, i.e, the
stiffness of the plate decreases.

4.2.2. Circular plates
A circular four-layer[q=� q=� q=q] laminated plate with fully clamped boundary and var-

ious �bre orientation anglesa = 00;150;300;450 are illustrated in Fig. 11a. Material param-
eter III is used. The circular plate has a radius to thickness ratio of 5 (R=h = 5). For this
problem, a NURBS quadratic basis function is enough to model exactly the circular geome-
try. Knot vectorsX � H of the coarsest mesh with one element are de�ned as followsX =
f 0;0;0;1;1;1g; H = f 0;0;0;1;1;1g. Data of the circular plate are given in Table 13. Coarse
mesh and control net of the plate with respect to quadratic and cubic elements are displayed in
Fig. 12. Fig. 11b describes 13� 13 NURBS cubic elements. The normalized frequencies are de-
�ned asv =

�
4wR2=h

�
(r =E2)1=2
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Table 11: Normalized frequenciesv =
�
wb2=h

� q
(r =E2) f of an antisymmetry(00=900=core=00=900) sandwich

simply supported square plate withhc=hf = 10

a=h Method Modes
1 2 3 4 5 6

10 HSDT [65]a 4.8594 8.0187 10.2966 11.7381 13.4706 16.1320
HSDT [65]b 7.0473 11.9087 15.2897 17.3211 19.8121 23.5067
FSDT [65]c 13.8694 30.6432 41.5577 50.9389 58.3636 71.3722
IGA (Arya [38]) 6.4640 10.8249 13.8794 15.8230 18.0725 21.4991
IGA (Soldatos [7]) 7.2607 12.3233 15.8342 18.0383 20.6086 22.5448
IGA (present) 5.2038 8.5847 10.9922 12.5963 14.3865 17.1818

100 HSDT [65]a 15.5093 39.0293 54.7618 72.7572 83.4412 105.3781
HSDT [65]b 15.9521 42.2271 60.1272 83.9982 96.3132 124.2047
FSDT [65]c 16.2175 44.7072 64.5044 94.9097 108.9049 143.7969
IGA (Arya [38]) 15.8780 41.6412 59.1265 81.7715 93.7548 120.3777
IGA (Soldatos [7]) 15.9794 42.4265 60.4657 84.7776 97.2019 125.5390
IGA (present) 15.6200 39.7699 55.9857 75.1842 86.2115 109.3430

a 12 DOFs/node;b 5 DOFs/node;c 5 DOFs/node;

Table 12: The �rst normalized frequencyv =
�
wb2=h

� q
(r =E2) f of an antisymmetry(00=900=core=00=900) sand-

wich square plate witha=h = 10

tc=t f HSDT [65]a HSDT [65]b FSDT [65]c IGA [38] IGA [7] IGA (present)
4 8.9948 10.7409 13.9190 10.3446 10.9424 9.0883
10 4.8594 7.0473 13.8694 6.4640 7.2607 5.2038
20 3.1435 4.3734 12.8946 4.0052 4.5010 3.3853
30 2.8481 3.4815 11.9760 3.2876 3.5534 3.0179
40 2.8266 3.1664 11.2036 3.0706 3.2072 2.9676
50 2.8625 3.0561 10.5557 3.0137 3.0803 2.9925
100 3.0290 3.0500 8.4349 3.0781 3.0537 3.1536

a 12 DOFs/node;b 5 DOFs/node;c 5 DOFs/node;

Table 13: Control points and weights for a circular plate with radiusR = 0.5

i 1 2 3 4 5 6 7 8 9

xi �
p

2=4 �
p

2=2 �
p

2=4 0 0 0
p

2=4
p

2=2
p

2=4
yi

p
2=4 0 �

p
2=4

p
2=2 0 �

p
2=2

p
2=4 0 �

p
2=4

wi 1
p

2/2 1
p

2/2 1
p

2/2 1
p

2/2 1
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Figure 10: First six mode shapes of antisymmetry the sandwich(00=900=core=00=900) simply supported square plate.

Figure 11: Geometry and element mesh of a circular plate
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