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Abstract  

 This paper studies the effects of chemical, elastic and interfacial energies on the equilibrium 

morphology of misfit particles due to phase separation in binary alloys under chemo-mechanical 

equilibrium conditions. A continuum framework that governs the chemo-mechanical equilibrium 

of the system is first developed using a variational approach by treating the phase interface as a 

sharp interface endowed with interfacial excess energy. An extended finite element method 

(XFEM) in conjunction with the level set method is then developed to simulate the behaviors of 

the coupled chemo-mechanical system. The coupled chemo-mechanics model together with the 
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numerical techniques developed here provides an efficient simulation tool to predict the 

equilibrium morphologies of precipitates in phase separate alloys. 

 

Keywords: Chemo-mechanical coupling; Equilibrium morphology; Phase transformation; 
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1. Introduction  

 When a solid solution is in a non-equilibrium state, which may be caused by external factors 

such as heat treatment or other perturbations, its internal microstructure will gradually evolve 

into other states that are more thermodynamically stable. During this process, atoms tend to 

rearrange their spatial positions to reduce the total system free energy. Consequently, second 

phase particles may form, grow, and gradually change their size, shape, morphology, and even 

chemical composition. For example, particles in coherent two-phase systems such as γ/γ
,
 in 

Ni-base alloys and A2/D03 in Fe-base alloys not only show different shapes from spheres to 

cuboid with round corners, but also show different particle sizes and highly spatial correlated 

distributions (Conley et al., 1989; Doi, 1996; Fahrmann et al., 1995). More complex 

morphological changes have also been observed experimentally, such as splitting of one single 

particle into a group of small particles and merging of neighboring particles to form long 

plate-like large particles (Ardell and Nickolson, 1966; Doi et al., 1984; Ma and Ardell, 2007; 

Miyazaki et al., 1982). 

 Since the thermomechanical properties of such phase separated alloys, to a large extent, 
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depend on the microstructure of the separated phases, the ability to control the morphological 

evolution of the phases enables the design and processing of high performance alloys. Therefore, 

it is of paramount importance to understand the morphological development of phase separations 

resulting from diffusional phase transformations. Furthermore, effective and efficient simulation 

tools are needed to predict the stable morphology of the separated phases. 

 From a thermodynamic point of view, the equilibrium morphology corresponds to the 

minimum of total system free energy. The morphological evolution of such a system is governed 

by the competition of three different energies, chemical free energy, elastic strain energy and 

interfacial excess energy. The chemical free energy is only related to the temperature and 

chemical composition of each component, irrespective of the actual structure of each phase. The 

elastic strain energy and interfacial excess energy are caused by the lattice mismatch between 

precipitate and matrix phases and the existence of a particle-matrix interface, respectively. For a 

stress-free system, chemical free energy alone determines the total volume fraction of each 

equilibrium phase and the interfacial energy tends to minimize the total interface areas in order 

to reduce the interfacial energy. The equilibrium shape in this situation can be easily obtained. 

However, if the misfit strain is present, the elastic strain energy will play an important role in 

shaping the precipitate morphology. Experimental observations show that elastic strain energy 

can significantly influence the particle shape, size, as well as spatial distributions during phase 

transformations (Doi, 1996; Fahrmann et al., 1995). 

 Due to numerical difficulties in tracking evolving interfaces and in dealing with the interface 

boundary conditions, diffuse interface models, or phase field methods, are usually used to study 
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this class of problems involving morphological evolution. Phase field methods assume that the 

field quantities are continuously changing from one phase to another within a narrow region, so 

that the interface is actually modeled as an interphase layer with a finite thickness. The main 

advantage of the diffuse interface model is that there is no need to track the interface and impose 

the interface boundary conditions because there is no material interface involved, which provides 

greater convenience for numerical implementations. Phase field models have been successfully 

used for microstructural evolution problems, such as solidification (Braun et al., 1994; Wang and 

Sekerka, 1996), solid-solid phase transformations (Lou and Bassani, 2008; Maraldi et al., 2011; 

Wang and Khachaturyan, 1995; Zaeem and Mesarovic, 2010), dislocations (Rodney et al., 2003) 

and many others. For more applications of phase field models, the readers are referred to recent 

review papers (Chen, 2002; Moelans et al., 2008; Singer-Loginova and Singer, 2008).  

 One drawback of the phase field method is that the computational grid spacing must be 

smaller than the interface thickness in order to resolve the diffuse interface. Three-dimensional 

atomic probe microscope observations have shown that the thickness of precipitate-matrix 

interface is typically less than 2 nm (Isheim and Seidman, 2004), which means that the phase 

field grid needs be finer than 2 nm near the interface. This obviously increases the computational 

costs significantly. Another drawback of the phase field method is that the system free energy 

has to be formulated in terms of several order parameters. These parameters usually do not have 

clear physical interpretations and are difficult to determine. 

 An alternative approach is the sharp interface model, in which different phases are separated 

by a geometric dividing interface and the governing equations are solved in each phase under 
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specific boundary conditions. Simulations of microstructural evolution based on sharp interface 

models mainly use the boundary integral method (BIM). For example, Voorhees and coworkers 

studied the morphological evolution of precipitate particles in an elastically anisotropic but 

homogeneous system using BIM (Su and Voorhees, 1996a, b; Thornton et al., 2001; Voorhees et 

al., 1992). Those works were later extended to inhomogeneous elastic systems (Jou et al., 1997; 

Leo et al., 2000). However, the conventional boundary integral based methods encounter great 

difficulties when dealing with topological changes during microstructural evolution. For instance, 

particle merging and splitting phenomena, which are common for particles during the phase 

transformations, cannot be captured easily in those BIM-based approaches. Recently, Duddu et 

al. (Duddu et al., 2011) revisited this problem based on the same mathematical model using a 

combined extended finite element method (XFEM) and level set method (LSM), in which the 

geometry of interface was implicitly defined by the level set function so that topological changes 

could be easily handled.  

 It should be pointed out that the theoretical models used in the above sharp-interface 

simulations are based on the assumption that the chemical and mechanical fields are only 

one-way coupled in that the misfit (eigen-) strain and elastic deformation are independent of 

composition, so that they can be computed separately. In our previous work (Zhao et al., 2013a; 

Zhao et al., 2013b), a sharp interface model incorporating the Gurtin-Murdoch interface 

elasticity effects was developed to study the equilibrium morphology of misfit particles in 

general elastic anisotropic solids and implemented using a hybrid smoothed XFEM/LSM, in 

which the chemical free energy was neglected based on the late-stage coarsening assumption, so 
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the particle size consequently remained constant during evolution. 

 In the present work, we present a two-phase continuum model for a generally anisotropic 

elastic system with misfit particles incorporating the chemical free energy, elastic strain energy 

and interfacial energy, which allows precipitate particles to change both their sizes and shapes 

under the conditions that the system satisfies chemical equilibrium, mechanical equilibrium and 

mass conservation. We employ a coherent sharp interface model to implicitly describe the 

geometry of the precipitate-matrix interface using the level set method. The interface is endowed 

with an interfacial excess energy, which includes two parts: the interfacial chemical free energy 

and the interfacial elastic energy. The interfacial elastic energy is described using the 

Gurtin-Murdoch interface elasticity model (Gurtin and Murdoch, 1975). The 

chemo-mechanically coupled equilibrium equations and the interfacial equilibrium conditions 

are derived by minimizing the total system free energy using a variational approach, and the 

kinetics of phase transformations is derived using a time derivative approach. These equations 

are then solved via a coupled nonlinear extended finite element method (XFEM), which allows 

the phase interface to be completely independent of the underlying meshes, so that remeshing is 

avoided when the interface evolves. The driving force for the interface to evolve in the direction 

of reducing the total system energy is also derived and connected to the level set evolution 

equation. 

 The paper is arranged as follows. First, the problem of phase separation in binary alloys is 

formulated in Sec. 2, where the constitutive equations and system energies are introduced. In 

addition, the governing equations are derived by minimizing the total system free energy. Also 
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discussed in this section is the kinetics of the interface evolution. In Sec. 3, the hybrid 

XFEM/LSM method is developed, and numerical results from the XFEM/LSM simulations are 

presented in Sec. 4. Finally, Sec. 5 gives a brief summary and some concluding remarks. 

 

2. Problem Formulation 

 We consider a binary solid AcB1-c containing species A and species B, where c is the molar 

fraction (concentration) of species A. We assume that the solid in consideration can be 

represented by the network model of Larche and Cahn (Larche and Cahn, 1973). Specifically, we 

assume that the lattice sites of species B form a network within which species A can move 

(diffuse). This allows the definition of a displacement and hence a strain of the solid. We further 

assume that the solid can segregate into two phases, the matrix phase occupying the volume
4
 mV   

and the precipitate phase occupying the volume 
pV . The total volume of the solid is thus 

m pV V V  . The precipitate-matrix interface denoted by   is assumed coherent. The 

interaction between the precipitates and dislocations is also neglected (Chen et al., 2010). Finally, 

we assume that the system is aged at a constant temperature for long enough time so chemical 

equilibrium is achieved under isothermal conditions. We note that the alloy AcB1-c may be either 

a crystalline or an amorphous solid. In addition, the derivation below can be easily extended to 

multi-phase and multi-species solids. 

 To be definitive, let us assume that an initial distribution of A is given throughout V. If this 

initial distribution does not form stable phases, diffusion will take place driven by the 

concentration gradient and stresses. After long enough time has elapsed, both chemical and 

                                                           

4 Throughout this paper, the term “volume” is used to mean a domain with its shape as well as the narrow meaning of volume.   
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mechanical equilibria will be achieved when the alloy phase-segregates into precipitate and 

matrix phases. Our objective in this paper is to develop a theoretical and computational 

framework that enables the prediction of such a stable phase segregation under both mechanical 

and chemical equilibria. 

2.1 Constitutive equations 

 We assume that the deformation is small so that the binary solid can be considered linearly 

elastic. In addition, the insertion of species A into species B causes deformation of the network 

formed by species B, which causes an eigenstrain, or a compositional strain. Consequently, the 

elastic strain energy density function w  is a function of the total strain and the concentration of 

species A, and can be written as 

  
1

( , ) ( ) : : ( )
2

c cw c   ε ε ε C ε ε   ,  (0) 

where ε  is the total elastic strain and C is the elastic stiffness tensor. cε  represents the 

compositional strain. Without loss of generality, we assume that the compositional strain is given 

by 

  ( ) ( )c

rc c c ε η  ,   (0) 

where rc  is the stoichiometric concentration and η  is the compositional strain coefficient.  In 

many cases of practical interests, η  is dilatational, i.e., η I , where   is the coefficient of 

compositional expansion (CCE) (Cui et al., 2012; Swaminathan et al., 2007) and I  is the 

second order identity tensor. The selection of rc  can be somewhat arbitrary as far as finding 

stable phase separation is concerned. Some authors, e.g., (Lou and Bassani, 2008), use r mc c  

where mc  is the equilibrium concentration of the matrix phase under stress-free conditions. In 

this paper, rc  will be taken as the average concentration 0c . Once rc  is identified, we consider 
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1A B
r rc c

 as the initial stress-free configuration (the reference configuration). Any change in the 

concentration of A will cause compositional strain.  

 Further, the Cauchy stress tensor and the elastic strain tensor are given by 

   : c σ C ε ε  , 
1

[ ( ) ]
2

T   ε u u  (0) 

Note that u  gives the displacement of material particles located at x in the reference 

configuration. 

 Consequently, the total strain energy of the solid occupying V can be written as 

  
1

( , ) ( ) : : ( )
2

c c

elastic
V V

F w c dV dV    ε ε ε C ε ε  . (0) 

 In addition to the strain energy, there is also chemical free energy in the solid. Let ( )f c  be 

the chemical free energy density, the total chemical free energy of the solid contained in the 

volume V can then be written as, 

  ( )chem
V

F f c dV   .   (0) 

 In the situation of phase separation, the chemical free energy is often defined by a 

non-convex double-well function of concentration c (Cahn and Hilliard, 1958; Porter and 

Easterling, 1992). 

   ( ) (1 ) (1 ) log (1 )log(1 )A B Bf c cf c f c c k T c c c c          , (0) 

where Af  and Bf  are the chemical free energy densities of pure species A and pure species B, 

respectively, and   is the interaction energy density, which is independent of temperature and 

composition. The parameters Bk  and T  are the standard Boltzmann‟s constant and absolute 

temperature, respectively. The first two linear terms in (0) represent the contributions from pure 
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species A and pure species B when they are fully separated. These two terms are usually 

neglected in many of the phase field models. The last two terms are the change in chemical free 

energy density caused by mixing species A and species B, according to the Flory-Huggins model 

(Flory, 1941; Huggins, 1941).  

 However, in order to avoid numerical difficulties caused by the logarithmic terms, 

polynomial approximations are usually adopted in most literatures (Lou and Bassani, 2008; 

Tonks et al., 2012; Wodo and Ganapathysubramanian, 2011; Zaeem and Mesarovic, 2010). In 

this work, we use the following double-well function 

  ( ) min{ ( ), ( )}m pf c f c f c   ,   (0) 

where , ( )m pf c  is a convex free energy function for the m and p phases, respectively, 

   
2

, ,p , ,( )m p m m p m pf c A c c B    . (0) 

In the above, ,m pA  and ,m pB  are positive constants intrinsic to the materials, and ,m pc  is the 

equilibrium concentration for the m and p phases, respectively. In other words, ,m pc  

corresponds to the local minimums of 
, ( )m pf c  under stress-free conditions. The above 

expression can reproduce accurately the double-well potential function used in phase field 

models (Wang and Khachaturyan, 1995). In addition, it is straightforward to extend it to 

multiple-well potential functions if multiple metastable phases exist for the alloy. 

 Analogous to the bulk energy, we assume that the interfacial excess free energy includes not 

only the elastic part due to the interface deformation, but also the chemical part associated with 

the interfacial excess concentration sc . Consequently, the total interfacial excess free energy can 

be written as   
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  ( , ) ( )s

surf s s sF c f c dS

    ε ,  (0) 

where   is the elastic interfacial excess strain energy density and sf  is the chemical 

interfacial excess energy density. Both   and sf  may depend on the interfacial excess 

concentration sc . Specifically, ignoring the effects of curvature (Gao et al., 2014) and the effects 

of transverse deformation (Dingreville and Qu, 2008) on the elastic interfacial excess energy, we 

adopt the following elastic interfacial excess energy, 

  * * *

0

1
: ( ) ( ) : : ( )

2

s s s s s      τ ε ε ε ε C ε ε   , (0) 

where s
ε  is the total interfacial strain, and *ε  is the interfacial eigenstrain so that *s ε ε  

gives the interfacial elastic strain. Here and in the followings, field quantities with a superscript s 

are associated with the interface. For example, s
τ  is the interface residual stress and sC  

denotes the interface elastic stiffness tensor. For future reference, the interfacial compliance 

tenor will be denoted by sS . The parameter 0  represents the intrinsic interfacial excess elastic 

energy density at in the absence of any elastic deformation, i.e., *s  ε ε 0 . Note that 0 , s
τ  

and sC  are the properties of the interface, and can be computed from the constituent materials 

using molecular dynamic simulations (Dingreville and Qu, 2009).   

 For coherent interfaces, the interfacial strain is defined as the projection of bulk strain tensor 

on the tangential plane, 

  
1

( ) ( )
2

s T

s s
     ε u u ,   (0) 

where s  u u P  is the surface gradient of displacement,   P I n n  is the tangential 

projection tensor,   represents a dyad, and   is a unit vector normal to the interface. 

 The interfacial compositional (eigen-) strain can be written as 
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  * 0( ) s

s sc c ε η  ,   (0) 

where 0

sc  is a stoichiometric interfacial concentration, and 
sη  is the compositional strain 

coefficient of the interface. The corresponding interfacial stress can be obtained from the 

Shuttleworth equation, 

  *

*
: ( )

( )

s s s s

s s

  
    
  

σ τ C ε ε
ε ε ε

 . (0) 

2.2 System free energy 

 The total free energy of the binary solid may include chemical energy, elastic strain energy 

and interfacial energy, 

   ( ) ( , ) [ ( , ) ( )]chem elastic surf s s s
V

F F F F f c w c dV c f c dS


       u u  . (0) 

 In addition, we assume that the alloy is under constant temperature (isothermal), and has no 

mass and temperature exchange with its surroundings (isolated). Therefore, the total mass must 

be conserved, 

  0s
V

cdV c dS Vc


    .   (0) 

This constraint may be released by introducing a Lagrangian multiplier   via 

  0[ ]s
V

L F cdV c dS Vc


       .  (0) 

2.3 Chemical and mechanical equilibriums 

 For simplicity, we assume the outer surface V  is traction-free, i.e., 

  
V

 
x

σ m 0  ,    (0) 

where m is the outward normal of V . Thus, under chemical and mechanical equilibria, the first 

variation of the total system free energy (0) must vanish, 
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   0[ ] 0chem elastic surf s
V

L F F F cdV c dS Vc     


         . (0) 

 We note that L  is a functional of three basic fields quantities, the solute concentration c  

in the bulk, the solution concentration sc  at the interface, and the displacement vector u . It 

then follows from (0) that, 

  chem
V

F cdV    ,    (0) 

where /f c     is the chemical potential under stress-free condition. Note that both the solute 

concentration c  and the chemical potential   are discontinuous across the phase interface. 

For the elastic strain energy, 

  
1

: : : :
2

elastic
V V V

F dV cdV dV        σ u σ η σ S σ  (0) 

where S  is the elastic compliance tensor so that :c ε ε S σ . Upon using the Green‟s theorem 

and integration by parts, Eq. (0) can be further written as 

   
1

: : :
2

elastic
V V

F dV dS cdV
c

   


 
         

 
  

S
u σ u σ n σ η σ σ  . (0) 

where the double brackets stand for the jump of the quantity across the interface, 

   
 

  . 

 Similarly, the variation of interfacial excess energy yields  

  ( ) [ : ]s s s

surf s s sF dS c dS   
 

       σ u σ η  . (0) 

where s s sf c     may be viewed as the interfacial chemical potential under stress-free 

conditions. In deriving the above, we have used (0) and the fact that ( ) 0S

s dS

    σ u  for 

any closed surface/contour  , see (Gurtin and Murdoch, 1975). Finally, the variation of L gives 

   0 0[ ] [ ]s s s
V V V

cdV c dS Vc cdV c dV cdV c dS Vc      
  

            . (0) 
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 Substituting equations (0)-(0) into (0), we obtain 

  
0

1
[ : : : ]  ( ) [ ]

2

( ) ( : ) 0

s
V V V

S S S

s s s

cdV dV cdV c dS Vc
c

dS c dS

    

   



 

 
          

 

         

   

 

S
σ η σ σ σ u

σ σ n u σ η

. (0) 

This gives the weak form of the governing equation for chemo-mechanical equilibrium. The 

corresponding Euler equations are 

  0s
V

cdV c dS Vc


    ,   (0) 

  0 σ   in V ,    (0) 

  
1

: : :
2 c

 


  


S
σ η σ σ  in V    (0) 

  0s

s   σ n σ  ,    :s s

s  σ η   on   (0)  

 It is seen that the Lagrangian multiplier   is nothing but stress-dependent chemical 

potential derived in (Larche and Cahn, 1973, 1978) for an isothermal system. Equations (0) 

indicate that   is uniform throughout the entire system including the interface. This does not 

mean that the chemical potential itself is uniform as the case discussed in (Cahn, 1980). In 

particular,   and s are not necessarily the same. Further, the first of (0) gives interface 

mechanical equilibrium, which is the generalized Young-Laplace equation derived in (Povstenko, 

1993) when the interface stress is present. The second of (0) introduces an interface 

stress-dependent interfacial chemical potential. 

 The above equations (0) - (0) constitute the basic governing equations for the mechanical and 

chemical equilibria for a two-phase mass-conserved system. It is seen that the elastic 

deformation and chemical composition are fully coupled not only in the bulk, but also at the 

interface. Furthermore, due to the nonlinearity of the chemical potential, the system of coupling 
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equations is nonlinear.  

2.4 Kinetics of the interface 

 The governing equations derived above are for a fixed volume of the precipitate. In other 

words, the solute concentration c and the displacement u that satisfy (0) - (0) minimizes the 

system free energy under chemo-mechanical for the given precipitate volume 
pV . Our goal in 

this paper, however, is to find the 
pV  that minimizes the system free energy under 

chemo-mechanical equilibrium. This can be achieved by varying 
pV , for example, by trial and 

error until the system free energy becomes the smallest. Instead of trial and error, a more 

systematic way of finding the optimal 
pV  is to introduce a mapping that transforms 

pV  to a 

new configuration 
pV , 

  ( , ) ( )t t x x x v x  ,    (0) 

where t is a parameter to indicate the process of transformation, and ( ) ( ,0)d dtv x x x  

represents the amount of displacement at location x per unit change of t. Under this mapping, the 

precipitate volume 
pV  can be viewed as a function of t, so can the matrix volume mV . 

Consequently, the system free energy F given by (0) becomes a function of t. In other words, as t 

changes, F will change. Since we are looking for an optimal 
pV  that minimizes F, we may 

select ( )v x  such that the change of F with respect to t is always negative. This guarantees that 

transforming 
pV  to 

pV  decreases the system free energy, so eventually the system free energy 

is minimized. 

 To evaluate the rate of change of F with respect to t, we can take advantage of the Reynolds 

transport theorem by interpreting t as time and ( )v x  as velocity (Arora, 1993). For a volume 
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integral 

  ( , )
V

I g t dV  x ,    (0) 

where the domain of integration changes with t, the Reynolds transport theorem states 

   [ ] [ ( )]
V V V V

I g g dV g g dV g dV g dS


           v v v n  , (0) 

where an over dot indicates the so called material derivative in continuum mechanics, for 

example, 

  ( )g g g   v  .    (0) 

In the above, a prime means the local rate of change g g t    , i.e., the change in g with 

respect to t as if v 0 . The last term of (0) is obtained by using the divergence theorem where 

V is the surface of V and n is its outward unit normal vector. 

 The transport theorem for an integral on a closed surface
5
 

  ( , )S
S

I g t dS  x       (0) 

is a little more involved because material derivative is not well-defined if the surface is not a 

material surface. Further, g g t     may no longer be on the surface (Cermelli et al., 2005). 

One way to overcome these difficulties is to extend the definition of the integrand to a 

three-dimensional neighborhood of the surface. A geometrically natural method of smoothly 

extending a surface field ( , )g tx , at each time t, to a three-dimensional region containing the 

surface is obtained by requiring that ( , )g tx  be constant on normal lines, where a normal line at 

time t is a line through a point x on S parallel to its unit normal vector ( , )tn n x . With such 

                                                           

5 For the purpose of this paper, we consider only closed surface. The transport theorem works also for open surfaces , albeit the 

expressions is a little more complex. 
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understanding, the transport theorem for the surface integral defined in (0) is given by (Arora, 

1993; Cermelli et al., 2005), 

  ( ) [ ( ) ]S
S S

I g g dS g g g dS          v n n v n  , (0) 

where s   n  is the total (i.e. twice the mean) curvature. 

 Having laid out the mathematical tools, we can now restate our original objective of finding 

the optimal 
pV  that minimizes the system free energy F. By taking advantage of the concept of 

material derivative and the transport theorem outline above, our objective can be alternatively 

stated as finding ( )v x  so that 0F  , i.e., an infinitesimal change to the precipitate volume 

must reduce the system free energy. In what follows, we will first calculate F . Then, use 0F   

to solve for ( )v x . 

 Making use of (0) the above formulae of material derivatives together with the Green‟s 

theorem, the time variations for each part of energy functional can be readily derived. First, the 

material derivative of the chemical free energy (0) is 

     
c h e m

V
F c d V f d S


    v n  .  (0) 

Similarly,  

  
1

( : : : )
2

e

elastic
V

F dS dS c dV
c 


         

  
S

n σ u n v σ η σ σ  , (0) 

where e w   I σ u  is the classical Eshelby energy momentum tensor. In deriving the above, 

we have used the fact that 0 σ  in V, see (0). Next, we calculate 
surfF  using (0),  

  
 

   

:

 

S s

surf s s s

s

S

S S s

dS dS

S

c

d

F

f



 

 



  

       
 

   



u σ η

v σ u v n

σ
  . (0) 
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In arriving at the above, we have use the fact that :s s

s  σ η  on the interface, see the 

second of (0). 

  The sum of (0) - (0) gives 

   

 

1 1
[ ( : : : )] [ ( : : : )]

2 2

) ( )

:

(

m p

c c

m p
V V

s

s s

e

s s

s

s

s

dS

F c dV c dV
c c

c

f f dS

 



 




 
      

 



  



        



 



S S
σ η σ σ σ η σ σ

η

n I I σ u

σ

v

. (0) 

The interface equilibrium condition (0) has been used in deriving (0). Further, application of (0) 

and (0) to the constraint condition (0) leads to 

   s s
V

c dV c dS c c dS
 

       v n  . (0) 

Making use of the above and (0) - Error! Reference source not found. reduces F to 

      ( ) s

s ss

e

s scF f c f dS   


               n I I σ u v   . (0) 

We further introduce the grand canonical potential of bulk and grand canonical potential of the 

interface as follows: 

f c   ,      s s sscf    (0) 

Therefore, (0) becomes 

      ( ) s

s s sF dS  


          n I σ u v   . (0) 

where  e w       I σI u  denotes the generalized Eshelby‟s momentum tensor 

with the chemical free energy effect. 

In order to guarantee the dissipation inequality condition, we choose  

     ( ) s

s s s         v n I σ u  , (0) 

so that 
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  0F dS


    v v   .    (0) 

 As discussed earlier, the ( , )tv v x  in (0) is the amount of displacement of the interface at 

the location x per unit change of t. In that sense, we may loosely call v the velocity of the 

interface. It should be noted, however, that this v generally does not represent the actual 

morphological evolution of the precipitate phase as the system approaches its chemo-mechanical 

equilibrium, which must be obtained by solving a non-equilibrium thermodynamic problem. 

Nevertheless, v represents a quasi-equilibrium process. Imagine that a binary system is given 

with an initial configuration of the precipitate phase, and a set of boundary conditions. If this 

system is in true chemo-mechanical equilibrium, then any configurational change of the 

precipitate phase will increase the system free energy. If this system is not in true 

chemo-mechanical equilibrium, diffusion will occur that leads to configurational change of the 

phases, or change of the precipitate/matrix interface. Such morphological evolution of the 

precipitate/matrix interface will continue until the system reaches its chemo-mechanical 

equilibrium. In theory, numerous paths can be taken to accomplish the evolution of the 

precipitate phase from its initial to the final chemo-mechanical equilibrium configuration. In a 

given problem, however, only of these paths is realized, which is dictated by the system 

parameters and the environment, including, for example, diffusivity of the solute. So, if one is 

interested in knowing the specific path to chemo-mechanical equilibrium, a full thermodynamic 

problem will need to be solved. 

 However, if one is only interested in knowing the final state of chemo-mechanical 

equilibrium, an alternative approach can be taken. As a thought experiment, we can consider the 



 

20 

precipitate/matrix interface ( )t  as a function of the parameter t, a factitious time. So, the 

initial interface is (0) . First, we hold this initial interface (0)  in place, and let diffusion take 

place. After long enough time, diffusion will eventually cease, and the system becomes 

chemo-mechanically equilibrated for the fixed precipitate/matrix interface (0) . Let (0)F  be 

the system free energy at this equilibrium state. Clearly, (0)F  can be calculated from (0) by 

using (0)   . At the next step t , we move the interface at x by an amount ( , )tv x  according 

to (0) so the interface now becomes ( )t . Again, we now keep ( )t  fixed, and let the diffusion 

take place until the system reaches its chemo-mechanical equilibrium for the fixed 

precipitate/matrix interface ( )t . According to the foregoing derivations for v, one must have 

( ) (0)F t F  if t  is small enough. The above steps can be repeated many times, each time with 

a small increment of t, then update the interface by v according to (0). As long as we hold the 

interface fixed at each update long enough so the system reaches its chemo-mechanical 

equilibrium, the system free energy at each stage of equilibrium will continue to decrease. It is 

then plausible that after enough number of increments, the system will arrive at it ultimate 

chemo-mechanical equilibrium, i.e., the v calculate from (0) will become zero (or negligibly 

small). This is the final state of chemo-mechanical equilibrium that we are seeking for. This 

thought experiment is in effect the numerical procedure that we use later to find the final state of 

chemo-mechanical equilibrium for given initial and boundary conditions. 

 It is also clear from the above descriptions, the parameter t is not the real time, and the 

variable v is not the real speed of the interface. Eshelby (Eshelby, 1975) called the v 

configurational force, for it represents driving force acting on the interface to evolve the 
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microstructure. The configurational force provides a convenient way to quantitatively understand 

the microstructural evolution of material defects, such as dislocations, cracks and 

inhomogeneities (Gurtin, 2000; Steinmann and Maugin, 2005).  

 To close this section, we state that, following directly from (0), the normal velocity of the 

interface is given by  

   ( ) s

n s s sv              v n n n n σ u  . (0) 

 

3. Numerical implementation 

 The interface velocity in equation (0) is a function of chemical concentration, elastic 

deformation and interfacial energy/stress, which are determined by the group of equilibrium 

equations (0) - (0) and the mass conservation condition (0). These equations are fully coupled 

and need to be solved simultaneously. In this section, we will develop a hybrid nonlinear 

extended finite element method (XFEM) that combines with the level set method to compute the 

coupled chemo-mechanical fields. In the following development, unless noted otherwise, we will 

used boldface lowercase letters for vectors, boldface uppercase letters for matrices, and plain 

letters for scalar quantities. In this work, all the numerical implementations are carried out in the 

triangulated domain based on the finite element method. 

 we use the level set method (LSM) (Osher and Sethian, 1988) to implicitly describe the phase 

interface between the precipitate and the matrix. The interface Γ is represented through the zero 

isocontour or the zero level set of a smooth function   defined in the domain V , which can be 

stated as 
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    : , 0,t V   x x x  ,   (0) 

where t is the same parameter introduced earlier. Further, for definiteness, the sign of   can be 

chosen so that 0   is in the precipitate and 0   represents the matrix phase. Theoretically 

speaking, the level set function can be any smooth function defined in the domain. However, it is 

usually taken as the signed distance function in the numerical implementations. The level set 

evolution equation is given by 

  0nv
t





  


  for Vx   , (0) 

where 
nv  is the normal velocity field associated with the level set function ( , )t x .  

 Furthermore, the unit normal vector and the total curvature can be easily expressed in terms 

of level set function  , t x  , which are written as 
   n , 

s

    n . It can be 

easily shown that the unit normal vector n and the total curvature   of the interface   

defined by (0) is given by 





x
n n  and 

 



x

. In other words, 
n  and 

  are 

extension values of n and   into V.  
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(a) (b) 

Fig. 1 Examples for functions with (a) weak discontinuity and (b) strong discontinuity. 

 

 The finite element equations will be based on the weak form of the chemo-mechanical 

equilibrium (0). Owing to the coherent interface assumption, the displacement u  is continuous 

across the interface but its derivatives are not, which is known as „weak discontinuity‟. On the 

other hand, both the solution concentration c  and its gradient can be discontinuous across the 

interface, which is called „strong discontinuity‟. A comparison between the weakly 

discontinuous function and strongly discontinuous function is shown in Fig. 1. Because of their 

different types of discontinuities, different discretization schemes are needed for the 

displacement and the solute concentration fields, respectively,  

       h E E Eu x = N x u F N x a  ,       h C C Cc x = N x c F N x d  , (0) 

where E
N and C

N  are matrices of standard shape functions and E
F and C

F  are matrices of 

enrichment functions introducing weak and strong discontinuities for the elastic and chemical 

fields, respectively. Here we use a corrected XFEM enrichment function for the displacement 

approximation to eliminating the side effects of blending elements (Fries, 2008), which gives 

           E

i i iF N R    x x x x x  , (0) 

where   is the level set function and ( )R x  is given by 

     
*

i

i I

R N


x x   ,    (0) 

in which 
*I  is the nodal set containing the enriched nodes. It is noted that ( )R x  is equal to 1 

in an enriched element, but forms a ramp function in a blending element. 



 

24 

 

 

Fig. 2 The discretized domain with reproducing elements and blending elements and their 

enriched/blending nodes 

 Since the chemical field contains a strong discontinuity, the Heaviside step function is used. 

Such enrichment scheme does not lead to problems in the blending elements for standard XFEM 

(Bordas et al., 2007; Fries, 2008). Thus we have 

           C

i i iF N H H    x x x x  , (0) 

where 

   
1, 0

0, 0
H







 


  .   (0) 

It should be pointed out that the enrichment functions (0) and (0) are local functions near the 

interface and vanish in standard elements far away from the interface. In other words, the extra 

enriched degrees of freedom caused by the enrichments only exist in local elements near the 
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interface, see Fig. 2. As we can see, the XFEM allows the geometric interface to pass through the 

elements so that the geometry of the phase interface can be independent of underlying mesh, and 

no remeshing is needed when interface moves (Belytschko et al., 2001). This provides great 

advantages for problems with moving interfaces.  

 With the above discretized element quantities, we can assemble the global FEM equations 

with coupled global matrix and load vectors in a standard way. Our coupled XFEM/LSM codes 

are built on top of a C++ finite element library FEniCS/dolfin (Logg and Wells, 2010), and linear 

triangular elements are used in the simulation. It is worth pointing out that due to the nonlinearity 

in the chemical potential in (0), the discretized system of algebraic equations are nonlinear. 

Therefore, an iterative solver, e.g. the Newton method, is needed to obtain the numerical solution. 

Due to the hyperbolic nature of the level set equation, a Galerkin least squares (GLS) finite 

element scheme (Chessa et al., 2002) is used to solve equation (0), and a first order forward 

Euler method is adopted for the time discretization. In addition, a fast marching method on the 

finite element grid is devised for constructing the extension velocities and the periodically 

re-initialize the level set function (Zabaras et al., 2006). For more detailed discussions on level 

set method and fast marching method, the readers are referred to references (Osher and Fedkiw, 

2002; Sethian, 1996). 

 

4. Results and discussion 

 In this section, we limit studies to a two-dimensional plain-strain deformation. For simplicity, 

we make the following assumptions in the reminder of this paper: 
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 The bulk elastic constants are independent of concentration so that 0
c






S
. 

 The bulk eigenstrain of  is isotropic, i.e., η I . 

 In the bulk chemical free energy of (0), 
, 0m pB   and 

,p 0mA f . 

 The interfacial properties are independent of the solute concentration, i.e., s η 0  and 

( ) 0s sf c  . In the interfacial elastic excess energy, s τ 0  and s C 0  so that 

0 costant   .  

 All the calculations are performed using the elastic constants of     Ni-alloys with cubic 

anisotropy, 
11

PC =179GPa, 
12

PC =123GPa and 
44

PC =81GPa for the precipitate phase, and 
11

MC

=161GPa, 
12

MC =107GPa and 
44

MC =85GPa for the matrix (Fahrmann et al., 1999). 

 For convenience, we introduce the dimensionless solute concentration, 

  m

p m

c c
c

c c





 .     (0) 

This leads to 

  
0   when 

1   when 

m

p

c c
c

c c


 



 ,   1
p

p m

c c
c

c c


  


  . (0) 

Consequently, Eq. (0) can be simplified to 
2

0( ) ( ) ( )p mf c f c c f c  , where 

2 2min{ , (1 ) }f c c  . The term 
2

0( )p mf c c  can be viewed as the magnitude of the bulk 

chemical free energy. Similarly, the compositional strain of  can be written as 
0

c cε ε , where 

0 ( )p mc c   , ( )r

c c cε I , and ( ) ( )r r m p mc c c c c   . Clearly, the dimensionless 

parameter 0  gives a measure of the coupling between the chemical and mechanical fields. In 

the absence of such coupling, the elastic field vanishes since no other externally applied loads are 
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present. Analogously, the strain energy density can be recast into 0w w w , where 2

0 44 0

pw C  , 

(1 2)( ) : : ( )c cw   ε ε C ε ε , 
44

pCC C  and 0ε ε  The parameter 0w  can then be 

considered as the magnitude of the elastic strain energy. By making use of the above, the 

system‟s total free energy function can be written as 2

0 0F R F  where the dimensionless 

system free energy is given by 

  ( )
V

F f w dV dS 


    ,  (0) 

where  

  

2

0 0

2

0 44

( )p m

p

f c c f

w C





  ,      

2

0 0 44 0 0

0 0

pw R C R


 
   . (0) 

In the above, the parameter 0R  is a characteristic length of the precipitates given by 

1/3

0 0(3 4 )R V   in three-dimensions and 1/2

0 0( )R A   in two-dimensions, where 0V  and 

0A  are the initial volume and area of the largest precipitate. The coordinates are also normalized 

by 0/i ix x R , which transforms V to V  and   to  . The dimensionless parameter   

represents the ratio of chemical energy density and elastic strain energy density. Larger   

means the chemical energy is dominant over the elastic strain energy, and vice versa. The 

dimensionless parameter   gives the ratio of the bulk elastic strain energy density and the 

interfacial energy density. Large   means the bulk elastic strain energy is dominant over the 

interfacial energy, and vice versa. Therefore, for a fixed  , increasing   means decreasing 

surface energy while keeping chemical and elastic energies the same. Alternatively, for a fixed 

 , increasing   means increasing both elastic and chemical energies (so their ratio stays the 

same since   is fixed) while keeping the interfacial energy the same. 
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 The numerical results presented below are all for two-dimensional plane strain. In addition, 

the Cartesian axes are chosen to coincide with the cubic crystallographic orientations. The 

reference concentration rc  is set equal to the average value of the entire system. In the 

numerical examples, we use 0 0.1rc c  , which implies that the total volume fraction of 

precipitates under equilibrium should be 10% in the absence of elastic strain energy and 

interfacial energy.   

4.1 A single precipitate 

 We first consider the equilibrium shapes of a single misfit particle embedded in an elastic 

media. In experimental investigations, the parameter   can be changed by adjusting the value 

of the misfit strain.  It has been shown that as the magnitude of misfit increases (   increases), 

the particle shapes become progressively less spherical and more cube-like in nature. In addition, 

the particle size also increases with increasing misfit strains (Fahrmann et al., 1995), which is 

considered a result of the competition between the bulk and interfacial energies. In this 

numerical example, we consider a misfit particle with a circular initial shape and radius 
0R . The 

simulation domain size is taken as 2

010 10R . 

 We first consider the case where the ratio between the bulk chemical and elastic energy 

densities is fixed at 10  . For different ratios between the elastic bulk and interfacial energy 

densities, 2, 5,10, 20  , the corresponding equilibrium configurations of an isolated single 

particle are shown in Fig. 3. Two observations can be made based on these figures. First, lower 

interfacial energy (larger  ) leads to square-like shape with sharper corners and flatter sides, 

while higher interfacial energy (smaller  ) leads to circle-like shape with smooth corners and 
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curved sides. Second, higher interfacial energy (smaller  ) favors smaller particle size. These 

observations can be explained by the system‟s tendency to reduce its total free energy. When   

is large, the interfacial energy is unimportant, and the bulk chemical and elastic strain energy 

dominate. Due to cubic symmetry of the elasticity, the particle takes square-like shape to 

minimize its elastic strain energy. When   is small, the interfacial energy dominates. Since the 

interfacial energy is assumed isotropic, its tendency is to minimize the particle size and to make 

the shape circular to minimize the interfacial area. Those results show the same qualitative trend 

as the experimental observations mentioned above (Fahrmann et al., 1995). 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3 Equilibrium shape (solid line) of a single particle in a large matrix with 10   and 

(a) 2  , (b) 5  , (c) 10  , and (d) 20  . The dotted line represents the 

initial shape of the particle. 

 

 Fig. 4 shows the variation of system energies with respect to the (fictitious) time steps for 

particles with different initial  . The energies are all normalized by their total energy values at 

their initial states. It is not surprising that with increasing time, the total system energy decreases 

and gradually converges to a constant value as the system approaches its equilibrium state. The 

results show that the interfacial energy is a significant part of the total system energy for 2  , 

while for 20   the interfacial energy is almost negligible, and the chemical and elastic energy 

become more prominent. In addition, we also notice that both elastic energy and interfacial 

energy increase during the particle growth. However, their increase is more than compensated by 

the decrease of the chemical energy so that the total system energy still decreases. One may then 
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conclude that the overall kinetic process of particle growth is driven or controlled by the 

chemical energy. To verify this conclusion, we note that the relative magnitude between the 

chemical and elastic energies is characterized by the parameter  . The results shown so far are 

for 10  . If we reduce  , one would expect that the overall evolution kinetics will be 

controlled by the elastic energy. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4 Variation of normalized energies vs. time steps for the system with a single particle in a 
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large matrix with 10   and (a) 2  , (b) 5  , (c) 10  , and (d) 20  . 

 

 To this end, we repeated the above calculations with 5  . Fig. 5 shows the corresponding 

equilibrium shapes for a single particle in a large matrix with 10   and 20  , respectively. 

It is clearly seen that the particle at equilibrium has flatter edges and larger size when 20  , 

which is similar to the previous example. However, they obviously have smaller particle size 

compared to their counterparts in the case of 10  . We note that particles with initial 2   

and 5   tend to shrink and finally disappear during the evolution. This can be also observed 

from the energy evolution curve in Fig. 6, where we can see from Fig. 6(a) and (b) that both 

elastic energy and interfacial energy decrease and gradually reduce to zero when the misfit 

particle disappears. In these two cases, the particle cannot stably exist due to the combined 

effects of elastic energy and interfacial energy, even if particle nucleation occurs. Therefore, we 

can remark that both the interfacial energy and the elastic energy can significantly suppress the 

nucleation and growth of particles. 
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(a) (b) 

Fig. 5 Equilibrium shape (solid line) of a single particle in a large matrix with 10   and 

(a) 10  , and (b) 20  . The dotted line represents the initial shape of the 

particle. Particles with initial 2   and 5   shrink and finally disappear during 

the evolution. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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Fig. 6 Variation of normalized energies vs. time steps for the system with a single particle 

in a large matrix with 5   and (a) 2  , (b) 5  , (c) 10  , and (d) 

20  . 

 These foregoing results show a collaborative competition among three driving forces, the 

bulk elastic strain energy, the interfacial energy and the bulk chemical energy. The final 

equilibrium state of the system is a compromise among these three energies in their individual 

pursuit to minimize themselves so that the total system energy is a minimum under the given 

initial condition. Since the initial average solute concentration is super-saturated, the chemical 

energy drives the solute to separate into matrix and precipitate phases. On the other hand, phase 

separation increases the bulk elastic strain energy. So, the elastic strain energy works against 

phase separation. In a similar manner, the interfacial energy dislikes interfaces. So, it works 

together with the elastic energy to suppress phase separation by minimizing the interfacial area. 

However, once a particle is formed, interfacial energy turns against the bulk elastic strain energy 

by making the particle as circular as possible, while the bulk elastic energy tries to make the 

particle as square as possible due to cubic anisotropy. Overall, if the bulk chemical energy 

dominates (e.g., 10  ), it is the reduction of chemical energy that drives the overall evolution. 

Consequently, the particle grows in size to reduce the chemical energy, even though in doing so 

the bulk and interfacial elastic energies both have to increase. If the bulk elastic strain energy 

dominates (e.g., 5  ), it is the reduction of bulk elastic strain energy that drives the overall 

evolution. Consequently, the particle shrinks in size to reduce the elastic strain energy, even 

though in doing so the bulk chemical energy has to increase. In fact, with the help of higher 
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( 5  ) interfacial energy, phase separation is completed suppressed for the case of 5  .      

 Another interesting aspect is the actual distribution of solutes in the different phases. In the 

absence of the bulk and interfacial elastic energies, the solute concentration in each phase is 

uniform. In the presence of the bulk and interfacial elastic energies, we expect that the 

concentration distribution be influenced by the elastic deformation. Fig. 7 shows the normalized 

concentration profiles along different crystallographic directions through the particle center at 

the equilibrium state. The solid and dashed lines represent the distributions along <100> and 

<110> directions, respectively. It is obvious that the concentrations are not uniform in either 

phases, especially when the elastic energy is large (α is small). Also, the values of the 

concentration in both phases are slightly deviated from their theoretical values in the absence of 

the bulk and interfacial elastic energies. 

 

Fig. 7 Equilibrium concentration profiles along different crystallographic directions when 
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20  . 

4.2 Double particles 

 We now consider the evolution and equilibrium morphologies of two interactive particles. It 

is experimentally observed that, during thermal aging, the precipitate structure proceeds from 

one that is initially with a large number of small particles to one in which the cubic precipitates 

become more and more aligned along [100] directions. Upon further aging the particles either 

coalesce or coarsen into plates (Ardell and Nickolson, 1966; Ma and Ardell, 2007). The number 

of precipitates in Ni-Al alloys decreases significantly and the surviving precipitates are mostly 

slim rod-like plates aligned with [100] directions. 

 The two-particle system has been studied previously by researchers using the boundary 

integral equation methods (Leo et al., 2000; Su and Voorhees, 1996b). It has been shown that 

particles in Ni-Al alloys attract each other and tend to merge into one particle. However, the 

merging and post-merging phenomena were not simulated in those works due to the limitations 

of the numerical techniques used in their simulations. In this section, we focus on two 

equal-sized particles with circular initial shapes and radius 
0R . We define the angle between the 

line connecting the centers of these two particles and the [100] direction as  . The simulation 

domain size is set as 2

013 10R . 

 First, we consider two particles with a center-to-center distance of 
03R . They are initially 

aligned along an [100] direction, i.e. 0  . Shown in Fig. 8 are the final equilibrium shapes 

(solid lines) of these two particles for 10   and different values of  . The dotted lines 

represent the initial configurations for the two-particle system. When   is large ( 5  ), the 
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elastic strain energy density is (relatively) large in comparison with the interface energy density. 

So the system evolves predominantly by the tendency to reduce the elastic strain energy. 

Consequently, the two particles merge into one elongated particle along a [100] direction due to 

elastic anisotropy. The larger the  , the more elongated the particle is. Although a more 

elongated particle has large interface area which increases the total surface energy, the decrease 

of the elastic and chemical energies is still more than the increase of the interfacial energy, which 

makes the rod-like morphologies more favorable. These results are consistent with the 

experimental observations (Ardell and Nickolson, 1966; Ma and Ardell, 2007) that, during 

thermal aging, the number of precipitates in Ni-Al alloys decreases significantly and the 

surviving precipitates are mostly slim rod-like particles aligned with [100] directions.  

 For smaller  , for example, 2  , the particles move towards each other slightly, but do 

not coalesce. This seems to be counter intuitive, since smaller   means that the interfacial 

energy density is (relatively) large in comparison with the elastic strain energy density, which 

should favor particle merging in order to reduce the interface surface area. However, high 

interfacial energy density also prevents the particle from growing in volume. So, the only way 

the particles can merge is to move towards each other. However, simply moving the particles 

toward each other without changing their volumes does not change the bulk chemical and elastic 

strain energy, which means that these is very little driving force for doing so. Therefore, the 

particles in this case ( 2  ) remain more or less their initial volumes and locations. For large 

 , the interfacial energy is unimportant so that the particle is able to grow in volume to reduce 

the chemical energy, which leads to their coalescence. These simulation results are in agreement 



 

38 

with the results obtained from the boundary integral methods (Jou et al., 1997; Su and Voorhees, 

1996b).  

For the case of 5  , our numerical simulations show that the two-particle system behave 

similarly as the case of 10  , except that particles with small   disappear because the 

(relative) high interfacial energy suppresses the nucleation of precipitates, which occurs in single 

particle cases as well. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 8 Equilibrium shapes (solid lines) of two-particle systems in a large matrix with 10   

and (a) 2  , (b) 5  , (c) 10  , and (d) 20  . The dotted lines represent the 

initial shapes of particles. 

 

 Next, we consider another case where two equal-sized particles are initially aligned in a 

different crystallographic direction, for example, 30   . Fig. 9 shows the initial and final 

equilibrium shapes of two particles under different initial conditions. Again, the dotted lines and 

the solid lines represent the initial configurations and finial equilibrium configurations of the 

two-particle system, respectively. It is interesting to see that the same final equilibrium 

morphologies as those in previous examples are observed, although particles are initially placed 

in completely different crystallographic directions. In all the cases we considered here, the 

particles first re-adjust their positions to align with an [100] direction, which is elastically soft, in 

order to reduce the elastic energy. Afterwards, the particles coalesce into one and further 

elongate along the [100] direction.  
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(a) 

 

(b) 

 

(c) 
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(d) 

Fig. 9 Equilibrium shapes (solid lines) of two particle in a large matrix with 10   and (a) 

2  , (b) 5  , (c) 10  , and (d) 20  . The dotted line represents the initial 

shape of the particle. 

 

 For better visualization, we show two typical evolution processes for the two-particle system 

with different initial configurations 0   in Fig. 10(a) and 30    in Fig. 10(b), respectively. 

The arrow the figures indicates the direction of increasing t. It is seen that the particles change 

their sizes, shapes, as well as positions, and finally merge. After merging, the merged single 

particle keeps growing along a [100] direction.  

 

 

(a) 
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(b) 

Fig. 10 Morphological evolution of two-particle systems with dilatational eigenstrain 

when 10   (a) 0  , (b) 30   . The dotted lines represent the initial 

shapes of particles and the arrows point to the evolution directions of interfaces 

when time step t  increases. 

 

5. Conclusion 

 This work studied the effects of elastic and interfacial energies on equilibrium morphologies 

of misfit particles due to phase separation in binary alloys under chemo-mechanical equilibrium 

conditions. First, a continuum framework that governs the chemo-mechanical equilibriums of 

both the bulk and interface is developed using a variational approach by treating the phase 

interface as a sharp interface endowed with interfacial excess energy. Evolution of the interface 

is described by a level set method. The evolution kinetics of the interface is also derived and is 

related to the level set evolution equation. Further, an explicit expression of the configurational 

force that drives the morphological evolution of the phases are derived, which contains the 
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generalized Eshelby‟s momentum tensor and the chemical and interfacial effects. Second, an 

extended finite element method (XFEM) in conjunction with the level set method is developed to 

simulate the behavior of the coupled chemo-mechanical system. The nonlinear XFEM is capable 

of solving the coupled chemical and elastic fields with sharp interfaces without the needs for 

remeshing when the phase interface evolves.  

 By using the XFEM developed here, numerical examples have been carried out on Ni-Al 

alloys to investigate the effects of chemical energy, elastic strain energy, and the interfacial 

energy on the morphological evolution of particles in different material systems. The simulated 

results show that the morphological evolution of a phase separate binary alloy is governed by the 

competition among three energetic driving forces, bulk chemical energy, bulk elastic strain 

energy and interfacial excess energy. To study the roles that these energies play, two 

dimensionless parameter   and   are introduced, which represent the ratio between the bulk 

chemical free energy density and the bulk elastic strain energy density, and the ratio between the 

bulk elastic strain energy and the interfacial excess energy, respectively. Under a given  ,  in 

material systems with larger  , the interfacial excess energy is relatively low. Therefore, misfit 

particles tend to grow in size and may eventually coalesce. The negligible interfacial excess 

energy density (which is assume isotropic) also leads to square-like or rod-like precipitate shapes 

due to the system‟s tendency to reduce its elastic strain energy by growing the misfit particle 

along elastic soft directions. Vice versa, for systems with smaller  , interfacial excess energy 

dominates. Thus, misfit particles are usually spherical,  smaller ones tend to shrink in size and 

may eventually disappear. Multiple misfit particles may choose to stay separated because the 
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high interface energy suppresses particle growth, and there is very little driving force for the 

particle to move toward each other without changing their volumes. In general, misfit particles 

tend to align themselves along an elastically soft direction. Under given  , material systems 

with larger   have higher chemical energy, and lower elastic strain energy, which favors 

separation. Thus, misfit particles tend to grow. On the other hand, the same misfit particles in 

systems with smaller   may shrink and eventually disappear. 

 The simulated behavior for the Ni-alloys agrees well with experimental observations, 

demonstrating that the coupled chemo-mechanics model together with the numerical techniques 

developed here provides an efficient simulation tool to predict the equilibrium morphologies of 

precipitates in phase separate alloys. However, we would like to restate that the formulation of 

the evolution dynamics in this paper is based on the assumption of chemo-mechanical 

equilibriums. For the real time-dependent microstructural evolution, non-equilibrium 

thermodynamics with transient mass diffusion is required, which will be presented in a separate 

publication. In addition, the numerical results presented here are two dimensional. Efforts are 

undertaken to extend the numerical simulations to three dimensional space and to multiple 

particles. 
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