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Context

Diffpack is a commercial software library used for the
development numerical software, with main emphasis on
numerical solutions of partial differential equations. It was
developed in C++ following the object oriented paradigm.

The library is mostly oriented to the implementation of the
finite element method, however it has tools for other methods
such as finite volume and finite differences.
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Context

The extended/generalized finite element method is usually
connected to the following issues:

• Blending

• Ill-conditioning of the stiffness matrix

• Numerical integration
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Blending

In the extended finite element method, there are 3 types of
elements.
• Elements with all its nodes enriched
• Elements that none of its nodes enriched.
• Elements that have both type of nodes (blending

elements).

In those elements, there is no partition of unity and the
convergence rate is degraded.
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Blending solution

Babuska and Banerjee (2011) proposed the stable generalized
finite element method. In the SGFEM, the approximation has
the following form

uh(x) =
∑
i∈I

Ni(x)ui +
∑
i∈I∗

Ni(x)[ψi(x)− τψi(x)]ai (1)

where τψi is the finite element interpolation of ψi

τψi(x) =
∑
i∈I

Ni(x)ψi(xi) (2)

6 / 24



The stable
GFEM.

Convergence,
accuracy and
Diffpack im-
plementation

Context

Blending

Ill-
conditioning

Numerical
integration

Numerical
examples

Conclusion

Enriched basis function
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Remarks

• SGFEM has no blending problems.

• Easy to implement, especially when compared to the
corrected XFEM.

• The Kronecker delta property is still valid u(xi) = ui.

• The SGFEM enriched basis function of the absolute value,
coincides with the modified absolute value enrichment
proposed by Möes.
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Ill-conditioning

Consider the following system of equations

Ax = b

If we consider a small change on right hand side, b′, we are
interested in determining how this will affect the solution.
Defining

e = b′ − b ex = x′ − x

Then, the relative change of the solution x is

|ex|/|x|
|e|/|b|

=
|A−1e|
|e|

· |b|
|x|

=
|A−1e|
|e|

· |Ax|
|x|

≤ ‖A−1‖‖A‖

Therefore, we define

Cond(A) = ‖A−1‖‖A‖
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Ill-conditioning solution

• Scaled condition number Let hij =
aij√
aiiajj

. Then the

scaled condition number is defined as
κ(A) = ‖H−1‖‖H‖

• The scaled condition number of the FEM stiffness matrix
is O(h−2).

• The standard GFEM condition number is usually higher
than O(h−2).

• SGFEM condition number in 1D is O(h−2).

• For higher dimensions, if 2 assumptions hold, the condition
number of SGFEM also grows at the same rate as FEM.
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The two assumptions

Assumption 1 There exist L1 and U1 ∈ R and indepedent of h
(element size) such that

• 0 < L1 ≤ U1

• L1[‖α‖2 + ‖β‖2] ≤ |a(α+ β, α+ β)| ≤ U1[‖α‖2 + ‖β‖2]
where α =

∑
i uiNi and β =

∑
j vjNjψ ∀ui, vj ∈ R.

The space spanned by the standard FEM shape functions is
almost orthogonal to the space spanned by the enriched
shape functions.
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The two assumptions

Let A(i) be the scaled stiffness matrix of element i.
Assumption 2 There exist L2 and U2 ∈ R and indepedent of h
(element size) such that

• 0 < L2 ≤ U2

• L‖y‖2 ≤ yTA(i)y ≤ U‖y‖2 ∀y ∈ Rk

Provided that those 2 assumptions are fulfilled, the scaled
condition no. of the stiffness matrix is also O(h−2).
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Numerical integration

• Numerical integration of discontinuous and singular
functions must be perfomed.

• The integration of the branch functions (singular
functions) is performed using a parabolic mapping (Béchet
et al. 2005).

• Integration of discontinuous and weakly discontinuous
functions is performed with subdivision of the elements.
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Integration algorithm

1 The cut points between the interface and the element
edges are found.

2 A least squares plane is adjusted to the cut points.

(1) (2)
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Integration algorithm

3 Points are placed over the plane.

4 A polynomial interpolation in the normal direction is built
and solved.

(3) (4)

15 / 24



The stable
GFEM.

Convergence,
accuracy and
Diffpack im-
plementation

Context

Blending

Ill-
conditioning

Numerical
integration

Numerical
examples

Conclusion

Integration algorithm

5 Two sets of points are created. φi ≥ 0 and φi ≤ 0

(5)
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Integration algorithm

6 Delaunay tetrahedralization is computed for both sets.

(6)
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Integration algorithm

7 Gauss points are mapped into the tetrahedrons

(7)
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Numerical Examples. Problem definition

∇ · σ + b = 0 on Ω
σ · n = t on Γt

u = u on Γu

ε = 1
2(∇u+ (∇u)T ) on Ω

σ = Cε on Ω

t

b u
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Circular Inclusion

The absolute value of the level set is used as enrichment
function.
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Crack

Enriched with the “linear Heaviside” (H(x), H(x)x, H(x)y)
and the branch enrichemet functions.
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Crack
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Summary

• The stable generalized finite element is an easy to
implement solution to blending problems.

• At the moment, SGFEM is not a complete solution against
the ill-conditioning.

• Numerical integration perfomed through element
subdivision and parabolic mapping.

23 / 24



The stable
GFEM.

Convergence,
accuracy and
Diffpack im-
plementation

Context

Blending

Ill-
conditioning

Numerical
integration

Numerical
examples

Conclusion

Literature

• Babuska, I., Banerjee, U. (2012). Stable Generalized
Finite Element Method (SGFEM). Computer Methods in
Applied Mechanics and Engineering

• Gupta, V., Duarte, C. a., Babuska, I., Banerjee, U. (2013).
A Stable and Optimally Convergent Generalized FEM
(SGFEM) for Linear Elastic Fracture Mechanics.
Computer Methods in Applied Mechanics and Engineering

• Gupta, V., Duarte, C. a., Babuska, I., Banerjee, U. (2015).
Stable GFEM (SGFEM): Improved conditioning and
accuracy of GFEM/XFEM for three-dimensional fracture
mechanics. Computer Methods in Applied Mechanics and
Engineering

24 / 24


	Context
	Blending
	Ill-conditioning
	Numerical integration
	Numerical examples
	Conclusion

