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Diffpack is a commercial software library used for the
development numerical software, with main emphasis on

numerical solutions of partial differential equations. It was
developed in C++ following the object oriented paradigm.

Context

The library is mostly oriented to the implementation of the
finite element method, however it has tools for other methods
such as finite volume and finite differences.
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The extended/generalized finite element method is usually
connected to the following issues:

Context

e Blending
e lll-conditioning of the stiffness matrix

e Numerical integration
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e Elements with all its nodes enriched
plementation

In the extended finite element method, there are 3 types of
elements.

e Elements that none of its nodes enriched.

e Elements that have both type of nodes (blending
— elements).

In those elements, there is no partition of unity and the
convergence rate is degraded.
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Babuska and Banerjee (2011) proposed the stable generalized
plementation ..

finite element method. In the SGFEM, the approximation has
the following form

Blending — Z N;(z)u; + Z Ni(z

r) — Ti(z)]a; (1)
i€l iel*

where T1; is the finite element interpolation of ;

Td’z Z N 7/}1 :C, (2)
el
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Blending

Enriched basis function

Nl

)

——
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SGFEM has no blending problems.
e Easy to implement, especially when compared to the
Blending corrected XFEM.

e The Kronecker delta property is still valid u(z;) = u;.

e The SGFEM enriched basis function of the absolute value,
coincides with the modified absolute value enrichment
proposed by Moes.
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Consider the following system of equations

If we consider a small change on right hand side, b’, we are
interested in determining how this will affect the solution
Defining

/
- e=b—-b €x=a —x
conditioning

Then, the relative change of the solution x is
leal/|2| _ |[AT"e| bl _ |AT%e| |Ax| _ g,
o < [[A7 (]| All
le]/1b] el x| el Ed

Therefore, we define

Cond(A) = ||[A7L]||| A
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lll-conditioning solution

e Scaled condition number Let h;j = —_. Then the
33

V Gii

scaled condition number is defined as
K(A) = [|[HY | H|

e The scaled condition number of the FEM stiffness matrix
is O(h™2).

e The standard GFEM condition number is usually higher
than O(h=2).

e SGFEM condition number in 1D is O(h~2).

e For higher dimensions, if 2 assumptions hold, the condition
number of SGFEM also grows at the same rate as FEM.
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The two assumptions

Assumption 1 There exist L; and U; € R and indepedent of A
(element size) such that

e 0< L1 <y
o Lifllal? +8I1%] < la(a+ B,a+ B)| < Urlflaf* + [18]%]
where a =Y, u;N; and = Zj viNj  Yu;,v; € R

The space spanned by the standard FEM shape functions is

almost orthogonal to the space spanned by the enriched
shape functions.
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Assumption 2 There exist Ly and Us € R and indepedent of A
(element size) such that

conditioning Y O < L2 S UQ
e Lly|? < yTAOy < Uly|? vy € R

Provided that those 2 assumptions are fulfilled, the scaled
condition no. of the stiffness matrix is also O(h™?2).
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e Numerical integration of discontinuous and singular
functions must be perfomed.

e The integration of the branch functions (singular
functions) is performed using a parabolic mapping (Béchet
et al. 2005).

e Integration of discontinuous and weakly discontinuous
functions is performed with subdivision of the elements.

Numerical
integration
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(1) (2)
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/ // 107

o

Energy norm error
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Conclusion

Summary

e The stable generalized finite element is an easy to
implement solution to blending problems.

e At the moment, SGFEM is not a complete solution against

the ill-conditioning.
e Numerical integration perfomed through element
subdivision and parabolic mapping.
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