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• Weindl D, Wegner A, Jäger C, Hiller K. Isotopologue ratio normalization for non-

targeted metabolomics. Journal of Chromatography A, 2015, 1389, 112–9.

• Wegner A, Meiser J, Weindl D, Hiller K. How metabolites modulate metabolic flux.

Current Opinion in Biotechnology 2015, 34, 16–22.

• Sapcariu SC, Kanashova T, Weindl D, Ghelfi J, Dittmar G, Hiller K. Simultaneous

extraction of proteins and metabolites from cells in culture. MethodsX 2014, 1, 74–8.
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• Weindl D, Wegner A, Jäger C, Hiller K. Non-targeted quantification of metabolites

using stable isotope dilution mass spectrometry and non-targeted tracer fate detec-

tion. ISC 2014—30th International Symposium on Chromatography, 2014, Salzburg

(Austria).

• Weindl D, Cordes T, Hiller K. Profiling metabolic networks using stable-isotope

tracers and mass spectrometry. 2nd International Systems Biomedicine Symposium,

2013, Esch-sur-Alzette (Luxembourg).

• Weindl D, Cordes T, Hiller K. Profiling metabolic networks using stable-isotope tracers

and mass spectrometry. Life Sciences PhD Days, 2013, Luxembourg (Luxembourg).

• Weindl D, Hiller K. Comprehensive profiling of metabolic networks using stable-

isotope tracers and mass spectrometry. II International Workshop on Metabolomics &

Proteomics, 2012, Bilbao (Spain).

• Weindl D, Hiller K. Comprehensive profiling of metabolic networks using stable-

isotope tracers and mass spectrometry. Life Sciences PhD Days, 2012, Luxembourg

(Luxembourg).

v





Contents

List of Figures xi

List of Tables xiii

Acronyms xv

Summary xix

1 Introduction 1

1.1 Metabolism and metabolic research . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Metabolism is strongly regulated . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Dysregulated metabolism leads to disease . . . . . . . . . . . . . . . . 1

1.1.3 The importance of metabolic research . . . . . . . . . . . . . . . . . . 2

1.2 Metabolomics — the study of metabolite levels . . . . . . . . . . . . . . . . 3

1.2.1 GC-MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Electron ionization mass spectrometry . . . . . . . . . . . . . . . . . 4

1.2.3 Compound identification . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.4 Quantitative metabolomics and comparability of measurements . . . 7

1.2.5 Absolute quantification . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.6 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.7 Chances and limitations . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Stable isotopes & stable isotope-assisted metabolic research . . . . . . . . . . 10

1.3.1 Stable isotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Stable isotope-assisted metabolic research . . . . . . . . . . . . . . . 10

1.3.3 Kinetic isotope effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.4 Incorporation of isotopes leads to isotopic isomerism . . . . . . . . . 12

1.3.5 Measures of isotopic enrichment . . . . . . . . . . . . . . . . . . . . . 15

1.3.6 Determination of isotopic enrichment . . . . . . . . . . . . . . . . . . 17

1.3.7 Non-targeted detection of stable isotope labeling . . . . . . . . . . . . 24

1.3.8 Metabolic flux analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.3.9 Metabolic flux analysis techniques are highly targeted . . . . . . . . . 30

vii



Contents

1.4 Cancer metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4.1 Cancer cells need biomass precursors and are often hypoxic . . . . . . 30

1.4.2 High glycolytic flux increases ATP production and provides catabolic

precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.3 Hypoxia inducible factor (HIF)-1 is a key regulator of cancer cell

metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.4 Amino acids, nucleotides and NADPH are generated from glycolytic

intermediates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.4.5 Acetyl-CoA is produced from glutamine and acetate . . . . . . . . . . 33

1.4.6 Cancer cells exhibit increased de novo fatty acid biosynthesis . . . . . 34

1.4.7 Branched chain amino acid catabolism in cancer . . . . . . . . . . . . 35

1.4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Materials & methods 41

2.1 Used organisms and culture conditions . . . . . . . . . . . . . . . . . . . . . 41

2.2 Metabolite measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.1 Metabolite extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 Fatty acid methyl ester preparation . . . . . . . . . . . . . . . . . . . 41

2.2.3 GC-EI-MS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Molecular biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.1 RNA extraction and reverse transcription . . . . . . . . . . . . . . . . 42

2.3.2 qPCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.3 Cell transfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Results & discussion 49

3.1 NTFD — a tool for the non-targeted detection of isotopic enrichment . . . . 49

3.2 MIA — a tool for the non-targeted analysis of isotopic enrichment . . . . . . 51

3.2.1 MID variation analysis to detect changes in metabolic fluxes . . . . . 52

3.2.2 MID similarity analysis to detect metabolically connected compounds 53

3.2.3 Towards higher sensitivity and specificity in the detection of isotopic

enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 FFC — fragment formula calculator . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Complete carbon isotopologue distribution from mass spectrometric

fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Automating metabolome-wide IDMS normalization . . . . . . . . . . . . . . 69

viii



Contents

3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells . . . . 71

3.5.1 Isotopic steady state . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 Fatty acid metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.3 Unidentified isotopically enriched compounds . . . . . . . . . . . . . 78

3.5.4 NAT8L and N -acetylaspartic acid-based acetyl shuttling in lung cancer

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5.5 Acetylated compounds as proxies for acetyl-CoA labeling . . . . . . . 99

3.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.6 MetaboBase—Metabolomics data management . . . . . . . . . . . . . . . 102

3.6.1 Data warehousing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.6.2 Web front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4 Summary & Outlook 113

5 Acknowledgements 115

Appendices 117

A Article manuscripts 119

A.1 Isotope cluster based compound matching in gas chromatography/mass spec-

trometry for non-targeted metabolomics . . . . . . . . . . . . . . . . . . . . 119

A.2 NTFD — a stand-alone application for the non-targeted detection of stable

isotope-labeled compounds in GC/MS data . . . . . . . . . . . . . . . . . . . 123

A.3 Complexity of dopamine metabolism . . . . . . . . . . . . . . . . . . . . . . 127

A.4 Fragment Formula Calculator (FFC): Determination of chemical formulas for

fragment ions in mass spectrometric data . . . . . . . . . . . . . . . . . . . . 131

A.5 Simultaneous extraction of proteins and metabolites from cells in culture . . 135

A.6 How metabolites modulate metabolic flux . . . . . . . . . . . . . . . . . . . 139

A.7 Isotopologue ratio normalization for non-targeted metabolomics . . . . . . . 143

A.8 MIA: Non-targeted mass isotopolome analysis . . . . . . . . . . . . . . . . . 147

A.9 Non-targeted mass-isotopolome analysis . . . . . . . . . . . . . . . . . . . . 151

A.10 Non-targeted tracer fate detection . . . . . . . . . . . . . . . . . . . . . . . . 155

B Miscellaneous 159

B.1 Chemstation macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography 161

ix





List of Figures

1 Interplay of the omes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Derivatization reactions for GC analysis . . . . . . . . . . . . . . . . . . . . 4

3 EI-MS spectrum of glycine 2TMS . . . . . . . . . . . . . . . . . . . . . . . . 5

4 MS detector signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Quantitative metabolomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

6 Isotopic isomerism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Measures of isotopic enrichment . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Mass spectrum of a mixture of different isotopologues of an isotopically enriched

compound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

9 NTFD algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

10 Fluxes and mass isotopomer distributions (MIDs) . . . . . . . . . . . . . . . 29

11 Cancer cell metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

12 BCAA catabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

13 NTFD GUI screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

14 MIA workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

15 MIA GUI screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

16 Metabolic vicinity leads to similar MIDs. . . . . . . . . . . . . . . . . . . . . 54

17 MID similarity analysis for pathway contextualization and detection of metabol-

ically related compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

18 Increasing NTFD’s sensitivity and specificity . . . . . . . . . . . . . . . . . 56

19 Detection of labeled fragments . . . . . . . . . . . . . . . . . . . . . . . . . . 57

20 Threshold for detection of labeled fragments . . . . . . . . . . . . . . . . . . 58

21 Problems in the detection of labeled fragments . . . . . . . . . . . . . . . . . 60

22 FFC Screenshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

23 Serine fuels C1 metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

24 Isotopologues of serine and glycine. . . . . . . . . . . . . . . . . . . . . . . . 68

25 Experimental setup for automated normalization using metabolome-wide in-

ternal standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

26 Isotopic steady state in central carbon metabolism of A549 cells . . . . . . . 73

27 Carbon origin of fatty acids under normoxia and hypoxia. . . . . . . . . . . . 74

28 A549 cells produce odd-chain fatty acids . . . . . . . . . . . . . . . . . . . . 75

xi



List of Figures

29 Hypoxia induced BCAA catabolism can be seen in isotopic labeling and gene

expression levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

30 Effect of an activator and an inhibitor of BCAA catabolism on cell proliferation. 78

31 Compound identification strategy. . . . . . . . . . . . . . . . . . . . . . . . . 79

32 N -carboxyglutamic acid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

33 N -carboxyamines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

34 N -carboxyamino acid levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

35 Putative 2-acetamidoglucal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

36 MID similarity analysis for RI 1651 . . . . . . . . . . . . . . . . . . . . . . . 86

37 Neuronal metabolism of N -acetylaspartic acid. . . . . . . . . . . . . . . . . . 87

38 Significantly changed compound levels after siRNA-mediated NAT8L knockdown. 88

39 Occurrence of N -acetylaspartic acid in other non-neuronal cell types. . . . . 89

40 NAT8L splicing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

41 Glycerol-3-phosphate metabolism. . . . . . . . . . . . . . . . . . . . . . . . . 91

42 Changes in MIDs due to N -acetyltransferase 8-like (NAT8L) knockdown. . . 92

43 Model of cytosolic-mitochondrial acetyl-coenzyme A (CoA) transport under

hypoxia where acetyl-CoA-carbon is mainly derived from glutamine. . . . . . 94

44 Gene expression levels in response to NAT8L silencing . . . . . . . . . . . . 95

45 Model of the role of N -acetylaspartic acid and NAT8L under normoxia . . . 96

46 Cell proliferation during NAT8L knockdown. . . . . . . . . . . . . . . . . . . 97

47 Proxies for acetyl-CoA labeling . . . . . . . . . . . . . . . . . . . . . . . . . 100

48 Workflow for non-targeted mass isotopolome analysis. . . . . . . . . . . . . . 101

49 MetaboBase overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

50 MetaboBase compound library . . . . . . . . . . . . . . . . . . . . . . . . 104

51 MetaboBase compound information . . . . . . . . . . . . . . . . . . . . . 105

52 MetaboBase mass spectrum library . . . . . . . . . . . . . . . . . . . . . . 106

53 MetaboBase experiment meta-data . . . . . . . . . . . . . . . . . . . . . . 107

54 MetaboBase database model . . . . . . . . . . . . . . . . . . . . . . . . . 109

xii



List of Tables

1 Abundance of selected stable isotopes . . . . . . . . . . . . . . . . . . . . . . 11

2 Settings for selected ion monitoring (SIM) method for TBDMS derivatives of

intermediates of central carbon metabolism . . . . . . . . . . . . . . . . . . . 43

3 qPCR primer sequences for human genes . . . . . . . . . . . . . . . . . . . . 44

4 siRNA target sequences for gene silencing . . . . . . . . . . . . . . . . . . . . 46

5 NTFD enhancements, sensitivity and specificity . . . . . . . . . . . . . . . . 61

7 N -carboxyamines obtained from incubation of the amines with NaHCO3 . . 80

8 Some MetaboBase statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 103

xiii





Acronyms

Ga,...,n Isotopologue of a compound containing N possibly labeled atoms with
atoms 1 (a), . . . , N (n) labeled (1) or unlabeled (0). Fully labeled isotopo-
logue: G1,...,1.

A549 human lung adenocarcinoma cells

aa amino acid(s)

ACLY ATP-dependent citrate lyase

ACSS acyl-CoA synthetase

APCI atmospheric pressure chemical ionization

ASPA aspartoacylase

ATP adenosine triphosphate

BCAA branched-chain amino acid

BCAT branched-chain amino acid aminotransferase

BCKDH branched-chain α-keto acid dehydrogenase

bp base pair(s)

BPI base peak intensity

Ca:b fatty acid with a carbons and b double bonds

CI chemical ionization

CoA coenzyme A

csv comma separated values

EI electron ionization

FAD flavin adenine dinucleotide

FAME fatty acid methyl ester

FASN fatty acid synthase

FBA flux balance analysis

FFC Fragment Formula Calculator

GC gas chromatography

GC-MS gas chromatography - mass spectrometry

xv



Acronyms

GlcNAc N -acetyl-D-glucosamine

GNE UDP-N -acetylglucosamine 2-epimerase

GPD glycerol-3-phosphate dehydrogenase

GUI graphical user interface

HIF hypoxia inducible factor

ICBM isotope cluster-based compound matching

IDH isocitrate dehydrogenase

IDMS isotope dilution mass spectrometry

InChI INternational CHemical Identifier

IUPAC International Union of Pure and Applied Chemistry

LC-MS liquid chromatography - mass spectrometry

LDH lactate dehydrogenase

m/z mass-to-charge ratio

ManNAc N -acetyl-D-mannosamine

MDH malate dehydrogenase

MeOX methyloxime

MFA metabolic flux analysis

mGluR3 type 3 metabotropic glutamate receptor

MIA Mass Isotopolome Analyzer

MID mass isotopomer distribution

MS mass spectrometry

MSTFA N -methyl-N -(trimethylsilyl) trifluoroacetamide

MTBSTFA N -tert-butyldimethylsilyl-N -methyltrifluoroacetamide

mTORC1 mammalian/mechanistic target of rapamycin complex 1

In Relative abundance of the raw mass isotopomer with a mass increment of
n as compared to the lightest isotopologue (the M+0 peak).

NAAGS N -acetylaspartylglutamic acid synthetase

NAD nicotinamide adenine dinucleotide

NADP nicotinamide adenine dinucleotide phosphate

NAT8L N -acetyltransferase 8-like

NeuNAc N -acetylneuraminic acid

NMR nuclear magnetic resonance

NNT nicotinamide nucleotide transhydrogenase

xvi



Acronyms

NTFD non-targeted tracer fate detection

OGDH 2-oxoglutarate dehydrogenase

PCA principal component analysis

PCC propionyl-CoA carboxylase

PDH pyruvate dehydrogenase

PDK pyruvate dehydrogenase kinase

PKA protein kinase A

PPP pentose phosphate pathway

qPCR quantitative real-time polymerase chain reaction

RI retention index

ROS reactive oxygen species

RT retention time

SAM S -adenosyl methionine

SD standard deviation of the mean

SDH succinate dehydrogenase

SHMT serine hydroxymethyl transferase

SIM selected ion monitoring

siRNA small interfering RNA

SVG scalable vector graphics

TBDMS tert-butyltrimethylsilyl

TCA tricarboxylic acid

THF tetrahydrofolate

TIC total ion current

TMS trimethylsilyl

TOF time of flight

UDP uridine diphosphate

xvii





Summary

In this work, a novel computational tool, MIA, for the non-targeted analysis of complex

stable isotope labeling gas chromatography electron impact mass spectrometry (GC-EI-

MS) datasets is presented. MIA, the Mass Isotopolome Analyzer, extends the previously

published non-targeted tracer fate detection (NTFD) tool to analyze multiple datasets in

parallel. Furthermore, MIA allows not only for the non-targeted detection and quantification

of stable isotope labeled compounds, but also for subsequent visual data analysis and for

the non-targeted detection of metabolic flux changes based on mass isotopomer distribu-

tion (MID) variation analysis. Furthermore, it aids compound identification and pathway

contextualization by generating MID similarity-based compound networks.

Applying MIA for the analysis of the metabolism of a human lung adenocarcinoma cell line

(A549) allowed for the detection of hypoxia-induced metabolic flux changes and unanticipated

metabolites. A549 cells were found to produce N -acetylaspartic acid, a metabolite known

to be involved in neuronal-oligodendrocytic acetyl-shuttling. Moreover, several N -carboxy

derivatives of amine metabolites were detected. Hypoxic cancer cells were shown to have an

increased branched-chain amino acid (BCAA) catabolism and that the propionyl-coenzyme

A (CoA) generated during catabolism of isoleucine gives rise to odd-chain fatty acids.

The observation of N -acetylaspartic acid production in A549 cells lead to the discovery

of an alternative acetyl-shuttling mechanism across the mitochondrial membrane based on

N -acetyltransferase 8-like (NAT8L) and N -acetylaspartic acid, circumventing ATP-dependent

citrate lyase (ACLY) which was yet unknown in cancer cells.

A metabolomics data management platform, MetaboBase, was developed to keep track of

tens of thousands of GC-MS measurements. The platform is integrated with data acquisition

and preprocessing, and is easily operated via a user-friendly web interface. It allows for a

central management of experimental metadata and mass spectra reference libraries which

are exported to a format directly accessible with the MetaboliteDetector data analysis

software.

In summary, this work illustrates how non-targeted analysis of stable isotope labeling can

be a valuable tool for initial hypothesis generation in the study of metabolism. The detected

unanticipated metabolites show once more that knowledge on species- and cell type-specific

metabolism is still incomplete and that non-targeted approaches are necessary. The developed

data analysis tools like MIA can be applied in further studies, also in contexts other than

xix



Summary

cancer metabolism. The discovery of N -acetylaspartic acid-based acetyl transport within

cancer cells may provide new targets for cancer treatment. However, further studies are

needed.

xx



1 Introduction

1.1 Metabolism and metabolic research

Every living organism is exchanging matter with its environment. Organic and inorganic

substrates are taken up and converted into biomass or are used to obtain energy. This entirety

of uptake, interconversion, and excretion of matter is called metabolism. Metabolism has long

been studied to understand biological systems in health and disease.

1.1.1 Metabolism is strongly regulated

Most metabolic reactions are catalyzed by enzymes, only some occur spontaneously. Enzymes

are mostly proteins, which are synthesized by translation of messenger ribonucleic acids

(mRNAs) which are transcribed from genes (Figure 1). This gene expression is controlled by

proteins and the epigenetic state, which can in turn be regulated by metabolites. [1] Epigenetic

modifications, transcription, translation and enzymatic catalysis are strongly regulated and

finally give rise to the entirety of metabolites, the metabolome. All these levels are strongly

interconnected and their interactions are finely tuned but yet highly dynamic to adopt to

changing physiological requirements. Together, they determine the final phenotype.

The metabolic network consists of metabolite pools which are interconnected by metabolic

reactions or metabolic fluxes. These fluxes are even more dynamic and regulated than the

metabolome itself. They give rise to the metabolome and are themselves regulated by the

metabolome. In Wegner et al. [2] (section A.6) we review current literature and describe how

metabolites regulate metabolic fluxes on all levels shown in Figure 1.

1.1.2 Dysregulated metabolism leads to disease

Metabolism is finely regulated by intricate mechanisms and metabolism itself regulates many

cellular processes directly or indirectly. Therefore, it comes as no surprise that perturbations

of metabolism can lead to disease. Many genetically caused inborn errors of metabolism are

known [3] and some of them, like for example Tay-Sachs disease or Canavan’s disease have

devastating effects. In Tay-Sachs disease, it is a defect in the β-hexosaminidase gene [4] and in

Canavan’s disease, it is a defect in the aspartoacylase gene [5] that lead to severe neurological
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Figure 1: All omes interact and determine the phenotype. The fluxome is the most
dynamic and probably the closest to the final phenotype.

impairment. Several other well known diseases like diabetes and phenylketonuria (PKU) are

caused by pathological metabolism. In Meiser et al. [6] (section A.3) we review how dopamine

metabolism is involved in the neurodegenerative Parkinson’s disease.

1.1.3 The importance of metabolic research

Many diseases are caused by, and probably all diseases lead, either directly or indirectly, to

altered metabolism. Therefore, metabolic research is highly important for the diagnosis and

understanding of disease, and to finally develop therapeutic means to help the patients. Re-

cently, metabolic research has provided good mechanistic insights into cancer metabolism, [7–9]

provided diagnostic biomarkers, [10,11] and potential therapeutic targets. [12–15]

Cellular metabolism is most easily studied, but for the understanding of complex diseases,

a systems understanding of whole-body metabolism is required. There is much textbook

knowledge on metabolism in general, [16,17] but for both ends of the scale, for cellular and for

whole-body metabolism, knowledge is still incomplete. There are large gaps in knowledge

on subcellular metabolism, cell-type and tissue-specific metabolism and their consequences

2



1.2 Metabolomics — the study of metabolite levels

for systemic metabolism. This lack of knowledge is to a large extent caused by a lack of

appropriate tools to study those aspects. However, subcellular metabolism is attracting

more attention, [18] especially with the application of 13C-metabolic flux analysis (MFA)

(section 1.3.8) to mammalian cells. [19,20]

1.2 Metabolomics — the study of metabolite levels

Due to the technological progress in analytical instruments over the recent decades, the study

of metabolism and the measurement of metabolite levels on a large scale became more and

more feasible and is now popular as metabolomics. Metabolomics has become an important

tool in systems biology [21] and pharmacological research. [22]

Metabolomics measurements can be performed on different analytical platforms. The most

prominent are gas chromatography - mass spectrometry (GC-MS), liquid chromatography -

mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR), each with their own

strengths and weaknesses. [23] Metabolite measurements presented in this dissertation have

been performed on GC-MS instruments which I therefore describe in more detail.

1.2.1 GC-MS

GC-MS is a commonly used analytical platform in metabolomics. For GC-MS analysis a

liquid sample is evaporated and transferred onto a capillary column. This column is coated

with a stationary phase, often consisting of polysiloxanes. There, compounds are separated

based on their volatility and differential retention through interactions with the stationary

phase. Finally, the separated analytes enter the mass spectrometer where they are ionized and

analyzed by their mass-to-charge ratio. The advantages of GC-MS are the high peak capacity

and high reproducibility. A disadvantage is, that to be analyzed by gas chromatography,

samples need to be transferred to the gas phase. As most metabolites are not volatile per se,

they need to be chemically modified to increase their volatility.

Derivatization

In an additional sample preparation step, polar groups are masked to prevent hydrogen

bonding which is responsible for the strong intramolecular interactions leading to low volatility.

Depending on the nature of the analyte there are many types of derivatizations possible. [24]

Very versatile and commonly used methods are derivatization of hydrogen bond donors

with silylating agents like N -methyl-N -(trimethylsilyl) trifluoroacetamide (MSTFA) or N -

tert-butyldimethylsilyl-N -methyltrifluoroacetamide (MTBSTFA) (Figure 2A). Reactions

with MSTFA and MTBSTFA lead to trimethylsilyl (TMS)- and tert-butyltrimethylsilyl

(TBDMS)-derivatives respectively.
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Carbonyl groups can react with methoxyamine to form methoximes. Methoximation

also lowers the ability to form hydrogen bonds, but more importantly, it prevents keto-

enol-tautomerism by locking molecules in their keto-form. Methoximation also prevents

hemi-acetal formation, and thus, keeps e.g. sugars in their open chain form. This reduces

the number of different derivatives formed from a single precursor, but the methoxime itself

can exist in two different configurations (E/Z ) (Figure 2B).

Derivatization reactions are often not exhaustive, so that a single analyte can give rise to

multiple derivatives. This is the case for primary amines for which often both the 1TMS and

the 2TMS derivative is detected.
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Figure 2: Possible derivatization reactions for GC-MS sample preparation. A)
Alkylsilylation using M(TB)STFA works on a wide range of functional groups. B) Aldehydes
and ketones can be methoximated, preventing keto-enol-tautomerism and acetal formation.
Two stereoisomers of the methyloxime can occur.

1.2.2 Electron ionization mass spectrometry

For GC-MS multiple ionization techniques can be used: electron ionization (EI), chemical

ionization (CI) or atmospheric pressure chemical ionization (APCI). For EI, which is very
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1.2 Metabolomics — the study of metabolite levels

commonly used, analytes entering the mass spectrometry (MS) are ionized by electron

impact. Electrons emitted from a filament in the ion source of the mass spectrometer are

accelerated to hit the analytes and remove an electron. This process leaves a radical cation

(the molecular ion, M•+) which is usually unstable and undergoes subsequent fragmentation

and rearrangement reactions. [25] For that reason EI is called a hard ionization technique.

Fragmentation always leads to both, charged and neutral products. While the neutral

products are lost, the ions are analyzed and detected according to their mass-to-charge ratio

(m/z). This can lead to rather complex mass spectra. However, the fragmentation of the

analyte is structure-specific and its mass spectrum is like a fingerprint. This allows for an easy

identification of compounds by matching them against mass spectral libraries (subsection 1.2.3,

section A.1). As metabolite identification is a bottleneck in current metabolomics analyses

(subsection 1.2.7), this relatively simple compound identification is one big advantage of

EI-MS.

As an example for a typical mass spectrum, the spectrum of the 2TMS derivative of glycine

is shown in Figure 3. The molecular ion at m/z 219 fragments quickly and was not detected.

The heaviest ion is formed by the loss of a methyl group from one of the TMS groups, a

common loss for TMS derivatives. In the lighter fragments, parts of the glycine backbone are

lost. The fragment with m/z 147 is formed from all TMS derivatives and contains only a

single oxygen atom from the native metabolite. All these fragments show satellite peaks due

to incorporation of naturally occurring stable isotopes.

In Wegner et al. [26] (section A.4) we present Fragment Formula Calculator (FFC), a tool

that uses a combinatorial graph-based approach to determine the elemental composition and

potential substructures in such mass spectrometric fragments (Figure 3). These information

are valuable in combination with stable isotope labeling, since they can be used to obtain

positional information on isotopic enrichment as I show in subsection 3.3.1.
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Figure 3: The EI-MS spectrum of glycine 2TMS. Substructures retained (black) and
lost (grey) in the indicated fragment ions have been determined with FFC (section 3.3). Peak
clusters occurring due to natural isotope abundance are colored blue.
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1.2.3 Compound identification

Mass spectrum reference libraries

Compound identification in MS-based metabolomics is usually achieved by matching mass

spectra against reference libraries. There are several commercial [27–29] and free [30] reference

libraries available. Every mass spectrum of interest is compared to all mass spectra in the

reference library and a score is determined based on the spectrum similarity and often also

the retention index (RI). [31,32]

Mass spectra from complex metabolite samples are often noisy and require robust spectrum

matching algorithms. In Wegner et al. [33] (section A.1) we present isotope cluster-based

compound matching (ICBM), a novel algorithm that improves this mass spectrum matching

by making use of peak patterns arising from natural isotope abundance. Furthermore,

ICBM allows a more efficient and faster spectrum matching against large libraries which is

otherwise computationally very expensive. It allows to use the commercial NIST library, [28]

which currently contains mass spectra of more than 270,000 compounds (Nist14), in routine

analyses.

Compounds not present in reference libraries

Although there are extensive mass spectrum reference libraries available, it is probable that

many metabolites still remain to be discovered and are therefore not present in any of these

libraries. Unlike NMR spectroscopy, mass spectrometry cannot be used for unambiguous

ab initio structure elucidation, but it can provide good hints. Soft ionization techniques

like APCI or electrospray ionization (ESI), ideally in combination with high-resolution mass

spectrometry, can provide the mass of the molecular ion or even its elemental composition. [34]

If the accurate mass alone is ambiguous, certain heuristics can be applied to determine the

putative elemental composition. [35] Once the elemental composition is determined, it can

be used for further database searches. Furthermore, stable isotope labeling can provide the

minimum number of atoms of the isotopic elements in a given compound and can reveal the

origin of the given atoms which can be used to rule out certain candidates (section A.7).

Structurally related compounds often yield similar mass spectra with compound class-

specific ions or neutral losses. [25,36–38] For example TMS derivatives of carbohydrates can

easily be recognized by their characteristic ions. [39,40] Therefore, mass spectrum reference

databases can also provide valuable hints for compound identification, even if they do not

contain the compound of interest itself.

A problem for compound identification, in particular in GC-MS metabolomics, is that

most compounds are not native metabolites but chemical derivatives thereof (section 1.2.1).

However, most compound databases only contain the native metabolite but e.g. not its
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1.2 Metabolomics — the study of metabolite levels

TMS derivative. Therefore, the elemental composition of the native compound needs to be

determined. In the case of TMS derivatives the number of TMS groups can to some extent

be deduced from the relative abundance of the M+1 and M+2 peaks of the M•+ or [M-CH3]
+

ions which are mostly a result of the high natural isotope abundance of silicon (Table 1)

and the high number of introduced carbons. A more reliable approach is the use of stable

isotope labeled derivatization agents. For example deuterated MSTFA-d9 is commercially

available and the induced mass shift divided by 9 yields the number of TMS groups in the

molecule. [41] The mass and composition of these derivatization groups can be subtracted to

get to the native mass or elemental composition. Additionally, the number of derivatization

sites already provides information on functional groups present in the molecule. Similar tools

are available for different derivatization reagents like for example methoxyamine-d3.

1.2.4 Quantitative metabolomics and comparability of measurements

In MS-based metabolomics analyses, analyte abundance is quantified by the intensity of the

detector signal caused from ions of specific mass-to-charge ratios. Within a limited range, the

linear range, the detector signal is linearly dependent on the amount of the analyte. Below

or above the linear range, the signal is skewed due to a low signal-to-noise ratio, detector

memory, or detector saturation (Figure 4A). [42]

The absolute detector signal is furthermore dependent on the analyte, the analytical

instrument, its configuration, and the sample matrix (Figure 4B). These factors pose a

problem to the comparability of the semi-quantitative raw signal intensities between different

analytes and between signal intensities across different measurements.
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Figure 4: The MS detector signal as a function of amount of substance.
A) The detector signal is a function of the amount of substance introduced. Over a limited
range there is a linear relationship between the signal intensity i and the amount of substance
x. Outside this range, the signal is skewed because of detector memory, noise, or saturation.
B) The sensitivity, the change in signal intensity due to changed amount of substance, depends
on the analyte and its amount.
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1.2.5 Absolute quantification

The best means to compare analyte levels is their absolute quantification, e.g. to determine

their amount in moles. In targeted metabolomics approaches, when all analytes of interest are

known beforehand, absolute quantification is possible through external or internal calibration.

For external calibration, reference samples containing known quantities of the analyte are

measured along with the sample of interest. The measured signal of the known amount of

substance can be used to quantify the same analyte in the sample of interest (Figure 5A). This

method may not well account for technical variation introduced during sample preparation.

That problem is reduced by internal calibration, where a defined amount of one or multiple

exogenous compounds, the internal standards, is introduced into the sample, at the earliest

possible stage of sample processing. From a measurement of a defined amount of both internal

standards and analytes, a response factor r is determined that can be used in subsequent

measurements to quantify analytes in the sample of interest (Figure 5B).

Internal calibrationExternal calibration

A

Reference measurement

Sample of interest

Sample of interest

C IS

B

Sample of interest

IS

Figure 5: Quantitative mass spectrometry.
A) The signal intensity ir caused by a defined amount of analyte xr in a reference measurement
can be used to quantify the same analyte in the sample of interest (xs).
B,C) A defined amount xr of an internal standard (IS) can be spiked into the sample as
quantification reference. After measurement of a defined amount of the analyte, a compound-
specific response factor r can be determined from measurement of a defined amount of the
analyte a′r together with a defined amount of the internal standard x′r, and used for quantification
of the compound in the sample of interest (xs). The internal standard can be an isotopologue of
the analyte of interest (C) or a different compound with similar physicochemical properties (B).

A single internal standard can be used for all analytes, or group-specific internal standards

can be used for analytes of certain compound classes. However, such approaches cannot

account for matrix effects or analytical discrimination of individual analytes. Therefore,

internal standards for quantification should be as similar as possible in the physicochemical

properties to the analyte of interest. To this end, stable isotope labeled analogues of the

analyte, which are subject to the same analytical biases, are usually applied as internal

standards. The analyte is quantified from the intensity ratio of its labeled and unlabeled
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1.2 Metabolomics — the study of metabolite levels

form and a previously determined response factor. Such approaches are referred to as isotope

dilution mass spectrometry (IDMS) (Figure 5C).

1.2.6 Normalization

In non-targeted metabolomics experiments, many analytes usually remain unidentified. For

these compounds no absolute quantification is possible and, therefore, no statements can

be made on the relative absolute abundance of different unidentified compounds. Only

the relative levels of the same compound across different samples can be compared. This

comparison of raw signal intensities of an analyte is usually only possible across a limited

number of measurements, because the detector signal induced by a certain amount of substance

in the sample can change over time due to e.g. different instrument tuning or deteriorating

inlet or column performance. Therefore, additional measures need to be taken to allow for a

comparison of analyte levels across different measurements from different batches or different

instruments.

Several normalization approaches have been applied to account for such variation. The

simplest means is total ion current (TIC) normalization, that is the normalization of any

measured signal to the overall signal of the sample. However, this approach is sensitive to

strong changes in levels of single, high-abundant analytes. Another approach, probabilistic

quotient normalization, [43] addresses this problem by determining a most probable dilution

factor of a given sample as compared to a representative reference. Such a reference is

obtained from pooling a large number of different samples or measurements which is only

possible for large studies. Normalization on stable isotope labeled internal standards would

avoid these shortcoming, but no defined mixture of internal standards can be provided for

unidentified analytes. Metabolite extracts from fully stable isotope labeled organisms have

been identified as a source for a large number of internal standards. [44,45] For high resolution

LC-MS, tools have been developed to automatically detect these internal standards and to

use them as normalization reference. [46,47] However, these tools cannot operate on data from

low resolution MS or from hard ionization techniques like EI-MS. The problem is that current

approaches detect the analytes and corresponding internal standards from characteristic

isotope patterns in the mass spectrum. Since EI mass spectra contain a large number of mass

peaks from fragmentation and no accurate mass measurements are available, these fragment

peaks cannot easily be distinguished from isotopic peak patterns.

1.2.7 Chances and limitations

Metabolite levels can be helpful to detect changes in metabolism and can serve as diagnostic

biomarkers. [10,48,49] Yet, metabolite levels alone are often not easy to interpret. To get from
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the phenotype to a more mechanistic understanding, it is important to know whether a certain

metabolite accumulates due to its increased production or due to its reduced consumption.

These cases, increased production or decreased consumption, cannot be distinguished based

on metabolite levels alone.

The ultimate goal of metabolomics is to quantify every compound throughout the

metabolome. Depending on the analytical platform and the sample type, current routine

metabolomics measurements provide information on a few dozens to a few thousands of

compounds. [46,50–52] Identification of these compounds is crucial for data interpretation.

However, this identification step (subsection 1.2.3) is still a major bottleneck in metabolomics

analyses. [53,54] In non-targeted metabolomics data, a large fraction of the detected compounds

usually remains unidentified and can therefore only provide limited biological insights.

Another big issue in non-targeted metabolomics is the lack of robust normalization methods

that allow for the comparison of measurements from different batches, instruments or

laboratories. Since absolute quantification of unidentified compounds is not possible, other

approaches are required (subsection 1.2.4). In section 3.4, I describe a method based on

IDMS that allows for a more robust normalization of non-targeted metabolomics data.

1.3 Stable isotopes & stable isotope-assisted metabolic

research

1.3.1 Stable isotopes

Isotopes are nuclides of an element with the same number of protons, but varying numbers of

neutrons (e.g. 12C and 13C). [55] There exist stable and non-stable (i.e. radioactive) isotopes.

In this work, I only consider stable isotopes. Stable isotopes occur naturally, but for most

elements they are of very low abundance (Table 1). They were discovered in the beginning of

the twentieth century and the term isotope was coined in 1913. [56]

Stable isotopes can be introduced into molecules as chemical labels. Such labeled molecules

differ in their masses, but are very similar in their other physical and chemical properties

(exceptions in subsection 1.3.3).

1.3.2 Stable isotope-assisted metabolic research

Stable isotope labeled compounds can be applied to any organism and they are metabolized

almost like their natural occurring analogues. Once these tracers enter metabolism, the

isotopes will be incorporated into downstream metabolites and can be detected using mass

spectrometry [58] or NMR spectroscopy. [59]
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Table 1: Average natural stable isotope abundance of biologically most relevant
elements. [57] Some elements have none, one, or multiple naturally occurring stable heavy
isotopes.

Nuclide Molar fraction

1H 0.9999

2H (D) 0.0001

12C 0.9893

13C 0.0107

14N 0.9964

15N 0.0036

16O 0.9976

17O 0.0004

18O 0.0021

Nuclide Molar fraction

28Si 0.9222

29Si 0.0468

30Si 0.0309

31P 1

32S 0.9499

33S 0.0075

34S 0.0425

36S 0.0001

Since mid of the last century, stable isotopes have been used in a biological context to trace

atoms through metabolism. [60] Except for deuterium, stable isotopes are non-toxic, even in

large doses. [61,62] Therefore, they can also be applied in vivo, without the ethical concerns

that arise from radioactive tracers.

Stable isotope labeling experiments can provide novel insights into cellular metabolism of

less well studied organisms. [63] The labeling patterns of tracer-derived metabolites can help to

determine active metabolic pathways under a given condition. In humans, there are diverse

clinical applications of stable isotope labeling, [64] such as the measurement of gluconeogenesis

or glucose and alanine turnover. [65,66]

Stable isotope labeled compounds have been used as internal standards for IDMS-based

quantification of analytes. IDMS provides more robust results than other quantification

approaches, since isotopic peak ratios in a mass spectrum are very stable (section 3.4). Besides

individual labeled compounds, whole organisms have been isotopically labeled, which provides

a cheap source for a large number of internal standards. [44,45] In addition to more precise

quantification, such fully labeled organisms are also valuable to distinguish native metabolite

from analytical background. [46,47]

In summary, the main applications of stable isotope labeled compounds in metabolomics

research are as tracers for metabolic flux analysis, as internal standards for quantification,

for structure elucidation and elucidation of reaction mechanisms. [67,68]

Commonly used stable isotopes in metabolic research are 13C, 15N and 2H, the main elements

of biological systems. Rarely sulfur isotopes are used. [69] Phosphorous is monoisotopic, that
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means there exists no heavy stable isotope. Although deuterated tracers can be easily

produced and are less expensive, mostly 13C tracers are used because of their lower kinetic

isotope effect in biochemical reactions as well as in chromatographic retention.

1.3.3 Kinetic isotope effect

As previously mentioned, stable isotope labeled compounds are mostly behaving like their

unlabeled counterparts, but there can be some differences. Different isotopologues can exhibit

different reaction rates. This phenomenon is called kinetic isotope effect. Theoretically this

effect can be very big [62] but in practice the difference in reaction rates is only around a

few percent for most isotopes. [70] Nevertheless, these small differences can provide insights

into ecological networks or geochemistry. [71–73] There have also been speculations, that

consumption of heavy isotopes may reduce the susceptibility to oxidative damage and may

therefore increase life span. [74]

The extent of the kinetic isotope effect depends on the isotopic species as well as on the

significance of the respective atoms in the given reaction. For example, with 13C-labeling the

isotope effect is usually negligible, but can become significant in reactions where the carbon

backbone is modified. That becomes apparent in the ribulose-1,5-bisphosphate carboxy-

lase/oxygenase (RuBisCO)-reaction in photosynthesis, where there is a strong discrimination

of 13CO2.
[75]

In stable isotope-assisted metabolomics, the kinetic isotope effect is usually neglected and it

is commonly assumed that the isotopic tracer is metabolized just like its unlabeled analogue.

This includes 13C-MFA where the kinetic isotope effect may well cause slight errors in the

estimated fluxes. [70]

Isotope labeling can also have an impact on chromatographic retention. This is especially

true for deuterated compounds. Hydrogen atoms on the periphery of the molecules can

interact more with the stationary phase than for example carbon atoms of the molecular

backbone which are more shielded. [76] Depending on the extent of deuteration this can lead

to splitting of chromatographic peaks or even baseline separation. [77] For that reason carbon

or nitrogen labeling is usually preferred for GC- or LC-MS experiments, although deuterated

tracers are easier to synthesize and thus cheaper.

In other contexts, the strong kinetic isotope effect of deuterium is of interest, since it can

provide insights into reaction mechanisms. [78,79]

1.3.4 Incorporation of isotopes leads to isotopic isomerism

Through the incorporation of different isotopes of the elements into molecules, a new isomerism

arises — isotopic isomerism. Common terms for isotopic isomers are isotopomers, isotopologues

12



1.3 Stable isotopes & stable isotope-assisted metabolic research

and mass isotopomers. These terms are used inconsistently in current literature. [67,80–84] For

that reason, I will provide clear definitions which I use throughout this work.

I will illustrate the different groups of isotopic isomers with the help of a relatively simple

molecule, glycolonitrile (C2H3NO, Figure 6). This compound is of no further biological

relevance, but offers a good example, since it has a manageable number of isotopic isomers.

Figure 6: Some isotopic isomers (isotopologues) of glycolonitrile. Pure 13C, 2H, 15N,
17O and 18O isotopologues are shown, mixed isotopologues are omitted. Isotopomers have
the same elemental and isotopic composition but can differ in the position of the isotopic
substitution (green boxes). The M + n, Mn or Mn mass isotopomer comprises all isotopologues
with a mass increment of n as compared to the lightest isotopologue (dark gray boxes).

Isotopologues

For the definition of isotopologues1, I follow the recommendations of the International Union

of Pure and Applied Chemistry (IUPAC) [86] that states that an isotopologue is a

molecular entity that differs only in isotopic composition (number of isotopic

substitutions), e.g. CH4, CH3D, CH2D2.

This recommendation is not explicit on whether the number of isotopic substitutions may

or must differ, and on whether the isotopic substitutions may or may not be on different

elements. For example, it is not clear whether 13CH4 is isotopologic with CD4. However, it is

clarified later [85] that

isotopolog ions [...] are ions that differ only in the isotopic composition of one or

more of the constituent atoms

1Isotopologue is short for isotopic homologue [85]
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and that

the ions forming an isotope cluster [in a mass spectrum] corresponding to the

natural isotopic abundances of the constituent atoms [are isotopologic].

Therefore, “isotopologue” comprises all kinds of isotopic substitutions (Figure 6). In other

words, all compounds that consist of the same elements but possibly different isotopes while

otherwise exhibiting the same connectivity and spatial arrangement are isotopologic (are

isotopologues). Therefore, isotopologues can differ in their masses (Figure 6, all depicted

molecules are isotopologic).

For practical reasons isotopologues are often grouped by their nominal masses (section 1.3.5).

Such groups of isotopologues will be addressed2 as Mn where n is the number of additional

neutrons in the molecule, or the increase in nominal mass as compared to the lightest

isotopologue (M0). n does not necessarily correspond to the number of isotopes. For example

in the case of 18O labeling, there is only a single 18O isotope present in the M2 isotopologues

(Figure 6).

Number of isotopologues Of a molecule with n atoms of an element with m possible

isotopic substitutions, there can exist mn isotopologues. In the case of 13C labeling n equals

two (12C, 13C). For the example in Figure 6 there are therefore 22 = 4 carbon isotopologues.

For hydrogen there are 23 = 8 isotopologues, for nitrogen 21 = 2 and for oxygen (16O, 17O,
18O, n = 3) 31 = 3. Of course, the different isotopic species can occur in parallel. For the

combined occurrence of 13C, 2H, 15N, 17O and 18O there exist 22 · 23 · 21 · 31 = 4 · 8 · 2 · 3 = 192

different isotopologues. The number is lower for compounds with symmetry elements.

Isotopomers

The term isotopomer is defined by the IUPAC [86,87] as follows:

[Isotopomers are] Isomers having the same number of each isotopic atom but differ-

ing in their positions. The term is a contraction of ’isotopic isomer’. Isotopomers

can be either constitutional isomers (e.g. CH2DCH=O and CH3CD=O) or isotopic

stereoisomers [e.g. (R)- and (S )-CH3CHDOH or (Z )- and (E )-CH3CH=CHD].

Isotopomers are positional isomers. Isotopomeric compounds have the same isotopic

composition and, thus, the same mass (Figure 6, green boxes). There are no M0 isotopomers

as there exists only a single isotopologue.

2Often also addressed as Mn or M+n.
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Mass isotopomers

For the term mass isotopomer there exists unfortunately no IUPAC recommendation and in

current literature it is used in different ways. [67,80–84] I use the term “mass isotopomer” to

address a group of isotopologues that have a certain mass increment as compared to the lightest

isotopologue. Therefore, “M1 mass isotopomers”would be synonymous with“M1 isotopologues”

(Figure 6). This definition follows mostly the more pragmatic one provided by Hellerstein &

Neese [81], who make the term dependent on the resolving power of the mass spectrometer.

Compounds that are mass isotopomeric have the same nominal mass, but possibly different

numbers and kinds of isotopes incorporated. In the case of 13C labeling experiments, the term

mass isotopomer is usually only used for the 13C mass isotopomers arising from tracer-derived

artificial enrichment, excluding isotopologues arising from incorporation of different isotopic

elements.

In summary, all isotopomeric compounds are also mass isotopomeric and all mass iso-

topomeric compounds are also isotopologic (Figure 6). However, the inverse is not necessarily

true. More formally expressed: isotopomers ⊂ mass isotopomers ⊂ isotopologues.

Isotopic stereoisomers

The incorporation of stable isotopes into a molecule can also give rise to stereo isomerism.

In the example in Figure 6, C-2 of glycolonitrile is prochiral. Replacing one of the two α-

hydrogens with deuterium will give rise to two isotopomeric enantiomers. Since enzymes are

chiral molecules themselves, they distinguish between the different substituents of prochiral

compound. [88] In such cases, only a single enantiomer is formed from a pro-chiral compound.

This has consequences for the interpretation of stable isotope labeling patterns for metabolic

flux analyses. [89]

1.3.5 Measures of isotopic enrichment

In stable isotope-assisted metabolomics the relative abundances of the individual isotopologues

are of interest. However, complete isotopologue distributions, i.e. the relative abundance of

each isotopologue, cannot, or not easily be determined for most compounds (subsection 3.3.1).

Therefore, other measures are needed to assess isotopic enrichment.

Mass isotopomer distributions

Complete isotopologue distributions cannot easily be determined for most compounds, but

MIDs, that is the isotopologue distribution aggregated by the mass increment as compared

to the M0 isotopologue, can easily be determined from a mass spectrum (Figure 7A,B). MIDs

per se do not contain any positional information on isotopic enrichment or the nature of
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Figure 7: Measures of isotopic enrichment.
A) Stable isotope labeling experiments usually yield a mixture of different isotopologues. ◦:
light isotope; •: heavy isotope.
B) Full isotopologue distributions usually cannot be obtained from MS measurements. Instead,
isotopic enrichment is measured in the form of mass isotopomer distributions (MIDs). MIDs
per se do not hold information of positional isotopic enrichment.
C) The fractional enrichment of • describes the average abundance of the heavy isotope in the
overall pool of a compound.

the isotopic species, but positional labeling information can be derived from MIDs of mass

spectrometric fragment ions if the fragmentation pathway is known or at least the atoms

of the original molecule that are retained within a certain fragment are known. [26,90] I will

show how such positional labeling can provide additional biological insights (section A.9) and

how in some cases even the whole isotopologue distribution can be determined from mass

spectrometric data (subsection 3.3.1).

Fractional enrichment

In certain contexts, the exact labeling pattern of a compound is less important than the

overall extent of isotopic enrichment. This can be determined from the MID and illustrated

as the average number of e.g. 13C isotopes per molecule:

f̃ =
N∑
i=1

i ·Mi (1.1)

Another measure, which is easier to compare across different compounds, is the average

relative heavy isotope abundance, or the fractional enrichment (Figure 7):

f =
1

N

N∑
i=1

i ·Mi (1.2)

The fractional enrichment of a compound from a fully 13C-labeled tracer describes how

much of its carbon is derived from that tracer.
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1.3 Stable isotopes & stable isotope-assisted metabolic research

1.3.6 Determination of isotopic enrichment

In a stable isotope labeling experiment, an isotopically enriched tracer is applied to an

organism. After metabolization of this tracer, labeled compounds contain isotopic species

from artificial enrichment of the tracer, as well as from natural isotope abundance (Table 1).

However, for the biological analysis, we are only interested in the isotopic enrichment that

is caused by incorporation of tracer-derived isotopes. Thus, the “raw” MIDs which are

directly accessible from the mass spectrum are corrected for natural isotope abundance

(subsection 1.3.6). This can lead to some confusion, as the corrected MID is usually just

referred to as MID. The term “label distribution” would be more appropriate to discriminate

natural isotope occurrence from artificial isotopic enrichment. However, for consistency with

current literature, I use “mass isotopomer distribution” for the “corrected MID” and “raw

MID” to refer to the uncorrected MID.

In the case of carbon labeling on metabolites the raw and the corrected MIDs are very

similar, because the natural abundances of isotopes of the other elements is comparably low

(Table 1). However, in the case of GC-MS analysis, where there is often a high number of

additional carbons introduced from the derivatization agents (section 1.2.1), the contribution

of natural isotopes is significant and it is therefore vital to correct for this natural contribution

(subsection 1.3.6).

There are two main approaches to perform this correction for MS-derived MIDs: One

uses the theoretical mass isotopomer abundance of a given mass spectrometric fragment

and therefore requires the elemental composition of the observed fragment; [91,92] the other

calculates the isotopic enrichment from the comparison of the mass spectra of the labeled

and unlabeled compound and therefore does not require any additional information.

From elemental composition

In a 13C labeling experiment, the incorporation of tracer-derived 13C into a compound with

n enrichable carbons can give rise to n+ 1 mass isotopomers disregarding the natural isotope

abundances of any other elements. All non-enriched positions within these isotopologues will

also contain stable isotopes according to the natural isotope abundance of the respective

elements.

Therefore, the raw MID, or the relative intensities in an isotopic cluster I l (Figure 3) in

the mass spectrum of a labeled fragment are the average of the MIDs of the molecules with

0...n “artificial” 13C isotopes, weighted by the corrected MID M:
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Figure 8: Mass spectrum of a mixture of different isotopologues of an isotopically
enriched compound using the example of 13C labeling of glycine 2TMS. ◦: 12C; •:
13C.
A) Stable isotope labeling of a compound with two enrichable positions. The mass spectra of
the M0, M1, and M2 isotopologues show isotopic peaks due to the natural isotope abundance in
the non-enriched positions. The natural isotope contribution, i.e. the relative intensity of the
M+1 peak, decreases with the increasing artificial enrichment. Relative M+0 intensity increases
by the same value.
B) After a stable isotope labeling experiment, the mass spectrum of the given compound is a
mixture of the raw MIDs of the three artificial mass isotopomers.
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I l =


M0

0 0 · · · 0

M0
1 M1

0 · · · 0
...

...
. . .

...

M0
n M1

n−1 · · · Mn
0

 ·M =


M0

0 ·M0

M0
1 ·M0 + M1

0 ·M1

...

M0
n ·M0 + M1

n−1 ·M1 + · · ·+ Mn
0 ·Mn

 (1.3)

with Ma
b as the relative abundance of bth natural mass isotopomer of the compound

containing a tracer isotopes. When the relative abundances of all Ma
b are known, and I l is

available from a mass spectrometric measurement, then corrected MIDs can be obtained as

M = C−1 · I l (1.4)

This equation is usually solved by least squares regression.

To populate the correction matrix C, we need the natural MIDs for the enriched isotopo-

logues. When the elemental composition of a molecule is known, its theoretical MID occurring

due to natural isotope abundance can be determined. [93] Therefore, the probabilities for the

inclusion of each isotopic element need to determined according to the elemental composition.

The probability P (x, p) for the presence of x1, . . . , xK atoms of each of the K isotopes of an

element with the natural abundance of p1, . . . , pK is given by the multinomial or polynomial

distribution [94,95]:

P (x, p) =
(
∑K

i=1 xi)!∏K
i=1(xi!)

·
K∏
i=1

pxii (1.5)

For di-isotopic elements, Equation 1.5 simplifies to the binomial distribution. [92,94] The

probability P (x) to encounter x isotopes that occur with the abundance or probability of p

among a total of n atoms is then given by:

P (x) =

(
n

x

)
· px · (1− p)n−x (1.6)

The probabilities for all different combinations of isotopes leading to a given mass isotopomer

have to be summed up for each element and then multiplied to obtain the theoretical relative

mass isotopomer abundance. Such calculations can be performed for all n+ 1 carbon mass

isotopomers that can arise from stable isotope labeling. The resulting MID vectors can then

be put together to obtain the correction matrix C.

An example I will demonstrate this method with the example of glycine 2TMS (Figure 3).

The ion at m/z 204 is the [M-CH3]
+ fragment ([C7H18NO2Si2]

+) and contains the complete

carbon backbone of glycine. It needs to be corrected for the natural isotope abundance of C,
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N, O and Si.

Assuming the masses 204–208 have been measured, the following equation system needs to

be solved: 

M0
0 0 0

M0
1 M1

0 0

M0
2 M1

1 M2
0

M0
3 M1

2 M2
1

M0
4 M1

3 M2
2


·


M0

M1

M2

 =



I204

I205

I206

I207

I208


(1.7)

Although the maximal artificial enrichment will only lead to M2 (I206), the further mea-

surements (I207 and I208) make the system overdetermined and will make the fitting more

robust.

The probability for M0
0 of glycine 2TMS m/z 204 ([C7H18NO2Si2]

+) is given with Equa-

tion 1.5 and 1.6 as:

P (M0
0) = P (C7H18NO2Si2) = P (7, p12C) ·P (18, p1H) ·P (1, p14N) ·P (2, p16O) ·P (2, p28Si) (1.8)

The probability for M1
0 is calculated the same way, but for the sum formula C6H18NO2Si2,

since one carbon is already considered as labeled and not subject to natural isotope abundance:

P (M1
0) = P (C6H18NO2Si2) = P (6, p12C) ·P (18, p1H) ·P (1, p14N) ·P (2, p16O) ·P (2, p28Si) (1.9)

The probability of M1
0 is higher than for M0

0, since there is already one 13C present and

chance to include another 13C in 6 instead of 7 positions is lower.

For M0
1 there are multiple combinations of isotopes that lead to the same mass. The

probabilities of these combinations need to be summed up:

P (M0
1) = P (13C1

12C6
1H18

14N16O2
28Si2)

+ P (12C7
2H1H17

14N16O2
28Si2)

+ P (12C7
1H18

15N16O2
28Si2)

+ P (12C7
1H18

14N17O16O28Si2)

+ P (12C7
1H18

14N16O2
29Si28Si)

For subsequent mass isotopomers, the calculation is more complicated, since also A+2
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isotopes (18O, 30Si) need to be considered. Even for the relatively small ion [C7H18NO2Si2]
+,

there can exist 16 M2 isotopologues:

P (M0
2) = P (13C2

12C5
1H18

14N16O2
28Si2)+ P (13C12C6

2H1H17
14N16O2

28Si2)

+ P (13C12C6
1H18

15N16O2
28Si2)+ P (13C12C6

1H18
14N17O16O28Si2)

+ P (13C12C6
1H18

14N16O2
29Si28Si)+ P (13C12C6

2H2
1H16

14N16O2
28Si2)

+ P (12C7
2H1H17

15N16O2
28Si2)+ P (12C7

2H1H17
14N17O16O28Si2)

+ P (12C7
2H1H17

14N16O2
29Si28Si)+ P (12C7

1H18
15N17O16O28Si2)

+ P (12C7
1H18

15N16O2
29Si28Si)+ P (12C7

1H18
14N17O2

28Si2)

+ P (12C7
1H18

14N17O16O29Si28Si)+ P (12C7
1H18

14N16O2
29Si2)

+ P (12C7
1H18

14N16O2
30Si28Si)+ P (12C7

1H18
14N18O16O28Si2)

For large molecules these calculations are very complex and become computationally

expensive. [93]

From reference spectrum

The previously described approach to quantify isotopic labeling has the drawback that it

requires the elemental composition of the ion of interest. It can therefore not be used to

determine isotopic enrichment of unidentified compounds, or of fragment ions of unknown

composition.

However, at times it can be interesting to determine the isotopic enrichment of an unknown

or unidentified compound. Therefore, we need other means to correct for natural isotope

abundance. Jennings & Matthews [96] described an elaborate approach based on an unlabeled

reference spectrum, that only requires the natural isotope abundance of the tracer element as

additional information. This way to correct MIDs is the basis for non-targeted stable isotope

labeling analysis approaches (subsection 1.3.7). I will describe a simplified version of this

approach which is used in NTFD and MIA (section A.2 and A.8).

To correct a raw MID for natural isotope abundance, we are again confronted with the

problem in Equation 1.4. However, if we do not have the elemental composition available,

we need to populate the correction matrix C by other means. The first column of C, M0, is

the natural MID of the molecule without any artificial enrichment. We have these values

available from the mass spectrum Iul of the unlabeled compound and can get to:
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C =


sul0 0 · · · 0

sul1 M1
0 · · · 0

...
...

. . .
...

suln M1
n−1 · · · Mn

0

 (1.10)

The remaining Ma
b can be replaced in a similar way. The spectrum of labeled compounds

M1, . . . ,Mn looks similar to the unlabeled spectrum, but it is shifted to higher mass (Figure 8).

Furthermore, due to the fixed inclusion of stable isotopes, the M0 abundance will increase

and the other mass isotopomer abundances will decrease.

In the case of 13C labeling of a compound with n carbons that are subject to labeling, the

relative abundance of M0 is the probability of the simultaneous occurrence of n 12C isotopes

and heavy isotopes in any other elements:

M0
0 = pn12C · c (1.11)

with c as the probability of the occurrence of the lightest isotopes of all atoms that are not

subject to artificial enrichment. The relative abundance of M0
1 is the summed probability of

the occurrence of one 13C isotope in any of the n enrichable positions or of a heavy isotope

with a mass increment of one in any of the other positions:

M0
1 = n · p13C · pn−112C · c+ pn12C · s (1.12)

with s as the probability for the occurrence of a heavy isotope with a mass increment of one

in any of the atoms not subject to artificial enrichment.

When a carbons are substituted by 13C, the probability of Ma
0 increases as compared to M0

0

by the factor p12C, since it only requires the simultaneous occurrence of (n− a) 12C isotopes:

Ma
0 = pn−a12C · c

(1.11)
= p−a12C ·M

0
0 (1.13)

The Ma
1 abundance increases accordingly, because the probability of the occurrence of one

13C isotope in only (n− a) positions is lower than in n positions:

Ma
1 = (n− a) · p13C · pn−a−112C · c+ pn−a12C · s (1.14)

= p−a12C

(
(n− a) · p13C · pn−112C · c+ pn12C · s

)
(1.15)

= p−a12C

(
n · p13C · pn−112C · c− a · p13C · pn−112C · c+ pn12C · s

)
(1.16)

(1.11),(1.12)
= p−a12C

(
M0

1 − a · p13C · p−112C ·M
0
0

)
(1.17)

(1.11),(1.13)
=

Ma
0

M0
0

·
(
M0

1 − a · p13C · p−112C ·M
0
0

)
(1.18)

22



1.3 Stable isotopes & stable isotope-assisted metabolic research

Since the natural abundance of 13C is rather low, we assume that only the M1 abundance is

affected by the substitution of up to n carbons with 13C isotopes and neglect the insignificant

changes in the abundances of heavier mass isotopomers. Rearranging (1.18) provides a

correction term for the M1 to M0 ratio of the labeled mass isotopomers: [96]

Ma
1

Ma
0

=
M0

1

M0
0

− a · p
13C

p12C

(1.19)

When a 13C isotope is artificially included in the molecule, this position is no longer subject

to natural isotope abundance. Therefore, the relative natural M0 abundance of these mass

isotopomers increases and the relative M1 abundance decreases (Figure 8).

We define the correction term in (1.19) as:

ca = a · p
13C

p12C

(1.20)

Since we assume, that the relative abundances of the heavier mass isotopomers remain

constant, the M0 abundance increases by the same value as the M1 abundance decreases.

Therefore, their sum will not change:

Ma
1 + Ma

0 = M0
1 + M0

0 (1.21)

Combining Equation 1.19, 1.20 and 1.21 provides a correction term for M0:

Ma
0 = M0

0 +
M0

0 · ca
M0

0

M0
1

+ 1− ca
(1.22)

Since the sum of M0 and M1 needs to be constant (1.21), M1 needs to decrease by the

same amount as M0 increases:

Ma
1 = M0

1 −
M0

0 · ca
M0

0

M0
1

+ 1− ca
(1.23)

Now we can populate the correction matrix and determine the isotopic enrichment without

requiring any further knowledge on the compound.

I explained this method for the case of 13C labeling, but it can analogously be applied

to any other isotopic element. Depending on the natural isotope abundance of the isotopic

element, a M2 correction needs to be performed additionally as described by Jennings &

Matthews [96]. A further benefit of this reference spectrum based approach for MID correction

is, that it corrects for any measurement biases, ionization effects, and deviations of natural

isotope abundance from the global average. [96]
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Positional information on isotopic enrichment

Position-specific isotopic enrichment can be easily determined by NMR spectroscopy, but is

generally not available from MS measurements. However, MIDs from mass spectrometric

fragments can provide such positional isotopic enrichment if fragmentation pathways, or more

precisely, the atoms retained in a certain fragment are known. [97] It has been shown by Choi

et al. [90] how all 16 carbon isotopologues of aspartic acid can be determined from tandem

MS (MS2) spectra of its TBDMS derivative. Antoniewicz et al. [98] showed how fragment

MIDs from three glucose derivatives can be combined to obtain the relative abundance of

all informative hydrogen isotopologues of glucose. More impressively, Di Donato et al. [99]

combined several derivatization techniques to finally obtain the relative abundances of all

32 carbon isotopologues of glutamic acid.

For smaller molecules the full isotopologue distribution can be obtained more easily. Such

knowledge on positional enrichment can provide more biological information and additional

constraints for 13C-MFA (section 1.3.8). [90,97,100] In subsection 3.3.1, I show how the complete

isotopologue distribution of some interesting metabolites can be determined without additional

experimental effort from a single EI-MS measurement of commonly used derivatives.

1.3.7 Non-targeted detection of stable isotope labeling

Whereas radioactive labeling experiments have been analyzed in a non-targeted manner for

a long time, stable isotope labeling analysis has usually been rather targeted. The reason

is, that heavy stable isotopes do not exhibit any readily detectable qualitative differences

to their light counterparts. Therefore, dedicated algorithms are necessary to detect stable

isotopic enrichment in mass spectrometric data in a non-targeted manner.

Over the last few years, several tools have been developed to detect stable isotope labeling

metabolome-wide in a non-targeted manner. One can discriminate between qualitative and

quantitative approaches. Qualitative detection of stable isotope labeling is for example

sufficient to find out which compounds are derived from a given tracer, or in the case of

complete labeling of a sample, to distinguish between analytes of interest and analytical

background. [46,47,50,101] The quantitative detection of isotopic enrichment in the form of MIDs

is often more informative. There are algorithms and tools available for the non-targeted

detection and quantification of stable isotope labeling in GC- [102,103] and LC-MS [104–106] data.

The field of non-targeted stable isotope labeling analysis is still young and not many

applications have been published yet. Some of those studies have only focused on the

qualitative detection of isotopic enrichment, [101] or have not gone beyond the mere detection

of numerical differences in relative mass isotopomer abundances between different experimental

conditions. [50] More biological insights have been obtained by Gaglio et al. [7], who applied

non-targeted tracer fate detection (NTFD) to detect differential transaminase activities in
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cancer cells. Isotopic enrichment in lipids has been analyzed by Li et al. [107] using LC-MS.

In a non-targeted approach, by using principal component analysis (PCA) to analyze mass

isotopomer abundances after different timepoints, they revealed differential dynamics of

different lipid species. Furthermore, Nakayama et al. [108] presented non-targeted metabolic

turnover analysis as a novel strategy to detect metabolic pathways affected by external

perturbations. They generated MID time-series data and performed PCA on the relative

mass isotopomer abundances to reveal the metabolic vicinity of labeled compounds and to

group unidentified compounds into discrete pathways.

The first promising approaches for the non-targeted analysis of stable isotope labeling

data have been reported, but there is still a lack of adequate data analysis software and

workflows. [109] Without such tools, data analysis can be tedious and when comparing multiple

experimental conditions, one is easily overwhelmed by the complexity of the data.

In section 3.5 I describe how, using a newly developed software tool (section 3.2), quantita-

tive stable isotope labeling data can be analyzed in a non-targeted manner, how it can be used

to detect changes in metabolic fluxes, and how it can aid the identification or biochemical

classification of the detected compounds. In the context of the analysis of hypoxic cancer cells,

I demonstrate how such a data-driven analysis is a valuable tool for hypothesis generation

and can grant biological insights.

NTFD - Non-targeted tracer fate detection

NTFD was the first approach to quantitatively detect isotopic enrichment in a non-targeted

manner. Since much of the work presented here is built on the NTFD algorithm, [102] I

will give a short introduction here. Further details of the NTFD algorithm and practical

considerations for experimentation and data analysis are provided in the book chapter in

section A.10.

NTFD operates on GC-MS measurements of an isotopically enriched and a non-enriched

sample (Figure 9). The mass spectra from these two measurements are matched and

subtracted. If the mass spectrum from the isotopically enriched sample is non-enriched, it is

identical to the one from the non-enriched sample, and thus the difference spectrum will have

all zero intensities. However, in the case of isotopic enrichment, there will be characteristic

peaks in the difference spectrum for each labeled fragment. Detection of these peaks is

the most important step for the automated detection of isotopic enrichment. I elaborate

more on this step in subsection 3.2.3 where I present some enhancements of the NTFD

implementation.

The peaks in the difference spectrum provide the m/z ranges of each isotopically enriched

fragment (section A.10). These fragments are used in a second step to quantify this enrichment

by the procedure described above (section 1.3.6). This way, NTFD detects all isotopically
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enriched compounds, and determines the MIDs of all their mass spectrometric fragments.
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Figure 9: The NTFD algorithm. After GC-MS measurement of a isotopically enriched
and non-enriched sample, mass spectra are matched and all enriched fragments are detected
from the difference spectrum. For these fragments, the MIDs are calculated from the difference
of labeled and unlabeled spectra.

1.3.8 Metabolic flux analysis

A problem of metabolomics studies which focus only on metabolite levels is that they cannot

capture changes in metabolic fluxes. Metabolism is more dynamic and not only determined

by metabolite levels alone. Metabolic fluxes are more sensitive to perturbations and can

change without leaving any noticeable changes in metabolite levels. Metabolic networks are

strongly interconnected. Especially within intermediary metabolism, there are often multiple

pathways to get from one metabolite to another. [110] By just observing metabolite levels, one

would not necessarily notice if certain pathways are blocked or induced. However, it can be

very important to know the exact pathway that is taken to produce a certain metabolite.

Firstly, changed metabolic fluxes can be a sign of pathological changes which are important

for diagnostics; secondly, specific pathways can be important drug targets. [111]

This is one of the reasons why there is increasing interest in the fluxome, the fluxes (reaction

rates) of all biochemical reactions. The fluxome is the result of a complex interplay of all

other “omes” (Figure 1) and often seen as the endpoint of all cellular regulation and, thus,

the closest connected to the given phenotype. Yet, none of these omes should be regarded in

isolation. However, multi-omics studies are demanding, time-consuming, and cost-intensive

and not routinely feasible. Since the fluxome probably provides the most direct readout of the

current state of the organism, it is a good starting point to detect any changes. Furthermore,

metabolic fluxes are much more sensitive than many other biological read-outs as for example
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shown by Niklas et al. [112] who demonstrated that subtoxic effects of xenobiotics, effects

which are usually overlooked in toxicity screenings, can be detected by 13C-MFA.

Metabolic fluxes can be very informative, but they cannot be measured as such. Cellular

exchange fluxes with the environment (uptake or secretion) can be measured directly, but for

intracellular fluxes one needs different means. Therefore, diverse MFA techniques have been

developed.

One big group of flux analysis techniques is based on stoichiometric modeling. [113] The

most common approach is flux balance analysis (FBA). FBA uses genome scale metabolic

models [114] and measurements of exchange fluxes with the environment. It relies on a defined

biological objective and uses linear optimization techniques to determine fluxes to optimally

fulfill this objective. A problem is, that the objective function of an organism is not known.

For bacteria the objective function is usually assumed to be the maximization of biomass

production. Other objective functions can be production of adenosine triphosphate (ATP)

or other metabolites. Due to the size of the metabolic networks and the associated high

degree of freedom, FBA does usually not provide a single solution, but a huge solution

space of different flux sets that fulfill the given objective equally well. Furthermore, pure

stoichiometric modeling cannot distinguish between parallel pathways and cannot resolve

metabolic cycles. [115]

To address these shortcomings, stable isotope-assisted 13C-MFA approaches have been

developed. In addition to exchange fluxes, 13C-MFA uses stable isotope labeling as con-

straints for flux inference and can therefore provide more information on intracellular fluxes

(section 1.3.8). It uses much smaller metabolic networks and leads to a smaller solution

space, ideally to one single set of fluxes. 13C-MFA proved to be a valuable tool for metabolic

engineering of bacteria, [116] but is also used in human [8,19] and plant systems. [117]

There are stationary and non-stationary MFA techniques available. [118] Stationary MFA

analyzes organisms in metabolic steady state, that means that metabolite concentrations

do not change over time (dc
dt

= 0). For stationary 13C-MFA, additionally isotopic steady

state is assumed, that means that isotopic labeling may not change over time (dM
dt

= 0).

Non-stationary MFA (INST-MFA) is used to analyze metabolic networks when they are in

metabolic but not in isotopic steady state or neither in metabolic nor isotopic steady state.

Such non-stationary techniques can be more informative, but are inherently more complex,

since they additionally need to consider metabolite pool sizes and the temporal dimension.

From fluxes to MIDs

The mass isotopolome, i.e. the entirety of MIDs, of a given metabolic network in metabolic

and isotopic steady state is fully determined by the associated metabolic fluxes and the

isotopic tracer. When a tracer is taken up and metabolized by a cell the MIDs of downstream
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metabolites will be identical to those of the tracer, until there is a loss or gain of labeled

atoms, or a dilution by a converging flux carrying a different MID. I will illustrate that with
13C labeling in a simple metabolic model in metabolic and isotopic steady state (Figure 10).

All reactions are assumed to be irreversible. When glutamine is used as a tracer, glutamic

acid will always have the same MID as glutamine, no matter how the GLS flux changes. On

the other hand, the MID of 2-oxoglutarate is strongly dependent on the flux ratio of GLS and

isocitrate dehydrogenase (IDH). These fluxes lead to differently labeled 2-oxoglutarate. The

MID of 2-oxoglutarate is the average of its MIDs when derived from either flux, weighted

by the flux ratios (Figure 10). Thus, if all producing fluxes change proportionally, they

will leave the MID of the product unchanged (Figure 10 A,C). Therefore, MIDs can only

provide relative metabolic flux information. [119] Furthermore, this means that MIDs are fully

determined by fluxes. If fluxes are not changing, neither will MIDs.

In summary, this leads to the following consequences for flux information contained in

MIDs:

• MIDs alone can only provide relative flux information.

• Changes in MIDs must be caused by changes in metabolic fluxes.

• Not all changes in metabolic fluxes manifest in MID changes.

From MIDs to fluxes — 13C-MFA

As described above, MIDs are fully defined by the underlying metabolic fluxes. Although this

functional relationship is not invertible, MIDs often hold information on metabolic fluxes.

This is exploited in 13C-MFA. Just as FBA, 13C-MFA requires a metabolic network model

for which it determines an optimal set of fluxes. However, instead of fulfilling a biological

objective, 13C-MFA determines a set of fluxes that can best explain the experimentally

observed MIDs. This best fitting flux set is assumed to represent the intracellular fluxes.

Since MIDs can only provide relative flux information (see above), 13C-MFA requires the

measurement of at least one absolute flux, such as glucose consumption, to make the flux

estimates absolute.

MIDs can be calculated if the metabolic network, its atom transitions, and its fluxes are

known. Initially, the labeling of all isotopologues in the metabolic network was simulated, but

as this is computationally very costly, diverse methods have been developed to optimize this

simulation of isotope labeling systems. These methods include the cumomer, [120] fluxomer, [121]

and elementary metabolite units [89] frameworks. With these approaches only a fraction of

variables and computation time is necessary.

For 13C-MFA, usually an initial random flux vector ν is used to simulate the MIDs of the

measured metabolites. These simulated MIDs are compared to the experimentally observed

ones and fluxes are iteratively changed until they represent the measured MIDs. This flux
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Figure 10: MIDs are determined by metabolic fluxes.
MIDs after stable isotope labeling with [U-13C]glutamine in glutamine catabolism and a
simplified section of the tricarboxylic acid (TCA) cycle. Only these isolated reactions are
considered and treated as irreversible and in isotopic and metabolic steady state (metabolite
labeling and MIDs are constant over time). Isotopic labeling is fully defined by the tracer and
metabolic fluxes. MIDs alone can only provide relative flux information: If both IDH and GLS
fluxes change proportionally, i.e. their ratio is constant, this change cannot be detected from
the MIDs (A,C). However, if their flux ratio changes, the MIDs of downstream metabolites will
change accordingly (A,B,D, blue MIDs). Grey MIDs do not depend on either IDH or GLS flux,
and thus, are not informative.

fitting is performed by constrained non-linear optimization with an objective function similar

to:

min
ν
|Xobs −Xsim|

where Xobs are the experimentally observed MIDs and Xsim are the simulated ones. To

account for measurement errors, the individual deviations in mass isotopomer abundances are

usually weighted by the standard deviation of the measurements. [89,122,123] Several software

implementations for 13C-MFA are available, like for example 13CFlux2, [124] Inca, [59] and

OpenFlux. [122]

Once estimates of intracellular fluxes are available, the in silico simulation of MIDs can

furthermore be used for experimental design of stable isotope labeling experiments to show

which tracer, or which combination of tracers is ideally suited to resolve certain fluxes. [125]
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1.3.9 Metabolic flux analysis techniques are highly targeted

The described MFA techniques are highly targeted and require a high amount of a priori

knowledge. They require knowledge on active metabolic reactions and atom transitions

(13C-MFA) or an objective function (FBA). Although it is self-evident that no fluxes can

be determined quantitatively without proper knowledge of the metabolic network, these

prerequisites can be problematic: For many organisms or cell types the metabolic network is

still not fully known and neither is the subcellular organization of metabolism in eukaryotic

cells. [126]

Furthermore, current flux analysis techniques cannot account for unknown or unanticipated

reactions or metabolites, and are therefore not suitable for discovery-based approaches, except

in very well-studied organisms. However, non-targeted flux profiling techniques are needed for

less well-studied systems to detect more subtle changes in metabolism that do not manifest

in changed metabolite levels and, thus, cannot be analyzed using classical metabolomics

approaches.

I address this issue in section A.9 and show how MIDs can also be used in a non-targeted

flux profiling approach to detect metabolic flux changes without the need of a metabolic

model.

1.4 Cancer metabolism

There were 14.1 million new cases of cancer diagnosed worldwide in the year 2012. [127] During

the same time 8.2 million people died from cancer. [127] Although the incidence is decreasing,

the absolute number of cancer patients is continuing to increase. [128] Besides the obvious

individual hardships, the high cancer prevalence also poses a burden on healthcare systems.

To alleviate these problems, a better understanding of pathological mechanisms is necessary

to allow for both early diagnostics and effective therapies.

Cancer is usually characterized by abnormal cell division leading to tumor formation and

cell migration (metastasis). These changes are accompanied by metabolic abnormalities which

have been noticed already long ago. [129,130] Cancer cells were found to exhibit high rates of

lactic acid production, even at high oxygen levels, [131] a high rate of glutaminolysis, [8,132,133]

and increased de novo fatty acid biosynthesis. [13,134]

1.4.1 Cancer cells need biomass precursors and are often hypoxic

Tumor cells have a high demand of biomass precursors to maintain their high proliferation

rate. Cell proliferation requires mostly amino acids for protein biosynthesis, nucleotides for

DNA replication and transcription, and fatty acids for membrane lipids. Providing these
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Figure 11: Cancer cell metabolism. Cancer cells require high amounts of anabolic pre-
cursors for proliferation. Glucose and glutamine are the major carbon sources. Glycolytic
flux is induced to provide ATP and amino acid precursors. Lactate production and excretion
is high to recover nicotinamide adenine dinucleotide (NAD)+. Pentose phosphate pathway
(PPP), nicotinamide nucleotide transhydrogenase (NNT) and one-carbon metabolism provide
nicotinamide adenine dinucleotide phosphate (NADP)H. The TCA cycle is mostly decoupled
from glycolysis through pyruvate dehydrogenase (PDH) inhibition, TCA cycle reactions are
fueled by glutamine instead. Reductive glutamine metabolism provides acetyl-coenzyme A
(CoA) for lipid biosynthesis, especially under hypoxic conditions. Branched-chain amino acid
(BCAA) catabolism may replenish mitochondrial acetyl-CoA (details in Figure 12). Not all
intermediates are shown.
Glc: glucose, Fru: fructose, P: phosphate, GAP: glyceraldehyde-3-phosphate, 1,3-BPG: 1,3-
bisphosphoglycerate, 3PG: 3-phosphoglycerate, Pyr: pyruvate, G3P: glycerol-3-phosphate, Cit:
citrate, 2OG: 2-oxoglutarate, Suc: succinate, Mal: malate, Fum: fumarate, OAA: oxaloacetic
acid, HK: hexokinase, PFK: phosphofructo kinase, PK: pyruvate kinase.
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precursors is energy demanding and requires large amounts of high energy substrates like

ATP and NADPH. Metabolism of cancer cells needs to be adjusted to meet these demands.

An additional metabolic burden of tumor cells is that they are usually exposed to a hypoxic

microenvironment. [135] The fast cell proliferation excels vascularization and leads to low

oxygen supply. Therefore, many tumor cells are exposed to oxygen levels of below 2% [136]

which requires special metabolic adaptations. [137]

1.4.2 High glycolytic flux increases ATP production and provides

catabolic precursors

The first metabolic feature noticed in cancer cells was their increased rate of lactic acid

excretion. [131] Most cancer cells produce high amounts of lactic acid even under normoxic

conditions when lactic acid fermentation usually is inhibited. Glycolytic ATP production is

much less efficient than citric acid cycle reactions and oxidative phosphorylation. [138] However,

when glucose is not limiting, or oxidative phosphorylation is already saturated, then increasing

the glycolytic flux by means of lactic acid production is a way to increase the total ATP

yield, but to the price of a lower efficiency. [139]

Especially under hypoxia, the increased expression of glucose transporters, lactate dehy-

drogenase (LDH), and monocarboxylate transporters (MCT) for lactate excretion increase

the glycolytic flux by a push-pull-effect. Under hypoxia, oxidative phosphorylation is limited

since there is a lack of O2 which is needed as the final electron acceptor at complex IV

of the electron transport chain. Therefore, the importance of glycolytic ATP generation

is increasing. On the other hand, cellular respiration under hypoxia seems to be not only

limited by O2 availability but to be actively repressed [140]: Respiration is uncoupled from

glycolysis and glucose carbon is directed away from the TCA cycle, preventing production of

reactive oxygen species (ROS) at the respiratory chain. [141]

The high rate of lactic acid production lowers the intracellular pH and needs to be

compensated. Therefore, expression of carbonic anhydrase is induced. The carbonic anhydrase

enzyme is bound to the extracellular side of the plasma membrane where it catalyzes

bicarbonate formation from carbon dioxide and water. The resulting bicarbonate is imported

into the cell, is protonated to carbonic acid, and decomposes to water and CO2, thereby

effectively removing one proton per molecule of imported bicarbonate. [142]

1.4.3 Hypoxia inducible factor (HIF)-1 is a key regulator of cancer cell

metabolism

The aforementioned metabolic adaptations are directly regulated by the HIF-1 transcription

factor. [143] HIF-1-mediated expression of pyruvate dehydrogenase kinase (PDK)1 leads to
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PDH inhibition [141] which, together with simultaneous LDHA expression, [14] leads to the

high lactic acid production observed in cancer cells. HIF-1 also induces the monocarboxylate

transporter to excrete lactate, and carbonic anhydrase to buffer the pH decrease caused by

lactic acid production. [143]

HIF-1 was identified as a key mediator in the metabolic reprogramming of cancer cells, both

under hypoxia and normoxia. [143–147] It is a heterodimeric transcription factor consisting of

the HIF-1α and HIF-1β subunits. [148] HIF-1 levels are highly sensitive to oxygen and inversely

correlated with oxygen concentration. [149] Although HIF-1α is constitutively expressed, it is

readily degraded in the presence of molecular oxygen. HIF-1α is targeted by O2-dependent

prolylhydroxylases, i.e. dioxygenases that use molecular oxygen to oxidize prolyl residues in

proteins. The resulting hydroxyprolyl residues are then recognized by the von-Hippel-Lindau

(VHL) protein which mark it for proteasomal degradation. [150,151] Defects in this HIF-1

regulation like loss of PHD enzymes [147] or loss of VHL [152] lead to constitutive stabilization

of HIF-1 and are known to promote tumor growth.

1.4.4 Amino acids, nucleotides and NADPH are generated from

glycolytic intermediates

The increased glucose uptake of cancer cells is not only used for ATP generation, but also for

other biosynthetic precursors. Nucleotide biosynthesis requires ribose-5-phosphate which is

produced via the PPP. The reductive part of the PPP and sometimes also the oxidative part

is induced in cancer cells. [153,154]

Purine biosynthesis requires glycine and formyl-tetrahydrofolate (THF). These are inter-

mediates of one-carbon metabolism and are produced from serine which is synthesized from

the glycolytic intermediate 3-phosphoglyceric acid (Figure 11). [155] Besides the carbon contri-

bution, one-carbon metabolism was also shown to provide a significant share of NADPH [156]

which is required for fatty acid biosynthesis (see below). This explains the observation

that high nutritional supplementation with folic acid, an important cofactor in one-carbon

metabolism, can promote tumor progression. [157] Overall, one-carbon metabolism seems to

play an important role in many cancers. [158]

1.4.5 Acetyl-CoA is produced from glutamine and acetate

Many biosynthetic precursors like fatty acids and several amino acids are produced from TCA

cycle intermediates, but in cancer cells, glucose is mainly metabolized to lactate (see above).

To compensate for the reduced pyruvate flux into the TCA cycle due to PDH inhibition,

cancer cells show a high rate of glutamine consumption and glutamine provides a significant

amount of carbon for their increased de novo fatty acid biosynthesis. [7,8,13,133,159] Furthermore,
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acetate has recently been identified as a potential source of acetyl-CoA in cancer cells. [160–162]

Glutamine can be metabolized oxidatively (glutaminolysis) [132] or reductively (Figure 11).

Reductive glutamine metabolism is caused by changing substrate concentrations that shift

the IDH reaction equilibrium. Such a change can be caused by reduced 2-oxoglutarate

dehydrogenase (OGDH) activity. HIF-1 induces the degradation of OGDH2 [163] which leads

to an accumulation of its substrate 2-oxoglutarate, shifting the equilibrium of the IDH reaction

towards carboxylation of 2-oxoglutarate to isocitrate. [164] This isocitrate is then converted to

citrate and cleaved by ATP-dependent citrate lyase (ACLY) to produce cytosolic acetyl-CoA

for fatty acid biosynthesis. [165] The second product of the ACLY reaction is oxaloacetate.

It is partially aminated to aspartic acid, which is needed for protein biosynthesis as well

as for pyrimidine nucleotides, or reduced to malate, which can be transported back to the

mitochondrium and is the substrate of malic enzyme to yield pyruvate.

The carboxylation of 2-oxoglutarate by IDH1 and IDH2 requires NADPH. It has recently

been shown that a significant share of this NADPH is derived from one-carbon metabolism. [156]

Also NNT, an enzyme catalyzing the hydride transfer from NADH to NADP+, was found to

be highly important in cancer cell metabolism, especially for reductive carboxylation. [159]

Other contributors to NADPH production are malic enzyme and the oxidative branch of the

PPP. [16]

1.4.6 Cancer cells exhibit increased de novo fatty acid biosynthesis

The high proliferation rate of cancer cells requires high amounts of fatty acids for the synthesis

of membrane lipids. To satisfy this demand, cancer cells show both increased de novo fatty

acid biosynthesis as well as fatty acid import. [137,166,167]

De novo fatty acid biosynthesis is catalyzed by the fatty acid synthase (FASN) complex.

The FASN substrates are acetyl-CoA, malonyl-CoA, and NADPH. An initial acetyl-CoA

molecule is elongated by C2 units derived from malonyl-CoA. During each elongation step

an NADPH-dependent reduction has to take place. The FASN complex stops elongation at

the stage of palmitic acid (C16:0). [168] Longer chain fatty acids are produced by dedicated

elongases which extend the chain with additional C2 units. [169] In cancer cells, the FASN

complex is induced, provides the major part of fatty acids, and has been identified as a

potential therapeutic target. [12,13]

FASN only produces saturated fatty acids. However, membrane integrity relies on a proper

ratio of saturated and unsaturated lipids. [170] Desaturation is performed by dedicated enzymes

such as stearoyl-CoA desaturases (SCD). SCD1 was recently shown to play a key role in

cancer-initiation. [171]

To maintain the high de novo fatty acid biosynthesis, cancer cell metabolism needs to

provide sufficient acetyl-CoA, ATP and NADPH. In non-cancer cells most acetyl-CoA is
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derived from the PDH reaction followed by citrate synthesis and citrate cleavage by cytosolic

ACLY (Figure 11). However, in cancer cells and especially in hypoxic cancer cells, reductive

glutamine metabolism is the major source of acetyl-CoA (see above). Secondary acetyl-CoA

sources can be the catabolism of BCAAs, lysine, aromatic amino acids, ketone bodies or the

β-oxidation of fatty acids, but so far there are no reports on their significance for fatty acid

biosynthesis in cancer cells.

1.4.7 Branched chain amino acid catabolism in cancer

There is increasing evidence that BCAA metabolism plays an important role in cancer. [172,173]

Recently, elevated plasma levels of the BCAAs leucine, isoleucine, and valine have been asso-

ciated with a significantly increased risk to be diagnosed with pancreatic adenocarcinoma. [10]

Furthermore, Tönjes et al. [174] found that branched-chain amino acid aminotransferase

(BCAT)1 plays an important role in proliferation and metastasis of glioblastoma. BCAT1

is catalyzing the deamination of BCAAs and therefore a key enzyme of their catabolism

(Figure 12).

Recently, leucyl-tRNA synthetase has been identified as the long sought-after metabolite

sensor of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling

pathway. [175] Intracellular levels of leucine function as a proxy for the overall availability

of anabolic substrates and for cellular energy status. MTORC1 activates diverse cellular

anabolic processes and deactivates catabolic processes depending on the energy status. [176]

This role makes mTORC1 central also to the proliferation of cancer cells and has therefore

been identified as a therapeutic target. [177]

In mammals, the proteinogenic BCAAs are fully derived from diet and are essential. As

for other amino acids, there is no cellular storage pool for BCAAs. Surplus BCAAs are

therefore degraded. The degradation of BCAAs starts with their deamination (Figure 12). [16]

The resulting α-keto acids are oxidatively decarboxylated by branched-chain α-keto acid

dehydrogenase (BCKDH). During a subsequent reaction sequence borrowed from the β-

oxidation of fatty acids, acetyl-CoA and acetoacetate or propionyl-CoA are generated. The

toxic [178] propionyl-CoA, which is also generated from the degradation of odd-chain fatty

acids, [17] is detoxified via the methylmalonate pathway and enters the TCA cycle as succinyl-

CoA (Figure 12). All enzymes of BCAA metabolism are located in the mitochondria, except

for BCAT, for which there exists both, a cytosolic (BCAT1) and a mitochondrial isoform

(BCAT2).

The mechanistic significance of BCAA catabolism for cancer cells is not well understood.

BCAT and BCKDH, the enzymes catalyzing the key steps, are highly regulated. [179,180] In

respect to the high demand of anabolic substrates of cancer cells, the induction of BCAA

degradation seems wasteful. [174] However, the degradation of BCAAs provides mitochondrial
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Figure 12: BCAA catabolism provides acetyl-CoA and succinyl-CoA for the TCA
cycle, as well as NADH and flavin adenine dinucleotide (FAD)H2.

[16] After deamina-
tion and oxidative decarboxylation the branched-chain acyl-CoAs undergo β-oxidation. From
valine and isoleucine propionyl-CoA is produced which can be detoxified via the methylmalonyl
pathway and enter the TCA cycle as succinyl-CoA.
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acetyl-CoA, NADH and FADH2 which may be more important to tumor cells under certain

circumstances, as for example when PDH is inhibited and therefore mitochondrial acetyl-CoA

levels are low.

1.4.8 Summary: cancer metabolism

Much research has been done over the recent decades that has deepened our understanding of

cancer cell transformation. Diverse risk factors have been identified, prospective biomarkers

have been found, [10,11] and stable isotope labeling and metabolic flux analysis have provided

interesting insights into cancer metabolism. [181] Mechanistic insights led to the discovery of

various drug targets [13,15,143,182] and therapeutic agents have been developed. [14,15] This has

improved the life of many patients and led to increasing survival rates. [128] However, the high

cancer prevalence together with the high cost for treatment remains a significant burden for

healthcare systems. There is still a long way to go and more research is required to allow for

an earlier diagnosis and a more efficient treatment of cancer patients.
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1.5 Objectives of this work

Despite major progresses towards the understanding of cancer, it still remains a wide-spread

disease with an increasing number of cases every year. [128] Altered energy metabolism is an

emerging hallmark of cancer cells (section 1.4). [183] Such alterations are necessary to meet

the high demand of biosynthetic precursors required for rapid cell division. Additionally, the

hypoxic microenvironments that many tumor cells are exposed to, require further metabolic

adaptations. [135] Although most tumors form hypoxic microenvironments and many tumor

cells are exposed to oxygen levels of below 2%, [136] pronounced tumor hypoxia is considered a

bad prognostic sign for cancer patients, as hypoxia was shown to increase the motility of lung

cancer cells in vitro [184] and to contribute to metastasis in vivo. [185] Therefore, the in-depth

analysis of hypoxia-induced metabolic changes is highly relevant for the understanding of

cancer cell metabolism and to advance cancer therapy.

Over the recent decades, targeted and non-targeted metabolomics techniques have been

used to analyze metabolite levels and have provided valuable insights into cancer metabolism.

Although metabolite levels are an adequate readout to detect for example biomarkers,

metabolic flux changes may go unnoticed when analyzing only metabolite levels. Yet,

metabolic fluxes are highly informative, because they are more sensitive to perturbations than

metabolite levels and can provide a more mechanistic understanding of metabolism. Many

recent advances in the understanding of cancer metabolism have been obtained from stable

isotope labeling experiments. [181] However, current MFA approaches all have in common

that they are very targeted and cannot account for unanticipated reactions. Therefore, such

approaches miss potentially important but unexpected metabolic reactions.

Stable isotope labeling experiments can provide metabolic flux information, and there

are algorithms for the non-targeted metabolome-wide detection of stable isotope labeling

available (subsection 1.3.7). However, there have been only few non-targeted stable isotope

labeling analyses focusing on metabolic fluxes, mostly due to the high complexity of the data

and the lack of adequate software tools and workflows. Therefore, the overall objective of this

work was to develop tools and workflows for non-targeted stable isotope labeling analysis, and

to apply them to analyze the metabolism of human cancer cells.

To fulfill this objective, the first step was to develop a tool to detect and comparatively

analyze isotopic enrichment across multiple datasets. This tool should implement novel

workflows to 1) detect metabolic flux changes by differential MID analysis, and 2) to estimate

and visualize metabolic proximity between different compounds by analyzing the similarity

of their MIDs.

This software was then to be applied to gain biological insights into cancer cell metabolism,

specifically to analyze metabolome-wide stable isotope labeling data in a non-targeted manner

to reveal metabolic flux changes in response to hypoxia and to detect unexpected metabolic
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reactions.
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Materials and methods not provided here, are described in the manuscripts in the Appendix.

Unless specified differently, all chemicals have been obtained from Sigma-Aldrich.

2.1 Used organisms and culture conditions

Yeast strains and culture conditions used in section 3.4 are described in section A.7. Cell lines

and culture conditions used in section 3.5 are described in section A.9 and the dissertation of

Dr. Cordes [186].

2.2 Metabolite measurements

2.2.1 Metabolite extraction

We published a detailed description of the metabolite extraction from cell culture used for

section 3.5 in Sapcariu et al. [187] (section A.5). Metabolite extraction from yeast is described

in section A.7.

2.2.2 Fatty acid methyl ester preparation

For the analysis of total cell lipids as fatty acid methyl esters (FAMEs), the organic phase

forming during metabolite extraction (section A.5) was left to dry at room temperature or

dried in a vacuum centrifuge. For transesterification 500µl 0.5m NaOH in methanol were

added and incubated for 1 h at room temperature. The solution was acidified using 2 drops

of 6m hydrochloric acid. FAMEs were extracted by adding 300µl of hexane and thorough

mixing. For GC-MS analysis, 250µl of the (upper) hexane phase were transferred to a glass

vial with micro insert and the vial was sealed air tight. If not analyzed directly, extracts were

stored at −80 ◦C.
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2.2.3 GC-EI-MS

Full scan measurements of polar metabolites

Derivatization conditions and v parameters for the analysis of methoxyamine and MSTFA

derivatized polar metabolite samples are described in section A.4 and A.5.

SIM measurement for MID determination

For targeted MID analysis, polar metabolite extracts, derivatized with methoxyamine and

TBDMS, were measured in a dedicated 26 min GC-MS selected ion monitoring (SIM) method.

Metabolite extracts were derivatized using a multi-purpose sampler (GERSTEL). Dried

samples were dissolved in 15 µl pyridine containing 20 mg ml−1 methoxyamine hydrochloride,

and incubated under shaking for 60 min at 55 ◦C. After adding 15 µl MTBSTFA, samples

were incubated for additional 60 min at 55 ◦C under continuous shaking.

GC-MS analysis was performed using an Agilent 7890A GC coupled to an Agilent 5975C

inert XL mass selective detector (Agilent Technologies). A sample volume of 1 µl was injected

into a split/splitless inlet, operating in splitless mode at 270 ◦C. The GC was equipped with

a 30 m DB-35MS capillary column and a 5 m DuraGuard capillary in front of the analytical

column (Agilent J&W GC Column). Helium was used as carrier gas with a constant flow rate

of 1 ml min−1. The GC oven temperature was held at 100 ◦C for 2 min, increased to 300 ◦C at

10 ◦C min−1 and held for 4 min. The transfer line temperature was set constantly to 280 ◦C.

The MS was operating under electron ionization at 70 eV. The MS source was held at 230 ◦C

and the quadrupole at 150 ◦C. SIM parameters are listed in Table 2.

2.3 Molecular biology

2.3.1 RNA extraction and reverse transcription

Total RNA extraction from interphases formed during metabolite extraction (section A.5) was

performed using an RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions.

RNA concentration was determined using a NanoDrop (Thermo Scientific). RNA samples

were stored at −80 ◦C.

For reverse transcription 0.1 µg of total RNA were combined with 1 µl of oligo-dT (50 µm)

and 1 µl of dNTP mix (10 µm) in a 1.5 ml tube and filled with RNase free water to 13 µl.

RNA was denatured at 65 ◦C for 5 min, cooled down on ice for 1 min and centrifuged. A

master mix was prepared of 4 µl 5×First-Strand Buffer (Invitrogen), 1 µl 0.1m dithiothreitol,

1 µl SuperScript III RT (200 U µl−1; Invitrogen) and 1 µl RNase OUT (40 U µl−1; Invitrogen)

per sample and 7 µl were added to the denatured RNA sample. After reverse transcription
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Table 2: Settings for SIM-method for TBDMS derivatives of intermediates of central carbon
metabolism. The monitored fragments contain the full carbon backbone of the respective
metabolite. The provided sum formula was used for correction of MIDs for natural isotope
abundance.

Compound Ions Exact dwell Sum formula RT

ion time (ms) (min)

Pyruvic acid 1MeOX 1TBDMS 174–180 0 15 C6H12O3NSi 6.62

Lactic acid 2TBDMS 261–267 0.1 15 C11H25O3Si2 8.35

Alanine 2TBDMS 260–266 0.1 15 C11H26NO2Si2 8.89

Glycine 2TBDMS 246–252 0.1 15 C10H24NO2Si2 9.40

γ-Aminobutyric acid 2TBDMS 274–281 0.2 15 C12H28NO2Si2 11.74

Succinic acid 2TBDMS 289–296 0.1 15 C12H25O4Si2 12.04

Fumaric acid 2TBDMS 287–294 0.1 15 C12H23O4Si2 12.18

Serine 2TBDMS 390–396 0.2 15 C17H40NO3Si3 13.54

Methionine 2TBDMS 320–328 0.2 10 C13H30NO2SSi2 14.17

2-Oxoglutaric 1MeOX 2TBDMS 346–354 0.2 10 C14H28NO5Si2 14.86

Malic acid 3TBDMS 419–426 0.2 15 C18H39O5Si3 15.06

Aspartic acid 3TBDMS 418–425 0.2 15 C18H40NO4Si3 15.48

Glutamatic acid 3TBDMS 432–440 0.3 10 C19H42NO4Si3 16.56

Glutamine 3TBDMS 431–439 0.3 10 C19H43N2O3Si3 18.22

Citric acid 4TBDMS 591–600 0.3 10 C26H55O7Si4 19.17

during 60 min incubation at 50 ◦C, the reaction was stopped by 15 min incubation at 70 ◦C.

Samples were diluted with 180 µl of RNase-free water and stored at −20 ◦C.

2.3.2 qPCR

For quantitative real-time polymerase chain reaction (qPCR) 2 µl of diluted cDNA (see above)

were mixed with 10 µl 2× SYBR-green, 7 µl water, 0.5 µl of each 10 pmol µl−1 forward and

reverse primer. qPCR was carried out using a LightCycler 480 II (Roche) operated with

the LightCycler 480 software (Version 1.5.x.x) in 96- or 384-well plates using the following

program:
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Step Temperature Duration Heating Repetitions

Initial denaturation 95 ◦C 5 min 4.4 ◦C s−1 1

Amplification 44

Denaturation 95 ◦C 30 s 4.4 ◦C s−1

Annealing 60 ◦C 30 s 2.2 ◦C s−1

Elongation 72 ◦C 30 s 4.4 ◦C s−1

Melting curve 5

95 ◦C 15 s 4.4 ◦C s−1

40 ◦C 1.5 min 2.2 ◦C s−1

95 ◦C

HPLC-purified primers have been purchased from Eurogentec. Primer sequences used for

gene expression analysis are listed in Table 3. Gene expression levels were determined relative

to the ribosomal protein L27 gene (RPL27) as internal standard:

Expression of target relative to L27 = 2CtL27−Cttarget

Table 3: QPCR primer sequences for human genes (sense strand “fwd” and anti-sense strand
“rev”).

Gene symbol Sequence

ACLY
fwd 5′-AATTTCAGAGCAGACGGGCA-3′

rev 5′-GACCCCAACGAGACCAAGTT-3′

ACSS1
fwd 5′-GAAGTGAGGATCACCTACAGGG-3′

rev 5′-ACCTTGCACTTGGCATCATTG-3′

ACSS2
fwd 5′-GCCACATGTTGACTCCCCTT-3′

rev 5′-GGCTGCTTGAACACCAGATA-3′

ASPA
fwd 5′-ACCCCCGGGATGAAAATGGA-3′

rev 5′-AGTGGGATCGTCTTCCCATC-3′

BCAT1
fwd 5′-GCTCTGGTACAGCCTGTGTT-3′

rev 5′-GCACAATTGTCCAGTCGCTC-3′

BCAT2
fwd 5′-CTCAACATGGACCGGATGCT-3′

rev 5′-AGCAACTCCAGCTTGTCGAA-3′

BCKDHA
fwd 5′-CTTCAACTTCGCTGCCACAC-3′

rev 5′-TCCACGCGGATTGACATGAT-3′
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Table 3: QPCR primer sequences for human genes. (continued)

Gene symbol Sequence

BCKDHB
fwd 5′-GATCAAAACAGGGCGACTGC-3′

rev 5′-CGAAGGGCATCATAACACTTCC-3′

CS
fwd 5′-TTCCGACCCTTACCTGTCCT-3′

rev 5′-ATAGCCTGGAACAACCCGTC-3′

GPD1
fwd 5′-CAACCATTGGCTGCAAGGAC-3′

rev 5′-CCCACGGCCACTACATTCTT-3′

GPD1L
fwd 5′-AGCGCTGGGAATCACCCTC-3′

rev 5′-GCTCCCACAGCTACGATGTTC-3′

GPD2
fwd 5′-GATGACGATCGCTGGCACTA-3′

rev 5′-AGAGGACGGATTCCACTCCA-3′

RPL27
fwd 5′-CTGGTGGCTGGAATTGAC-3′

rev 5′-ACAGAGTACCTTGTGGGC-3′

NAT8L [188]
fwd 5′-TGTGCATCCGCGAGTTCCGT-3′

rev 5′-CGGAAGGCCGTGTTAGGGAT-3′

NAT8L exon 1
fwd 5′-GTGCATCCGCGAGTTCCG-3′

rev 5′-CTCCATGATGCCGTCGTAGAA-3′

NAT8L exon 2
fwd 5′-CTACTACAGCCGCAAGGTGAT-3′

rev 5′-TGTAGTACTGCTCGATGTCCG-3′

PCCA
fwd 5′-CGGATGAGGCTGTCTGTGTT-3′

rev 5′-AACGACATCTTCTGCTGCCA-3′

PCCB
fwd 5′-CATCTGTGAAAGGGGCTCGT-3′

rev 5′-CTGTGCTGTGCCAGGTAGAA-3′

PPARA
fwd 5′-GCAAACTAAGACCTGGGGAGG-3′

rev 5′-CCTCCTCCTCACATTTGACCC-3′

2.3.3 Cell transfection

For knockdown experiments, small interfering RNAs (siRNAs) were reverse transfected into

A549 cells using Lipofectamine RNAiMAX (Invitrogen/Life Technologies) according to the

45



2 Materials & methods

Invitrogen protocol.1

5 nmol siRNA were resuspended in 250µl water and stored at −80 ◦C. For each well (12-

well plate), 20 pmol (1 µl) siRNA were diluted in 200µl Opti-MEM I reduced-serum medium

(Invitrogen/Life Technologies), supplemented with 2.5 µl Lipofectamine RNAiMAX, gently

mixed, and incubated for 20 min at room temperature. The prepared solution was spread in

a well 5 min before 25,000–100,000 cells in 800µl of DMEM 5796 growth medium containing

10% FBS were added. The plate was gently mixed and incubated (37 ◦C, 5% CO2) for up to

72 h until further use. For 6-well plates, the volumes were doubled.

ON-TARGETplus non-targeting, ACLY, and N -acetyltransferase 8-like (NAT8L) siRNA

were obtained from Dharamacon/GEHealthcare. The target sequences of the used siRNAs

are listed in Table 4.

Table 4: siRNA target sequences for gene silencing as part of ON-TARGETplus smart pools
(Dharamacon/GEHealthcare).

Gene symbol Target sequence

non-targeting

5′-UGGUUUACAUGUCGACUAA-3′

5′-UGGUUUACAUGUUGUGUGA-3′

5′-UGGUUUACAUGUUUUCUGA-3′

5′-UGGUUUACAUGUUUUCCUA-3′

ACLY

5′-GCACGAAGUCACAAUCUUU-3′

5′-CGAGUGAAGUCGAUAAACA-3′

5′-GAGAGCAAUUCGAGAUUAC-3′

5′-CCACUCCUCUGCUCGAUUA-3′

NAT8L

5′-CUUUAAUUCUUGGGACAAA-3′

5′-CGGACAUCGAGCAGUACUA-3′

5′-GUUUGUACCCUAAGACACA-3′

5′-AGUUCGCCGUGGUGCACAA-3′

2.4 Software

Agilent/HP ChemStation was used for data acquisition from GC-EI-MS measurements

and for the export to the open netCDF format. Further data analysis was performed in

1http://www.lifetechnologies.com/content/dam/LifeTech/migration/en/filelibrary/pdf/
protocols.par.55829.file.dat/a549-rnaimax.pdf
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2.4 Software

MetaboliteDetector [189]. Correction of MIDs for natural isotope abundance was also

performed within MetaboliteDetector for targeted analyses or with NTFD [102,103] and

MIA (section A.8). Third party libraries used in MIA are described in the application note

(section A.8); those for FFC in Wegner et al. [26]. FFC was used to determine elemental

composition and retained atoms in mass spectrometric fragments. Further statistical analysis

was performed in the R statistical environment [190] and in OpenOffice Calc. Figures were

created using Inkscape, R, and MIA.
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3 Results & discussion

Parts of my work and contributions to joint projects are described in previous publica-

tions [2,6,26,33,103,187,191] which are reproduced in the Appendix A, along with manuscripts that

are in preparation for submission. Here, I will summarize the motivation and findings of

the respective projects and provide additional results and discussion not included in those

publications.

In sections 3.1, 3.2, and 3.3, I will present the more technical or theoretical aspects of my

work and the tools that have been developed. In section 3.5, I will show how I successfully

applied these tools for the analysis of cancer cell metabolism. In section 3.6, I will present

MetaboBase, a metabolomics data management platform I designed.

3.1 NTFD — a tool for the non-targeted detection of isotopic

enrichment

Until recently, the analysis of isotopic enrichment of metabolites after stable isotope labeling

experiments has been highly targeted. However, as described in the introduction, NTFD [102]

was developed to address this problem. NTFD is an algorithm for the non-targeted detection

of isotopic enrichment (subsection 1.3.7). To facilitate its application, we developed and

published a user-friendly software implementation1 of this algorithm for the analysis of

GC-MS data in Hiller et al. [103] (section A.2). After selecting recorded GC-MS data and

setting the parameters for the detection of isotopic enrichment, NTFD provides a list of

all enriched compounds and MIDs of all isotopically enriched mass spectrometric fragments.

If replicate measurements are available, NTFD can also provide quality measures of MID

calculation like confidence intervals or coefficients of determination (R2). All workflows in

NTFD are embedded into an intuitive graphical user interface (GUI) (Figure 13).

We described both the NTFD algorithm as well as the software implementation in more

detail in a book chapter where we also presented diverse applications of non-targeted stable

isotope labeling analyses (section A.10). Among other applications, NTFD is a valuable tool

for the non-targeted profiling of metabolic capabilities of different organisms. While genome

or transcriptome analysis can provide the theoretical metabolic capabilities, it cannot predict

1Available at: http://ntfd.mit.edu/

49

http://ntfd.mit.edu/


3 Results & discussion

whether a certain pathway is active or carries a significant flux under the given condition.

Even if an enzyme is produced, it can still be inactive due to post-translational modifications.

However, all compounds that are isotopically enriched after incubating an organism in the

presence of a certain isotopic tracer, are metabolically connected to that tracer. Therefore,

it can be concluded that one or multiple pathways connecting these compounds are active

under the given conditions. The labeling patterns of these compounds may further help

to distinguish between different metabolic pathways leading to the same product. Such a

tracer fate detection is also interesting for pharmacokinetic analyses, since it can reveal the

metabolic fate of an isotopically enriched drug. [192]

Figure 13: The graphical user interface of NTFD for the non-targeted detection
of isotopic enrichment. Labeled and unlabeled chromatograms with isotopically enriched
compounds are shown (top). MIDs for all isotopically enriched mass spectrometric fragments
are presented (bottom left). The labeled and unlabeled mass spectra, their difference spectrum,
its first derivative are shown to verify the results (bottom center, bottom right).
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3.2 MIA — a tool for the non-targeted analysis of isotopic

enrichment

The analysis of stable isotope labeling data can provide much information on active metabolic

pathways within a cell under any given condition. Furthermore MIDs can be compared across

different experimental conditions to detect changes in metabolic fluxes (subsection 3.2.1).

If isotopic enrichment is detected in a non-targeted manner, this approach provides the

means for qualitative non-targeted metabolic flux analysis. However, so far there have not

been many studies applying truly non-targeted isotope labeling analyses to obtain biological

insights. Most analyses stopped after the qualitative detection of isotopic enrichment [101] or

detected changes in MIDs but did not trace them back to the underlying metabolic fluxes. [50]

To my knowledge, none of the current studies that employ non-targeted detection of isotopic

labeling did consider the MIDs of unidentified compounds for data analysis. This is mostly

due to the lack of adequate software and workflows for such non-targeted analyses. [109]

Although NTFD is a powerful tool for the non-targeted detection of isotopic enrichment,

it lacks data analysis and visualization capabilities. Moreover, there is a general lack of

adequate tools for the analysis of non-targeted stable isotope labeling data. For all isotopically

enriched compounds, NTFD provides the RI or retention time (RT), the m/z range, and

MIDs for all labeled fragments. Already for a simply designed experiment with only two

groups a differential analysis can be tedious: All mass spectra of the isotopically enriched

compounds need to be compared between the groups to correctly match the MIDs. Once

they are matched, the relative mass isotopomer abundances need to be compared for each

fragment. For experiments involving multiple tracers or treatments this becomes relatively

complex. To address the urgent need for adequate tools for the non-targeted analysis of

stable isotope labeling data, I developed MIA (Figure 15).

The objective of MIA is to facilitate the analysis of non-targeted stable isotope labeling

data from a single or multiple experiments and at the same time minimizing user intervention.

The goal was to have an easy-to-use GUI that visualizes stable isotope labeling across multiple

datasets and implements novel data analysis workflows (subsection 3.2.1, 3.2.2, Figure 14).

I implemented MIA in C++ to make use of the MetaboliteDetector- and NTFD-

framework and to allow for a fast detection of isotopic enrichment. Most computationally

expensive steps are parallelized to efficiently analyze bigger datasets. All results generated

with MIA can be exported as either raw MID data or as vector graphics. MIA is well

integrated with MetaboliteDetector which can easily be used for downstream analyses.

In the course of developing MIA, I detected some weaknesses in the detection of isotopic

enrichment in NTFD. To overcome these problems, I modified its label detection algorithm

to increase both sensitivity and specificity (subsection 3.2.3).
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Figure 14: MIA workflow. After performing a stable isotope labeling experiment isotopic
enrichment is detected and quantified in a non-targeted manner. Labeled compounds are
matched across all datasets and MIDs are visualized. Data can be filtered and analyzed by
changes in MIDs which indicate metabolic flux changes or MIDs similarity can be visualized
to reveal metabolic similarity of the isotopically enriched compounds. Finally, MIDs can be
exported either as spreadsheet or vector graphics for further use.

In section 3.5, I demonstrate how MIA is a valuable tool for non-targeted mass isotopolome

analysis, helps to detect changes in metabolic fluxes and aids compound identification.

3.2.1 MID variation analysis to detect changes in metabolic fluxes

After applying a stable isotope labeled tracer and under the assumption of isotopic steady-

state, the MIDs of all compounds in a metabolic network are a function of the fluxes through

this network (section 1.3.8). Thus, changes in MIDs across different experimental conditions

can only be a consequence of altered metabolic fluxes. These changes in metabolic fluxes can

therefore be detected by analyzing changes in the mass isotopolome. Such a mass isotopomer

abundance variation analysis can be performed with MIA.

To detect changes in MIDs, the MIDs of identical compounds are matched across differ-

ent experimental conditions. Each mass isotopomer is then analyzed to detect significant

differences in its relative abundance. As a measure of variation, for each isotopically en-

riched compound, I calculated the maximal standard deviation of relative mass isotopomer

abundance across the different experimental conditions. I assumed that large flux changes

will lead to large changes in mass isotopomer abundance. Thus, to find the most significant

flux changes, metabolites are ranked by their variation score. Like any MID analysis, this

approach is subject to the limitations described in section 1.3.8. Apart from that, this

systematic analysis of mass isotopomer abundance variation detects flux changes without

the requirement of any biochemical a priori knowledge on the system of interest. It will

consider any unanticipated reactions or metabolites which cannot be accounted for in current

flux analysis techniques, and it is only biased by analytical restrictions and the choice of the

isotopic tracer.
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Figure 15: The graphical user interface of MIA, a tool for the non-targeted analysis
of isotopic enrichment. Different datasets can be analyzed together (right panel). MIDs of
all labeled compounds (left panel) are presented as barplots and MID similarity is visualized as
a network (center).

3.2.2 MID similarity analysis to detect metabolically connected

compounds

For the interpretation of the detected changes in mass isotopomer abundances (subsec-

tion 3.2.1) the respective compounds need to be identified. This is usually done by matching

their mass spectra against reference libraries. However, the available libraries are far from

comprehensive, in fact, compound identification is a major bottleneck in current metabolomics

research (subsection 1.2.3). Without identification of at least their compound classes or

associated pathways, these features can provide only very limited insights. Hence, compound

identification is, however cumbersome, still highly important.

For compounds that are not present in reference libraries, other means are needed for

identification. Here I will describe an approach based on MID-similarity. As described in

section 1.3.8, the MID of any metabolite is determined by the MIDs of its precursors and the

flux ratios of any producing reactions. Within linear pathways, the MIDs of all compounds

are identical under isotopic steady-state. MIDs are only changing if isotopically enriched

fragments are added or removed from the molecule, or when the metabolite pool is diluted

by a converging flux.

The reverse conclusion, that compounds with identical or highly similar MIDs are more
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likely to be part of the same pathway, is employed to aid compound identification. By

analyzing the MID similarity of different compounds, they can be grouped by metabolic

pathways. Strictly speaking, this high MID similarity is only granted in linear pathways.

However, in converging pathways, if one flux is much larger than the other, or there is only

a dilution with the unlabeled isotopologue, then the labeling pattern of the dominating

precursor is mostly conserved in the product MID and the reaction sequence can be seen as

quasi-linear pathway. In this case, the MID similarity is still significant. Empirically, this is

the case for many metabolic reactions. Even in highly branched and interconnected pathways,

such as the TCA cycle, the MIDs of its intermediates can be very similar (Figure 16).

Figure 16: Metabolic vicinity leads to similar MIDs. Closely related compounds show
high MID similarity (green). Labeling of human A549 lung cancer cells with [U-13C]glutamine
tracer (yellow box). Unlabeled compounds are not produced from the applied tracer (red boxes).

To use MID similarity for pathway contextualization of unidentified compounds, MIA

pairwisely compares the MIDs of all isotopically enriched compounds (Figure 17A). This

pairwise comparison results in a distance or similarity matrix. After applying an empirically

determined distance cut-off, MIA creates a network of compounds with higher MID similarity.

The resulting graph is likely to show metabolically connected compounds. However, the MID

similarity can, dependent on the applied tracer and metabolic pathways, be ambiguous. The

specificity can be increased by using distinct tracers and multiple experimental conditions

(Figure 17A). Edges in the graph occurring in multiple conditions are more likely to be

biologically meaningful.

Reactions that lead to losses or additions of isotopically enriched fragments change the

MIDs of the respective molecules (Figure 10). To account for such losses or additions of

isotopically enriched fragments which reduces MID similarity and could conceal metabolic

proximity, MIA performs a Needleman-Wunsch alignment [193] on the MID vectors prior to

the similarity calculation (Figure 17B). This step is for example necessary to reveal the high
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similarity and metabolic proximity of isocitric acid and 2-oxoglutaric acid, or 2-oxoglutaric

acid and succinic acid as shown in Figure 10. As a similarity measure, I chose the Canberra

distances of all pairwisely aligned MIDs. The Canberra distance of two MID vectors A and

B was calculated as

dA,B =
n∑
i=1

|Ai −Bi|
|Ai|+ |Bi|

(3.1)

and normalized by the sum of the dimensions of the MID vectors:

dnormA,B =
dA,B

dimA+ dimB
(3.2)

By using the Canberra distance, small absolute differences are weighted more than when

using e.g. the Euclidean distance. The normalization to the MID length accounts for the

fact, that for longer MID vectors, the summed absolute differences are bigger than for shorter

MID vectors.

Figure 17: MID similarity analysis for pathway contextualization and detection of
metabolically related compounds.
A) MIA determines the pairwise similarities of all MIDs. A similarity threshold is applied and
compounds with highly similar MIDs are visualized as network. Networks derived from different
experimental conditions can be superimposed for more information.
B) Before distance calculation, MIA aligns the MID vectors to account for gains or losses of
labeled fragments, which could otherwise conceal the metabolic proximity of these compounds.

The resulting networks of labeled compounds indicate their proximity within the metabolic

network. This is a substantial feature of MIA. It can be used to associate unidentified

compounds to identified ones, and to map them to specific pathways. This itself is a valuable

information and can furthermore be a strong hint for subsequent compound identification.

For both identified and unidentified compounds such a nearest neighbor analysis based on

MID similarity can reveal new biosynthetic pathways or help to distinguish between different

known ones. In section 3.5, I will show how this MID similarity analysis was applied to

identify unanticipated compounds in cancer cells.
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3.2.3 Towards higher sensitivity and specificity in the detection of

isotopic enrichment

In the course of developing MIA, I encountered the problem that not all isotopically enriched

compounds were detected, or that certain fragments, especially those at high masses, were

missing. The high-mass fragments are of major importance, since they usually retain the

whole carbon backbone of a metabolite. Those missing high-mass fragments posed a problem

especially for the MID similarity analysis (subsection 3.2.2). If MIDs of ions that arise from

the loss of labeled fragments are analyzed, the similarity to other compounds often provides

less information on the metabolic similarity.

To obtain a sufficient increase in sensitivity for the detection of labeled fragments specificity

had to be sacrificed. Here, sensitivity means that labeled compounds or individual fragments

thereof are detected as such, and specificity means that individual compounds or fragments

thereof are only reported as labeled when they truly are. To obtain more informative and

more comprehensive data for further analyses, I thoroughly analyzed the occurrences of

false positives or false negatives in NTFD. The most common problems was the incorrect

determination of fragments boundaries and the rejection of obviously labeled fragments. I

modified the label detection algorithm of NTFD to improve and to provide better control

over both sensitivity and specificity in such cases (Figure 18).

For the following discussion of NTFD’s label detection algorithm, I refer to the detailed

explanation provided in section A.10.

Figure 18: Schema of the NTFD algorithm. In order to increase NTFD’s sensitivity
certain filters were removed (grey boxes). In turn, new filters had to be implemented to recover
specificity (green boxes). Details are described in the text.
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Increasing sensitivity

The second major step of the NTFD algorithm (Figure 9, section A.10), after matching mass

spectra of the tracer and non-tracer samples, is the determination of individual isotopically

enriched fragments. Therefore, the labeled and unlabeled spectra are both normalized to

a TIC of one and subtracted. Labeled fragments will produce characteristic peaks in this

difference spectrum, whereas unlabeled fragments will not be visible. A labeled fragment

leads to a positive peak followed by a negative peak with the same area under the curve

(Figure 19). The beginning and end of this peak pattern provides the beginning and the end

of the labeled fragment respectively. The peak picking is more easily performed on the first

derivative of the difference spectrum where the peak shape changes to two maxima separated

by a minimum (Figure 19). I found that, at this stage, many labeled fragment were not

detected.

200 202 204 206 208 210
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0.
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d(Difference)/d(mz)
Threshold

Figure 19: NTFD detects labeled fragments from characteristic patterns in the
difference spectrum. The negative and positive area under the difference spectrum are
identical. The actual peak-picking is performed on the first derivative of the smoothed difference
spectrum (d(difference)/d(mz)). There, two maxima mark the beginning and end of the labeled
fragment, shifted by two mass units (begin: m/z 201→203, end: m/z 207→209).

No thresholding To detect the peaks in the first derivative of the difference spectrum, the

initial NTFD implementation used a fixed threshold value: A combination of a maximum

above the threshold, minimum below the threshold and again a maximum above the threshold

was considered as a labeled fragment (Figure 19, magenta line). This threshold had to be

chosen by the user and was then used for all mass spectra throughout the dataset. On the

one hand, this threshold had to be set high enough to reduce the number of false-positives,

especially in the low-mass region (m/z < 100). In that region, there is a lot of overlap of
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3 Results & discussion

isotope clusters from different fragments, so that small changes in the relative abundance

of certain fragments can cause a lot of noise in the difference spectrum (Figure 20). On

the other hand, the threshold had to be set low enough to also include fragments at higher

masses that usually have a much lower signal intensity, and thus, a lower peak amplitude in

the difference spectrum. These fragments at higher m/z values are most informative, because

they usually retain a bigger part of the analyte and provide MIDs for the full backbone. [26]

Besides the problem of very high and very low peaks within a difference spectrum, there was

another issue caused by varying richness or sparsity of mass spectra. For the calculation of

the difference spectrum, the initial spectra are normalized to a certain summed intensity.

This normalization leads to different relative signal intensities, depending on the summed

intensity of other peaks within the same spectrum. Therefore, in a spectrum with a high

number of peaks, the average normalized peak height would be much smaller than in a

spectrum with only a few peaks. This reduced peak height would propagate to the difference

spectrum and require a lower threshold. The heterogeneity in fragment or peak number per

spectrum makes it nearly impossible to find an adequate peak threshold. It soon became

apparent that with these issues, sensitivity and specificity could not easily be well balanced

with the initial fixed thresholding approach. Therefore, I removed this threshold, i.e. set this

threshold to zero, the lowest meaningful value, to achieve maximal sensitivity. This change

concomitantly lowered specificity and led to many incorrect detections of labeled fragments,

especially in more complex regions of the mass spectra (Figure 20).

Figure 20: For the detection of labeled fragments by NTFD, the derivative of the
difference spectrum is scanned for characteristic peak patterns above a certain
intensity threshold. Selection of a proper threshold is difficult, because peak heights vary of
multiple orders of magnitude. The threshold T2 allows for the detection of the labeled fragments
in (B), but will at the same time consider the peaks in the noisy region (A) as labeled fragments.
A higher threshold T1 will ignore the noisy region (A), but also miss some labeled fragments in
(B).

Area under the difference spectrum filter Since the labeled and unlabeled mass spectra

are normalized to the same summed intensity, theoretically, the positive and negative area
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3.2 MIA — a tool for the non-targeted analysis of isotopic enrichment

under the difference spectrum should be equal. [102] Therefore, the ratio of the positive and

negative area under the curve was used as a filter criterion. All fragments for which the

two areas differed by more than factor two were discarded. However, in practice this filter

removed too many valid fragments. The cases where positive and negative areas do not match

are probably artifacts from the TIC normalization of the spectra. Slight differences in relative

fragment intensities can be caused by spectral skewing. [85] Because of these differences, the

sum of the relative intensities of a fragment in the labeled or unlabeled spectrum may differ

and would be wrongfully rejected.

Flat peaks In some cases, the fragments were correctly detected, but their borders were

incorrectly determined. This occurred when the difference in the M+1 peaks was slightly

higher than the difference in the M+0 peaks and thus the peaks in the difference spectrum

were very flat but peaked at the M+1 position. In these cases, the determined beginning

of the labeled fragment was one mass too high. Such misdetected fragments would lead to

meaningless MIDs. To avoid these cases, a tolerance for such flat-top peaks was added. The

user can then choose how high the M+1 to M+0 ratio in the derivative of the difference

spectrum may be to still consider the M+0 as the true start of the fragment. A value of 1.1

turned out to lead to ideal results.

Increasing specificity by additional filtering

The aforementioned changes in the detection of labeled fragments improved sensitivity a lot,

however at the price of specificity. For example, the boundaries of overlapping fragments

were detected incorrectly, or noise in the derivative of the difference spectrum was detected

as labeled fragments (Figure 21). To improve specificity, I implemented a complementary

filtering strategy later on (Figure 18). These filters include checks for maximal isotopic

enrichment, isotope cluster integrity, and fragment overlap.

Maximal isotopic enrichment A newly implemented filter in the NTFD algorithm makes

use of the known relative amount of tracer that was applied. Since the kinetic isotope effect

in biochemical reaction is usually rather low, except maybe for deuterium (subsection 1.3.3),

all metabolites downstream of the tracer can reach maximally the enrichment of the tracer.

This information can be used to further eliminate false positives. For NTFD analysis the

stable isotope labeled tracer is often applied in a 1:1 mixture with its unlabeled analogue.

Excluding strong isotopologue discrimination, all metabolites downstream of that tracer can

exhibit maximally the same 50% of isotopic enrichment. Hence, all fragments with a higher

calculated isotopic enrichment must be false positives and can be discarded.
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3 Results & discussion

Figure 21: Filtering of the putative boundaries of labeled fragment is necessary
for good specificity.
A,B) For overlapping fragments, correct MIDs cannot be determined. Indicators for such overlap
are M+1 intensity in the putative m/z range that is larger than M+0 (A) or a significant M-1
intensity (B).
C) Putative labeled fragments with no M+1 peak present in the unlabeled spectrum are of very
low intensity or incorrect and should be rejected.

M+0 presence in unlabeled spectrum Peaks in the difference spectrum may occur at

masses that were not detected in the original spectrum. Therefore, the beginning of a

putative labeled fragment can be detected at such a position. However, if there is no signal

in the unlabeled reference spectrum, this is impossible to be a real fragment. Consequently,

every putative M+0 ion is required to be present within the unlabeled spectrum.

Isotope cluster integrity In small molecules, the M+0 peak is the highest peak within

every isotope cluster, if they do not contain any elements with high natural isotope abundance

like bromine or chlorine. Therefore, the M+0 peak is required to have the highest abundance

within the isotope cluster in the non-enriched spectrum (Figure 21B). Furthermore, all

mass spectrometric fragments should have a detectable M+1 peak (Figure 21C), therefore a

minimal value for the M+1 intensity relative M+0 can be specified to filter out incorrect or

very low intensity fragments.

Overlapping fragments Sometimes isotope clusters of different fragments are overlapping.

Although these fragments may be interesting for a qualitative analysis, no meaningful MID

can be calculated from them. Therefore, they should be excluded from a quantitative analysis.

It is not always easy to detect such fragment overlap. However, when the M-1 peak, i.e. the
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3.2 MIA — a tool for the non-targeted analysis of isotopic enrichment

peak one mass lower than the putative beginning of a fragment is high in comparison to the

M+0 peak, then it is likely, that the M+0 peak is “contaminated” by the isotopic peak of M-1

(Figure 21A). Therefore, I implemented a user-definable threshold for the maximal relative

M-1 abundance, for which a value of 0.25 provides good results.

Summary

Table 5: Improving NTFD’s sensitivity and specificity. Modification of the NTFD’s
label detection algorithm significantly improved sensitivity while only slightly increasing the
false discovery rate as compared to the original implementation. Fragments that were detected
as labeled by either NTFD version were assumed to be the sum of TP and FN and were
validated manually. TN is not available, because isotopic labeling cannot reliably be completely
be excluded.
TP: true positives; FP: false positives; TN: true negatives; FN: false negatives.

Test set: A549 cells labeled with [U-13C]glucose, three replicates were used.
Settings before: Max. 1 −M0: 0.05; Minimum number of fragments: 1; Maximum fragment
deviation: 0.2; R2: 0.95; Sensitivity : 1.
Settings after: as “before”, but without sensitivity and with: Min. M0: 0.45; Max. M-1 : 0.25;
Flat peak tolerance: 1.1; Min. M1: 0.01; Ensure M0 presence in unlabeled spectrum: true;
Ensure M1 < M0: true.
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(c) A) The number of correctly detected fragments increased significantly (+37%). B) The increase
in correctly detected labeled compounds increased by 10%. Many of newly detected fragments belong
to already detected compounds. C,D) Sensitivity increased much more than the false discovery rate.

In summary, I significantly improved the quality control of NTFD to increase its sensitivity
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3 Results & discussion

without major losses in specificity (Figure 18). These modifications allow to detect 37% more

labeled fragments in a test data set (human A549 cells incubated with [U-13C]glucose) without

impairing specificity. For each additional false positive fragment there were 5 additional true

positives detected. This significantly improved the data basis for subsequent metabolome-wide

MID analyses (section 3.5). To further increase sensitivity in the comparative MID analysis

with MIA, all labeled fragments detected in one dataset, were analyzed in all other datasets in

an additional step. As a beneficial side-effect, my optimizations led to a significant speed-up

of the label detection step (over 10×faster). Computation time was not limiting in NTFD,

but became noticeable during the combined analysis of several datasets in MIA.
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3.3 FFC — fragment formula calculator

3.3 FFC — fragment formula calculator

For targeted stable isotope labeling analyses, MIDs are usually corrected for natural isotope

abundance by comparison of the measured spectrum with the theoretical MID of the average

natural isotope abundance (section 1.3.6). Therefore, the elemental composition of the ions

of interest needs to be known. For the heaviest fragments in a mass spectrum this is usually

straightforward as they occur from typical losses of groups from the derivatization reagents

(subsection 1.2.2). However, when larger neutral losses occur, the fragmentation pathways are

often harder to determine. Yet, such fragment ions are of interest for stable isotope labeling

analyses. The MIDs of those smaller ions which contain only specific fragments of the native

metabolite can provide positional information on isotopic enrichment if the retained atoms

are known. [97]

To determine elemental composition and potential substructures of mass spectrometric

fragment ions, we developed FFC [26] (section A.4). FFC requires the structure of the

molecule of interest and uses a graph-based combinatorial approach to determine the simplest

potential substructures of a given fragment ion (Figure 22). These substructures are an

advantage over the mere determination of the elemental composition, since they provide

information on specific atoms retained in a given fragment. In combination with stable isotope

labeling, this information can be used to determine positional isotopic enrichment which

is otherwise not determinable by MS. [97] For the analysis of isotopic enrichment of certain

fragments, it is furthermore important to exclude any fragment overlap, since overlapping

fragments would compromise the MID. Overlapping fragments may not be easily detected.

However, since FFC uses a combinatorial approach, it will provide any combination of

substructures that give rise to the same m/z, so that ambiguous fragments can be excluded

from further analyses.

3.3.1 Complete carbon isotopologue distribution from mass

spectrometric fragments

Generally, positional information on isotopic enrichment is not directly available from MS

measurements (section 1.3.6). However, once the elemental compositions and the atoms

retained in a mass spectrometric fragment ion are determined with FFC, the fragment

MIDs can be used to analyze position-specific isotopic enrichment. In the following, I will

demonstrate this approach to determine the complete isotopologue distribution from a single

EI-MS spectrum of serine 3TMS and glycine 2TMS.
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3 Results & discussion

Figure 22: The FFC GUI. After providing the mass spectrum and the structure of the
complete analyte, FFC determines all possible substructures for a given fragment. It provides
several indicators for the likelihood of the individual substructures. [26]

Serine 3TMS

The amino acid serine is an interesting metabolite since it is the main carbon donor for one-

carbon metabolism. C-3 of serine is transferred to THF by serine hydroxymethyl transferase

(SHMT) to yield glycine and N5,N10-methylene-THF and vice versa (Figure 23A). [155] If

the enrichment of serine C-3 is known, it can be used as a proxy for the labeling of the

methylene-THF pool under steady state conditions (see below).

I will first show how isotopologue abundances of serine determine its MID:


M1−2−3

0

M1−2−3
1

M1−2−3
2

M1−2−3
3

 =


G000

G001 +G010 +G100

G011 +G101 +G110

G111

 =


1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 1

·



G000

G001

G010

G100

G011

G101

G110

G111


(3.3)

M1−2−3 represents the MID of the molecule containing C-1, C-2 and C-3 (Figure 23B).
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Figure 23: Serine fuels C1 metabolism. A) C-3 of serine is transfered to THF which then
acts as carbon donor for S -adenosyl methionine (SAM) and nucleotide biosynthesis. B,C) Mass
spectrometric fragments of serine 3TMS and glycine 2TMS can provide positional information
on isotopic enrichment.

Gabc is the relative abundance of the isotopologue in which each carbon (a: C-1, b: C-2, c:

C-3) is isotopically enriched (1) or not (0). It is obvious that the MID holds less information

than the isotopologue distribution and thus cannot be used to determine the isotopologue

distribution. However, we can include more information from fragment ions. If the MIDs of

the intact serine are known and the MIDs of a fragment containing only C-1 and C-2, the

labeling of C-3 can already be deduced. If additionally, the fragment with only C-2 and C-3

is included, the full isotopologue distribution can be resolved. For this purpose, I used FFC

to determine the elemental composition and potential substructures of the major fragments

of serine 3TMS (Figure 23B). The ion m/z 306 contains the whole serine carbon backbone,

m/z 218 contains C-1 and C-2, m/z 204 and m/z 278 both contain C-2 and C-3.

65



3 Results & discussion

These additional information can be added to the isotopologue mapping matrix Mmap and

the MID vector in Equation 3.3 to obtain:
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(3.4)

MIDs = Mmap · Isotopologues (3.5)

This system is overdetermined and can be solved for the isotopologues using a least-squares

approach:

Isotopologues = Mmap
−1 ·MIDs

MIDs for additional fragments (e.g. m/z 204 and m/z 278) can be added to make the

solution more robust. The overdetermined system furthermore allows for the determination

of confidence intervals and a coefficient of determination to estimate the quality of the results.

Glycine 2TMS

The C2 amino acid glycine is the product of SHMT activity (Figure 23A). The mass spectro-

metric fragment m/z 176 of glycine 2TMS is formed by the loss of carbon monoxide from

the carboxylic acid group and a TMS-methyl group (Figure 23C). Since this fragment only

contains C-2 of glycine, the positional enrichment at C-2 can be directly obtained from the

MID of fragment m/z 176. Furthermore, the relative abundances of all 4 carbon isotopologues

of glycine can be obtained in an analogous manner as shown above for serine:
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MIDs = Mmap · Isotopologues (3.7)

Again, this system is overdetermined and can be solved by least-squares regression.

Biological interpretation

I used the aforementioned formulas to determine the complete carbon-isotopologue distri-

butions of serine and glycine in A549 cells after [U-13C]glucose labeling (Figure 24A). The

unlabeled isotopologues are the most abundant and represent the fraction of serine and

glycine that is taken up from the medium; the fully labeled isotopologues are synthesized

de novo. Only [3-13C]serine and [1,2-13C2]serine are produced in significant amounts out of

the six possible [13C1]serine and [13C2]serine isotopologues. These isotopologues are formed

by the serine-glycine-interconversion through SHMT and clearly show that C-3 of serine is

transferred to or derived from the one-carbon pool (Figure 24B).

Glycine is either fully labeled or unlabeled, indicating that there is no significant glycine

biosynthesis via the glycine cleavage system (Gly + THF + NAD+ � N5,N10-methylene-THF

+ CO2 + NH3 + NADH + H+ ). [155] This reaction would otherwise produce [13C1]glycine,

from N5,N10-[13C]methylene-THF.

Under hypoxia, there was a statistically significant increase in the relative abundance of

[U-13C]serine and a concomitant decrease in relative [3-13C]serine and [1,2-13C2]serine. This

change indicates a lower formation of serine via SHMT (→[3-13C]serine and [1,2-13C2]serine)

than via de novo biosynthesis from 3-phosphoglycerate (→[U-13C]serine). It was shown

recently that hypoxic cancer cells generate NADPH from serine catabolism via SHMT and

the glycine cleavage system. [194] Such an increased net flux from serine to glycine, is in line

with the observed labeling pattern.
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Figure 24: Isotopologues of serine and glycine after [U-13C]glucose labeling in A549
cells at different oxygen levels.
A) The full isotopologue distributions of serine and glycine can be determined from MIDs of
mass spectrometric fragments. Some isotopologues are not formed, or are very low abundant.
The unlabeled fraction is taken up from the growth medium, the labeled fraction is synthesized
by the cells. *: Welch’s t-test p < 0.05, n = 3.
B) The different isotopologues of glycine and serine are interconverted by SHMT. Only C-3 of
serine is transfered, the C-1—C-2 bond is not cleaved, therefore these atoms are either both
labeled or both unlabeled.
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3.4 Automatied metabolome-wide isotope dilution

normalization for non-targeted GC-EI-MS metabolomics

A common problem in non-targeted metabolomics is the comparability of results across

different measurements. Due to analytical variation and instrument drift, the comparability

is limited. The problem is even bigger for large studies involving the measurement of a high

number of samples in different batches across different instruments. Several more or less

complex normalization techniques have been developed, [43,195] each with its specific strengths

and weaknesses, but no single method is really suitable for all applications.

For non-targeted metabolomics it is infeasible to use a defined mixture of internal standards,

since it is far too expensive and most analytes remain unidentified and thus cannot be

purchased. To overcome this limitation, metabolite extracts of fully stable isotope labeled

organisms have been used as complex internal standard mixtures. [44,45] These extracts, ideally

derived from the organism of interest, contain a large number of metabolites. Although there

is a larger number of internal standards in such mixes, data analysis in previous studies has

mostly been rather targeted and only known compounds have been analyzed. [44,45] For a

non-targeted analysis all isotopically enriched compounds need to be detected and appropriate

quantification ions have to be chosen. Such a manual comparison of all mass spectra from

the labeled and unlabeled metabolite extract is very tedious. For liquid chromatography

high resolution MS (LC-HR-MS) there are tools available for the automated detection of

stable isotope labeled compounds and the calculation of isotopologue ratios, [46,47] but not for

GC-EI-MS. The hard ionization and the usually low-resolution analyzers in EI-MS make it

more challenging to detect isotopic labeling and adequate quantification ions. Therefore, I

developed an algorithm to automate the detection of potential internal standards and the

selection of quantification ions in GC-EI-MS data (Figure 25).

I used NTFD for the detection of all isotopically enriched compounds in the reference

mixture. These compounds can possibly be used as internal standards for quantification or

normalization. For each compound, the main peaks of the labeled and unlabeled forms are

detected and checked if they suffice certain quality requirements. All suitable compounds

along with all valid pairs of quantification ions are added to a mass spectrum reference library

which can be used with MetaboliteDetector to obtain the respective signals in the

samples of interest. I implemented the algorithm as a new feature in the NTFD software.

This non-targeted IDMS-based normalization approach outperformed the commonly used

TIC-normalization and the normalization to a single internal standard. The full methodology

is described in Weindl et al. [191] (section A.7). There, I also showed that the application of a

yeast-derived stable isotope labeled reference mixture is not limited to yeast samples, but

can as well be applied to mammalian cells, for which complete labeling is difficult to achieve
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3 Results & discussion

Figure 25: Experimental setup. a) A reference organism is grown simultaneously in defined
medium and in a medium where all carbon and nitrogen sources are substituted by their fully
stable isotope labeled analogues. b) Metabolites are extracted using water:methanol:chloroform.
The protein- and nucleic acid-containing interphase is hydrolyzed, pooled with the polar
metabolites and used as reference extract. c–d) NTFD is used to detect all stable isotope
labeled compounds and fragments, as well as the m/z ratios of their light and heavy isotopologues.
Therefore, the unlabeled extract and a mixture of labeled and unlabeled extracts are measured
with GC-EI-MS. e) The spectra of all these labeled compounds and selected quantification
ions are collected in a reference library to be used to identify and quantify compounds within
a sample of interest. f–g) An aliquot of the labeled reference mixture is added to a sample
of interest. h–i) The previously determined ions are used for quantification of the detected
compounds. The ratios of the intensities of light and heavy form for each metabolite provide
a robust measure for the comparison of metabolite amounts across experiments. Reproduced
from Weindl et al. [191].

and very expensive.
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3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells

3.5 Non-targeted analysis of stable isotope labeling in

hypoxic cancer cells

Although most tumors form a hypoxic microenvironment [135] and many tumor cells are

exposed to oxygen levels of below 2%, [136] pronounced tumor hypoxia is considered a bad

prognostic sign for cancer patients. Hypoxia was shown to increase the motility of lung

cancer cells [184] through the induction of growth factors and possibly through induction

of metalloproteinases which contribute to tumor metastasis. [185] Moreover, many cancer

types show a pseudo-hypoxic phenotype, i.e. they show hypoxic metabolic features also

under normoxic conditions. [18] Therefore, the in-depth analysis of hypoxia-induced metabolic

changes is highly relevant for the understanding of cancer cell metabolism and to advance

cancer therapy, because despite major progresses in its understanding, cancer still remains a

wide-spread disease with an increasing number of cases every year. [128]

Metabolism of cancer cells is different from metabolism of non-transformed post-mitotic

cells (section 1.4). For example, cancer cells show a much higher glutamine catabolism and

changes in flux directionality of certain reactions. [8,196] Such changes in metabolic fluxes

cannot be detected by only analyzing intracellular steady-state metabolite pool sizes. However,

as described in subsection 1.3.8, stable isotope labeling experiments can provide information

on changing metabolic fluxes.

Cancer cells do not only exhibit changed fluxes, but can also produce specific “oncometabo-

lites”. Cancer-associated mutations in IDH were shown to give rise to 2-hydroxyglutaric

acid, a metabolite that is not produced under normal conditions. [197,198] To account for such

unexpected metabolites, non-targeted approaches are required. However, while non-targeted

analysis of metabolite levels is likely to miss metabolic flux changes in redundant pathways,

targeted MFA is likely to miss unanticipated metabolic reactions, and unfortunately there

are no non-targeted MFA techniques available. Therefore, we intended to develop a novel ap-

proach to obtain metabolic flux information in a non-targeted manner. Such flux information

can be obtained from MIDs (section 1.3.8), and MIDs can be determined in a non-targeted

manner (subsection 1.3.7). So far, no truly non-targeted mass isotopolome analyses have been

performed. This can be mostly attributed to the lack of adequate data analysis tools. [109] To

this end, I developed MIA, which allows for efficient non-targeted data analysis of complex

stable isotope labeling datasets (section 3.2, section A.8).

To further the understanding of hypoxia-induced metabolic changes in cancer cells, my

colleague, Dr. Thekla Cordes, cultivated human lung adenocarcinoma cells (A549) [199] at

different O2 concentrations ranging from atmospheric levels (21% O2) down to severe hypoxia

(1% O2) to analyze their metabolic response. [186] She cultivated the cells in the presence of

the stable isotope labeled tracers [1,2-13C]glucose and [U-13C]glutamine. Analysis of MIDs of
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TCA cycle intermediates revealed a shift in fractional carbon contribution from glucose at

high oxygen levels to glutamine at low oxygen levels. [186] Furthermore, reductive glutamine

metabolism was found to be highly induced by hypoxia, which was in agreement with other

studies. [8] These results were obtained from targeted analyses of MIDs of a predefined set of

metabolites.

To extend this study, I applied MIA on that dataset for a non-targeted stable isotope

labeling analysis. Although operating in non-targeted mode, I was able to confirm already

known hypoxia-induced metabolic changes like reduced PDH flux, increased glutaminolysis

and glutamine-fueled fatty acid biosynthesis (section A.9). In addition, I found unexpected

metabolites like the neuronal metabolite N -acetylaspartic acid and N -carboxyamino acids

(section 3.5.3).

Following these results, in subsequent experiments I was able to show that hypoxic A549

cells rely on increased BCAA catabolism, probably mediated by BCKDHA, possibly to

provide mitochondrial acetyl-CoA and that BCAA-derived propionyl-CoA gives rise to odd-

chain fatty acids, which were to my knowledge not yet reported to be produced by human

cells under quasi-physiological conditions. The observed increase in BCAA catabolism in

hypoxic A549 cells may serve as a drug target to treat lung cancer. It has been shown in

glioma cell lines that suppression of BCAT1 reduces proliferation and invasiveness. [174]

I furthermore followed up on the surprising occurrence of N -acetylaspartic acid in A549

cells, thereby finding evidence for an alternative and yet unknown acetyl-shuttling mechanism

across the mitochondrial membrane based on N -acetylaspartic acid, circumventing ACLY. I

found N -acetylaspartic acid to be present also in other cancer lines and in primary tumor

tissue (section 3.5.4). Using siRNA-mediated gene silencing, I found evidence that A549 cells

produce N -acetylaspartic acid via NAT8L (section 3.5.4), the same enzyme that is responsible

for neuronal N -acetylaspartic acid formation.

3.5.1 Isotopic steady state

The assumption underlying the mass isotopomer abundance variation analysis (subsec-

tion 3.2.1), that changes in MIDs must the caused by changes in metabolic fluxes, is only

valid for a metabolic system in metabolic and isotopic steady-state. Until the system reaches

isotopic steady state, MIDs will change over time even without any changes in metabolic

fluxes. [118] Therefore, it is important to determine the time window of isotopic pseudo-steady-

state between the initial isotopic enrichment phase and the metabolic non-stationarity caused

by substrate limitation or accumulating excretion products.

To this end, A549 cells were grown for different periods in medium with either [U-13C]glucose

or [U-13C]glutamine as tracer (Figure 26, experiment performed by Jenny Ghelfi). MIDs in

intermediary metabolites turned out to be relatively stable from 18 hours until 72 hours after

72



3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells

application of either tracer. For subsequent stable isotope labeling experiments, cells were

therefore incubated with the tracer for 24 hours or 48 hours.
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Figure 26: Isotopic steady state in central carbon metabolism of A549 cells. For
glycolysis, steady state is reached after about one hour. After about 18 hours, MIDs of TCA
cycle metabolites stabilize, with [U-13C]glutamine slightly faster than with [U-13C]glucose.
Lactic acid is not enriched from [U-13C]glutamine. Points are means of three replicates.

3.5.2 Fatty acid metabolism

The most significant flux changes observed in hypoxic A549 cells were associated with

reductive glutamine metabolism and the transition from glucose to glutamine as the main

carbon contributor for TCA cycle metabolites (section A.9). It has been reported before, that

this reductive glutamine metabolism supplies acetyl-CoA for lipid biosynthesis. [8] Because

lipid biosynthesis is an important metabolic feature of cancer cells, [137,166,167] I was interested

in the carbon contribution of different substrates. Therefore, I analyzed lipid fatty acids as

FAMEs on GC-MS after stable isotope labeling (Figure 27). The major carbon sources of

palmitate (C16:0), were lipids from the growth medium, glucose and glutamine, providing

about 90% of the lipid carbon in total. About 10% of the carbon, however, were of unknown
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origin. The fractions changed significantly under hypoxia as previously reported: [8] The

glucose-derived fraction was reduced by about 50% and glutamine contribution doubled.

There was also a slight in increase in growth medium-derived fatty acids and in carbon of

other origin.
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Figure 27: Carbon origin of fatty acids under normoxia and hypoxia.
A) Isotopic enrichment in C16:0 after [U-13C]glucose or [U-13C]glutamine labeling showing a
strong shift from glucose- to glutamine-derived carbon.
B) Fractional fatty acid carbon origin. “Glc” and “Gln” represent fractional enrichment of C16:0
from [U-13C]glucose or [U-13C]glutamine, respectively. Fully unlabeled (M0) after combined
[U-13C]glucose and [U-13C]glutamine labeling was assumed to be fully derived from the growth
medium; the remaining 12C-fraction not in M0 is classified as“other”. All fractional contributions
are significantly changed with hypoxia (Welch’s t-test, p < 0.05, n = 3).

A549 cells produce odd chain fatty acids

Non-targeted stable isotope labeling analysis of FAMEs after [U-13C]glucose and [U-
13C]glutamine labeling revealed isotopic enrichment in the odd-chain fatty acids pentadecanoic

acid (C15:0) and heptadecanoic acid (C17:0). Furthermore, their levels were increased under

hypoxia. Although rats were shown to produce these compounds upon injection of propionic

acid [200], their de novo production in mammals was surprising because it has so far not been

shown to occur in these organisms under physiological conditions.

A large fraction of these odd-chain fatty acids was unlabeled (about 85% M0) and most

probably derived from the growth medium, but stable isotope labeling confirmed the en-

dogenous origin of a fraction of about 15% (Figure 28B,D). If all of the fatty acids were

synthesized de novo from acetyl-CoA, the MID would be expected to be unimodal. However,

even without considering M0, the MID of C15:0 and C17:0 are still bimodal, indicating

different biochemical origins of the fatty acids. For even-chain fatty acids, it is known that

de novo biosynthesis by the fatty acid synthase complex stops at palmitic acid [168] and that

longer chain fatty acids are synthesized by elongases, separate enzymes which add more
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3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells

acetyl units. [169] For odd-chain fatty acids, there seems to be a similar mechanism, indicated

by the relatively high isolated M2 abundance, which is most probably due to elongation of

shorter exogenous fatty acids by one acetyl unit. Over 10% of the total C17:0 is derived from

exogenous C15:0 by such an elongation (M2 in Figure 28B,D), about 5% C17:0 are synthesized

de novo. Furthermore, mass isotopomers >M12 (>M14) of C15:0 (C17:0) were essentially

absent, indicating that a C3 moiety is derived from a different source than acetyl-CoA.
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Figure 28: A549 cells produce odd-chain fatty acids. Isotopic enrichment of C15:0
(A,B) and C17:0 (C,D) after [U-13C,15N]isoleucine (A,C) and simultaneous [U-13C]glucose/[U-
13C]glutamine labeling (B,D). M0 fraction omitted.
A,C) Propionyl-CoA for odd-chain fatty acid biosynthesis is derived from isoleucine catabolism
(M3 from [U-13C,15N]isoleucine).
B,D) The main fraction of C15:0 and C17:0 is of exogenous origin (about 85% M0).
D) Over 10% of the total C17:0 is elongated exogenous C15:0 (M2 from glucose and glutamine
labeling), about 5% are synthesized de novo.
Bars show mean±SD.

Odd-chain fatty acids are derived from BCAA catabolism

Others have shown that odd-chain fatty acids can be produced in cell lysates upon supplemen-

tation with exogenous propionyl-CoA. [201] BCAA catabolism is known to yield propionyl-CoA

(subsection 1.4.7). Other potential sources include methionine or threonine via 2-ketobutyric

acid. To assess the contribution of BCAA carbon to odd-chain fatty acid and fatty acids in

general, I applied [U-13C]valine, [U-13C]leucine, and [U-13C,15N]isoleucine to A549 cells and

analyzed the isotopic enrichment in polar metabolites and lipids.

Stable isotope labeling with [U-13C,15N]isoleucine under hypoxia resulted in mostly M3

enrichment of odd-chain fatty acids, confirming their biosynthesis starting from isoleucine-

derived propionyl-CoA (Figure 28A,B). Complementarily, glucose and glutamine labeling

resulted in maximum M12 and M14 labeling of C15:0 and C17:0, respectively.

From valine, there was no labeling detectable, suggesting that valine-derived methylmalonic

acid is mostly directly converted to methylmalonyl-CoA without intermediary propionyl-CoA
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(subsection 1.4.7).

Odd-chain fatty acids are known to be produced by bacteria in the rumen of ruminants

and are used in humans as biomarkers of dairy fat intake. [202] However, their biological

role is still unclear. Odd chain fatty acids may be produced as an additional measure to

detoxify propionic acid besides the methylmalonyl pathway, or their production might only

occur as by-product due to unspecific usage of propionyl-CoA instead of acetyl-CoA during

the initiation of fatty acid biosynthesis. Besides any potential biological function, these

endogenous odd-chain fatty acids need to be accounted for when they are used as nutritional

biomarker or as internal standards for quantification.

Hypoxia induces BCAA catabolism

To assess the carbon contribution from BCAA catabolism to the TCA cycle and lipid

biosynthesis, I performed a BCAA labeling experiment at normoxia and hypoxia. Because

there was no BCAA-free growth medium available, the tracers were added to the growth

medium in addition to the unlabeled BCAAs in the same concentrations. The isotopic

enrichment from BCAA tracers in polar metabolites was rather low, but significantly increased

under hypoxia (Figure 29A). BCAA-carbon enters the TCA cycle as acetyl-CoA and succinyl-

CoA as confirmed by the labeling of citrate, succinate, and palmitate. Although the relative

carbon contribution to the these metabolites was relatively low, it doubled under hypoxia.

Transamination of BCAAs occurs to a high extent already under hypoxia: The 15N

enrichment in e.g. alanine was around 6% from [U-13C,15N]isoleucine alone (Figure 29A).

Assuming valine, leucine, and isoleucine are degraded in similar amounts this would lead to

3 · 6% = 18% enrichment, which is 36% when considering the tracer ratio. Therefore, about

one third of the nitrogen in the “transamination pool”, which is reversibly transferred by

aminotransferases between amino acids and ketoacids, must be derived from BCAAs.

The relative hypoxia-induced increase in alanine labeling from [U-13C,15N]isoleucine nitrogen

was rather low and, therefore, the reversible BCAT reactions seems not to be the rate-limiting

step of BCAA breakdown. Gene expression analysis of BCAA catabolic genes showed a

significant induction in BCKDHA expression under hypoxia, the protein of which catalyzes

the irreversible rate-limiting oxidative decarboxylation in BCAA breakdown (Figure 29B).

In line with the labeling data, BCAT expression did not change significantly, neither of the

cytosolic, nor of the mitochondrial form, which both seem to be expressed in a similar range.

Propionyl-CoA carboxylase (PCC) is required for the carboxylation of propionyl-CoA. Its

gene expression is not highly affected by hypoxia; while the α-subunit is slightly up-regulated,

the β-subunit is slightly down-regulated (Figure 29). Assuming substrate saturation of PCC,

the increased propionyl-CoA production from degradation of isoleucine and valine, together

with the non-induction of PCC, may be a reason for the increased odd-chain fatty acid
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production under hypoxia.
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Figure 29: Hypoxia induced BCAA catabolism can be seen in isotopic labeling
and gene expression levels.
A) Relative mass isotopomer abundances after [U-13C]valine, [U-13C]leucine, and [U-
13C,15N]isoleucine labeling in A549 cells under normoxia (“N”) and hypoxia (“H”). M2 citrate
is synthesized from labeled acetyl-CoA derived from mitochondrial leucine and isoleucine
catabolism (Figure 12) which is further used for de novo fatty acid synthesis as visible
in M2 palmitate (palmitate data was obtained from a separate experiment with only [U-
13C,15N]isoleucine labeling). M3 succinate is derived from breakdown of valine and isoleucine
via methylmalonyl-CoA. M1 alanine represents the [15N]alanine indirectly derived from deam-
ination of [U-13C,15N]isoleucine. *: Welch’s t-test p < 0.05 (n = 3), **: p < 0.01, ***:
p < 0.001.
B) Effect of hypoxia on expression levels of BCAA catabolic genes. Neither cytosolic (BCAT1)
nor mitochondrial (BCAT2) BCAT is significantly affected. Expression of the α-subunit
(BCKDHA) of BCKDH is significantly induced, but not its β-subunit (BCKDHB). Data are
means ± SD of two independent experiments. *: Welch’s t-test p < 0.05 (n = 6). Expression of
α- (PCCA) and β-subunits (PCCB) of PCC expression is slightly affected by hypoxia (separate
experiment, n = 2).

BCAA catabolism supports proliferation

The degradation of BCAA in proliferating cells seems counterintuitive, as high leucine levels

are required to induce mTORC1 signaling promoting cell proliferation. [175] To assess the

biological significance of BCAA catabolism, cell growth was observed in the present of

an activator or inhibitor of BCAA catabolism (Experiment performed by Xiangyi Dong).

Gabapentin inhibits BCAA degradation by competitive inhibition of BCAT1 which catalyzes

the first step of their degradation, the transamination. Clofibric acid on the other hand

promotes BCAA catabolism by activation of BCKDH [203] which catalyzes the second step of

BCAA catabolism (Figure 12).

Gabapentin is showing a dose-dependent inhibitory effect on cell proliferation (Figure 30).

After 72 h in the presence of 100µm and 1 mm gabapentin, the number of cells was significantly

decreased. Similar effects have been reported for glioblastoma cells. [174] Activation of BCAA

catabolism by clofibric acid may convey a slight growth advantage, but differences in cell

numbers were not statistically significant at concentrations of 100µm and 1 mm clofibric acid.

Higher concentrations seemed to be cytotoxic (Figure 30).
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Figure 30: Effect of an activator (clofibric acid) and an inhibitor (gabapentin) of
BCAA catabolism on cell proliferation.

In summary, stable isotope labeling with BCAAs revealed an increase in BCAA contribution

to even-chain fatty acids under hypoxia. The relative increase is statistically significant, but

overall contribution is still low. BCAA catabolism provides mitochondrial acetyl-CoA and

NADH, but the biological significance is unclear. The observed decrease in cell proliferation

due to BCAT inhibition, together with studies by others, [174] suggest an important role

of BCAAs metabolism. Further studies are needed to assess the biological function of

the increased BCAA uptake and catabolism under hypoxia and of cancer cells in general.

BCAA catabolism may provide a therapeutic targeted for cancer treatment as previously

suggested. [174]

3.5.3 Unidentified isotopically enriched compounds

Non-targeted stable isotope labeling analysis revealed a number of compounds which were

not present in our reference library, but isotopically enriched and therefore likely to be

derivatization products of cellular metabolites. Furthermore, several of these compounds

showed changes in their MIDs in response to hypoxia, indicating that some flux in their

biosynthesis was changing. However, without identification of the respective compounds,

they only provide limited biological insights. To aid compound identification, I applied a

strategy combining stable isotope labeling in cell culture, stable isotope labeled derivatization

agents, GC-EI-MS and GC-APCI-TOF-MS techniques (Figure 31, subsection 1.2.3).

N-Carboxy amino acids

RI 1920 — N-carboxyglutamic acid One compound showing a strong hypoxia response in

labeling was found to have a very high MID similarity to glutamic acid after either glucose

or glutamine labeling (Figure 32A). Subsequent analysis of the mass spectrum revealed

neutral losses very similar to glutamic acid (Figure 32B). I determined the sum formula of
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Figure 31: Strategy for compound identification. Stable isotope labeling and accurate
mass measurements are used to narrow down potential sum formulas of the measured compound.
Stable isotope labeled derivatization agents help to to determine the sum formula of the
underivatized compound. Once this is available database searches may provide candidate
structures which have to be confirmed with measurements of authentic standards.

the unidentified compound based on the minimum number of carbon atoms derived from

isotope labeling, the odd-numbered mass of the molecular ion (m/z 479), and number of

TMS groups as derived from the natural mass isotopomer distribution. This sum formula,

C18H41NO6Si4, was later confirmed by accurate mass measurement on a GC-APCI-TOF-MS

instrument. It differed from the 3TMS derivative of glutamic acid (C14H33NO4Si3) by CO2

and an additional TMS group. The high MID similarity to glutamic acid made a modification

of the carbon backbone unlikely, so that it had to be a carboxy-derivative of glutamic acid.

γ-carboxyglutamic acid was excluded since it is too unstable for GC analysis. The compound

was later identified as N -carboxyglutamic acid. It is not clear whether this compound is

a native metabolite or a derivatization artifact. N -carboxy derivatives of several primary

and secondary amines are known to be formed during trimethylsilylation of amines in the

presence of carbon dioxide, [204] but N -carboxyglutamic acid was not reported yet. On the

other hand, N -carboxylation of amines also occurs physiologically, [205] is associated with
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neurotoxicity of amino acids [206,207] and seems to play a significant role as activating step in

the elimination of many xenobiotics. [208]

Other N-carboxy amines After having discovered N -carboxyglutamic acid, I was curious

whether there were also other N -carboxyamino acids present in our samples. After the

preparation of reference compounds from the incubation of several amino acids with sodium

bicarbonate, I was able to identify more N -carboxy amino acids. In total, I found 27 N -

carboxy derivatives of 13 amines (Figure 33 & Table 7). Some of them have been observed

previously, [204] some have not been reported so far. Some of these compounds like N -

carboxyglycine, N -carboxyserine and N -carboxythreonine were also present in A549 extracts

(Table 7).

Table 7: N -carboxyamines (Figure 33) and TMS-derivatives obtained from incu-
bation of the amines and amino acids with NaHCO3, derivatization with MSTFA
and GC-MS measurement.

Native amino acid N -Carboxyderivative TMS derivatives

Alanine N -Carboxyalanine 2TMS; 3TMSb

Asparagine N -Carboxyasparagine 4TMS; 5TMS

Aspartic acid N -Carboxyaspartic acid 4TMS

Glutamic acid N -Carboxyglutamic acid 4TMSb

Glycine N -Carboxyglycine 3TMS

Lysine N -Carboxylysine 3TMS; 4TMSb; 5TMS

Methionine N -Carboxymethionine 3TMS

Ornithine N -Carboxyornithine 3TMS; 3TMS [-H2O];

4TMS; 5TMS

N1,N2-Biscarboxyornithine 5TMS

Proline N -Carboxyproline 2TMSb

Serine N -Carboxyserine 4TMSb; 4TMS [-H2O]

Spermidine N -Carboxyspermidine 4TMSa; 5TMSa

Threonine N -Carboxythreonine 3TMSb; 4TMSb

Valine N -Carboxyvaline 3TMSb

a Multiple derivatives.

b Detected in A549 extracts.

If these N -carboxy derivatives were merely derivatization artifacts, I would expect to see
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Figure 32: Identification of N -carboxyglutamic acid.
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3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells

a good correlation of the levels of the native amino acids and their N -carboxy derivatives,

but they were often behaving contrarily, suggesting an, at least partial, metabolic origin

(Figure 34). Although some experiments indicated an increase in N -carboxy amino acid levels

under hypoxia, this trend was not fully reproducible. However, an increase in spontaneous

N -carboxylation under hypoxic conditions could be explained as a result of pH regulating

mechanisms which are especially important under hypoxia when protons are accumulating

from lactic acid formation and other processes: [142] Decreasing intracellular pH is known to

be balanced by bicarbonate influx through sodium-dependent bicarbonate transporters which

gain even more importance under hypoxia. [209] The increased carbonate influx might increase

formation of N -carboxy amino acids. Unfortunately, these compounds are not very stable

and thus hard to study in more detail. [210]

Putative 2-acetamidoglucal

The MIDs of the compound at RI 1823 were found to be strongly affected by hypoxia, both

after [1,2-13C]glucose and [U-13C]glutamine labeling (Figure 35A,B). Fractional enrichment

from glucose was decreasing with hypoxia and fractional enrichment from glutamine was

strongly increasing, similar to other TCA cycle intermediates, hinting to a connection of

the unknown compound with the TCA cycle. The heaviest mass isotopomer detected after

[U-13C]glutamine labeling was M2.

The simplest C2 fragment derived from the TCA cycle is an acetyl group from acetyl-CoA.

The assumption of an acetyl group in the molecule is consistent with the observed decrease

in fractional enrichment from [1,2-13C]glucose and increase in fractional contribution from

[U-13C]glutamine (Figure 35A,B), which is caused by the well-known increase in glutamine

contribution to citrate biosynthesis from which the acetyl-CoA is derived (section 1.4).

The M2 abundance of RI 1823 was similar to that of glucose and less affected by hypoxia

than the other mass isotopomers, indicating a substructure metabolically close to glucose

(Figure 35B). This was further confirmed by the mass spectrum of RI 1823 which showed

ions characteristic for TMS derivatives of hexoses (m/z 117, 129, 131, 133, 204, 217, 218).

The heaviest fragments observed for RI 1823 were m/z 404 and m/z 419, with m/z 419

probably being M•+ and m/z 404 being [M-CH3]
+ (Figure 35C). According to the nitrogen

rule, [25] this compound most probably contains an odd number of nitrogens. The presence of

one nitrogen atom was confirmed in a separate stable isotope labeling experiment with [amide-
15N]glutamine. Taken together, these findings pointed to a nitrogen-containing compound

consisting of a sugar- and acetyl-moiety. Such compounds are found in the hexosamine

pathway [16,17] which is known to play an important role in cancer metabolism. [211–213]

Assuming a hexosamine-like structure, the elemental composition of M•+ was determined

to be C8H10NO5Si3C9H27 and later confirmed by GC-APCI-TOF-MS. Subtracting the 3 TMS
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3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells

groups leads to C8H13NO5 for the underivatized molecule. A ChemSpider database search

revealed 2-acetamidoglucal as a potential candidate (Figure 35C).

Unfortunately, there was no authentic standard of acetamidoglucal commercially available,

to confirm the identity of RI 1823. The mass spectrum provided by Kamerling et al. [214]

matched only partially. I attempted to prepare the compound from the precursor 2-acetamido-

2-deoxy-α-D-glucopyranosyl chloride 3,4,6-triacetate in a similar way as described by Pravdić

et al. [215,216] (Figure 35E). However, after GC-MS analysis of the reaction mixture there was

only a low-abundant peak with a high spectrum similarity to RI 1823. As the main product,

I obtained N -acetyl-D-glucosamine (GlcNAc). Apparently, a nucleophilic substitution of

chlorine occurred as the first reaction step instead of the intended elimination of HCl.

Therefore, the identification of RI 1823 as 2-acetamidoglucal can only be seen as putative,

but very likely.

2-Acetamidoglucal is an intermediate in the epimerization of uridine diphosphate (UDP)-

GlcNAc to N -acetyl-D-mannosamine (ManNAc) by UDP-N -acetylglucosamine 2-epimerase

(GNE) [217] (Figure 35D) and elevated levels of this compound have been detected in the

urine of a patient with sialuria, a gene defect in GNE. [214] Besides these findings, there is

surprisingly little literature—there are currently only 6 reports mentioning 2-acetamidoglucal

indexed in PubMed.2

However, the hexosamine pathway is well known to play an important role in cancer. Serine

and threonine residues in proteins can be post-translationally and reversibly modified with

GlcNAc. It has been hypothesized that the level of protein O-GlcNAcetylation is a sensor

of cellular energy status. [218] GlcNAc biosynthesis depends on both glucose and glutamine,

the two major carbon substrates of mammalian cells, and acetyl-CoA, a metabolic hub of

many anabolic and catabolic processes. Therefore, high availability of GlcNAc indicates a

high energy status. Protein O-GlcNAcetylation has been shown to be necessary for increased

glutamine uptake and catabolism in cancer cells, [211] probably via indirect stabilization of

HIF-1. [212] Moreover, N -acetylneuraminic acid (NeuNAc) and its derivatives (sialic acids)

are synthesized via 2-acetamidoglucal (Figure 35D). Sialic acids occur as terminal groups

in glycans in the extracellular matrix [219] which are associated with metastasis. [220] Urinary

NeuNAc has recently been identified as prognostic and diagnostic biomarker for lung cancer. [11]

RI 1651 — N-acetylaspartic acid

The unidentified compound with RI 1651 was one of the compounds with strongly chang-

ing MIDs in response to hypoxia (section A.9). The analysis of MID similarity after [U-
13C]glutamine labeling indicated the vicinity of this compound to aspartic acid and citric acid

(Figure 36. Especially one fragment (m/z 245) of this compound showed a very high similarity

2http://www.ncbi.nlm.nih.gov/pubmed/?term=2-acetamidoglucal [Accessed: January 2015]
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3 Results & discussion

to aspartic acid. There are at least two more carbons present in the molecule, as apparent

from the presence of the M+6 mass isotopomer of the heaviest fragment (m/z 304). MID

analysis after [1,2-13C]glucose labeling showed high MID similarity to glycerol-3-phosphate

indicating metabolic proximity to the lower part of glycolysis. Following these hints, the

compound was eventually identified as the 3TMS derivative of N -acetylaspartic acid. A

potential role of this compound in mitochondrial-cytosolic acetyl-shuttling is discussed in

more detail in subsection 3.5.4.

[1,2-13C]glucose[U13C]glutamine

Figure 36: MID similarity analysis for RI 1651 facilitated its identification as N -
acetylaspartic acid. MIDs of fragment m/z 304 after [1,2-13C]glucose and [U-13C]glutamine
labeling are shown, along with compounds with the most similar MIDs. Color code indicates
oxygen concentrations: 21%, 15%, 10%, 5%.

3.5.4 NAT8L and N-acetylaspartic acid-based acetyl shuttling in lung

cancer cells

N -acetylaspartic acid was one of the metabolites popping up in the mass isotopomer abundance

variation analysis (section A.9). N -acetylaspartic acid is well-known to occur in very high

abundance in neuronal tissue [221] where it is synthesized from aspartic acid and acetyl-CoA

by the long unknown enzyme NAT8L, which is also known as Shati. [222] A function of N -

acetylaspartic acid in non-neuronal mammalian cells has not been described so far. However,

NAT8L expression was recently shown to play an important role in lipid turnover in brown
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3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells

adipocytes by an unknown mechanism. [188] It was therefore surprising at first to find N -

acetylaspartic acid biosynthesis in cancer cells. However, the measurement of an authentic

standard confirmed its identity and stable isotope labeling clearly excluded an exogenous

origin.

In the mammalian brain, N -acetylaspartic acid is known as the precursor of the neuropeptide

N -acetylaspartylglutamic acid (Figure 37). [223] Additionally, N -acetylaspartic acid was shown

to be an essential carrier of acetyl units for their transport from neurons to oligodendrocytes,

where they are cleaved off by aspartoacylase (ASPA) to be used for myelin biosynthesis

(Figure 37). [224,225] Perturbation of this transport is known to lead to pathological conditions

known as Canavan’s disease. [226]

Potential functions of neuronal N -acetylaspartic acid have been proposed, [227] but its role

in cancer cells has not been elucidated yet. Its acetyl-transport function in the brain, together

with the known increase in lipid biosynthesis of cancer cells, make it interesting to speculate

about a similar role of N -acetylaspartic acid in tumor cells. As D’Adamo et al. [228] many

years ago, I hypothesized a role of N -acetylaspartic acid in the transport of acetyl-CoA from

the mitochondrial matrix to the cytoplasm.
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Figure 37: Neuronal metabolism of N -acetylaspartic acid. N -acetylaspartic acid is
produced from acetyl-CoA and aspartic acid by NAT8L. It can be hydrolyzed to aspartic acid and
acetic acid by ASPA or elongated to N -acetylaspartylglutamic acid by N -acetylaspartylglutamic
acid synthetase (NAAGS).

N-acetylaspartic acid is produced by NAT8L in A549 cells

To find out whether N -acetylaspartic acid is also produced by NAT8L in A549 cells, an

siRNA-mediated knockdown of NAT8L was performed. Due to the lack of adequate primers

for NAT8L, silencing efficiency could not be assessed. With the primers used by Pessentheiner

et al. [188] we could amplify NAT8L in human neuroepithelial stem cells (cDNA kindly provided

by Sarah Nickels), but did not yield any product in A549 cells. However, siNAT8L-transfection

had a significant effect on the levels of several metabolites (Figure 38). N -acetylaspartic acid

levels dropped significantly to 7.5% of the levels measured in the siCtrl-transfected cells, thus

providing strong evidence that NAT8L is responsible for N -acetylaspartic acid production

in A549 cells. Besides N -acetylaspartic acid, glycerol-3-phosphate levels were significantly
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3 Results & discussion

decreased to 13% of the levels in siCtrl-transfected cells. Another compound, glsRI 2718.62

was later identified as N -acetylaspartylglutamic acid 3TMS.
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Figure 38: Significantly changed metabolite levels 48 h after transfection with
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Occurrence of N-acetylaspartic acid and NAT8L across other non-neuronal cell types

After having confirmed the identity and endogenous origin of N -acetylaspartic acid, as well as

its production by NAT8L, I was interested in the occurrence of this metabolite and enzyme

in other cell types and tissues. Therefore I analyzed other GC-MS measurements and found

N -acetylaspartic acid to be present also in human hepatocellular carcinoma cells (HepG2;

data generated by Nadia Battello) and human prostate epithelial cells (RWPE-1 and RWPE-2;

data generated by Dr. Thekla Cordes). Interestingly, N -acetylaspartic acid levels in RWPE-2

cells were higher than in RWPE-1 cells (Figure 39A). The two cell lines are identical, except

that RWPE-2 was further transformed with v-Ki-ras, rendering the cells tumorigenic. [229]

Furthermore, I found N -acetylaspartic acid to be present in primary lung tissue (data

generated by Jenny Ghelfi). For a previous study, lung biopsies from cancer patients were

taken from healthy and tumor tissue of the same patient. Although not statistically significant

(paired t-test, n = 19, p = 0.11), N -acetylaspartic acid levels were increased in most tumor
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3.5 Non-targeted analysis of stable isotope labeling in hypoxic cancer cells

samples, pointing towards a role in cancer metabolism (Figure 39B). For a subset of these

lung tissue samples, NAT8L mRNA levels were determined and found to be higher in tumor

tissue with a median difference of 8%, but again not statistically significant (paired t-test,

n = 11, p = 0.19; data not shown). Moreover, using the Genevestigator [230,231] gene

expression search engine, I found high NAT8L expression in a large number of cancer cell

lines (data not shown).
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Figure 39: Occurrence of N -acetylaspartic acid in cancer cells.
A) Tumorigenic RWPE-2 cells show higher levels of N -acetylaspartic acid than non-tumorigenic
RWPE-1 cells (Welch’s t-test, n = 3, p = 0.053).
B) N -acetylaspartic acid levels in lung tissue of cancer patients. Abundance is higher in
most tumor samples. Points are means of three technical replicates. One outlier not plotted
(24× 105 signal intensity in tumor sample). Paired t-test, n = 19, p = 0.11.

Thorough literature search showed that N -acetylaspartic acid has also been detected

in other metabolomics studies on cancer cells which, however, did not follow up on this

finding. [231–234] Especially Sreekumar et al. [232], reporting sarcosine as an urinary biomarker

for prostate cancer progression, also detected N -acetylaspartic acid. In their hierarchical

cluster analysis, it clustered closely to sarcosine and its abundance is progressing with cancer

stage but is not commented on. Reitman et al. [235] found N -acetylaspartic acid, as well

as N -acetylaspartylglutamic acid which is produced [223] from N -acetylaspartic acid, to be

present in glioma, but depleted in IDH1 mutated cells.

Hints towards alternative splicing of NAT8L in A549 cells

When trying to verify the NAT8L silencing efficiency by qPCR, I initially failed to amplify

NAT8L cDNA. Multiple primer pairs were tested. One pair of primers that failed to amplify

NAT8L in A549 was working well for human neuroepithelial stem cells (cDNA kindly provided

by Sarah Nickels) and was used by Pessentheiner et al. [188] in adipocytes.

nat8l codes for three exons (Figure 40). The amplicon of aforementioned primer pair

spanned the exon 1 – exon 2 junction. To account for potential alternative mRNA splicing,
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I designed primers for amplicons within either exon 1 or exon 2. Using the exon 2-specific

primers, I was able to amplify NAT8L cDNA in A549 cell extracts, but not with the exon 1-

specific primers, suggesting that exon 1 is not expressed in A549 cells. There are no alternative

splicing variants of human NAT8L reported and the biological relevance is unclear.

Absence of exon 1 would leave a single translation initiation site with the same reading

frame at 505 bp that would give rise to a truncated 134 aa long, 15.5 kDa heavy protein,

still containing the N -acetyltransferase domain. This protein would lack the predicted

transmembrane domain at aa 121 to aa 141. The N-terminal region may furthermore contain

subcellular localization signals and alternative splicing could explain the different protein

localization reported by different groups. [222,236–238] However, no localization signals were

reported within the N-terminal region.
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Figure 40: NAT8L mRNA splicing and protein domains. nat8l codes for three exons.
The protein has a predicted transmembrane domain. TM: predicted transmembrane domain;
NAT: N -acetyltransferase domain. (Source: NCBI protein/gene/nuccore databases)

NAT8L and glycerol-3-phosphate

NAT8L knockdown significantly changed the levels of several metabolites (Figure 38). The

metabolite, the levels of which were most affected, was glycerol-3-phosphate. A correlation

between glycerol-3-phosphate and N -acetylaspartic acid concentrations has also been measured

— but not discussed — by others. [231,232]

Glycerol-3-phosphate is a lipid building block as well as a key metabolite in electron

shuttling to the mitochondrium via the glycerol-3-phosphate shuttle (Figure 41A). In hu-

mans, there exist multiple enzymes that are involved in glycerol-3-phosphate metabolism.

Several O-acyltransferases are able to transfer fatty acids from and onto glycerol-3-phosphate,

and glycerol-3-phosphate dehydrogenases catalyze the reversible NAD+/NADH dependent

oxidation to the glycolytic intermediate dihydroxyacetone phosphate. Glycerol-3-phosphate

dehydrogenase (GPD)2 together with GPD1 or GPD1L constitute the glycerol-3-phosphate

shuttle that transfers electrons from cytosolic NADH to mitochondrial FAD. [239] The resulting

FADH2 can transfer the electrons to the respiratory chain.
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Figure 41: Glycerol-3-phosphate (G3P) metabolism.
A) G3P is a precursor for glycerolipids and part of the G3P shuttle. Cytosolic dihydroxyacetone
phosphate (DHAP) can be reduced to G3P by NAD-dependent cytosolic GPD1 or GPD1L
and reoxidized by mitochondrial membrane-bound GPD2 with concomitant reduction of FAD,
effectively transferring two electrons to the mitochondrium.
B) GPD gene expression analysis in A549 cells. GPD1L expression is slightly reduced in
siNAT8L transfected cells. GPD2 is induced in siNAT8L transfected cells under normoxia. Bars
show mean±SD of two replicates (Welsh’s t-test, n = 2, p > 0.05).

GPD1L and GPD2, but not GPD1 were found to be expressed in A549. GPD1L ex-

pression was only little affected by NAT8L silencing, under both normoxia and hypoxia

(Figure 41B). GPD2 expression, however, increased by over 40% at normoxia. GPD2 is

the mitochondrial membrane-bound, usually glycerol-3-phosphate consuming enzyme. Its

induction could explain the observed reduction of glycerol-3-phosphate levels after NAT8L

silencing (Figure 38).

NAT8L, glycerol, and reductive glutamine metabolism

To obtain hints on the functional role of N -acetylaspartic acid and NAT8L in A549 cells

and to find the link to glycerol-3-phosphate metabolism, a stable stable isotope labeling

experiment was performed using [U-13C]glucose and [U-13C]glutamine, both under normoxia

and hypoxia. NAT8L silencing was confirmed by qPCR and found to be more efficient under

hypoxia (Figure 44).

Under normoxia, the most significantly changed MIDs were those of glycerol and glycerol-

3-phosphate (Figure 42A). In siNAT8L-transfected cells, the relative abundance of fully

labeled glycerol-3-phosphate increased significantly by about 5 percentage points, whereas

the overall levels dropped dramatically by almost 90% (Figure 38). Fully labeled glycerol-3-

phosphate is derived from the glycolytic intermediate dihydroxyacetone phosphate via GPD

and the unlabeled isotopologue is derived from breakdown of unlabeled lipids from the growth

medium (Figure 41). Therefore, the labeling experiment shows a relative increase in its de

novo synthesis and a relative decrease in the contribution of lipid turnover.

The labeling of glycerol is puzzling. Although not statistically significant, the labeling of
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glycerol changed inversely to glycerol-3-phosphate. This difference points to the irreversibility

of glycerol-3-phosphate dephosphorylation, potentially due to the lack of glycerol kinase.

However, isotopic enrichment in glycerol was higher than in glycerol-3-phosphate, which is

surprising because it is derived from the latter and is therefore expected to be rather less

enriched. Furthermore, the M2 abundance in glycerol but not in glycerol-3-phosphate cannot

be explained from its glycolytic origin, raising the question of other biosynthetic pathways

leading to glycerol (Figure 42A).
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Figure 42: Changes in MIDs due to NAT8L knockdown after labeling with [U-
13C]glucose and [U-13C]glutamine under (A) normoxia and (B) hypoxia.
Welch’s t-test, n = 3, *: p < 0.05, **: p < 0.01, ***: p < 0.001.

Under hypoxia, glycerol-3-phosphate MIDs showed a similar change as under normoxia

(Figure 42B). However, its overall isotopic enrichment was about 25% lower, indicating

a higher contribution from lipid turnover than under normoxia. An increased turnover

of exogenous lipids under hypoxia has also been observed by others. [167] For glycerol, no

significant difference in isotopic enrichment, but again a M2 fraction of unknown origin was

observed.

Whereas under normoxia NAT8L knockdown barely affected MIDs of TCA cycle-associated

metabolites, neither from [U-13C]glucose nor [U-13C]glutamine labeling, the effect under

hypoxia was quite drastic (Figure 42). There was a massive shift from M3 to M4 abundance of

malic acid and aspartic acid after [U-13C]glutamine labeling in siNAT8L cells. [13C3]malic acid

is produced from reductive glutamine metabolism via carboxylation of [13C5]2-oxoglutarate

followed by ACLY-action; [13C4]malic acid is produced from glutamine oxidation in the TCA
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cycle (section A.9). Therefore, the changes in MIDs indicate that NAT8L knockdown inhibits

reductive glutamine metabolism or induces its oxidative metabolism. Reductive glutamine

metabolism provides a means to sustain lipid biosynthesis fully on glutamine, independent of

glycolysis and PDH activity. [8]

Model of N-acetylaspartic acid function in cancer cells

Several potential functions of N -acetylaspartic acid, including a role as osmoregulator, [240]

have been proposed, [227] but its role in cancer cells has not been elucidated yet. In earlier

studies in rat brain, D’Adamo et al. [228] and Patel & Clark [241] suggested a role of N -

acetylaspartic acid in mitochondrial-cytosolic carbon transport, refining the observation of

D’Adamo & Yatsu [242], that N -acetylaspartic acid carbon is incorporated into brain lipids.

Meanwhile, it has been shown by others that in the nervous system N -acetylaspartic acid is

an essential carrier of acetyl units for their transport from neurons to oligodendrocytes where

they are used for myelin biosynthesis. [224,225] Since then, the potential role of N -acetylaspartic

acid in intracellular acetyl-transport was not further pursued.

The change in the ratio of oxidative and reductive glutamine metabolism upon NAT8L

knockdown may be due to implications of NAT8L with mitochondrial-cytosolic-acetyl-

transport (Figure 42B). Since cancer cells require high amounts of cytosolic acetyl-CoA

for de novo lipid biosynthesis, such an acetyl-shuttling mechanism could be beneficial. Tradi-

tionally, cytosolic acetyl-CoA is thought to be derived from citrate by ACLY (section 1.4).

In the following, I postulate an N -acetylaspartic acid-based acetyl-shuttle and will discuss

the aforementioned data in that light, starting with metabolic fluxes under hypoxia, where

NAT8L knockdown led to larger MID changes.

Reductive glutamine metabolism under hypoxia With decreasing oxygen concentrations,

the cytosolic acetyl-CoA pool is increasingly supplied from glutamine catabolism. [8] At the

stage of 2-oxoglutaric acid, glutamine carbon can be oxidized by OGDH or reduced by

IDH. Oxidative glutamine metabolism by OGDH, succinate dehydrogenase (SDH), malate

dehydrogenase (MDH), malic enzyme, and PDH can produce mitochondrial acetyl-CoA

(Figure 43A). This acetyl-CoA can be exported to the cytosol as citrate. The oxaloacetate

resulting from ACLY action is transported back as malate. Reductive glutamine metabolism

generates cytosolic citrate which can be cleaved by ACLY to provide acetyl-CoA. The resulting

oxaloacetic acid can be transported to the mitochondrium, to form another molecule of acetyl-

CoA via malic enzyme and PDH, which can be exported again as citrate to provide a second

cytosolic acetyl-CoA molecule. However, in this scenario, citrate synthesis or transport may

pose a bottleneck, because there are two competing reactions, via citrate synthase and IDH,

producing citrate which could lead to product inhibition, [164] limiting cytosolic acetyl-CoA

93



3 Results & discussion

production.

Figure 43: Model of cytosolic-mitochondrial acetyl-CoA transport under hypoxia
where acetyl-CoA-carbon is mainly derived from glutamine.
A) Classical model for providing cytosolic acetyl-CoA via oxidative (red) or reductive (blue)
glutamine metabolism, not considering a role of NAT8L. Both pathways rely on slow citrate
formation via citrate synthase, and reductive IDH flux and citrate synthase reaction possibly
suffer from product inhibition by citrate.
B) Proposed alternative model based on the N -acetylaspartic acid shuttle for acetyl transport.
N -acetylaspartic acid is formed by NAT8L in the mitochondrium, transported to the cytosol
where it is cleaved and the resulting acetate is used to provide acetyl-CoA. Here, no competing
citrate-forming reactions are necessary.

An N-acetylaspartic acid shuttle avoids product inhibition in reductive carboxylation of

2-oxoglutarate N -acetylaspartic acid is likely produced in the mitochondrium, [188] although

there are contradicting results. [222,227,236–238,243] Assuming its mitochondrial biosynthesis and

a cytosolic hydrolyzing enzyme, which may or may not be identical with neuronal ASPA,

an acetyl-shuttling from the mitochondrium would be possible (Figure 43B). Mitochondrial

synthesis of N -acetylaspartic acid, export to the cytosol and deacetylation could provide

cytosolic acetate which can be activated to acetyl-CoA by acyl-CoA synthetase (ACSS).

Acetate was recently shown by multiple groups to be a lipogenic substrate in hypoxic cancer

cells. [160–162] Although the net carbon transport in this scenario does not differ from the

ACLY-based one (Figure 43B), the N -acetylaspartic acid model (Figure 43B) does not suffer

from product inhibition by citrate and circumvents the citrate synthase reaction, which

was shown to proceed rather slow in comparison to the transamination of oxaloacetate to

aspartate. [244]

The proposed model can explain the observed relative decrease in reductive carboxylation of

2-oxoglutarate upon NAT8L silencing: Without the possibility of N -acetylaspartic acid-based

acetyl-transport, reductive glutamine metabolism is inhibited by citrate production from

citrate synthase and its export to the cytosol. However, as a consequence of NAT8L silencing,
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ACLY should become more important for cytosolic acetyl-CoA. A respective induction of

ACLY gene expression, was not observed (Figure 44) unlike in brown adipocytes as reported

by Pessentheiner et al. [188]. The observed induction of both cytosolic and mitochondrial

ACSS and the repression of citrate synthase in response to NAT8L silencing may also point

towards a lack of acetyl-CoA (Figure 44): ACSS induction can replenish acetyl-CoA and

reduced citrate synthesis via citrate synthase helps to conserve the available acetyl-CoA.
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Figure 44: Gene expression levels in response to NAT8L silencing. NAT8L silencing
is stronger under normoxia. It induces gene expression of ACSS1 and ACSS2 and represses
citrate synthase expression. ACLY gene expression is not affected. *: Welch’s t-test p < 0.05
(n = 3), **: p < 0.01, ***: p < 0.001. n = 3, except for ACLY expression and “1% O2 siNAT8L”
levels, where n = 2.

Electron flow is affected under normoxia Under normoxia, changes in MIDs were smaller

than under hypoxia and there was no significant induction in ACLY expression. However,

there was an induction in GPD2 gene expression. An N -acetylaspartic acid shuttle could

explain these observations. Under normoxia, most cytosolic acetyl-CoA is derived from glucose

via glycolysis, PDH, citrate synthase, and ACLY (Figure 43A). PDH flux, mitochondrial

acetyl-CoA availability and citrate synthesis are high at normoxia; citrate and ACLY can

satisfy the demand in cytosolic acetyl-CoA, detectable flux ratios and MIDs of TCA cycle

intermediates do not change. However, the citrate detracted from the TCA cycle is not

available for oxidation and concomitant reduction of NAD+ and FAD to fuel oxidative

phosphorylation. Therefore, GPD2 expression is induced to balance mitochondrial FADH2
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levels via the glycerol-3-phosphate shuttle and to regenerate cytosolic NAD+ to sustain a

high glycolytic rate (Figure 41).

The N -acetylaspartic acid shuttle mostly decouples acetyl-CoA export from NADH and

FADH2 production in the TCA cycle (Figure 43B). Provided there is enough mitochondrial

acetyl-CoA, the N -acetylaspartic acid shuttle can deliver cytosolic acetyl-CoA and mitochon-

drial NADH, independently of the TCA cycle. The TCA cycle can produce more reducing

equivalents for oxidative phosphorylation as no citrate is detracted.

Figure 45: Model of the role of N -acetylaspartic acid and NAT8L in normoxic
cancer cells where cytosolic acetyl-CoA is mainly derived from glucose.
A) Classical model for providing cytosolic acetyl-CoA via glycolysis, PDH, citrate synthase, and
ACLY. Citrate synthesis is slow and a potential bottleneck for NADH and FADH2 production
when it is exported to the cytosol.
B) The alternative model based on the N -acetylaspartic acid shuttle can export acetyl-CoA
from the mitochondrium without interfering with the TCA cycle, assuming that there is enough
mitochondrial acetyl-CoA available. The slow [244] citrate synthase reaction is circumvented.

NAT8L silencing lowers cell proliferation, even more than ACLY silencing

To further assess if the proposed model is adequate, I performed a NAT8L, ACLY, and

combined NAT8L+ACLY silencing and monitored cell proliferation. I expected that the

individual silencing of NAT8L and ACLY could be balanced by the respective other enzyme,

but that their combined silencing, in which case the cells fully depend on acetate or fatty

acid from the growth medium, would significantly reduce their proliferation rate.

Under normoxic conditions, the individual or combined gene silencing led to a growth

inhibition of around 30% (Figure 46). The effect of the combined silencing was not significantly

different from the individual ones.

Under hypoxia, the growth inhibitory effect of NAT8L silencing was 20% after 72 h and

therefore lower than under normoxia (Figure 46). More surprisingly, ACLY silencing seemed

to not affect cell growth under hypoxia.
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The lower effect of NAT8L silencing under hypoxia could be explained by the increased

reductive glutamine metabolism leading to citrate that can provide cytosolic acetyl-CoA by

ACLY. However, then the combined silencing should result in increased growth inhibition

which I did not observe.
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Figure 46: A549 cell growth during 72 h of NAT8L, ACLY, and combined
NAT8L+ACLY silencing under normoxic and hypoxic conditions.
Mean±standard deviation of the mean (SD) of cell numbers of three replicates are shown.
Welch’s t-test, n = 3, *: p < 0.05.

Validation of the model To validate the postulated function of NAT8L and N -acetylaspartic

acid, additional experiments are required. A stable isotope labeling experiment using N -

([13C2]acetyl)-aspartic acid as tracer will show the fate of the acetyl-moiety of N -acetylaspartic

acid in cancer cells, which is expected to mostly fuel fatty acid production and cytosolic or

nuclear acetylation reactions (e.g. histones).

The effect of NAT8L overexpression in cancer cells should be analyzed — I expect increased

NAT8L activity to confer a proliferative advantage over normal cells. Furthermore, if the

proposed model is correct, NAT8L over-expression should rescue the impaired proliferation in

response to ACLY-silencing. Downstream of NAT8L action, a knockdown of ACSS2 should

be performed in an acetate free growth medium, where I expect it to have a similar effect on

metabolic fluxes as the NAT8L knockdown.

For the suggested acetyl-shuttling mechanism, an N -acetylaspartic acid-hydrolyzing enzyme

is required.Benuck & D’Adamo [245] already reported that N -acetylaspartic acid can be

hydrolyzed in several peripheral tissues. The obvious enzyme candidate is ASPA, which is

responsible for oligodendrocytic N -acetylaspartic acid hydrolysis. However, I was not able
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to detect its expression in A549 cells by qPCR. Furthermore, the subcellular localization of

NAT8L in A549 cells needs to be confirmed.

Alternative role of N-acetylaspartic acid as precursor of the glutamate receptor

agonist N-acetylaspartylglutamic acid

NAT8L may also play a role in providing the precursor for N -acetylaspartylglutamic acid

biosynthesis (Figure 37). I found this metabolite also to be produced in A549 cells.

N -acetylaspartylglutamic acid was described as an agonist of the extracellular type 3

metabotropic glutamate receptor (mGluR3).
[246,247] mGluR3 receptors are Gi-coupled which,

when activated, inhibits adenylate cyclase and subsequently cAMP-dependent protein kinase A

(PKA). The mGluR3 receptors are well-known in neurons, but were also found to be expressed

in cancer cells, [248,249] where they modulate cell proliferation. [250] The reduction of intracellular

cAMP and cGMP levels by N -acetylaspartylglutamic acid [247] may lower their inhibitory

effect on cell proliferation and invasion. [251,252] Not only do N -acetylaspartylglutamic acid

modulate PKA signaling, but also does PKA signaling regulates N -acetylaspartic acid and

N -acetylaspartylglutamic acid levels, forming a negative feedback loop. [253] independently of

PKA signaling, Guo et al. [254] found that mGluR3 regulates proliferation of neural progenitor

cells via JNK/ERK signaling, protein kinases that are well-known in cancer signaling. [255] Fur-

ther evidence is needed to assess if the lack of mGluR3 activation by N -acetylaspartylglutamic

acid alone could explain the observed metabolic flux alterations observed in response to

NAT8L silencing.

Summary

The presented experiments provide evidence for an N -acetylaspartic acid-based mitochondrial-

cytosolic acetyl-shuttle in cancer cells. Such a mechanism would explain the recently reported

importance of ACSS for the activation of acetate. [160–162] However, not exogenous but N -

acetylaspartic acid-derived, endogenous acetate is the main substrate of ACSS. NAT8L

expression may play a role in the invasiveness of cancer cells as suggested by its elevated

levels in tumorigenic RWPE-2 cells as compared to non-tumorigenic RWPE-1 cells, and by

the correlation of N -acetylaspartic acid levels with prostate cancer progression as observed

by others. [232] Furthermore, NAT8L or the not yet identified hydrolase may provide a

potential drug target for peripheral cancer. Most non-cancer cells, besides adipocytes and

oligodendrocytes, have a lower acetyl-CoA demand and might therefore not suffer from

inhibition of the N -acetylaspartic acid-shuttle.

Although I presented evidence for an integral role of NAT8L in cellular metabolism,

still many questions remain to be answered: Is ASPA the cytosolic N -acetylaspartic acid

deacetylase? How is NAT8L regulated? Is the N -acetylaspartic acid-shuttle present in all
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cell types, or did only cancer cells specifically hijack the neuronal transport system? How is

N -acetylaspartic acid transported to the cytosol? By the mitochondrial dicarboxylate carrier

SLC25A10, [256] or by the oligodendrocytic NaDC3 [257]? Independently of these open question,

the observed pronounced effects of NAT8L silencing on metabolite levels and metabolic fluxes

despite the moderate silencing efficiency, point towards an integral function within cellular

metabolism.

3.5.5 Acetylated compounds as proxies for acetyl-CoA labeling

Acetyl-CoA is at the interface of glycolysis, the TCA cycle, fatty acid biosynthesis, terpene

biosynthesis, β-oxidation and several other pathways, therefore it represents an important

metabolic hub. Isotopic enrichment of acetyl-CoA after stable isotope labeling experiments

can provide important information on fractional contribution of the given tracer to the

aforementioned pathways. Unfortunately, acetyl-CoA cannot be analyzed with GC-MS due

to its low volatility. Other sophisticated methods like isotopomer spectral analysis (ISA) [258]

and mass isotopomer distribution analysis [81] have been used to deduce acetyl-CoA labeling

from the labeling of fatty acids.

In section A.9, I demonstrated how the labeling of mass spectrometric fragments of N -

acetylaspartic acid can be used to infer acetyl-CoA labeling (Figure 47). This approach

has the advantage, that it does not require the separate work-up and measurement of fatty

acids. Besides N -acetylaspartic acid, any other purely endogenous acetylated compound

holds information on acetyl-CoA labeling. To determine the labeling of the acetyl-moiety

either suitable mass spectrometric fragments need to be found, or it must be ensured that

the non-acetyl-moiety cannot be labeled from the applied tracer. A candidate for the latter

case is the putative 2-acetamidoglucal (see above). For example in the case of glutamine

labeling in non-gluconeogenetic cells under isotopic steady state the 2-acetamidoglucal MID

represents the acetyl-CoA MID, since the glucal-carbon cannot be labeled from the glutamine

tracer.

Moreover, the two compounds N -acetylaspartic acid and 2-acetamidoglucal may be suitable

to determine compartment-specific acetyl-CoA MIDs. If the above model (Figure 43) is correct,

then N -acetylaspartic acid is synthesized in the mitochondrium and, thus, provides labeling

information on the mitochondrial acetyl-CoA pool, whereas hexosamine acetylation occurs in

the cytosol [259] and 2-acetamidoglucal or other acetyl-hexosamines provide information on the

cytosolic acetyl-CoA pool. The mitochondrial acetyl-CoA labeling provides information on

acetyl-CoA derived from acetate via ACSS1, β-oxidation of fatty acids, and most importantly

PDH. The cytosolic acetyl-CoA is a mixture of exported mitochondrial acetyl-CoA, and

acetyl-CoA produced from reductive carboxylation of 2-oxoglutarate and ACLY action. The

observed differences in acetyl-labeling of 2-acetamidoglucal and N -acetylaspartic acid support
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3 Results & discussion

this hypothesis: The enrichment from [U-13C]glutamine is higher in the assumed cytosolic

pool, which is composed of acetyl-CoA exported from the mitochondrium, but additionally

enriched by labeled acetyl-CoA derived from reductive glutamine metabolism (Figure 47).
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Figure 47: Proxies for acetyl-CoA labeling. From the mass spectra of the acetylated
compounds RI 1823 and N -acetylaspartic acid, the labeling in their acetyl-moiety can be
determined (section A.9). Graph shows the 13C enrichment after [U-13C]glutamine labeling.
The different enrichments point to two distinct subcellular acetyl-CoA pools.

3.5.6 Summary

This analysis of hypoxic cancer cells shows how non-targeted data acquisition and data

analysis approaches are valuable tools to generate initial hypotheses leading to new biological

insights. After performing stable isotope labeling experiments, mass spectrometric analysis,

and the non-targeted detection of isotopically enriched compounds, qualitative analysis of

isotopic enrichment provided information on active fluxes (e.g. production of N -acetylaspartic

acid) and the general fate of the metabolic tracer (Figure 48B). MIDs from different experi-

mental conditions have been systematically analyzed to detect changes in metabolic fluxes

(subsection 3.2.1; e.g. decreased PDH flux and decreased IDH flux). Because MID similarity

may indicate metabolic proximity (subsection 3.2.2), MIDs of compounds of interest have

been compared to all other MIDs for pathway contextualization and to facilitate identification

of unidentified compounds (N -carboxyglutamic acid, 2-acetamidoglucal; subsection 3.5.3).

Overall, this non-targeted approach (Figure 48B) provides information on: 1) active

pathways, 2) changed fluxes and 3) compound identities. This information holds biological

insights itself and will furthermore generate hypotheses for subsequent analyses (Figure 48A).
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A B

Figure 48: Workflow for non-targeted mass isotopolome analysis.
A) Non-targeted approaches are valuable scouting experiments for hypothesis generation. These
hypotheses are tested by more targeted techniques leading to refined hypotheses and biological
insights.
B) Data-driven analysis of non-targeted stable isotope labeling experiments. After stable isotope
labeling experiments, active pathways and changed fluxes can be detected in a non-targeted
manner from MIDs and changes therein. Compound identity and additional biochemical
knowledge is only needed for further interpretation. Analysis of MID similarity between
compounds can aid their identification or help to determine their biosynthetic pathway. Yellow
boxes highlight novel analysis techniques presented in this work.
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3.6 METABOBASE—Metabolomics data management

To assess the importance of specific compounds in a metabolite sample, especially for newly

discovered compounds, it is valuable to know about their occurrence under specific conditions

and in different sample types or organisms. Some tens of thousands of metabolite samples

have been analyzed by GC-MS in the metabolomics group at the LCSB, providing an ideal

data basis to answer such questions. However, to easily retrieve measurements for a given

organism or condition, this data needed to be organized and annotated.

To make the accumulating GC-MS data of our group and the LCSB metabolomics plat-

form more accessible, I set up, together with Jake Lin, a user-friendly web-accessible data

management platform named MetaboBase.

This platform is used to store and retrieve information on more than 40,000 measured

samples, making historic data more available. Having experimental meta-data in a well-

accessible format will allow us to perform large-scale meta-analyses of different experiments.

MetaboBase is well integrated with our analytical instruments via the Agilent/HP

GC/MSD ChemStation and our MetaboliteDetector software. [189]

For this project I set up the data interconversion, data import into the database, designed

the database model and the workflows for the front-end, whereas Jake Lin was responsible

for the actual implementation of most of the web-interface and back-end for the database

connection.

MetaboBase provides the following features:

• Data warehousing

• Reference library management

• Reference library export

• Spectrum view

• Dataset annotation

• Mass spectrum annotation

• Atom transitions

• Data retrieval

3.6.1 Data warehousing

The data flow for MetaboBase starts directly at the acquisition computers of our GC-MS

instruments (Fig. 49). After a measurement is finished, the data is directly converted to

the MetaboliteDetector data format and analytical meta-information is added. The

measurement data are transfered to a central server on regular intervals, multiple times a

day. From there it is accessible for all group members and automatically backed up daily

to an off-site server, ensuring high data security. Once the data files are on the server the

102



3.6 MetaboBase—Metabolomics data management

GC-MS measurements 52,203

Experiments 540

Library compounds 2940

Annotated derivatives 691

Table 8: Some MetaboBase statistics [February 2015].

associated meta-data is imported into a relational database from where it is available within

the web interface (subsection 3.6.2).

NTFD

Complex  samples 
& reference compounds

Automated postprocessing
- conversion to non-proprietary format
- data transfer / backup
(Chemstation macros / C++ / Perl)

External DBs
mass spectra 
& (bio)chemical data

HMDB
TU-BS
KEGG
Pubchem

kali.uni.lux - LCSB 6th floor

metabolomics.uni.lux

SCP/SFTP

SCP
SFTP

Apache
Python

WebUI "Metabobase"
HTML5
JS

PostgreSQL - Measurements
- Compound libraries

HTTP
- Experiment overview
- Library management
- Compound information

cartman.uni.lux - Kirchberg

Daily off-site backup

Figure 49: MetaboBase overview. MetaboBase is a metabolomics data management
platform ensuring high data accessibility. It is well integrated with our data analysis tools and
external databases.

3.6.2 Web front-end

The user interface of MetaboBase is a web front-end that allows for compound library

management, spectrum annotation, data set annotation and data retrieval which I will explain

below (Figure 50). The focus was put on user-friendliness, simple workflows and intuitive

handling.
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Figure 50: MetaboBase compound library.

Compound library

One of the biggest issues in metabolomics still is the identification of measured compounds,

which is usually done by comparing measured spectra with reference libraries. MetaboBase

now allows the Metabolomics group to manage and extend these libraries centrally and more

effectively.

Compound information Information on chemical compounds in the database can be viewed

and modified via the user-friendly web interface (Figure 51). For each compound there is

physical and chemical information available such as:

• name and synonyms

• molecular structure

• molecular weight, monoisotopic mass, nominal mass

• elemental composition

• INternational CHemical Identifiers (InChIs) [260]

• cross-references to other databases

(KEGG, [261] HMDB, [262] PubChem, [263] ChemSpider3)

The initial compound information was derived from HMDB [262] and subsequently supple-

mented with additional compounds, especially TMS and TBDMS derivatives of metabolites

3http://www.chemspider.com/
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for GC-MS measurements. For all compounds with InChI identifiers, vector graphics of the

molecular structure were generated in an automated manner.

Figure 51: For every compound, chemical information and cross-links to other databases are
stored. For chemical derivatives for e.g. GC-MS measurement, the derivatization reagents and
precursor metabolites are stored as well.

Reference spectra Mass spectra of measured authentic reference spectra can be added

to a reference spectrum library. The RI and RT are assigned to all reference spectra and

the spectra are linked to the original raw data files (Figure 52). All compounds that are

derivatives of metabolites (section 1.2.1) are marked as such and are assigned to the native

metabolites. This step is important to later map any measured derivative back to its precursor

to locate it in metabolite databases and use it for bioinformatics analyses (see below).

Reference spectra annotation These reference spectra can be further annotated. For the

determination of isotopic enrichment after stable isotope labeling experiments, the elemental

composition of the fragment of interest is required (section 1.3.6 and 3.3). If such information

is available, as e.g. obtained from FFC (section A.4), it can be directly added to the

compound within the reference library (Figure 52).

For interpretation of MIDs of mass spectrometric fragments, it is furthermore necessary to

know which atoms of the native metabolite are retained in the respective fragment. This

information is also stored in the database. As there are no official universal identifiers for
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A B C

Figure 52: MetaboBase mass spectrum library to manage reference mass spectra.
A) The added mass spectra can be annotated with the elemental composition and atoms of the
precursor retained in each fragment, which is important for MID correction (section 1.3.6 and
3.3).
B) Unambiguous selection of atoms retained within a fragment, by selecting them in the
molecular graph.
C) Stored mass spectra can be viewed and downloaded as comma separated values (csv) file.
Compound libraries are automatically exported for use with MetaboliteDetector.

the individual atoms within the molecule and the biochemical and IUPAC numbering often

differs, it is not straightforward to unambiguously assign the atoms retained in a given

fragment. Therefore, I exploited the numbering algorithm of the InChI. [260] This algorithm

reproducibly assigns a unique number to every atom in the molecule. However, unfortunately,

this numbering scheme is very unintuitive. [264] To counter this problem, I chose to allow for a

simple and fail-safe graphical selection of retained atoms (Figure 52), which is only internally

translated to the InChI numbers.

Compound library export All the aforementioned features are only of use when they are

integrated with our data analysis toolbox. Therefore, all reference spectra in MetaboBase

are automatically exported to compound libraries which are usable with MetaboliteDetec-

tor, NTFD and MIA. Separate compound libraries are generated for different derivatization

methods (TMS- and TBDMS-derivatives and methyl esters). Furthermore, each library

compound entry also contains the aforementioned chemical information, precursor metabolite

and database identifiers. I added a new feature to MetaboliteDetector that allows to
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export this data as part of the result table of a batch quantification. The included identi-

fiers are valuable for further bioinformatics analyses like pathway mapping or enrichment

analysis. [265–268]

Dataset annotation

The more than 40,000 GC-MS measurements (Table 8) that our research group has accumu-

lated over the last few years make it hard to keep an overview over all the experiments and

datasets. It is therefore crucial to have a proper data management in place. MetaboBase

allows to store and retrieve experiment meta-data to these samples. This includes a descrip-

tion of the experimental setup, the different groups and conditions, the sample type and

origin, and most importantly a reference to the respective pages in laboratory notebooks

(Figure 53). For stable isotope labeling experiments additional information on the applied

tracer is included.

Having experimental meta-data in a well-accessible format makes it easy to retrieve historic

data, which may be of interest for new studies. Furthermore, it can be the basis for large-scale

meta-analyses of different experiments that eventually will lead to biomarker discoveries or

the like.

Figure 53: MetaboBase allows to add experiment meta-data and use it to search
for specific data sets. The used organisms and strains, as well as treatment groups within
an experiment are annotated in a machine-readable manner, allowing for future large scale
analyses.
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3.6.3 Implementation

Relational database model Except for the actual raw data files, all MetaboBase data

is stored in a relational PostgreSQL4 database. The database model is illustrated in

Figure 54.

4http://www.postgresql.org/
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atom_transition

P * transition_id UNKNOWN
compound_id_1 UNKNOWN
compound_id_2 UNKNOWN
atom_id_1 UNKNOWN
atom_id_2 UNKNOWN

F * reaction_reaction_id UNKNOWN

atom_transition_PK (transition_id)

kegg_reaction

P * reaction_id VARCHAR2
reaction_name CLOB
definition CLOB
equation CLOB
rpair CLOB
enzyme_class CLOB
pathway CLOB
orthology CLOB
comment CLOB
reference CLOB
remark CLOB

kegg_reaction_PK (reaction_id)

reaction

P * reaction_id UNKNOWN
protein_id UNKNOWN
ec_number VARCHAR2
reaction_name VARCHAR2

reaction_PK (reaction_id)

metabobase_config

P * parameter VARCHAR2
value VARCHAR2

metabobase_config_PK (parameter)

ntfd_fragment

P * ntfd_fragment_id UNKNOWN
F * ntfd_compound_id DATE

mz_m0 FLOAT
R2 NUMBER

ntfd_spectrum_PK (ntfd_fragment_id)

chromatogram

P * chromatogram_id UNKNOWN
time_acquired TIMESTAMP
machine VARCHAR2 (256)
ms_method VARCHAR2 (256)
chrom_method VARCHAR2 (256)
operator VARCHAR2 (255)
time_added TIMESTAMP
proprietary_path VARCHAR2
netcdf_path VARCHAR2
metabolitedetector_path VARCHAR2
proprietary_md5 VARCHAR2
netcdf_md5 VARCHAR2
metabolitedetector_md5 VARCHAR2

chromatogram_id (chromatogram_id)

library

P * library_id UNKNOWN
library VARCHAR2
time_added TIMESTAMP

library_name_PK (library_id)

compound_to_library

F * compound_id INTEGER
F * library_id UNKNOWN

organism

P * organism_id UNKNOWN
organism_text VARCHAR2 (256)
organism_kegg VARCHAR2 (6)

organism_id (organism_id)

organism_text_UN (organism_text)

strain

P * strain_id UNKNOWN
strain_name VARCHAR2 (255)

F * organism_id UNKNOWN
sample_name_abbreviation VARCHAR2 (5)

strain_PK (strain_id)

tracer_label

* labeled_atom_id INTEGER
labeled_atom_text VARCHAR2
label_element VARCHAR2 (2)

F * tracer_id UNKNOWN

tracer

P * tracer_id UNKNOWN
tracer_name VARCHAR2 (255)
mass_increment INTEGER

tracers_PK (tracer_id)

bio_sample_type

P * bio_sample_type_id UNKNOWN
U bio_sample_type_text VARCHAR2 (255)

sample_type_id (bio_sample_type_id)
sample_type_text (bio_sample_type_text)

mass_isotopomer

F * ntfd_fragment_id UNKNOWN
mz_increment INTEGER
relative_abundance FLOAT
relative_abundance_confidence FLOAT

ntfd_experiment

P * ntfd_experiment_id UNKNOWN
F * experiment_id INTEGER

ntfd_experiment_PK (ntfd_experiment_id)

ntfd_compound

P * ntfd_compound_id DATE
F * ntfd_experiment_id UNKNOWN

RI NUMBER
RT NUMBER

F * bestmatch_compound_id INTEGER
bestmatch_score FLOAT

ntfd_fragmentv1_PK (ntfd_compound_id)

sample_group_tracer

F * tracer_id UNKNOWN
relative_tracer_amount FLOAT

F * sample_group INTEGER

spectrum

P * spectrum_id UNKNOWN
F * chromatogram_id UNKNOWN

ri NUMBER
rt NUMBER
resolution NUMBER

F * spectrum_origin_id UNKNOWN
* time_added TIMESTAMP

bpi NUMBER
tic NUMBER
archived INTEGER

spectrum_id (spectrum_id)

spectrum_index (chromatogram_id)

spectrum_origin

P * spectrum_origin_id UNKNOWN
spectrum_origin_text VARCHAR2 (255)

spectrum_origin_PK (spectrum_origin_id)

spectral_peak

F * spectrum_id UNKNOWN
mz NUMBER
intensity NUMBER
relative_intensity NUMBER

spectral_peak_index (spectrum_id)

peak_integrals

F * spectrum_id UNKNOWN
F * quantification_ion_id UNKNOWN

peak_integral NUMBER

quantification_ions

P * quantification_ion_id UNKNOWN
F * spectrum_id UNKNOWN

mz NUMBER
auto CHAR (1)

quantification_ion_id (quantification_ion_id)

spectral_fragment

F * spectrum_id UNKNOWN
mz NUMBER

compound_synonyms

P * synonym_id UNKNOWN
synonym_text CLOB

F * compound_id INTEGER

compound_synonyms_PK (synonym_id)

compound_synonyms_index (synonym_id)

spectrum_annotation

P * id INTEGER
F * compound_id INTEGER

mz FLOAT
formula VARCHAR2
inchi CLOB
comment CLOB
mass_isotopomer_max SMALLINT
archived INTEGER
confirmed_by_labeling CHAR (1)

spectrum_annotation_PK (id)

compound_sif

PF * compound_id INTEGER
compound_sif CLOB

compound_sif_PK (compound_id)

lib_quantification_ions

F * compound_id INTEGER
quantification_ion NUMBER

compound_structure

PF * compound_id INTEGER
structure_svg CLOB

compound_structure_PK (compound_id)

compound_spectrum

P * id INTEGER
F * spectrum_id UNKNOWN
F * compound_id INTEGER

identification_score NUMBER
authentic CHAR (1)
user_comment CLOB

compound_spectrum_PK (id)

compound_spectrum_index (spectrum_id, compound_id)

compound_feature

F * compound_id INTEGER
feature VARCHAR2
value VARCHAR2

compound_feature_index (compound_id, feature)

compound_derivatization

P * id INTEGER
F * precursor_compound INTEGER
F * product_compound INTEGER
F * derivatization_reagent_id UNKNOWN

compound_derivatization_PK (id)

derivatization_reagent

P * reagent_id UNKNOWN
reagent_name VARCHAR2
added_group VARCHAR2

derivatization_reagent_PK (reagent_id)

compound

P * compound_id INTEGER
compound_name CLOB
sum_formula VARCHAR2 (256)
nominal_mass NUMBER
molecular_weight NUMBER
monoisotopic_mass NUMBER
ref_cas_id VARCHAR2 (12)
ref_pubchem_id VARCHAR2 (16)
ref_hmdb_id VARCHAR2 (16)
ref_kegg_id VARCHAR2 (16)
ref_nist_id VARCHAR2 (16)
ref_metlin_id VARCHAR2 (16)

* time_added TIMESTAMP
* time_lastmod TIMESTAMP

user_comment CLOB
script_comment CLOB
checked CHAR (1)
ref_chemspider_id VARCHAR2
ref_biocyc_id VARCHAR2 (10)
ref_chebi_id VARCHAR2
archived INTEGER

compound_id (compound_id)

experiment

P * experiment_id INTEGER
F * project_id UNKNOWN

title VARCHAR2 (255)
short_description CLOB
description CLOB
date DATE

F * experimenter UNKNOWN
* time_added TIMESTAMP
* time_lastmod TIMESTAMP

archived INTEGER

experiment_id (experiment_id)

project

P * project_id UNKNOWN
project_name VARCHAR2

* time_added TIMESTAMP
* time_lastmod TIMESTAMP

project_PK (project_id)

sample_group

P * sample_group_id INTEGER
name VARCHAR2 (255)
description CLOB

F * bio_sample_type_id UNKNOWN
F * strain_id UNKNOWN
F * experiment_id INTEGER

is_global CHAR (1)
regex VARCHAR2

sample_group_PK (sample_group_id)

chromatogram_sample_group

F * chromatogram_id UNKNOWN
F * sample_group_id INTEGER
F * experiment_experiment_id INTEGER

id INTEGER

ntfd_sample_groups

P * ntfd_groups_id INTEGER
F * labelfree_group INTEGER
F * label_group INTEGER

ntfd_sample_groups_PK (ntfd_groups_id)

people

P * user_id UNKNOWN
user_name VARCHAR2 (255)
full_name VARCHAR2 (255)
sample_name_abbreviation VARCHAR2 (5)
affiliation VARCHAR2 (255)

user_id (user_id)

user_name (user_name)

Figure 54: MetaboBase database model. olive: tables mainly for compound library; pink: tables mainly for experiment metadata; light
green: tables for stable isotope labeling experiments; dark green: tables for biological materials.
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Web interface The web front-end of MetaboBase is running on an Apache web server.

It is written in HTML5 and connected to the PostgreSQL database via a python back-end

and asynchronous JavaScript and JSON (JavaScript Object Notation) (AJAJ).

Data transfer After a measurement on our GC-MS instruments is finished, the data is

converted from the proprietary “.D” format to the open netCDF [269,270]5 format using

ChemStation macros (section B.1). By a gcmspreprocessing tool written in C++ by

Dr. Karsten Hiller, meta-information on the data acquisition parameters is added to the data

files before they are further converted to the MetaboliteDetector data format.

Data import The data import into MetaboBase is performed by a Perl script. This

script is run every few hours as a Cron job and adds all new measurements to the database.

Molecular structures Molecular structures displayed in the compound library are generated

from InChI identifiers in an automated manner using Open Babel. [271] The structures are

stored in the database as scalable vector graphics (SVG) and served to the front-end by a

PHP script.

Compound library export Compound libraries are exported by a dedicated C++ program

which is based on MetaboliteDetector source code. It is run daily or on user request to

generate libraries for different chemical derivatization methods.

Molecular graphs Molecular structures for display to select retained atoms in mass spec-

trometric fragments (see above) are generated by a dedicated C++ program. This program

uses the InChI library [260] to extract atom numbers and connectivity from the stored InChI

identifiers and generates a molecular graph in the simple interaction file (SIF) format6 which

is subsequently stored in the database.

3.6.4 Summary

MetaboBase allows for easy-to-use and yet sophisticated metabolomics data management.

Its strength is the profound tailor-made integration with the proprietary data acquisition

software as well as our in-house data analysis applications. This project is still ongoing

to further improve the increasingly important data management infrastructure. Possible

future applications can be meta-analyses across several data sets, to for example analyze the

distribution of specific metabolites across different species or to detect metabolic signatures

5http://www.unidata.ucar.edu/packages/netcdf/index.html
6http://wiki.cytoscape.org/Cytoscape_User_Manual/Network_Formats
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of different cell types or perturbations. Furthermore, data processing capabilities could be

included for simple web-based data analysis as shown by others. [272]
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In this work I presented novel tools and workflows for metabolomics data analysis (section 3.4),

especially for data derived from stable isotope labeling experiments (section 3.1, 3.2). I

developed MIA, added new features to MetaboliteDetector and NTFD, and contributed

to the development of ICBM and FFC (section 3.3, section A.1). I applied these tools

and showed how they can be well combined to gain insights into biological phenomena

(section 3.5). Furthermore, I developed MetaboBase, an integrated metabolomics data

management platform (section 3.6).

To my knowledge, MIA is the first tool, that allows not only for the non-targeted detection

and quantification of stable isotope labeled compounds, but also for subsequent data analysis.

MIA allows for the non-targeted detection of metabolic flux changes based on MID variation

analysis and aids compound identification by generating MID similarity-based compound

networks.

Applying MIA for the analysis of cancer cell metabolism enabled me to detect hypoxia-

induced metabolic flux changes and a non-linear change from glucose to glutamine as main

substrate for fatty acid biosynthesis. I illustrated how non-targeted stable isotope labeling

can be a valuable tool for initial hypothesis generation in the study of metabolism. I was able

to detect unknown and unanticipated metabolites, and MIA provided vital information for

their identification. I detected several N -carboxy derivatives of amine metabolites. Following

these results I showed that under hypoxia, cancer cells exhibit increased BCAA uptake and

catabolism. I found that the propionyl-CoA generated during catabolism of isoleucine and

valine give rise to odd-chain fatty acids. I showed that A549 cells produce N -acetylaspartic

acid and provided evidence that it is not only involved in neuronal-oligodendrocytic acetyl-

shuttling, but also in intracellular mitochondrial-cytosolic transport in cancer cells. This

pathway was not known to exist in cancer cells. It sheds new light on the recent findings on

acetate utilization in cancer cells and may provide further drug targets.

MetaboBase, the metabolomics data management platform I designed, helped the

metabolomics research group members to manage and retrieve their large amount of GC-MS

data. This system keeps historic data together with experimental meta-data in a defined

machine-readable format. These data are now more available for further analyses.

This work illustrates how non-targeted analysis of stable isotope labeling can be a valuable

tool for initial hypothesis generation in the study of metabolism. The detected unanticipated
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metabolites showed again that knowledge on species and cell type-specific metabolism is still

incomplete and non-targeted approaches are necessary. There is for example no information on

the role of odd-chain fatty acids in human metabolism available. It remains to be investigated

whether they arise only due to unspecific enzymes, or whether they are specifically produced,

for example to sequester toxic propionyl-CoA.

The developed data analysis tools like MIA can be applied in further studies, also in

contexts other than cancer metabolism. The field of non-targeted stable isotope labeling

analysis is very young, but seems to have great potential. Complementary approaches based

on LC-MS could provide further interesting insights into areas of metabolism which are not

accessible by GC-MS. Most tools in the field of non-targeted stable isotope labeling analysis

have only been developed over the recent years and major progress is to be expected in the

coming years.
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Journal of Chromatography A, 1389, pp 112-9

doi: 10.1016/j.chroma.2015.02.025

Contributions

• Conducting experiments

• Data analysis

• Computational implementation

• Writing and revising the initial manuscript and creating figures

143

http://dx.doi.org/10.1016/j.chroma.2015.02.025




A.7 Isotopologue ratio normalization for non-targeted metabolomics

This manuscript has been omitted in the online version of this dissertation.

145





A.8 MIA: Non-targeted mass isotopolome analysis

A.8

Application Note

MIA: Non-targeted mass isotopolome analysis

Manuscript in Preparation

Contributions

• Software design and implementation

• Documentation of the program

• Generation of sample data

• Writing and revising the initial manuscript and creating all figures

147





A.8 MIA: Non-targeted mass isotopolome analysis

This manuscript has been omitted in the online version of this dissertation.

149





A.9 Non-targeted mass-isotopolome analysis

A.9

Article

Manuscript in Preparation

Contributions

• Data analysis

• Conducting some experiments

• Writing and revising the initial manuscript and creating the fig-

ures

151





A.9 Non-targeted mass-isotopolome analysis

This manuscript has been omitted in the online version of this

dissertation.

153





A.10 Non-targeted tracer fate detection

A.10

Book Chapter

Non-targeted tracer fate detection

Weindl D, Wegner A & Hiller K

2015

Submitted to Methods in Enzymology

Contributions

• Joint writing of the manuscript

• Preparing figures

155





A.10 Non-targeted tracer fate detection

This manuscript has been omitted in the online version of this

dissertation.

157





B Miscellaneous

B.1 Chemstation macros

Post-processing macro for HP/Agilent ChemStation for the automated data export in the

AIA/netCDF format and further conversion to the MetaboliteDetector format using an

in-house tool.� �
! Convert .D to netCDF , c o r r e c t date , expor t to Metabo l i t eDe tec to r format

!

! 2013 Danie l Weindl <dan ie l . weindl@uni . lu >

!

Name dw_postprocess

! Convert .D to netCDF , c o r r e c t date , expor t to MD format

Parameter DPath$ , DName$

Local CDFFile$

Local RawDataFullPath$

Local MetaDataFullPath$

Local CDFDir$ ! Where to place netCDF f i l e s

Local MDDir$ ! Where to place MD f i l e s

Local Sample$ ! Sample Name

Local Cmd$ !

Local DblQt$ ! Escapesequence workaround

Local SubDir$ ! Subd i rec to ry f o r netCDF /MD f i l e s e . g . 2012/01_Jan / . . .

Local CDFFullPath$

Local LogFi le$

P r i n t " Handl ing " + DPath$ + DName$

SubDir$ = DPath$ [ 4 : Len ( DPath$ ) ] ! s t r i p "D : \ "

DblQt$ = Chr$ (34)

LogFi le$ = "C : \ gcmspreprocessing \ log . t x t "

CDFDir$ = "D : \ netCDF " + " \ " + SubDir$

MDDir$ = "D : \ Metabo l i teDetec torData " + " \ " + SubDir$
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Sample$ = DName$[ 1 : Len (DName$)−2]

! t a r g e t d i r e c t o r i e s must e x i s t ; must use mkdir wrapper f o r 0 e x i t code , macro

otherwise aborted

DOSRUN "C : \ gcmspreprocessing \md. bat " + DblQt$ + CDFDir$ + DblQt$

DOSRUN "C : \ gcmspreprocessing \md. bat " + DblQt$ + MDDir$ + DblQt$

RawDataFullPath$ = DPath$ + " \ " + DName$ + " \ data .ms"

MetaDataFullPath$ = DPath$ + " \ " + DName$ + " \ acqmeth . t x t "

Local s t a t

s t a t = FILESTAT ( RawDataFullPath$ ) ! check i f f i l e e x i s t s ; on e r r o r a lso

c a l l i n g macro w i l l d ie

I f s t a t [ 7 ] = 0 Then ! not e x i s t s

P r i n t " Data f i l e " + RawDataFullPath$ + " does not e x i s t . "

Return

EndIF

! conver t to CDF

CDFFullPath$ = CDFDir$ + " \ " + Sample$ + " . cd f "

P r i n t "CDF . . . "

HgXlate CDFFullPath$ , RawDataFullPath$

P r i n t "CDF . . . done "

! invoke CDF date c o r r e c t o r and conver te r

Cmd$ = "C : \ gcmspreprocessing \ gcmspreprocessing . bat −c " + DblQt$ +

MetaDataFullPath$ + DblQt$ + " −o " + DblQt$ + MDDir$ + DblQt$ + " − l " +

DblQt$ + LogFi le$ + DblQt$ + " −a " + DblQt$ + MetaDataFullPath$ +

DblQt$ + " " + DblQt$ + CDFFullPath$ + DblQt$

P r i n t Cmd$

DOSRUN Cmd$

Return
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[123] Wiechert W, Möllney M, Petersen S, & de Graaf AA. A universal framework for 13c
metabolic flux analysis. Metab Eng, 2001;3(3):265–283. doi: 10.1006/mben.2001.0188.
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