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Abstract

Increasing access to the Internet is producing profound influence around the World.

More and more people are taking advantage of the Internet to obtain information,

communicate with each other far away and enjoy various recreations. This largely

increased demand for the Internet requires better and more effective models. During

the 1990s, a number of studies show that due to a different nature from telephonic

traffic, in particular a bursty nature, traditional queuing models are not applicable

in modeling of modern traffic. This work presents some alternative rigorous models

that can be used in studying the behavior of the Internet traffic.

In the thesis, we propose several new models to explain bursty nature of network

traffic.

Many practical problems in computer science, natural science and insurance are

highly complex, since they typically involve a huge amount of random factors. Con-

ventional queuing theory cannot handle such problems and the high variance and

long memory features are not yet well understood.

In the first part of our research, we start with investigation of random sum as well

as random product and derive a single path model of network traffic and a multiple

path model of network traffic.

2



In the second part of this thesis, we present a homotopic approach to model network

traffic.
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Preface

The work that follows presents the results of my research in the last four years at the
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In the first two years of my Phd studies, I delved deeper in the convolution problems

in the field of probability theory without apparent relation to network traffic model-

ing. In the studies I introduced a convolution invariant parameter and derived some

properties of random sum.

A fortunate involvement with the research group led by professor U. Sorger provided

my first exposure to network traffic modeling. The classical modeling fails in modeling

network traffic because of the bursty nature of network traffic. To my surprise, in the

light of a multiplicative law derived in the previous work of M. Foued, U. Sorger and

Z. Suchanecki, the convolution invariant parameter hints to a novel way to elaborate

better models of Internet traffic and provides an effective way for analyzing heavy tail

phenomena.

Finally, I built a bridge between the convolution invariant parameter and network

traffic modeling. What’s more, this approach can not only be used in analysis of data

transfer but it can also be used in some other fields, such as financial modeling.
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Chapter 1

Introduction

1.1 Background

Internet has nowadays a profound impact on the lives of everyone and provides var-

ious services related to various different fields. Internet provides information in an

easy and quick manner that is updated by second, which plays an important role in

everything from social networking to worldwide stocks and currencies. Secondly, it

makes people become more and more connected to each other, even to the ones who

are in another city or even halfway across the world. Meanwhile, it changes the way

of business and entertainment, for instance, it allows people to have meetings per

Skype, watch television programs on demand and play games on line.

In the evolution of Internet there are at least four trends for the last two decades [1].

-Greatly increasing Internet users

The number of internet users has been increasing exponentially and reached three

billion by the end of 2014, according to the United Nations’ telecommunications agency.
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-More and more widely used wireless and mobile communication

The International Telecommunication Union disclosed in 2014 that the number of

mobile-cellular subscriptions would grow to almost seven billion within the year of

2014 and wireless and mobile communication finds an increasingly wide utilization

in all fields.

-Continuously evolving devices

New Web-friendly devices have been emerging in an endless flow, such as smartphone,

e-tablet, Netbook, eReader, etc. Each new device contributes further network traffic.

-Multiple services by using a common network infrastructure

Cloud computing has been growing in popularity and the basic concepts of cloud com-

puting are common services and common infrastructure.

All these trends lead to a huge amount of internet traffic.

Circuit Switching and Packet Switching Networks

Circuit switching is a conventional technology of implementing a telecommunications

network, in which two points establish a dedicated line (circuit) through the network

before the points may communicate. Early telephone exchanges are a classic example

of circuit switching. In circuit switching, a physical path from source to destination

is reserved for users as long as being used. The circuit functions as if the points

were physically integrated as an electrical circuit. Circuit switching can be relatively

inefficient because capacity is guaranteed on connections which are set up not in

continuous use, but rather momentarily. However, the connection is immediately
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available while established [2].

Packet switching is by contrast a technology that has long been used to send data

from one computer to another. It groups all transmitted data into individual and suit-

ably sized packets. When traversing network adapters, switches, routers, and other

points, packets are buffered and queued, resulting in variable delay and throughput

depending on the network’s capacity and the traffic load on the network [2].

In circuit switching network, the Erlang model is proved to be effective. However,

applying the traditional telephonic traffic model to packet switching network, such as

the Internet, fails due to its different nature [3,4].

“Normal science possesses a built-in mechanism that ensures a relax-

ation of restriction that bound research whenever the paradigm from which

they derive ceases to function effectively. At that point scientist begin to

behave differently and the nature of their research problems changes.”

x Thomas Samuel Kuhn

Modeling of packets switched network is not a trivial task. In order to elaborator

Internet model in a more accurate way, we must consider some certain network con-

straints, such as network topology, device, algorithms, stochastic properties of data

packets,etc. [3].

Packet switched networks have been studied for over 40 years [1]. During this time

many models have already been proposed. Early attempts focus on Markovian mod-

els, such as the Markov-Modulated Poisson Process [5,6]. In recent analyses of traffic

measurements, non-Markovian effects have been observed in CCS7 signaling traf-

fic [7] and variable bit-rate video [8–11], Ethernet LAN traffic [12–14] ATM cell traf-
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fic [15], MAN traffic [16] and WAN traffic [17]. In the work [12] self-similarity is

claimed to be one of the most characteristic features of both Ethernet traffic [12] and

the World Wide Web [14].

Recent measurements of traditional telephony traffic have shown signs of heavy-

tailed delay times [18, 19] and many non-standard characteristics, such as heavy

tail property [20] and long range dependence [21], have been carefully studied. In

[4, 22, 23] a log-normal model is proposed to study the observed “self similarity” and

“bursty” features. Recently it is demonstrated [24,25] that LogPH model achieves the

greater accuracy than the other heavy tail models.

1.2 Problem Statement and Methodology

In the last 20 years computer networks have been intensively studied. The objec-

tive was to understand the nature of the Internet, describe the behavior of network

traffic and provide a comparatively accurate estimation of traffic variables. In cir-

cuit switched networks, Erlang model is proved to be a powerful tool. However, con-

ventional queuing models are not suitable for modeling packets switching network

because of their high complexity and different nature, meaning that the packets ar-

rival process is no longer poissonian, the inter delay times are not exponentially dis-

tributed. Under this circumstance, new mathematical tools are required.

In the recent studies of network measurements, bursty nature (high variance) has

been observed, and the self-similarity model has therefore been proposed. However,

the basic mechanism behind this model is unclear. Moreover, it provides a very lim-

ited information about probabilistic characteristics of the considered processes and
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consequently, they are unconvincing and unreliable [4].

In this thesis we present novel ways to model network traffic and explain the mathe-

matical laws underlying the phenomenon of heavy tail.

This thesis is divided into two parts.

We start in the first part with the study of a powerful mathematical tool, the random

sum, and introduce a convolution invariant parameter which plays a central role in

our modeling. By applying this convolution invariant parameter, we derive a single

path model and a multiple path model and illustrate the bursty nature of internet

traffic.

The second part focuses on positive correlation structure of network traffic and presents

a homotopic approach to model network traffic.

Random Sum Models of Network Traffic

“Sharpening your axe will not delay your job of cutting wood.”

“Good tools are prerequisite to the successful execution of a job”

x Old Chinese proverbs

In order to analyze Internet traffic, we should devote some time to studying in depth

a powerful mathematical tool: random sum.

The random sum originated from the famous Cramï¿œr–Lundberg model in insur-

ance Mathematics:

An insurance company experiences two opposing cash flows: incoming cash premiums
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and outgoing claims. So for the insurer, the risk process is of the form

U(t) = u+ ct− S(t), S(t) =

N(t)∑
i=1

Xi, t ≥ 0 (1.1)

where u stands for the initial capital, c for the incoming premium rate and the to-

tal claim amount S(t) consists of a random sum of independent and identically dis-

tributed claims Xi. Here N(t) stands for the number of claims until time t. In (1.1)

both N(t) and Xi are random variables, so this term is called random sum.

Next we will explain the reasons why we choose this random sum to model network

traffic.

In view of the high complexity of Internet, many characteristics in the Internet anal-

ysis are highly random and unpredictable. On the other hand, many measurements

in internet, such as packets count, packets sizes, or arrival time, are accumulative.

Therefore, many practical problems can be formulated in the form of a random sum-

mation of random variables. Hence, random sum is a useful tool for understanding

the nature of the Internet and provides a reasonable description of its behavior.

From the statistics point of view, network traffic exhibits often high variance, there-

fore, packets arrival process is not poissonian , inter delay times are not exponential

and standard models are not applicable. Under such circumstances, random sum as

well as its variant, random product, provides a natural and accurate way of network

traffic modeling.
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A homotopic approach of modeling network traffic

Internet traffic exhibits a strong positive correlation [26]. However, most models do

not describe the positive correlation structure of the process, and they are therefore

not applicable for modeling network traffic with high correlation structure. In this

thesis we present a homotopic approach to handle this time-scale-dependent correla-

tion structure.

Homotopy is a topological concept which describes a continuous deformation between

two objects. In mathematical language, a homotopy is a continuous function H :

[0, 1]× R→ C of two given continuous functions f1, f2 : R→ C such that

H(0, t) = f1(t)

H(1, t) = f2(t).

Consider the sum Z = X + Y of two identically distributed random variables with

common distribution F . If X and Y are independent, then the distribution of Z

FZ(x) = F ∗2(x).

Here ∗ denotes convolution of distributions.

If X and Y are strongly related, which implies Z = 2X, then

FZ(x) = F (
x

2
).

We assume that there is a continuous deformation linking the distributions F ∗2(x)
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and F (x
2
). As distribution is too restrictive, we turn to characteristic function. In

mathematics a valid characteristic function of a random variable is positive definite,

and in practice only first and second statistics are considered, so our task boils down

to construction of a continuous function linking dependence and independence (ho-

motopy) without losing positive definiteness.

1.3 Outline

This dissertation is organized as follows.

In chapter 2 we present some basic knowledge of networks traffic modeling.

In chapter 3 we study some mathematical tools, such random sum and convolution

invariant parameter, in details and reveal a relation between convolution invariant

parameter and random sum.

Random sum and convolution are strongly related. Here we reveal an important

property of random sum and failure rate, that is, failure rate limit does not vary

under convolution, and consequently under random sum. Based on this property,

failure rate limit can be considered as a parameter invariant under convolution and

random sum.

In chapter 4 we present a single-path random sum model of inter delay time and

throughput traffic.

We start with inter delay times. The distribution of inter delay times can be expressed

by a power-law function (for example, convex combination of Erlang distributions or

Gamma distributions). Second, we derive a duality relation between inter delay times

12



and throughput traffic, and then, by applying this relation, we study the probabilistic

characteristics of throughput traffic.

In chapter 6 we present a homotopic approach to model network traffic.

We start with investigation of dependence of random variables and demonstrate that

it is reasonable to characterize dependence by applying a homotopic method. We

present two approaches to construct homotopy with positive definiteness preserved.
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Chapter 2

Fundamentals

2.1 Introduction of Network Traffic Modeling

In general, the objective of network traffic modeling is to provide simple but accu-

rate methods to analyze network for a variety of purposes, such as network design,

network management, evaluation of novel services and improvement of protocols. In

mathematical terms, the aim of traffic modeling is to find a time series measured at

a single location to describe the behavior of network and study the traffic volume.

However, due to the extremely dynamic behavior of modern traffic and huge amount

of data flows, traditional analysis methods, such as collecting, storing and using the

immense amount of information on all end-to-end traffic streams between all sources

and destinations, do not apply. A wide range of problems -such as traffic engineering,

traffic matrix estimation, anomaly detection, attack detection and capacity planning-

demand a more sophisticated analysis. Moreover, traffic information is increasing

continuously with exponential growth of internet usage. In this situation, for the ef-

ficient utilization of network resources, network engineers must focus on a number of
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manageable traffic parameters without paying attention to more traffic information

than is necessary [1,27].

Network modeling involves three steps: model selection, parameter estimation and

statistical test.

Model Selection

Model selection determines the basic principle that explains the observations. A good

stochastic model of network traffic is an effective tool for estimating probability dis-

tributions of traffic variables, it balances simplicity and accuracy. A more complex

model fits better the data but additional parameters might not provide useful infor-

mation. In [1] Timothy Neame pointed out that a useful model of network traffic

should satisfy the following criteria:

1. It is defined by a small number of parameters.

2. If these parameters are fitted using measurable statistics of an actual traffic

stream the following will be achieved:

(a) the first and second order statistics including the auto covariance function

of the stochastic process (the model) will match those of the actual traffic

stream, and

(b) if fed through a single server queue (SSQ), performance results for the

model will accurately predict those of the real traffic stream fed into an

identical SSQ. This must be true for a wide range of buffer sizes as well as

for a wide range of service rates.

3. It is amenable to analysis.
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If the process is suited to the character of the traffic that is being modeled, this will

give maximum confidence in its usefulness.

Parameter Estimation

Parameter estimation is critical in accurately describing behavior of network traffic

through stochastic models. Parameters are estimated based on a set of statistics that

are measured or calculated from observed data. The most commonly used statistics

are the mean and variance.

Statistical Test

A statistical hypothesis test provides a method of statistical inference using data from

observations to predict the behavior of network traffic.

In brief, a good model should be simple but captures the most relevant statistics.

2.2 Measurement of Network Traffic

The measuring and analyzing of real network traffic provide us with a very important

knowledge about computer network states. In analyzing process, statistical mathe-

matical tools are crucial for accuracy of a derived mathematical model, described by

stochastic parameters for packet size and inter-arrival time [28]. Using this sim-

ulation model, we want to acquire information about telecommunication network’s

performances for:

• improvement of the current network,

• bottleneck searching,
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• building and development of new network devices and protocols,

• and for ensuring quality of service (QoS) for real-time streaming multimedia

applications.

The simplest tools that measure and capture the packets of network traffic are packet

sniffers. Packet sniffers, also known as protocol or network analyzers, are tools that

monitor and capture network traffic with all content of network traffic. We can use

sniffers to obtain the main information about network traffic, such as packet size,

inter-arrival time and the type and structure of IP protocol. Sniffers have become

very important and indispensable tools for network administrators [29].

An analytical description of network traffic does not exist, because we cannot predict

the size and arrival time of the next packet. Therefore, we can only describe network

traffic as a stochastic process. Hence, we have tried to describe these two stochastic

processes, arrival time and packet size [29].

2.3 History of Network Traffic Modeling

“Die Geschichte soll nicht das Gedï¿œchtnis beschweren, sondern den

Verstand erleuchten.” (The history should not burden the memory, but

enlighten the brain)

x Gotthold Ephraim Lessing

In this section we review the history of network traffic modeling.
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2.3.1 Markovian Models

Markovian model was the first proposed model of traffic process [30,31]. It is demon-

strated that point processes with certain "bursty" features can be qualitatively mod-

eled by the Markovian arrival process in [32]. The Markovian arrival process is pro-

posed to model superposed ATM cell streams [33]. A Markov modulated character-

ization of packetized voice and data traffic and related statistical multiplexer per-

formance has been studied in [5]. The Markov-Modulated Poisson Process (MMPP)

and the Markov-Modulated Fluid (MMF) process are developed as simple and accu-

rate analytical techniques to determine the loss probability at an access node to an

Asynchronous Transfer Mode (ATM) network [34]. A class of versatile discrete-time

Markovian arrival processes is introduced to model b-ISDN traffic [35].

A Markovian model is a mathematical model for the time between job arrivals to a

system. The simplest case is a Poisson model where the time between each arrival is

exponentially distributed.

Markovian models are simple to calculate. However, they are not adequate for mod-

eling of network traffic. In particular, Markovian models cannot exhibit strong cor-

relations structure in an arrival process [1]. Several techniques have been proposed

to establish models which are in some sense Markovian, but which can capture the

more complex properties of real traffic [36–38].

2.3.2 Self-Similarity and Long Range Dependence Models

Self-similar models are the mostly common used models of aggregated traffic process.

18



Traditional traffic modeling has been based on the assumption of independence be-

tween the random variables that describe arrivals to a network. The fundamental

reason for this assumption has been the analytical tractability. However, high-speed

network traffic is characterized by a high “burstiness” and a strong positive corre-

lation [26] and non-Markovian effects, such as high variance and long range depen-

dence, have been observed in a wide variety of traffic sources [7–11, 13–19, 39–43],

self-similarity is therefore widely perceived as a statistical feature of network traffic.

Self similar model is regarded as a rigorous model of Ethernet local area network

(LAN) traffic and has serious implications for the design, control, and analysis of

high-speed, cell-based networks. In the following the common used definition of self-

similarity is given [9,12,13].

A self-similar process is the one for which aggregation has no impact on the nature

of the process and is invariant in distribution at different degrees of magnification, or

different scales on a dimension. If we take a stationary process Xt and denote by X(m)
t

a new series obtained by averaging the original one over the non overlapping blocks,

so called aggregated process

X
(m)
t =

1

m
(Xtm−m+1 + . . .+Xtm) ,

then Xt is strictly self-similar with parameter H if Xt and 1
m1−HX

(m)
t are identically

distributed. Here H is called Hurst parameter.

A less strict definition is that of second-order self-similarity. The process {Xt} is
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exactly second-order self-similar if

r(m)(k) = r(k)m2(H−1), 0.5 < H < 1,

where

r(k) = Cov (Xt, Xt+k) = E [(Xt − EXt) E (Xt+k − EXt+k)]

and

r(m)(k) = Cov
(
X

(m)
t , X

(m)
t+k

)
= E

[(
X

(m)
t − EX(m)

t

)
E
(
X

(m)
t+k − EX

(m)
t+k

)]
.

Here E denotes the expectation and Car the covariance

A process Xt is asymptotically second-order self-similar if

Var
[
X

(m)
t

]
∼ cm2(H−1) (2.1)

where Var denotes the variance.

Here (2.1) is the working definition of high variance.

A sufficient condition for second-order self-similarity is that the auto-correlation func-

tion (ACF) is

r(k) =
1

2

[
(k + 1)2H − 2k2H + (k − 1)2H

]
.

If H = 1
2
, this process is uncorrelated r(k) = 0.

A process {Xt}t is long range dependent (LRD) if its autocorrelation function r(k)

decays hyperbolically

r(k) ∼ k2(H−1). (2.2)
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In the self-similar model, changes of the time scale do not affect the distributions of

the observed process. However, Internet traffic presents burstiness in a statistical

sense only over several time scales [3], and hence self-similar model can not capture

the essential nature of network traffic.

2.3.3 Autoregressive Integrated Moving Average Models

Autoregressive Integrated Moving Average (ARIMA) process is used to model traffic

process.

In statistics and econometrics, and in particular in time series analysis, Autoregres-

sive Integrated Moving Average (ARIMA) models of order (p; d; q) are generalization of

the ARMA(p; q) models and the most general class of models for forecasting a time se-

ries. These models apply to some cases where data show evidence of non-stationarity

and can be made to be “stationary” by differencing. An ARIMA process is such a

stochastic process {Xt}t∈N such that

(
1−

p∑
i=1

φiL
i

)
(1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt

where L denotes a lag operator LXt = Xt−1, εt denote the white noises, and φi, θi

denote the parameters.

Factorizing the operator-valued polynomial 1−
∑p

i=1 φiL
i we obtain

p∏
i=1

(1− λiL) (1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt
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where λi are the roots of the polynomial

1−
p∑
i=1

φiλ
i = 0.

Finally

(1− L) dXt =

p∏
i=1

(1− λiL)−1

(
1 +

q∑
i=1

θiL
i

)
εt .

Let us consider, as a particular case, the model ARIMA (1, 1, 1)

(1− φL) (1− L)Xt = (1− θL) εt .

then

(1− L)Xt = (1− φL)−1 εt − θ (1− φL)−1 εt−1

Let

Yt = (1− φL)−1 εt,

then

Yt − φYt−1 = εt (2.3)

and

Xt −Xt−1 = Yt − θYt−1. (2.4)

from (2.3)

Yt =
t∑

k=1

εkφ
t−k (2.5)
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Combining (2.4) and (2.5) we obtain finally

Xt = X1 +
t∑
i=2

(Yi − θYi−1) .

The paper [44] presents a theoretical basis for modeling univariate traffic condition

data streams as seasonal ARIMA processes. The thesis [45] contributes a specific

application of time series outlier modeling theory to vehicular traffic flow data. This

outlier detection and modeling procedure uncovered a common ARIMA model form

among the seasonally stationary series.

ARIMA model is short range dependent model if d takes only integer values. However,

it can be extended to a long range dependent form by considering a fractional value

of d which forms the FARIMA model.

2.3.4 Fractional Autoregressive Integrated Moving Average Mod-

els

The FARIMA process is selected as a model for inter arrival times instead of traffic

process [26].

FARIMA processes are the natural generalizations of standard ARIMA (p,d,q) pro-

cesses when the degree of differencing d is allowed to take non-integer values. The

process is defined as:

(
1−

p∑
i=1

φiL
i

)
(1− L)dXt =

(
1 +

q∑
i=1

θiL
i

)
εt
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with 0 < d < 0.5.

A FARIMA(0,d,0) process is a stationary process with autocorrelation function [46]

r(k) =
Γ(1− d)Γ(k + d)

Γ(d)Γ(k + 1− d)
∼ Γ(1− d)

Γ(d)
k2d−1.

If the Hurst parameter H = d+ 0.5, this is a long range dependent process.

The advantage of FARIMA models is that it can capture both long range dependent

and short range dependent correlation structure. However, generation of FARIMA

process is in general slower than for other long range dependent source type [1]. A

faster generation of FARIMA process is proposed in [26]. A variety of FARIMA process

were used to model VBR video traffic [10], to analyze the queueing performance and

to provide the input stream to permit the evaluation of different techniques [47–49].

2.3.5 Fractional Brownian Motion

Fractional Brownian motion (FBM) is a generalization of Brownian motion. Unlike

classical brownian motion, the increments of fractional brownian motion need not be

independent. The fractional brownian motion is a continuous time Gaussian process

BH(t) with zero mean and covariance function of the form

E [BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)

where H is called Hurst index.

Definition 2.1. A process BH(t) is called Fractional Brownian Motion with Hurst

24



parameter 0 < H < 1 if and only if it is stationary increment self-similar Gaussian

process.

The value of H determines what kind of process the FBM is:

• if H = 1/2 then the process is in fact a Brownian motion or Wiener process;

• if H > 1/2 then the increments of the process are positively correlated;

• if H < 1/2 then the increments of the process are negatively correlated.

An abstract model based on fractional brownian motion is presented in [50]. This

model gives an accurate prediction if a huge amount of ON/OFF sources with heavy

tails are superposed [51]. In this same work, the authors also show a relationship

between the queueing performance of this limiting, LRD Gaussian process and that

of fractional Brownian motion. It was shown in [52] that fractional Brownian motion

models the arrivals of network packets better than classical models (at least for some

types of traffic), but is parsimonious in the sense that only few parameters describe

its statistical behavior. In [53] fractional Brownian motion model of data network

traffic is constructed at the application level to formulate some new and relevant re-

search problems about LRD and head towards a further understanding of the users’

influence upon the highly complex nature of packet flows in large scale data networks.

This FBM process can be considered as a limiting case for many other long range de-

pendent models [1]. Arrival process and ON/OFF source model which allows for long

packet trains and long inter-train distances converge to a multi-dimensional reflected

fractional Brownian motion [54,55].
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Fractional Brownian motion is the only self-similar Gaussian process. For this reason

it cannot explain the essential nature of Internet traffic.

2.3.6 Poisson Pareto Burst Process

Poisson Pareto burst process is an effective model for bursty traffic types [1]. In the

PPBP, the burst durations ti are independent and identically distributed Pareto ran-

dom variables with distribution function

P [ti < x] = 1−
(x
δ

)−γ
, x > δ.

The burst durations ti, are independent and identically distributed Pareto random

variables, having the same distribution as random variable.

The Poisson Pareto burst process is a simple but accurate model for bursty traffic

types. It appears to reflect the basic properties of at least some aggregated data traf-

fic. It can be used to draw some interesting conclusions about the possible evolution

of traffic loads on data networks [1].

Poisson Pareto Burst model is a special case of the model proposed in this thesis.

In chapter 5 we will explain the hidden mechanism leading to Poisson Pareto Burst

model.

2.3.7 log-Normal Models

Log-normal model is a model for inter delay times.
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In traffic modeling a simple multiplicative law plays a fundamental role and provides

an accurate way to model the underlying structure of network time series. This mul-

tiplicative law was introduced in [4, 22, 23]. It leads to log-normal distributions and

explains self-similar-like behavior of some traffic variables.

Consider a chain of routers R1, R2, . . . , RN . Through this chain two consecutive pack-

ets are sent from a source to a destination, with initial inter delay time τ0, which can

be understood as time intervals between two considered packets. After passing the

n-th router, the inter delay time between those two packets changes to τn, influenced

by the lateral traffic. The transverse traffic on each router can be expressed by the

random variables ξk. Let τn denote the inter delay time between those two test pack-

ets after passing n-th router and ξn represent the lateral traffic traversing on the n-th

router. Then

τn+1 = τ0

n∏
i=1

(ξi + 1) .

This property is called multiplicative law. Further we can conclude that the inter

delay times τn are asymptotically log-normally distributed.

This multiplicative law can be considered as a theoretical principle in network mod-

eling, and it is the base of multiple path model of network traffic presented in chapter

5.

2.3.8 LogPH Models

In the recent years, a new class of distributions, namely LogPH distributions, has

been introduced for modeling heavy tails in traffic sources for network performance

evaluation. It was first proposed in [56] to model Wi-Fi network traffic by using
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LogPH distributions. A detailed mathematical treatment of LogPH can be found

in [24].

Definition 2.2. A LogPH random variable Y is a random variable which can be

expressed in the form Y = eX where X is a random variable with distribution con-

structed by a convolution of exponential distributions.

The studies of LogPH Network traffic modeling are empirically established, based on

two data sets: WWW file size traces by Crovella in 1995 and resent data set of file

sizes from the mobile web [25]. By comparison of the LogPH model with various other

models like Pareto, Weibull, LogNormal and Log-t model, the authors demonstrate

that LogPH fits the best to the real-world network traffic trace and provides more

accurate results in network traffic prediction than all these models.

The LogPH model is a special case of the multiple path model presented in chapter 5

and it can be applied to single path routing network. We will provide in chapter 5 a

multiple path model to explain the basic mechanism leading to this model. And we

will demonstrate that this multiple path model can deal with both single path routing

network and multiple path routing network.

Summary

In this chapter we present some basic knowledge of network traffic and review the

history of network traffic modeling.

Markovian models are the first proposed models. They are simple to calculate, but

they do not capture the strong correlation feature of network traffic.
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Self-similarity models seem to provide a better prediction, but the basic mechanism

leading to this model is unclear.

Autoregressive Integrated Moving Average models handle only short range depen-

dence.

Fractional Autoregressive Integrated Moving Average models can capture both short

range dependence and long range dependence. However, generation of FARIMA pro-

cess is in general slower than for other long range dependent process.

The Fractional Brownian Motion can be considered as a limiting case for many other

long range dependent models.

The Poisson Pareto Burst Process model is a rigorous model and is a special case of

the model proposed in this thesis.

The multiplicative law, which leads to log-normal model, can be considered as a theo-

retical principle in network modeling, and it is the base of the multiple path model of

network traffic in this thesis.

The LogPH model is experimentally proved to be a better model than the other heavy-

tailed models. However, it lacks the mathematical base.
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Chapter 3

A Convolution Invariant Parameter

Establishment of a stochastic model of network traffic can not get away from set-

tings of parameters, and therefore the existence and rationality of parameters are

essential. For most parameters in stochastic models, such as mean and variance, the

existence and rationality are ensured by integrability or summability.

In this chapter we present a convolution invariant parameter, the existence and ra-

tionality of which, unlike the traditional parameters, are not ensured by integrability

or summability, but by the existence of failure rate limit.

Using this parameter we will show that the distribution of random sum is

F (x) = 1− e−λxf(x)

where f is such a function that

lim
x→∞

f(x)

esx
= 0

for all s > 0.

31



This property is essential to modeling of network traffic.

3.1 A Convolution Invariant and Failure Rate Limit

A Convolution Invariant Parameter

In a sense, scientific research consists in discovery of invariant in a state of flux. Once

we discover invariant, we capture the true nature of phenomena.

In mathematical terms, an invariant is a quantity related to a class of objects that

remains unchanged when a certain class of modifications are applied to the objects.

Invariants are an important means in classification problems: Objects with diverse

invariants are essentially distinct; the converse of this statement also applies, that

is, objects with equal invariants partake of the same nature.

Convolution is one of the most important operations in probability theory. In [57]

it is revealed that convolution can be expressed as an infinite mixture of gamma

distribution and in [58] it is demonstrated that limiting failure rate of a convolution

behaves like the limiting failure rate of the strongest component. The proof in [58]

does not cover the case when the strongest component has an unbounded failure rate,

or in other words, the strongest component is heavy-tailed. Our result is similar

but the proof is based on a different approach. Firstly we introduce a convolution

invariant parameter.

A convolution invariant, as the name suggests, is an under convolution unaltered
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parameter or quantity. Firstly we consider for a given distribution F the parameter

C = C (F ) := sup

{
t ∈ R≥0 : lim sup

x→+∞
F (x)ext = 0

}
(3.1)

where F denotes the tail function of distribution F . In what follows, we prove step by

step that this parameter is a convolution invariant, in a mathematical way.

In trying to deal with convolution, as it appears in (3.2), we need the equality [59]

F ∗2 (x) = F (x) +

ˆ x

0

F (x− y)dF (y) (3.2)

as well as its more general form

F ∗(k+1) (x) = F (x) +

ˆ x

0

F ∗k(x− y)dF (y),∀k ∈ N. (3.3)

The basic idea to prove that C in (3.1) is convolution invariant is to show

{
s ∈ R+ : lim sup

x→+∞
F (x) exs = 0

}
=

{
s ∈ R+ : lim sup

x→+∞
F ∗k (x) exs = 0

}

for a given distribution F . In order to do this we need the following three propositions.

Proposition 3.1. If lim supx→+∞ F (x)exs = 0, then lim supx→+∞ F
∗2(x)exs = 0.

In order to prove this proposition we need the following lemmata.

Lemma 3.2. If lim supx→+∞ F (x)exs = 0 for some positive s, then there exists positive

s∗ > s such that

F (x) ≤ e−xs
∗
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as long as x > M for some natural number M .

Proof. Given a positive ε, there is a positive number M such that x > M implies

0 < F (x)exs < ε.

We fix an ε < 1 and choose an s∗ such that s∗ = s+
ln 1

ε

M
, then

F (x) ≤ εe−xs ≤ ε
x
M e−xs = e−x(s+

ln(1/ε)
M ) ≤ e−xs

∗
.

Lemma 3.3. If lim supx→+∞ F (x)exs = 0, then there exists positive s∗ > s such that

F ∗2(x) ≤ F (x) +
([x]− 2M) e2s∗ + (2M + 1) es

∗(M+1)

es∗x

as long as x > 2M for some natural number M .
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Proof. We use the same s∗ and M in lemma 3.2, then let x > 2M

ˆ x

0

F (x− y)dF (y) ≤
[x]∑
k=0

ˆ k+1

k

F (x− y) dF (y)

=

[x]∑
k=0

F (x− (k + 1))
(
F (k)− F (k + 1)

)
=

M−1∑
k=0

+

[x]−M−1∑
k=M

+

[x]∑
k=[x]−M

F (x− k − 1)F (k)

(
1− F (k + 1)

F (k)

)

≤
M−1∑
k=0

e−(x−k−1)s∗ +

[x]−M−1∑
k=M

e−s
∗(x−k−1)es

∗k +

[x]∑
k=[x]−M

e−s
∗k

≤ Me−s
∗(x−M) + ([x]− 2M) e−s

∗(x−1) + (M + 1) e−s
∗([x]−M)

≤ (x− 2M) e−s
∗(x−2) + (2M + 1) e−s

∗(x−1−M)

=
([x]− 2M) e2s∗ + (2M + 1) es

∗(M+1)

es∗x

From 3.2

F ∗2(x) ≤ F (x) +
([x]− 2M) e2s∗ + (2M + 1) es

∗(M+1)

es∗x
.

Now we are able to prove 3.1.

Proof. Applying lemma 3.3

lim sup
x→+∞

esxF ∗2(x) ≤ lim sup
x→+∞

exsF (x) + lim sup
x→+∞

([x]− 2M) e2s∗ + (2M + 1) es
∗(M+1)

e(s∗−s)x = 0.

This proposition is proved.

In the following we prove a more general proposition.
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Proposition 3.4. If lim supx→+∞ F (x)exs = 0 for some s > 0, then lim supx→+∞ F
∗k(x)exs =

0 for any natural number k.

Proof. We prove it by mathematical induction. Assume lim supx→+∞ F
∗k(x)exs = 0 for

a k, we need to prove by (3.3)

lim
x→+∞

exs

[
x−1∑
y=0

F ∗k (x− y)
(
F (y)− F (y + 1)

)]
= 0

which implies F ∗(k+1)(x)exs → 0. Applying 3.2 to both F and F ∗k: there exist positive

numbers s1, s2 and M1,M2 such that

F (x) < e−xs
∗
1

F ∗k (x) < e−xs
∗
2

as long as x > M1 and x > M2.

Let M = max {M1,M2} and s∗ = min {s1, s2}. Let x > 2M

ˆ x

0

F ∗k(x− y)dF (y) ≤
[x]∑
k=0

ˆ k+1

k

F ∗k (x− y) dF (y)

=

[x]∑
k=0

F ∗k (x− (k + 1))
(
F (k)− F (k + 1)

)
=

M−1∑
k=0

+

[x]−M−1∑
k=M

+

[x]∑
k=[x]−M

F ∗k (x− k − 1)F (k)

≤
M−1∑
k=0

e−(x−k−1)s∗ +

[x]−M−1∑
k=M

e−s
∗(x−k−1)es

∗k +

[x]∑
k=[x]−M

e−s
∗k

≤ ([x]− 2M) e2s∗ + (2M + 1) es
∗(M+1)

es∗x
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Hence lim supx→+∞ F
∗(k+1) (x) exs = 0 .

Proposition 3.5. If F (x)exs tends to a positive constant c for some s, then F ∗2(x)exs

tends to +∞ for all k ≥ 2.

Proof. What we need to demonstrate is that

lim
x→∞

∑x−1
y=0 F (x− y) [F (y)− F (y + 1)]

F (x)
= +∞.

Let F (x)exs converges to a positive constant C . We have two inequalities. For ∀ε >

0,∃X > 0,∀x > X the inequality

C − ε < esxF (x) < C + ε

the inequality

F (x)exs ≥ min
{
F (0), F (1)e1s, ..., F (X)eXs, C − ε

}
.

Let

m := min
{
F (0), F (1)e1s, ..., F (X)eXs, C − ε

}
Then we estimate

∑x−1
y=0 F (x− y) [F (y)− F (y + 1)]

F (x)
≥

∑x−1
y=X+1 F (x− y) [F (y)− F (y + 1)]

F (x)

≥

∑x−1
y=0 F (x− y)es(x−y)

[
F (y)esy − F (y+1)es(y+1)

es

]
F (x)exs

≥
x−1∑

y=X+1

m
[(

1− 1
es

)
C − ε

(
1 + 1

es

)]
C + ε
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The last term tends to infinity as x→ +∞. The proposition is proved.

Combining propositions 3.1, 3.4 and 3.5, we see for F and its convolutions F ∗k

{
s ∈ R+ : lim sup

x→+∞
F (x) exs = 0

}
=

{
s ∈ R+ : lim sup

x→+∞
F ∗k (x) exs = 0

}
. (3.4)

for any k. By taking the supremum of (3.4) we obtain this important theorem

Theorem 3.6. Parameter C(F ) defined through

C (F ) := sup

{
t ∈ R+ : lim

x→+∞
F (x)ext = 0

}

is invariant under convolution, i.e.

C (F ) = C
(
F ∗k
)

for all natural number k.

Example. We consider exponential distribution

F (x) = 1− e−λx

and its convolution

F ∗2(x) = 1− e−λx (1 + λx) .

Obviously

C (F ) = C
(
F ∗2
)

= λ.
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We apply this theorem to compound distribution and obtain the main conclusion in

this chapter.

So far we have proved that C is convolution invariant.

Failure Rate Limit

In reliability theory, failure rate function is a powerful tool. It is commonly used to

analyze the reliability of the equipments or the components and to quantify the risk

in terms of probability that an entity fails in a specific time intervals after having

correctly functioned before time t [60] .

Failure rate function mF (x) is defined by

mF (x) =
f(x)

1− F (x)

where F denotes a given distribution function and f denotes its density function.

Here F = 1−F is called tail or survival function of F . And obviously m̂F (x) ∆x can

be interpreted as an approximation of conditional probability of a failure in (x, x+ ∆x].

In the context of inter delay times, we can also introduce the concept of failure rate. It

approximates the conditional probability that the text packet arrives in a small time

interval (x, x+ ∆x] given that it does not arrive before x.

Example 3.7. Infinite failure rate limit: The failure rate limit of standard normal
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distribution is infinite

lim
x→∞

mF (x) = lim
x→+∞

e−
1
2x

2

√
2π

1− Φ(x)
= lim

x→+∞

e−
1
2x

2

√
2π
x

e−
1
2x

2

√
2π

= lim
x→+∞

x = +∞.

Here Φ denotes the standard normal distribution.

Then mF (x) ∆x is very huge for large x. However, probability can not be greater than

1, and hence normal distribution is not appropriate for extreme event modeling.

Example 3.8. Zero failure rate limit: The failure rate limit of log-normal distribution

is 0.

lim
x→∞

mF (x) = lim
x→+∞

F ′(x)

1− F (x)
= lim

x→+∞

F ′′(x)

−F ′(x)
= lim

x→+∞

d
dx

(
1

x
√

2πσ
e−

(ln x−µ)2

2σ2

)
− 1
x
√

2πσ
e−

(ln x−µ)2
2σ2

= lim
x→+∞

1
x2
√

2πσ
e−

(ln x−µ)2

2σ2 + 1
x
√

2πσ
e−

(ln x−µ)2

2σ2
2(lnx−µ)

x

− 1
x
√

2πσ
e−

(ln x−µ)2
2σ2

= 0

So m̂F (x) ∆x ∼ 0 for large x. For this reason log-normal distribution, in general,

heavy tail distribution is not sensitive to extreme event.

Example 3.9. Positive failure rate limit: The failure rate limit of exponential distri-

bution is finite

lim
x→∞

mF (x) = lim
x→+∞

λe−λx

e−λx
= λ.

Distribution with positive failure rate limit is suitable for extreme events and sensi-
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tive to extreme values. In practice a distribution of the form

F (x) = 1− e−λxP (x)

is preferable.

We consider only distribution with positive failure rate limit.

Notice due to l’Hï¿œpital’s rule

lim
x→∞

− lnF (x)

x
= lim

x→∞
mF (x) .

In this section we prove failure rate limit

C(F ) = lim
x→∞

mF (x) .

where C(F ) is defined in (3.1), and therefore is convolution invariant.

The following theorem demonstrates that applying convolution on distribution does

not change the limit of rate function.

Theorem 3.10. Failure rate limit is convolution invariant, i.e.

lim
x→∞

mF (x) = lim
x→∞

mF ∗k (x)

Lemma 3.11. If F (x) exs converges to 0

lim
x→∞

F (x) exs = 0
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for some positive s, then

s ≤ lim
x→∞

mF (x) .

Proof. First if F (x) exs converges to 0 as x→ +∞, then for any ε there exists a M such

that

0 < F (x) exs < ε

as long as x > M . Thereby

− lnF (x)

x
> − ln ε

x
+ s

Let x tend to infinity

s ≤ lim
x→∞
− lnF (x)

x
= m̂F (x) .

Lemma 3.12. If

lim sup
x→+∞

F (x) exs < +∞

and

lim inf
x→+∞

F (x) exs > 0

for some positive s, then

s = lim
x→∞

m (x) .

Proof. Let C1 and C2 denote the limit superior and limit inferior, respectively

C1 = lim
x→∞

inf F (x) exs

C2 = lim
x→∞

supF (x) exs
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then given ε there exists a X such that

C1 − ε < F (x) exs < C2 + ε

as long as x > X. Therefore

e−xs (C1 − ε) < F (x) < e−xs (C2 + ε)

and further

− ln (C1 − ε)
x

+ s > − lnF (x)

x
> − ln (C2 + ε)

x
+ s

Let x tend to infinity

lim
x→∞
− lnF (x)

x
= s.

Lemma 3.13. If there is a positive number s satisfying

lim
x→∞

inf F (x) exs > 0

lim
x→∞

supF (x) exs <∞ (3.5)

for a given distribution F , then it is the unique one.

Proof. Let s be a positive number fulfilling (3.5)

C1 = lim
x→∞

inf F (x) exs

C2 = lim
x→∞

supF (x) exs.
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We consider any positive number differing form s. Let s2 be a larger positive number

s < s2, then

F (x) exs2 = F (x) exsex(s2−s) ≥ (C1 − ε) ex(s2−s).

and then

lim
x→∞

supF (x) exs2 ≥ lim
x→∞

sup (C1 − ε) ex(s2−s) =∞.

Similarly if s > s1, then

F (x) exs1 = F (x) exsex(s1−s) ≤ (C2 + ε)
1

ex(s−s1)
.

hence

lim
x→∞

supF (x) exs1 ≤ lim
x→∞

(C2 + ε)
1

ex(s−s1)
= 0

So s is the unique real number satisfying (3.5).

Before proving our main theorem, we need a lemma.

Lemma 3.14. Given a failure rate limit s, i.e.

lim
x→∞

mF (x) = s > 0

Then s cuts R+ into two parts (0, s) and (s,+∞). For s1 ∈ (0, s)

lim
x→∞

F (x) exs1 = 0

and for s2 ∈ (s,+∞)

lim
x→∞

F (x) exs2 =∞
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Proof. First we know

s− ε < − lnF (x)

x
< s+ ε

then

e−x(s−ε) > F (x) > e−x(s+ε).

And further

e−x(s−s1−ε) > F (x) exs1 > e−x(s−s1+ε).

Finally

lim
x→+∞

F (x) exs1 = 0.

Analogy

ex(s2−s+ε) > F (x) exs2 > ex(s2−s−ε)

and

lim
x→+∞

F (x) exs2 =∞.

Next we prove the main theorem 3.10.

Proof. We prove this theorem by contradiction. Let

s1 = lim
x→∞

f(x)

F (x)

s2 = lim
x→∞

f ∗k(x)

F ∗k(x)
.

We assume s1 6= s2 and take an s between s1, s2.
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If s1 < s2, then s1 < s < s2. From lemma 3.14

lim
x→+∞

F (x) exs = +∞

and

lim
x→+∞

F ∗k (x) exs = 0

which is a contradiction to the equation 3.3.

If s2 < s1, then s2 < s < s1, then

lim
x→+∞

F (x) exs = 0

and

lim
x→+∞

F ∗k (x) exs = +∞

which is a contradiction to the proposition 3.4.

So

s1 = s2

In conclusion

lim
x→∞

mF (x) = lim
x→∞

mF ∗k (x)

Example. Exponential distribution

F (x) = 1− e−λx
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the limit of its failure rate function

lim
x→∞

λe−λx

e−λx
= λ

The two fold convolution of exponential distribution is

F ∗2 (x) = 1− e−λx (1 + λx)

whose failure rate limit is

lim
x→∞

λ2xe−λx

(1 + λx) e−λx
= λ

Example. Combination of Erlang distributions

G = αFk + βFj, α + β = 1, 0 ≤ α, β ≤ 1

then

G∗2 = (αFk + βFj)
∗2 = α2F2k + 2αβFk+j + βF2j

Further

lim
x→+∞

g(x)

1−G(x)
= lim

x→+∞

g∗2(x)

G∗2(x)
= λ

The following theorem enables us to link convolution invariant parameter and failure

rate limit.

Theorem 3.15. C (F ) defined in (3.1) is the failure rate limit of distribution F ∗k, i.e.

C (F ) = lim
x→∞

mF ∗k (x)

47



for any k ∈ N.

Proof. It suffices to show

C (F ) = lim
x→∞

mF (x)

by the theorem 3.10.

Assume C (F ) < s < limx→∞
f(x)

F (x)
. Then s > C (F ) implies

lim
x→∞

F (x) exs = +∞

from definition of C(F ) while s < limx→∞
f(x)

F (x)
implies by 3.14

lim
x→∞

F (x) exs = 0.

Contradiction.

Assume C (F ) > s > limx→∞
f(x)

F (x)
. Then s < C (F ) implies

lim
x→∞

F (x) exs = 0

However, s > limx→∞
f(x)

F (x)
implies by 3.14

lim
x→∞

F (x) exs = +∞

Contradiction.

Fact 3.16. Finally

C (F ) = lim
x→∞

mF (x)

48



Remark. This theorem finds such an application. Consider a system consisting of

N independent random components, each of which can be described by a random

variable Xn with distribution F . If we know the lifetime Y of the system depends only

on the sum of Xn,

Y = g−1

(
N∑
n=1

Xn

)
Here we assume that g is bijective, monotonically increasing and differentiable. Now

we calculate the asymptotic failure rate of the system.

Let S =
∑N

n=1Xn, then

mS (t) ≈ mX (t)

if t is big enough. Notice

FY (t) = P [Y < t] = P [S < g (t)] = FS (g (t))

then

mY (t) =
F ′S (g (t))

1− FS (g (t))

dg(t)

dt
≈ F ′X (g (t))

1− FX (g (t))
g′(t)

In conclusion, if we know the failure rate of the component, we can calculate the

failure rate of the whole system.

3.2 Random Sum

Convolution invariant parameter has a strong relation to random sum.

Random sum originated from the famous Cramï¿œr-Lundberg model and is of great
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significance in insurance Mathematics [59,61,62].

Let’s review the famous Cramï¿œr-Lundberg model. Suppose that we want to eval-

uate the total payment over a period from a portfolio or estimate inter delay time

between two observed packets sent through a chain of routers, either using the indi-

vidual or the collective model. LetN be a nonnegative integer-valued random variable

and X1, X2, ... a sequence of nonnegative random variables.

Definition 3.17. The random variable Y is said to have a compound distribution

if it is of the form

Y =
N∑
i=1

Xi

where

1. N is a counting process,

2. random variables Xi are identically distributed and independent

3. Xi are independent of N

In this case random variable Y is called random sum of {Xi} and Xi are called

components of random sum. We review some basic properties of random sum and

compound distribution, detailed proofs of which can be found in [61].

1. Expected random sum is exactly the product of expected counting process and

expected components, i.e.

E [Y ] = E [N ] E [X] (3.1)

50



2. Compound distribution and its survival function can be expressed in form of

convex combination

FY =
∑
k≥1

pkF
∗k
X (3.2)

Here pk = P [N = k].

3. Variance is of the form

Var [Y ] = E [N ] Var [X] + Var [N ] (E [X])2 .

Example 3.18. Compound distribution of exponentially distributed random variables

is of the form

FY (x) =
∞∑
k=1

pkEk(x)

where pk = P [N = k] and Ek denote Erlang distributions

Ek(x) = 1−
k−1∑
n=0

1

n!
e−λx(λx)n.

Proof. Trivial.

In the following we reveal a relation between random sum and failure rate limit

Theorem 3.19. Let G denote compound distribution of a given distribution F , i.e.

F [x] =
+∞∑
k=1

P [N = k]F ∗k(x)
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where N denotes a counting process, then

C (G) = C (F ) .

Proof. From [59] we have

G(x) =
+∞∑
k=1

pkF ∗k(x)

then

G(x)exs =
+∞∑
k=1

pkF ∗k(x)exs

If F (x)exs converges to 0 for some s > 0 and therefore all F ∗k(x)exs converge to 0. Then

0 ≤ lim sup
x→+∞

G(x)exs ≤
+∞∑
k=1

pk lim sup
x→+∞

F ∗k(x)exs = 0

G(x)exs converges to 0. So

{
s ∈ R+ : lim

x→+∞
F (x) exs = 0

}
=

{
s ∈ R+ : lim

x→+∞
G (x) exs = 0

}

We take supremum of the above two sets and then

C (F ) = C (G) (3.3)

Corollary 3.20. For a compound distribution G with components F

G =
∑
k≥1

pkF
∗k
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then

lim
x→∞

mG (x) = lim
x→∞

mF (x) .

Proof. We obtain by (3.3)

lim
x→∞

mG (x) = C (G) = C (F ) = lim
x→∞

mF (x) .

3.3 Distribution of Random Sum

Theorem 3.21. Given a random sum

Y =
N∑
i=1

Xi.

Then the distribution FY is of the form

FY (x) = 1− e−λxf(x)

where f is an exponentially bounded function, i.e.

lim sup
x→+∞

f(x)

esx
= 0, ∀s > 0

and λ is the failure rate limit of Xi.

Proof. Directly from corollary 3.20.
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In practice, power-law functions are preferable.

Definition 3.22. A function is said to be power-law if

lim
x→∞

p(x)

xα
= C > 0

for some α > 0.

Then the distribution of random sum is

F (x) = 1− e−λxp(x) (3.1)

where p denotes a power-law function.

Proposition 3.23. Given a power-law function f . Then

lim
x→+∞

ln p(tx)

ln p(x)
= 1

for any t > 0.

Proof. We notice a power-law function can be expressed in the form

p(x) = xαO(x)

for some real number α > 0. Here O(x) denotes a function such that

lim
x→+∞

O(x) = C
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Then

lim
x→+∞

ln p(tx)

ln p(x)
= lim

x→+∞

lnxα + ln tα + lnO(tx)

lnxn + lnO(x)

= lim
x→+∞

lnxα

lnxα + lnO(x)
+ lim

x→+∞

ln tα

lnxα + lnO(x)
+ lim

x→+∞

lnO(tx)

lnxα + lnO(x)

= 1

In conclusion, for random sum

Y =
N∑
i=1

Xi

Then the distribution is of the form (3.1), where λ is exactly the failure rate limit of

random components Xi.

Summary

This chapter focuses on two mathematical tools: random sum and convolution invari-

ant parameter.

Failure rate limit is a convolution invariant parameter, consequently it is a parameter

of random sum.

This parameter plays a central role in our modeling of network traffic.
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Chapter 4

A Single Path Model

In this chapter we present a single path model of inter delay time and throughput

traffic.

4.1 A Single Path Model of Inter Delay Times

Packet inter delay time is the time between consecutive packets and it is of great

importance in traffic management, monitoring, and control tasks in networks.

The packet inter delay time can be applied in many ways [63]. For example, estimated

values of packet inter delay time are used to measure the traffic rate for the QoS-

enabled Internet [64]. The rate estimation is an essential part of call admission [65],

link-sharing [66], and fair scheduling algorithm [67].

In the network security improvement, the packet inter delay time can be also used

for investigating unsolicited internet traffic or for identifying the abnormal or unex-

pected network activity. The packet inter delay time patterns can be used to identify
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attacks or network phenomena. Estimation of the end-to-end performance and its

improvement are important for web transactions [63,68].

Moreover, the packet inter delay time plays a significant role in management of net-

work devices and helps reduce consumption of network devices such as LAN Switches.

An incoming packet is buffered and wakes up the switch interface. The decision on

whether to sleep is based on the estimation of next packet inter delay time. If the

inter arrival time is estimated to be long enough, interface goes to sleep, otherwise it

stays awake [63,69].

In the modeling of inter delay time, self-similarity and heavy tail are claimed to be

observed [12,14,40,43,68].

Model Formulation

We consider such a one path model.

A sequence of packets are sent through a fixed chain of routers. We assume that all

packets travel with the same speed and require the same service time on each router.

We send two packets through this channel with some initial time delay τ0 between

them, which will be called the initial inter-delay time. We denote by τn the inter

delay times between two observed packets after passing nth router. If the considered

packets are the only ones in the channel then the inter-delay remains the same when
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they reach the destination. In general, however, the inter-delay time can change on

channel’s routers. These changes are caused by the lateral traffic on the routers and

the corresponding additional service times. The inter-delay times can both increase

and decrease. The reason of the increase is obvious. The decrease of inter-delay times

can happen when some packets from the transversal traffic leave the channel and,

at the same time, there are also packets waiting for the service (we will call this

situation buffering). The decrease cannot be, however, smaller than the service time

of a single packet. The lateral traffic can influence packets delays in the following

way. If an additional packet enters in between two observed packets then it increases

the delay about the amount of time needed for its service.

The lateral traffic on each router will be represented by random variables ξ(n)
i , n =

1, 2, .... , i.e. the difference between the number of packet that enter and leave during

ith time interval. In order to simplify the notation, let us also assume that each ran-

dom variable ξ(n)
i contains the service time of the packet that enters a router. In other

words, the equality ξ(n)
i means that no packets come into the chain from lateral traffic

at time i. Now after passing n+ 1-th router the inter delay time will be

τn+1 =
τn∑
i=1

ξ
(n)
i (4.1)

Consider, if no packets enters and leaves the chain on the n-th router, all ξni take value

1 then τn+1 = τn. If only one packet leaves the chain, then τn+1 = τn − 1. So if we set

ξni ≥ 0 , then both “entering” and “leaving” cases are included.

Furthermore we assume

1. inter delay times τn take only natural numbers,
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2. lateral traffic ξ(n)
i are identically distributed and independent,

3. lateral traffic ξ(n)
i are independent of precedent inter del time τn.

In the following we will study this model in details.

Based on these three assumptions and applying the basic properties of random sum

we obtain recursive expressions of the mean and the variance of inter delay time τn+1:

1. Expected inter delay time τn+1 is exactly the product of expected lateral traffic

and expected precedent inter delay time, i.e.

E [τn+1] = E [τn] E [ξ] . (4.2)

2. Variance is of the form

Var [τn+1] = E [τn] Var [ξ] + Var [τn] (E [ξ])2 . (4.3)

The following theorem provides general expressions of mean and variance of τn+1.

Theorem 4.1. The means and variances are of the form

1. E [τn+1] = τ0 (E [ξ])n+1

2. Var [τn+1] =


τ0Var [ξ]

(
E2n+1[ξ]−En[ξ]

E[ξ]−1

)
,

τ0 (n+ 1) Var [ξ]

E [ξ] 6= 1

E [ξ] = 1

Proof. We see trivially

E [τn+1] = E [τn] E [ξ] = E [τ0] (E [ξ])n+1 = τ0 (E [ξ])n+1 .
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The variance is given by

Var [τn+1] = E [τ0] (E [ξ])n Var [ξ] + Var [τn] (E [ξ])2 .

Divided by E2n+2 [ξ]

Var [τn+1]

(E [ξ])2n+2 =
E [τ0] Var [ξ]

(E [ξ])2

(
1

E [ξ]

)n
+

Var [τn]

(E [ξ])2n .

If E [ξ] 6= 1

Var [τn+1]

(E [ξ])2n+2 =
E [τ0]V ar [ξ]

(E [ξ])2

(
1−

(
1

E[ξ]

)n+1
)

1−
(

1
E[ξ]

)
then

Var [τn+1] = τ0Var [ξ]

(
(E [ξ])n+1 − 1

E [ξ]− 1

)
(E [ξ])n .

If E [ξ] = 1

Var [τn+1] = τ0Var [ξ] (n+ 1) .

There is a simplified model of this model, i.e.

τn+1 = τ0

n∏
i=1

(
ξ
′

i + 1
)

instead of 4.1. For this model we found the limit distribution is log-normal [3]. This

random sum model is more difficult to study. We have already evaluated the basic

parameters, like expectation and variance. However, the study of tail and invariant

is more interesting. In the following we will discuss the limit distribution.
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This stochastic process is obviously not stationary because mean and variance change

with index n. However, failure rate limit is a convolution invariant parameter [?]

C (F ) := sup

{
t ∈ R : lim

x→+∞
F (x)ext = 0

}

does not vary in this process.

Proposition 4.2. Let Fn denote the distribution of inter delay time τn of the process of

inter delay times {τn}n remains unchanged. Moreover

C (Fk) = C (F1)

for all k.

Inter Delay Time τn+1

The inter delay time τn+1 can be expressed as

τn+1 =
τn∑
i=1

ξ
(n)
i ,

and therefore it is of the form

F (x) = 1− e−λxp(x) (4.4)

where p(x) denotes a power-law function and λ denotes failure rate limit of lateral

traffic ξ.
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However, not each function of the form (4.4) is a valid distribution function. To con-

struct a distribution of the form (4.4) we consider convex combination of Erlang dis-

tributions

F (x) =
n∑
i=1

αiEi(x)

where Ei are Erlang distributions of the form

Ei(x) = 1− e−λx
(

i−1∑
k=0

(λx)k

k!

)

and
n∑
i=1

αi = 1, 0 ≤ αi ≤ 1.

For example, we consider a convex combination of Erlang distributions

F (x) = α
(
1− e−λx

)
+ β

(
1− e−λx

(
k−1∑
i=0

(λx)i

i!

))

where α + β = 1 and 0 ≤ α, β ≤ 1.

In the following we want to show that this distribution exhibits heavier tail than

exponential distribution. First we evaluate the parameters mean and variance.

E [X] = α
1

λ
+ β

k

λ
=
α + βk

λ

E
[
X2
]

= α
2

λ2
+ β

k2 + k

λ2
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Variance

Var [X] =
α (1− α) k2 + (1− α) (1− 2α) k + α (2− α)

λ2
. (4.5)

In (4.5) k2 term appears for 0 < α < 1. However, variance of poisson model increases

linearly. Therefore, this model has a higher variance than Poisson model.

4.2 Single Path Model of Throughput Traffic

In communication networks, another one of the most frequently measured and dis-

cussed traffic variables is throughput traffic. Though the meaning of throughput traf-

fic differs in different publications, the basic idea behind this concept is the volume of

traffic in a regular time intervals [4].

Throughput traffic is a key quality-of-service metric in data networks. It describes the

average “speed” of data transfer during a typical data connection. It is usually defined

as the ratio of the average number of packets sent (or received) per data request to

the average duration of the data transfer. Throughput traffic depends inherently on

the requested data traffic and network architecture (positioning of the base stations)

and in fact may significantly vary across different network [70].

It has been experimentally observed that the statistic characteristics of traffic vol-

ume differs significantly in different length of time intervals ∆t. To be more precise,

it is more shaped in long time intervals while usually undetermined for short time in-

tervals. Different hypotheses concerning the observed distributions, which can vary

with ∆t, have been proposed. Here we discuss now a rigorous model for throughput

traffic [4].
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Throughput traffic is strongly related to inter delay times. Or, more accurately, there

exists a strong statistical duality between these two traffic variables. Here we derive

the duality between throughput traffic and inter delay times.

Let Rt denote the total number of test packets received up to time t. Here the stochas-

tic process {Rt}t is called the transmission process. St denote the throughput traf-

fic. Assume that the throughput traffic is, in average, proportional to the number of

test packets received up to time t with integer constant σ

St = Rtσ.

Let τ (1), τ (2), ... denote intervals between consecutive test packets. We assume that

inter delay times are independent and identically distributed. Then we have

Rt = 0⇐⇒ t < τ (1)

Rt = 1⇐⇒ τ (1) < t < τ (1) + τ (2)

Rt = n⇐⇒
n∑
i=1

τ (i) < t <
n+1∑
i=1

τ (i).

Therefore

P [Rt < n] = P

[
n∑
i=1

τ (i) > t

]
= 1− P

[
n∑
i=1

τ (i) ≤ t

]
= 1− F ∗n(t) (4.1)

where F (x) is the distribution.
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If inter delay time can be expressed by

F (t) =
k∑
i=0

αiEi(t),
k∑
i=0

αi = 0, 0 ≤ αi ≤ 1

where Ek denotes the Erlang distribution and then

F ∗n(t) =

(
k∑
i=1

αiEi(t)

)∗n

=
nk∑
j=n

βjEj(t)

where a convex combination
∑σn

j=n βj = 1, 0 ≤ βj ≤ 1.

So the distribution of throughput traffic is

P [St < σn] = P [Rt < n] = 1−
σn∑
j=n

βjEj(t) =
σn∑
j=n

βj (1− Ej(t)) .

And the tail of St is of the form

P [St ≥ σn] =
nk∑
j=n

βjEj(t)

Tail of Poisson model

1−
j−1∑
i=0

e−λt (λt)i

i!
= Ej(t)

As

Ej(t) > Ej+1(t)
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Let N = nk and the tail of Rt is of the form

nk∑
j=n

βjEj(t) > Enk(t)

The tail is heavier than Poisson model.

The design of robust and reliable networks and network services has become an in-

creasingly challenging task in the Internet world. To achieve this goal, understanding

the characteristics of the Internet traffic plays a more and more critical role. Empir-

ical studies of measured high-variance traffic traces have led to the wide recognition

of self-similarity in network traffic [39]. Here we provide an alternative explanation

of this high-variance traffic.

Summary

In this chapter we study in detail a random sum model or a single path model, which

was proposed in [4].

This random sum model is a generalization of log-normal model. By using the convo-

lution invariant parameter, we prove that the distribution of inter delay time can be

expressed in the form of convex combination of Erlang distributions, and therefore it

has a heavier tail than Poisson model.

Next we turn to the throughput traffic. We derive the distribution of throughput

traffic by using a dual relation between inter delay time and throughput traffic.
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Chapter 5

A Multiple Path Model

A more practical and natural model is multiple path model.

The original idea of the Internet is to construct a reliable global system of intercon-

nected computer networks for the packet radio system work that could maintain effec-

tive communication in the face of jamming and other radio interference, or withstand

intermittent blackout such as caused by being in a tunnel or blocked by the local ter-

rain. For this purpose, B. Kahn, the inventor of Transmission Control Protocol (TCP)

and the Internet Protocol (IP) posed four ground rules:

1. Each distinct network would have to stand on its own and no internal changes

could be required to any such network to connect it to the Internet.

2. Communications would be on a best effort basis. If a packet didn’t make it to

the final destination, it would shortly be retransmitted from the source.

3. Black boxes would be used to connect the networks; these would later be called

gateways and routers. There would be no information retained by the gateways
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about the individual flows of packets passing through them, thereby keeping

them simple and avoiding complicated adaptation and recovery from various

failure modes.

4. There would be no global control at the operations level.

All these four rules make a multiple path model of internet traffic necessary.

In the packet switched networks, all transmitted data, regardless of content, type or

structure, are divided into small packets for transmission. These packets are sent out

from the source computer, travel along the most efficient path around the network to

to the destination computer and finally reassembled into their proper sequence.

This does not necessarily mean that it is along the shortest path they travel. In fact,

the path the packets traverse is conditioned by routing algorithms and network state.

Network State

A packet-switched computer network can reach a state that little or no useful com-

munication is happening due to congestion, which is called congestive collapse. Con-

gestion collapse generally occurs when the total incoming traffic to a node exceeds the

outgoing bandwidth. When a network is in such a condition, packets may choose an

alternative path to arrive their destination.

Routing Algorithm

Most currently deployed routing algorithms select at a time only a single path for

the traffic between each source-destination pair. However, a division of traffic over

multiple path is more flexible [71–77]. It could offer many benefits, including:

1. Customization of application performance requirements
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2. Improvement of end-to-end reliability

3. Avoidance of congested paths

Though multi path routing has not been widely applied, due to scalability and eco-

nomic challenges, “the economic incentives for providing value-added services will

likely grow in the future and hopefully motivate the creation of new inter network

business models that enable Internet-wide multi path routing” [77].

Based on these two points, a multi path model concerning network topological struc-

ture is more practical. In this model we assume that each packet may make a journey

of its own and introduce a random variable N to represent the number of routers

which the packets traverse. In fact, this model applies as well to analysis of single

path communication if we specify the number of router by an integer n instead of a

random variable N .

5.1 A Multiple Path Model of Inter Delay Times

In this section a multiple path model based on the multiplicative model [4] is present.

First we review the multiplicative model.

In multiplicative model we confine our discussion to a chain of routers R1, R2, ..., RN ,

through which we send a sequence of packets. Between each two consecutive packets

there is initially some initial inter delay time, denoted by τ0.
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Due to influence of lateral traffic, this inter delay time after having passed through

n-th router is

τn+1 = τn (1 + ξn)

where the random variables ξk, k = 1, 2, .... represent lateral traffic. We assume that

ξk are non negative integers. In such case ξk can be interpreted as the quantitative

change of the unit gap on the k-th router.

Suppose that we observe two packets traveling from a source to a destination. We will

denote by τj the inter delay time between these packets after having passed through

the j-th router Rj, then

τn+1 = τn (1 + ξn) .

Recursively we obtain

τn+1 = τ0

n+1∏
k=1

(1 + ξk) .

Now we generalize this multiplicative model to net-like model.

In this model, there are more than one paths between source and destination, so the

model can reflect the circumstances of real-world Internet traffic.
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Two consecutive packets are sent from a source to a destination through a multiple

path network, with initial inter delay time τ0. This inter delay time can be changed

due to disturb traffic on each router. The disturb traffic on the k-th router that the two

packets actually pass can be expressed by the random variables ξk. Here we assume

that ξk are identically distributed and independent.

Along each possible path from source to destination, inter delay time obeys a multi-

plicative law. As the number of routers that these packets actually pass is uncertain,

we use a random variable N to represent the number of routers between source and

destination. Then the inter delay time at the destination r∗ is

τ∗ = τ0

N∏
k=1

(1 + ξk) .

Then we evaluate the basic parameters of this inter delay time. Here we assume

τ0 = 1, without loss of generality.
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Proposition 5.1. Inter delay time τ∗ has the k-th moment of the form

E
[
τ k∗
]

= E
[[

E
[
ξk
]]N]

.

Proof. We calculate

E
[
τ k∗
]

= E
[
E
[
τ k∗ |N

]]
=E

E

( N∏
i=1

ξi

)k

|N

 = E

[
N∏
i=1

E
[
ξki |N

]]

= E
[[

E
[
ξk
]]N]

.

Corollary 5.2. The moment generating function MY of random product can be ex-

pressed in the form

Mτ∗ (t) =
∑
k≥0

E
[
EN
[
ξk
]]

k!
tk

and characteristic function

ϕτ∗ (t) =
∑
k≥0

E
[
EN
[
ξk
]]

k!
(it)k .

Theorem 5.3. The distribution of inter delay time τ∗ is

Fτ∗(x) = 1− x−λp(lnx).

Proof. We define a random variable

h = ln τ∗
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then

h =
N∑
k=1

ln (1 + ξk) .

Apparently, h is compoundly distributed and the distribution is

Fh(x) = 1− e−λxp(x)

where P denotes a power-law function. Then the distribution of τ∗

P [τ∗ < x] = P [ln τ∗ < lnx] = 1− e−λ lnxp(lnx) = 1− x−λp(lnx). (5.1)

In [18, 20, 39–42] it has been demonstrated that the distribution of the files trans-

ferred across the Internet is indeed heavy-tailed. Heavy-tailed distributions are those

probability distributions whose tails are not exponentially bounded, that is, the tails

functions tend toward zero more slowly than any exponential ones. A working defi-

nition for a heavy-tailed distribution is given as follows. Consider a random variable

with tail distribution function F (x) = 1− F (x). If

F (x) ∼ x−αL(x), 0 ≤ α ≤ 2 (5.2)

where L(x) is a slowly varying function

lim
x→+∞

L(tx)

L(x)
= 1,∀t > 0,
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then this distribution is heavy tailed.

This multi path model gives a sophisticated interpretation of the heavy-tailed inter

delay time.

5.2 Multiple Path Model of Throughput Traffic

We have already derived a dual relation between inter delay time and throughput

traffic in section 4.2

P [St < σn] = P [Rt < n] = 1− P

[
n∑
i=1

τ (i)
∗ ≤ t

]
= 1− F ∗n(t)

where F (x) is the distribution of inter delay times and Rt denote the test packets

received up to time t and

τ (i)
∗ =

Ni∏
j=1

(
1 + ξ

(i)
j

)
Notice that

∏n
i=1

∏Ni
k=1

(
1 + ξ

(i)
k

)
is a random product and it can be rewritten in the

form

P

[
n∏
i=1

Ni∏
k=1

(
1 + ξ

(i)
k

)
< x

]
=

m∑
j=1

αjEj(lnx).

Here m is a natural number.
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Then

P

[
n∑
i=1

τ (i)
∗ ≤ t

]
= P

[
n∑
i=1

Ni∏
j=1

(
1 + ξ

(i)
j

)
< t

]
≤ P

n( n∏
i=1

Ni∏
j=1

(
1 + ξ

(i)
i

)) 1
n

< t


= P

[
n∏
i=1

Ni∏
k=1

(
1 + ξ

(i)
i

)
<

(
t

n

)n]

=
m∑
j=1

αjEj(n ln
t

n
).

Here we use the inequality of arithmetic and geometric means

n∑
i=1

xi
n
≥

(
n∏
i=1

xi

) 1
n

, xi > 0.

Next we notice

(
1 + ξ

(1)
1

)(
1 + ξ

(1)
2

)
+
(

1 + ξ
(2)
1

)(
1 + ξ

(2)
2

)
≤ 1+

(
1 + ξ

(1)
1

)(
1 + ξ

(1)
2

)(
1 + ξ

(2)
1

)(
1 + ξ

(2)
2

)

so
n∑
i=1

τ (i)
∗ =

n∑
i=1

Ni∏
j=1

(
1 + ξ

(i)
j

)
≤ n− 1 +

n∏
i=1

Ni∏
j=1

(
1 + ξ

(i)
j

)
and again we use the inequality of arithmetic and geometric means

P

[
n∑
i=1

τ (i)
∗ < t

]
= P

[
n∑
i=1

Ni∏
j=1

(
1 + ξ

(i)
j

)
< t

]
≥ P

[
n− 1 +

n∏
i=1

Ni∏
k=1

(
1 + ξ

(i)
i

)
< t

]

= P

[
n∏
i=1

Ni∏
k=1

(
1 + ξ

(i)
i

)
< t− n+ 1

]
=

m∑
j=1

αjEj(ln (t− n+ 1)).
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Finally we find the upper bound and lower bound for throughput process St

1−
m∑
j=1

αjEj

(
ln

(
t

n

)n)
≤ P [St < σn] ≤ 1−

m∑
j=1

αjEj (ln (t− n+ 1)) .

Let γ = t− n and n→ +∞

ln

(
t

n

)n
= ln

(
1 +

t− n
n

)n
→ t− n = γ

and

ln (t− n+ 1) ≈ t− n = γ.

Finally we can derive for throughput traffic

P [St < σn] = 1−
m∑
j=1

αjEj (γ)

for some γ.

This explains why the Internet traffic presents high burstiness at small time scales

and becomes smooth over a large range of aggregation levels.

Summary

In most of network traffic model, at least one random source is assumed to be heavy

tail. In this chapter we contribute a new model. In this model, the inter delay time

can still exhibit heavy tail even if all random source are light-tailed.

We introduce a random product model and prove that the inter delay time is heavy
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tailed by using convolution invariant parameter. Finally we derive the upper bound

and lower bound of throughput traffic.
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Part II
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Chapter 6

A Homotopic Approach in Modeling of Network

Traffic

In statistics, dependence is a statistical relationship between two events or two sets

of data. Two events are said to be independent if the occurrence of one event makes

it neither more nor less probable that the other occurs [78].

Calculation of the sum of distributed random variables is one of the most important

problems in probability theory. In most of stochastic models, independence between

objects is assumed. However, dependence occurs everywhere in reality. Therefore it

is wise and necessary to introduce some dependence into our model.

We recall that the distribution sum Z =
∑n

i=1Xi of two identically distributed and

independent random variables is of form

FZ(x) = F ∗n(x)
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while if X and Y are strongly related, which implies Z = nX, then

FZ(x) = F (
x

n
).

We assume that there is a continuous deformation linking the distributions F ∗n(x) to

F (x
n
). However, distribution is too restrictive and not appropriate for calculation. An

equivalent but more convenient tool for specifying random variable X, characteristic

function ϕX

ϕX(x) = E
[
eixX

]
steps forward.

The homotopic approach was chosen because it allows to control positive definiteness

of functions. This means that we always deal with characteristic functions instead of

distribution functions.

In the following we present a homotopic approach to handle dependence in stochastic

models.

6.1 A homotopic Approach

Homotopy is one of the fundamental concepts in algebraic topology. In algebraic topol-

ogy, two continuous functions are called homotopic if one can be “continuous de-

formed” into another one, such a deformation being called a homotopy between the

two functions [79]. In precise mathematical language, a homotopy is a continuous
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function H : [0, 1]× R→ C of two given function f1, f2 : R→ C such than

H(0, t) = f1(t)

H(1, t) = f2(t).

Here we do not pursue in depth the field of algebraic topology in depth but we focus

on the application of homotopy in stochastic modeling of network traffic.

We consider firstly the sum Z = X1+, ...,+Xn of n identically distributed random

variables Xn whose common characteristic function is denoted by ϕ. If they are inde-

pendent, then the distribution of Z

ϕZ(x) = ϕn(x).

And they are strongly related, which implies Z = nX, then

ϕZ(x) = ϕ(nx).

We want to construct a deformation of characteristic functions with the following four

requirements fulfilled:

Continuity

We assume that dependence can increase continuously, in other words, there exists a

continuous process from independence to complete dependence.

Single Parametrization

In practice only first and second statistics are considered and the most familiar and
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often used measure of dependence between two random variables X and Y is the cor-

relation coefficient, which is obtained by dividing the covariance of the two variables

by the product of their standard deviations

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
.

Under this premise, only one parameter suffices to represent dependence.

Invariable First Derivative at the Origin

The expected value operator is linear

E [Y ] = E

[
n∑
i=1

Xi

]
= nE [X]

for all identically distributed random variables, dependent or independent. Therefore

dϕY (x)

dx
|x=0 = inE [X]

is free from dependence of X.

Positive Definiteness

By Bochner theorem A, a valid characteristic function of random variable must be

positive definite.

Above all, our task boils down to construction of a one parametric continuous function

(homotopy) connecting ϕn(x) and ϕ(nx) with positive definiteness preserved. To be

more precise, we are to find a homotopy H : [0, 1]× R→ C such that
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1. it connects ϕn(x) and ϕ(nx)

H(0, x) = ϕn(x)

H(1, x) = ϕ(nx).

2. H(α, x) is a positive definite function with respect to x for all 0 ≤ α ≤ 1

n∑
i,j=1

H (α, xi − xj)xixj > 0,∀xi,xj ∈ R, ∀n ∈ N.

3. the first partial derivative at the origin ∂H(α,x)
∂x
|x=0 is independent of α

∂H (α, x)

∂x
|x=0 = n

∂ϕ (x)

∂x
|x=0.

Here a homotopy can be comprehended as a characteristic function with a single

unknown parameter.

In the following, we present two approaches of constructing such a homotopy. First

we study a subclass of distribution, infinitely divisible distribution, and demonstrate

that ϕα is a valid characteristic function. Second, we use convex combination in which

positive definiteness is automatically preserved.

Construction of Homotopy for Infinitely Divisible Distribution

We recall the definition of infinitely divisible distribution.

Definition 6.1. A distribution F is infinitely divisible if for every natural number
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n there exists a distribution Fn such that

F = F ∗nn

In other words, F is infinite divisible if and only if for each n it can be represented

as the distribution of the sum of n independent random variables with a common

distribution Fn.

Proposition 6.2. Let ϕ is a characteristic function of an infinitely divisibly distributed

random variable, then ϕα is also a valid characteristic function of some random vari-

able for all positive α.

Proof. it suffice to prove ϕα is a positive definite function for all real numbers.

Firstly we know from definition that ϕ
1
n is a valid characteristic function and conse-

quently ϕ
m
n for all natural numbers m,n. Hence ϕα is positive definite for all rational

numbers.

Secondly we assume ϕα is not positive definite function for some irrational number α,

i.e. there exists a vector (x1, x2, ..., xn) such that

n∑
i,j=1

xixjϕ
α (xi − xj) < 0.

Let (αn)n be a sequence of rational numbers converging to α, so

n∑
i,j=1

xixjϕ
αn (xi − xj) ≥ 0
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for all n and

lim
n→∞

n∑
i,j=1

xixjϕ
αn (xi − xj) =

n∑
i,j=1

xixjϕ
α (xi − xj) .

A sequence of positive numbers converges to a negative number, which leads to a

contradiction. The proposition is proved

We have proved that ϕα is well-defined characteristic function for all positive num-

bers, then we construct a homotopy

H(α, x) = ϕn−α(n−1)

(
nx

n− α (n− 1)

)

Remark 6.3. Infinitely divisible distribution is strongly related to Levy process. Let

X denote an infinitely divisibly distributed random variable and X 1
n

denote a random

variable distributed by Fn, then {Xt}t is a Levy process.

Construction of Homotopy by Convex Combination

An another approach to construct such a homotopy is to use convex combination

H (α, x) = αϕ (nx) + (1− α)ϕn (x) .

Obviously such H is continuous, one-parametric, with positive definite preserved and

with invariable first derivative.
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Parameter Determination

From probability theory, if random variable has second moments, then the character-

istic function ϕ is twice continuously differentiable on the entire real line

ϕ
(2)
Y (0) = i2EY 2.

As was mentioned above, a homotopy H(α, x) can be comprehended as a characteristic

function with a single undetermined parameter α

− ∂2

∂x2
H(α, x)|x=0 = m2

Y

where m2
Y denotes second moment of random variable Y . In this equation all terms

except α are known and parameter α can be determined by solving this equation.

Finally the density function can be computed through inverse Fourier transform

f(x) =
1

2π

ˆ
R
e−isxH(α, s)ds.

Example. We consider sum Y =
∑n

i=1Xi of n exponential distributed random vari-

ables Xi. We construct a homotopy

H(α, x) =

(
1− inx

λ (n− α (n− 1))

)−(n−α(n−1))

, 0 ≤ αn ≤ n− 1
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then

∂

∂x
H(α, x)|x=0 = − (n− α (n− 1))

(
1− inx

λ (n− α (n− 1))

)−(n−α(n−1))−1 −in
λ (n− α (n− 1))

=

(
1− inx

λ (n− α (n− 1))

)−(n−α(n−1))−1
in

λ

and

∂2

∂x2
Hn(αn, x)|x=0

= − (n− α (n− 1) + 1)

(
1− inx

λ (n− α (n− 1))

)−(n−α(n−1))−2 −n2

λ2 (n− α (n− 1))
|x=0

=
− (n− α (n− 1) + 1)n2

λ2 (n− α (n− 1))
.

Finally the density function of Y is

fY (x) =
1

2π

ˆ
R
e−isx

(
1− inx

λ (n− α (n− 1))

)−(n−α(n−1))

ds

where
(n− α (n− 1) + 1)n2

λ2 (n− α (n− 1))
= m2

Y .

6.2 Homotopic Approach in Network Traffic Model-

ing

A few studies have advocated the existence of upper bound in the time-scale associ-

ated with the correlation structure of TCP traffic and beyond which correlation be-
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comes negligible [80]. Network traffic exhibits a correlation structure only over a

finite range of time-scales [81], which is clearly not consistent with the concept of self-

similarity. To mathematically describe this time scale related correlation structure,

we need to introduce a new parameter in our model which represents this time scale

dependent correlation structure. For this reason homotopic approach, which allows

to describe continuous deformation between functions, is a useful tool in modeling

network traffic.

We choose a time unit and denote by St the number of packets received up to time t.

As traffic is time scale related, we use t to measure time scale. The stochastic process

{St} is called transmission process. We denote the mean

E [St] = µt

and variance

σ2
t = E

[
S2
t

]
− µ2

t .

We consider first the amount of packets received in a time unit, which can be repre-

sented by a random variable S1 and let ϕ denote the given characteristic function of

S1. Now we want to calculate the characteristic functions of St, which represents the

number of packets in time t.

For this propose we construct a homotopy Ht(αt, x) such that

Ht(0, x) = ϕt(x)

Ht(1, x) = ϕ(tx)
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under some necessary assumptions.

Here the value of αt depends uniquely on the dependence among packets received in

time t and can be obtained by solving the equation

∂2Ht(αt, x)

i2∂x2
|x=0 = E

[
S2
t

]
= σ2

t + µ2
t

For each time scale t we can solve a parameter αt.

In conclusion, the transmission process {St} is characterized by the density functions

ft(x) =
1

2π

ˆ
R
Ht(αt, s)e

−ixsds

Example 6.4. We consider the characteristic function of poisson distribution

ϕ(x) = exp(λ(eix − 1))

and construct a homotopy

Ht(αt, x) = (1− αt) exp(tλ(eix − 1)) + αt exp(λ(eitx − 1))

then
∂2

∂x2
Ht(αt, x)|x=0 = (1− αt)

(
λ2t2 + λt

)
+ αtt

2
(
λ2 + λ

)
= µ2

t + σ2
t .

Finally the density function is

ft(x) =
1

2π

ˆ
R

(1− αt) exp(tλ(eiu − 1)) + αt exp(λ(eitu − 1))e−ixudu
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where

αt =
µ2
t + σ2

t − λ2t2 − λt
λt (t− 1)

.

Summary

In modeling of network traffic, dependence is a factor that cannot be ignored as real

network traffic exhibits strong positive correlation. In order to inject dependence into

our models we present a homotopic approach.

We need a homotopy linking strong dependent case and independent case. A valid

homotopy, which satisfies this condition, must be positive definite due to the Bochner

theorem. We present two ways of constructing such homotopy.
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Chapter 7

Conclusions and Perspectives

Summary of Contributions

This thesis began by arguing that new mathematical tools for internet traffic are

required due to the failure of traditional mathematical models in network traffic.

This dissertation proposed two mathematical tools: random sum and homotopy.

First we generalize from a multiplicative model to two random sum related model

models: single path model and multiple path model, and give an explanation of heavy

tail and long range dependence effects in network traffic.

In addition, we propose a new approach, homotopic approach, to model network traf-

fic.

The one path model and multiple model concern more about network topology, such as

source, router, destination such factors while homotopic model considers only depen-

dence and correlation. For this reason, the first two models, in particular the multiple

path model are more favorable in practice.
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The most important contributions of this thesis can be summarized as follows:

• Random Sum and Failure Rate Limit: Our research began with a powerful

mathematical tool: random sum. Most of the problems are highly random and

complex, and for this reason random sum is a useful tool to analyze network

traffic. In chapter 3, we proved that failure rate limit is invariant under con-

volution, and therefore can be taken as an invariant parameter under random

summation. Furthermore we demonstrate by using this parameter that random

sum can be approximated by a distribution equipped with a polynomial.

• A Single Path Random Sum Model: In 4 we employed random sum to derive

a single path model of inter delay times and throughput traffic. We also showed

that inter delay times under this model can be approximated by a convex combi-

nation of Erlang distributions. Finally, we deduced a model of throughput traffic

by using a duality relation between inter delay times and throughput traffic.

• A Multiple Path Random Product Model: In packets switched network,

packets are routed individually, sometimes resulting in different paths. In 5

we present a multi path model by using random product. Under this model, we

can explain the mechanism behind the heavy tail and long range dependence of

Internet traffic.

• A Homotopic Approach in Modeling of Network Traffic: In modeling of

Internet traffic, dependence is a factor that cannot ignore. We introduce in

Chapter 6a homotopic approach to analyze dependence of internet traffic. We

constructed a homotopy linking strongly dependent case to independent case,
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with positive definiteness preserved. We obtained then the distribution by cal-

culating the Fourier Transform of this homotopy.

Perspectives

• Construction of an appropriate homotopy: We present a homotopic ap-

proach to model network traffic. However, it is difficult to check positive defi-

niteness of a given function. This makes construction of an effective homotopy

with positive definiteness preserved a challenging task in practice.

• New financial model instead of Black-Scholes model: Normal distribution

is inappropriate for extreme event modeling and this is probably the reason why

it is claimed "the Black-Scholes equation was the mathematical justification for

the trading that plunged the world’s banks into catastrophe". However, a model

based on a distribution of the form

F (x) = 1− e−λxf(x)

seems to be a more reasonable model. Firstly it can handle heavy tail, secondly

it is related to Levy process, and hence it can be taken as a valid integrand.

• Relation between power-law distributions and exponential distribu-

tions: Power-law distributions occur in many scientific fields and have sig-

nificant consequences for understanding the nature of natural and man-made

phenomena. There seems to be a relation between power-law distributions and
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exponential distributions. Consider a power-law distributed random variable X

P [X > x] ∼ x−λ

and let X ′ = lnX, x′ = lnx. Then

P [X ′ > x′] ∼ e−λx
′
.

In this way, many power-law related phenomena might be described by simple

but hidden exponentially distributed random variables.
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Appendix A

Probability theory

In this section we will outline some of the basics of probability theory needed in this

dissertation.

Probability theory is the branch of mathematics concerned with probability, the anal-

ysis of random phenomena. The central objects of probability theory are random vari-

ables, stochastic processes, and events. As a mathematical foundation for statistics,

probability theory is essential to science and engineering that involve quantitative

analysis of large sets of data. Methods of probability theory also apply to descrip-

tions of complex systems given only partial knowledge of their state, as in statistical

mechanics.

Probability and Distribution

Definition A.1. A probability space (Ω,F , P ) consists of a basic space Ω, a σ-

algebra F and a probability measure P . A random variable X is a measurable

function on (Ω,F , P ). A probability distribution FX of a random variable X on the
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real line is determined by the probability of a scalar random variable X in a half-open

interval (−∞, x]:

FX(x) = P [X ≤ x]

The expected value of random variable X is defined as

E [X] =

ˆ
Ω

XdP

the variance

Var [X] =

ˆ
Ω

(X − E (X))2 dP

the nth moment

E [Xn] =

ˆ
Ω

XndP

Example A.2. In probability theory and statistics, the exponential distribution is the

probability distribution of the amount of time until some event occurs. For instance,

the amount of time (starting from now) until an earthquake occurs, or until a new

war breaks out, or until a telephone call you receive turns out to be a wrong number

are all random variables that tend in practice to have exponential distributions.

A continuous random variable X whose probability distribution is given, for some

λ > 0, by

FX(x) = 1− e−λx

is called exponential random variable. The exponential distribution often arises,

in practice, as being the distribution of the amount of time until some specific event

occurs. For instance, the amount of time (starting from now) until an earthquake
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occurs, or until a new war breaks out, or until a telephone call you receive turns out to

be a wrong number are all random variables that tend in practice to have exponential

distributions.

Example A.3. The sum of n i.i.d exponentially distributed random variables with

parameter λ is Erlang distribution

F ∗k (x) = 1−
k−1∑
j=0

e−λx (λx)j

j!
(A.1)

Proof. Define an integral operator L through

LΠ(x) =

ˆ x

0

λe−λyΠ(x− y)dy

Let Π(x) = e−λx, then

LkΠ(x) =
e−λx (λx)k

k!

We prove (A.1) by mathematical induction. Assume this equality is satisfied, then

Lk+1Π(x) = LLkΠ(x) =

ˆ x

0

λe−λye−λ(x−y) (λ (x− y))k

k!
dy

=
e−λx (λx)k+1

(k + 1)!

Let F denote exponential distribution function and define an integral operator L

through

LΠ(x) =

ˆ x

0

Π(x− y)dF (y)
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Then

F ∗k (x) = F (x) +

ˆ x

0

F ∗(k−1)(x− y)dF (y)

= F (x) + LF ∗(k−1)(x) =
k−1∑
j=0

LjF (x)

=
k−1∑
j=0

e−λx (λx)j

j!

Then

F ∗k (x) = 1−
k−1∑
j=0

e−λx (λx)j

j!

Characteristic Function

An equivalent specification of random variable is the characteristic function of a ran-

dom variable. It was originally developed as a tool for the solution of problems in

probability theory and admit many important applications in the branch of mathe-

matics as well as in Mathematical Statistics. In particular, it provides the basis of an

alternative route to analytical results compared with working directly with probabil-

ity density functions or cumulative distribution functions [82].

Definition A.4. Characteristic function ϕX of a random variable X is defined by

ϕX(t) = E
[
eitX

]
, t ∈ R
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Theorem A.5. [Uniqueness Theorem] Two distribution functions F1 and F2 are iden-

tical if and only if their characteristic functions ϕ1 and ϕ2 are identical.

Proof. See [82].

Theorem. [Bochner Theorem] An arbitrary function ϕ : R → C is the characteristic

function of some random variable if and only if ϕ is positive definite, continuous at

the origin, and if ϕ(0) = 1.

Radon-Nikodym Theorem

In probability theory, the Radon-Nikodym theorem is very important in extending the

ideas of probability theory from probability functions and density functions defined

over real numbers to probability measures defined over arbitrary sets. It provides a

unified description for studying continuous and discrete systems.

Definition A.6. A measure ν is absolutely continuous with respect to µ, i.e. ν � µ

if µ(A) = 0 implies that ν(A) = 0.

Theorem A.7. Let µ and ν be σ finite measures on space (Ω,F). If ν � µ, there is a

function f : Ω→ R≥0 so that for all A ∈ F

ν [A] =

ˆ
A

fdµ

This Function f is usually denoted dν
dµ

and called the Radon-Nikodym derivative.

Both probability function and density function are Radom-Nikodym derivative with

respect to corresponding probability measure.
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Independence, Sub independence and Conditional In-

dependence

In probability theory, independence of two random variables is a fundamental con-

cept, which means that the realization of one random variable does not affect the

probability distribution of the other and extends to dealing with collections of more

than two events or random variables [78,83–85].

Definition A.8. Two random variables X and Y are said to be independent if

FX,Y (x, y) = FX(x) · FY (y)

Sub independence is a weak form of independence [85].

Two random variables X and Y are said to be sub-independent if

ϕX+Y (t) = ϕX(t) · ϕY (t)

This is a generalization of the concept of independence of random variables. Indepen-

dence implies sub independence, but not conversely.

Proposition A.9. If X and Y are independent, then they are sub-independent.

ϕX+Y (t) = ϕX(t) · ϕY (t)

Proof. Trivial

Proposition A.10. If X, Y, Z are independent, then X, Y are conditionally indepen-
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dent given Z.

Proof. Trivially

E [XY |Z] = E [XY ] = E [X] E [Y ] = E [X|Z] E [Y |Z]
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Appendix B

Heavy Tail

B.1 Heavy Tail in Probability Theory

In probability theory, heavy-tailed distributions are probability distributions whose

tails are not exponentially bounded: that is, they have heavier tails than the expo-

nential distribution [59, 61, 62, 86]. In practice three important class of heavy tail

distribution are, the fat-tailed distributions, long-tailed distributions and sub expo-

nential distributions, among which sub-exponential distributions are most commonly

used.

Definition B.1. The distribution of a random variable X with distribution function

F is said to have a heavy tail if

lim sup
x→+∞

F (x) exs = +∞

for all s > 0.
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Remark B.2. In practice, a working definition of heavy tail is, a heavy-tailed distribu-

tion is one that has a tail function of the form

F (x) ∼ x−αL(x), 0 ≤ α ≤ 2

where L(x) is a slowly varying function

lim
x→+∞

L(tx)

L(x)
= 1,∀t > 0

It has been shown in [18–20,39–43] that the distribution of the files transferred across

the Internet is indeed heavy-tailed.

Proposition B.3. X is heavy-tailed distributed if and only if E
[
esX
]

= ∞ for all

s > 0.

Proof. Firstly we assume if lim supx→+∞ F (x) exs = +∞, then

E
[
esX
]

=

ˆ ∞
0

esxdF (x) =

ˆ ∞
t

esxdF (x) ≥ est
ˆ ∞
t

1dF (x) = estF (t)

Therefore

E
[
esX
]
≥ lim sup

t→+∞
estF (t) = +∞

Secondly if E
[
esX
]

= ∞, then F is not bounded by exponential distribution, i.e. for

any a, b > 0

F (x) > ae−bx
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for some x. We choose b < s, then

lim sup
x→+∞

F (x) esx > lim sup
x→+∞

ae(s−b)x = +∞

Example B.4. A log-normal distribution is a continuous probability distribution

of a random variable whose logarithm is normally distributed. Thus, if the random

variable X is log-normally distributed, then Y = log(X) has a normal distribution.

We consider the moment generating function.

E
[
etX
]

=
∞∑
n=0

enµ+σ2

2

n!
tn

Log-normal distribution is heavy tailed from proposition B.3.

Definition B.5. The distribution of a random variable X is said to have a fat tail if

fX(x) = ax−(1+α), α > 0

Fat-tailed distribution is heavy-tailed as

E
[
etX
]

= a

ˆ +∞

0

etxx−(1+α)dx =∞

for all t.
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B.2 Heavy Tail and Extreme Events Modeling

Extreme event modeling [59,62] concerns events that occur with relatively small prob-

ability but have a significant influence on the behavior of the whole model. For exam-

ple, we consider extremal claims in insurance mathematics. We denote byX1, X2, ..., Xn

independent and identically distributed claims all with claim size distribution F and

then we introduce a new random variable max1≤i≤nXi. We may ask about the distri-

bution of
∑

1≤i≤nXi. We consider a class of large claim distributions. Their defining

property is

lim
x→+∞

P
[∑

1≤i≤nXi

]
P [max1≤i≤nXi]

= 1

for every n ≥ 2. Thus the tails of the distribution of the sum and of the maximum

of the claims are asymptotically of the same order, which clearly indicates the strong

influence of the largest claim on the total claim amount and it gives a natural descrip-

tion of extreme events.
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Appendix C

Infinitely Divisible Distribution and Levy Process

Example C.1. In this section we introduce a class of distributions, namely infinitely

divisible distributions. A detail discussion can be found in [87].

Definition C.2. A distribution F is infinitely divisible if for every natural number

n there exists a distribution Fn such that

F = F ∗nn

In other words, F is infinite divisible if and only if for each n it can be represented

as the distribution of the sum of n independent random variables with a common

distribution Fn.

Example C.3. Here are some examples of infinitely divisible distributions

1. The degenerated distribution with characteristic function

ϕ(t) = eiat
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2. Gamma distributions including exponential distribution with characteristic func-

tion

ϕ(t) =
1

(1− itβ)α

3. Poisson distribution with characteristic function

ϕ(t) = eλ(eit−1)

4. Cauchy Distribution

ϕ(t) = eitµ−θ|t|

5. The negative binomial distribution

ϕ(t) =

(
1− p

1− pei t

)r

6. Normal distribution

ϕ(t) =eitµ−
1
2
σ2t2

Infinitely divisible distributions are intimately connected with Lï¿œvy process. In

probability theory, a Lï¿œvy process, named after the French mathematician Paul

Lï¿œvy, is a stochastic process with independent, stationary increments.

Definition C.4. A stochastic process X = {Xt : t ≥ 0} is said to be a Lï¿œvy process

if it satisfies the following properties:

1. X0 = 0 almost surely,
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2. Independence of increments: For any 0 ≤ t1 < t2 < · · · < tn <∞, Xt2 −Xt1 , Xt3 −

Xt2 , . . . , Xtn −Xtn−1 are independent,

3. Stationary increments: For any s < t,Xt −Xs , is equal in distribution to Xt−s,

4. Continuity in probability: For any ε > 0 and t ≥ 0 it holds that

lim
h→0

P (|Xt+h −Xt| > ε) = 0

Remark. The distribution of a Lï¿œvy process has the property of infinite divisibility:

for any given natural number n

X1 =
n∑
i=1

(
X i

n
−X i−1

n

)

Conversely, for any infinitely divisible probability distribution F , we can construct a

Lï¿œvy process X such that the law of X1 is given by F .
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Appendix D

Application of Convolution Invariant in Finance

In economy and finance, it is widely acknowledged that heavy tail is one of the main

properties of observed prices which is not verified by the Black & Scholes models.

Empirical studies showed that prices and returns of assets obey to power laws [88,89]

1− F (x) ∼ kx−α

In [90] it is asked, “Can we fully explain the power law distribution of financial vari-

ables, particularly returns and trading volume?” In the following we propose an an-

swer to this question.

Let St denote the prices of a financial asset where time is measured on days units.

Then

St = S0

t∏
i=1

(1 + ri)

Here ri represents the interest rate at time i. We define

ht = lnSt
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then ht can be expressed by sum of random variables, and therefore from (3.1)

P [ht < x] = 1− e−λxpt(x)

So

P [St < x] = P [lnSt < lnx] = P [ht < lnx] = 1− x−λpt(lnx)

where pt is a power-law function depending on t.
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