

PhD-FSTC-2015-15
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 01/04/2015 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

YASIR IMTIAZ KHAN
Born on 04 September 1983 in Depalpur, (Pakistan)

PROPERTY BASED MODEL CHECKING OF
STRUCTURALLY EVOLVING ALGEBRAIC

PETRI NETS

Dissertation defense committee
Dr Nicolas Guelfi, dissertation supervisor
Professor, Université du Luxembourg

Dr Didier Buchs
Software Modeling and Verification Group , Geneve
Professor, Université du Geneve

Dr Pascal Bouvry, Chairman
Professor, Université du Luxembourg

Dr Matteo Risoldi
Golden Tech S.A., Switzerland

Dr Raymond Bisdorff, Vice Chairman
Professor, Université du Luxembourg

ii

Acknowledgements

In the name of Allah the most gracious the most merciful

First of all , I would like to thank the almighty Allah (Subhan Wa Taalah) for His
countless blessings on me. He blessed me with an exciting opportunity to pursue my
career.

Regarding my dissertation, I would like to express my gratitude towards my thesis
supervisor, Prof. Nicolas Guelfi. I would never have been able to finish my disserta-
tion without his guidance. The good thing about him is that he never spoon-fed me
with the ideas and solutions. He always pushed me to think out of the box and trained
me to work independently. I would also like to thank my thesis defense committee
members, Prof. Pascal Bouvry, Prof. Raymond Bisdorff. Besides my advisor, I would
like to thank the Prof. Didier Buchs and his team members for their collaboration and
insightful comments on my work. My sincere thanks also goes to Dr. Matteo Risoldi
and Dr. Levi Lucio for guiding my research for the past several years and helping me
to develop my background in the field of software engineering. I gratefully acknowl-
edge the funding sources that made my Ph.D. work possible. I was funded by the FNR
(Fonds National de la Recherche) Luxembourg for four years.

A special thanks goes to my family members. Words cannot express my feelings
especially about my parents. They laugh when I laugh, they cry when I cry. I am thou-
sands of miles away from my mother but whenever I am troubled she gets to know, I
wonder how she does that. I am grateful to my father’s countless prayers and efforts
for me. My siblings are the most valuable assets for me. My big brother who always
took care of me, he played father’s role in my childhood and became friend when
I grew up. I would not have achieved any thing without my close sisters Bushra &
Fatimah. The prayers of my sisters for me were what sustained me thus far. I would
like to thank my brother in laws especially Mr. Akram Khan who showed me the right
path to pursue my career.

Friends are the greatest gift of life and I am lucky to have them (Saleem khan,
Abid, Azam, Manazar, Arshad, Mehfooz, Zaheer, Hasnain, Noman, Javaid, Umer). I
would like to thank them for their support and company. They are always kind to bear
my temper and get along with me.

Finally, and most importantly, I would like to thank my wife Dr. Sidra Tulmuntiha.
Her tolerance of my occasional rough moods is a testament in itself of her unyielding
devotion and love.

This thesis is dedicated to the people of Depalpur city and our upcoming baby.

Abstract
There are two important challenges in any system development life cycle, the first
is to ensure the correctness of a model at the earliest stage possible and the second
is to ensure its correctness once it evolves with respect to the emergence of new re-
quirements, performance may need to be improve, business environment is changing.
Usual verification techniques such as testing and simulation are used commonly for
the verification of a model. The downsides of these techniques are that there is no
guarantee of the absence of errors and they need to be repeated after every evolved
version.

Model checking is an automatic technique for verifying finite state system models.
Although, model checking is proved to be a useful technique, the typical drawback
of model checking is its limits with respect to the state space explosion problem.
As system gets reasonably complex, completely enumerating their states demands
increasing amount of resources. Various techniques like symbolic model checking, on
the fly model checking and compositional reasoning partially overcome this problem.

Petri net is a well-known low-level formalism for modeling and verifying concurrent
and distributed systems. The modeling of systems by low-level Petri nets is tedious
and therefore various advancements have been created to raise the level of abstraction
of Petri nets. Among others, Algebraic Petri nets raise the level of abstraction of
Petri nets by replacing black tokens with the elements of user defined data types i.e.,
algebraic abstract data types.

The first contribution of this thesis is to develop an approach to tackle the state space
explosion problem for model checking of Algebraic Petri nets by re-using, adapting
and refining state of the art techniques. The proposed approach is based on slicing
and the central idea is to perform verification only on those parts that may affect the
property the Algebraic Petri net model is analyzed for. We propose several slicing
algorithms for Algebraic Petri nets and can be applied to Petri nets by slight modifi-
cations. The proposed slicing algorithms can alleviate the state space even for certain
strongly connected nets and are proved not to increase the state space.

The second contribution is an approach to improving re-verification of structurally
evolving Algebraic Petri nets. The idea is to classify evolutions and properties to
identify which evolutions require re-verification. We argue that for the class of evolu-
tions that require verification, instead of verifying the whole system, only a part that
is concerned by the property can be sufficient.

The third contribution is the development of a stand-alone tool i.e., SLAPn. The objec-
tive of this tool is to implement proposed slicing algorithms and to show the practical
usability of slicing technique. An interesting exploitation of SLAPn is that it can be
added to any existing model checker as a pre-processing step.

Contents

Abstract . ii

1 Introduction 1
1.1 Formal verification . 3

1.1.1 Model Checking . 3
1.1.2 Improving Model checking 4

1.2 Contributions . 5
1.2.1 Property based model checking of Algebraic Petri nets 5
1.2.2 Property based model checking of structurally evolving Alge-

braic Petri Nets (APNs) . 7
1.2.3 A tool for Slicing Algebraic Petri nets (SLAPn): A tool for

slicing Petri nets (PNs) and APNs 8
1.3 Organization of this thesis . 8

2 Informal and Formal Definitions 11
2.1 Petri nets Definitions . 11

3 Survey of Petri nets Slicing 23
3.1 Overview and Background of Slicing 25
3.2 Petri nets Slicing . 25

3.2.1 Types of Slicing . 26
3.3 Petri nets Slicing Algorithms . 29

3.3.1 Chang et al Slicing . 29
3.3.2 Lee et al Slicing . 31
3.3.3 Llorens et al Slicing . 33
3.3.4 Rakow Slicing . 35
3.3.5 Wangyang et al Slicing . 37

3.4 Comparison of Petri nets slicing algorithms 40

4 Property Based Model checking of Algebraic Petri nets 43
4.1 Slicing Algebraic Petri nets . 46

4.1.1 Partial Unfolding Algebraic Petri nets 46
4.1.2 Example: Partially Unfolding an Algebraic Petri net 48

4.2 Extraction of Criterion Places . 50
4.3 Static Slicing on Partially Unfolded Algebraic Petri nets 50

4.3.1 The slicing algorithm: APNSlicing 50

iii

iv Contents

4.3.2 Proof of the preservation of properties by APNslicing algorithm 53
4.3.3 Abstract Slicing on Unfolded APNs 58
4.3.4 The Slicing Algorithm: AbstractSlicing 59
4.3.5 Proof of the preservation of properties by abstractslicing algo-

rithm . 62
4.3.6 Property Specific Slicing Algorithms 63
4.3.7 Safety Slicing . 63
4.3.8 The Slicing Algorithm: SafetySlicing 63
4.3.9 Liveness Slicing . 66
4.3.10 The Slicing Algorithm: LivenessSlicing 66

4.4 Dynamic Slicing Algebraic Petri nets 69
4.4.1 The Slicing Algorithm: Concerned Slicing 69
4.4.2 Smart Slicing . 72
4.4.3 The slicing Algorithm: Smart Slicing 72

4.5 Slicing Low-level Petri nets . 76
4.5.1 The Slicing Algorithm: Abstract Slicing Algorithm for Low-

level Petri nets . 76

5 Property Based Model checking of Structurally evolving Algebraic Petri
nets 79
5.1 Unfolding, Slicing Algebraic Petri nets 81
5.2 Slicing evolved and non-evolved Algebraic Petri nets 82

5.2.1 Classification of Evolutions 84
5.2.2 Evolutions taking place outside the Slice: 84
5.2.3 Evolutions taking place inside the Slice: 85

5.3 Property based verification of evolving low-level Petri nets 89

6 Case Study & Evaluation 91
6.0.1 Use Cases Car Crash Management System 91
6.0.2 Formal Language Representation of Car Crash Management

System . 93
6.0.3 Interesting Properties . 94

6.1 Applying Slicing Algorithms on Car Crash Management System . . . 96
6.1.1 APNSlicing Algorithm on Car Crash Management System . . 96
6.1.2 Abstract Slicing Algorithm on Car Crash Management System 97
6.1.3 Concerned Slicing Algorithm on Car Crash Management Sys-

tem . 99
6.2 Structural Evolutions to Car Crash Management System 100
6.3 Evaluation . 103

6.3.1 Applying slicing algorithm to generate slices for every place . 107
6.4 Applying slicing algorithm on practically relevant properties 109

7 SLAPn: A tool for slicing Petri nets and Algebraic Petri nets 119
7.1 Overview . 121
7.2 Tasks in SLAPn . 124

Contents v

8 Conclusion and Future work 127
8.1 Future Work . 127

A Acronyms 129

B Algebraic Specifications for Car Crash Management System 131
B.0.1 Algebraic specifications for CCMS 131

C Java Program for APN Slicing Algorithm 135

vi Contents

List of Figures

1.1 A naive Approach . 2
1.2 Model checking . 4
1.3 Petri nets (PN) model and its slices w.r.t places B and C 5
1.4 APNs slicing overview . 6
1.5 Property based Model checking of structurally evolving APNs 8
1.6 SLAPn’s main screen . 9

2.1 Eample Petri net model . 11
2.2 Eample Algebraic Petri Net (APN) model and associated Algebraic

Abstract Data Type (AADT) . 13
2.3 Resultant APN after firing transition t1 17
2.4 Marking graph and Kripke structure of example APN model, Fig.2.2. 18

3.1 Process of model checking . 23
3.2 Example program and its slice . 25
3.3 Example Petri net and its sliced model after applying basic slicing

algorithm (Alg.1). 27
3.4 Types of PN slice . 28
3.5 Slicing algorithms . 29
3.6 Example Petri net model and its concurrency set by applying Chang

algorithm . 32
3.7 Example Petri net model and resultant sliced Petri net model by Llorens

algorithm. 35
3.8 Reading and non-reading transitions of Petri net. 36
3.9 An example Petri net model and its sliced Petri net models by applying

A.Rakow’s proposed algorithms. 38
3.10 An example Petri net model and its sliced Petri net models by applying

Wangyang’s algorithm. 40
3.11 Petri net slicing algorithms w.r.t slice size 40

4.1 Process Flowchart of Property based model checking of Algebraic
Petri nets . 45

4.2 Syntactically and semantically reading transitions of Algebraic Petri
nets . 46

4.3 An example APN model with non-unfolded terms over the arcs 47
4.4 Resulting unfolded APN after applying the eval function 48

vii

viii List of Figures

4.5 An example APN model (APNexample) 48
4.6 Partially unfolded example APN model (UnfoldedAPN) 49
4.7 Resultant Sliced Unfolded example APN model (SlicedUnfoldedAPN) 52
4.8 Neutral and Reading transitions of Unfolded APN 58
4.9 Abstract slicing construction methodology 59
4.10 The sliced unfolded APNs (by applying abstract slicing) 61
4.11 The sliced unfolded APNs (by applying Safety slicing algorithm) . . . 65
4.12 The sliced unfolded APNs (by applying liveness slicing) 68
4.13 The sliced unfolded APNs (by applying concerned slicing) 71
4.14 The resultant marking for token value 1 (by applying smart slicing) . . 74
4.15 The resultant marking for token value 2 (by applying smart slicing) . . 75
4.16 Reading and Neutral transitions in low-level Petri net 76
4.17 Petri net model and resultant sliced model after applying Abstract slic-

ing algorithm . 78

5.1 Process Flowchart of Property based model checking of Algebraic
Petri nets . 80

5.2 Overview of slicing Algebraic Petri nets 81
5.3 Structural evolutions to Algebraic Petri nets 83
5.4 The resultant sliced APN-model after applying abstract slicing algorithm 83
5.5 Classification of Structural Evolutions to Algebraic Petri nets 84
5.6 Structural evolutions to Algebraic Petri net model taking place outside

the slice . 86
5.7 Structural evolutions to Algebraic Petri net model taking place outside

the slice . 88
5.8 Structural evolutions to Algebraic Petri net model taking place outside

the slice . 88
5.9 Process flowchart for verification of evolving Petri nets 89
5.10 Example Petri net and its sliced net (by applying abstract slicing algo-

rithm) . 89
5.11 Evolutions to Petri net model taking place outside the slice 90

6.1 Car crash Algebraic Petri net model 93
6.2 The unfolded Car crash Algebraic Petri net model 95
6.3 Sliced Car Crash APN model w.r.t φ1 and φ2 (by applying APNSlicing

algorithm) . 97
6.4 Sliced Car Crash APN model w.r.t φ1 and φ2 (by applying Abstract

Slicing algorithm) . 98
6.5 Sliced Car Crash APN model (by applying Concerned Slicing algorithm) 99
6.6 Evolved Car Crash (evolution taking place outside the slice) 100
6.7 Evolved Car Crash (evolution taking place inside the slice) 101
6.8 Model checking process . 104
6.9 SLAPn Overview . 105
6.10 Comparison of APNSlicing and Abstract Slicing algorithms 110
6.11 Comparison of APNSlicing and Abstract Slicing algorithms 114

List of Figures ix

6.12 Comparison of APNSlicing, Abstract Slicing and Liveness Slicing al-
gorithms . 116

7.1 Expanded Process flow of SLAPn 120
7.2 SLAPn Meta model . 121
7.3 SLAPn main screen . 122
7.4 SLAPn architecture . 123
7.5 Slapn generated files . 123
7.6 Drawing a APN model using SLAPn editor 124
7.7 Writing temporal formula . 125
7.8 Sliced model by applying APNSlicing algorithm 125
7.9 Sliced model by applying Abstract slicing algorithm 125

x List of Figures

List of Tables

1.1 Proposed Slicing Algorithms for Algebraic Petri nets 7

3.1 Comparison of PN slicing Algorithms 41

4.1 Proposed Slicing Algorithms for Algebraic Petri nets 44
4.2 Comparison of number of states required to verify the property with

and without APNslicing. 52
4.3 Comparison of number of states required to verify the property with

and without Abstract Slicing. 60

6.1 Comparison of number of states with and without slicing 97
6.2 Comparison of number of states with and without slicing 98
6.3 Comparison of number of states reduced by applying APNSlicing and

Abstract Slicing algorithms . 99
6.4 Comparison of evolutions and re-verification 102
6.5 Different Model Checker for Petri nets Classes 105
6.6 Benchmark Case Studies APN models 106
6.7 Applying APNSlicing algorithm . 108
6.8 Applying Abstract Slicing algorithm 109
6.9 Results with different properties concerning APN models by Applying

APNSlicing algorithm . 113
6.10 Results with different properties concerning to APN models by Ap-

plying Abstract Slicing algorithm . 115
6.11 Results with different properties concerning to APN models by Ap-

plying Liveness Slicing algorithm . 116

xi

xii List of Tables

Chapter 1

Introduction

Seek knowledge from the cradle to the grave.
— Muhammad (PBUH)

Software evolution is inevitable in the field of Information and Communication Tech-
nology (ICT). Existing software systems continue to evolve due to many reasons such
as the impact of system’s environment changes, emergence of new requirements due
to business changes [Som06]. In general, large organizations prefer to evolve exist-
ing software rather than developing new software. There are several keywords, which
speak about the evolution such as change, adaptation, variation, modification, trans-
formation etc. It has been shown by statistical evidence that the more a system evolves
the more its complexity grows and its performance decreases [Sim03, Lap05, Erl00].

A lot of research work has been going on to develop tools and techniques for the better
management of software development and its evolution since last decades. Iterative
refinements and incremental developments is a commonly used technique for handling
complex systems in hardware and software engineering. This involves creating a new
specification or implementation by modifying an existing one [LB03, KR12]. In gen-
eral, the modelers provide a first model that satisfies a set of initial requirements. Then
the model can undergo several iterations or refinements until all the expected require-
ments are satisfied. A model evolves during its life cycle and it is highly desirable for
the developer to control the model quality as it evolves.

The problem with the iterative and incremental development is that there is no guar-
antee that after each iteration or evolution of the model, it will still satisfy the prop-
erties it was previously satisfying.

A naive solution is to repeat verification after every evolution to determine whether
a system satisfies previously satisfied properties or not (shown in Fig.1.1). The pro-
cess of establishing correctness of previously satisfied properties by means of veri-
fication and re-verification is very expensive (i.e., in terms of time and space) and
needs better solution for its management. In the last decades, an attempt to improve

1

2 Chapter 1. Introduction

the re-verification has been made by rule-based refinements (also termed as property
preserving evolutions). The advantage of this approach is that by construction it is
guaranteed that the evolved system model is correct and there is no need to repeat
the verification. The disadvantage is that it is extremely difficult to find appropriate
evolutions that preserve the previously satisfied properties and fulfills the evolution
requirements. Therefore, it is impractical to adapt rule-based refinements.

MODEL

EVOLUTION
MODEL CHECKING

MODEL CHECKING

models specifies
PROPERTY

MODEL

MODELER

Figure 1.1: A naive Approach

Concurrent and distributed systems are used to connect the computer systems with
the real world. These systems are widely used in applications from television sets
to train signaling and work-flow systems. The complexity of such systems increases
because of the order in which events occur in the their execution is unpredictable and
only restricted by synchronization of individual processes. In general, the design of
concurrent and distributed systems is complex and there are high possibilities that
subtle modeling faults will cause erroneous models (i.e., failing in satisfying desired
model properties). Formal modeling is required to manage the complexity of such
systems. Many formal modeling languages has been proposed such as statecharts,
Petri nets, X-machines etc. [Gen87, Hoa78, Hol97, Pet62, Mur89].

Petri nets (PNs) are well known low-level formalism for modeling and verifying con-
current and distributed systems [Pet62]. Petri nets are well suitable to represent in
a natural way logical interactions among parts or activities in a system as compared
to other popular techniques of graphical systems such as block diagrams or logical
trees. Petri nets formalism combine a well defined mathematical theory with a graph-
ical representation of the dynamic behavior of systems. There are two major classes
of Petri nets i.e., low-level Petri nets and high-level Petri nets. The drawback of low-

1.1. Formal verification 3

level PN formalism is their inability to represent complex data, which influences the
behavior of a system. Various advancements of low-level PN have been created to
raise the level of abstraction of PN and are termed as High-Level Petri nets (HLPNs).
Among others, APNs raise the level of abstraction of PN by using complex structured
data [Rei91, BBG01]. However, APNs can be unfolded into a behaviorally equivalent
PNs.

1.1 Formal verification

Formal verification of a software or hardware system is the process of checking whether
a system satisfies some properties. There are three basic steps for a formal verification
process. The first step is to model a system formally and then formalize the speci-
fication as a second step and lastly prove the satisfaction of the specified properties
by the formal model. Formal verification helps to prove the correctness of sequential,
distributed and concurrent systems models. Several dedicated formal verification ap-
proaches are developed such as theorem proving, equivalence checking, model check-
ing, model based testing. Theorem proving is a powerful technique that can deal with
the infinite states space. In theorem proving, both the specifications and systems are
expressed as formulas in some mathematical logic. If a proof can be constructed for
the specifications from the axioms of the system, it is claimed that systems satisfies
given specifications. The axiom of the system is a starting point of reasoning to be
accepted as true without controversy. Equivalence checking is the most common tech-
nique used in industry. It uses canonical representations for the comparison such as
satisfiability solvers or Binary Decision Diagram (BDD) .

1.1.1 Model Checking

Model checking is a formal approach to automatically verify software or hardware
systems [CES86]. Informally, an abstraction of a software or hardware system is
designed as a model and properties are designed to know what the system should
do. In general, properties are written in propositional temporal logic. By exploring
all possible states of the model, it is determined whether the system satisfies given
properties or not. In the case when a model does not satisfy its given properties, a
report of diagnostic counter examples is produced (shown in Fig.3.1). In the original
proposal of model checking [CE82], model refers to the Kripke structure [Kri63] that
represents the possible behaviors of the system. Kripke structure is considered as a
low-level formalism and from the modeling perspective Kripke structure is not well
suitable due to their rapid intractability. To overcome this limitation, an appropriate
formalism (such as Petri nets, X-Machines, UML state charts) is used to model a
system.

4 Chapter 1. Introduction

MODEL
CHECKING

PROPERTY

YES NO

SYSTEM MODEL

PROPERTY
FULFILLED?NOTIFICATION COUNTER

EXAMPLE

Figure 1.2: Model checking

1.1.2 Improving Model checking

Although model checking has been proved to be a useful technique it still has many
issues such as the famous state space explosion problem. As systems get moderately
complex, completely enumerating their states demands a growing amount of resources
which, in some cases, makes model checking impractical both in terms of time and
memory consumption [Val98, Lam83]. It is also important to note that a designer
must make sure that the model and properties are conforming to the customer expec-
tations. Otherwise, the results of model checking are useless. An intense field of
research is targeting to find ways to optimize model checking, either by reducing the
state space or by improving the performance of model checkers. In recent years major
advances have been made by either modularizing the system or by reducing the states
to consider (e.g., partial orders, symmetries). The symbolic model checking partially
overcomes this problem by encoding the state space in a condensed way by using
Decision Diagrams and has been successfully applied to PNs [BHMR10, BCM+90].

This thesis identifies and investigates fundamental questions related to model check-
ing and repeated model checking of software evolution such as:

Is it possible to use properties to reduce the state space generated for model check-
ing?

Is it possible to reduce the re-verification cost of an evolved model by restricting the
model checking to the model part that evolved?

This thesis is addressing these two questions in the context of models given in terms

1.2. Contributions 5

of Algebraic Petri nets and properties specified using temporal logic such as Linear
temporal logic (LTL) or Computation tree logic (CTL).

1.2 Contributions

The primary focus of this thesis is to improve the verification and re-verification of
systems modeled in Petri nets. We divide our contributions as follows:

1.2.1 Property based model checking of Algebraic Petri nets

The first contribution of this work is to propose an approach for property-based re-
duction of the state space of Algebraic Petri Nets (APNs). Reduction methods such
as Petri nets Slicing (PN Slicing) are used to improve the model checking by syntac-
tically reducing PN model. Considering a property over a Petri net, we are interested
to define a syntactically smaller net that could be equivalent with respect to the satis-
faction of the property of interest. To do so the slicing technique starts by identifying
the places directly concerned by the property. Those places constitute the slicing cri-
terion. The algorithm then keeps all the transitions that create or consume tokens from
the criterion places, plus all the places that are pre-condition for those transitions. This
step is iteratively repeated for the latter places, until reaching a fixed point. As shown
in Fig.1.3, a PN model is sliced with respect to different places (i.e., B and C). These
slices constitute only the portion of the model that impacts the property to be veri-
fied. Typically, these slices will have a smaller state space, thus reducing the cost of
model checking. Another interesting application of PN Slicing is its to use to improve
testing. The idea is to generate sliced net with respect the desired set of places or
transitions and generate test input data for only the sliced net. It is important to note
that construction methodology of slicing algorithms designed for testing is different
from the slicing algorithms that are designed to improve model checking.

B C DA t1 t2 t3

Figure 1.3: PN model and its slices w.r.t places B and C

6 Chapter 1. Introduction

One limitation of PN Slicing is that all the slicing algorithms are limited to Petri nets.
To the best of our knowledge there is no proposal for slicing APNs. One characteristic
of APNs that makes them complex to slice is the use of multisets of algebraic terms
over the arcs. In principle, algebraic terms may contain variables. Even though, we
want to reach a syntactically reduced net (to be semantically valid), its reduction by
slicing, needs to determine the possible ground substitutions of these algebraic terms.
We use partial unfolding proposed in [BHMR10] to determine ground substitutions of
the algebraic terms over the arcs of an APN.

We developed several slicing algorithms for APNs [KR13, Kha14, KG14b]. These
algorithms are designed to improve model checking and testing of APNs. Although,
these algoirthms can be applied to other classes of PNs with slight modifications. In
general, slicing algorithms designed in the context of PNs struggles with the strongly
connected nets and do not generate smaller slice. The more reduced model means
more reduction in the state space. The general idea of slicing APNs is shown in Fig.
1.4, at first an APN model is partially unfolded and criterion places are extracted from
the temporal description of properties. Then by applying a slicing algorithm, sliced
unfolded net is obtained. This sliced net is used to verify the given property instead of
the original APN model.

P1 x
[1,2] t1

x
x

[1]

[] t2

x P2

P3

[1,2]

t11

t13

t12

[]

t22 t23t21

2 3

[1]

1

2
3

1

2

3

1

2

3

P1

P2

P3
1

Algo

[1,2]

t11

t13

t12

[1]

1

2
3

1

2

3P1

P2

APN Model

Unfolded APN Model

Temporal Property

Sliced Unfolded APN ModelPartially unfold APN Extract Places

Criterion Place(s)
P2

AG(P2 6= 0)

Figure 1.4: APNs slicing overview

Our proposed slicing algorithms can alleviate the state space even for certain strongly
connected nets and are proved not to increase the state space. The resultant sliced
APN model allows verification and falsification if it is slice fair. In the first column of
Table1.1, our proposed APN slicing algorithms are shown [Kha13b]. The second col-
umn represents the class of properties that are preserved by the algorithm. Depending
on the construction methodology, slicing algorithms preserves certain specific proper-
ties

It is important to note that all the proposed APN slicing algorithms can be easily

1.2. Contributions 7

Table 1.1: Proposed Slicing Algorithms for Algebraic Petri nets

Algorithm Preserved Prop Type Slicing

APN Slicing LTL−X Static

Abstract Slicing CTL*−X Static

Safety Slicing Safety Static

Liveness Slicing Livenss Static

Concerned Slicing Particular Dynamic

Smart Slicing Particular Dynamic

adapted to be applied to low-level PN, thus introducing new slicing techniques for
PNs.

1.2.2 Property based model checking of structurally evolving APNs

The second contribution of this work is an approach improving the verification of
structurally evolving APNs. The proposal is based on slicing and on the classification
of evolutions and properties. Informally, APNs consist of a control part, which is
handled by a PN and a data part, which is handled by one or more Algebraic Data
Type (ADT). The control part of an APN can evolve by add/remove places, transitions,
tokens and terms over the arcs. However, the data part can evolve by changing the
types of variables, operations used in ADT. Our contribution focuses on the control
part of the model and does not cover evolutions of data part.

Our proposal pursues three main goals. The first is to perform verification only on
those parts that may influence the property satisfaction for the analyzed APN model.
The second is to classify the evolutions and properties to identify which evolutions
require re-verification. We show that for the class of evolutions that require verifi-
cation, instead of verifying the whole system only a part that is concerned by the
property would be sufficient. The third goal is closely related to the previous propos-
als of property preserving evolutions. Padberg and several other authors proposed rule
based modifications for the invariant preservation of APNs[PGE98, LLV12, Er97].
The theory of rule based modification is an instance of High-level Replacement Sys-
tem (HLRS) and preserving properties (i.e., either structural or behavioral properties)
by preserving morphisms. Our proposal of slicing further improves the previous pro-
posals of property preservation. The idea is to preserve morphisms restricted to the
sliced part of the model[Kha13a].

8 Chapter 1. Introduction

APN-MODELEVOLVED
APN-MODEL

SLICING

VERIFICATION
REQUIRED?

PROPERTY

YES NO

Figure 1.5: Property based Model checking of structurally evolving APNs

As shown in the Fig.1.5, slices are generated for APN model and its evolved APN
model. Then by comparing both APN models and classification of evolutions, it is
determined if we require re-verification or not.

1.2.3 SLAPn: A tool for slicing PNs and APNs

Third contribution of this work is the development of a stand alone tool (i.e., SLAPn)
for slicing PNs and APNs [KG14a]. To the best of our knowledge this is the first effort
to develop a stand alone slicing tool. The objective of SLAPn is to show the practical
usability of slicing by implementing the proposed slicing algorithms.

The tool facilitates a user to draw an APN/PN model using a graphical editor and write
the temporal description of a property (shown in Fig.1.6). From the palette a slicing
algorithm can be selected. We have implemented various slicing algorithms such
as APNSlicing, Abstract slicing, Safety slicing, Liveness slicing, Concerned slicing,
Smart slicing. The tool automatically extracts places from the property description
and a sliced net model is produced. It is important to note that SLAPn itself is not
a model checker. Perhaps, It can be integrated with any existing model checker to
generate the state space.

1.3 Organization of this thesis

In this chapter, we discuss the motivation and the main contributions of this thesis.
The remaining chapters are structured as follows:

1.3. Organization of this thesis 9

EDITOR

MODEL
NAVIGATOR

TEMPORAL FORMULA & SLICING ALGORITHMS

Figure 1.6: SLAPn’s main screen

• Chapter 2: This chapter consists of informal and formal descriptions about the
modeling formalism used in this thesis. We also use graphical representations
when defining different classes of Petri nets such as PNs and APNs. This chapter
also includes formal definition of the temporal logic such as LTL/CTL.

• Chapter 3: This chapter is about the detailed survey of existing slicing algo-
rithms and their comparison with each other. We highlight the objective of
every proposed algorithm together with their informal and formal description.
We divide slicing algorithms into two different groups i.e., one used to improve
testing and one used to improve model checking process.

• Chapter 4: This chapter consists of the detailed underline theory and algo-
rithms about the first contribution (i.e., property based model checking of APNs)
of this thesis is given. With the help of extremely simple examples of Algebraic
Petri nets, every proposed slicing algorithm is explained.

• Chapter 5: The second contribution (i.e., property based model checking of
structurally evolving APNs) of this thesis is discussed in this chapter.

• Chapter 6: This chapter contains detailed evaluation of our proposed approaches.
In the first half, we took a small case study from the domain of crisis manage-
ment system (Car Crash Management System) to exemplify the proposed ap-
proach. In the second half, proposed slicing algorithms are evaluated on the
benchmark case studies.

• Chapter 7: This chapter consists of a tool description (SLAPn), which is third
contribution of this thesis.

• Chapter 8: This chapter concludes the proposed work in this thesis and opens
new perspectives.

10 Chapter 1. Introduction

Chapter 2

Informal and Formal Definitions

He who performs not practical work nor makes experiments will
never attain to the least degree of mastery.

— Jaber ibn Hayyan

This chapter comprises basic informal and formal definitions of modeling formalism
used in this work. (Note, Formal definitions, propositions, lemmas and theorems used
in this work are taken as it is or with slight modifications from [Rei91, Sch94, Rak11,
Jen87]

2.1 Petri nets Definitions

Petri nets are very well known formalism to model and analyze concurrent and dis-
tributed systems. C.A. Petri in his Ph.D. Dissertation introduced Petri nets formalism
[Pet62].

p1 p4

p2 p5
p3

t1

t2

t3

t4

1

1
1

3

22
1

1

Figure 2.1: Eample Petri net model

11

12 Chapter 2. Informal and Formal Definitions

A Petri net is a directed bipartite graph, whose two essential elements are places and
transitions. Informally, Petri nets places hold resources (also known as tokens) and
transitions are linked to places by input and output arcs, which can be weighted. Usu-
ally, a Petri net has a graphical concrete syntax consisting of circles for places, boxes
for transitions and arrows to connect the two. Formally, we can define PNs:

Definition 2.1.1: Petri Nets
A Petri Net is: PN = 〈P,T, f ,w〉 consist of

◦ P and T are finite and disjoint sets, called places and transitions, resp.,

◦ f ⊆ (P × T) ∪ (T × P), the elements of which are called arcs,

◦ a function w : f → N, assigns weights to the arcs.

An example PN model 〈P,T, f ,w〉 shown in Fig.2.1, is defined as follows. Let W and
F be sets representing arcs and weights respectively,

◦ P = {p1, p2, p3, p4, p5}

◦ T = {t1, t2, t3, t4}

◦ F = {〈p1, t1〉, 〈t1, p2〉, 〈p2, t2〉, 〈t2, p3〉, 〈p3, t3〉, 〈p4, t3〉, 〈t3, p5〉, 〈p5, t4〉}

◦W = {〈p1, t1〉 7→ 1, 〈t1, p2〉 7→ 2, 〈p2, t2〉 7→ 1, 〈t2, p3〉 7→ 1, 〈p3, t3〉 7→ 1, 〈p4, t3〉 7→
1, 〈t3, p5〉 7→ 2, 〈p5, t4〉 7→ 3}

The semantics of a PN expresses the non-deterministic firing of transitions in the net.
Firing a transition means consuming tokens from a set of places linked by the input
arcs of a transition and producing tokens into a set of places linked by the output arcs
of a transition. A transition can be fired only if its incoming places have a quantity
tokens greater than the weight attached to the arc. As shown in Fig.2.1, transitions t1
and t2 are enabled from the initial marking and non-deterministically any one of them
can fire. Let us consider that if t1 fires, the result of transition firing will remove a
token from place p1 and adds a token to place p2.

We can build models of computer systems (or any other system) by means of PNs
(Note: The above defined PNs are also termed as low-level PNs). However, PNs lack
to represent complex data which influences the behaviour of the system. To overcome
this issue, various advancements of PNs have been created such as such as Colord
Petri Nets (CPN), Predicate/Transition Nets (Pr/T-nets), APNs etc. (termed as High
Level Petri Net (HLPN)). [GL79, Rei91, Jen81, Jen87].

The first successful HLPN were created by Hartmann Genrich and Kurt Lautenbach
in 1979 [GL79]. The main idea is to distinguish tokens from each other (i.e., tokens
are represented by a color instead of black dots). Depending on the initial markings
of places and colors of tokens, transitions can occur in many ways. Guards and ex-

2.1. Petri nets Definitions 13

pressions are used to specify enabling and disabling of transitions occurrences. The
problem with Pr/T-nets was usage of only one class of token colors. Later, it was
resolved by allowing each place to have its own set of possible token colors [Jen81].
Among others, in APNs the level of abstraction of PNs is raised by using complex
structured data [Rei91]. APNs has two aspects:

• control aspect, which is handled by a PN.

• data aspect, which is handled by one or many AADT.

//The naturals ADT.
Adt nat
 Sorts nat;
Generators

 zero : nat;
 suc : nat -> nat;
Operations

 dec : nat -> nat;
 plus : nat, nat -> nat;
Axioms

//dec

 dec(suc($x)) = $x;
//plus

 plus (zero, $x) = $x;
 plus (suc($x), $y) = suc
(plus ($x,$y));
Variables

 x : nat;
 y : nat;

[1]p1

p2
t1

x
x+1

t2x

x+2

Figure 2.2: Eample APN model and associated AADT

As shown in Fig.2.2, an APN consists of graphical structure and AADT associated
with it. There are no more black dots representing the markings of a place. The type
of token is of sort nat (with the value suc(zero)) and arcs contains algebraic terms. Let
us formally define algebraic specifications that are required to define APNs.

Definition 2.1.2: Signature
A signature Σ = (S ,OP) consists of a set S of sorts and a family OP =

(OPw,s)w∈S ∗,s∈S of operation symbols. For ε being the empty word, we call OPε,s

the set of constant symbols.

In the above definition, set of sorts and operations are disjoint, where S ∗ is a finite
sequence of words. For example, if S = {nat, bool}, then op(nat,nat,bool) represents a
binary predicate symbol such as greater than (>) or as an equality =.

14 Chapter 2. Informal and Formal Definitions

Definition 2.1.3: Variable
A set X of Σ-variables is a family X = (Xs)s∈S of variables, disjoint to OP.

For example if nat ∈ S is a sort then a natural variable would be xnat.

Definition 2.1.4: Terms
The set of terms TOP,s(X) of sort s is inductively defined by:

1. Xs ∪ OPε,s ⊆ TOP,s(X);

2. op(t1, . . . , tn) ∈ TOP,s(X) for op ∈ OPs1,...,sn,s, n ≥ 1 and ti ∈ TOP,si(X) (for i =

1, . . . , n).

The set TOP,s =de f TOP,s(∅) contains the ground terms of sort s,TOP(X) =de f⋃
s∈S TOP,s(X) is the set of Σ-terms over X and TOP ≡ TOP(∅) is the set of Σ-ground

terms.

Terms are built upon the values and operations of a signature. For example if nat is a
sort then natural constants, variables and operators of output sort nat are terms of sort
nat.

Definition 2.1.5: Substitution
Let X be a finite set of Σ-variables. A substitution over X is a mapping sbt : X →

TOP(X), whereby all x ∈ Xs it holds sbt(x) ∈ TOP,s(X). If the image of sbt is contained
in TOP, sbt is called a ground substitution.

Let t ∈ TOP,s(Y), X a finite subset of Y and sbt a substitution over X. Then the term
sbt(T) results from T by simultaneously replacing the variables x ∈ X by the corre-
sponding terms sbt(x).

Definition 2.1.6: Sigma Equation
A Σ-equation of sort s over X is a pair (l, r) of terms l, r ∈ TOP,s(X).

The equations define the meanings and properties of operations in OP.

Definition 2.1.7: Algebraic Specifications
An algebraic specification S PEC = (Σ, E) consists of a signature Σ = (S ,OP) and a
set E of Σ-equations.

An algebraic specifications are obtained by combining a signature and a set of sigma
equations.

2.1. Petri nets Definitions 15

Definition 2.1.8: Sigma Algebra
A Σ-algebra A = (S A,OPA) consist of a family S A = (As)s∈S of domains and a

family OPA = (Nop)op∈OP of operations Nop : As1 × . . . Asn → As for op ∈ OPs1...sn,s if
op ∈ OPε,s,Nop congruent to an element of As.

It deals with the question how to interpret algebraic specifications to a particular do-
main.

Definition 2.1.9: Assignment
An assignment of Σ-variables X to a Σ-algebra A is a mapping asg : X → A,with

asg(x) ∈ Asiff x ∈ Xs. asg is canonically extended to asg : TOP(X) → A, inductively
defined by

1. asg(x) ≡ asg(x) for x ∈ X;

2. asg(c) ≡ Nc for c ∈ OPε,s;

3. asg(op(t1, . . . , tn)) ≡ Nop(asg(t1)), . . . , asg(tn)) for op(t1, . . . , tn) ∈ TOP(X).

All the algebraic terms are mapped to domain values of a sigma algebra.

Definition 2.1.10: Equivalence
Let SPEC-algebra is S PEC = (Σ, E) in which all equations in E are valid. Two

terms t1 and t2 in TOP(X) are equivalent (t1 ≡E t2) iff for all assignments asg : X →
A, asg(t1) = asg(t2).

For algebraic specification two terms are considered equivalent if all of their assign-
ments are same.

Definition 2.1.11: Multiset
Let B be a set. A multiset over B is a mapping msB : B → N. εB is the empty

multiset with msB(x) = 0 for all x ∈ B. A multiset is finite iff

{b ∈ B | msB(b) , 0} is finite.

A multiset is an unordered collection of items that may contain duplicates and is the
basic data type structure used in HLPN. For example, a multiset B = [1, 1, 3, 3, 2]
contains duplication of some elements with unoredered collection of elements.

Definition 2.1.12: Addtion and Subtraction of Multisets
Let MS B = {msB: B→ N} be a set of multisets. The addition function of multisets

is denoted by + : MS B × MS B → MS B. Let ms1B,ms2B and ms3B ∈ MS B. ∀b ∈
B,ms3B(b) = ms1B(b) + ms2B(b).

16 Chapter 2. Informal and Formal Definitions

The subtraction function of multisets is denoted by − : MS B × MS B → MS B. Let
ms1B,ms2B and ms3B ∈ MS B. ∀b ∈ B,ms1B(b) ≥ ms2B(b) ⇒ ∀b ∈ B, (ms1B −

ms2B)(b) = ms1B(b) − ms2B(b).

Different operations can be performed on multisets. Let us take two example multisets
such as A = [a, a, b] and B = [a, b]. The addition of A and B will result A + B =

[a, a, a, b, b] and the subtraction will result A − B = [a].

Definition 2.1.13: Comparison and equivalence of Multisets
Let MS B = {msB: B→ N} be a set of multisets. Let ms1B,ms2B

∈ MS B . We say that ms1B is smaller than or equal to ms2B (denoted by ms1B ≤

ms2B) iff

∀b ∈ B,ms1B(b) ≤ ms2B(b). Further, we say that ms1B , ms2B iff

∃b ∈ B,ms1B(b) , ms2B(b). Otherwise, ms1B = ms2B.

Similar to the above Def.2.1.12, further operations can be defined on the multisets
such as comparison and equivalence. Let us take two example multisets such as A =

[a, a, b] and B = [a, b, a, a, b]. Multiset A is less than multiset B and noted by A ≤ B.
Whereas both not equal as well and noted by A , B.

Definition 2.1.14: Algebraic Petri net
A marked Algebraic Petri Net APN =< S PEC, P,T, f , asg, cond, λ,m0 > consist of

◦ an algebraic specification S PEC = (Σ, E), where signature Σ consists of sorts S
and operation symbols OP and E is a set of Σequations defining the meaning of
operations,

◦ P and T are finite and disjoint sets, called places and transitions, resp.,

◦ f ⊆ (P × T) ∪ (T × P), the elements of which are called arcs,

◦ a sort assignment asg : P→ S ,

◦ a function, cond : T → P f in(Σ − equation), assigning to each transition a finite set
of equational conditions.

◦ an arc inscription function λ assigning to every (p, t) or (t, p) in f a finite multiset
over TOP,asg(p), where TOP,asg(p) are algebraic terms (if used “closed”(resp.free)) terms
to indicate if they are build with sorted variables closed or not),

◦ an initial marking m0 assigning a finite multiset over TOP,asg(p) to every place p.

An APN is a mixture of PN and algebraic specifications. There are no more black dots
to represent the markings of places. Associated transitions may have guard conditions
to control the firing sequences. An example APN can be observed in Fig.2.2. Both
places are of sort naturals.

2.1. Petri nets Definitions 17

Definition 2.1.15: Preset(resp. Postset) Places
The preset of p ∈ P is •p = {t ∈ T |(t, p) ∈ f } and the postset of p is p• = {t ∈

T |(p, t) ∈ f }. The pre and post sets of t ∈ T are defined respectively as: •t = {p ∈
P|(p, t) ∈ f } and t• = {p ∈ P|(t, p) ∈ f }.

A preset place consists of all the input places to a particular transition, whereas a
postset place consists of the output places to a particular transition. We also note •P
(resp. P•) as a set of all preset (resp. postset) of places. In example APN shown in
Fig.2.2, transition t1 has p1 place in its preset places and p2 in its postset places.

Definition 2.1.16: Enabled Transitions
Let m and m′ two markings of APN and t a transition in T then < m, t,m′ > is a

valid firing triplet (denoted by m[t〉m′) iff

1) ∀p ∈ •t | m(p) ≥ λ(p, t) (i.e., t is enabled by m).

2)∀p ∈ P | m′(p) = m(p) − λ(p, t) + λ(t, p).

A transition is enabled only if its incoming place contains a multiset of values equal
or greater than the one defined by the weight attached to arc. In example APN shown
in Fig.2.2, transition t1 is enabled.

[2]

p1

p2
t1

x
x+1

t2x

x+2

Figure 2.3: Resultant APN after firing transition t1

Once a transition is enabled it can fire depending on the guard condition. Firing a
transition will remove tokens from the input place and adds tokens to output place.
Let us consider the firing of transition t1 , which is enabled shown in Fig.2.2. The
resultant APN can be observed in Fig.2.3. A token valued 1 is removed from place p1
and a token with value 2 is added in place p2.

Definition 2.1.17: Maximal Firing Sequence
A firing sequence σ of a marked APN is maximal iff @t ∈ T : m0[σt〉, where
|σ| ∈ (N ∪ {∞}).

18 Chapter 2. Informal and Formal Definitions

Definition 2.1.18: Infinite Firing Sequence
Let σ = t1, t2 . . . be an infinite firing sequence of APN with mi[ti+1〉mi+1,∀i ∈ N. σ

permanently enables t ∈ T iff (∃i ∈ N)(∀ j ∈ N) i ≤ j⇒ m j[t〉.

Definition 2.1.19: Kripke Structure
KS = 〈AP, S , L,R, S 0〉 where:

◦ AP is a set of atomic propositions,

◦ S is a set of states,

◦ L : S → P(AP) is a state labeling function.

◦ R ⊆ S × S is a left total transition relation (i.e., ∀s ∈ S ,∃s′ | 〈s, s′〉 ∈ R),

◦ S 0 ⊆ S is a set of initial states,

Kripke structure are central to model checking as it represents a model of the system
under consideration.

{1,0}

{0,2}{3,0}

{0,4}{5,0}

t1t2

t1t2

S0

S1S2

S3S4

{0,6}{7,0}

t1t2

t1t2

S5S6

-p,q

-p,q p,-q

p,-q-p,q

-p,q-p,q

Figure 2.4: Marking graph and Kripke structure of example APN model, Fig.2.2.

As an example of a Kripke structure, let us consider an example APN model shown in
the Fig.2.2 and see its corresponding structure in Fig.2.4. Let AP = {p, q} be a set of
atomic properties where p stands for place p1 is not empty and respectively q stands
for place p2 is not empty. If any of the place has tokens then it is shown with the
negation sign. Let S = {s1, s2, s3, ..., sn} be the set of states the system can take and let
the set of initial states be S 0 = {s0}.

2.1. Petri nets Definitions 19

Definition 2.1.20: Path
Let KS = 〈AP, S , L,R, S 0〉 be a Kripke structure. We call path π a sequence of states
π = s0, s1, s2, s3, ...si, such that ∀i ≥ 0, 〉si, si+1 ∈ R.

A path refers to the existence of a path to a state that is labeled with a property of
interest.

Definition 2.1.21: Reachability Property
Let KS = 〈AP, S , L,R, S 0〉 be a Kripke structure. We call that a property φ ∈ AP is

reachable if there exists a path π = s0, s1, s2, s3, ...si, and ∃i | φ ∈ L(si).

A state satisfying property is found on a path starting from one of the initial states.

Linear temporal logic (LTL) and computation tree logic (CTL, CTL∗) are commonly
used for specifying properties of concurrent systems. LTL has been proposed by Amir
Pnueli in 1977 [Pnu77], whereas CTL and CTL∗ invented by E.M. Clarke and E.A.
Emerson in 1981 [EH86]. LTL and CTL are concerned only with infinite paths. From
here on, π will always denote an infinite path. Furthermore, π0, π1 will always denote
first and second elements of π, and so on.

Definition 2.1.22: LTL BNF
A well-formed LTL formula, ϕ, is recursively defined by the BNF formula:

ϕ ::=> >; top, or true

| ⊥; bottom, or f alse

| p; p ranges over AP

| ¬ϕ; negation

| ϕ ∧ ϕ ; conjunction

| ϕ ∨ ϕ ; disjunction

| Xϕ; next time

| Fϕ; eventually

| Gϕ; always

| ϕUϕ ; until

The lowercase letters such as p, q, and r, will denote atomic propositions and ϕ and
ψwill denote formulae. CTL∗

20 Chapter 2. Informal and Formal Definitions

Definition 2.1.23: LTL Semantics
Let |= denotes a satisfaction relation and the satisfaction is with respect a pair (M, π),
a Kripke structure and a path thereof.

M, π |= >; true is always satisfied

M, π 6|=⊥; false is never satisfied

(M, π |= p) if and only if (p ∈ L(π0))

(M, π |= ¬ϕ) if and only if (M, π 6|= ϕ)

(M, π |= ϕ ∧ ψ) if and only if (M, π |= ϕ) ∧ (M, π |= ψ)

(M, π |= ϕ ∨ ψ) if and only if (M, π |= ϕ) ∨ (M, π |= ψ)

(M, π |= Xϕ) if and only if (M, π1 |= ϕ) next time ϕ

(M, π |= Fϕ) if and only if (∃i |M, πi |= ϕ) eventually ϕ

(M, π |= Gϕ) if and only if (∀i |M, πi |= ϕ) always ϕ

(M, π |= ϕUψ) if and only if [∃i | (∀ j < i(M, π j |= ϕ)) ∧ (M, πi |= ψ)] ϕ until ψ

Definition 2.1.24: CTL BNF
A well-formed CTL formula, ϕ, is recursively defined by the BNF formula:

ϕ ::=> >

| ⊥

| p; p

| ¬ϕ

| ϕ ∧ ϕ

| ϕ ∨ ϕ

| AXϕ; A- for all paths

| AFϕ;

| AGϕ;

| ϕAUϕ

| EXϕ; E- for all paths

| EFϕ;

| EGϕ;

| ϕEUϕ

2.1. Petri nets Definitions 21

Definition 2.1.25: CTL Semantics
Let |= denotes a satisfaction relation and the satisfaction is with respect a pair (M, s),
a Kripke structure and a state thereof.

M, s |= >

M, si 6|=⊥

(M, s |= p) if and only if (p ∈ L(s))

(M, s |= ¬ϕ) if and only if (M, s 6|= ϕ)

(M, s |= ϕ ∧ ψ) if and only if (M, s |= ϕ) ∧ (M, s |= ψ)

(M, s |= ϕ ∨ ψ) if and only if (M, s |= ϕ) ∨ (M, s |= ψ)

(M, s |= AXϕ) if and only if (∀π | π0 = s,M, π1 |= ϕ) for all paths starting at s, next
time ϕ

(M, s |= AFϕ) if and only if (∀π | π0 = s, (∃i | M, πi |= ϕ)) for all paths starting at s,
eventually ϕ

(M, s |= AGϕ) if and only if (∀π | π0 = s, (∀i | M, πi |= ϕ)) for all paths starting at s,
always ϕ

(M, s |= ϕAUψ) if and only if (∀π | π0 = s, (∃i(∀ j < i | M, π j |= ϕ) ∧M, πi |= ψ)) for
all paths starting at s, ϕ until ψ

(M, s |= EXϕ) if and only if (∃π | π0 = s,M, π1 |= ϕ) there exists a path such that
next time ϕ

(M, s |= EFϕ) if and only if (∃π | π0 = s, (∃i | M, πi |= ϕ)) there exists a path such
that eventually ϕ

(M, s |= EGϕ) if and only if (∃π | π0 = s, (∀i | M, πi |= ϕ)) there exists a path such
that always ϕ

(M, s |= ϕEUψ) if and only if (∃π | π0 = s, (∃i(∀ j < i | M, π j |= ϕ) ∧M, πi |= ψ))
there exists a path such that ϕ until ψ

22 Chapter 2. Informal and Formal Definitions

Chapter 3

Survey of Petri nets Slicing

Knowledge is life, while ignorence is death.
— Ali (RA)

A fundamental challenge in any system development process is to ensure the cor-
rectness of the design at the earliest stage possible. Testing and simulation are usual
techniques for the validation of a design. The major drawback of these techniques is
that there is no guarantee of the absence of errors. Model checking is an automatic
technique for verifying finite state systems. It has been proved to be useful alternative
to simulation and testing. Any one who can run simulations of a design is capable of
model checking the same design.

The process of model checking consists of three tasks as shown in Fig. 3.1. The
first task is to design a model in a language accepted by the model checking tool. The
second is to specify desired properties in some logical formalism. In general, temporal
logic is used to assert how the behavior of the system evolves over the time. Finally, it
is shown if a model satisfies the property or not by completely enumerating the state
space of a model. In case of negative result a counterexample is produced, which is
useful in tracking down where the error has occurred. Model checking is proved to be
useful technique but the main challenge is the state space explosion problem.

Modeling

Specification

Verification+

Figure 3.1: Process of model checking

23

24 Chapter 3. Survey of Petri nets Slicing

In recent years, the problem of state space explosion is deeply studied and some ma-
jor improvements have been made [BCM+90, GP93, GL91, Bab91, McM92, Pel94,
Val91, BCCZ99, HNSY94, BCG95]. We can broadly classify four different methods
to alleviate the state space:

• Symbolic representations

• On the fly model checking

• Compositional reasoning

• Reduction methods

In general, symbolic methods avoid the state space explosion problem by not explicitly
representing the states of the model. Micmillan in his PhD thesis proposed to use
symbolic representation for the state transition graph [McM92] . He showed that by
using symbolic representations such as BDD much larger systems can be verified.
Later by using original CTL model checking algorithms and their refinements, it was
showed to verify examples with more than 10120 states.

On the fly model checking avoids the state space explosion problem by building only
the necessary part of the system. In compositional reasoning, the objective is to verify
local properties of the components of a system and then deduce global properties
from these local properties. In principle, if we can deduce that local properties of
components of a system are satisfied then the conjunction of local properties implies
the satisfaction of global properties. One difficulty in this approach is that it is not
often the case that local properties are not preserved at the global level [BCC98].
Reduction methods are well suitable for asynchronous systems. Reduction methods
are used to transform the verification problem into an equivalent problem in a smaller
state space.

In this thesis work, we use a structural reduction technique i.e., slicing. It helps to
reduce a model syntactically with respect to the property. The resultant sliced model
is used to verify given properties instead of complete model. Considering as a mean
to alleviate state space explosion problem for model checking the sliced model has to
preserve temporal properties and decrease its state space. To be specific with the ob-
jective of this work, we are interested to improve the model checking of APN models
by means of Petri nets Slicing (PN slicing). Let us study slicing in general and then
specifically PN slicing.

3.1. Overview and Background of Slicing 25

3.1 Overview and Background of Slicing

The term slicing was coined by M.Weiser for the first time in the context of program
debugging [Wei81] and later refined by many authors [KL88, BG96, Bin98] . Accord-
ing to Wieser proposal a program slice PS is a reduced, executable program that can
be obtained from a program P based on the variables of interest and line number by
removing statements such that PS replicates part of the behavior of program.

To explain the basic idea of program slicing according to Wieser [Wei81], let us con-
sider an example program shown in Fig.3.2, Fig.1(a) shows a program which requests
a positive integer number n and computes the sum and the product of the first n posi-
tive integer numbers. We take as slicing criterion a line number and a set of variables,
C = (line10, {product}).

Fig.1(b) shows sliced program that is obtained by tracing backwards possible influ-
ences on the variables: In line 7, product is multiplied by i, and in line 8, i is in-
cremented too, so we need to keep all the instructions that impact the value of i.
As a result all the computations that do not contribute to the final value of product
have been sliced away (interested reader can find more details about program slicing
from [Tip95, XQZ+05]).

Figure 3.2: Example program and its slice

3.2 Petri nets Slicing

Petri nets Slicing (PN slicing) is a syntactic technique used to reduce a PN model based
on a given criteria. Informally, criteria (also termed as slicing criterion) is a property
for which PN model is analyzed. A sliced part constitutes only that part of a PN model
that may affect the criteria. Considering a property over PN model, we are interested
to define a syntactically smaller PN model that could be equivalent with respect to

26 Chapter 3. Survey of Petri nets Slicing

the satisfaction of the property of interest. To do so the slicing technique starts by
identifying the places directly concerned by the property. Those places constitute the
slicing criterion. The algorithm then keeps all the transitions that create or consume
tokens from the criterion places, plus all the places that are pre-condition for those
transitions. This step is iteratively repeated for the latter places, until reaching a fixed
point. Let us study a basic PN slicing algorithm presented in [Rak08].

The basic slicing algorithm starts with a PN model and a slicing criterion Q ⊆ P.

Algorithm 1: Basic slicing algorithm
BasicSlicing(〈P,T, f ,w,m0〉,Q){
T ′ ← ∅;
P′ ← Q ;
Pdone ← ∅ ;
while ((∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ ((•p ∪ p•) \ T ′) do
P′ ← P′ ∪ {•t};
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
return 〈P′,T ′, f|P′ ,T ′ ,w|P′ ,T ′ ,m0|P′

〉;
}

In the basic slicing algorithm, initially T ′ (representing transitions set of the slice)
is empty while P′ (representing places set of the slice) contains the places extracted
from the temporal formula of the property to be verified. The algorithm iteratively
adds other preset transitions together with their preset places in T ′ and P′.

Let us take a simple example of Petri net model to explain the basic idea of PN slicing.

As shown in the Fig.3.3, a Petri net model is sliced with respect to the place B (a given
slicing criterion). The sliced part only constitutes the part of the model that is required
to analyze the properties concerning to the given place B. The rest of the places and
transitions are discarded.

3.2.1 Types of Slicing

Roughly, we can divide PN slicing in to two major classes (as shown in Fig.3.4), which
are:

• Static Slicing

• Dynamic Slicing

3.2. Petri nets Slicing 27

PN Model Sliced PN Model

P1

P2

P3

P4

P5

P6

P7

P8

t1

t3

t2

t4

t5

t6

P1

P2

P3
t1

t3

t2

Figure 3.3: Example Petri net and its sliced model after applying basic slicing algo-
rithm (Alg.1).

Static Slicing:

A slice is said to be static if the initial markings of places are not considered for
generating the slice. Only a set of places are considered as a slicing criterion. The
static slicing starts from the given criterion place and includes all the pre and post
sets of transitions together with their incoming places. There may exist a sequence
of transitions in the resultant slice that is not fireable because some of the pre places
of transitions are not initially marked and do not get markings from any other way.
Fig.3.3 is an example of static slice, the slice is generated by considering the criterion
place B whereas the initial markings are not used to generate the slice.

An extension to the static slicing can also be used to reduce the slice size. The exten-
sion is called condition slicing and the idea is to include a subset of behaviors in the
sliced PN model instead of all the behaviors. In addition to the set of places, Slicing
criterion consists of a sequence of the transitions. The resultant slice obtained by the
condition slicing is smaller as compared to the static slicing. The reason for a smaller
slice is the inclusion of a particular sequence of transitions around the criterion places.
The condition slicing is very useful when analyzing a particular behavior, but limits
the scope of verification due to the exclusion of some sequences of transitions.

Dynamic Slicing:

A slice is said to be dynamic if the initial markings of places are considered for gen-
erating the slice. The slicing criterion will utilize the available information of initial
markings and a smaller slice can be generated. For a given slicing criterion, that
consist of the initial markings and a set of places for a PN model, we are interested
to extract a subnet with those places and transitions of PN model that can produce

28 Chapter 3. Survey of Petri nets Slicing

to change the marking of a criterion place in any execution starting from the initial
marking.

Dynamic slicing can be useful in debugging. Consider for instance that the user is
analyzing a particular trace for a marked PN model (using a simulation tool) such
that an erroneous state is reached. In this case, we are interested in extracting a set
of places and transitions (more formally, a subnet) that may erroneously contribute
tokens to the places of interest such that the user can more easily locate the bug.

There are two ways to compute the static and dynamic slices that are forward and
backward slicing. A forward slicing starts from the initially marked places and by for-
ward traversal of a PN model until the criterion places, a slice is generated. Backward
slicing starts from the criterion places and then by backward traversal all the incoming
transitions together with their input places, slice is obtained.

Static Slicing Dynamic Slicing

Forward Slicing Backward Slicing

Figure 3.4: Types of PN slice

3.3. Petri nets Slicing Algorithms 29

3.3 Petri nets Slicing Algorithms

In this section, we study existing algorithms for Petri nets Slicing (PN slicing) [CR94,
LKCK00, Rak08, Rak11, Rak12, WCZX13, LOS+08]. The objective of every algo-
rithm is to improve the verification process either by reducing or by partitioning a
Petri nets (PN) model. These algorithms are divided into two groups with respect to
the construction methodolody as described in the previous section (shown in Fig. 3.5).

Petri nets
Slicing

Static
Slicing

Astrid
Rakow[Rak11]

Lee et
al[LKCK00]

Dynamic
Slicing

Chang et
al[CR94]

Lloren et
al[LOS08]

Wangyang
et al[WCZX13]

Figure 3.5: Slicing algorithms

3.3.1 Chang et al Slicing

Chang et al presented an algorithm for the first time for slicing Petri nets in the context
of testing [CR94]. The presented algorithm slices out all the concurrency set of a Petri
net model. The concurrency set is defined as a set of paths in different processes that
should be executed concurrently. Based on the information about which parts of the
system would be executed, test input data can be generated.

30 Chapter 3. Survey of Petri nets Slicing

Algorithm 2: Chang Slicing
Input: ProcessPN[1], ..., ProcessPN[N].
CS = {t|t ∈ T, t is a communication transition};
Output: S [1], S [2], . . . , S [I].
Variables: Mar = {t|t ∈ T, t has a mark};
T M = {t|t ∈ T, t has a temporary mark};
WS = {t|t ∈ CS , t is in current process being scanned};
Algorithm_S licing(ProcessPN[1], . . . , ProcessPN[N],CS :
in; S [1], S [2], . . . , S [I] : out);
f or(j← 1 to N) do
if there exist more than one path in ProcessPN[j] ;
then changable[j]← true;
else changable[j]← f alse;
I ← 0; terminate← f alse;
while (CS , ∅ and terminate = f alse) do

I < −I + 1; S [I]← ∅ ;
Mar ← ∅; T M ← ∅;
WS ← ∅; WS ← WS ∪ {t};
Procedure_ f indpath(ProcessPN[1],WS : in; PA : out) ;
S [I]← S [1] ∪ PA;
M ← M ∪ {t|t ∈ ProcessPN[x], x = 1 and t has relation with PA};
ProcedureS canning(ProcessPN[1], . . . , ProcessPN[N] :
in; CS ,Mar,T M, S [I] : in & out);
CS ← CS −CS ∩ S [I];

end
endslicing;

The algorithm first finds a base path that covers at least one communication transition
(represented as CS) and adds it into the concurrency set (represented as S [I]). To
select a path which covers all the marked transitions each process is scanned. The
path may generate new communication transitions that have relations with the previ-
ous process (i.e., been scanned) or the succeeding process that has not been scanned
yet. If this path does not involve any new communication transitions having relations
with the previous processes or these transitions are already in the concurrency set, then
this path is added into the concurrency set and the transitions having relations with the
succeeding processes are marked. Otherwise, if this path involves new communica-
tion transitions having relations with a previous process, say x, to find a new path to
cover both marked and temporarily marked transitions. If there is such a path, then
replace with the one already in the concurrency set by this new path and mark again
the transitions in other process. Otherwise, erase temporary marks and try to find a
new path other than the old one that was already in the concurrency set. Afterwards,
restart the scanning process from x till all the processes have been scanned and a con-

3.3. Petri nets Slicing Algorithms 31

currency set has been found. The procedure is repeated until all the communication
transitions are included in the certain concurrency set.

The procedure named ProcedureS canning(ProcessPN[1], . . . , ProcessPN[
N] : in; CS ,Mar,T M, S [I] : in & out) is central to the slicing construction, by ex-
ecuting this procedure once, a concurrency set can be obtained. We skip the formal
description of the procedure and refer the interested reader for the formal description
to [CR94]. Remark that the presented algorithm is linear time complex and the time
complexity is O((n/N))N .

Let us take a simple PN model (shown in Fig.3.6) and apply slicing algorithm 2 on it.
The path shown with red doted line is put into the concurrency set.

3.3.2 Lee et al Slicing

Lee et al proposed an approach in which Petri nets slices are computed based on the
structural concurrency inherent in the Petri nets and compositional reachability graph
analysis is performed [LKCK00]. The proposed approach may enable verification of
properties such as boundedness and liveness, which may fail on unsliced Petri nets
due to a state space explosion problem.

Algorithm 3: Lee Slicing
S liceS et = ∅;
S eto f Invariant = f ind_minimal_invariants(PN);
do{
small_invariant = f ind_smallest_invariant(S eto f Invariant);
SliceSet = SliceSet ∪{small_invariant};
SetofInvariant = SetofInvariant−{small_invariant}
} until (P(S eto f Invariant) ⊆ P(S liceS et) OR P(PN) == P(S liceS et));
i f (P(S liceS et) , P(PN)){
Uncovered_P_S et = P(PN) − P(S liceS et);
f or ∀p ∈ Uncovered_P_S et do {
slice = f ind_minimally_connected(S liceS et, p);
slice = slice ∪ {p}; }
}

The basic idea of the algorithm is to slice a Petri net model into a set of Petri net slices
using minimal invariants. The algorithm starts with an empty slice set and minimal
invariants are selected among Setofinvariants (by f ind_minimal_invariants). In the
minimal invariant set, the algorithm selects an invariant that has the minimal number
of elements by (f ind_smallest_invariant) and adds it into the S liceS et until S liceS et
covers all the places in PN, (P(PN) == Place(S liceS et)) or there exists no minimal
invariant which includes a new place (P(S eto f Invariant)P(S liceS et)).

If the minimal invariant set becomes empty without covering all the places in PN ,

32 Chapter 3. Survey of Petri nets Slicing

t11

t12t13

t21

t23t22

P11

P12

P13

P21

P22

P23

P24

t11

t12t13

t21

t23t22

P11

P12

P13

P21

P22

P23

P24

Figure 3.6: Example Petri net model and its concurrency set by applying Chang algo-
rithm

3.3. Petri nets Slicing Algorithms 33

for each uncovered place, it should be added into a slice to which it is connected by a
minimal number of transitions (by f ind_minimally_connected). Like this, the slicing
algorithm ensures that every place in PN belongs to some slices.

The proposed algorithm is linear time complex and the time complexity is O(N)3. The
time complexity depends on three procedures that are f ind_minimal_invariant,
f ind_smallest_invariant and f ind_minimally_connected. The proposed slicing ap-
proach has been applied to dining philosopher and feature interaction problem case
studies. By taking the case study of dinning philosopher evaluation of proposed slic-
ing approach is performed. The evaluation criterion is to compare the number of
states and transitions between Petri net model, modular Petri nets and sliced Petri
nets. The numbers of reachable states and state transitions grow exponentially in Petri
nets. However, in Modular Petri nets and Petri net slices they grow slowly. Remark
that there is no huge difference in the growth of states and transitions between the
Modular Petri nets and sliced Petri nets.

3.3.3 Llorens et al Slicing

Llorens et al presented a dynamic slicing algorithm for the first time in [LOS+08].
They introduced two different techniques for dynamic slicing of Petri nets. In the
first technique, a Petri net and the initial markings are taken into account while in
the second technique firing sequences are fixed to have a more reduced slice. The
first technique includes three steps. In the first step, the basic algorithm given below
computes a backward slice.

Algorithm 4: Bakward Slicing
GenerateSlice(〈P,T, f ,w,m0〉,Crit){
T ′ ← ∅;
P′ ← Crit ;
while (•P′ , T ′) do

T ′ ← T ′ ∪ •P′;
P′ ← P′ ∪ •T ′;

end
return 〈P′,T ′, f|P′ ,T ′ ,w|P′ ,T ′ ,m0|P′〉; }

Starting from the criterion place the algorithm iteratively include all the incoming
transitions together with their input places until reaching a fix point. In the second

34 Chapter 3. Survey of Petri nets Slicing

step a forward slicing is computed by the following algorithm.

Algorithm 5: Forward Slicing
GenerateSlice(〈P,T, f ,w,m0〉){
T ′ ← {t ∈ T/m0[t〉};
P′ ← {p ∈ P/m0(p) > 0} ∪ T ′•;
Tdo ← {t ∈ T \ T ′/ • t ⊆ P′};
while (Tdo , ∅) do

T ′ ← T ′ ∪ Tdo;
P′ ← P′ ∪ T•do;
Tdo ← {t ∈ T \ T ′/ • t ⊆ P′}

end
return 〈P′,T ′, f|P′ ,T ′ ,w|P′ ,T ′ ,m0|P′〉; }

Starting from the set of initially marked places the algorithm proceeds further by
checking the enabled transitions. Then post sets of places are included in the slice.
The algorithm computes the paths that may be followed by the tokens of the initial
marking.

In the third step both forward and backward slices are intersected to get the resultant
slice. By bearing a slight overhead more reduce slices can be obtained.

The second technique introduced by Llorens et al fixes the firing sequences and can
result in smaller slice. The algorithm is defined by auxiliary function and takes an
initial marking together with the firing sequence denoted by σ and the set of places Q
of the slicing criterion.

Algorithm 6: Trace Slicing

slice(m0, σ,Q) =


Q if i = 0,
slice(m0, σ,Q) if ∀p ∈ Q.m0−1(p) ≥ m0(p), i > 0
{ti} ∪ slice(m0, σ,Q ∪ •ti) if∃p ∈ Q.m0−1(p) < m0(p), i > 0

For a particular marking, a firing sequence and a set of places Q, function slice just
moves backward when no place in Q increased its tokens by the considered firing.
Otherwise, the fired transition ti increased the number of tokens of some place in Q
and in this case, function slice already returns this transition ti and, moreover, it moves
backwards also adding the places in •ti to the previous set Q. When the initial marking
is reached, function slice returns the accumulated set of places. Unfortunately, both
techniques are not evaluated using case studies which is a big question mark on the
usefulness and practicality.

We took an extremely simple PN model example and showed the resultant sliced PN
models (by taking the intersection of sliced models obtained by applying forward and
backward slicing algorithms). All the slices are generated considering place B as a

3.3. Petri nets Slicing Algorithms 35

criterion place (see Fig.3.7).

Petri net Model

Resultant Forward Slice Resultant Backward Slice

Backward Slice Forward Slice \

A

t1

D
t2

B
t3

E

t4 t5
C

F

A

t1

B
t3

E

t4 t5
C

F

A

t1

D
t2

B

A

t1

B

Figure 3.7: Example Petri net model and resultant sliced Petri net model by Llorens
algorithm.

3.3.4 Rakow Slicing

A. Rakow presented two slicing algorithms, which are CTL*−X slicing and safety
slicing in [Rak12]. The objective of slicing algorithms is to reduce the size of a net
in order to alleviate the state explosion problem for model checking Petri nets. Both
algorithms proposed are static and follow backward slicing approach. Before slicing
Petri nets, temporal formulas are used to extract a slicing criterion. A slicing criterion

36 Chapter 3. Survey of Petri nets Slicing

consists of concerned places extracted from the temporal formula. A slice is generated
by following dependencies backward from the criterion places.

In CTL*−X algorithm, Rakow used the concept of reading and non-reading transitions
to generate smaller slice. Informally, reading transitions are those transitions that do
not change the marking of a place while non-reading transitions are transitions that
change the marking of a place (as shown in Fig.3.8). Excluding the reading transitions
and including the non-reading transitions during the slicing can certainly reduce the
size of a slice. Formally, we can define reading and non-reading transitions such as:

Definition 3.3.1: (Reading(resp.Non-reading) transitions of PN)
Let t ∈ T be a transition in PN. We call t a reading-transition iff its firing does not

change the marking of any place p ∈ (•t∪t•) , i.e., iff ∀p ∈ (•t∪t•),w(p, t) = w(t, p).
Conversely, we call t a non-reading transition iff ∀p ∈ (•t ∪ t•),w(p, t) , w(t, p).

P 1

1

P 1

2

Reading Transition Non-reading Transition

Figure 3.8: Reading and non-reading transitions of Petri net.

Algorithm 7: CTL*−X Slicing
GenerateSlice(〈P,T, f ,w,m0〉,Crit){
T ′, Pdone ← ∅;
P′ ← Crit ;
while (∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ (•p ∪ p•) \ T ′) : w(p, t) , w(t, p)) do
P′ ← P′ ∪ •t;
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
return 〈P′,T ′, f|P′ ,T ′ ,w|P′ ,T ′ ,m0|P′〉; }

The CTL*−X algorithm takes a Petri net (PN) and the criterion places (Crit) as an in-
put. The algorithm iteratively builds the sliced net by taking all the incoming and out-
going transitions together with their input places. Remark that only the non-reading
transitions are included in the sliced net. The proposed algorithm is linear time com-

3.3. Petri nets Slicing Algorithms 37

plex.

Algorithm 8: Safety Slicing
GenerateSlice(〈P,T, f ,w,m0〉,Crit){
T ′ ← {t ∈ T | ∃p ∈ Crit : w(p, t) , w(t, p)};
P′ ← •T ∪Crit ;
Pdone ← Crit;
while (∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ (•p \ T ′) : w(p, t) < w(t, p)) do
P′ ← P′ ∪ •t;
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
return 〈P′,T ′, f|P′ ,T ′ ,w|P′ ,T ′ ,m0|P′〉; }

The safety slicing algorithm focuses on the preservation of stutter-invariant linear time
safety properties. In contrast to CTL*−X, safety slicing algorithm iteratively take only
the transitions that increase the token count on places in the sliced net places and their
input places. Remark that the safety slicing does not preserve liveness properties.
We took an extremely simple example PN model and showed the resultant sliced PN
models by applying basic, CTL*−X and safety slicing algorithms. All the slices are
generated considering place B as a criterion place (see Fig.3.9). Clearly, safety slicing
produces more smaller sliced PN model as compared to basic and CTL*−X sliced
models but it preserves only safety properties.

3.3.5 Wangyang et al Slicing

Wangyang et al presented a backward dynamic slicing algorithm [WCZX13]. The
basic idea of proposed algorithm is similar to the algorithm proposed by Lloren et
al [LOS+08]. At first for both algorithms, a static backward slice is computed for a
given criterion place(s). Secondly, in case of Llorens et al, a forward slice is computed
for the complete Petri net model (see algorithm 8) whereas in case of Wangyang et
al forward slice is computed for the resultant Petri net model obtained from static
backward slice. Let us suppose that there are n places in a Petri net model. After
applying the static backward slicing algorithm, let us suppose that there are n/2 places.
The algorithm of Llorens et al compute forward slice for n places whereas Wangyang

38 Chapter 3. Survey of Petri nets Slicing

Petri Net

After applying Basic Slicing

After applying CTL-X Slicing After applying Safety Slicing

P1 1 1
1 1

P21 2 P3

11

t2

t1

t3

t4

t5

P1 1 1 P21 2 P3

11

t1

t2

t4

t5

P1 1 1 P21 2 P3

1
t1 t4

t5

P1 1 1
1 1

P21 2 P3

P4 1
11

1
t1

t2

t3

t5t6

t4

Figure 3.9: An example Petri net model and its sliced Petri net models by applying
A.Rakow’s proposed algorithms.

3.3. Petri nets Slicing Algorithms 39

et al, algorithm will compute the forward slice only for n/2.

Algorithm 9: Wangyang Slicing
Input: Backward static sliced PN′,m0.
Output: Local reachability graph(LRG(PN′))
1. MP = {p ∈ P′ | m0(p) > 0}, be the root node, and mark with “New”;
2. While “New” nodes exist Do
2.1. Choose an arbitrary New node as MP′;
2.2. If MP′• = ∅

Then mark MP′ with Terminate node;
Return to step2;
Endif
2.3. make that every place p ∈ MP′ has a token;
2.4. If there does not exist t ∈ T ′ and is enabled under this situation
Then mark B′ with Terminate node;
Return to step2;
Endif
2.5. Else if there do not exist transition set
Tl ⊆ T ′ and is enabled under this situation
2.5.1. For t ∈ Tl

2.5.1.1. Compute a new set of places MP′′ = MP′ \ •t ∪ t•;
2.5.1.2. If MP′′ exists in LRG(PN′)
Then create a directed edge from MP′ to MP′′, mark the edge with t; Endif
2.5.1.3. Else if MP′′ does not exist in LRG(PN′) Then create a new node MP′′

and create a directed edge from MP′ to MP′′, mark edge with t; Endif
2.5.1.4. Mark MP′′ with “New”; Endfor
Endif
2.6 Remove mark “New” of MP′;
Repeat

The algorithm starts by taking static backward sliced Petri net model and produce a
local reachability graph LRG for the Petri net model. LRG is a directed graph, its node
set is the set of places. The mark of an arc is a transition. From the initially marked
places a root node is constructed and then enabled transitions are added together with
their places. The old node can contribute tokens to new ones then (LRG(PN′)) can
be obtained by tracking backward static slice forward, and the parts associated with
slicing criterion under the initial marking m0. Finally, backward dynamic slice can be
obtained coupled with the initial marking and corresponding flow relation.

40 Chapter 3. Survey of Petri nets Slicing

Petri net Model

Resultant Wangyang Slice

A

t1

D
t2

B
t3

E

t4 t5
C

F

A

t1

B

Figure 3.10: An example Petri net model and its sliced Petri net models by applying
Wangyang’s algorithm.

3.4 Comparison of Petri nets slicing algorithms

In this section, the static and dynamic slicing algorithms that were presented earlier
are compared and classified. All the PN slicing constructions are proposed to improve
testing or model checking of Petri nets. One major difference between the slicing
constructions designed for testing and model checking is their slicing criterion.

The slicing constructions designed to improve model checking extract a slicing cri-
terion from the temporal description of properties. A slicing criterion consists of a
set of places and then a slice is generated around them. We highlight in the Fig.3.11
different slicing algorithms that are designed for improving the model checking with
respect to the slice size. We can notice that Safety slicing algorithm may generate
the smallest slice as compared to other algorithms but preserve only safety properties.
Remark that all the existing slicing algorithms do not allow properties specified with
the next time operator. On the other hand the slicing algorithms designed to improve
testing take directly the places or transitions as a slicing criterion.

Let us study the results summarized in the table.6.6. For each column, the table lists:

i) The names of proposed slicing algorithms that are presented earlier,

ii) The objective of every algorithm is presented i.e., to improve testing process or
to alleviate the state space of model checking process,

iii) The reduction shows that either a model is reduced or there is no reduction by
applying algorithm,

iv) Design context refers to the application of slicing algorithm with respect to Petri
nets formalism; either it is designed for low-level or high-level Petri nets,

v) The properties that are preserved by the slicing construction are given. As some
of the algorithms are designed in the context of testing and their objective is
to find a particular trace for the analysis, we jointly refer those properties as
particular,

vi) The slicing type refers to the construction methodology i.e., either it is static or
dynamic (as discussed earlier in the chapter) for slicing types) and is following
backward propagation or forward (or both),

vii) The time complexity for each construction is presented. In general, every slicing
algorithm proposed so far is polynomial time complex.

viii) The last column represents the existence of implementation for proposed algo-
rithm.

PN Basic Slicing CTL-X Slicing Safety Slicing

Figure 3.11: Petri net slicing algorithms w.r.t slice size

3.4. Comparison of Petri nets slicing algorithms 41

A
go

ri
th

m
O

bj
ec

tiv
e

R
ed

uc
tio

n
D

es
ig

n
co

nt
ex

t
P

re
se

rv
ed

pr
op

er
tie

s
Ty

pe
sl

ic
in

g
Ti

m
e

co
m

pl
ex

ity
Im

pl
em

en
ta

tio
n

C
ha

ng
et

al
sl

ic
in

g
Te

st
in

g
N

o
D

es
ig

ne
d

fo
r

lo
w

-l
ev

el
P

N
Pa

rt
ic

ul
ar

St
at

ic
ba

ck
-

w
ar

d
sl

ic
in

g
O

((
n/

N
))

N
N

o

Le
e

et
al

sl
ic

in
g

M
od

el
ch

ec
ki

ng
N

o
D

es
ig

ne
d

fo
r

lo
w

-l
ev

el
P

N
B

ou
nd

ed
ne

ss
an

d
liv

en
ss

St
at

ic
ba

ck
-

w
ar

d
sl

ic
in

g
O

(N
)3

N
o

R
ak

ow
C

TL
* −

X
sl

ic
in

g
M

od
el

ch
ec

ki
ng

Ye
s

D
es

ig
ne

d
fo

r
lo

w
-l

ev
el

P
N

C
TL

* −
X

St
at

ic
ba

ck
-

w
ar

d
sl

ic
in

g
O

(2
N

)
O

w
n

R
ak

ow
Sa

fe
ty

sl
ic

in
g

M
od

el
ch

ec
ki

ng
Ye

s
D

es
ig

ne
d

fo
r

lo
w

-l
ev

el
P

N
Sa

fe
ty

St
at

ic
ba

ck
-

w
ar

d
sl

ic
in

g
O

(2
N

)
O

w
n

Ll
or

en
s

et
al

sl
ic

in
g

M
od

el
ch

ec
k-

in
g

/T
es

tin
g

Ye
s

D
es

ig
ne

d
fo

r
lo

w
-l

ev
el

P
N

Pa
rt

ic
ul

ar
D

yn
am

ic
fo

rw
ar

d/
ba

ck
-

w
ar

d
sl

ic
in

g

O
(2

T
)

N
o

Ll
or

en
se

et
al

tr
ac

e
sl

ic
in

g
Te

st
in

g
Ye

s
D

es
ig

ne
d

fo
r

lo
w

-l
ev

el
P

N
Pa

rt
ic

ul
ar

D
yn

am
ic

fo
rw

ar
d/

ba
ck

-
w

ar
d

sl
ic

in
g

O
(2

T
)

N
o

W
an

gy
an

g
et

al
sl

ic
in

g
M

od
el

ch
ec

k-
in

g
/T

es
tin

g
Ye

s
D

es
ig

ne
d

fo
r

lo
w

-l
ev

el
P

N
Pa

rt
ic

ul
ar

D
yn

am
ic

ba
ck

w
ar

d
sl

ic
in

g

O
(2

T
)

N
o

Ta
bl

e
3.

1:
C

om
pa

ri
so

n
of

PN
sl

ic
in

g
A

lg
or

ith
m

s

42 Chapter 3. Survey of Petri nets Slicing

Chapter 4

Property Based Model checking of Algebraic
Petri nets

The beginning of wisdom is to desire it.

— Ibn Gabirol

Model checking is a convenient approach to analyze systems modeled in Algebraic
Petri Net (APN). In general, APN model checking consists in a complete state space
generation of an APN model to verify a given property. A typical drawback of model
checking is its limit with respect to the state space explosion problem. As systems get
moderately complex, completely enumerating their states states demands a growing
amount of resources that in some cases makes model checking impractical both in
terms of time and memory consumption.

The main advantage of model checking over traditional analysis approaches is that
it is fully automatic. A lot of model checkers has been designed to analyze Petri
net models [BHMR10, RWL+03, Mä02, BCC07]. In principle, every model checker
explores all the possible states of a model to verify a given property and suffers with
the state space explosion problem. An intense field of research is targeting to find ways
to improve the performance of model checkers by reducing the state space. Recently,
major advances have been made by either modularizing the system or by reducing
the states to consider e.g., partial orders, symmetries. The symbolic model checking
partially overcomes this problem by encoding the state space in a condensed way by
using Binary Decision Diagram (BDD) and has been successfully applied to Petri nets
(PNs).

In this work, we propose a solution to improve the model checking by generating a
partial state space which is sufficient to verify a property. The proposed approach is
based on slicing an APN model by taking properties into consideration. The main ad-
vantage of our approach is that it can be considered as a pre-processing step towards
model checking and can be easily added to any existing model checkers. Informally,
a syntactically reduced APN model is obtained by applying a slicing algorithm. The

43

44 Chapter 4. Property Based Model checking of Algebraic Petri nets

slicing algorithm takes APN model and temporal description of properties. The re-
sultant sliced net is used to generate the state space to verify the property for which
it is sliced. It is important to note that the resultant sliced net preserves certain class
of properties such as safety, liveness or both, depending on the construction used by
slicing algorithms. For example, some algorithms preserves safety properties only but
generate smaller sliced net as compared to others.

As discussed in the chapter 3, slicing algorithms can be divided into two major classes,
which are static and dynamic slicing algorithms. The static slicing algorithms are

Table 4.1: Proposed Slicing Algorithms for Algebraic Petri nets

Algorithm Preserved Prop Type Slicing

APN Slicing LTL−X Static

Abstract Slicing CTL*−X Static

Safety Slicing Safety Static

Liveness Slicing Livenss Static

Concerned Slicing Particular Dynamic

Smart Slicing Particular Dynamic

designed to improve model checking whereas the dynamic slicing algorithms are de-
signed to facilitate debugging. We propose several static and dynamic slicing algo-
rithms for APNs as given in Tab: 4.1. In the first column of table, the name of pro-
posed slicing algorithm is given, whereas in the second column a class of properties
that are preserved by the algorithm are given. Consider for instance, the APNSlicing
slicing algorithm preserves all the safety and liveness properties that can be repre-
sented by an LTL−X formulas. The third column indicates the type of slicing either
static or dynamic. The proposed static slicing algorithms can alleviate state space
even for strongly connected nets and are proved not to increase the state space. It is
important to note that the proposed algorithms can be applied to all classes of PNs
with slight modifications.

Fig.4.1, gives an overview of the proposed approach for property based model check-
ing of Algebraic Petri nets using a Process Flowchart. At first, an APN model is
unfolded. The reason to unfold an Algebraic Petri net is to determine the ground
substitutions of algebraic terms over the arcs to generate a smaller slice. Secondly,
by taking properties into account, criterion places are extracted. Afterwards, slicing
is performed for the criterion places. Subsequently, verification is performed on the
sliced unfolded APN. The user may use the counterexample to refine the APN model

45

to correct the model to satisfy the property. Let us study in details the underlying

UNFOLDING

APN-MODEL

APN-MODEL

PROPERTY

SLICING

UNFOLDED

APN-MODEL

PERFORMING

VERIFICATION

ON SLICED

APN-MODEL

PROPERTY

FULFILLED?
NOTIFICATION

COUNTER

EXAMPLE

YESNO

REFINING

APN-MODEL

EXTRACTING

CRITERION

PLACE(S)

Figure 4.1: Process Flowchart of Property based model checking of Algebraic Petri
nets

theory and techniques for each activity of the process.

46 Chapter 4. Property Based Model checking of Algebraic Petri nets

4.1 Slicing Algebraic Petri nets

The main challenge in Petri nets Slicing (PN slicing) is to reduce the size of a resul-
tant sliced net by preserving safety and liveness properties. Various algorithms are
designed for slicing low-level Petri nets as discussed in the chapter 3. The main ob-
jective of existing algorithms is to reduce the size of resultant sliced net such that the
state space required to verify a given property can be reduced. Rakow made the first
improvement to reduce a slice size in the context of low-level Petri nets by introducing
a notion of reading and non-reading transitions[Rak12]. The idea is to remove those
transitions that consume and produce the same token to a place (i.e., reading transi-
tions see definition 3.3.1) in the sliced net. The reading transitions are determined
with the help of weights attached to the arcs of transitions.

One characteristic of APNs that makes them complex to slice as compared to low-
level Petri nets is the use of multisets of algebraic terms over the arcs. In principle,
algebraic terms may contain variables. Even though, we want to reach a syntactically
reduced net (to be semantically valid) by identifying reading transitions, its reduction
by slicing, needs to determine the possible ground substitutions of these algebraic
terms. As shown in Fig.4.2 , both transitions are reading even if they are syntactically
different.

t1[1]
xP1

Syntactically and semantically
reading transition

x
t1[1]

xP1

Syntactically non-reading but
semantically reading transition

y
x = y

Figure 4.2: Syntactically and semantically reading transitions of Algebraic Petri nets

4.1.1 Partial Unfolding Algebraic Petri nets

The first step in property based model checking of Algebraic Petri nets is unfold-
ing. Unfolding generates all possible firing sequences from the initial marking of
the APNs, though maintaining a partial order of events based on the causal rela-
tion induced by the net, concurrency is preserved. In this work, we use partial un-
folding approach used in AlPiNA (a symbolic model checker for Algebraic Petri
nets) [BHMR10]. The AlPiNA allows a user to define partial algebraic unfolding and
presumed bounds for infinite domains, using some aggressive strategies for reducing
the size of large data domains.

Due to partial unfolding, there could be some domains that are not unfolded. For some
cases, we are still able to identify non-reading transitions even if the domains are not

4.1. Slicing Algebraic Petri nets 47

unfolded. If for example, we have a case where the multiplicities or cardinalities of
terms in λ(p, t), λ(t, p)are different then we can immediately state λ(p, t) , λ(t, p). But
for some cases, we don’t have such a clear indication of the inequality between λ(p, t)
and λ(t, p), for example, in Fig.4.3, we see that λ(p, t) = 1 + y and λ(t, p) = 2 + x
(defined over naturals). Both terms have the same multiplicity and cardinality, so we
need to know for which values of the variables it would be a non-reading transition.
In general, the evaluation of terms to check their equality for all the values is unde-
cidable. For this particular case, we would like to have a set of constraints from a
user. Informally, a constraints set denoted by CS , is a set of propositional formulas,

P1 0…10

1+y

2+x

t

P20…5

x

Figure 4.3: An example APN model with non-unfolded terms over the arcs

predicate formulas or any other logical formulas for certain specific values of variable
assignments, describing the conditions under which we can evaluate terms to be equal
or not. Consequently, the constraints set CS will help to identify under which cases
the transitions can be treated as non-reading.

A function eval : TOP,s(X) × TOP,s(X) × CS → Bool is used to evaluate the equiva-
lence of terms based on the constraints set. Let us take the same terms shown over
the arcs in Fig.4.3, term1 = 1 + y, term2 = 2 + x and a constraint set CS = {∃y, x ∈
(0, . . . , 2)|y = x + 1}. It is important to note that we are not unfolding the domain
but evaluating the terms for some specific values provided by user to identify reading
and non-reading transitions. Of course, the user can provide sparse values too. Let
us evaluate the terms term1 and term2 based on the constraints set CS provided. For
all those values of x, y for which we get eval function result true are considered to be
reading transitions and rest of them are non-reading transitions. It is also important to
note that we include this step during the unfolding. The resulting unfolded APN will
contain only non-reading transitions for the unfolded domains as shown in Fig.4.4.
All the algorithms proposed in this thesis assume that such an unfolding takes place
before the slicing. Since this is a step that is involved in the model checking activity
anyway, we do not consider this assumption to be adding to the comparative complex-
ity of the algorithm. In this section, we will make an extremely simple example of
how the slicing algorithm works, starting from an APN and unfolding it.

48 Chapter 4. Property Based Model checking of Algebraic Petri nets

P2

t
0,2

t
0,1

t
0,0

t
1,0

P1

t
2,0

t
2,1

t
2,2

t
1,2

t
1,1

0

1

2

0

1

2

0

1

2

1+0

2+0

2+1

1+0

2+2
1+0

1+1

1+1

1+1

1+2

1+2

1+2

2+0

2+1

2+2

2+0

2+1

2+2

0…50…10

Figure 4.4: Resulting unfolded APN after applying the eval function

4.1.2 Example: Partially Unfolding an Algebraic Petri net

Fig. 4.5 shows an APN model. All places and all variables over the arcs are of
sort naturals (defined in the algebraic specification of the model, and representing
the N set). Since the N domain is infinite (or anyway extremely large even in its

[]

A

[]C[]

x

[]

[1,2]

t1

[1]

[1,2]

t3

t2

t5

t4

x

x x

y

x

yy

y

y

z

zz

B

C

E

D

F

G

Figure 4.5: An example APN model (APNexample)

finite computer implementations), it is clear that it is impractical to unfold this net by
considering all possible bindings of the variables to all possible values in N. However,
given the initial marking of the APN and its structure it is easy to see that none of the

4.1. Slicing Algebraic Petri nets 49

terms on the arcs (and none of the tokens in the places) will ever assume any natural
value above 3. For this reason, following [BHMR10], we can set a presumed bound
of 3 for the naturals data type, greatly reducing the size of the data domain.

By assuming this bound, the unfolding technique in [BHMR10] proceeds in three
steps. First, the data domains of the variables are unfolded up to the presumed bound.
Second, variable bindings are computed, and only that satisfy the transition guards are
kept. Third, the computed bindings are used to instantiate a binding-specific version
of the transition. The resulting unfolded APN for this APNmodel is shown in Fig. 4.6.
The interested reader can find details about the partial unfolding in [BHMR10].

A

[1,2] t1
2

t1
3

t1
1

B

t2
1

t2
3

t2
2

t5
1,2

t5
1,3

t5
3,3

t5
1,1

[1]

C

G

t5
2,1

t5
2,2

t5
2,3

t5
3,1

t5
3,2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

E

[1,2]

t3
1,3

t3
1,2

t3
1,1

t3
2,1

t4
3

D

F

t3
3,1

t3
3,2

t3
3,3

t3
2,3

t3
2,2

3

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3

1

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

t4
2

t4
1

2

1

2

3

1

1

1

2

2

2

3

3

1

2

3

1

2

3

1

2

3

3

Figure 4.6: Partially unfolded example APN model (UnfoldedAPN)

50 Chapter 4. Property Based Model checking of Algebraic Petri nets

4.2 Extraction of Criterion Places

In general, Petri net slicing aims to syntactically reduce a Petri net model based on
a given criteria. A criteria can be a set of transitions or places (or both) that are
provided by a user or it can be extracted automatically from a temporal description of
properties. The resultant sliced Petri net model constitutes only that part of a model
that may affect the criteria.

Let ϕ be a set representing CTL/LTL formulas and P represents set of places. A
function extract : ϕ → P is used to extract places from an CTL/LTL formula. Let us
take an example CTL formula and see extract places from it by using extract function.
Consider for an example, φ = G(P2 , ∅). By using extract function a criteria can be
extracted such as extract(φ) = {P2} . In this particular formula the only criterion place
is P2 and a slicing algorithm will start from this place.

4.3 Static Slicing on Partially Unfolded Algebraic Petri
nets

The basic idea of slicing algorithm is to start by identifying which places in the un-
folded APN model are directly concerned by a property. These places constitute the
slicing criterion. The algorithm will then take all the transitions that create or con-
sume tokens from the criterion places, plus all the places that are pre-condition for
those transitions. This step is iteratively repeated for the latter places, until reaching a
fixed point (Note: see basic algorithm in section 3).

We refine the slicing construction by distinguishing between reading and non-reading
transitions. The conception of reading and non-reading transitions is some what sim-
ilar notion introduced in [Rak12]. The main difference is that we adapt the notion
of reading and non-reading transitions in the context of APNs. Informally, reading
transitions are not supposed to change the marking of a place. On the other hand
non-reading transitions are subject to change the markings of a place. Unfolding of
APNs helps us to identify syntactically reading and non-reading transitions. In our
proposed slicing construction, we discard reading transitions and include only non-
reading transitions because they are affecting the property satisfaction.

4.3.1 The slicing algorithm: APNSlicing

The slicing algorithm starts with an unfolded APN and a slicing criterion Q ⊆ P.

Let Q ⊆ P a non empty set called slicing criterion. We can build a slice for an unfolded

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 51

APN based on Q, using following algorithm:

Algorithm 10: APN slicing algorithm
APNSlicing(〈S PEC, P,T, F, asg, cond, λ,m0〉,Q){
T ′ = {t ∈ T | ∃p ∈ Q : t ∈ (•p ∪ p•) : λ(p, t) , λ(t, p)};
P′ = Q ∪ {•T ′} ;
Pdone = ∅ ;
while ((∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ (•p ∪ p•) \ T ′) : λ(p, t) , λ(t, p)) do
P′ = P′ ∪ {•t};
T ′ = T ′ ∪ {t};

end
Pdone = Pdone ∪ {p};

end
return 〈S PEC, P′,T ′, F|P′ ,T ′ , asg|P′ , cond|T ′ , λ|P′ ,T ′ ,m0|P′

〉;
}

Initially, T ′ (representing transitions set of the slice) contains set of all pre and post
transitions of the given criterion place. Only non-reading transitions are added to T ′

set. P′(representing places set of the slice) contains all preset places of transitions
in T ′. The algorithm then iteratively adds other preset transitions together with their
preset places in T ′ and P′. Remark that the APNSlicing algorithm has linear time
complexity.

Considering the APN-Model shown in fig. 4.5, let us now take two example properties
and apply our proposed algorithm on them. Informally, we can define the properties:

φ1 = “The values of tokens inside place D are always smaller than 5”.

φ2 = “Eventually place D is not empty”.

Formally, we can specify them such as:

φ1 = G(∀token ∈ m(D)/token < 5).

φ2 = F(|m(D)| , ∅)

For both properties, the slicing criterion Q = {D}, as D is the only place concerned
by the properties. Therefore, the application of APNSlicing(UnfoldedAPN, D) re-
turns SlicedUnfoldedAPN (shown in Fig. 4.7), which is smaller than the original
UnfoldedAPN shown in Fig. 4.6).

Transitions t31,1, t31,2, t31,3, t31,3, t32,1, t32,2, t32,3, t33,1, t33,2, t33,3, t51,1, t51,2,
t51,3, t52,1, t52,2, t52,3, t53,1, t53,2, t53,3, and places C, E, F,G has been sliced away. The
proposed algorithm determines a slice for any given criterion Q ⊆ P and always ter-
minates. It is important to note that the reduction of net size depends on the structure
of the net and on the size and position of the slicing criterion within the net.

52 Chapter 4. Property Based Model checking of Algebraic Petri nets

A

[1,2] t1
2

t1
3

t1
1

B

t2
1

t2
3

t2
2

t4
2

D
11

2

3

1

2

3

1

2

3

1

2

3

t4
3

t4
1

2

3

Figure 4.7: Resultant Sliced Unfolded example APN model (SlicedUnfoldedAPN)

Let us compare the number of states required to verify the given property without
slicing and after applying abstract slicing. In the first column of Table.6.6, number
of states are given that are required to verify the property without slicing and in the
second column number of states are given to verify the property by slicing.

Table 4.2: Comparison of number of states required to verify the property with and
without APNslicing.

Properties No of states
required without

slicing

No of states
required with

slicing

φ1 148 16

φ2 148 16

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 53

4.3.2 Proof of the preservation of properties by APNslicing algo-
rithm

To allow the verification by slice, we have to make restrictions on the formulas and on
admissible firing sequences in terms of fairness assumptions. The original Algebraic
Petri net has more behaviors than the sliced net, as we intentionally do not capture all
the behaviors. The proof of preservation of properties is similar to the proof done by
Rakow in [Rak11] but we adapt in the context of unfolded APNs.

Definition 4.3.1:
Let A be the set of atomic propositions. Let φ, φ1, φ2 be CTL formulas. The function

scope associates with a CTL formula φ, the set of atomic propositions used in φ i.e.
scope : CT L→ P(A).

scope(a) = {a};

scope(⊗φ) = scope(φ) with ⊗ ∈ {¬, X};

scope(φ1 ⊗ φ2) = scope(φ1) ∪ scope(φ2) with ⊗ ∈ {∧,U}.

Definition 4.3.2:
Let apn be a marked unfolded APN. Let apn′ be its sliced net for a slicing criterion

Q ⊆ P. Let σ = t1t2t3 . . .be a firing sequence of apn and mi the markings with
mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ|. σ is slice-fair w.r.t apn′ iff

either σ is f inite and m|σ| does not enable any transitiont ∈ T ′;
or σ is in f inite and i f it permanently enables some t ∈ T ′,
it then f ires in f initely o f ten some transition

o f T ′ (which may or may not be the same as t).

Slice-fairness is a very weak fairness notion. Weak fairness determines that every
transition t ∈ T of a system, if permanently enabled, has to be fired infinitely often,
slice-fairness concerns only the transitions of the slice, not of the entire system net
and if a transition t ∈ T of the slice is permanently enabled, some transitions of the
slice are required to fire infinitely often but not necessarily t.

Definition 4.3.3:
Let apn be a marked unfolded APN and φ a CTL formula. Letσ be a firing sequence

of apn. apn |=s f φ (slice-fairly) ⇔ σ |= φ for every slice-fair firing sequence (not
necessarily maximal) .

Definition 4.3.4:
Let apn and apn′ be two marked unfolded APNs with T ′ ⊆ T and P′ ⊆ P. Let

T M : (T ∗ ∪ T w)→ (T ′∗ ∪ T ′w) such that a finite or infinite sequence of transitions σ

54 Chapter 4. Property Based Model checking of Algebraic Petri nets

is mapped onto the transition sequence σ′ with σ′ being derived from σ by omitting
every transition t ∈ T \ T ′ and PM : N|P| → N|P

′ | such that a marking m of apn
is projected onto the marking m′ of apn′ with m′ = m |p′ . We define the function:
slice(apn,apn′) ∈ {T M ∪ PM}.

The function slice is used to project markings and firing sequences of a net apn onto
the markings and firing sequences of its slices.

Proposition 4.3.1:
Let apn be a marked unfolded APN. Let apn′ be its sliced net for a slicing criterion
Q ⊆ P. Let σ be a weakly fair firing sequence of apn. σ is slice fair with respect to
apn′.

Proof: Let us assume, σ is not slice-fair. In case σ is finite this means that m|σ|[t〉 for
a transition t ∈ T ′. In case σ is infinite, there is permanently enabled transition t ∈ T ′

but all transitions of T ′ are fired finitely often including t. So both cases contradict the
assumption that σ is weakly fair.

Lemma 4.3.1:
Let apn be a marked unfolded APN and let apn′ be its sliced net for a slicing

criterion Q ⊆ P. The coefficients ci j of the incidence matrix equal to zero for all
places pi ∈ P′ and transitions t j ∈ T \ T ′.

Proof: Let apn′ be its sliced net for a slicing criterion Q ⊆ P. A transition t ∈ T is
also an element of T ′ ⊆ T , if it is a non-reading transition of a place p ∈ P′. Thus
a transition t ∈ T \ T ′ either is not connected to a place p ∈ P′ or it is a reading
transition.

Lemma 4.3.2:
Let apn be a marked unfolded APN and let apn′ be its sliced net for a slicing

criterion Q ⊆ P. Let m be a marking of apn and m′ be a marking of apn′ with
m′ = m |p′ . m[t〉 ⇔ m′[t〉,∀t ∈ T ′.

Proof: Let apn be its sliced net for a slicing criterion Q ⊆ P. Since a transition t ∈ T ′

has the same preset places in apn and apn′ by the slicing algorithm APNS licing,
m′ = m |p′ implies m[t〉 ⇐⇒ m′[t〉.

Every firing sequence σ of apn projected onto the transitions of T ′ is also a firing
sequence of slice net apn′. The resulting markings m and m′ assign the same number
of tokens to places p′ ⊆ P.

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 55

Proposition 4.3.2:
Let apn be a marked unfolded APN and let apn′ be its sliced net for a slicing

criterion Q ⊆ P. Let σ be a firing sequence of apn and let m be a marking of apn.
m0[σ〉m⇒ m0 |p′ [slice(σ)〉m |p′ .

Proof: We prove this Proposition by induction over the length l of σ. Let apn be a
marked unfolded APN, σ be a firing sequence of apn.

l = 0: In this case slice(σ) equals ε. Thus the initial marking of apn and apn′ is
generated by firing ε. By defintion 4.3.4 and the slicing algorithm APNS licing, m′0 =

m0 |p′ .

l → l + 1 : Let σ be a firing sequence of length l and ml be a marking of apn with
m0[σ〉ml. Let tl+1 be a transition in T and ml+1 a marking of N such that ml[tl+1〉ml+1.
By induction hypothesis, m′0[slice(σ)〉m′k with ml |p′= m′k. If tl+1 is an element of T ′,
it follows by Lemma 4.3.2, that m′k enables tl+1, since ml enables tl+1. The result-
ing marking m′k+1 is determined by m′k+1(P′i) = m′k(P

′
i) + ci l+1,∀pi ∈ P′ and ml+1 is

determined by ml+1(i) = ml(i) + ci l+1,∀pi ∈ P′.

Since ml|P′ = m′k, it thus follows that mll+1 |P′ = m′k+1. If tl+1 is an element of t ∈ T \ T ′,
then it must be a reading transition for all p ∈ P; slice(σ) = slice(σtl+1) and thus
m′0[slice(σtl+1)〉m′k a transition t ∈ T \ T ′ can not change the marking of on any place
p ∈ P′. By Lemma 4.3.1 and the resultant markings, mll+1 |P′ = m′l |P′ . �

A firing sequenceσ′ of the slice net apn′ is also a firing sequence of apn. The resulting
markings of σ′ on apn and apn′, respectively assigns the same markings to places
p ∈ P′.

Proposition 4.3.3:
Let apn be a marked unfolded APN and let apn′ be its sliced net for a slicing

criterion Q ⊆ P. Let σ′ be a firing sequence of apn′ and let m′ be a marking of apn′.

m′0[σ′〉m′ ⇒ ∃m ∈ N|P| : m′ = ml|P′ ∧ m0[σ′〉m.

Proof: We prove this Proposition by induction over the length l of σ′.

l = 0: The empty firing sequence generates the marking m0 on apn and the marking
m′0, which is defined as m0|P′ , on apn′, by definition 4.3.4.

l → l + 1: Let σ′ = t1 . . . tl+1 be firing sequence of apn′ with length l + 1. Let m′l
and m′l+1 be markings of apn′ such that m′0[t1 . . . tl〉m′l[tl+1〉m′l+1. Let ml be the marking
of apn with m0[t1 . . . tl〉ml and ml|P′ = m′l , which exists according to the induction
hypothesis. Lemma 4.3.2, ml enables tl+1. The marking ml+1 satisfies ml+1(Pi) =

ml(Pi) + ci l+1,∀pi ∈ P′ and m′l+1 satisfies m′l+1(Pi) = m′l(Pi) + ci l+1,∀si ∈ P′. With
ml|P′ = m′l , it follows that (ml+1 |P′) is equal to m′l+1. �

56 Chapter 4. Property Based Model checking of Algebraic Petri nets

Proposition 4.3.4:
Let apn be a marked unfolded APN and let φ be a CT Lx formula such that

scope(φ) ⊆ P. Let apn′ be its sliced net for a slicing criterion Q ⊆ P where
Q = scope(φ). Let σ be a firing sequence of apn. Let us denote the sequence of
markings byM(σ). Then,M(σ) |= φ⇔M(slice(σ)) |= φ.

Proof: We prove this Proposition by induction on the structure of φ. Let σ = t1t2 . . .
and slice(σ) be σ′ = t′1t′2 LetM(σ) = m0m1 . . . andM(σ′) = m′0m′1

φ = true: In this case nothing needs to be shown. φ = ¬ψ, φ = ψ1 ∧ ψ2: Since the
satisfiability of φ depends on the initial marking of scope(φ) only and scope(φ) ⊆
P′ ⊆ P, both directions hold.

φ = ψ1Uψ2: We assume thatM(σ′) |= ψ1Uψ2. We can divide up σ′ such that σ′ =

σ′1σ
′
2 with m′

|σ′1 |
m′
|σ′1 |+1 . . . |= ψ2 and ∀i, 0 ≤ i < |σ′1| : m′im

′
i+1 . . . |= ψ1. There are

transition sequences σ1 and σ2 such that σ = σ1σ2, slice(σ1) = σ′1, slice(σ2) = σ′2
and σ1 does not end with a transition t ∈ T \ T ′.

By proposition 4.3.2, it follows that m′
|σ′1 |

= (m|σ1 | |P′). Since m′
|σ′1 |

m′
|σ′1 |+1 . . . |= ψ2,m|σ1 |m|σ1 |+1 . . . |=

ψ2 by induction hypothesis. Let % be a prefix of σ1 such that |%| < |σ1|. Let %′ be
slice(%). The firing sequence % truncates at least one transition t ∈ T ′, consequently
|%′| < |σ′1|. Since m′

|%′1 |
m′
|%′1 |+1 . . . |= ψ1,m|%|m|%|+1 . . . |= ψ1 by the induction hypothesis.

Analogously, it can be shown thatM(σ) |= ψ1Uψ2 impliesM(σ′) |= ψ1Uψ2. �

Proposition 4.3.5:
Let apn be a marked unfolded APN and let apn′ be its sliced net for a slicing

criterion Q ⊆ P. Let σ′ be a maximal firing sequence of apn′. σ′ is a slice-fair firing
sequence of apn.

Proof: Let σ′ = t1t2 Let m′i be the marking of apn′, such that m′i[ti+1〉m′i+1,∀i, 0
≤ i < |σ′|. By Proposition 4.3.3 σ′ is a firing sequence of apn. Let mi be the marking
of apn, such that mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ′|. In case σ′ is finite, m′

|σ′ | does not enable
any transition t′ ∈ T ′.

By Lemma 4.3.2, m|σ′ | does not enable any transition T ′ ∈ T ′ , If σ′ is infinite it
obviously fires infinitely often a transition t′ ∈ T ′ and thus is slice-fair. �

Proposition 4.3.6:
Let apn be a marked unfolded APN and let apn′ be its sliced net for a slicing

criterion Q ⊆ P. S lice(σ) is maximal firing sequence of apn′.

Proof: Let σ = t1t2 . . .with mi[ti+1〉mi+1,∀i, 0 ≤ i < |σ|. By Proposition 4.3.2, slice(σ)
is a firing sequence of apn′. Let slice(σ) be σ′ = t′1t′2 . . . with m′i[t

′
i+1〉m

′
i+1,

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 57

∀i, 0 ≤ i < |σ|. Let us assume σ′ is not a maximal firing sequence of apn′. Thus σ′ is
finite and there is a transition t′ ∈ T ′ with m′

|σ′ |[t
′〉. Let σ1 be the smallest prefix of σ

such that slice(σ1) equals σ′.

By Proposition 4.3.2 (m|σ1 | |P′= m′
|σ′ |. By Lemma 4.3.2, and the state equation it

follows, that (m|σ1 | |P′= m′
|σ′ |+1 = . . .). So t′ stays enabled for all markings m j with

|σ1| ≤ j ≤ |σ| but is fired finitely many times only. This is a contradiction to the
assumption that σ is slice-fair. �

Theorem 4.3.1:
Let apn be a marked unfolded APN and let φ be a CTL formula such that scope(φ) ⊆

P. Let apn′ be its sliced net for a slicing criterion Q ⊆ P. Let ψ be a CT L−X formula
with scope(ψ) ⊆ P.

apn |=s f φ⇒ apn′ |=s f φ.

apn |=s f ψ⇐ apn′ |=s f ψ.

Proof: We first show “ apn |=s f φ ⇒ apn′ |=s f φ ”. Let us assume that apn |=s f φ
holds. Let σ′ be a maximal firing sequence of apn′. Since σ′ is a slice-fair firing
sequence of apn by Proposition 4.3.5 M(σ′) |= φ. Let us now assume apn′ |=s f ψ.
Let σ be a slice-fair firing sequence of apn. By Proposition 4.3.6, slice(σ) is maximal
firing sequence of apn′ and thus satisfies ψ. By Proposition 4.3.4, it follows that σ
satisfies ψ. �

If we assume slice-fairness then verification is possible under interleaving semantics.
A firing sequence σ is fair w.r.t T ′ , if σ is maximal and if σ eventually permanently
enables a t′ ∈ T ′, a transition t ∈ T ′ will be fired infinitely often (t may not equal
t′). Unfolded APN |=s f φ w.r.t. T ′ holds if all fair firings sequences of apn, more
precisely, their corresponding traces satisfy φ. �

58 Chapter 4. Property Based Model checking of Algebraic Petri nets

4.3.3 Abstract Slicing on Unfolded APNs

Abstract slicing has been defined as a static slicing algorithm. The objective is to
improve the model checking of Algebraic Petri Nets (APNs) by developing a more
refined slicing algorithm. In the previous static algorithm proposed for APNs, the no-
tions of reading and non-reading transitions are applied to generate a smaller sliced
net. The basic idea of reading and no-reading transitions was coined by Astrid
Rakow in the context of PNs [Rak12], and later adapted by us in the context of
APNs in [KR13]. Informally, reading transitions are transitions that are not sub-
ject to change the marking of a place. On the other hand the non-reading transitions
change the markings of a place (see Fig.4.8). To identify a transition to be a reading
or non-reading in a low-level or high-level Petri nets, we compare the arcs inscrip-
tions attached over the incoming and outgoing arcs. Excluding reading transitions
and including only non-reading transitions reduces the slice size.

We introduce a new notion of neutral transitions to reduce the slice size. Informally,
a neutral transition consumes and produces the same token from its incoming place
to an outgoing place. The cardinality of incoming (resp.) outgoing arcs of a neutral
transition is strictly equal to one and the cardinality of outgoing arcs from an incoming
place of a neutral transition is equal to one as well.

Definition 4.3.5:
(Neutral transitions of APN) Let t ∈ T be a transition in an unfolded APN. We call
t a neutral-transition iff it consumes token from a place p ∈ •t and produce the same
token to p′ ∈ t•, i.e., t ∈ T ∧ ∃p∃p′/p ∈• t ∧ p′ ∈ t• ∧ |p•| = 1 ∧ |•t| = 1 ∧ |t•| =
1 ∧ λ(t, p) = λ(t, p′).

[]t1

2
P
2

[2]
2

P
1

t1[3]

3P
1

3

Neutral Transition Reading Transition

Figure 4.8: Neutral and Reading transitions of Unfolded APN

We extend the existing slicing algorithm by using neutral transitions and reading tran-
sitions (shown in Fig. 4.9). The advantage of using neutral and reading transitions
together is smaller resultant slice. The more smaller slice means more reduction in the
state space. Thus, abstract slicing is an improved version of slicing algorithms. Later,
we show a comparison of abstract slicing results with the existing slicing results.

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 59

READING
TRANSITIONS

NEUTRAL
TRANSITIONS

ABSTRACT
SLICING

Figure 4.9: Abstract slicing construction methodology

4.3.4 The Slicing Algorithm: AbstractSlicing

The abstract slicing algorithm starts with an unfolded APN and a slicing criterion
Q ⊆ P containing criterion place(s). We build a slice for an unfolded APN based on
Q by applying the following algorithm:

Algorithm 11: Abstract slicing algorithm
AbsSlicing(〈S PEC, P,T, F, asg, cond, λ,m0〉,Q){
T ′ ← {t ∈ T/∃p ∈ Q ∧ t ∈ (•p ∪ p•) ∧ λ(p, t) , λ(t, p)};
P′ ← Q ∪ {•T ′} ;
Pdone ← ∅ ;
while ((∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ ((•p ∪ p•) \ T ′) ∧ λ(p, t) , λ(t, p)) do
P′ ← P′ ∪ {•t};
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
while (∃t∃p∃p′/t ∈ T ′ ∧ p ∈• t ∧ p′ ∈ t• ∧ |•t| = 1 ∧ |t•| = 1 ∧ |p•| = 1
∧p < Q ∧ p′ < Q ∧ λ(p, t) = λ(t, p′)) do

m(p′)← m(p′) ∪ m(p);
while (∃t′ ∈• p/t′ ∈ T ′) do

λ(p′•, p)← λ(p′•, p′) ∪ λ(t′, p);
end
T ′ ← T ′ \ {t ∈ T ′/t ∈ p• ∧ t ∈• p′};
P′ ← P′ \ {p};

end
return 〈S PEC, P′,T ′, F|P′ ,T ′ , asg|P′ , cond|T ′ , λ|P′ ,T ′ ,m0|P′

〉;
}

60 Chapter 4. Property Based Model checking of Algebraic Petri nets

In the Abstract slicing algorithm, initially T ′ (representing transitions set of the slice)
contains a set of all the pre and post transitions of the given criterion places. Only the
non-reading transitions are added to T ′. P′ (representing the places set of the slice)
contains all the preset places of the transitions in T ′. The algorithm then iteratively
adds other preset transitions together with their preset places in T ′ and P′. Then the
neutral transitions are identified and their pre and post places are merged to one place
together with their markings.

Considering the unfolded APN-Model shown in fig. 4.6, let us now take two ex-
ample properties φ1 and φ2 (given in the previous section) and apply abstract slic-
ing algorithm and compare the reduction in terms of state space. For both proper-
ties, the slicing criterion Q = {D}, as D is the only place concerned by the prop-
erties. Therefore, the application of Abstractslice(UnfoldedAPN, D) returns Slice-
dUnfoldedAPN (shown in Fig. 4.10(A,B,C,D)), which is smaller than the original
UnfoldedAPN shown in Fig. 4.6). At first, all the reading transitions are removed
that are attached to the criterion place. In this particular example, we remove transi-
tions t31,1, t31,2, t31,3, t32,1, t32,2, t32,3, t33,1, t33,2, t33,3, and places F, E, the resultant net
is shown in Fig. 4.10(B)). The next step is to iteratively include all the incoming transi-
tions together with with their places. As a result, we remove t51,1, t51,2, t51,3, t52,1, t52,2, t52,3,
t53,1, t53,2, t53,3, and place C as shown in Fig. 4.10(C)). Finally, neutral transitions are
identified and their places are combined. In this example, transitions t11, t12, t13, are
neutral transitions and their places are combined as shown in Fig. 4.10(D)).

Let us compare the number of states required to verify the given property without
slicing and after applying abstract slicing. In the first column of Table.6.7, number
of states are given that are required to verify the property without slicing and in the
second column number of states are given to verify the property by slicing.

Table 4.3: Comparison of number of states required to verify the property with and
without Abstract Slicing.

Properties No of states
required without

slicing

No of states
required with

slicing

φ1 148 9

φ2 148 9

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 61

A
[1,2] t12

t13

t11
B

t21

t23

t22

t51,2
t51,3

t53,3

t51,1

[1]

C

G

t52,1
t52,2
t52,3
t53,1
t53,2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

E

[1,2]
t31,3

t31,2

t31,1

t32,1

t43

D

F

t33,1
t33,2
t33,3

t32,3

t32,2

3

1

1

1

2

2

2

3

3

3

1

2

3

1

2

3

1

2

3

3

1

2

3

1

2

3

1

2

3

1

2

3

2

3

4

t42

t41
2

1
4

5

1
1
1
2
2

2

3

3

1

2
3
1

2

3

1

2

3

3

A
[1,2] t12

t13

t11
B

t21

t23

t22

t51,2
t51,3

t53,3

t51,1

[1]

C

G

t52,1
t52,2
t52,3
t53,1
t53,2

1

2

3

1

2

3

1

2

3

1

1

1

2

2

2

3

3

3

t43

D

3

1

2

3

1

2

3

1

2

3

1

2

3

2

3

4

t42

t41
2

1

1

2
3
1

2

3

1

2

3

A
[1,2] t12

t13

t11
B

t21

t23

t22

t43

D

3

1

2

3

1

2

3

1

2

3

1

2

3

t42

t41
2

1

[1,2]

AB
t21

t23

t22

t43

D

3

1

2

3

1

2

3

t42

t41
2

1

(A)

(B)

(C) (D)

Figure 4.10: The sliced unfolded APNs (by applying abstract slicing)

62 Chapter 4. Property Based Model checking of Algebraic Petri nets

4.3.5 Proof of the preservation of properties by abstractslicing al-
gorithm

The abstract slicing algorithm is designed to generate a smaller slice net as compared
to APNSlicing algorithm (given in the previous section). We can say that Abstract
slicing algorithm is an advancement of APNSlicing algorithm. Notably, both algo-
rithms preserves CT L−X properties.

Theorem 4.3.2:
Let apn be a marked unfolded APN and Let apn′ = APNS lice(apn,Q) be its

sliced net for a given criteria Q ⊆ P. Let φ and ψ be two CT L−X formulas with
scope(ψ) ⊆ P.

apn |=s f φ⇒ apn′ |=s f φ.

apn |=s f ψ⇐ apn′ |=s f ψ.

Proof:

The theorem has been proved already see 4.3.1.

Lemma 4.3.3:
Let apn be a marked unfolded APN and Q be a slicing criteria such that Q ⊆ P.

Let apn = APNS lice(apn,Q) and apn′ = AbstractS lice(apn,Q). Let t be a neutral
transition of the apn between p1 and p2. Let m and m′ be two markings of apn and
apn′. p1 < Q ∧ p2 < Q ⇒ m′(p1 p2) = m(p1) + m(p2), where {p1, p2} ∈ P′ and
m′(x) = m(x) for every x ∈ P′ \ {p1, p2}.

Proof: Let t be a neutral transition. The markings of the places that are pre and
post of a neutral transition are combined by abstract slicing algorithm (see Alg.11).
By construction, it is guaranteed that the markings of a combined place in the abstract
slice is equal to the sum of pre and post places of a neutral transition (in the APNsliced
net) if pre or post places are not the criterion places. �

Theorem 4.3.3:
Let apn0 be a marked unfolded APN and Q be a slicing criteria such that Q ⊆ P. Let

apn = APNS lice(apn,Q) and apn′ = AbstractS lice(apn,Q) be two sliced APNs.
Let ϕ be a CTL formula.

apn |= ϕ⇔ apn′ |= ϕ.

Proof: We prove this theorem by contradiction. Let us assume to the contrary that
apn |= ϕ ⇒ apn′ 6|= ϕ. Intuitively, there exist a state (i.e., reachable markings) in the
reachability graph that violates the property satisfaction. Let us assume that there exist
such reachable marking m′ in the abstract sliced APN that violates the property. There

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 63

are two possible cases to get such kind of markings. The first is to combine the places
and the pre place of a neutral transition is the criterion place. The second is when
the post place is the criterion place. Since, for both the cases, we can not combine
the places if any of the pre or post places are in the criterion place by 4.3.3. Thus
there does not exist any reachable state that violates the property in abstract sliced
APN. So, we conclude that apn |= ϕ ⇒ apn′ |= ϕ. Analogously, we can prove that
apn |= ϕ⇒ apn′ |= φ. �

4.3.6 Property Specific Slicing Algorithms

The idea of slicing to improve model checking is proved to be useful [CR94, LKCK00,
Rak08, Rak11, Rak12, WCZX13, LOS+08, KR13]. The major challenge is to develop
slicing algorithms that can further reduce the slice size. It is implicit that more the re-
duced slice size, the more reduction in state space. We propose to classify properties
to develop more aggressive slicing algorithms. This classification is based on satisfac-
tion of properties if they can already be determined or not by inspecting finite pre-fixes
of traces of the transition system. We develop two different slicing algorithms based
on our classification that are:

• Safety Slicing

• Liveness Slicing

4.3.7 Safety Slicing

Safety slicing has been defined as a static slicing algorithm. The idea of safety slicing
was introduced by A.rakow in [Rak12] in the context of Petri nets (PNs). We adapt
the idea and applied to the Algebraic Petri Nets (APNs) along with neutral transitions.
The objective of safety slicing is to generate aggressive slicing algorithm (i.e., a slic-
ing algorithm can generate smaller slice) by classification of properties. The safety
slicing algorithm is only applicable to the safety properties and can not be applied to
liveness properties. The reason why the slicing algorithm can produce smaller slice
for safety properties is due to the fact that satisfiability of safety properties can already
be determined inspecting finite prefixes of traces of the transition system.

4.3.8 The Slicing Algorithm: SafetySlicing

The safety slicing algorithm starts with an unfolded APN and a slicing criterion Q ⊆ P
containing criterion place(s). We build a slice for an unfolded APN based on Q by

64 Chapter 4. Property Based Model checking of Algebraic Petri nets

applying the following algorithm:

Algorithm 12: Safety slicing algorithm
SafetySlicing(〈S PEC, P,T, F, asg, cond, λ,m0〉,Q){
T ′ ← {t ∈ T/∃p ∈ Q ∧ t ∈ (•p ∪ p•) ∧ λ(p, t) , λ(t, p)};
P′ ← Q ∪ {•T ′} ;
Pdone ← ∅ ;
while ((∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ (•p) \ T ′) ∧ λ(p, t) < λ(t, p)) do
P′ ← P′ ∪ {•t};
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
while (∃t∃p∃p′/t ∈ T ′ ∧ p ∈• t ∧ p′ ∈ t• ∧ |•t| = 1 ∧ |t•| = 1 ∧ |p•| = 1
∧p < Q ∧ p′ < Q ∧ λ(p, t) = λ(t, p′)) do

m(p′)← m(p′) ∪ m(p);
while (∃t′ ∈• p/t′ ∈ T ′) do

λ(p′•, p)← λ(p′•, p′) ∪ λ(t′, p);
end
T ′ ← T ′ \ {t ∈ T ′/t ∈ p• ∧ t ∈• p′};
P′ ← P′ \ {p};

end
return 〈S PEC, P′,T ′, F|P′ ,T ′ , asg|P′ , cond|T ′ , λ|P′ ,T ′ ,m0|P′

〉;
}

In the Safety slicing algorithm, initially T ′ (representing transitions set of the slice)
contains a set of all the pre and post transitions of the given criterion places. Only the
non-reading transitions are added to T ′. P′ (representing the places set of the slice)
contains all the preset places of the transitions in T ′. The algorithm then iteratively
adds other preset transitions together with their preset places in the T ′ and P′. Only
those transitions together with their incoming places are added that decrease the token
count. Then the neutral transitions are identified and their pre and post places are
merged to one place together with their markings.

Consider an example unfolded APN model shown in Fig.4.11(A) (Note: to present
our idea about liveness slicing, we took an extremely simple version of unfolded APN
model). Let us take an example safety property and apply safety slicing algorithm on
the example unfolded APN model. Let us consider a property that place P4 is never
empty. Formally, we can write the property such as:

φ3 = AG(P4 , ∅)

Transitions T1 is omitted because it does not decrease token counts on places P1 and
the it is not the criterion place as show in the Fig.4.12(B). Places P1 and P2 are merged

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 65

t1

t2
P1 P2

[]

1

1 1

P31

[1,1]

[1]

2

t3

P4

P2
[1,1] t3

P4

Example Unfolded APN-Model

Identifying neutral transitions and merging places

(A)

(C)

t2
P1 P2

[]
1 1

[1,1] t3

P4

Iteratively adding non-reading transitions(B)

1
1

1
1

1

1

Figure 4.11: The sliced unfolded APNs (by applying Safety slicing algorithm)

66 Chapter 4. Property Based Model checking of Algebraic Petri nets

together by identifying a neutral transition between them. The resultant sliced net
as shown in the Fig.4.12(C) contains only one transition which is t3. Let us now
compare the number of states that are required to verify the given property φ3 with
and without safety slicing. The total number of states that will be generated are 9
without slicing whereas by applying slicing only 3 will be generated. We refer the
interested reader to [Rak12] for the proof of preservation of safety properties by the
Safety slicing algorithm.

4.3.9 Liveness Slicing

Liveness slicing has been designed as a static slicing algorithm. We notice that more
aggressive slices can be generated if we design slicing algorithms for particular class
of properties. In the previous section, we designed a slicing algorithm that is applica-
ble to safety properties only. The idea of liveness slicing is similar to the safety slicing.
The limitation of liveness slicing is that it preserves only particular liveness properties
given by a formula ∃F(AP). The reason why this slicing algorithm generates smaller
slice is that it does not include those transitions that decrease token count on places and
these places are other than criterion places. Intuitively, we capture enough behaviors
of the net that are required to verify the property.

4.3.10 The Slicing Algorithm: LivenessSlicing

The liveness slicing algorithm starts with an unfolded APN and a slicing criterion
Q ⊆ P containing criterion place(s). We build a slice for an unfolded APN based on

4.3. Static Slicing on Partially Unfolded Algebraic Petri nets 67

Q by applying the following algorithm:

Algorithm 13: Liveness slicing algorithm
LivenessSlicing(〈S PEC, P,T, F, asg, cond, λ,m0〉,Q){
T ′ ← {t ∈ T/∃p ∈ Q ∧ t ∈ (•p ∪ p•) ∧ λ(p, t) , λ(t, p)};
P′ ← Q ∪ {•T ′} ;
Pdone ← ∅ ;
while ((∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ (•p) \ T ′) ∧ λ(p, t) > λ(t, p)) do
P′ ← P′ ∪ {•t};
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
while (∃t∃p∃p′/t ∈ T ′ ∧ p ∈• t ∧ p′ ∈ t• ∧ |•t| = 1 ∧ |t•| = 1 ∧ |p•| = 1
∧p < Q ∧ p′ < Q ∧ λ(p, t) = λ(t, p′)) do

m(p′)← m(p′) ∪ m(p);
while (∃t′ ∈• p/t′ ∈ T ′) do

λ(p′•, p)← λ(p′•, p′) ∪ λ(t′, p);
end
T ′ ← T ′ \ {t ∈ T ′/t ∈ p• ∧ t ∈• p′};
P′ ← P′ \ {p};

end
return 〈S PEC, P′,T ′, F|P′ ,T ′ , asg|P′ , cond|T ′ , λ|P′ ,T ′ ,m0|P′

〉;
}

In the Liveness slicing algorithm, initially T ′ (representing transitions set of the slice)
contains a set of all the pre and post transitions of the given criterion places. Only the
non-reading transitions are added to T ′. P′ (representing the places set of the slice)
contains all the preset places of the transitions in T ′. The algorithm then iteratively
adds other preset transitions together with their preset places in the T ′ and P′. Only
those transitions together with their incoming places are added that increase the token
count. Then the neutral transitions are identified and their pre and post places are
merged to one place together with their markings.

Consider an example unfolded APN model shown in Fig.4.12(A) (the APN model
is quite similar to the one shown in Fig.4.11. The difference is that the transition
t1 produce less tokens than it consumes. Let us take an example liveness property
followed by ∃F(AP) formula and apply liveness slicing algorithm on the example
unfolded APN model. Let us consider a property that place eventually P4 is not empty.
Formally, we can write the property such as:

φ4 = ∃F(P4 , ∅)

Transitions T1 is omitted because it does not increase token counts on places P1 and

68 Chapter 4. Property Based Model checking of Algebraic Petri nets

t1

t2
P1 P2

[]

2

1 1

P31

[1,1]

[1]

1

t3

P4

P2
[1,1] t3

P4

Example Unfolded APN-Model

Identifying neutral transitions and merging places

(A)

(C)

t2
P1 P2

[]
1 1

[1,1] t3

P4

Iteratively adding non-reading transitions(B)

1
1

1
1

1

1

Figure 4.12: The sliced unfolded APNs (by applying liveness slicing)

4.4. Dynamic Slicing Algebraic Petri nets 69

the it is not the criterion place as show in the Fig.4.12(B). Places P1 and P2 are merged
together by identifying a neutral transition between them. The resultant sliced net as
shown in the Fig.4.12(C) contains only one transition which is t3. Let us now compare
the number of states that are required to verify the given property φ3 with and without
liveness slicing. The total number of states that will be generated are 9 without slicing
whereas by applying slicing only 3 will be generated.

To show that the liveness slice preserves these particular properties (i.e., given by a
particular formula ∃F(AP)), it is sufficient to show that the sets of finite firing se-
quences of sliced and net and example net are equivalent. Intuitively, we can omit
those transitions that do not decrease the token count of any place in the sliced net,
so the token count on all places will be at least as low as it is on the example APN
model’s firing sequence.

4.4 Dynamic Slicing Algebraic Petri nets

Dynamic slicing refers to a particular slicing approach that utilizes initial markings.
The objective of dynamic slicing is to generate a slice that can be used for debugging.
Previously, we saw that static slicing is very useful in improving the state space for
model checking. In dynamic slicing, we look for particular executions to see the token
flows inside places. For example, a user can analyze a particular trace of marked
Algebraic Petri net such that an erroneous state is reached. For dynamic slicing, we
do not require an Algebraic Petri net to be unfolded.

4.4.1 The Slicing Algorithm: Concerned Slicing

Concerned slicing algorithm has been defined as a dynamic slicing algorithm. The
objective is to extract a subnet with those places and transitions of the APN model
that can contribute to change the markings of a given criterion place in any execution
starting from the initial markings. Concerned slicing can be useful in debugging.
Consider for instance that the user is analyzing a particular trace of the marked APN
model (using a simulation tool) so that erroneous state is reached.

The slicing criterion to build the concerned slice is different as compared to the ab-
stract slicing algorithm. In the concerned slicing algorithm, available information
about the initial markings is utilized and it is directly applied to APNs instead of their

70 Chapter 4. Property Based Model checking of Algebraic Petri nets

unfoldings.

Algorithm 14: Concerned slicing algorithm
ConcernedSlicing(〈S PEC, P,T, F, asg, cond, λ,m0〉,Q){
T ′ ← ∅;
P′ ← Q ;
while (•P , T ′) do

P′ ← P′ ∪• T ′ ;
T ′ ← T ′ ∪• P′;

end
T ′′ ← {t ∈ T ′/m0[t〉};
P′′ ← {p ∈ P′/m0(p) > 0} ∪ T ′′• ;
Tdo ← {t ∈ T ′ \ T ′′/•t ⊆ P′′};
while Tdo , ∅) do

P′′ ← P′′ ∪ T •do ;
T ′′ ← T ′′ ∪ Tdo ;
Tdo ← {t ∈ T ′ \ T ′′/•t ⊆ P′′};

end
return 〈S PEC, P′′,T ′′, F|P′′ ,T ′′ , asg|P′′ , cond|T ′′ , λ|P′′ ,T ′′ ,m0|P′′

〉;
}

Starting from the criterion place the algorithm iteratively includes all the incoming
transitions together with their input places until reaching a fixed point. Then starting
from the set of initially marked places set the algorithm proceeds further by checking
the enabled transitions. Then the post set of places are included in the slice. The algo-
rithm computes the paths that may be followed by the tokens of the initial marking.

Considering the APN-Model shown in fig. 4.13(A), let us now take the place D as
criterion and apply our proposed algorithm on it. The resultant sliced APN-Model is
shown in the fig. 4.13(B). The test input data can be generated for the sliced APN-
model to observe which tokens are coming to the criterion place.

4.4. Dynamic Slicing Algebraic Petri nets 71

[]

A

[]C[]

x

[]

[1,2]

t1

[1]

[1,2]

t3

t2

t5

t4

x
x x

y
x

yy
y

y

z

zz

B

C

E

D

F

G

Example APN-Model (A)

[]

A

x

[]

[1,2]

t1

[1,2]

t3

t2

x
x x

yy

z

B

E

D

Resultant sliced APN-Model (B)

Figure 4.13: The sliced unfolded APNs (by applying concerned slicing)

72 Chapter 4. Property Based Model checking of Algebraic Petri nets

4.4.2 Smart Slicing

Smart slicing is designed as a dynamic slicing algorithm. The objective is to bypass
the state space generation or test input data generation. Consider for an example, if we
are interested to know the values of tokens or number of tokens coming to a particular
place that may erroneously produce tokens. We can determine the number of tokens
and their values without generating state space by smart slicing algorithm.

4.4.3 The slicing Algorithm: Smart Slicing

The basic idea of smart slicing is to build a forward slice with respect to the criterion
place. A forward slice can be computed by following Loren’s slicing algorithm Alg.5.
All the transitions together with their incoming places that are going to produce tokens
to the criterion places are extracted. The benefit of forward slicing is that it does not
include those transitions that can not be fired. The next step is to rename algebraic
term with variables attached over the arcs of an APN-model. Starting from the root
place, values are assigned to the variables from the initial markings of place. Then
guard conditions, if there are any, are initiated. Values are passed to the next variable
attached over the arc if the guard condition is true. By repeating this procedure for
later places and transitions, we sum the markings of the criterion place.

Algorithm 15: Smart Slicing
Input: (〈S PEC, P,T, F, asg, cond, λ,m0〉,Q).
Output: Number of tokens and their values.
1. Compute forward slice for a given criterion place;
2. Rename terms with variables over the arcs that are going from a place to a
transition (let us say x0, x1, ..., xn) and from transition to a place (let us say y);
3. Select a root place from the set of places generated in step 1;
4. Repeat Until criterion place is reached;
4.1. Assign marking of root places to (x0, x1, ..., xn);
4.2. instantiate guard condition of transitions connected;
4.3. propagate the values of tokens from x0, x1, ..., xn to y;
4.4. sum the markings of selected place together with y;
4.5. Remove place from root places set;
5. Return number of tokens and their values in the criterion place

Considering an example APN-model shown in Fig.4.14(A), let us take an example
place P2 to know the number of tokens and their values coming to this place and apply
our proposed smart slicing algorithm. First of all, a forward slice is generated by
removing those transitions that can not be fired as shown in Fig.4.14(B). The next step
is to rename the algebraic term with variables over the arcs of transitions in a forward
sliced net as shown in Fig.4.14(C). In this case we rename the algebraic term x (i.e.,
over the arc from place P1 to t2) with x0. And for the the algebraic term x+1 (i.e., over

4.4. Dynamic Slicing Algebraic Petri nets 73

the arc from transition t2 to P2) we use y0. Once the algebraic terms are renamed we
can assign values to these variables from the initial markings which is x0 = 1 as shown
in Fig.4.14(D). It is important to note that the choice of selecting values of tokens is
non-deterministic. For an example in this particular case we can also assign x0 = 2
instead of x0 = 1. The next step is to instantiate guard conditions if any. In this case,
we do not have any guard condition so it is set to true as shown in Fig.4.14(E). Once
the guard condition is true, an assigned value to the variable x0 is passed to variable
y0 as shown in Fig.4.14(F). A value to the variable y0 is determined by computing its
expression with the help of value coming from the variable x0.

The next step is to assign the value of variable y0 to the markings of a place attached
to it. In this case, we add a token of value 2 to place P2 as shown in Fig.4.14(G). As
a result we have successfully completed the first iteration and now for the other token
value which is 2 the same procedure is followed as shown in the next step is to assign
the value of variable y0 to the markings of a place attached to it. In this case, we add a
token of value 2 to place P2 as shown in Fig.4.14(H,I,J,K). Finally, we get the number
of tokens and their values coming to the place P2 without generating a state space.
Obviously, smart slicing can refined further to investigate temporal properties as well.

74 Chapter 4. Property Based Model checking of Algebraic Petri nets

t1

t2
P1 P2[]

x x+1

P3x

[1,2]

[1]

x
t3

P4

Example APN-Model

Resultant forward sliced APN-Model

(A)

(B)

x

x

t2
P1 P2[]

x x+1
[1,2]

Renaming terms with variables(C)

t2
P1 P2[]

x0 y0[1,2]

x0 = x
y0 = x+1

Assigning initial markings to variable(D)

t2
P1 P2[]

x0 = 1 y0[2]

Instantiating guard(E)

t2
P1 P2[]

x0 = 1 y0[2]
true

Assigning value to output arc variable(F)

t2
P1 P2[]

x0 y0 = 2
[2]

Assigning value to place(G)

t2
P1 P2[2]

x0 y0[2]

Figure 4.14: The resultant marking for token value 1 (by applying smart slicing)

4.4. Dynamic Slicing Algebraic Petri nets 75

Assigning initial markings to variable(H)

t2
P1 P2[2]

x0 = 2 y0[]

Instantiating guard(I)

t2
P1 P2[2]

x0 = 2 y0[]
true

Assigning value to output arc variable(J)

t2
P1 P2[2]

x0 y0 = 3
[]

Assigning value to place(K)

t2
P1 P2[2,3]

x0 y0[]

Figure 4.15: The resultant marking for token value 2 (by applying smart slicing)

76 Chapter 4. Property Based Model checking of Algebraic Petri nets

4.5 Slicing Low-level Petri nets

We proposed several algorithms for slicing Algebraic Petri nets in this work. These
algorithms can also be applied to low-level Petri nets with slight modification. The
advantage of low-level Petri nets over high-level Petri nets is their simplicity and the
availability of large number of tools to design and analyze them automatically. The
slight modifications required to apply slicing algorithm designed for APNs refer to the
syntactical changes in the algorithm but semantically there is no change. A λ function
is used to compare arc inscriptions to identify reading or neutral transitions in Alge-
braic Petri nets. In low-level Petri nets, arc inscriptions are compared with a weight
w function. The main change to apply slicing algorithms proposed for Algebraic Petri
nets to low-level Petri nets is to replace λ function with w function. Obviously, the
input function to generate slice will take a low-level Petri net instead of an APN. We
argue that our proposed slicing algorithms give more refined results than the previ-
ous algorithms designed for low-level Petri nets. We select abstract slicing algorithm
among other algorithms designed for Algebraic Petri nets and apply it to the low-level
Petri nets. First of all, we need to redefine the notion of reading (resp.) non-reading
transitions and neutral transitions in the context of low-level Petri nets. Fig 4.16,
shows reading and neutral transitions for low-level Petri nets.

1

1

1

Reading Transition Neutral Transition

1tP P t

Figure 4.16: Reading and Neutral transitions in low-level Petri net

Reading (resp.) non-reading transitions are already defined for low-level Petri nets see
definition 3.3.1. Let us define neutral transitions:

Definition 4.5.1: Neutral transitions of Petri nets
Let t ∈ T be a transition in a PN. We call t a neutral-transition iff it consumes token
from a place p ∈ •t and produce the same token to p′ ∈ t•, i.e., t ∈ T ∧ ∃p∃p′/p ∈•

t ∧ p′ ∈ t• ∧ |p•| = 1 ∧ |•t| = 1 ∧ |t•| = 1 ∧ w(t, p) = w(t, p′).

4.5.1 The Slicing Algorithm: Abstract Slicing Algorithm for Low-
level Petri nets

The abstract slicing algorithm starts with a Petri net model and a slicing criterion
Q ⊆ P containing crietrion place(s). We build a slice for an Petri net based on Q by

4.5. Slicing Low-level Petri nets 77

applying the following algorithm:

Algorithm 16: Abstract slicing algorithm for Low-level Petri nets
AbsSlicingPN(〈P,T, f ,w,m0〉,Q){
T ′ ← {t ∈ T/∃p ∈ Q ∧ t ∈ (•p ∪ p•) ∧ w(p, t) , w(t, p)};
P′ ← Q ∪ {•T ′} ;
Pdone ← ∅ ;
while ((∃p ∈ (P′ \ Pdone)) do

while (∃t ∈ ((•p ∪ p•) \ T ′) ∧ w(p, t) , w(t, p)) do
P′ ← P′ ∪ {•t};
T ′ ← T ′ ∪ {t};

end
Pdone ← Pdone ∪ {p};

end
while (∃t∃p∃p′/t ∈ T ′ ∧ p ∈• t ∧ p′ ∈ t• ∧ |•t| = 1 ∧ |t•| = 1 ∧ |p•| = 1
∧p < Q ∧ p′ < Q ∧ w(p, t) = w(t, p′)) do

m(p′)← m(p′) ∪ m(p);
w(t, p′)← w(t, p′) ∪ w(t, p);
while (∃t′ ∈• t/t′ ∈ T ′) do

w(p′, t)← w(p′, t) ∪ w(p, t′);
T ′ ← T ′ \ {t ∈ T ′/t ∈ p• ∧ t ∈• p′};
P′ ← P′ \ {p};

end
end
return 〈P′,T ′, f|P′ ,T ′ ,w|P′ ,T ′ ,m0|P′

〉;
}

In the Abstract slicing algorithm for low-level Petri nets, initially T ′ (representing
transitions set of the slice) contains a set of all the pre and post transitions of the given
criterion places. Only the non-reading transitions are added to T ′. P′(representing
the places set of the slice) contains all the preset places of the transitions in T ′. The
algorithm then iteratively adds other preset transitions together with their preset places
in T ′ and P′. Then the neutral transitions are identified and their pre and post places
are merged to one place together with their markings.

Considering an example Petri net model shown in fig. 4.17, let us now apply our
proposed algorithm on two example properties (i.e., one from the class of safety prop-
erties and one from liveness properties). Informally, we can define the properties:

φ5 : “The cardinality of tokens inside place P3 is always less than 5”.

ϕ6 : “Eventually place P3 is not empty”.

Formally, we can specify both properties using CTL as:

φ5 = AG(|m(P3)| < 5).

78 Chapter 4. Property Based Model checking of Algebraic Petri nets

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

Example PN-Model

Identifying neutral transitions and merging places

P12
t2 t4

P31 1 1

P1

C

t1

t2

t5

t4
P3

P4

P5

P2

2

2
1 1

2
2

11

1

Removing reading transitions attached to place P3

P1

t1

t2 t4
P3P2

2

2
1 1 1

Iteratively adding transitions dependent on place P3

(A)

(B)

(C)

(D)

Figure 4.17: Petri net model and resultant sliced model after applying Abstract slicing
algorithm

φ6 = AF(|m(P3)| = 1).

For both properties, the slicing criterion Q = {P3}, as P3 is the only place concerned
by the properties. The resultant sliced Petri net can be observed in fig.4.17(D), which
is smaller than the original Petri net.

Let us compare the number of states required to verify the given properties without
slicing and after applying abstract slicing. The total number of states required without
slicing is 985, whereas with the sliced model number of states is 15.

Chapter 5

Property Based Model checking of
Structurally evolving Algebraic Petri nets

The true sign of intelligence is not knowledge but imagination.

— Albert Einstein

Iterative refinements and incremental developments is a commonly used technique
for handling complex systems in hardware and software engineering. This involves
creating a new specification or implementation by modifying an existing one [LB03,
KR12]. In general, the modelers provide a first model that satisfies a set of initial
requirements. Then the model can undergo several iterations or refinements until all
the requirements are satisfied. In most cases, it is desirable for the developer to be
able to assess the quality of model as it evolves.

The problem with the iterative and incremental development is that there is no
guarantee that after each iteration or evolution of the model, it will still satisfy the
previously satisfied properties.

Considering Algebraic Petri nets or Petri nets as a modeling formalism and model
checking as a verification technique all the proofs are redone which is impractical.
Most of the work regarding to improve the re-verification of evolving Petri nets is
oriented towards the preservation of properties. Padberg and several other authors
published extensively on the invariant preservation of APNs by building a full cat-
egorical framework for APNs (i.e. rule-based refinements [PGE98, LLV12, Er97]).
Padberg considers the notion of a rule-based modification of Algebraic high level nets
preserving the safety properties. The theory of a rule-based modification is an in-
stance of the high-level replacement system. Rules describe which part of a net are to
be deleted and which new parts are to be added. It preserves the safety properties by
extending the rule-based modification of Algebraic Petri nets in contrast to transition
preserving morphisms in [PGE98]. These morphisms are called the place preserving
morphisms since they allow transferring specific temporal logic formulas expressing
net properties from the source to the target net. Lucio et al presented a preliminary

79

80Chapter 5. Property Based Model checking of Structurally evolving Algebraic Petri nets

study on the invariant preservation of behavioral models expressed in Algebraic Petri
nets in the context of an iterative modeling process [LLV12]. They proposed to extend
the property preserving morphisms in a way that it becomes possible to strengthen the
guards without loosing previous behaviors.

In the previous chapter, we propose a slicing based solution to improve the model
checking of Algebraic Petri nets or Petri nets. In this work, we propose a solution to
improve the model checking of evolving system models expressed in APNs or PNs
by re-using slicing techniques. Our proposal pursues three main goals. The first is
to perform verification only on those parts that may affect the property a model is
analyzed for. The second is to classify evolutions to identify which evolutions require
re-verification. We argue that for a class of evolutions that require re-verification,
instead of verifying the whole system only a part that is concerned by the property
would be sufficient. The third goal is closely related to the previous proposals of
property preserving evolutions. The theory of property preservation is based on the
preservation of morphisms when evolving a system model. Our proposal improve the
previous proposal by preserving morphisms restricted to the sliced part of a model.

VERIFY UNFOLDED &
SLICED APN-MODEL

PROPERTY

 SLICING
NON-EVOLVED &

EVOLVED APN
MODELS

RE-VERIFICATION
REQUIRED?

YESNO

EXTRACTING
CRITERION PLACES

EVOLVED
APN MODEL

APN MODEL

NOTIFICATION

Figure 5.1: Process Flowchart of Property based model checking of Algebraic Petri
nets

Fig.5.1, gives an overview using Process Flowchart of the proposed approach i.e.,
a slicing based verification of evolving Algebraic Petri nets. At first, verification is
performed on the sliced APN model by taking properties into an account. Secondly,
we build slices for evolved and non-evolved APN models. By comparing the resultant
sliced models (i.e., APN and its evolved model), it is determined if an evolution has
an impact on the property satisfaction and if it requires re-verification. In the worst
case, if an evolution has an impact on the property satisfaction only the resultant sliced
evolved Petri net model would be used for the verification. The process can be iterated

5.1. Unfolding, Slicing Algebraic Petri nets 81

as per APN evolution.

5.1 Unfolding, Slicing Algebraic Petri nets

The first step in property based verification of structurally evolving Algebraic Petri
nets is to verify the unfolded sliced APN model. As presented in the previous chap-
ter, various slicing algorithms can be used to slice an APN model. In general, there
are two types of slicing algorithms i.e., static slicing algorithms and dynamic slicing
algorithms. The static slicing algorithms are designed to improve model checking
whereas dynamic slicing algorithms are designed to improve testing. In the property
based verification of structurally evolving Algebraic Petri nets, we consider only static
slicing algorithms as we are interested to reason about the preservation of behavioral
properties. The proposed static slicing algorithms are applied to an unfolded APN
model. The unfolding helps to identify ground substitutions of algebraic terms used
over the arcs of transitions in an APN model. This helps to generate a smaller slice as
compared to applying slicing algorithm on APN model without unfolding.

[1,2]

t11

t13

t12

[]

t22 t23t21

2 3

[1]

1

2
3

1

2

3

1

2

3

P1

P2

P3
1 Slicing

Algorithm

[1,2]

t11

t13

t12

[1]

1

2
3

1

2

3P1

P2Unfolded APN Model Temporal Property

Sliced Unfolded APN Model

AG(P2 6= 0)

{(1,2),1}

{1,(2,1)}{2,(1,1)}

t2t1

{0,(1,1,2)}Marking graph for vefication

t1t2

Figure 5.2: Overview of slicing Algebraic Petri nets

Fig.5.2 gives an overview of slicing an unfolded APN. First of all, a slicing algorithm
takes APN model and temporal description of property to generate a slice. Then the

82Chapter 5. Property Based Model checking of Structurally evolving Algebraic Petri nets

resultant sliced APN model is used to generate the marking graph (or state space)
for the verification of property. For further details, we refer interested reader to the
chapter 4.

5.2 Slicing evolved and non-evolved Algebraic Petri nets

The behavioral models of a system expressed in APNs are subject to evolve, where
an initial version goes through a series of evolutions generally aimed at improving its
capabilities. APN formalism consists of a control aspect that is handled by a Petri net
and a data aspect that is handled by one or many AADT. In general, the evolutions of
APNs can be divided into two parts,

• Evolutions of the structural aspect

• Evolutions of the data aspect

The evolutions that are taking place inside any of these aspects can disturb the prop-
erty satisfaction. Remark that in this work, we made some assumptions that we
allow only the structural evolutions while the data part and interesting properties
are not subject to evolve. Informally, APNs evolutions of the control part can be
changed such as: add/remove places, transitions, arcs, tokens and terms over the
arcs. By notation, different APNs will be noted with superscripts such as apn′ =

〈S PEC, P′,T ′, F′, asg′, cond′, λ′,m′0〉.

Fig.5.3 (A), shows an example APN model, whereas Fig.5.3 (B) shows some possible
structural evolutions that can happen to an APN model. As there is no guarantee
that after every evolution of the APN model, it still satisfies the previously satisfied
properties. A naive solution is to repeat model checking after every evolution, which
is very expensive in terms of time and space.

To avoid repeated model checking, we propose a slicing based solution to reason
about the previously satisfied properties. At first, by following our property based
model checking proposal discussed in the previous chapter, we generate a partial state
space to verify given properties. Consider an example unfolded APN model shown
in Fig.5.4(A) (Note: we took an extremely simple version of unfolded APN model
for the description of our proposed methodology). Let us take an example property,
stating that the place P4 is never empty. Formally, we can write the property such as:

φ1 = AG(P4 , ∅)

Afterwards, if there is an evolution of the APN model, we slice the evolved APN
models with respect to the property by the same slicing algorithm (i.e. abstract slicing)
used in the first step and compare both models for determining the satisfaction of
property.

5.2. Slicing evolved and non-evolved Algebraic Petri nets 83

[]

A

[]C[]

x

[]

[1,2]

t1

[1]

[1,2]

t3

t2

t5

t4

x
x x

y
x

yy
y

y

z

zz

B

C

E

D

F

G

Example APN-Model (A)

[]

[]C[]

[1,2]

[1]

[1,2]

t3

t2

t5

t4x 2*x

y
x

yy
y

y

z

zz

B

C

E

D

F

G

Add/remove/change places,transitions,tokens,terms(B)

[1]
x H

Figure 5.3: Structural evolutions to Algebraic Petri nets

t1

t2
P1 P2

[]

1

2 2

P31

[1,1]

[1]

1

t3

[1]
P4

P2
[1,1] t3

[1]
P4

Example Unfolded APN-Model

Resultant Sliced APN-Model w.r.t place P4

(A)

(C)

1
1

1
1

Figure 5.4: The resultant sliced APN-model after applying abstract slicing algorithm

84Chapter 5. Property Based Model checking of Structurally evolving Algebraic Petri nets

5.2.1 Classification of Evolutions

As discussed above, we build slices for the evolved and non-evolved APN models
with the help of abstract slicing algorithm. Once we built the slices, by comparing
both APN models, we can divide the evolutions into two major classes as shown in the
Fig.5.5. The evolutions that are taking place outside the slice and the evolutions that
are taking place inside the slice. Further, we divide the evolutions that are taking place
inside the slice into two classes i.e., the evolutions that disturb and those that do not
disturb the previously satisfied property. We argue that the classification of evolutions
helps to significantly reduce the re-verification cost and time.

STRUCTURAL
EVOLUTIONS TO APNs

EVOLUTIONS TAKING
PLACE INSIDE SLICE

EVOLUTIONS TAKING
PLACE OUTSIDE SLICE

EVOLUTIONS THAT
DISTURB PROPERTY

(VERIFICATION)

EVOLUTIONS THAT DO
NOT DISTURB PROPERTY

(NO-VERIFICATION)

EVOLUTIONS DO NOT
DISTURB PROPERTY
(NO-VERIFICATION)

Figure 5.5: Classification of Structural Evolutions to Algebraic Petri nets

5.2.2 Evolutions taking place outside the Slice:

The aim of slicing is to syntactically reduce a model in such a way that at best the
reduced model contains only those parts that may influence the property satisfac-
tion. The rest of the model is discarded. Therefore, all the evolutions that are taking
place outside the slice do not influence the property satisfaction. Consequently, model
checking can be completely avoided for these evolutions. We formally specify how to
avoid the verification if the evolutions are taking place outside the slice.

Theorem 5.2.1:
Let apnsl = 〈S PEC, P,T, f , asg, cond, λ,m0〉 be a sliced unfolded APN model and

apn′sl = 〈S PEC, P′,T ′, f ′, asg′, cond′, λ′,m′0〉 be an evolved sliced unfolded APN
model w.r.t the property φ. apnsl |= φ⇔ apn′sl |= φ if and only if

1) P = P′,

2) T = T ′,

5.2. Slicing evolved and non-evolved Algebraic Petri nets 85

3) f = f ′

4) asg = asg′

5) cond = cond′

6) λ = λ′

7) m0 = m′0

It is important to note that by assumption we consider structural evolutions, therefore
algebraic specifications remain same for both nets. Informally, this theorem states
that if an evolution takes place outside the slice then the evolved APN preserves the
previously satisfied properties. It is important to note that we allow only structurally
evolution to APN model and this is why algebraic specifications for both nets are
same. Let us see the proof idea of this theorem.

Proof idea: According to the conditions imposed by theorem both the sliced net and
evolved sliced net are same. Thus nothing to proof here.

To show, how practically we can identify such evolutions, let us recall the APN model
and the example property given in the section 5.2. The example property is following
φ1 = AG(P4 , ∅). Fig.5.6 (B,C,D) shows some possible evolutions to the APN
model that are taking place outside the slice. All the places, transitions and arcs that
constitute a slice with respect to the property φ1 are shown on the right side. In the first
evolution example (i.e., shown in Fig.5.6 (B)) a new place P5 is added to the transition
t1. In the second evolution the place P3 and transition t1 is removed (i.e. shown in
Fig.5.6 (C)).

In the third evolution (i.e. shown in Fig.5.6 (C)) tokens are added to the place P3.
For all such evolutions that are taking place outside the slice, we do not require re-
verification because they do not disturb any behavior that may impact the satisfaction
of the property.

5.2.3 Evolutions taking place inside the Slice:

For all the evolutions that are taking place inside the slice, we divide them into two
classes

• Evolutions that require re-verification

• Evolutions that do not require re-verification

Identifying such class of evolutions is extremely hard due to non-determinism of the
possible evolutions. Specifically, in APN small structural changes can impact the

86Chapter 5. Property Based Model checking of Structurally evolving Algebraic Petri nets

APN-Model and its sliced net (A)

P2
[1,1] t3

[1]
P4

t1

t2
P1 P2

[]

1

2 2

P31

[1,1]

[1]

1

t3

[1]
P4

[1] P5
1

P2
[1,1] t3

[1]
P4

t2
P1 P2

[]
2 2

[1,1] t3

[1]
P4

P2
[1,1] t3

[1]
P4

Evolved APN-Model "adding place" and its sliced net (B)

Evolved APN-Model "deleting transition/place" and its sliced net (C)

t1

t2
P1 P2

[]

1

2 2

P32

[1,1]

[1,2]

1

t3

[1]
P4

P2
[1,1] t3

[1]
P4

Evolved APN-Model "changing tokens" and its sliced net (D)

t1

t2
P1 P2

[]

1

2 2

P31

[1,1]

[1]

1

t3

[1]
P4

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

1

Figure 5.6: Structural evolutions to Algebraic Petri net model taking place outside the
slice

5.2. Slicing evolved and non-evolved Algebraic Petri nets 87

behavior of the model. It is also hard to determine whether a property would be
disturbed after the evolution or it is still satisfied by the model.

To identify evolutions that are taking place inside the slice and do not require verifi-
cation, we propose to use the temporal specification of properties to reason about the
satisfaction of properties with respect to specific evolutions. For example, for all the
safety properties specified by the temporal formula G(φ) or ∃G(φ), if φ is an atomic
formula, using the ordering operators ≤ or < between the places and their cardinality
or between tokens inside places and their values, then all the evolutions that decrease
the tokens from places do not require verification because they do not impact the be-
havior required for the property satisfaction.

Theorem 5.2.2:
Let apnsl = 〈S PEC, P,T, f , asg, cond, λ,m0〉 be a sliced unfolded APN and apn′sl =

〈S PEC, P′,T ′, f ′, asg′, cond′, λ′,m′0〉 be an evolved sliced APN (in which tokens are
decreased from the places) w.r.t the property φ. For all the safety properties specified
by temporal formulas i.e., G(φ) or ∃G(φ), and φ a formula using ≤ or < ordering
operator between the places and their cardinality or tokens inside places and their
values. apnsl |= φ⇒ apn′sl |= φ if and only if

1) ∀p ∈ (P ∩ P′) | m0(p) ≥ m′0(p),

2) T = T ′,

3) f = f ′

4) asg = asg′

5) cond = cond′

6) λ = λ′

7) m0 = m′0

Proof idea:

We can prove this theorem by contradiction. Let us assume that apnsl |= φ and apn′sl 6|=

φ. Let m and m′ be two marking sequences of apnsl and apn′sl respectively. Since φ is
a particular temporal formula, which is followed by an ordering operator < or ≤. For
the falsification of such formula in apn′sl, there must exist a marking sequence such
that m′ > m, which is by construction (i.e., following conditions 1,...,7 of Theorem.
5.2.2) not allowed. Consequently, all the behaviors are preserved in the evolved apn′sl.
Hence apn′sl |= φ.

Let us recall the APN model given in the section 5.2. Let us take an example property
φ1 = AG(|P4| ≤ 5) for which APN model is sliced and an example evolution to the
APN model that is taking place inside the slice (shown in Fig.5.7 (B)). All the places,
transitions and arcs that constitute a slice with respect to the property φ1 are shown
on the right side. In the evolution example (i.e., shown in Fig.5.7 (B)), tokens are

88Chapter 5. Property Based Model checking of Structurally evolving Algebraic Petri nets

decreased from the place P1.

APN-Model and its sliced net (A)

P2
[1,1] t3

[1]
P4

t1

t2
P1 P2

[]

1

2 2

P31

[1]

[1]

1

t3

[1]
P4

P2
[1] t3

[1]
P4

Evolved APN-Model "decrease token on place" and its sliced net (B)

t1

t2
P1 P2

[]

1

2 2

P31

[1,1]

[1]

1

t3

[1]
P4

1
1

1
1

1
1

1
1

Figure 5.7: Structural evolutions to Algebraic Petri net model taking place outside the
slice

For all such evolutions that are taking place inside the slice, we do not require re-
verification because they do not disturb any behavior that may impact the satisfaction
of the property.

For all the liveness properties specified by the temporal formula ∃F(φ), and if φ a
formula using the ordering operators (≥ or >) the places and their cardinality or
tokens inside places and their values, then for all the evolutions that increase the token
count on the places, it is not required to re-verify them as they do not impact the
behavior required for the property satisfaction.

Theorem 5.2.3:
Let apnsl = 〈S PEC, P,T, f , asg, cond, λ,m0〉 be a sliced unfolded APN and

apn′sl = 〈S PEC, P′,T ′, f ′, asg′, cond′, λ′,m′0〉 be an evolved sliced apn′ (in which
tokens are increased from the places) w.r.t the property φ. For all the liveness prop-
erties specified by temporal formula ∃F(φ), and φ is using the ordering operators
≥ or > between the places and their cardinality or tokens inside places and their
values. apnsl |= φ⇒ apn′sl |= φ if and only if

1) ∀p ∈ (P ∩ P′) | m0(p) ≤ m′0(p),

2) T = T ′,

3) f = f ′

4) asg = asg′

5) cond = cond′

6) λ = λ′

7) m0 = m′0

Proof idea: We can prove this theorem by contradiction. Let us assume that apnsl |= φ
and apn′sl 6|= φ. Let m and m′ be two marking sequences of apnsl and apn′sl respec-
tively. Since φ is a particular temporal formula, which is followed by an ordering op-
erator > or ≥. For the falsification of such formula in apn′, there must exist a marking
sequence such that m′ < m, which is by construction (i.e., following conditions 1,...,7
of Theorem.5.2.3) not allowed. Consequently, all the behaviors are preserved in the
evolved apn′sl. Hence apn′sl |= φ.

APN-Model and its sliced net (A)

P2
[1,1] t3

[1]
P4

t1

t2
P1 P2

[]

1

2 2

P31

[1,1,2]

[1]

1

t3

[1]
P4

P2
[1,1,2] t3

[1]
P4

Evolved APN-Model "increase token on place" and its sliced net (B)

t1

t2
P1 P2

[]

1

2 2

P31

[1,1]

[1]

1

t3

[1]
P4

1
1

1
1

1
1

1
1

Figure 5.8: Structural evolutions to Algebraic Petri net model taking place outside the
slice

Let us consider again the APN model given in the section 5.2, Let us take an example
property ∃F(|P4| > 3) for which the APN model is sliced. For some specific evolutions
that are taking place inside the slice (in which tokens are increased in the places) ,
property remains true and we do not need re-verification (shown in Fig.5.8 (B)).

We identified above that for several specific evolutions and properties, re-verification
could be completely avoided, and for the rest of evolutions, we can perform verifica-
tion only on the part that concerns the property. Even in the worst case, when evolu-
tions are happening inside the slice, we can significantly improve the re-verification.

5.3. Property based verification of evolving low-level Petri nets 89

5.3 Property based verification of evolving low-level Petri
nets

The proposed approach for Algebraic Petri nets (i.e., property based verification of
structurally evolving Algebraic Petri nets) nets can be applied to low-level Petri nets
directly. The main reason for the success of this low-level Petri net models is their
simplicity in the description and a large number of tools exist to analyze them as
compared to Algebraic Petri nets. The proposed approach becomes more simple to
apply on low-level Petri nets as it does not require unfolding.

Fig.5.1, gives an overview using Process Flowchart of the proposed approach for a
slicing based verification of evolving Petri nets. At first, verification is performed on
the sliced Petri net model by taking a property into an account. Secondly, we build
slices for evolved and non-evolved Petri nets models. By comparing the resultant
sliced models (i.e., Petri net and its evolved model), it is determined if an evolution
has an impact on the property satisfaction and if it requires re-verification. In the worst
case, if an evolution has an impact on the property satisfaction only the resultant sliced
evolved Petri net model would be used for the verification. The process can be iterated
as per Petri net evolution.

VERIFY SLICED
PETRI NET MODEL

PETRI NET
MODEL

PROPERTY

 SLICING NON-
EVOLVED &

EVOLVED PETRI
NET MODELS

RE-VERIFICATION
REQUIRED?

YESNOTIFICATION NO

EVOLUTION
TO

PETRI NET
MODEL

EXTRACTING
CRITERION PLACES

Figure 5.9: Process flowchart for verification of evolving Petri nets

Considering an example Petri net model shown in fig. 5.10, let us now apply our
proposed algorithm on two example properties (i.e., one from the class of safety prop-
erties and one from liveness properties). Informally, we can define the properties:

φ3 : “Eventually place P3 is not empty”.

Formally, we can specify both properties in the CTL as:

φ3 = AF(|m(P3)| = 1).

The slicing criterion Q = {P3}, since P3 is the only place concerned by the properties.
The resultant sliced Petri net can be observed in fig.5.10, which is smaller than the
original Petri net.

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

P12
t2 t4

P3

Example PN-Model

Resultant Sliced PN-Model

1 1 1

Figure 5.10: Example Petri net and its sliced net (by applying abstract slicing algo-
rithm)

The second step is to allow different evolutions that can happen to the Petri net model
shown in Fig.5.10 and build a slice for an evolved Petri net model. It is determined
by comparing slices of evolved and the original Petri net model if re-verification is
required. We present one example only i.e., when evolutions are taking place outside
the slice.

Fig.5.11, shows some possible examples of the evolutions to Petri nets model that are
taking place outside the slice. All the places, transitions and arcs that constitute a slice
with respect to the property are shown with the blue doted lines (remark that we follow
the same convention for all examples). In the example evolution, weight attached to
the arc between transition t2 and place P4 is changed and shown with the red color.
For all such kind of evolutions that are taking place outside the slice, we do not require
verification because they do not disturb any behavior that may impact the satisfaction
of the property.

90Chapter 5. Property Based Model checking of Structurally evolving Algebraic Petri nets

Evolved Petri net model "changing the weight over the arc and its sliced net"

Petri net model and its sliced net

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

2
2

11

1

1

1

11

C

t3

t2

t5

t4
P3

P4

P5

P6

P7

P12 1 1

3
2

11

1

1

1

11

P1

C

t1 t3

t2

t5

t4
P3

P4

P5

P6

P7

P2

2

2
1 1

3
2

11

1

1

1

11

Figure 5.11: Evolutions to Petri net model taking place outside the slice

Chapter 6

Case Study & Evaluation

No amount of experimentation can ever prove me right; a single
experiment can prove me wrong.

— Albert Einstein

Generally Crisis management System is the process by which an organization deals
with a major event that threatens to harm the organization, its stakeholders, or the
general public. Crisis management involves identifying, assessing, and handling the
Crisis situation. The scope of this work is limited to one particular kind of Crisis
management system, which is the Car Crash Crisis management system:

"A car accident or car crash is an incident in which an automobile collides with any-
thing that causes damage to the automobile, including other automobiles, telephone
poles, buildings or trees, or in which the driver loses control of the vehicle and dam-
ages it in some other way, such as driving into a ditch or rolling over. Sometimes a
car accident may also refer to an automobile striking a human or animal" [KGM10].

In this work, we are using a particular kind of Car Crash management system. In
order to to keep the case study manageable, we shall use a simplified model of Car
Crash management system. We used textual use cases formalism for discovering and
recording behavioral requirements.

6.0.1 Use Cases Car Crash Management System

In principle use-case scenario is a story about how someone or something external to
the software (known as an actor) interacts with the system. The actors involved in our
case study are:
Coordinator: A person in charge of recording the Crisis information.
System Administrator: An in charge person for managing Crisis.
SuperObserver: A skilled person dispatched to the crisis scene. In our case there are

91

92 Chapter 6. Case Study & Evaluation

two Superboservers which are fire fighter and lifter.

Use Case 1: Capture Crisis

Scope: Car Crash Crisis Management System Primary
Actor: Coordinator
Intention: The Coordinator intends to record a Crisis based on the information ob-
tained from Capture data (Capture data can be a Fire on the Crisis location or Blockage
of traffic).
Main Success Scenario:
Coordinator records Crisis and sends it to System.

1. Coordinator sends information to System as recorded.

Use case ends in success.

Use Case 2: Assign Mission

Scope: Car Crash Crisis Management System Primary
Actor: System Administrator
Intention: The System Administrator intends to assign a mission to Superobserver .
Main Success Scenario:
System Administrator assigns Superobserver to execute the mission.

1. System Administrator assigns a Crisis to Superobserver to execute Crisis mis-
sion.

Use case ends in success.

Use Case 3: Send Report

Scope: Car Crash Crisis Management System Primary
Actor: Superobserver
Intention: Send report to System after execution of the mission.

1. Superobserver sends report about executed Crisis mission.

Use case ends in success.

93

6.0.2 Formal Language Representation of Car Crash Management
System

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)]

assigncrisis
isvalidcrisis($sy=true)&

invalidsobs($sob,
getcrisistype($sy)=true)

[$sy]

[assigncrisis($sob,$sy)]

Superobserver Ready

[$sob]

ExecutingCrisis

[$sy]

sendreport

[$ec]

[]
ExecutedCrisisReport

[rp($ec)]

[Fire, Fire,
Blockage,Blockage]

[sobs(YK,Fire)
sobs(NG,Blockage)]

[]
[system(getcrisistype($sy),
 false)]

ValdidatingCrisis

validatecrisis

[$vcs]

Figure 6.1: Car crash Algebraic Petri net model

The APN Model can be observed in Fig. 6.1, it represents the semantics of the
operation of a car crash management system. This behavioral model contains la-
beled places and transitions. There are two tokens in the place Recording Crisis
Data that are Fire and Blockage. These tokens are used to mention which type
of data has been recorded. The input arc of transition sendcrisis takes the cd
variable as an input from the place Recording Crisis Data and the output arc
contains term system(cd) of sort sys (It is important to note that for better read-
ability, we omit $ symbol from the terms over the arcs). The sendcrisis transition
passes a recorded crisis to system for further operations. All the recorded crises are
sent for validation through sendcrisisforvalidation transitions. Initially, ev-
ery recorded crisis is set to false. The output arc of validatecrisis contains the
system(getcrisistype(vcs),true) term which sends validated crisis to system.
The transition assigncrisis has two guards, the first one is isvalid(sy)=true
that enables to block invalid crisis reporting to be executed for the mission and the
second one is isvalid(sob,getcrisestype(sy))=true which is used to block
invalid Superobserver (a skilled person for handling crisis situation) to execute the
crisis mission. The Superobserver YK will be assigned to handle Fire situation
only. The transition assigncrisis contains two input arcs with sob and sy vari-
ables and the output arc contains term assigncrisis(sob,sy) of sort crisis. The

94 Chapter 6. Case Study & Evaluation

output arc of transition sendreport contains term rp(ec). This enables to send a
report about the executed crisis mission. We refer the interested reader to [Kha12] for
the algebraic specification of a car crash management system.

6.0.3 Interesting Properties

In formal verification, we verify that a system meets a desired property by checking
that a mathematical model of the system meets a formal specification that describes
the property. In general, there are two classes of properties i.e., safety properties
and liveness properties. Intuitively, a property is a safety property if every violation
occurs after a finite execution of the system. We can use this fact in order to base
model checking of safety properties on a search for finite bad prefixes. Such a search
can be performed using a simple forward or backward symbolic reachability check
[KV01]. Informally, safety property of a system is a judgment of how likely it is that
the system will cause harm to environment or people. Intuitively, liveness properties
are considered as some thing good will eventually happen. A liveness property cannot
be violated in a finite execution of a system because some thing good might occur at
some time after execution ends [BBF+10].

An important safety threat, which we take into an account in this case study is that the
invalid crisis reporting can be hazardous. The invalid crisis reporting is the situation
that results from a wrongly reported crisis. The execution of a crisis mission based
on the wrong reporting can waste both human and physical resources. In principle, it
is essential to validate a crisis that it is reported correctly. Another, important threat
could be to see the number of superobservers should not exceed from a certain limit.
Informally, we can define the properties:

φ1 : All the crises inside place System are validated eventually.

φ2 : Place Superobserver Ready never contains more than two superobservers.

Formally we can specify the properties as, let Crises be a set representing recorded
crisis in car crash management system. Let isvalid : Crises → BOOL, is a function
used to validate the recorded crisis.

φ1 = AF(∀crisis ∈ S ystem|isvalid(crisis) = true).

φ2 = AG(|S uperobserverReady| ≤ 2).

In contrast to generate the full state space for the verification of both properties, we
alleviate the state space by applying our proposed slicing algorithms. We have devel-
oped several slicing algorithms in this thesis which are APNslicing, abstract slicing
and liveness slicing. Before applying slicing algorithm, we need to unfold Car Crash
management system given in the Fig.6.1. The unfolded Car Crash APN model can be
observed in Fig.6.2

95

Recording Crisis Data
[Fire,Fire,

Blockage,Blockage]

FireBlockage

sendcrisisBlockage sendcrisisFire

sendcrisisforvalidationBlockage

(Fire,true)

(Blockage,true) (Blockage,false)

sendcrisisforvalidationFire

validatecrisis(Fire,false),

(Fire,true)

validatecrisis(Blockage,false),

(Blockage,true)

FireBlockage

[]

System
[]

(Fire,false)

(Blockage,false)

(Fire,false) ValidatingCrisis

Fire

assigncrisis(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire)) (Fire,true)

[sobs(Yk,Fire)
,sobs(NG,Bloc

kage)]

(YK,Fire)

(NG,Blockage)

Superobserver Ready

assigncrisis(Blockage,true),

(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Blockage,true) Blockage

[]

ExecutingCrisis
((Blockage,true), (NG,Blockage))

sendreport(Blockage,true),

(NG,Blockage),((Blockage,true),

(NG,Bloackage))

sendreport(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

((Blockage,true), (NG,Blockage))
((Fire,true), (YK,Fire))

((Fire,false), (YK,Fire))
((Blockage,false), (NG,Blockage))

sendreport(Blockage,false),

(NG,Blockage),((Blockage,false),

(NG,Blockage))

sendreport(Fire,false),(YK,Fire),

((Fire,fale),(YK,Fire))

[]

(Fire,false),(YK,Fire),

(Fire,false),(YK,Fire)

(Blockage,false),(NG,Blockage),

(Blockage,false),(NG,Blockage)

(Blockage,true),(NG,Blockage),

(Blockage,true),(NG,Blockage)
(Fire,true),(YK,Fire),

(Fire,true),(YK,Fire)

ExecutedCrisisReport

Figure 6.2: The unfolded Car crash Algebraic Petri net model

96 Chapter 6. Case Study & Evaluation

6.1 Applying Slicing Algorithms on Car Crash Man-
agement System

In general, slicing APN models is a pre-processing step towards model checking of
properties. The sliced models are used to generate the state space to verify given prop-
erties instead of the original model. As discussed in in chapter 4, slicing algorithms are
categorized in two major classes i.e., static and dynamic slicing algorithms. The ob-
jective of static slicing algorithms is to improve the model checking whereas dynamic
slicing algorithms are used to improve the testing. In the chapter 4, we have developed
several static and dynamic slicing algorithms. In this section, we shall select some of
them to apply on the Car Crash Management system and compare the improvements
in terms of model checking and testing. We shall also show the application of our pro-
posed approach of property based model checking of structurally evolving APNs. The
proposed approach is based on the slicing and by classifications of different structural
evolutions and properties, it is determined whether re-verification is required or not
(see details in chapter 5).

6.1.1 APNSlicing Algorithm on Car Crash Management System

The APNSlicing algorithm (given in the section 4.3.1) is an improved version of Basic
Slicing algorithm (given in the section 3.2). In contrast to Basic Slicing algorithm,
only non-reading transitions are included in the slice using APNSlicing algorithm.
The APNSlicing algorithm takes an unfloded APN model and a set of criterion places.
In the properties φ1 and φ2, the criterion places are System and Superobserver
Ready. The APNSlicing algorithm takes an unfolded car crash APN model and Sys-
tem (an input criterion place) as an input and iteratively builds the sliced net for
φ1 and φ2. Respectively for φ2, the algorithm starts from Superobserver Ready
(as input criterion place) and builds the slice. The sliced unfolded car crash APN
model is shown in the Fig. 6.3, for the properties φ1 and φ2. (Note: in this case
study slices for both properties are same.) The places named ExecutingCrisis and
ExecutedCrisisReport are removed together with a transition sendreport. The
sliced Car Crash APN model can be used to generate the state space to verify the given
properties.

Let us compare the number of states required to verify the given property φ1 and φ2

without slicing and after applying APNSlicing algorithm (given in Tab.6.6). The first
column represents the Car Crash management system whereas in the second column
properties are given. The total number of states that required to verify the given prop-
erty is given in the third column. The fourth column represents the number of states
on the sliced net after applying APNSlicing algorithm. The last column shows the re-
duction in percentage in comparison with the total number of states. (Note: we use the
same conventions for the rest of slicing algorithms) We measure the effect of slicing in
terms of savings of the reachable state space, since the size of the state space usually

6.1. Applying Slicing Algorithms on Car Crash Management System 97

Fire,Fire,Blockage,
Blockage

FireBlockage

sendcrisisFire
sendcrisisBlockage

Recording Crisis Data

System

FireBlockage

sendcrisisforvalidationFire

sendcrisisforvalidationBlockage

Fire

Blockage

(Fire,false)

(Blockage,false)

validatecrisis(Fire,false),

(Fire,true)

validatecrisis(Blockage,false),

(Blockage,true)

(Fire,true)

(Blockage,true)

(Fire,false)

(Blockage,false)

assigncrisis(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

assigncrisis(Blockage,true),

(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Fire,true)

(Blockage,true)

sobs(Yk,Fire),
sobs(NG,Bloc

kage)

(YK,Fire)

(NG,Blockage)

ValidatingCrisis

Superobserver Ready

Figure 6.3: Sliced Car Crash APN model w.r.t φ1 and φ2 (by applying APNSlicing
algorithm)

has a strong impact on time and space needed for model checking. The number of
states required to verify φ1 and φ2 in a sliced net is very less in comparison with the
actual number of states.

Table 6.1: Comparison of number of states with and without slicing

System Property Tot.States APNSlicing Reduction

Car Crash φ1 324 196 39.51%

Car Crash φ2 324 196 39.51%

6.1.2 Abstract Slicing Algorithm on Car Crash Management Sys-
tem

The Abstract Slicing algorithm (given in the section 4.3.3) is an improvement to the
APNSlicing algorithm (given in the section 4.3.1). Along with including only non-
reading transitions, neutral transitions are identified and their places are merged to-
gether. Similar to APNSlicing algorithm, The Abstract Slicing algorithm takes an

98 Chapter 6. Case Study & Evaluation

unfolded car crash APN model and System (an input criterion place) as an input and
iteratively builds the sliced net for φ1 and φ2. Respectively for φ2, the algorithm starts
from Superobserver Ready (as input criterion place) and builds the slice. The sliced
unfolded car crash APN model is shown in the Fig. 6.4, for the properties φ1 and φ2.
(Note: in this case study slices for both properties are the same.)

system(Fire,Fire,B
lockage,Blockage)

System

sendcrisisforvalidationFire

sendcrisisforvalidationBlockage

Fire

Blockage

(Fire,false)

(Blockage,false)

validatecrisis(Fire,false),

(Fire,true)

validatecrisis(Blockage,false),

(Blockage,true)

(Fire,true)

(Blockage,true)

(Fire,false)

(Blockage,false)assigncrisis(Fire,true),(YK,Fire),

((Fire,true),(YK,Fire))

assigncrisis(Blockage,true),

(NG,Blockage),((Blockage,true),

(NG,Bloackage))

(Fire,true)

(Blockage,true)

sobs(Yk,Fire),
sobs(NG,Bloc

kage)

(YK,Fire)

(NG,Blockage)

ValidatingCrisis

Superobserver Ready

Figure 6.4: Sliced Car Crash APN model w.r.t φ1 and φ2 (by applying Abstract Slicing
algorithm)

The place name Recording Crisis Data is merged with the place name System
by removing sendcrisis transition (sendcrisis is identified as a neutral transi-
tion). The places named ExecutingCrisis and ExecutedCrisisReport are also
removed along with a transition sendreport. The sliced Car Crash APN model can
be used to generate the state space to verify the given properties.

Let us compare the number of states required to verify the given property φ1 and φ2

without slicing and after applying Abstract Slicing algorithm (given in Tab.6.7).

Table 6.2: Comparison of number of states with and without slicing

System Property Tot.States Abstract Slicing Reduction

Car Crash φ1 324 144 55.56%

Car Crash φ2 324 144 55.56%

Let us compare the number of states reduced by APNSlicing and Abstract Slicing by
considering the same properties i.e., φ1 and φ2. In the table 6.8 shows the reduction
column shows the improvement of Abstract Slicing as compared to APNSlicing.

6.1. Applying Slicing Algorithms on Car Crash Management System 99

Table 6.3: Comparison of number of states reduced by applying APNSlicing and Ab-
stract Slicing algorithms

System Property Tot.States APN Slicing Abstract Slicing Reduction

Car Crash φ1 324 196 144 16.05%

Car Crash φ2 324 196 144 16.05%

6.1.3 Concerned Slicing Algorithm on Car Crash Management
System

Let us take a criterion place (i.e, System) from the Car Crash APN model and ap-
ply our proposed concerned slicing algorithm to find which transitions and places can
produce tokens to that place. It is important to note that, we perform concerned slic-
ing directly on the car crash APN model instead of the unfolded Car Crash APN
model (as discussed in the section 4.4.1). The sliced Car Crash APN model can
be observed in the Fig 6.5. The places Superobserver, ExecutingCrisis and
ExecutedCrisisReport and transitions assigncrisis and sendreport are re-
moved as they are not producing any token to the criterion place.

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)] [$sy]

[Fire, Fire,
Blockage,Blockage]

[system(getcrisistype($sy),
 false)]

ValdidatingCrisis

validatecrisis

[$vcs]

Figure 6.5: Sliced Car Crash APN model (by applying Concerned Slicing algorithm)

100 Chapter 6. Case Study & Evaluation

6.2 Structural Evolutions to Car Crash Management
System

In general, verification is repeated after every evolution to determine whether a system
satisfies previously satisfied properties or not. According to the proposed approach in
chapter (), we can avoid repeated model checking by classification of evolutions and
properties.

Let us take some evolution examples that can happen to Car Crash Management sys-
tem and observe that whether the previously satisfied properties (i.e., φ1 and φ2) are
still satisfied by the evolved model or not.

For example, Car Crash APN model shown in the Fig.6.1 evolves to restrict the type
of reporting. A new guard for the transition sendreport is introduced to send reports
of executed crises that are of type Blockage. The evolved Car Crash management
system can be observed in Fig. 6.6.

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)]

assigncrisis
isvalidcrisis($sy=true)&

invalidsobs($sob,
getcrisistype($sy)=true)

[$sy]

[assigncrisis($sob,$sy)]

Superobserver Ready

[$sob]

ExecutingCrisis

[$sy]

sendreport
blkrep($ec=true)

[$ec]

[]
ExecutedCrisisReport

[rp($ec)]

[sobs(YK,Fire)
sobs(NG,Blockage)]

[]
[system(getcrisistype($sy),
 false)]

ValdidatingCrisis

validatecrisis

[$vcs]

[Fire, Fire,
Blockage,Blockage]

Figure 6.6: Evolved Car Crash (evolution taking place outside the slice)

All the places, transitions and arcs that constitute a slice with respect to properties φ1

and φ2 are shown with blue doted lines (Note: we use the same convention for the rest
of evolved Car Crash APN model) examples . In the example evolution, a new guard
is introduced which is shown by red color. According to the theorem proposed in the

6.2. Structural Evolutions to Car Crash Management System 101

section 5.2.2, for such evolutions that are taking place outside the slice, do not impact
the satisfaction of previously satisfied properties. Consequently, model checking is
completely avoided for such evolutions of Car Crash Management System and both
properties φ1 and φ2 are preserved.

Let us take another example of evolution that is happening inside the slice of Car
Crash Management system and observe the satisfaction of previous properties. The
evolved Car Crash can be observed in Fig.6.7, in which tokens are removed from the
place Recording Crisis Data and shown with the red color. According to theorem
proposed in the section 5.2.3, for such particular evolutions that are taking place inside
the slice and for particular properties such as φ2, we do not require re-verification. For
φ1, we need to generate the state space of sliced Car Crash APN model.

sendcrisis

[$cd]

Recording Crisis Data

[]

[system($cd)]

System

sendcrisisfor
validation

[system(getcrisistype($vcs),
 true)]

assigncrisis
isvalidcrisis($sy=true)&

invalidsobs($sob,
getcrisistype($sy)=true)

[$sy]

[assigncrisis($sob,$sy)]

Superobserver Ready

[$sob]

ExecutingCrisis

[$sy]

sendreport

[$ec]

[]
ExecutedCrisisReport

[rp($ec)]

[sobs(YK,Fire)
sobs(NG,Blockage)]

[]
[system(getcrisistype($sy),
 false)]

ValdidatingCrisis

validatecrisis

[$vcs]

[Fire]

Figure 6.7: Evolved Car Crash (evolution taking place inside the slice)

Let us compare two examples of evolutions that are happening to Car Crash APN
model with respect to the properties φ1 and φ2. For example, if we use Abstract Slicing
algorithm, the table 6.9 shows the number of states reduced in the third column. The
fourth column shows the type of evolution happening to Car Crash APN model.

102 Chapter 6. Case Study & Evaluation

Table 6.4: Comparison of evolutions and re-verification

Property Tot.States Abstract Slicing Evolution Re-verification

φ1 324 144 Evo1 YES

φ2 324 144 Evo2 NO

In the last column, based on the type of evolution and properties it is determined if
re-verification is required or not.

6.3. Evaluation 103

6.3 Evaluation

In this section, we evaluate our proposed static slicing algorithms i.e. designed to
improve the model checkings using existing benchmark case studies. The benchmark
case studies are obtained from various sources such as PNs model checking context
and previous research articles (which are used to evaluate slicing algorithms) []. We
collected different examples to cover a wide range of systems with different charac-
teristics.

Table 6.6 shows the case studies together with the size of APN model with respect
to the number of places, transitions and arcs (i.e., shown in second, third and fourth
columns). The last column indicates if either the net type is strongly connected or
weakly connected. The net size of bench mark case studies when represented in APNs
is very small and easy to understand as compared to PNs.

In general, every slicing algorithm takes criterion places and APN/PN model as an
input. The criterion places are extracted from the temporal description of properties.
One difficulty in evaluating slicing is to determine the interesting properties about the
model. In principle, properties could involve any places in the model. To overcome
this difficulty, we perform evaluation in two ways i.e.,

• Generate slices for every place

• Generate slices for practically relevant properties

Generate slices for every place: The first way to avoid the difficulty of determining
the relevant properties is to generate slices for every place. Perhaps, it is not necessary
that every place corresponds to a meaningful property. We follow [Rak11] to assume
that they are not interesting properties to initially marked places and abandon them.

Generate slices for practically relevant properties: The second way is to select
practically relevant properties and to show that the state space could be reduced for
them by slicing. We took some specific examples of temporal properties from the
APN models given in the Tab.6.6.

We measure the effect of slicing in terms of savings of the reachable state space, as
the size of the state space usually has a strong impact on time and space needed for
model checking. Instead of presenting case studies for which our proposed slicing
algorithms work best, it is also interesting to see case studies average or worst results.
We now present a comparative evaluation on the benchmark case studies.

A lot of model checkers has been designed to analyze Petri net models [BHMR10,
Mä02, JKW07, BJS09, BV06]. A complete list of model checkers designed in the
context of all classes of Petri nets can found in [Pet]. The common objective of every
model checker is to explore all the possible states to check property satisfaction. It
is important to note that the existing model checkers are domain specific and are not

104 Chapter 6. Case Study & Evaluation

general enough to consider all the proposed classes of Petri nets. Among all the exist-
ing model checkers for Petri nets, majority of them consider low-level Petri nets. The
process of model checking Petri nets consists of three steps as show in Fig.6.8. The
first step is to design a Petri net model by a model checking tool (i.e., for which class
of Petri nets the model checker is designed). The second is to specify desired prop-
erties in some logical formalism such as temporal logic. In general, a model checker
provides graphical editor to draw Petri nets models and a property language.

Modeling

Specification

Verification+

Figure 6.8: Model checking process

Different model checkers can vary with respect to their modeling domain and the
properties they can verify. For an example AlPiNA model checker takes only APN
models as an input [BHMR10]. Specifications in AlPiNA are composed of two parts:
an algebraic specification, which is a set of abstract definitions of sorts and associated
operations. The second is a Petri net, which is represented graphically. AlPiNA is
able to decide on the satisfaction of invariant properties on those nets. The invariants
are expressed as conditions on the tokens contained by places in the net at any state of
the net semantics. Invariants are built using first order logic, the operations defined in
the algebraic specifications and additional functions and predicates on the number of
tokens contained by places.

Another known model checker in the family of Petri nets is CPN Tools (i.e., a tool
for editing, simulating, and analyzing Colored Petri nets)[JKW07]. The tool was de-
veloped by the CPN Group at Aarhus University from 2000 to 2010. The tool also
supports the basic Petri nets plus timed Petri nets. It has a simulator and a state space
analysis tool is included. It has a feature to perform incremental syntax checking and
code generation, which take place while a net is being constructed. Table 6.5, enlists
some of the existing model checkers for different classes of Petri nets. In the first col-
umn, the name of model checker is given in abbreviation whereas the second column
states the class of Petri nets for which it works and finally class of properties are given
that can be verified by using temporal formulas or propositional logic formulas.

In general, the slicing process proceeds in three steps as shown in Fig.6.9. First of
all an APN/PN model is drawn along with temporal formulas as properties. From
the temporal formulas criterion places are extracted. Finally, a slicing algorithm takes
criterion places APN/PN model to generate a sliced model. We use our implemented

6.3. Evaluation 105

Table 6.5: Different Model Checker for Petri nets Classes

Model checker Class of PNs Properties

AlPiNA APN invariants

CPN Tools CPN/PN boundedness & liveness

MARIA HLPN/PN safety & liveness

TINA TPN safety & liveness

TAPAAL TPN safety & liveness

tool SLAPn to draw the APN/PN model and slice it (see details in chapter 7). In
the tool a user friendly environment is provided to draw an APN or PN model and
different slicing algorithms are implemented. Secondly, after having a sliced APN
model, a model checker is used to generate the state space. Another way to perform
slicing is to use any existing editor to draw APN or PN model and then apply slicing
algorithms on the generated net. Once a sliced net is obtained, a model checker can
be used to generate the state space.

Designing
PN/APN
Model

Define
Property

Select
SLICING
Algorithm

+

Figure 6.9: SLAPn Overview

106
C

hapter6.
C

ase
Study

&
E

valuation

Table 6.6: Benchmark Case Studies APN models

System No.Places No.Transitions No.Arcs Init.Marking Net type

Complaint Handling 10 9 20 RecComp = {1, 2, 3} Weak.Connect

House Construction 26 18 51 p1 = {1, 2, 3} Weak.Connect

Divide & Conquer 23 19 47 p1, p5, p12, p19 = {1, 1, 1} Weak.Connect

Flexible Manufacturing
System

22 20 50 p1, p8, p12, p20 = {1, 1, 1, 1, 1},
p11 = {1}, p5 = {1, 1, 1}, p18 = {1, 1}

Weak.Connect

Beverage Vending
& Machine

5 3 7 idle = {1, 2, 3}, drinks = {1, 2, 3} Weak.Connect

Insurance Claim 16 19 39 p1 = {1, 2} Weak.Connect

A Customer support
Production system

17 11 33 p1 = {1, 1}, p2 = {1, 1}, p4 = {1} Weak.Connect

Car Crash
Management system

6 5 11 RecCrisData, SuperObsReady = {1, 2} Weak.Connect

Electronic Trade
System

20 17 42 p1 = {1, 2}, p7 = {1} Weak.Connect

Daily Routine of 2
Employees & Boss

10 11 34 A1 = {1, 2}, B1 = {1} Str.Connect

Simple Protocol 7 5 12 PacketToSend= {1, 2},NS = {1} Str.Connect

Producer Consumer 5 4 12 prod = {1, 2}, cons = {1} Str.Connect

Kanban 16 16 40 p8, p26, p9, p14 = {1, 1} Str.Connect

Dining Philosophers 6 4 13 think = {1, 2} Str.Connect

6.3. Evaluation 107

6.3.1 Applying slicing algorithm to generate slices for every place

In this section, we generate the slices for every place in the benchmark case studies
APN models and present the impact of slicing algorithm in terms of state space. We
applied only two slicing algorithms i.e., APNSlicing and AbstractSlicing. The reason
to select these two algorithms is that they preserve more general class of properties
as compared to others. In the next section, other algorithms are also used to generate
slices for practically relevant properties.

For a fair comparison, we divide the results of slicing algorithm into three cases

• Best case: it refers to the best possible reduction achieved among all the possi-
ble properties.

• Average case: it refers to the average reduction achieved for all the possible
properties.

• Worst case: it refers to the situation when there is no reduction.

First of all, we applied APNSlicing algorithm on every place of bench mark case stud-
ies APN models. Let us study the results summarized in the Table.6.7, the first col-
umn shows different APN models under observation. Based on the initial markings,
the total number of states is shown in the second column. Best reduction and average
reduction (shown in the third and fourth column) refers to the biggest and an average
achievable reduction in the state space among all possible properties. The fifth column
reports how many places (related to the properties) in the model lead to no reduction
using our slicing method. Finally, the structure of the APN models under observation
is given. Results clearly indicate the significant improvement in reducing the state
space by slicing algorithms, and the proposed APNSlicing algorithm can alleviate the
state space even for some strongly connected nets.

Secondly, we applied Abstract Slicing algorithm on every place of bench mark case
studies APN models as shown in the Table.6.8.

Let us compare the results of both algorithms (i.e., APNSlicing and Abstract Slicing
algorithms) with each other to see their performance in terms of state space reduc-
tion with different case studies. Let us study the graph shown in the Fig.6.10, along
the y-axis of the graph bench mark case studies are listed whereas along the x-axis
number in percentage are given to compare the reduction impact. We took two pa-
rameters from the previous Tables.6.7, 6.8 i.e., average case reduction and number
of worst places for comparison and shown them with different colors. Clearly, the
Abstract Slicing algorithm gives better results as compared to APNSlicing algorithm
for almost every bench mark case study except Dining Philosophers. There is no re-
duction achieved by both algorithms for the Dining Philosophers. For the Producer
Consumer and Kanban, APNSlicing algorithm also preforms worst whereas there is
a significant reduction achieved by Abstract Slicing algorithm for both case studies.

108 Chapter 6. Case Study & Evaluation

Table 6.7: Applying APNSlicing algorithm

System T.States Bst.Reduct Avg.Reduct Worst Places
no reduction

Complaint Handling 2200 98.01% 40.54% 2

House Construction 10490 99.12% 95.12% 1

Divide & Conquer 13731 95.09% 14.22% 1

Flexible Manufacturing
System

2895018 95.24% 80.21% 3

Beverage Vending
& Machine

136 80.14% 02.15% 2

Insurance Claim 889 99.05% 24.52% 1

A Customer support
Production system

471 99.01% 37.79% zero

Electronic Trade
System

260 97.56% 62.34% 2

Daily Routine of 2
Employees & Boss

80 93.75% 86.12% zero

Simple Protocol 1861 95.91% 39.01% 1

Producer Consumer 372 0.00% 0.00% 5

Kanban 4600 0.00% 0.00% 16

Dining Philosophers 18 0.00% 0.00% 6

When considering number of worst places for which APNSlicing does not produce any
reduction it is also higher than Abstract Slicing. The Abstract Slicing algorithm gives
reduction for every place of bench mark case studies except Dining Philosophers. It
is important to note that at worst the slice size obtained after applying Abstract Slicing
is equal to the slice size obtained by applying APNSlicing.

6.4. Applying slicing algorithm on practically relevant properties 109

Table 6.8: Applying Abstract Slicing algorithm

System T.States Bst.Reduct Avg.Reduct Worst Places
no reduction

Complaint Handling 2200 98.01% 97.37% zero

House Construction 10490 99.12% 98.72% zero

Divide & Conquer 13731 99.09% 85.22% zero

Flexible Manufacturing
System

2895018 99.24% 95.21% zero

Beverage Vending
& Machine

136 80.14% 60.03% zero

Insurance Claim 889 99.05% 94.52% zero

A Customer support
Production system

471 99.01% 37.79% zero

Electronic Trade
System

260 97.56% 77.34% zero

Daily Routine of 2
Employees & Boss

80 93.75% 86.12% zero

Simple Protocol 1861 95.91% 57.15% zero

Producer Consumer 372 64.00% 36.00% zero

Kanban 4600 89.05% 89.05% zero

Dining Philosophers 18 0.00% 0.00% 6

6.4 Applying slicing algorithm on practically relevant
properties

To show that state space could be reduced for practically relevant properties. We took
some specific examples of temporal properties from the different case studies. Instead
of presenting properties for which our method is the best one, it is interesting to see
where it gives an average or worst case results. Let us specify the temporal properties
that we are interested to verify on the given APN model.

For the Daily Routine of two Employees and Boss APN model, for example, we are
interested to verify that: “Boss has always meeting”. Formally, we can specify the
property:

φ3 = AG(NM , ∅), where “NM" represents a place not meeting.

110 Chapter 6. Case Study & Evaluation

0.00%	
 10.00%	
 20.00%	
 30.00%	
 40.00%	
 50.00%	
 60.00%	
 70.00%	
 80.00%	
 90.00%	
 100.00%	

Complaint Handling	

House Construction	

Divide & Conquer	

Flexible Manufacutring 	

Beverage Vending Machine	

Insurance Claim	

A Customer Support Production	

Electronic Trade	

Daily Routine of 2 employees & Boss	

Simple Protocol	

Producer Consumer 	

Kanban	

Dining Philosophers	

WORST PLACES FOR ABSTRACT
SLICING

WORST PLACES FOR APNSLICING

AVERAGE REDUCTIONBY ABSTRACT
SLICING ALGORITHM

AVERAGE REDUCTION BY
APNSLICING ALGORITHM

Figure 6.10: Comparison of APNSlicing and Abstract Slicing algorithms

6.4. Applying slicing algorithm on practically relevant properties 111

For Simple Protocol, for example, we are interested to verify that: “All the packets
are transmitted eventually”. Formally, we can specify the property:

φ4 = AF(|PackTorec| = |PackTosend|), where “PackTosend and PackTorec" repre-
sents places.

Another property could be “All the recorded packets are less than five ”. Formally,
we can specify the property:

φ5 = AG(token ∈ PackTorec⇒ token < 5).

For a Complaint Handling APN model, we are interested to verify: “All the registered
complaints are collected eventually”. Formally, we can specify the property:

φ6 = AG(RecComp ⇒ AFCompReg), where “RecComp" (resp. CompReg) means
“place RecComp (resp. CompReg) is not empty".

For a Customer support production system an interesting property could be to verify
that: “Number of requests are always less than 10 ”. Formally, we can specify the
property:

φ7 = AG(|Requests| < 10).

For a Producer Consumer APN model an interesting property could be to verify that:
“Buffer place is never empty”. Formally, we can specify the property:

φ8 = AG(|Bu f f er| > 0).

For an Insurance claim APN model an interesting property could be to verify that:
“Every accepted claim is settled”. Formally, we can specify the property:

φ9 = AG(AC ⇒ AFCS), where “AC" (resp. CS) means “place AC (resp. CS) is not
empty".

Another property could be be to verify that “Settled claims are always less than 10”.
Formally, we can specify the property:

φ10 = AG(|CS | < 10).

For Beverage Vending APN model an interesting property could be to verify that: “Ma-
chine has always drinks”. Formally, we can specify the property:

φ11 = AG(|Drinks| > 0).

112 Chapter 6. Case Study & Evaluation

For Kanban APN model an interesting property could be to verify that: “Eventually
first module is finished”. Formally, we can specify the property:

φ12 = AF(|P1| = 0).

For the Dining Philosopher model an interesting property could be to verify that:
“Eventually philosophers has left and right fork”. Formally, we can specify the prop-
erty:

φ13 = AF(|HasL| > 0 ∧ |HasR| > 0), “HasL" (resp. HasR) are places in the net .

First of all, we applied APNSlicing to slice for the above mentioned properties and
results are summarized in the Table.6.9.

Let us study the results summarized in the table shown in Table.6.9, the first column
represents the system under observation whereas in the second column total number
of states are given based on the initially marked places. The third column refers the
property that we are looking for the verification. In the fourth column, places are
given that are considered as criterion places, and for those places slices are generated.
The fifth column represents the number of states that are reduced (in percentage) after
applying APNSlicing algorithm.

Secondly, we applied Abstract Slicing algorithm for the above mentioned properties
and results are summarized in the Table.6.10. Results are summarized similarly in the
Table.6.10 as Table.6.9.

6.4. Applying slicing algorithm on practically relevant properties 113

Table 6.9: Results with different properties concerning APN models by Applying
APNSlicing algorithm

System Property Tot.States APNslicing Reduction

Car Crash ϕ1 324 196 39.51%

– ϕ2 324 196 39.51%

Daily Routine of 2
Employees & Boss

ϕ3 80 5 93.75%

Simple Protocol ϕ4 21 21 0.00%

– ϕ5 21 21 0.00%

Complaint Handling ϕ6 2200 679 69.14%

A Customer support
Production system

ϕ7 471 171 63.70%

Producer Consumer ϕ8 372 372 0.00%

Insurance Claim ϕ9 889 121 86.39%

– ϕ10 889 121 86.39%

Beverage Vending
Machine

ϕ11 136 136 0.00%

Kanban ϕ12 4600 4600 0.00%

Dining Philosophers ϕ13 18 18 0.00%

Let us compare the results of both algorithms (i.e., APNSlicing and Abstract Slicing
algorithms) with each other to see their performance in terms of state space reduction
with respect to the above mentioned properties. Let us study the graph shown in the
Fig.6.11, along the y-axis of the graph properties about different case studies are listed
whereas along the x-axis number of states are given to compare the reduction impact.
We took three parameters i.e., total number of states, number of states required to
verify properties through APNSlicing and Abstract Slicing for comparison and shown
them with different colors. Clearly, the Abstract Slicing algorithm gives better results
as compared to APNSlicing algorithm for almost every bench mark case study except
Dining Philosophers. There is no reduction achieved for both algorithms for φ13. For
the properties φ8 and φ12, APNSlicing algorithm also preforms worst whereas there is
a significant reduction achieved by Abstract Slicing algorithm for both properties.

So far, we have applied only APNSlicing and Abstract Slicing algorithms. Now, we
shall apply our Liveness Slicing algorithm. As discussed in the previous section, Live-

114 Chapter 6. Case Study & Evaluation

0.001	
 0.2	

φ1

φ2

φ3

φ4

φ5

φ6

φ7

φ8

φ9

φ10

φ11

φ12

Thousands	

Abstract Slicing Algorithm
APNSlicing Algorithm
Total States

Figure 6.11: Comparison of APNSlicing and Abstract Slicing algorithms

6.4. Applying slicing algorithm on practically relevant properties 115

Table 6.10: Results with different properties concerning to APN models by Applying
Abstract Slicing algorithm

System Property Tot.States Abstract Slicing Reduction

Car Crash ϕ1 324 144 55.56%

– ϕ2 324 144 55.56%

Daily Routine of 2
Employees & Boss

ϕ3 80 3 96.25%

Simple Protocol ϕ4 21 9 57.14%

– ϕ5 21 9 57.14%

Complaint Handling ϕ6 2200 112 94.91%

A Customer support
Production system

ϕ7 471 91 80.68%

Producer Consumer ϕ8 372 372 0.00%

Insurance Claim ϕ9 889 49 94.48%

– ϕ10 889 49 94.48%

Beverage Vending
Machine

ϕ11 136 20 85.30%

Kanban ϕ12 4600 252 94.53%

Dining Philosophers ϕ13 18 18 0.00%

ness Slicing algorithm is applicable to particular class of temporal formulas. There-
fore, we shall take an example property from the above mentioned bench mark case
studies and will apply Liveness Slicing algorithm together with the other two algo-
rithms i.e., APNSlicing and Abstract Slicing algorithms.

For an Insurance claim APN model, if we are interested to verify: “There exists a path
for which claims are settled eventually”. Formally, we can specify the property:

φ14 = EF(|CompReg| > 0).

Let us compare the results obtained by applying APNSlicing, Abstract Slicing and
Liveness Slicing algorithms) with each other to see their performance in terms of state
space reduction with respect to φ14. A comparison graph is shown in the Fig.6.12,
along the y-axis of the graph φ14 is listed whereas along the x-axis number of states
in percentage are given to compare the reduction impact. The graph shows number of

116 Chapter 6. Case Study & Evaluation

states required to verify φ14 by APNSlicing, Abstract Slicing and Liveness Slicing al-
gorithms and total number of states. Clearly, the Liveness Slicing algorithm performs
better than other algorithm for such particular temporal formulas.

Table 6.11: Results with different properties concerning to APN models by Applying
Liveness Slicing algorithm

System Property Tot.States Liveness Slicing Reduction

Insurance Claim ϕ14 889 25 98.19%

1	
 10	
 100	
 1000	

φ14	

Livenss Slicing Algorithm
Abstract Slicing Algorithm
APNSlicing Algorithm
Total States

Figure 6.12: Comparison of APNSlicing, Abstract Slicing and Liveness Slicing algo-
rithms

We can draw the following conclusions from the evaluation results:

• Reduction can vary with respect to the net structure and markings of the places.
The slicing refers to the part of a net that concerns to the property, remaining
part may have more places and transitions that increase the overall number of
states. If slicing removes parts of the net that expose highly concurrent behav-
ior, the savings may be huge and if the slicing removes dead parts of the net, in
which transitions are never enabled then there is no effect on the state space.

6.4. Applying slicing algorithm on practically relevant properties 117

• The choice of the place can have an important influence on the reduction effects,
as the basic idea of slicing is to start from the criterion place and iteratively in-
clude all the transitions contributing tokens on them together with their incom-
ing places. The fewer transitions are attached to the criterion place, the more
reduction is possible.

• Abstract slicing often reduces the slice size as compared to APNslicing slice
size. This is due to the inclusion of neutral transition together with reading
transitions in its construction.

• For certain strongly connected nets slicing may produce a reduced number of
states. For all the strongly connected nets, that contain reading transitions slic-
ing can produce noteworthy reductions.

• It has been empirically proved that in general slicing produces best results for
work-flow nets in [Rak12, Kha14]. Our experiments also prove that for work-
flow nets abstract slicing produces better results.

• All the proposed slicing algorithms are linear time complex.

118 Chapter 6. Case Study & Evaluation

Chapter 7

SLAPn: A tool for slicing Petri nets and
Algebraic Petri nets

To understand the best is to work on its implementation.
— Jean-Marie Guayau

The first proposal of slicing Petri nets was presented in 1994 and still many research
groups are working on new proposals for slicing Petri nets and their different classes.
Despite the fact that it is has produced good research results, there is no tool sup-
port available publicly. This is a first effort to build a stand alone tool in the context
of PN Slicing to the best of our knowledge. We have developed a small prototype
implementation of the proposed slicing algorithms, called the SLAPn.

One of the main objective of SLAPn is to show the practical usability of slicing on
different classes of Petri nets. It mainly focuses on Algebraic Petri nets and low-level
Petri nets. This tool has a small scope without great ambition, but it could be the ba-
sis for a much richer work, as SLAPn offers some important perspectives for merging it
with the existing model checking tools (such as AlPiNA,CPNTOOLS ,T INA,T APAAL).
It is important to note that SLAPn is not a model checker itself but it can be embedded
into existing model checkers as a pre-processing step. There are two major types of
slicing algorithms, which are static & dynamic slicing algorithms. The static slicing
algorithms are designed to improve model checking whereas dynamic slicing are de-
signed for the improvement of testing. In the first version of our tool, we implemented
only static slicing algorithms, which are:

• APNSlicing

• Abstract Slicing

• Safety Slicing

• Liveness Slicing

119

120 Chapter 7. SLAPn: A tool for slicing Petri nets and Algebraic Petri nets

It is important to note that we do not implement dynamic slicing algorithms and left
their implementation as a future work.

Fig.7.1 gives an overview of the activities involved in SLAPn using Process Flowchart.
First of all, user can draw unfolded APN model or PN model by using modeling tools
provided in the tool. Our proposed slicing algorithms starts by taking APN/PN model
and criterion places. These criterion places are extracted automatically by the tool
from the temporal description of properties. Finally, user can choose slicing algorithm,
she wish to apply and a sliced APN/PN model is produced. The sliced net is then used
to generate the state space to verify given properties to existing model checkers.

Designing
PN/APN
Model

Write
Property

+

Extract
Criterion

Places

Select
SLICING
Algorithm

PN/APN
Model

Places Set

Sliced
PN/APN
Model

Figure 7.1: Expanded Process flow of SLAPn

7.1. Overview 121

7.1 Overview

The SLAPn tool is an eclipse plugin that allows to create APN/PN models in a user-
friendly interface, and apply different slicing algorithms to slice the created models
[Ecla]. The meta model of SLAPn is shown in Fig.7.2. The SLAPn class contains
slicing algorithms, temporal description of properties and Algebraic Petri nets classes.
Different slicing algorithms such as APNSlicing, AbstractSlicing LivenessSlicing, Safe-
tySlicing and ConcernedSlicing are extension to the slicing algorithms class.

Figure 7.2: SLAPn Meta model

122 Chapter 7. SLAPn: A tool for slicing Petri nets and Algebraic Petri nets

Being an Eclipse plugin, it shares many of the user interface mechanism with the
Eclipse IDE. Fig. 7.3 describes the SLAPn perspective. It is composed of following
areas:

• Editor provides a central place to create and modify the models.

• The model navigator presents the different files that compose a model. Their
extension tell whether they are graphical models of unfolded APN/PN (.pnmm)
or textual files with (.pnmm−diagram).

• The toolbar gives quick access to write temporal formula and to apply imple-
mented slicing algorithms.

EDITOR
MODEL

NAVIGATOR

TEMPORAL FORMULA & SLICING ALGORITHMS

Figure 7.3: SLAPn main screen

From the architectural point of view, SLAPn consists of graphical editor and a slicing
engine (i.e., consisting different implementations of proposed slicing algorithms) as
shown in Fig.7.4. The Graphical User Interface (GUI) is developed with the graphical
and textual tools from Eclipse Modeling Project namely Eclipse Modeling Frame-
work (EMF) for the creation of metamodels of unfolded APN/PN, Graphical Model-
ing Framework (GMF) for the creation of the graphical elements of the user interface.
The slicing engine that consists of extraction of criterion places and slicing algorithms
has been completely implemented using the Java platform.

7.1. Overview 123

SLAPn
(Graphical User Interface)

Graphical + Textual
Syntax

EMF + GMF
Slicing Algorithms

Criterion Places
Extraction

GUI
Slicing Engine

Figure 7.4: SLAPn architecture

Since 2002, EMF is a framework for modeling and code generation which is part of
the Eclipse platform (http://www.eclipse.org/modeling/emf/) [Eclb]. EMF
has three main components i.e., core (metametamodel, persistence, serialization, val-
idation and model tracing); edit (model viewing and editing); and codegen (API gen-
eration for ECorebased models). The main advantage of using EMF is that the large
palette of bundled tools makes the creation and manipulation of metamodels easy.
Whereas GMF allows to create visual syntax for model editing, or XText to define
textual editors with syntax checking, auto completion and other advanced features
(http://www.eclipse.org/modeling/gmf/).

Eclipse
modeling
Framework

.pnmm .pnmm_diagram

Graphic
modeling
Framework

JAVA

sliced.pnmm sliced.pnmm_diagram

Graphical User interface

Slicing Engine

Figure 7.5: Slapn generated files

http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/gmf/

124 Chapter 7. SLAPn: A tool for slicing Petri nets and Algebraic Petri nets

From the developer’s point of view, there are two types of files that are created while
creating a textual and graphical PN model i.e., .pnmm−diagram and .pnmm. The
.pnmm files is stored in XML (EXtensible Markup Language) format. XML is a
markup language much like HTML (Hyper Text Markup Language) and is used to
describe the data. In XML tags are not predefined and designed to be self descriptive.
Our implementation of slicing algorithms takes .pnmm file as an input. Below, we
show .pnmm files for the example shown in the Fig.7.6. There are four different tags
that are used to show the example PN model. The tags names ContainsPlaces &
ContainsTransitions store information regarding the places (resp. transitions) in
the PN model. The tags name containsInputArcs & containsOutputArcs store
information about the input and output arcs in the PN model.

1 <? xml v e r s i o n=" 1 . 0 " e n c o d i n g="UTF−8" ?>

2 <pnmm:Pe t r iNe t s x m i : v e r s i o n =" 2 . 0 " xmlns :xmi=" h t t p : / /www. omg . org /

XMI" xmlns:pnmm=" h t t p : / / pnmm / 1 . 0 ">

3 < c o n t a i n s P l a c e s name=" p1 " numbof tokens=" 2 " / >

4 < c o n t a i n s P l a c e s name=" p0 " numbof tokens=" 2 " / >

5 < c o n t a i n s P l a c e s name=" p2 " numbof tokens=" 1 " / >

6 < c o n t a i n s I n p u t A r c s w e i gh t=" 1 " I n p u t A r c F r o P l a c e=" / /

@ c o n t a i n s P l a c e s . 1 " I n p u t A r c T o T r a n s i t i o n =" / /

@ c o n t a i n s T r a n s i t i o n s . 0 " p lacename=" p0 " t r a n s n a m e=" t 1 " / >

7 < c o n t a i n s I n p u t A r c s w e i gh t=" 1 " I n p u t A r c F r o P l a c e=" / /

@ c o n t a i n s P l a c e s . 0 " I n p u t A r c T o T r a n s i t i o n =" / /

@ c o n t a i n s T r a n s i t i o n s . 1 " p lacename=" p1 " t r a n s n a m e=" t 1 " / >

8 < c o n t a i n s I n p u t A r c s w e i gh t=" 3 " I n p u t A r c F r o P l a c e=" / /

@ c o n t a i n s P l a c e s . 2 " I n p u t A r c T o T r a n s i t i o n =" / /

@ c o n t a i n s T r a n s i t i o n s . 2 " p lacename=" p2 " t r a n s n a m e=" t 3 " / >

9 < c o n t a i n s I n p u t A r c s w e i gh t=" 1 " I n p u t A r c F r o P l a c e=" / /

@ c o n t a i n s P l a c e s . 2 " I n p u t A r c T o T r a n s i t i o n =" / /

@ c o n t a i n s T r a n s i t i o n s . 3 " p lacename=" p2 " t r a n s n a m e=" t 2 " / >

10 < c o n t a i n s T r a n s i t i o n s name=" t 0 " / >

11 < c o n t a i n s T r a n s i t i o n s name=" t 1 " / >

12 < c o n t a i n s T r a n s i t i o n s name=" t 3 " / >

13 < c o n t a i n s T r a n s i t i o n s name=" t 2 " / >

14 < c o n t a i n s O u t p u t A r c s w e ig h t=" 1 " Outpu tArcToPlace=" / /

@ c o n t a i n s P l a c e s . 0 " O u t p u t A r c F r o T r a n s i t i o n=" / /

@ c o n t a i n s T r a n s i t i o n s . 0 " p lacename=" p1 " t r anname=" t 0 " / >

15 < c o n t a i n s O u t p u t A r c s w e ig h t=" 2 " Outpu tArcToPlace=" / /

@ c o n t a i n s P l a c e s . 2 " O u t p u t A r c F r o T r a n s i t i o n=" / /

@ c o n t a i n s T r a n s i t i o n s . 1 " p lacename=" p2 " t r anname=" t 1 " / >

16 < c o n t a i n s O u t p u t A r c s w e ig h t=" 3 " Outpu tArcToPlace=" / /

@ c o n t a i n s P l a c e s . 2 " O u t p u t A r c F r o T r a n s i t i o n=" / /

@ c o n t a i n s T r a n s i t i o n s . 2 " p lacename=" p2 " t r anname=" t 3 " / >

17 < / pnmm:Pe t r iNe t s>

7.2 Tasks in SLAPn

• Creating Models: The first task is to create an APN/PN model. Four model el-
ements are present inside palette i.e, Transition, Place, InputArc and outputArc.

• Writing Temporal Formula: Tool bar provides a button to write a temporal
formula. Tool will automatically extract criterion places for which slices will be
generated.

• Apply Slicing Algorithm: Finally, a user can select any algorithm given in the
tool bar buttons. The slicing algorithm starts with the criterion places set and
unfolded APN/PN model.

Let us draw a simple unfolded PN model and then apply slicing algorithms using
SLAPn. Fig.7.6 shows a screen shot of an example PN model that we draw using
SLAPn model elements. Let us take an example temporal formula i.e., AG(|P1| , ∅)
and write it using the button in the tool bar as shown in Fig.7.7. Now let us first apply
the APNSlicing algorithm and secondly apply Abstract slicing algorithm from the tool
bar buttons, the resultant sliced models are shown in Fig.7.8, 7.9 respectively.

Figure 7.6: Drawing a APN model using SLAPn editor

7.2. Tasks in acronym]\glossaryentrySLAP$_n$?\glossentryslap|setentrycounter[]page\glsnumberformat125SLAPn125

Figure 7.7: Writing temporal formula

Figure 7.8: Sliced model by applying APNSlicing algorithm

Figure 7.9: Sliced model by applying Abstract slicing algorithm

126 Chapter 7. SLAPn: A tool for slicing Petri nets and Algebraic Petri nets

Chapter 8

Conclusion and Future work

To succeed, jump as quickly at opportunities as you do at
conclusions.

— Benjamine Franklin

The main contribution of this thesis is to to improve verification and re-verification
of concurrent and distributed system modeled in Petri nets. In this thesis, we pre-
sented property based model checking of Algebraic Petri nets, property based model
checking of structurally evolving Algebraic Petri nets and SLAPn tool.

• Property based model checking of Algebraic Petri nets: a technique based
on slicing has been successfully proposed to handle the state space explosion
problem (see chapter 4). The presented approach proposes efficient slicing al-
gorithms that can be applied to Petri nets and Algebraic Petri nets. The proposed
algorithm can alleviate state space even for certain strongly connected nets. By
construction, it is guaranteed that the state space of sliced net is at most as big as
the original net. We showed that the slice allow verification and falsification if
Algebraic Petri net is slice fair. The proposed slicing algorithms are linear time
complex and significantly improves the model checking and testing of Algebraic
Petri nets.

• Property based model checking of structurally evolving Algebraic Petri
nets: a technique has been successfully proposed to pursue two goals; the
first is to perform verification only on the parts that may affect the property
the Algebraic Petri net model is analyzed for (see chapter 5). The second is to
classify evolutions of Algebraic Petri nets to identify, which evolutions require
verification. To give more flexibility to the user, we do not restrict the types of
structural evolutions and the properties. Our results show that slicing is help-
ful to alleviate the state space explosion problem of Algebraic Petri nets model
checking and the repeated model checking of structural evolutions of Algebraic
Petri nets.

127

• SLAPn: a tool for slicing Petri nets and Algebraic Petri nets has been success-
fully developed (see chapter 7). It is our believe that computer science research
relies on proofs of concept and that it requires to implement the ideas to prove
that a concept or algorithm is valuable. Therefore, all the algorithms and ap-
proaches have been implemented as open-source tools.

8.1 Future Work

The future work consists of following objectives:

• The first future work objective is to expand this dissertation work to build bet-
ter slicing algorithms and their implementations to infer more about verification
and re-verification of other interesting and expressive modeling formalisms. In
order to build better slicing algorithms, one possible direction is to investigate
how to use compositional reasoning method. The compositional method verifies
each component of a system in the isolation and allows global properties to be
inferred about the entire system. This method is not only better suited for im-
proving verification, it can also be used to reason about the property satisfaction
when an evolution happens to any component of the system. We believe com-
bining compositional reasoning with slicing could provide an effective solution
to the verification and re-verification.

• A tool name SLAPn (a tool for slicing Petri nets and Algebraic Petri nets) has
been developed as a proof of concept for the proposed slicing algorithms. An
important future work related to SLAPn is to integrate it with the existing model
checking tools. In the present form of SLAPn only those slicing algorithms are
implemented that are designed to improve model checking. Another future work
consists of implementing slicing algorithms that are designed to improve testing.
It is important to note that the SLAPn tool handles Petri nets and Algebraic Petri
nets and it can be extended to other classes of Petri nets such as Colord Petri
nets, Timed Petri nets.

• The second objective of future work is concerned to enhance the theory of
preservation of properties. The aim is to develop a property preserving do-
main specific language for the evolving Petri nets based on the slicing and the
classification of evolutions and properties proposed in this work.

128 Chapter 8. Conclusion and Future work

Appendix A

Acronyms

Acronyms

AADT Algebraic Abstract Data Type. vii, 13, 82

ADT Algebraic Data Type. 7

APN Algebraic Petri Net. vii–ix, 6–8, 13, 16–18, 24, 43, 44, 47–51, 53–57, 60, 62–
64, 66, 67, 69, 70, 72, 76, 80–82, 84, 85, 87, 88, 94, 96–101, 103–105, 107,
109, 120–122, 124

APNs Algebraic Petri Nets. iii, vii, 3, 5–9, 12, 13, 44, 46, 50, 53, 58, 62, 63, 76, 80,
82, 96, 103

BDD Binary Decision Diagram. 3, 24, 43

CPN Colord Petri Nets. 12

CTL Computation tree logic. 5

HLPN High Level Petri Net. 12, 15

HLPNs High-Level Petri nets. 3

HLRS High-level Replacement System. 7

ICT Information and Communication Technology. 1

LTL Linear temporal logic. 5

PN Petri nets. vii, xi, 2, 3, 5, 7, 8, 12, 13, 16, 25–29, 31, 34, 36, 37, 41, 103–105,
120–122, 124

129

PN Slicing Petri nets Slicing. 5, 6, 119

PN slicing Petri nets Slicing. 24–26, 29, 40, 46

PNs Petri nets. iii, 2–4, 6–9, 12, 13, 43, 44, 63, 80, 103

Pr/T-nets Predicate/Transition Nets. 12, 13

SLAPn A tool for Slicing Algebraic Petri nets. iii, iv, vii, ix, 8, 9, 105, 119–124

130 Acronyms

Appendix B

Algebraic Specifications for Car Crash
Management System

In this appendix we present algebraic specifications for the carCrash case study.

B.0.1 Algebraic specifications for CCMS�
1

2 Adt b o o l e a n
3 S o r t s boo l ;
4 G e n e r a t o r s
5 t r u e : boo l ;
6 f a l s e : boo l ;
7 O p e r a t i o n s
8 n o t : boo l −> boo l ;
9 and : bool , boo l −> boo l ;

10 or : bool , boo l −> boo l ;
11 xor : bool , boo l −> boo l ;
12 i m p l i e s : bool , boo l −> boo l ;
13

14 Axioms
15 / / n o t
16 n o t (t r u e) = f a l s e ;
17 n o t (f a l s e) = t r u e ;
18

19 / / and
20 and (t r u e , $ boo lVar) = $ boolVar ;
21 and (f a l s e , $ boo lVar) = f a l s e ;
22

23 / / or
24 or (t r u e , $ boolVar) = t r u e ;
25 or (f a l s e , $ boolVar) = $ boolVar ;
26

27 / / xor
28 xor (t r u e , $ boo lVar) = n o t ($ boolVar) ;
29 xor (f a l s e , $ boo lVar) = $ boolVar ;
30

31 / / i m p l i e s
32 i m p l i e s (f a l s e , $ boo lVar) = t r u e ;
33 i m p l i e s (t r u e , $ boo lVar) = $ boolVar ;
34

35 V a r i a b l e s
36 boolVar : boo l ;� �

131

132 Appendix B. Algebraic Specifications for Car Crash Management System

�
1

2 Adt c a p t u r e d a t a
3

4 S o r t s
5 c a p t u r e ;
6

7 G e n e r a t o r s
8

9 F i r e : c a p t u r e ;
10 B l o c k a g e : c a p t u r e ;� ��
1 Adt o b s e r v e r s
2 S o r t s
3 obs ;
4

5 G e n e r a t o r s
6 YK:obs ;
7 NG:obs ;� ��
1 i m p o r t "observers.adt"
2 i m p o r t "capturedata.adt"
3 Adt S u p e r O b s e r v e r
4

5 S o r t s
6 Sobs ;
7 G e n e r a t o r s
8

9 s o b s : obs , c a p t u r e −>Sobs ;
10 O p e r a t i o n s
11

12 g e t s o b : S o b s −>obs ;
13 Axioms
14

15 g e t s o b (sobs ($ obs , $ c t)) =$obs ;
16

17

18 V a r i a b l e s
19 o b s : o b s ;
20 c t : c a p t u r e ;� ��
1 i m p o r t "capturedata.adt"
2

3 Adt R e c o r d C r i s e s
4

5 S o r t s
6 c r i s e s R ;
7

8 G e n e r a t o r s
9 cR: c a p t u r e −> c r i s e s R ;

10

11 O p e r a t i o n s
12

13 g e t c a p t u r e t y p e : c r i s e s R −> c a p t u r e ;
14

15 Axioms
16 g e t c a p t u r e t y p e (cR ($ cd))= $ cd ;
17 V a r i a b l e s
18 c d : c a p t u r e ;� ��
1 i m p o r t "boolean.adt"
2 i m p o r t "RecordCrises.adt"
3 i m p o r t "capturedata.adt"
4 Adt
5 sys tem
6 S o r t s

133

7 s y s ;
8 G e n e r a t o r s
9 s y s t e m : c r i s e s R , bool−>s y s ;

10 O p e r a t i o n s
11 g e t c r i s e s t y p e : s y s −> c a p t u r e ;
12 g e t c r i s e s : s y s −> c r i s e s R ;
13 Axioms
14 g e t c r i s e s (sys tem ($ cr , $ b))= $ c r ;
15 g e t c r i s e s t y p e (sys tem ($ cr , $ b))= g e t c a p t u r e t y p e ($ c r) ;
16

17 V a r i a b l e s
18 c r : c r i s e s R ;
19 b : b o o l ;� ��
1 i m p o r t "RecordCrises.adt"
2 i m p o r t "system.adt"
3 i m p o r t "SuperObserver.adt"
4 i m p o r t "capturedata.adt"
5

6

7 Adt E x e c u t e c r i s e s
8

9 S o r t s
10 c r i s e s ;
11

12 G e n e r a t o r s
13 a s s i g n c r i s e s : S o b s , sys−> c r i s e s ;
14 O p e r a t i o n s
15 g e t c r i s e s t y p e : c r i s e s −> c a p t u r e ;
16

17 Axioms
18 g e t c r i s e s t y p e (a s s i g n c r i s e s ($ sob , $ sy))= g e t c r i s e s t y p e ($ sy) ;
19

20 V a r i a b l e s
21 c r : c r i s e s R ;
22 s o b : S o b s ;
23 s y : s y s ;� ��
1 i m p o r t "Executecrises.adt"
2 i m p o r t "boolean.adt"
3

4 Adt Rep o r t
5

6 S o r t s
7 r e p o r t ;
8

9 G e n e r a t o r s
10 r p : c r i s e s −> r e p o r t ;� �

134 Appendix B. Algebraic Specifications for Car Crash Management System

Appendix C

Java Program for APN Slicing Algorithm

Here is the java program for APN slicing algorithm given in the section [].�
1 / ∗

2 Thi s j a v a program c o n t a i n s i m p l e m e n t a t i o n o f APNSlic ing a l g o r i t h m .
3 We use Document O b j e c t Model (DOM) s t a n d a r d whereas DOM. The Document O b j e c t Model

p r o v i d e s APIs t h a t l e t you c r e a t e , modify , d e l e t e , and r e a r r a n g e nodes .
4 ∗ /

5 package com . s l a p . a l g o r i t h m s ;
6 i m p o r t j a v a . i o . F i l e ;
7 i m p o r t j a v a . u t i l . A r r a y L i s t ;
8 i m p o r t j a v a . u t i l . L i s t ;
9 i m p o r t j a v a x . swing . JOp t ionPane ;

10 i m p o r t j a v a x . xml . p a r s e r s . DocumentBui lder ;
11 i m p o r t j a v a x . xml . p a r s e r s . D o c u m e n t B u i l d e r F a c t o r y ;
12 i m p o r t j a v a x . xml . t r a n s f o r m . T r a n s f o r m e r ;
13 i m p o r t j a v a x . xml . t r a n s f o r m . T r a n s f o r m e r F a c t o r y ;
14 i m p o r t j a v a x . xml . t r a n s f o r m . dom . DOMSource ;
15 i m p o r t j a v a x . xml . t r a n s f o r m . s t r e a m . S t r e a m R e s u l t ;
16 i m p o r t o rg . w3c . dom . A t t r ;
17 i m p o r t o rg . w3c . dom . Document ;
18 i m p o r t o rg . w3c . dom . Element ;
19 i m p o r t o rg . w3c . dom . Node ;
20 i m p o r t o rg . w3c . dom . NodeLis t ;
21

22 p u b l i c c l a s s APNSlic ing {
23

24 p u b l i c s t a t i c S t r i n g i n p u t P l a c e = n u l l ;
25 p u b l i c s t a t i c S t r i n g v a r i a b l e p l a c e = n u l l ;
26 p u b l i c s t a t i c S t r i n g v a r i a b l e t r a n s = n u l l ;
27 p u b l i c s t a t i c S t r i n g v a r i a b l e i n p u t a r c = n u l l ;
28 p u b l i c s t a t i c S t r i n g v a r i a b l e t r a n s 1 = n u l l ;
29 p u b l i c s t a t i c S t r i n g v a r i a b l e t r a n s 2 = n u l l ;
30 p u b l i c s t a t i c S t r i n g e x i s t i n g P l a c e = n u l l ;
31 p u b l i c s t a t i c S t r i n g v a r i a b l e s w i t c h ;
32

33 p u b l i c s t a t i c S t r i n g t r a n s d e l = n u l l ;
34

35 p u b l i c s t a t i c S t r i n g [] p l a c e A r r a y = new S t r i n g [1 0] ;
36 p u b l i c s t a t i c S t r i n g [] i n p u t a r c A r r a y = new S t r i n g [1 0] ;
37 p u b l i c s t a t i c S t r i n g [] o u t p u t a r c A r r a y = new S t r i n g [0] ;
38

39 p u b l i c s t a t i c L i s t < S t r i n g > l i s t = new A r r a y L i s t< S t r i n g > () ;
40

41 p u b l i c s t a t i c L i s t < S t r i n g > l i s t C l o n e = new A r r a y L i s t< S t r i n g > () ;
42

43 p u b l i c s t a t i c L i s t < S t r i n g > l i s t i n p u t a r c s l i c e = new A r r a y L i s t< S t r i n g > () ;

135

136 Appendix C. Java Program for APN Slicing Algorithm

44 p u b l i c s t a t i c L i s t < S t r i n g > l i s t i n p u t a r c = new A r r a y L i s t< S t r i n g > () ;
45 p u b l i c s t a t i c L i s t < S t r i n g > l i s t o u t p u t a r c = new A r r a y L i s t< S t r i n g > () ;
46 p u b l i c s t a t i c b o o l e a n boo l = f a l s e ;
47 p u b l i c s t a t i c b o o l e a n i s T r a n s i t i o n E x i s t = f a l s e ;
48 p u b l i c s t a t i c S t r i n g [] t r a n s A r r a y = new S t r i n g [1 0] ;
49 p u b l i c s t a t i c i n t i = 0 ;
50 p u b l i c s t a t i c i n t j ;
51 p u b l i c s t a t i c i n t k = 0 ;
52

53 p u b l i c s t a t i c vo id main (S t r i n g a r g []) {
54 / / TODO i n p u t p l a c e t o t h e a l g o r i t h m
55 S t r i n g v a r i a b l e p l a c e = JOp t ionPane . s h o w I n p u t D i a l o g ("Enter Temporal Formula") ;
56 / / S t r i n g v a r i a b l e p l a c e = "P1" ;
57 / / System . o u t . p r i n t l n (v a r i a b l e p l a c e) ;
58 v a r i a b l e s w i t c h = e x i s t i n g P l a c e ;
59

60 / / System . o u t . p r i n t l n ("Enter Place to Start with : ") ;
61 i n p u t P l a c e = v a r i a b l e p l a c e ;
62 l i s t . add ("") ;
63

64 t r y {
65

66 / / TODO i n p u t f i l e i . e . P e t r i n e t
67 F i l e f X m l F i l e = new F i l e (
68 "/My Data/runtime-EclipseApplication/Finaltesting/MyFirstPN.pnmm"

) ;
69 D o c u m e n t B u i l d e r F a c t o r y d b F a c t o r y = D o c u m e n t B u i l d e r F a c t o r y
70 . n e w I n s t a n c e () ;
71 DocumentBui lde r d B u i l d e r = d b F a c t o r y . newDocumentBui lder () ;
72 Document doc = d B u i l d e r . p a r s e (f X m l F i l e) ;
73 doc . ge tDocumentElement () . n o r m a l i z e () ;
74

75 / / System . o u t . p r i n t l n ("Root element :" +

76 / / doc . ge tDocumentElement () . getNodeName ()) ;
77

78 / / TODO e x i s t i n g XML nodes r e a d i n g wi th t h e i r t a g names
79 NodeLis t t r a n s i t i o n L i s t = doc . getElementsByTagName ("containsTransitions")

;
80 NodeLis t p l a c e L i s t = doc . getElementsByTagName ("containsPlaces") ;
81 NodeLis t i n p u t A r c s L i s t = doc . getElementsByTagName ("containsInputArcs") ;
82 NodeLis t o u t p u t A r c s L i s t = doc . getElementsByTagName ("containsOutputArcs") ;
83

84

85 / / TODO Outpu t XML f i l e t a g names i . e . Temporary names . L a t e r on , i t w i l l
be c o n v e r t e d t o o r i g i n a l t a g names

86 NodeLis t p l a c e L i s t S l = doc . getElementsByTagName ("containsPlacesSl") ;
87 NodeLis t t r a n s i t i o n L i s t S l = doc . getElementsByTagName ("

containsTransitionsSl") ;
88 NodeLis t i n p u t A r c s L i s t S l = doc . getElementsByTagName ("containsInputArcsSl"

) ;
89 NodeLis t o u t p u t A r c s L i s t S l = doc . getElementsByTagName ("

containsOutputArcsSl") ;
90

91 / / TODO New / o u t p u t XML f i l e r o o t e l e m e n t
92 Element r o o t = doc . ge tDocumentElement () ;
93

94 f o r (i n t t = 0 ; t < p l a c e L i s t . g e t L e n g t h () ; t ++) {
95 / / TODO Checking e i t h e r t h i s i n p u t p l a c e e x i s t e d o r n o t
96 i f (! (e x i s t i n g P l a c e + "") . e q u a l s I g n o r e C a s e (i n p u t P l a c e)) {
97

98 / / TODO F i n d i n g p l a c e i n e x i s t i n g p l a c e s / xml f i l e and c r e a t i n g new
p l a c e f o r o u t p u t xml f i l e

99 f i n d A n d C r e a t e P l a c e (doc , p l a c e L i s t , r o o t) ;
100

101 / / TODO Find and C r e a t e i n p u t a r c s
102 f i n d A n d C r e a t e I n p u t A r c s (doc , i n p u t A r c s L i s t , r o o t) ;
103

104 / / TODO f i n d and c r e a t e o u t p u t a r c

137

105 f i n d A n d C r e a t e O u t p u t A r c s (doc , o u t p u t A r c s L i s t , r o o t) ;
106

107 / / TODO E x p l o r i n g i n p u t a rc , t h a t i t i s n o t coming from e x i s t i n g
p l a c e

108 f i ndP laceNameToCrea t e (i n p u t A r c s L i s t) ;
109

110 } / / end o u t most i f
111

112 } / / end o u t e r most f o r loop
113

114

115 / / TODO compar ing wi th a l r e a d y g e n e r a t e d t r a n s i t i o n s and a dd i ng p l a c e s t o
a new l i s t

116 i n p u t A r c s O f R e a d i n g T r a n s i t i o n s (i n p u t A r c s L i s t S l) ;
117

118 / / TODO compar ing wi th a l r e a d y g e n e r a t e d t r a n s i t i o n s and a dd i ng p l a c e s t o
a new l i s t

119 o u t p u t A r c s O f R e a d i n g T r a n s i t i o n s (o u t p u t A r c s L i s t S l) ;
120

121

122 c o m p a r i n g I n p u t A n d O u t p u t P l a c e s () ;
123

124 i f (k < 1 & k != 2) {
125

126 g e t V a l u e s O f R e a d i n g T r a n s i t i o n s (i n p u t A r c s L i s t S l) ;
127

128 c o m p a r e I n p u t A n d O u t p u t A r c s O f R e a d i n g T r a n s i t i o n s (i n p u t A r c s L i s t S l ,
o u t p u t A r c s L i s t S l) ;

129

130 r e m o v e R e a d i n g T r a n s i t i o n s (t r a n s i t i o n L i s t S l) ;
131

132 r e m o v i n g I n p u t A r c T r a n s i t i o n s (i n p u t A r c s L i s t S l) ;
133

134 r e m o v i n g O u t p u t A r c T r a n s i t i o n (o u t p u t A r c s L i s t S l) ;
135

136 }
137

138 i f (i n p u t P l a c e != n u l l) {
139

140 removeOldTagNames (p l a c e L i s t) ;
141 removeOldTagNames (t r a n s i t i o n L i s t) ;
142 removeOldTagNames (i n p u t A r c s L i s t) ;
143 removeOldTagNames (o u t p u t A r c s L i s t) ;
144

145

146 renameTags (doc , p l a c e L i s t S l , "containPlaces") ;
147 renameTags (doc , t r a n s i t i o n L i s t S l , "containsTransitions") ;
148 renameTags (doc , i n p u t A r c s L i s t S l , "containsInputArcs") ;
149 renameTags (doc , o u t p u t A r c s L i s t S l , "containsOutputArcs") ;
150

151 }
152

153 T r a n s f o r m e r F a c t o r y t r a n s f o r m e r F a c t o r y = T r a n s f o r m e r F a c t o r y
154 . n e w I n s t a n c e () ;
155 T r a n s f o r m e r t r a n s f o r m e r = t r a n s f o r m e r F a c t o r y . newTrans former () ;
156 DOMSource s o u r c e = new DOMSource (doc) ;
157 S t r e a m R e s u l t r e s u l t = new S t r e a m R e s u l t (
158 new F i l e (
159 "/My Data/runtime-EclipseApplication/Finaltesting/

MyFirstPN1.pnmm")) ;
160 t r a n s f o r m e r . t r a n s f o r m (sou rce , r e s u l t) ;
161 }
162

163 c a t c h (E x c e p t i o n e) {
164 e . p r i n t S t a c k T r a c e () ;
165 }
166

167 }

138 Appendix C. Java Program for APN Slicing Algorithm

168

169 / ∗ ∗

170 ∗ E x p l o r i n g i n p u t a rc , t h a t i t i s n o t coming from e x i s t i n g p l a c e
171 ∗ @param i n p u t A r c s L i s t
172 ∗ /

173 p u b l i c s t a t i c vo id f indP laceNameToCrea t e (NodeLis t i n p u t A r c s L i s t) {
174 f o r (i n t temp11 = 0 ; temp11 < i n p u t A r c s L i s t . g e t L e n g t h () ; temp11 ++) {
175

176 Node I n p A r c L i s t 1 = i n p u t A r c s L i s t . i t em (temp11) ;
177 Element eElement5 = (Element) I n p A r c L i s t 1 ;
178

179 S t r i n g va lueOfTransname1 = eElement5 . g e t A t t r i b u t e ("transname") ;
180 S t r i n g va lueOfP lacename1 = eElement5 . g e t A t t r i b u t e ("placename") ;
181 / / System . o u t . p r i n t l n ("this is old place "+ i n p u t P l a c e +"") ;
182 / / System . o u t . p r i n t l n ("this is place from list "+va lueOfP lacename+"") ;
183 / / System . o u t . p r i n t l n ("variable switch value "+ v a r i a b l e s w i t c h) ;
184

185 / / TODO E x p l o r i n g i n p u t a rc , t h a t i t i s n o t coming from e x i s t i n g p l a c e
186 i f (va lueOfTransname1 . e q u a l s I g n o r e C a s e (v a r i a b l e t r a n s) & va lueOfP lacename1

!= i n p u t P l a c e) {
187 / / System . o u t . p r i n t l n ("variable switch value"
188 / / + v a r i a b l e s w i t c h) ;
189 System . o u t . p r i n t l n ("values of different places"+ i n p u t P l a c e) ;
190

191 / / System . o u t . p r i n t l n ("the value"+ v a r i a b l e t r a n s) ;
192 e x i s t i n g P l a c e = i n p u t P l a c e ;
193 i n p u t P l a c e = va lueOfP lacename1 ;
194

195 System . o u t . p r i n t l n ("my grand value " + e x i s t i n g P l a c e) ;
196

197 / / b r e a k ;
198 }
199

200 } / / end f o r loop E x p l o r i n g i n p u t a rc , t h a t i t i s n o t coming from e x i s t i n g
p l a c e

201 }
202

203 / ∗ ∗

204 ∗ Taking c r e a t e d p l a c e as an i n p u t and c r e a t i n g o u t p u t a r c s l i s t
205 ∗ @param doc
206 ∗ @param o u t p u t A r c s L i s t
207 ∗ @param r o o t
208 ∗ /

209 p u b l i c s t a t i c vo id f i n d A n d C r e a t e O u t p u t A r c s (Document doc ,
210 NodeLis t o u t p u t A r c s L i s t , Element r o o t) {
211 f o r (i n t temp3 = 0 ; temp3 < o u t p u t A r c s L i s t . g e t L e n g t h () ; temp3++) {
212

213 Node o u t p A r c L i s t = o u t p u t A r c s L i s t . i t em (temp3) ;
214 Element o u t p u t A r c E l e m e n t = (Element) o u t p A r c L i s t ;
215

216 / / g e t t i n g v a l u e s o f a t t r i b u t e s from t h e a l r e a d y e x i s t e d
217 / / I n p u t a r c node
218 S t r i n g va lueOfWeigh tOfOutpu tArc = o u t p u t A r c E l e m e n t . g e t A t t r i b u t e ("weight")

;
219 S t r i n g v a l u e O f O u t p u t A r c T o P l a c e = o u t p u t A r c E l e m e n t . g e t A t t r i b u t e ("

OutputArcToPlace") ;
220 S t r i n g v a l u e O f O u t p u t A r c F r o T r a n s i t i o n = o u t p u t A r c E l e m e n t . g e t A t t r i b u t e ("

OutputArcFroTransition") ;
221 S t r i n g v a l u e O f P l a c e n a m e o u t = o u t p u t A r c E l e m e n t . g e t A t t r i b u t e ("placename") ;
222 S t r i n g va lueOfTransnameou t = o u t p u t A r c E l e m e n t . g e t A t t r i b u t e ("tranname") ;
223

224 / / TODO Checking i f o u t p u t a r c e x i s t f o r t h i s i n p u t p l a c e
225 i f (o u t p u t A r c E l e m e n t . g e t A t t r i b u t e ("placename") . e q u a l s I g n o r e C a s e (

i n p u t P l a c e + "")) {
226

227 Element S l i c e O u t p u t A r c = doc . c r e a t e E l e m e n t ("containsOutputArcsSl") ;
228 r o o t . appendCh i ld (S l i c e O u t p u t A r c) ;
229 / / System . o u t . p r i n t l n ("created outputarc") ;

139

230

231 i f (va lueOfWeigh tOfOutpu tArc != "") {
232 A t t r p l a c e W e i g h t o u t = doc . c r e a t e A t t r i b u t e ("weight") ;
233 S l i c e O u t p u t A r c . s e t A t t r i b u t e N o d e (p l a c e W e i g h t o u t) ;
234 p l a c e W e i g h t o u t . s e t V a l u e (va lueOfWeigh tOfOutpu tArc) ;
235 }
236 A t t r I n p u t A r c F r o P l a c e o u t = doc . c r e a t e A t t r i b u t e ("OutputArcToPlace") ;
237 S l i c e O u t p u t A r c . s e t A t t r i b u t e N o d e (I n p u t A r c F r o P l a c e o u t) ;
238 I n p u t A r c F r o P l a c e o u t . s e t V a l u e (v a l u e O f O u t p u t A r c T o P l a c e) ;
239

240 A t t r I n p u t A r c T o T r a n s i t i o n o u t = doc . c r e a t e A t t r i b u t e ("
OutputArcFroTransition") ;

241 S l i c e O u t p u t A r c . s e t A t t r i b u t e N o d e (I n p u t A r c T o T r a n s i t i o n o u t) ;
242 I n p u t A r c T o T r a n s i t i o n o u t . s e t V a l u e (v a l u e O f O u t p u t A r c F r o T r a n s i t i o n) ;
243

244 A t t r p l a c e n a m e o u t = doc . c r e a t e A t t r i b u t e ("placename") ;
245 S l i c e O u t p u t A r c . s e t A t t r i b u t e N o d e (p l a c e n a m e o u t) ;
246 p l a c e n a m e o u t . s e t V a l u e (v a l u e O f P l a c e n a m e o u t) ;
247

248 A t t r t r a n s n a m e o u t = doc . c r e a t e A t t r i b u t e ("tranname") ;
249 S l i c e O u t p u t A r c . s e t A t t r i b u t e N o d e (t r a n s n a m e o u t) ;
250 t r a n s n a m e o u t . s e t V a l u e (va lueOfTransnameou t) ;
251

252 l i s t o u t p u t a r c . add (va lueOfTransnameou t) ;
253 v a r i a b l e t r a n s = va lueOfTransnameou t ;
254

255 / / v a r i a b l e t r a n s 2 = va lueOfTransnameou t ;
256 / / s = v a l u e O f P l a c e n a m e o u t ;
257 System . o u t . p r i n t l n ("output arc is created "+ v a r i a b l e t r a n s) ;
258 i n p u t P l a c e = v a l u e O f P l a c e n a m e o u t ;
259

260 / / TODO c h e c k i n g i f o u t p u t t r a n s i t i o n a l r e a d y c r e a t e d o r n o t
261 c r e a t e O u t p u t T r a n s i t i o n s (doc , r o o t) ;
262

263 } / / end i f Checking i f o u t p u t a r c e x i s t f o r t h i s i n p u t p l a c e
264

265 } / / end f o r loop f i n d and c r e a t e o u t p u t a r c
266 }
267

268 / ∗ ∗

269 ∗ C r e a t i n g o u t p u t t r a n s i t i o n s
270 ∗ @param doc
271 ∗ @param r o o t
272 ∗ /

273 p u b l i c s t a t i c vo id c r e a t e O u t p u t T r a n s i t i o n s (Document doc , Element r o o t) {
274 f o r (i = 0 ; i < l i s t . s i z e () ; i ++) {
275

276 i f (l i s t . g e t (i) . e q u a l s (v a r i a b l e t r a n s)) {
277 System . o u t . p r i n t l n ("found value in output tranistion "+ l i s t . g e t (i)) ;
278 / ∗

279 ∗ f o r (S t r i n g s t r i n g : l i s t) {
280 ∗ i f (! s t r i n g . c o n t a i n s (v a r i a b l e t r a n s)) {
281 ∗ /

282 i s T r a n s i t i o n E x i s t = t r u e ;
283 b r e a k ;
284

285 } e l s e {
286 i s T r a n s i t i o n E x i s t = f a l s e ;
287 }
288 } / / end f o r loop c h e c k i n g i f o u t p u t t r a n s i t i o n a l r e a d y c r e a t e d o r n o t
289

290 / / TODO i f t r a n s i t i o n does n o t e x i s t , t h e n c r e a t e and add t o t o t h e l i s t
291 i f (i s T r a n s i t i o n E x i s t != t r u e) {
292 Element S l i c e t r a n s = doc . c r e a t e E l e m e n t ("containsTransitionsSl") ;
293 r o o t . appendCh i ld (S l i c e t r a n s) ;
294

295 A t t r v t r a n s n a m e = doc . c r e a t e A t t r i b u t e ("name") ;
296 S l i c e t r a n s . s e t A t t r i b u t e N o d e (v t r a n s n a m e) ;

140 Appendix C. Java Program for APN Slicing Algorithm

297 v t r a n s n a m e . s e t V a l u e (v a r i a b l e t r a n s + "") ;
298 / / System . o u t . p r i n t l n ("the newly create transition by tag name "
299 / / +eElement11 . g e t A t t r i b u t e ("name")) ;
300 i f (l i s t . g e t (0) == ("")) {
301 l i s t . remove (0) ;
302 }
303 l i s t . add (v a r i a b l e t r a n s) ;
304

305 System . o u t . p r i n t l n ("transition is created "+ v a r i a b l e t r a n s) ;
306 / / b r e a k ;
307 / / b= f a l s e ;
308 } / / end i f t r a n s i t i o n does n o t e x i s t , t h e n c r e a t e and add t o t o t h e l i s t
309 }
310

311 / ∗ ∗

312 ∗ Taking c r e a t e p l a c e as an i n p u t and c r e a t i n g i n p u t a r c s l i s t
313 ∗ @param doc
314 ∗ @param i n p u t A r c s L i s t
315 ∗ @param r o o t
316 ∗ /

317 p u b l i c s t a t i c vo id f i n d A n d C r e a t e I n p u t A r c s (Document doc ,
318 NodeLis t i n p u t A r c s L i s t , Element r o o t) {
319 f o r (i n t temp1 = 0 ; temp1 < i n p u t A r c s L i s t . g e t L e n g t h () ; temp1++) {
320

321 Node I n p A r c L i s t = i n p u t A r c s L i s t . i t em (temp1) ;
322 Element i n p u t A r c E l e m e n t = (Element) I n p A r c L i s t ;
323

324

325 S t r i n g va lueOfWeigh tOf Inpu tArc = i n p u t A r c E l e m e n t . g e t A t t r i b u t e ("weight") ;
326 S t r i n g v a l u e O f I n p u t A r c F r o P l a c e = i n p u t A r c E l e m e n t . g e t A t t r i b u t e ("

InputArcFroPlace") ;
327 S t r i n g v a l u e O f I n p u t A r c T o T r a n s i t i o n = i n p u t A r c E l e m e n t . g e t A t t r i b u t e ("

InputArcToTransition") ;
328 S t r i n g va lueOfP lacename = i n p u t A r c E l e m e n t . g e t A t t r i b u t e ("placename") ;
329 S t r i n g va lueOfTransname = i n p u t A r c E l e m e n t . g e t A t t r i b u t e ("transname") ;
330

331 / / TODO n a v i g a t i n g i n p u t a r c e l e m e n t from i n p u t xml f i l e
332 i f (i n p u t A r c E l e m e n t . g e t A t t r i b u t e ("placename") . e q u a l s I g n o r e C a s e (i n p u t P l a c e

+ "")) {
333

334 Element S l i c e I n p u t A r c = doc . c r e a t e E l e m e n t ("containsInputArcsSl") ;
335 r o o t . appendCh i ld (S l i c e I n p u t A r c) ;
336

337 i f (va lueOfWeigh tOf Inpu tArc != "") {
338 A t t r p l a c e W e i g h t = doc . c r e a t e A t t r i b u t e ("weight") ;
339 S l i c e I n p u t A r c . s e t A t t r i b u t e N o d e (p l a c e W e i g h t) ;
340 p l a c e W e i g h t . s e t V a l u e (va lueOfWeigh tOf Inpu tArc) ;
341 }
342

343 A t t r I n p u t A r c F r o P l a c e = doc . c r e a t e A t t r i b u t e ("InputArcFroPlace") ;
344 S l i c e I n p u t A r c . s e t A t t r i b u t e N o d e (I n p u t A r c F r o P l a c e) ;
345 I n p u t A r c F r o P l a c e . s e t V a l u e (v a l u e O f I n p u t A r c F r o P l a c e) ;
346

347 A t t r I n p u t A r c T o T r a n s i t i o n = doc . c r e a t e A t t r i b u t e ("InputArcToTransition
") ;

348 S l i c e I n p u t A r c . s e t A t t r i b u t e N o d e (I n p u t A r c T o T r a n s i t i o n) ;
349 I n p u t A r c T o T r a n s i t i o n . s e t V a l u e (v a l u e O f I n p u t A r c T o T r a n s i t i o n) ;
350

351 A t t r p lacename = doc . c r e a t e A t t r i b u t e ("placename") ;
352 S l i c e I n p u t A r c . s e t A t t r i b u t e N o d e (p lacename) ;
353 placename . s e t V a l u e (va lueOfP lacename) ;
354

355 A t t r t r a n s n a m e = doc . c r e a t e A t t r i b u t e ("transname") ;
356 S l i c e I n p u t A r c . s e t A t t r i b u t e N o d e (t r a n s n a m e) ;
357 t r a n s n a m e . s e t V a l u e (va lueOfTransname) ;
358

359 S t r i n g v a l u e t r a n s n a m e = S l i c e I n p u t A r c . g e t A t t r i b u t e ("transname") ;
360 v a r i a b l e s w i t c h = va lueOfP lacename ;

141

361

362 / / l i s t i n p u t a r c . add (v a l u e t r a n s n a m e) ;
363 v a r i a b l e t r a n s = v a l u e t r a n s n a m e ;
364

365 System . o u t . p r i n t l n ("input arc created "+ v a r i a b l e t r a n s) ;
366

367 / / TODO Checking e i t h e r t h i s t r a n s i t i o n i s a l r e a d y c r e a t e d o r n o t
368 c r e a t e I n p u t T r a n s i t i o n s (doc , r o o t) ;
369

370 } / / end i f n a v i g a t i n g i n p u t a r c e l e m e n t from i n p u t xml f i l e
371

372 } / / end f o r loop Find and C r e a t e i n p u t a r c s
373 }
374

375 / ∗ ∗

376 ∗ C r e a t i n g i n p u t t r a n s i t i o n s
377 ∗ @param doc
378 ∗ @param r o o t
379 ∗ /

380 p u b l i c s t a t i c vo id c r e a t e I n p u t T r a n s i t i o n s (Document doc , Element r o o t) {
381 f o r (i = 0 ; i < l i s t . s i z e () ; i ++) {
382 / / S t r i n g n = l i s t . g e t (i) ;
383

384 System . o u t . p r i n t l n ("value of boolean variable "+ i s T r a n s i t i o n E x i s t) ;
385 i f (l i s t . g e t (i) . e q u a l s (v a r i a b l e t r a n s)) {
386 System . o u t . p r i n t l n ("found value input transitions " + l i s t . g e t (i)) ;
387

388 / ∗

389 ∗ f o r (S t r i n g s t r i n g : l i s t) {
390 ∗ i f (! s t r i n g . c o n t a i n s (v a r i a b l e t r a n s)) {
391 ∗ /

392 i s T r a n s i t i o n E x i s t = t r u e ;
393 b r e a k ;
394

395 / / System . o u t . p r i n t l n (v a r i a b l e p l a c e) ;
396

397 } e l s e {
398 i s T r a n s i t i o n E x i s t = f a l s e ;
399 }
400

401 } / / end f o r l o o p Checking e i t h e r t h i s t r a n s i t i o n i s a l r e a d y c r e a t e d o r n o t
402

403 / / TODO i f t r a n s i t i o n does n o t e x i s t s i n l i s t , t h e n add i t t o t h e t r a n s i t i o n
l i s t

404 i f (i s T r a n s i t i o n E x i s t != t r u e) {
405 Element S l i c e t r a n s = doc . c r e a t e E l e m e n t ("containsTransitionsSl") ;
406 r o o t . appendCh i ld (S l i c e t r a n s) ;
407

408 A t t r v t r a n s n a m e = doc . c r e a t e A t t r i b u t e ("name") ;
409 S l i c e t r a n s . s e t A t t r i b u t e N o d e (v t r a n s n a m e) ;
410 v t r a n s n a m e . s e t V a l u e (v a r i a b l e t r a n s + "") ;
411 / / System . o u t . p r i n t l n ("the newly create transition by tag name "
412 / / +eElement11 . g e t A t t r i b u t e ("name")) ;
413 i f (l i s t . g e t (0) == ("")) {
414 l i s t . remove (0) ;
415 }
416

417 l i s t . add (v a r i a b l e t r a n s) ;
418 System . o u t . p r i n t l n ("transition is created "+ v a r i a b l e t r a n s) ;
419 / / b= f a l s e ;
420

421 / / b r e a k ;
422 } / / end i f t r a n s i t i o n does n o t e x i s t s i n l i s t , t h e n add i t t o t h e t r a n s i t i o n

l i s t
423 }
424

425 / ∗ ∗

426 ∗ Taking c r i t e r i o n p l a c e s as an i n p u t and compar ing i n p u t w i th e x i s t i n g p l a c e s

142 Appendix C. Java Program for APN Slicing Algorithm

i n o r i g i n a l xml f i l e
427 ∗ @param doc o r i g i n a l xml document
428 ∗ @param p l a c e L i s t new p l a c e s w i l l be added i n t h i s l i s t
429 ∗ @param r o o t xml r o o t e l e m e n t
430 ∗ /

431 p u b l i c s t a t i c vo id f i n d A n d C r e a t e P l a c e (Document doc , NodeLi s t p l a c e L i s t ,
432 Element r o o t) {
433 S t r i n g v a r i a b l e p l a c e ;
434 f o r (i n t temp = 0 ; temp < p l a c e L i s t . g e t L e n g t h () ; temp++) {
435

436 Node p L i s t = p l a c e L i s t . i t em (temp) ;
437 Element eElement = (Element) p L i s t ;
438 S t r i n g nameOfPlace = eElement . g e t A t t r i b u t e ("name") ;
439

440 i f (nameOfPlace . e q u a l s (i n p u t P l a c e)) {
441

442 S t r i n g t o k = eElement . g e t A t t r i b u t e ("numboftokens") ;
443

444 Element S l i c e P l a c = doc . c r e a t e E l e m e n t ("containsPlacesSl") ;
445 r o o t . appendCh i ld (S l i c e P l a c) ;
446

447 / / TODO s e t t i n g up t h e a t t r i b u t e s o f newly c r e a t e d e l e m e n t
448 A t t r placeName = doc . c r e a t e A t t r i b u t e ("name") ;
449 S l i c e P l a c . s e t A t t r i b u t e N o d e (placeName) ;
450 placeName . s e t V a l u e (i n p u t P l a c e + "") ;
451

452

453 / / TODO Checking i f noOfTokens a t t r i b u t e e x i s t s , t h e n c r e a t e a new
e l e m e n t and add i t t o t h e newly c r e a t e d e l e m e n t

454 i f (t o k != "") {
455 A t t r p l a c e t o k e n s = doc . c r e a t e A t t r i b u t e ("numboftokens") ;
456 S l i c e P l a c . s e t A t t r i b u t e N o d e (p l a c e t o k e n s) ;
457 p l a c e t o k e n s . s e t V a l u e (t o k + "") ;
458 }
459

460 / / S t r i n g v a l u e o f F i r s t P l a c e = eElement . g e t A t t r i b u t e ("name") ;
461 / / System . o u t . p r i n t l n ("valueofFirstPlace"+ v a l u e o f F i r s t P l a c e) ;
462 v a r i a b l e p l a c e = nameOfPlace ;
463 e x i s t i n g P l a c e = nameOfPlace ;
464

465 System . o u t . p r i n t l n ("the new place is created "+ i n p u t P l a c e) ;
466 } / / end i f
467

468 } / / end f o r l o o p f i n d i n g p l a c e and c r e a t i n g new p l a c e i n o u t p u t xml f i l e
469 }
470

471 / ∗ ∗

472 ∗ i n p u t A r c s O f R e a d i n g T r a n s i t i o n s
473 ∗ @param i n p u t A r c s L i s t S l
474 ∗ /

475 p u b l i c s t a t i c vo id i n p u t A r c s O f R e a d i n g T r a n s i t i o n s (NodeLis t i n p u t A r c s L i s t S l) {
476 f o r (i n t temp11 = 0 ; temp11 < i n p u t A r c s L i s t S l . g e t L e n g t h () ; temp11 ++) {
477

478 Node I n p A r c L i s t 1 = i n p u t A r c s L i s t S l . i t em (temp11) ;
479

480 Element eElement5 = (Element) I n p A r c L i s t 1 ;
481

482 S t r i n g va lueOfTransname = eElement5 . g e t A t t r i b u t e ("transname") ;
483 S t r i n g va lueOfP lacename = eElement5 . g e t A t t r i b u t e ("placename") ;
484

485 f o r (i = 0 ; i < l i s t . s i z e () ; i ++) {
486

487 i f (l i s t . g e t (i) . e q u a l s (va lueOfTransname)) {
488

489 l i s t i n p u t a r c . add (va lueOfP lacename) ;
490

491 System . o u t . p r i n t l n ("chcking the values of input arcs "
492 + va lueOfP lacename) ;

143

493

494 }
495 }
496

497 } / / end f o r loop compar ing wi th a l r e a d y g e n e r a t e d t r a n s i t i o n s and ad d i ng
p l a c e s t o a new l i s t

498 }
499

500 / ∗ ∗

501 ∗ o u t p u t A r c s O f R e a d i n g T r a n s i t i o n s
502 ∗ @param o u t p u t A r c s L i s t S l
503 ∗ /

504 p u b l i c s t a t i c vo id o u t p u t A r c s O f R e a d i n g T r a n s i t i o n s (NodeLis t o u t p u t A r c s L i s t S l) {
505 f o r (i n t temp11 = 0 ; temp11 < o u t p u t A r c s L i s t S l . g e t L e n g t h () ; temp11 ++) {
506

507 Node o u t p u t A r c L i s t 1 = o u t p u t A r c s L i s t S l . i t em (temp11) ;
508

509 Element eElement5 = (Element) o u t p u t A r c L i s t 1 ;
510

511 S t r i n g va lueOfTransname = eElement5 . g e t A t t r i b u t e ("tranname") ;
512 S t r i n g va lueOfP lacename = eElement5 . g e t A t t r i b u t e ("placename") ;
513

514 / / System . o u t . p r i n t l n ("my value at stat "+ l i s t i n p u t a r c . g e t (i)) ;
515 / / System . o u t . p r i n t l n ("value of places outputarc"+va lueOfTransname) ;
516

517 f o r (i = 0 ; i < l i s t . s i z e () ; i ++) {
518

519 / / System . o u t . p r i n t l n ("my value at stat 2 "+va lueOfTransname) ;
520 System . o u t . p r i n t l n ("my value at stat 3 " + va lueOfP lacename) ;
521

522 i f (l i s t . g e t (i) . e q u a l s (va lueOfTransname)) {
523 f o r (i = 0 ; i < o u t p u t A r c s L i s t S l . g e t L e n g t h () ; i ++) {
524 System . o u t . p r i n t l n ("my value at stat "+ l i s t i n p u t a r c . g e t (i)) ;
525

526 i f (l i s t i n p u t a r c . g e t (i) . e q u a l s (va lueOfP lacename)) {
527

528 l i s t i n p u t a r c s l i c e . add (va lueOfP lacename) ;
529 v a r i a b l e i n p u t a r c = va lueOfP lacename ;
530 System . o u t . p r i n t l n ("assigned value of place name out "+

va lueOfP lacename) ;
531 }
532

533 e l s e {
534

535 System . o u t . p r i n t l n ("else condtion updated") ;
536 k = 2 ;
537

538 }
539

540 }
541

542 }
543 }
544

545 }
546 }
547

548 / ∗ ∗

549 ∗ Comparing i n p u t p l a c e s and o u t p u t p l a c e s o f r e a d i n g t r a n s i t i o n s .
550 ∗ /

551 p u b l i c s t a t i c vo id c o m p a r i n g I n p u t A n d O u t p u t P l a c e s () {
552 f o r (i = 0 ; i < l i s t i n p u t a r c s l i c e . s i z e () ; i ++) {
553 i f (! l i s t i n p u t a r c s l i c e . g e t (i) . e q u a l s (v a r i a b l e i n p u t a r c)) {
554 k = 1 ;
555 }
556 }
557 }
558

144 Appendix C. Java Program for APN Slicing Algorithm

559 / ∗ ∗

560 ∗ G e t t i n g v a l u e s o f r e a d i n g t r a n s i t i o n s
561 ∗ @param i n p u t A r c s L i s t S l
562 ∗ /

563 p u b l i c s t a t i c vo id g e t V a l u e s O f R e a d i n g T r a n s i t i o n s (NodeLis t i n p u t A r c s L i s t S l) {
564 f o r (i n t temp11 = 0 ; temp11 < i n p u t A r c s L i s t S l . g e t L e n g t h () ; temp11 ++) { / /

s t a r t
565 / / of
566 / / second
567 / / l oop
568

569 Node I n p A r c L i s t 1 = i n p u t A r c s L i s t S l . i t em (temp11) ;
570

571 Element eElement5 = (Element) I n p A r c L i s t 1 ;
572

573 S t r i n g va lueOfTransname = eElement5
574 . g e t A t t r i b u t e ("transname") ;
575 S t r i n g va lueOfP lacename = eElement5
576 . g e t A t t r i b u t e ("placename") ;
577

578 i f (va lueOfP lacename . e q u a l s (v a r i a b l e i n p u t a r c)) {
579 System . o u t
580 . p r i n t l n ("the values of places inside sliced version "
581 + va lueOfTransname) ;
582

583 t r a n s d e l = va lueOfTransname ;
584 / / I n p u r A r c L i s t 1 . g e t P a r e n t N o d e () . removeChi ld (node) ;
585 System . o u t . p r i n t l n (" i shall delete as well "
586 + i n p u t A r c s L i s t S l . g e t L e n g t h ()) ;
587 / / System . o u t . p r i n t l n ("value of parent node "+eElement5 . getNodeName ()

) ;
588 / / eElement5 . removeChi ld (I n p A r c L i s t 1) ;
589

590 / / I n p A r c L i s t 1 . g e t P a r e n t N o d e () . r emoveChi ld (eElement5 . g e t A t t r i b u t e N o d e
(va lueOfP lacename)) ;

591

592 / / eElement5 . g e t P a r e n t N o d e () . removeChi ld (eElement5 . g e t A t t r i b u t e s ())) ;
593

594 / / System . o u t . p r i n t l n (" the attribute name of transition "+eElement5 .
h a s A t t r i b u t e ("transname")) ;

595

596 }
597

598 }
599 }
600

601 / ∗ ∗

602 ∗ c o m p a r e I n p u t A n d O u t p u t A r c s O f R e a d i n g T r a n s i t i o n s
603 ∗ @param i n p u t A r c s L i s t S l
604 ∗ @param o u t p u t A r c s L i s t S l
605 ∗ /

606 p u b l i c s t a t i c vo id c o m p a r e I n p u t A n d O u t p u t A r c s O f R e a d i n g T r a n s i t i o n s (
607 NodeLis t i n p u t A r c s L i s t S l , NodeLi s t o u t p u t A r c s L i s t S l) {
608 f o r (i n t temp11 = 0 ; temp11 < o u t p u t A r c s L i s t S l . g e t L e n g t h () ; temp11 ++) { / /

s t a r t
609 / / of
610 / / second
611 / / l oop
612

613 Node I n p A r c L i s t 1 = o u t p u t A r c s L i s t S l . i t em (temp11) ;
614

615 Element eElement5 = (Element) I n p A r c L i s t 1 ;
616

617 S t r i n g va lueOfTransname = eElement5
618 . g e t A t t r i b u t e ("tranname") ;
619 S t r i n g va lueOfP lacename = eElement5
620 . g e t A t t r i b u t e ("placename") ;
621

145

622 System . o u t . p r i n t l n ("the values of transitions output "
623 + va lueOfTransname) ;
624 / / System . o u t . p r i n t l n ("the values of transitions output2 "+ t r a n s d e l) ;
625 / / System . o u t . p r i n t l n ("the values of transitions output3 "+

v a r i a b l e i n p u t a r c) ;
626 i f (va lueOfP lacename . e q u a l s (v a r i a b l e i n p u t a r c)
627 & t r a n s d e l . e q u a l s (va lueOfTransname)) {
628 / / System . o u t . p r i n t l n ("the values of places ouput inside sliced

version "+va lueOfTransname) ;
629

630 t r a n s d e l = va lueOfTransname ;
631 / / I n p u r A r c L i s t 1 . g e t P a r e n t N o d e () . removeChi ld (node) ;
632 System . o u t . p r i n t l n (" i shall delete as well "
633 + i n p u t A r c s L i s t S l . g e t L e n g t h ()) ;
634 / / System . o u t . p r i n t l n ("value of parent node "+eElement5 . getNodeName ()

) ;
635 / / eElement5 . removeChi ld (I n p A r c L i s t 1) ;
636

637 / / I n p A r c L i s t 1 . g e t P a r e n t N o d e () . r emoveChi ld (eElement5 . g e t A t t r i b u t e N o d e
(va lueOfP lacename)) ;

638

639 / / eElement5 . g e t P a r e n t N o d e () . removeChi ld (eElement5 . g e t A t t r i b u t e s ())) ;
640

641 / / System . o u t . p r i n t l n (" the attribute name of transition "+eElement5 .
h a s A t t r i b u t e ("transname")) ;

642

643 }
644

645 }
646 }
647

648 / ∗ ∗

649 ∗ Removing r e a d i n g t r a n s i t i o n s
650 ∗ @param t r a n s i t i o n L i s t S l
651 ∗ /

652 p u b l i c s t a t i c vo id r e m o v e R e a d i n g T r a n s i t i o n s (NodeLis t t r a n s i t i o n L i s t S l) {
653 f o r (i n t t t = 0 ; t t < t r a n s i t i o n L i s t S l . g e t L e n g t h () ; t t ++) {
654

655 Node t r a n s L i s t S l = t r a n s i t i o n L i s t S l . i t em (t t) ;
656

657 Element eElement12 = (Element) t r a n s L i s t S l ;
658

659 i f (eElement12 . g e t A t t r i b u t e ("name") . e q u a l s (t r a n s d e l)) {
660 t r a n s L i s t S l . g e t P a r e n t N o d e () . r emoveChi ld (eElement12) ;
661 / / System . o u t . p r i n t l n ("i shall detel") ;
662 }
663

664 }
665 }
666

667 / ∗ ∗

668 ∗ Removing i n p u t a r c s
669 ∗ @param i n p u t A r c s L i s t S l
670 ∗ /

671 p u b l i c s t a t i c vo id r e m o v i n g I n p u t A r c T r a n s i t i o n s (NodeLis t i n p u t A r c s L i s t S l) {
672 f o r (i n t temp11 = 0 ; temp11 < i n p u t A r c s L i s t S l . g e t L e n g t h () ; temp11 ++) { / /

s t a r t
673 / / of
674 / / second
675 / / l oop
676

677 Node I n p A r c L i s t 1 = i n p u t A r c s L i s t S l . i t em (temp11) ;
678

679 Element eElement5 = (Element) I n p A r c L i s t 1 ;
680

681 S t r i n g va lueOfTransname = eElement5
682 . g e t A t t r i b u t e ("transname") ;
683 S t r i n g va lueOfP lacename = eElement5

684 . g e t A t t r i b u t e ("placename") ;
685

686 i f (va lueOfP lacename . e q u a l s (v a r i a b l e i n p u t a r c)
687 & valueOfTransname . e q u a l s (t r a n s d e l)) {
688

689 I n p A r c L i s t 1 . g e t P a r e n t N o d e () . r emoveChi ld (eElement5) ;
690 }
691

692 }
693 }
694

695 / ∗ ∗

696 ∗ Comparing i n p u t and o u t p u t a r c s and removing r e a d i n g t r a n s i t i o n s
697 ∗ @param o u t p u t A r c s L i s t S l
698 ∗ /

699 p u b l i c s t a t i c vo id r e m o v i n g O u t p u t A r c T r a n s i t i o n (NodeLis t o u t p u t A r c s L i s t S l) {
700 f o r (i n t temp11 = 0 ; temp11 < o u t p u t A r c s L i s t S l . g e t L e n g t h () ; temp11 ++) { / /

s t a r t
701 / / of
702 / / second
703 / / l oop
704

705 Node I n p A r c L i s t 1 = o u t p u t A r c s L i s t S l . i t em (temp11) ;
706

707 Element eElement5 = (Element) I n p A r c L i s t 1 ;
708

709 S t r i n g va lueOfTransname = eElement5
710 . g e t A t t r i b u t e ("tranname") ;
711 S t r i n g va lueOfP lacename = eElement5
712 . g e t A t t r i b u t e ("placename") ;
713

714 i f (va lueOfP lacename . e q u a l s (v a r i a b l e i n p u t a r c)
715 & t r a n s d e l . e q u a l s (va lueOfTransname)) {
716

717 I n p A r c L i s t 1 . g e t P a r e n t N o d e () . r emoveChi ld (eElement5) ;
718 }
719

720 }
721 }
722

723 / ∗ ∗

724 ∗ I t removes a l r e a d y e x i s t i n g t a g names
725 ∗ @param o l d L i s t l i s t o f t a g names i n o r i g i n a l xml f i l e
726 ∗ /

727 p u b l i c s t a t i c vo id removeOldTagNames (NodeLis t o l d L i s t) {
728 w h i l e (o l d L i s t . g e t L e n g t h () > 0) {
729 Node node = o l d L i s t . i t em (0) ;
730 node . g e t P a r e n t N o d e () . r emoveChi ld (node) ;
731 }
732 }
733

734 / ∗ ∗

735 ∗ I t renames newly c r e a t e d t a g s t o o l d e r ones
736 ∗ @param doc o r i g i n a l document
737 ∗ @param o l d L i s t S l o r i g i n a l t a g l i s t
738 ∗ @param newTag t o r e p l a c e wi th
739 ∗ /

740 p u b l i c s t a t i c vo id renameTags (Document doc , NodeLi s t o l d L i s t S l , S t r i n g newTag) {
741 S t r i n g newTagName = newTag ;
742 f o r (i n t i = 0 ; i < o l d L i s t S l . g e t L e n g t h () ; i ++) {
743 doc . renameNode (o l d L i s t S l . i t em (i) , n u l l , newTagName) ;
744 }
745 }
746

747 }� �

146 Appendix C. Java Program for APN Slicing Algorithm

Bibliography

[Bab91] R.G. Babb. Issues in the specification and design of parallel programs. In
Software Specification and Design, 1991., Proceedings of the Sixth Inter-
national Workshop on, pages 75–82, Oct 1991.

[BBF+10] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, An-
toine Petit, Laure Petrucci, and Philippe Schnoebelen. Systems and soft-
ware verification: model-checking techniques and tools. Springer Pub-
lishing Company, Incorporated, 2010.

[BBG01] O. Biberstein, Didier Buchs, and Nicolas Guelfi. Object-oriented nets
with algebraic specifications: The CO-OPN/2 formalism. In Concurrent
Object-Oriented Programming and Petri Nets, Advances in Petri Nets.,
pages 73–130, 2001.

[BCC98] Sergey Berezin, Sérgio Vale Aguiar Campos, and Edmund M. Clarke.
Compositional reasoning in model checking. In Revised Lectures from
the International Symposium on Compositionality: The Significant Dif-
ference, COMPOS’97, pages 81–102, London, UK, UK, 1998. Springer-
Verlag.

[BCC07] Francesco Basile, Ciro Carbone, and Pasquale Chiacchio. Simulation and
analysis of discrete-event control systems based on petri nets using {PNet-
Lab}. Control Engineering Practice, 15(2):241 – 259, 2007.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu.
Symbolic model checking without BDDs. Springer, 1999.

[BCG95] Girish Bhat, Rance Cleaveland, and Orna Grumberg. Efficient on-the-fly
model checking for ctl. In Logic in Computer Science, 1995. LICS’95.
Proceedings., Tenth Annual IEEE Symposium on, pages 388–397. IEEE,
1995.

[BCM+90] J. R. Burch, E.M. Clarke, K. L. McMillan, D.L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Logic in Computer
Science, 1990. LICS ’90, Proceedings., Fifth Annual IEEE Symposium on
e, pages 428–439, 1990.

147

148 Bibliography

[BG96] David W Binkley and Keith Brian Gallagher. Program slicing. Advances
in Computers, 43:1–50, 1996.

[BHMR10] Didier Buchs, Steve Hostettler, Alexis Marechal, and Matteo Risoldi.
Alpina: A symbolic model checker. In Johan Lilius and Wojciech
Penczek, editors, Applications and Theory of Petri Nets, volume 6128
of Lecture Notes in Computer Science, pages 287–296. Springer Berlin
Heidelberg, 2010.

[Bin98] David Binkley. The application of program slicing to regression testing.
Information and software technology, 40(11):583–594, 1998.

[BJS09] Joakim Byg, KennethYrke Jørgensen, and Jiří Srba. Tapaal: Editor, sim-
ulator and verifier of timed-arc petri nets. In Zhiming Liu and AndersP.
Ravn, editors, Automated Technology for Verification and Analysis, vol-
ume 5799 of Lecture Notes in Computer Science, pages 84–89. Springer
Berlin Heidelberg, 2009.

[BV06] Bernard Berthomieu and Francois Vernadat. Time petri nets analysis with
tina. In Quantitative Evaluation of Systems, 2006. QEST 2006. Third In-
ternational Conference on, pages 123–124. IEEE, 2006.

[CE82] EdmundM. Clarke and E.Allen Emerson. Design and synthesis of syn-
chronization skeletons using branching time temporal logic. 131:52–71,
1982.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8:244–263, 1986.

[CR94] Juei Chang and Debra J. Richardson. Static and dynamic specification
slicing. In In Proceedings of the Fourth Irvine Software Symposium, 1994.

[Ecla] Eclipse. Eclipse Foundation. Eclipse platform. http://www.eclipse.
org/.

[Eclb] Eclipse. Eclipse Modeling Project. http://www.eclipse.org/
modeling/.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “sometimes”
and “not never” revisited: On branching versus linear time
temporal logic. J. ACM, 33(1):151–178, January 1986.

[Er97] Sibylle Peuk Er. Invariant property preserving extensions of elementary
petri nets. Technical report, Technische Universitat Berlin, 1997.

[Erl00] L. Erlikh. Leveraging legacy system dollars for e-business. IT Profes-
sional, 2(3):17–23, May 2000.

http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/

Bibliography 149

[Gen87] H. J. Genrich. Predicate/transition nets. In Advances in Petri Nets 1986,
Part I on Petri Nets: Central Models and Their Properties, pages 207–
247, London, UK, UK, 1987. Springer-Verlag.

[GL79] Hartmann J. Genrich and Kurt Lautenbach. The analysis of distributed
systems by means of predicate ? transition-nets. In Semantics of Concur-
rent Computation, pages 123–147, 1979.

[GL91] Orna Grumberg and David E. Long. Model checking and modular verifi-
cation. ACM Transactions on Programming Languages and Systems, 16,
1991.

[GP93] Patrice Godefroid and Didier Pirottin. Refining dependencies improves
partial-order verification methods (extended abstract). In Costas Courcou-
betis, editor, Computer Aided Verification, volume 697 of Lecture Notes
in Computer Science, pages 438–449. Springer Berlin Heidelberg, 1993.

[HNSY94] Thomas A Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.
Symbolic model checking for real-time systems. Information and compu-
tation, 111(2):193–244, 1994.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, August 1978.

[Hol97] C.M. Holloway. Why engineers should consider formal methods. In
Digital Avionics Systems Conference, 1997. 16th DASC., AIAA/IEEE, vol-
ume 1, pages 1.3–16–22 vol.1, Oct 1997.

[Jen81] Kurt Jensen. Coloured petri nets and the invariant-method. Theoretical
computer science, 14(3):317–336, 1981.

[Jen87] Kurt Jensen. Coloured petri nets. In W. Brauer, W. Reisig, and G. Rozen-
berg, editors, Petri Nets: Central Models and Their Properties, volume
254 of Lecture Notes in Computer Science, pages 248–299. Springer
Berlin Heidelberg, 1987.

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri
nets and cpn tools for modelling and validation of concurrent systems. In
INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOL-
OGY TRANSFER, page 2007, 2007.

[KG14a] Yasir Imtiaz Khan and Nicolas Guelfi. Slapn: A tool for slicing algebraic
petri nets. APN, 2(3):P1, 2014.

[KG14b] Yasir Imtiaz Khan and Nicolas Guelfi. Slicing high-level petri nets. In In-
ternational Workshop on Petri Nets and Software Engineering (PNSE’14),
page 20, 2014.

150 Bibliography

[KGM10] Jörg Kienzle, Nicolas Guelfi, and Sadaf Mustafiz. Crisis management
systems: A case study for aspect-oriented modeling. In Shmuel Katz,
Mira Mezini, and Jörg Kienzle, editors, Transactions on Aspect-Oriented
Software Development VII, volume 6210 of Lecture Notes in Computer
Science, pages 1–22. Springer Berlin Heidelberg, 2010.

[Kha12] Yasir Imtiaz Khan. A formal approach for engineering resilient car crash
management system. Technical Report TR-LASSY-12-05, University of
Luxembourg, 2012.

[Kha13a] Yasir Imtiaz Khan. Optimizing verification of structurally evolving alge-
braic petri nets. In V. Kharchenko A. Gorbenko, A. Romanovsky, edi-
tor, Software Engineering for Resilient Systems, volume 8166 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2013.

[Kha13b] Yasir Imtiaz Khan. Optmizing algebraic petri net model checking by
slicing. Technical Report TR-LASSY-13-02, University of Luxembourg,
2013.

[Kha14] Yasir Imtiaz Khan. Slicing high-level petri nets. Technical Report TR-
LASSY-14-03, University of Luxembourg, 2014.

[KL88] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information
Processing Letters, 29(3):155–163, 1988.

[KR12] Yasir Imtiaz Khan and Matteo Risoldi. Language enrichment for resilient
mde. In Proceedings of the 4th international conference on Software En-
gineering for Resilient Systems, SERENE’12, pages 76–90, Berlin, Hei-
delberg, 2012. Springer-Verlag.

[KR13] Yasir Imtiaz Khan and Matteo Risoldi. Optimizing algebraic petri net
model checking by slicing. International Workshop on Modeling and
Business Environments (ModBE’13, associated with Petri Nets’13), 2013.

[Kri63] Saul A. Kripke. Semantical analysis of modal logic i normal modal propo-
sitional calculi. Mathematical Logic Quarterly, 9(5-6):67–96, 1963.

[KV01] Orna Kupferman and Moshe Y Vardi. Model checking of safety proper-
ties. Formal Methods in System Design, 19(3):291–314, 2001.

[Lam83] Leslie Lamport. What good is temporal logic. Information processing,
83:657–668, 1983.

[Lap05] J.-C. Laprie. Resilience for the scalability of dependability. In Network
Computing and Applications, Fourth IEEE International Symposium on,
pages 5–6, July 2005.

[LB03] C. Larman and V.R. Basili. Iterative and incremental developments. a
brief history. Computer, 36(6):47–56, 2003.

Bibliography 151

[LKCK00] W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon. A slicing-based ap-
proach to enhance petri net reachability analysis. Journal of Research
Practices and Information Technology, 32:131–143, 2000.

[LLV12] Moussa Amrani Qin Zhang Levi Lucio, Eugene Syriani and Hans
Vangheluwe. Invariant preservation in iterative modeling. Proceedings
of the ME 2012 workshop, 2012.

[LOS+08] M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal. Dynamic slicing
techniques for petri nets. Electron. Notes Theor. Comput. Sci., 223:153–
165, December 2008.

[McM92] Kenneth Lauchlin McMillan. Symbolic Model Checking: An Approach
to the State Explosion Problem. PhD thesis, Pittsburgh, PA, USA, 1992.
UMI Order No. GAX92-24209.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, Apr 1989.

[Mä02] Marko Mäkelä. Maria: Modular reachability analyser for algebraic system
nets, 2002.

[Pel94] Doron Peled. Combining partial order reductions with on-the-fly model-
checking. In Proceedings of the 6th International Conference on Com-
puter Aided Verification, CAV ’94, pages 377–390, London, UK, UK,
1994. Springer-Verlag.

[Pet] Petrinets. Petri Nets Model Checkers Database. https://www.
informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html/.

[Pet62] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität
Hamburg, 1962.

[PGE98] J. Padberg, M. Gajewsky, and C. Ermel. Rule-based refinement of high-
level nets preserving safety properties. In Fundamental approaches to
Software Engineering, pages 22123–8. Springer Verlag, 1998.

[Pnu77] Amir Pnueli. The temporal logic of programs. In Foundations of Com-
puter Science, 1977., 18th Annual Symposium on, pages 46–57, Oct 1977.

[Rak08] Astrid Rakow. Slicing petri nets with an application to workflow verifica-
tion. In Proceedings of the 34th conference on Current trends in theory
and practice of computer science, SOFSEM’08, pages 436–447, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Rak11] Astrid Rakow. Slicing and Reduction Techniques for Model Checking
Petri Nets. PhD thesis, University of Oldenburg, 2011.

https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html/
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html/

152 Bibliography

[Rak12] Astrid Rakow. Safety slicing petri nets. In Serge Haddad and Lucia
Pomello, editors, Application and Theory of Petri Nets, volume 7347 of
Lecture Notes in Computer Science, pages 268–287. Springer Berlin Hei-
delberg, 2012.

[Rei91] Wolfgang Reisig. Petri nets and algebraic specifications. Theor. Comput.
Sci., 80(1):1–34, 1991.

[RWL+03] Anne Vinter Ratzer, Lisa Wells, Henry Michael Lassen, Mads Laursen,
Jacob Frank Qvortrup, Martin Stig Stissing, Michael Westergaard, Søren
Christensen, and Kurt Jensen. Cpn tools for editing, simulating, and
analysing coloured petri nets. In Proceedings of the 24th International
Conference on Applications and Theory of Petri Nets, ICATPN’03, pages
450–462, Berlin, Heidelberg, 2003. Springer-Verlag.

[Sch94] Karsten Schmidt. T–invariants of algebraic petri nets. Informatik– Bericht,
1994.

[Sim03] L. Simoncini. Amsd: a dependability roadmap for the information soci-
ety in europe. In Reliable Distributed Systems, 2003. Proceedings. 22nd
International Symposium on, pages 153–154, Oct 2003.

[Som06] Ian Sommerville. Software Engineering: (Update) (8th Edition) (Interna-
tional Computer Science Series). Addison Wesley, June 2006.

[Tip95] F. Tip. A survey of program slicing techniques. JOURNAL OF PRO-
GRAMMING LANGUAGES, 3:121–189, 1995.

[Val91] Antti Valmari. A stubborn attack on state explosion. In Proceedings of
the 2Nd International Workshop on Computer Aided Verification, CAV
’90, pages 156–165, London, UK, UK, 1991. Springer-Verlag.

[Val98] Antti Valmari. The state explosion problem. In Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, pages 429–528, London, UK, UK, 1998.
Springer-Verlag.

[WCZX13] Yu Wangyang, Yan Chungang, Ding Zhijun, and Fang Xianwen. Ex-
tended and improved slicing technologies for petri nets. High Technology
Letters, 19(1), 2013.

[Wei81] Mark Weiser. Program slicing. In Proceedings of the 5th international
conference on Software engineering, ICSE ’81, pages 439–449, Piscat-
away, NJ, USA, 1981. IEEE Press.

[XQZ+05] Baowen Xu, Ju Qian, Xiaofang Zhang, Zhongqiang Wu, and Lin Chen. A
brief survey of program slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36,
March 2005.

	Abstract
	Introduction
	Formal verification
	Model Checking
	Improving Model checking

	Contributions
	Property based model checking of Algebraic Petri nets
	Property based model checking of structurally evolving apns
	slap: A tool for slicing pts and apns

	Organization of this thesis

	Informal and Formal Definitions
	Petri nets Definitions

	Survey of Petri nets Slicing
	Overview and Background of Slicing
	Petri nets Slicing
	Types of Slicing

	Petri nets Slicing Algorithms
	Chang et al Slicing
	Lee et al Slicing
	Llorens et al Slicing
	Rakow Slicing
	Wangyang et al Slicing

	Comparison of Petri nets slicing algorithms

	Property Based Model checking of Algebraic Petri nets
	Slicing Algebraic Petri nets
	Partial Unfolding Algebraic Petri nets
	Example: Partially Unfolding an Algebraic Petri net

	Extraction of Criterion Places
	Static Slicing on Partially Unfolded Algebraic Petri nets
	The slicing algorithm: APNSlicing
	Proof of the preservation of properties by APNslicing algorithm
	Abstract Slicing on Unfolded APNs
	The Slicing Algorithm: AbstractSlicing
	Proof of the preservation of properties by abstractslicing algorithm
	Property Specific Slicing Algorithms
	Safety Slicing
	The Slicing Algorithm: SafetySlicing
	Liveness Slicing
	The Slicing Algorithm: LivenessSlicing

	Dynamic Slicing Algebraic Petri nets
	The Slicing Algorithm: Concerned Slicing
	Smart Slicing
	The slicing Algorithm: Smart Slicing

	Slicing Low-level Petri nets
	The Slicing Algorithm: Abstract Slicing Algorithm for Low-level Petri nets

	Property Based Model checking of Structurally evolving Algebraic Petri nets
	Unfolding, Slicing Algebraic Petri nets
	Slicing evolved and non-evolved Algebraic Petri nets
	Classification of Evolutions
	Evolutions taking place outside the Slice:
	Evolutions taking place inside the Slice:

	Property based verification of evolving low-level Petri nets

	Case Study & Evaluation
	Use Cases Car Crash Management System
	Formal Language Representation of Car Crash Management System
	Interesting Properties

	Applying Slicing Algorithms on Car Crash Management System
	APNSlicing Algorithm on Car Crash Management System
	Abstract Slicing Algorithm on Car Crash Management System
	Concerned Slicing Algorithm on Car Crash Management System

	Structural Evolutions to Car Crash Management System
	Evaluation
	Applying slicing algorithm to generate slices for every place

	Applying slicing algorithm on practically relevant properties

	SLAPn: A tool for slicing Petri nets and Algebraic Petri nets
	Overview
	Tasks in slap

	Conclusion and Future work
	Future Work

	Acronyms
	Algebraic Specifications for Car Crash Management System
	Algebraic specifications for CCMS

	Java Program for APN Slicing Algorithm

