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We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting
open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium
Green’s functions. The energy of the system and its coupling to the reservoirs are controlled by a slow
external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic
laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is
recovered in the weak coupling limit.
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Nonequilibrium thermodynamics of open quantum sys-
tems is a powerful tool for the study of mesoscopic and
nanoscale systems. It allows one to reliably assess the
performance of energy-converting devices such as thermo-
electrics or photoelectrics, by identifying the system
entropy production. It enables one to meaningfully com-
pare these different devices by discriminating the system-
specific features from the universal ones and to appraise the
role of quantum effects. It can also be used to verify the
thermodynamic consistency of approximation schemes.
Such a theory is nowadays available for systems weakly
interacting with their surrounding [1–6], where it has
proven very useful [7–15]. However, in case of strong
system-reservoir interactions, finding definitions for heat,
work, entropy, and entropy production, which satisfy the
basic laws of thermodynamics is an open problem. Each
proposal has its own limitations [16–23], even at equilib-
rium [24–30]. Reversible transformations, for instance, are
never explicitly characterized. Establishing a consistent
nonequilibrium thermodynamics for open quantum sys-
tems strongly coupled to their surrounding is therefore an
important step towards a more realistic thermodynamic
description of mesoscopic and nanoscale devices. It is also
essential to improve our understanding of the microscopic
foundations of thermodynamics.
In this Letter, we use the nonequilibrium Green’s

functions (NEGF) to establish a fully consistent nonequili-
brium thermodynamic description of a fermionic single
quantum level strongly coupled to multiple fermionic
reservoirs. A slow time-dependent driving force controls
the level energy as well as the system-reservoir interaction.
We propose definitions for the particle number, the energy,
and the entropy of the system, as well as for entropy
production, heat, and work, which give rise to a consistent
zeroth, first, second, and third law. These definitions can be

seen as energy resolved versions of the weak coupling
definitions used in stochastic thermodynamics. An inter-
esting outcome of our approach is that the general form of
the energy and particle currents is different from the
standard form used in the NEGF and cannot be expressed
as an expectation value of operators. We recover the known
expressions when considering nonequilibrium steady states
(i.e., in absence of driving) or in the weak coupling limit.
The total Hamiltonian that we consider is ĤðtÞ ¼

ĤSðtÞ þ
P

νĤν þ
P

νV̂νðtÞ, where ν labels the different
fermionic reservoirs (see Fig. 1), ĤSðtÞ ¼ εðtÞd̂†d̂ is the
fermionic single level Hamiltonian, Ĥν ¼

P
k∈νεkĉ

†
kĉk is

the reservoir νHamiltonian, and V̂νðtÞ¼
P

k∈νðVν
kðtÞd̂†ĉkþ

H:c:Þ is the level-reservoir coupling. The time dependence
in the system and in the coupling is due to the external time-
dependent driving force.
The central object in the NEGF theory is the single

particle Green function (GF) [31]

Gðτ1; τ2Þ ¼ −ihTcd̂ðτ1Þd̂†ðτ2Þi; ð1Þ
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FIG. 1 (color online). Sketch of a fermionic single quantum
level junction. The level is broadened by the strong coupling to
the reservoirs and is driven by a time-dependent force.
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where Tc denotes the contour ordering operator, and τ1 and
τ2 are the contour variables. Here and below, ℏ ¼ kB ¼ 1.
When the time-dependent driving force is slow relative to
the system relaxation time, the dynamics of the GF [Eq. (1)]
can be evaluated using the first order gradient expansion
[31–33]. Within this limit, the system dynamics is fully
characterized by two quantities, the probability to find the
level filled at the energy E, ϕðt; EÞ, and the retarded
projection of the Green function Grðt; EÞ. The energy
dependence of these quantities results from the fact that
the energy of the level is not sharply defined at εðtÞ as in the
weak coupling limit, but gets broadened by the strong
coupling to the reservoirs. As shown is [32,34–37] (see also
[38]), the retarded Green function is given by

Grðt; EÞ ¼ ½E − εðtÞ − Σrðt; EÞ�−1; ð2Þ

where the real and imaginary part of the total retarded self-
energy, Σrðt; EÞ ¼ Λðt; EÞ − iΓðt; EÞ=2, describe, respec-
tively, the Lamb shift Λðt; EÞ and the broadening Γðt; EÞ of
the system level caused by the coupling. In the weak
coupling limit, Γ → 0 and Λ → 0. The occupation prob-
ability of the level, ϕðt; EÞ, is obtained by solving the
equation of motion

fE − εðtÞ − Λðt; EÞ;Aðt; EÞϕðt; EÞg
þ fReGrðt; EÞ;Γðt; EÞϕðt; EÞg ¼ Cðt; EÞ; ð3Þ

where ff1; f2g denotes the Poisson bracket operation
∂Ef1∂tf2 − ∂tf1∂Ef2 and Aðt; EÞ ¼ −2ImGrðt; EÞ is the
system spectral function describing the Lorentzian proba-
bility amplitude for finding the system at energy E

Aðt; EÞ ¼ Γðt; EÞ
½E − εðtÞ − Λðt; EÞ�2 þ ½Γðt; EÞ=2�2 : ð4Þ

It becomes a delta function centered around εðtÞ in the
weak coupling limit. Σr as well as Λ and Γ are sums of
reservoirs contributions: respectively, Σr

νðt; EÞ, Λνðt; EÞ,
and Γνðt; EÞ. Finally, the net particle current entering the
level at energy E, Cðt; EÞ in Eq. (3), is also the sum of
different reservoirs contributions, each expressed as a
difference between incoming (þ) and outgoing (−) elec-
tronic currents

Cνðt; EÞ ¼ Cþν ðt; EÞ − C−ν ðt; EÞ;
Cþν ðt; EÞ ¼ Aðt; EÞΓνðt; EÞfνðEÞ½1 − ϕðt; EÞ�;
C−ν ðt; EÞ ¼ Aðt; EÞΓνðt; EÞϕðt; EÞ½1 − fνðEÞ�; ð5Þ

where fνðEÞ is the Fermi-Dirac distribution of reservoir ν.
In absence of time-dependent driving, ε, Λ and Γ do not

depend on time. If the level is in contact with a single
reservoir at temperature T and chemical potential μ, it will
relax to an equilibrium state where ϕðt; EÞ will correspond

to the Fermi distribution fðEÞ at T and μ. If another
reservoir at the same T and μ is put in contact with the level,
the system will remain at equilibrium with respect to the
two reservoirs. In that sense, the NEGF satisfies the zeroth
law of thermodynamics.
We introduce the renormalized spectral function

Aðt; EÞ ¼ Að1 − ∂EΛÞ þ Γ∂EReGr ≥ 0; ð6Þ

which as its standard version Eq. (4), can be proven non-
negative, normalized to one, and to converge to a delta in
the weak coupling limit A → 2πδðE − εÞ [38]. We define
the particle number, energy, and entropy of the system as
energy-resolved versions of the standard weak coupling
definitions where the energy resolution is controlled by the
renormalized spectral function A

N ðtÞ ¼
Z

dE
2π

Aðt; EÞϕðt; EÞ; ð7Þ

EðtÞ ¼
Z

dE
2π

Aðt; EÞEϕðt; EÞ; ð8Þ

SðtÞ ¼
Z

dE
2π

Aðt; EÞσðt; EÞ; ð9Þ

where σðt; EÞ is an energy resolved Shannon entropy

σðt; EÞ ¼ −ϕðt; EÞ lnϕðt; EÞ
− ½1 − ϕðt; EÞ� ln½1 − ϕðt; EÞ�: ð10Þ

When attempting to use the standard spectral function
rather then the renormalized one in Eqs. (7)–(9), one fails to
define a proper entropy production and second law.
The entropy [Eq (9)] was introduced in Refs. [35,36] in

the context of the quantum Boltzmann equation. We
emphasize that this entropy satisfies the third law.
Indeed at equilibrium when ϕðEÞ ¼ fðEÞ, if we take the
limit T → 0, σeqðEÞ → 0 and therefore, Seq → 0.
The evolution of the particle number [Eq. (7)]

dtN ðtÞ ¼
X
ν

IνðtÞ ð11Þ

is given by the sum of the energy-integrated particle
currents [Eq. (5)] from reservoir ν

IνðtÞ ¼
Z

dE
2π

Cνðt; EÞ: ð12Þ

The evolution of the energy [Eq. (8)] in turn can be
expressed as a first law

dtEðtÞ ¼
X
ν

_QνðtÞ þ _W þ _Wc: ð13Þ
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Note that the dots are not partial derivatives, but a symbolic
notation for rates. The first contribution is the heat flux
from reservoir ν

_Qν ¼ J νðtÞ − μνIνðtÞ; ð14Þ
where the energy current from reservoir ν is the energy
integral of the energy times the particle current [Eq. (5)] at
that energy

J νðtÞ ¼
Z

dE
2π

ECνðt; EÞ: ð15Þ

The second is the mechanical work performed by the
external time-dependent force

_WðtÞ ¼
Z

dE
2π

�
−Aϕ∂t½E− εðtÞ−Λ�−Γϕ∂tReGr

�
ð16Þ

and the third is the chemical work due to the particle
currents flowing from the reservoirs to the system

_Wc ¼
X
ν

μνIνðtÞ: ð17Þ

The evolution of the entropy [Eq. (9)] can be expressed
as a second law

dtSðtÞ ¼ _SiðtÞ þ
X
ν

_QνðtÞ
Tν

; ð18Þ

where the entropy production becomes an energy-resolved
version of the weak coupling form

_SiðtÞ ¼
X
ν

Z
dE
2π

½Cþν ðt; EÞ − C−ν ðt; EÞ� ln
Cþν ðt; EÞ
C−ν ðt; EÞ

≥ 0;

ð19Þ
which measures the deviation from detailed balance at each
energy E, and only vanishes at equilibrium when
∀ ν∶fνðEÞ ¼ ϕðt; EÞ.
In the presence of a single reservoir, the second law

[Eq. (18)] implies _Q ≤ T∂tSðtÞ. When integrated along
transformations connecting an initial and final equilibrium
point, we recover Clausius inequality Q ≤ TΔSeq.
Introducing the nonequilibrium grand potential

ΩðtÞ ¼ EðtÞ − μN ðtÞ − TSðtÞ ð20Þ
and using the first law [Eq. (13)], the second law [Eq. (18)]
can also be rewritten as

T _SiðtÞ ¼ _WðtÞ − dtΩðtÞ ≥ 0: ð21Þ
For a transformation starting and ending at equilibrium, we
thus recover Kelvin’s statement of the second law
WðtÞ ≥ ΔΩeq, where Ωeq ¼ T

R ðdE=2πÞAðt; EÞ ln fðEÞ.

For reversible transformations, the inequalities resulting
from the positivity of the entropy production become
equalities. Such transformation occurs when the level is
in contact with a single reservoir and subjected to a
quasistatic driving (much slower than the level relaxation
time). In this case, the entropy production vanishes to first
order _SiðtÞ ¼ 0, while to the same order heat and mechani-
cal work become state functions _QðtÞ=T ¼ dtSeq

and _WðtÞ ¼ dtΩeq.
We can also prove that (as for weak coupling [46]) the

nonequilibrium grand potential is always larger then the
equilibrium one, i.e., ΩðtÞ ≥ Ωeq. Indeed, using Eq. (20)
and Eqs. (7)–(9), we find that

ΩðtÞ −Ωeq ¼ T
Z

dE
2π

Aðt; EÞDðt; EÞ ≥ 0; ð22Þ

where the energy-resolved relative entropy reads

Dðt; EÞ ¼ ϕðt; EÞ lnϕðt; EÞ
fðEÞ

þ ½1 − ϕðt; EÞ� ln 1 − ϕðt; EÞ
1 − fðEÞ ≥ 0: ð23Þ

The non-negativity of [Eq. (22)] follows from A; D ≥ 0.
We consider in Fig. 2, the quantum level in contact with a

single reservoir. Its energy is driven by the external
force according to the protocol described in the caption.
Figure 2(a) depicts the heat flux [Eq. (14)] and entropy
production [Eq. (19)] increase with time as the distribution
ϕ departs from its equilibrium value. The reversible trans-
formation ( _Si ¼ 0) is reached in the very slow driving limit
when ω0 → 0, as shown on Fig. 2(b).
We note that the system energy [Eq. (8)] and particle

number [Eq. (7)] as well as the energy and particle currents
[Eqs. (15) and (12)] that we introduced cannot be expressed
in term of expectation values of operators. One may
interpret this as a manifestation of the fact that defining
a boundary between the system and the reservoirs in case of
strong interaction is an ambiguous task. The main argument
in favor of the proposed definitions is that they lead to a
consistent nonequilibrium thermodynamics at slow driving.
In absence of driving, the system eventually reaches a

steady state (equilibrium or nonequilibrium), where
the system properties such as ϕðt; EÞ, Aðt; EÞ and
Eqs. (7)–(9) become time independent. In this case,
we find that J νðtÞ ¼ −Tr½Ĥνdtρ̂ðtÞ� and IνðtÞ ¼
−
P

k∈νTr½ĉ†kĉkdtρ̂ðtÞ� [38]. The first and second law at
steady state simplify to

_Wc ¼ −
X
ν

_QνðtÞ; _SiðtÞ ¼ −
X
ν

_QνðtÞ
Tν

≥ 0: ð24Þ

Since in the weak coupling limit A and A become delta
functions, we recover the usual definitions of stochastic
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thermodynamics [3,47,48] for a master equation with
Fermi’s golden rule rates describing the evolution of the
occupation probability of the level [8,49].
Figure 3(a) depicts the entropy production of the

quantum level at steady state between two reservoirs with
different temperatures and chemical potentials. The entropy
production is plotted as a function of the coupling strength
with the reservoirs, when this device operates as a thermo-
electric. As the coupling strength increases, the discrepancy
between the entropy production [Eq. (19)] and its weak
coupling counterpart (dotted vs dash-dotted and solid vs
dashed lines) becomes more pronounced. We note that the
weak coupling prediction can overestimate (dash-dotted
line) or underestimate (dashed line) the entropy production
[Eq. (19)]. Figure 3(b) depicts the same two entropy
productions for Γ ¼ 0.1 eV as functions of the position
of the level. In the weak coupling regime, this system
satisfies the condition of tight coupling (energy and particle

current are proportional) [50–53] which enables it to
operate reversibly at finite bias, as seen at ε ¼
0.0017 eV. However, the level broadening induced by
the strong coupling to the reservoirs completely breaks
the tight coupling property and reversibility is lost.
The main message of this Letter is that it is possible to

formulate a consistent nonequilibrium thermodynamics for
driven open quantum systems strongly coupled to their
reservoirs. No such theory existed before and the defini-
tions we used seem to be the only ones rendering such a
formulation possible. We considered a fermionic level
coupled to fermionic reservoirs, but our approach can be
straightforwardly extended to any noninteracting fermionic
or bosonics systems. It can probably be extended to
describe interacting systems, but considering fast drivings

1

3

5

10
-23

Q
/T

(J
/K

s)

0.5

1.5

2.5

10
-34

S
i (J

/K
s)

0 0.5 1

0 t /

Q / T

Si

1

10
-12

S i
T

/
Q

1 2 3 4

/ 0

(a)

(b)

FIG. 2 (color online). Heat flux [Eq. (14)] and entropy
production [Eq. (19)], for the quantum level in contact with a
single reservoir at T ¼ 300 K. The external force drives the level
energy as εðtÞ ¼ ε0 þ Δð1 − cosω0tÞ=2 from ε0 at t ¼ 0 to ε0 þ
Δ at t ¼ π=ω0, where ε0 ¼ −0.02 eV and Δ ¼ 0.02 eV. Entropy
production (solid line, red) and heat flux (dashed line, blue) are
depicted in (a) as functions of time for Γ ¼ 0.01 eV and
ω0 ¼ 0.01 eV. The ratio of their time-integrated values is
depicted in (b) as a function of the driving rate ω0.
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FIG. 3 (color online). Entropy production for the quantum level
at steady state between two reservoirs ν ¼ L;R (with
TL ¼ 300 K, TR ¼ 10 K, μL ¼ −0.05 eV, μR ¼ EF ¼ 0) as a
function of: (a) the interaction strength to the reservoirs
Γ ¼ 2ΓL ¼ 2ΓR, (b) the position of the level ε. The strong
coupling entropy production [Eq. (19)] is depicted for ε ¼
−0.05 eV (dotted line, blue) and ε ¼ 0.05 eV (solid line, blue),
and its weak coupling counterpart for ε ¼ −0.05 eV (dash-dotted
line, red) and ε ¼ 0.05 eV (dashed line, red). The energy grid
used spans from −3 to 3 eV with step 10−6 eV.
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remains out of its reach since it relies on treating slow
time-dependent driving forces (i.e., gradient expansion).
We are now in the position to address important problems
such as characterizing the dissipation caused by connecting
or disconnecting a system from its reservoirs, or assessing
the difference in performance between strongly coupled
and weakly coupled energy-converting devices.
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