TIMING VERIFICATION OF REAL-TIME AUTOMOTIVE ETHERNET NETWORKS: WHAT CAN WE EXPECT FROM SIMULATION?

Nicolas NAVET, University of Luxembourg Jan R. SEYLER, Daimler A.G, Mercedes Cars Jörn MIGGE, RealTime-at-Work (RTaW)

Use-cases for Ethernet in vehicles

Infotainment

- Synchronous traffic
- Mixed audio and video data
- MOST like

Cameras

- High data rates
- Continuous streaming
- LVDS like

Diag. & flashing

- Interfacing to external tools
- High throughput needed

Control functions ADAS

- Time-sensitive
 communication
- Small and large data payload
- Cover CAN / Flexray use cases and more

SAE INTERNATIONAL

Empirical study

Early stage verification techniques

✓ Simulation
 ✓ Analysis
 ✓ Lower bounds
 ✓ Performance metrics

Simulation Methodology

 Q1: is a single run enough ?
 Q2: can we run simulation in parallel and aggregate results ?
 Q3: simulation length ?

What to expect from simulation and analysis?

- ✓ Q4: is worst-case analysis accurate?
 ✓ Q5: simulation to
 - derive worst-case latencies?
- Q6: the case of a synchronous startup

Schedulability analysis "mathematic model of the worst-case possible situation"

Simulation VS "program that reproduces the behavior of a system"

$$K_i^k(t) \stackrel{\text{def}}{=}$$

$$(\phi^i)$$
 + $\left\lfloor \frac{t - \varphi_i^k}{T_i^k} \right\rfloor$

max number of instances that can accumulate at critical instants

max number of instances arriving after critical instants

 \bigcirc Upper bounds on the perf. metrics \rightarrow safe if model is correct and assumptions met

 $\ensuremath{\bigotimes}$ Might be a gap between models and real systems \rightarrow unpredictably unsafe then Office of the second se

Sine grained information

Over the second second

Is schedulability analysis alone is sufficient?

- Pessimism due to conservative and coarse-grained models → overdimensioning of the resources
- 2. Complexity that makes analytic models error prone and hard to validate: black-box software, unproven and published analyses, small user-base, no qualification process, no public benchmarks, ..., main issue: do system meets analysis' assumptions?
- Inability to capture today's complex software and hardware architectures → e.g., Socket Adaptor

No, except if system conceived with analyzability as a requirement

Good practice - several techniques & tools for cross-validation

Working with quantiles in practice – see [5]

Quantiles vs average time between deadline misses

Quantile	One frame every	Mean time to failure Frame period = 10ms	Mean time to failure Frame period = 500ms	
Q3	1 000	10 s	8mn 20s	
Q4	10 000	1mn 40s	≈ 1h 23mn	
Q5	100 000	≈ 17mn	≈ 13h 53mn	
Q6	1000 000	<mark>≈</mark> 2h 46mn	≈ 5d 19h	

Warning : successive failures in some cases might be temporally correlated, this can be assessed.

Performance metrics: illustration on a Daimler prototype network (ADAS, control functions)

Software Toolset and performance evaluation techniques

 ✓ RTaW-Pegase – modeling and analysis of switched Ethernet (industrial, automotive, avionics) + CAN (FD) and ARINC
 ✓ Higher-level protocols (e.g. Some IP) and

functional behavior can be programmed in CPAL® language [4]

✓ Developed since 2009 in partnership with Onera

✓ Ethernet users include Daimler Cars, Airbus Helicopters and ABB

Performance evaluation techniques

✓ Worst-case Traversal Time (WCTT) analysis - based on state-of-the-art Network-Calculus, all algorithms are published, core proven correct [2]

✓ Timing-accurate Simulation – *ps* resolution, $\approx 4.10^6$ events/sec on a single core (I7 - 3.4Ghz), suited up to (1-10⁶) quantiles

✓ Lower-bounds on the WCTT - "unfavorable scenario" [3]

CASE-STUDY #1 - Mercedes prototype Ethernet network

Topology of case-study #1 with a broadcast stream sent by ECU4

#Nodes	8
#Switches	2
#Maximum	6us
switching	
delay	
#streams	58
#priority	2
levels	
Cumulated	0,33Gbit/s
workload	
Link data	100Mbit/s and
rates	1Gbit/s (2
	links)
Latency	confidential
constraints	
Number of	1 to 7
receivers	(avg: 2.1)
Packet period	0.1 to 320ms
Frame size	51 to
	1450bytes

CASE-STUDY #2 – medium AFDX network

#Nodes 52 **#Switches** 4 #Maximum 7us switching delay 3214 #streams **#priority** none levels Cumulated 0.49Gbit/s workload Link data 100Mbit/s rates Latency 2 to 30ms constraints Number of 1 to 42 (avg: receivers 7.1) Packet period 2 to 128ms Frame size 100 to 1500bytes

Topology of case-study #2 with a multi-cast stream sent by node E1

SAE INTERNATIONAL

CASE-STUDY #3 – large AFDX network, as used in civil airplanes

#Nodes	104
#Switches	8
#Maximum	7us
switching	
delay	
#streams	5701
#priority	5
levels	
Cumulated	0.97Gbit/s
workload	
Link data	100Mbit/s
rates	
Latency	1 to 30ms
constraints	
Number of	1 to 83 (avg:
receivers	6.2)
Packet period	2 to 128ms
Frame size	100 to
	1500bytes

Topology of case-study #3 with a multi-cast stream sent by node E1

SAE INTERNATIONAL

System model and experimental setup

 Simulation and analysis models are in line in terms of what they model

✓ Assumptions:

- Streams are strictly periodic and successive packets of a stream are all of the same size
- Nodes are not synchronized on startup, they start to send within 100ms (same results with larger values)
- Communication stack reduced to a queue: FIFO or priority queue
- Store-and-forward communication switches with a sub-10us max. switching delays
- No transmission errors, no packet losses in the switches

✓ Simulation's specific setup:

- Nodes' clock drifts: 200ppm (same results with 400ppm)
- Each experiment repeated 10 times (with random offsets and clock drifts)
- Long simulation means at least 2 days of functioning time (samples large enough for Q5 for sub-100ms flows)

Simulation methodology

Ergodicity of the simulated system

- ✓ Intuitively, "a dynamic system is said to be ergodic if, after a certain time, every trajectory of the system leads the same distribution of the state of the system, called the equilibrium state"
- ✓ Consequences:
 - Q1: a single simulation run enough, initial conditions do not matter
 - Q2: results from simulation run in parallel can be aggregated how long is the transient state that occurs at the start ?
- Empirical approach: test if the distributions converge though the Q5 quantiles:
 - Random offsets and random clock drifts
 - Random offsets and fixed clock drifts
 - Fixed offsets and random clock drifts

Q5 quantile: visual verification for a number of frames

Case-study #1: flows sorted by increasing WCTT

Q5 : Case-study #1 – convergence of the Q5 quantiles

Case-study #1: flows sorted by increasing WCTT

Q5 : Case-study #2 – convergence of the Q5 quantiles

Case-study #2: flows sorted by increasing WCTT

Q5 : Case-study #3 – convergence of the Q5 quantiles

Case-study #1: flows sorted by increasing WCTT

Determine the minimum simulation length

✓ time needed for convergence ✓ reasonable # of values: a few tens...

		Min	Average	Q2	Q3	Q4	Q5	Q6	Max	Bound
								477 ms	0,477 ms	0,550 ms
		suppor	t can	help	here	. <i>ز</i>		719 ms	0,719 ms	0,830 ms
	10010		t ouri					925 ms	0,925 ms	1,074 ms
Diah	t · numbo	re in a		hould	Inot	ho tri	intod	167 ms	1,167 ms	1,354 ms
I NIGI		15 III YI	ay 5	nouio			JSIEU	943 ms	0,943 ms	1,092 ms
				10			11	185 ms	1,185 ms	1,372 ms
Simulation length choice	eff : derive	simul	ation	time	wrt d	guant	ile	427 ms	1,427 ms	1,652 ms
		••••••				10.00.00		669 ms	1,669 ms	1,932 ms
Period 80 ms 🔻 Robust q	uantile Q5 🔻	0,140 ms	0,217 ms	0,773 ms	1,079 ms	1,275 ms	1,328 ms	1,339 ms	1,339 ms	1,564 ms
Independent Runs		0,148 ms	0,242 ms	0,979 ms	1,382 ms	1,643 ms	1,791 ms	1,811 ms	1,822 ms	2,124 ms
		0,218 ms	0,313 ms	1,061 ms	1,481 ms	1,750 ms	1,875 ms	2,009 ms	2,036 ms	2,386 ms
Required length d 22 h 13 n	n s ms µs	0,522 ms	0,686 ms	1,490 ms	1,897 ms	2,116 ms	2,267 ms	2,388 ms	2,509 ms	4,890 ms
Robustness of quantiles Period Q2 Q3 Q	4 Q5 Q6	0,450 ms	0,015 ms	1,390 ms	1,011 ms	2,104 ms	2,295 ms	2,402 ms	2,672 ms	- 4,010 ms
0,1 ms + + +	+ +	0,720 ms	0,929 ms	1,032 ms	2,120 ms	2,200 ms	2,374 IIIS	2,700 ms	2,515 ms	2,940 ms
0,16 ms + + +	+ +	0,702 ms	0,007 ms	1,097 ms	2,200 ms	2,347 ms	2,575 ms	2,710 ms	2,730 ms	3,750 ms
0,5 ms + + +	+ +	0.962 ms	1 271 ms	2 374 ms	2,652 ms	2,017 ms	2,010 ms	3 166 ms	3 254 ms	4 030 ms
1 ms + + +	+ +	0.720 ms	0.957 ms	1,986 ms	2,00 ms	2,588 ms	2,773 ms	2.854 ms	2.941 ms	3,750 ms
5 ms + + +	+ +	0,112 ms	0.281 ms	1,643 ms	2,280 ms	2,618 ms	2,854 ms	2,989 ms	3,103 ms	4,186 ms
10 ms + + +	+ 0	0,166 ms	0.252 ms	1.043 ms	1.481 ms	1.801 ms	2.092 ms	2,153 ms	2,238 ms	3,276 ms
20 ms + + +	+ 0	0,166 ms	0.338 ms	1.710 ms	2.307 ms	2.633 ms	2,854 ms	2.971 ms	3.060 ms	4.396 ms
40 ms + + +	+ 0	1,168 ms	1,567 ms	2,695 ms	2,989 ms	3,202 ms	3,277 ms	3,373 ms	3,460 ms	4,640 ms
80 ms + + +	0 -	0,236 ms	0,421 ms	1,963 ms	2,603 ms	2,921 ms	3,076 ms	3,221 ms	3,239 ms	4,640 ms
100 ms + + +	0 -	0,522 ms	0,801 ms	2,402 ms	3,023 ms	3,471 ms	3,698 ms	3,806 ms	3,871 ms	8,946 ms
200 ms + + +										
320 ms + + +						far		1400		
500 ms + + +	Reas			Vall	les		$(J_{\mathcal{D}})$		Der	100S
1000 ms + + 0								\		
			400	\						
		n to	1()()	ms	Ca	n he	<u>a</u> or	<u>stair</u>	her	in a
	<u> </u>				-04					ma
							•			
				hou	ire	nt e	Imi	latic	n	
					л С Г	0 3	ппа	ranc	ЛГ	

21

What to expect from simulation and analysis ?

Analysis (Network-Calculus) VS Lower-bound (unfavorable scenario) VS Timing-Accurate Simulation

Q4: Are Worst-Case Traversal Times (WCTT) computed with Network Calculus accurate?

Q5 : Case-study #1 – difference between analysis upper bounds and simulation maxima

Case-study #1: flows sorted by increasing WCTT

Q5 : Case-study #2 – difference between analysis upper bounds and simulation maxima

Q5 : Case-study #3 – difference between analysis upper bounds and simulation maxima

SAE INTERNATIONAL

Q5 : Memory usage in the switches: difference between analysis upper bounds and simulation maxima

Performance evaluation techniques - Key takeaways

- State-of-the-start Network-Calculus is an accurate and fast technique for switched Ethernet - can be coupled with other types schedulability analysis for CAN (FD), gateways, ECUs.
- ✓ Deriving lower-bounds with unfavorable scenarios approaches is key to validate correctness and accuracy → more research still needed here
- ✓ Simulation suited to assess with high confidence the performances in a typical functioning mode → worst-case latencies/buffer usage are out of reach - except in small systems

Worst-case latencies are extremely rare events (less than once every 10⁶ transmissions) - if network can be made robust to these cases, then designing with simulation is more effective in terms of resource usage

Q6 : synchronous startup of the node leads to very unfavorable trajectories

Synchronous startup of the system : many large latencies observed shortly in after startup - statistics are biased wrt typical functioning mode

	· · · · · · · · · · · · · · · · · · ·	

	· · · · · · · · · · · · · · · · · · ·	
	pi	
F.	•	
	+1	
	F=	
	P	
	A	
	,	
	↓	
ь. Г	·	
ьł.	· ···	
ų		
ι. Έ		
ь.	Two explanations:	
.í	Two explanations:	
đ	Two explanations: ✓ no offsets between streams on nodes	
4	Two explanations: ✓ no offsets between streams on nodes	
đ	Two explanations: ✓ no offsets between streams on nodes	
,í	Two explanations: ✓ no offsets between streams on nodes ✓ symmetry of the network	
i.	Two explanations: ✓ no offsets between streams on nodes ✓ symmetry of the network	
i.	Two explanations: ✓ no offsets between streams on nodes ✓ symmetry of the network	
بَر ۲	Two explanations: ✓ no offsets between streams on nodes ✓ symmetry of the network	+ 500us + 550us + 600us
نَب + ع	Two explanations: ✓ no offsets between streams on nodes ✓ symmetry of the network	+ 500us + 550us + 600us

for flow FF3 (top) occurring immediately after a synchronous startup

Synchronous startup of the system – short simulation are enough for maxima

Synchronous startup of the system – all other statistics eventually converge, but transient state takes time to be amortized

Case-study #3 : flows sorted by increasing simulation maximum

Concluding remarks

- ✓ Timing verification techniques & tools should not be trusted blindly → body of good practices should be developed
- ✓ AUTOSAR communication stacks support the numerous automotive communication requirements at the expense of complexity → schedulability analyses cannot capture everything
- ✓ Simulation is well suited to automotive systems that can tolerate deadline misses with a *controlled* risk
- Today: timing accurate simulation of complete heterogeneous automotive communication architectures
- Tomorrow: system-level simulation with models of the *functional* behavior
- Ergodicity, evidenced here empirically for Ethernet, must be studied theoretically at a the scope of the system

Thank you

Interested in this talk? Please consult the technical report available next week from www.realtimeatwork.com

Interested in this talk? Please consult the technical report available from www.realtimeatwork.com

- [1] N. Navet, J. Seyler, J. Migge, "Timing verification of real-time automotive Ethernet networks: what can we expect from simulation?", Technical report, 2015.
- [2] E. Mabille, M. Boyer, L. Fejoz, and S. Merz, "Certifying Network Calculus in a Proof Assistant", 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, Germany, 2013.
- [3] H. Bauer, J.-L. Scharbarg, C. Fraboul, "Improving the Worst-Case Delay Analysis of an AFDX Network Using an Optimized Trajectory Approach", IEEE Transactions on Industrial informatics, Vol 6, No. 4, November 2010.
- [4] CPAL the Cyber-Physical Action Language, freely available from <u>http://www.designcps.com</u>, 2015.
- [5] N. Navet, S. Louvart, J. Villanueva, S. Campoy-Martinez, J. Migge, "Timing verification of automotive communication architectures using quantile estimation", Embedded Real-Time Software and Systems (ERTS 2014), Toulouse, France, February 5-7, 2014.