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Use-cases for Ethernet in vehicles

Infotalnment Dlag & flashlng

«  Synchronous traffic « High data rates * Interfacing to

. Mixed audio and . Continuous external tools
video data streaming « High throughput

. MOST like « LVDS like needed

Control functions . T'me-Ser?Sltlye
communication

« Small and .
large data payload = e <
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cases and more
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Empirical study

Early stage verification
techniques

What to expect from
simulation and analysis?

v Simulation
v Analysis

v' Lower bounds v Q4: is worst-case

analysis accurate?¢
v @Q5: simulation to

v Performance
meftrics

derive worst-case

latencies?

v Qé: the case of a
o synchronous startup

o o O
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Schedulability analysis Simulation
“mathematic model of the AVAS) “program that reproduces the

worst-case possible situation” behavior of a system”
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max number of max number of = L\ d5 54
instances that c_a_m instances arriving after D = S—
accumulate at critical critical instants T —
instants

© Upper bounds on the perf.
metrics > safe if model is correct
and assumptions met

©) Models close to real systems

© Fine grained information

® Might be a gap between
models and real systems -
unpredictably unsafe then

@ Worst-case response times are

out of reach - occasional deadline
misses must be acceptable
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Is schedulability analysis alone is sufficient ?

1. Pessimism due to conservative and coarse-grained models = over-
dimensioning of the resources

2. Complexity that makes analytic models error prone and hard to
validate: black-box software, unproven and published analyses, small
user-base, no qualification process, no public benchmarks, ..., main
issue: do system meets analysis’ assumptions?

BswM

3. Inability to capture today’s complex
software and hardware architectures LdCom Com
- e.g., Socket Adaptor PduR
| DolP | Sd_|

» No, except if system conceived with analyzability as a requirement

StbM

» Good practice - several techniques & tools for cross-validation
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Performance metrics for frame latencies — or buffer usage

Quantile Q,: smallest value such that

Pl latencyv > < 10N Upper-bound with
A [ y>Qn] schedulability analysi

(actual) worst-case
traversal time (WCTT)

Q4 Q5 Simulation max.

A
Jossassss

Probability

Less than 1 frame
every 100 000, 1 every
17mn with 10ms period

€f=—————————————

<
L [e-======--=

1
- - ] i >
' y Y Y Response time
Easily observable events Infrequent events
Testbed & Long Schedulability
Simulation Simulation analysis

Using simulation means accepting a quantified risk

system must be robust to that
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Working with quantiles in practice — see [5]

Simulation max.

deadline
o Qe

Probability

€€ = o o e e

7

|dentify frame deadline
Decide the tolerable risk - target quantile

. Simulate “sufficiently” long

If target quantile value is below deadline,
performance objective is met
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Quantiles vs average time between deadline misses

Quantile | One frame | Mean time to failure | Mean time to failure
every ... Frame period = 10ms Frame period =
500ms
Q3 1 000 10s 8mn 20s
Q4 10 00 1mn 40s ~ 1h 23mn
‘*‘
C Q5 100 000 = 17mn =~ 13h 53mn
\ —
Q6 "TO00 000 =2 TG =5Hd 19h

Warning : successive failures in some cases might

be temporally correlated, this can be assessed.
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Performance metrics: illustration on a Daimler prototype

network (ADAS, control functions)

Min, Average, Q5, MAX, WCTT
o WCTT
o (upper
e bound)

S Less than 1 transmission
every 100 000
above red curve

May
sim)

IIIIII
M26->ECLI0 M47-=ECLI7 M17-=ECUIO M->ECUZ M24-=ECU7 M24->ECUS M39-=ECU7 M33->ECUZ M42-=ECUE M11->ECUE M24->ECL3 M40->ECLIS

Frame Flow Needs

[ MIN — AVERAGE — G5 — Max — WCTT]

Case-study #1: flows sorted by increasing WCTT
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Software Toolset and performance evaluation techniques

vRTaW-Pegase — modeling and analysis of |-« ' B B =————
switched Ethernet (industrial, automotive, — v =k
avionics) + CAN (FD) and ARINC AN 8
v'Higher-level protocols (e.g. Some IP) and fog S
functional behavior can be programmed in CPAL® Ianguage [4]

ONERA

v'Developed since 2009 in partnership with Onera

THE FRENCH AEROSPACE LAB

v'Ethernet users include Daimler Cars, Airbus Helicopters and ABB

Performance evaluation techniques

v'Worst-case Traversal Time (WCTT) analysis - based on state-of-the-art
Network-Calculus, all algorithms are published, core proven correct [2]

v'Timing-accurate Simulation — ps resolution, = 4-10° events/sec on a single core
(17 - 3.4Ghz), suited up to (1-10°) quantiles

v'Lower-bounds on the WCTT - “unfavorable scenario” [3]
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CASE-STUDY #1 - Mercedes prototype Ethernet network

l\

l/
Topology of case-study #1 with a broadcast
stream sent by ECU4

[y
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[loysuaaios aselbad-mel ]

"
/

#Nodes 8
#Switches 2
#Maximum 6us
switching
delay

#streams 58

#priority 2
levels

Cumulated 0,33Ghit/s

workload

Link data 100Mbit/s and
rates 1Ghit/s (2

links)

Latency confidential
constraints
Number of lto7
receivers (avg: 2.1)

Packet period | 0.1to 320ms
Frame size 51to
1450bytes
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CASE-STUDY #2 — medium AFDX network

#Nodes 52
#Switches 4
#Maximum 7us
switching
delay
#streams 3214
3 #priority none
2! levels
,E Cumulated 0.49Ghbit/s
;E’ workload
B Link data 100Mbit/s
8 rates
Q Latency 2 to 30ms
§ constraints
@ Number of 1 to 42 (avg:
2 receivers 7.1)
Packet period 2t0 128ms
Frame size 100 to
Topology of case-study #2 with a multi-cast 1500bytes

stream sent by node E1

SAE INTERNATIONAL
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CASE-STUDY #3 - large AFDX network, as used in civil
airplanes

E42
.

[loysuaaios aselbad-mel ]

// 5 = \'\
£ v # “, T IR \\\ % ) \\\
¥ o
—7 87 oLy Wl _
F91]

EBZ

Topology of case-study #3 with a multi-cast
stream sent by node E1

#Nodes 104
#Switches 8
#Maximum 7us
switching
delay

#streams 5701

#priority 5
levels

Cumulated 0.97Ghit/s

workload

Link data 100Mbit/s
rates

Latency 1 to 30ms
constraints
Number of 1 to 83 (avg:
receivers 6.2)

Packet period 2t0 128ms
Frame size 100 to
1500bytes
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v Simulation and analysis models are
In line in terms of what they model

v' Assumptions:

- Streams are strictly periodic and successive packets of a stream are all of the
same size

- Nodes are not synchronized on startup, they start to send within 200ms (same
results with larger values)

- Communication stack reduced to a queue: FIFO or priority queue
- Store-and-forward communication switches with a sub-10us max. switching delays
- No transmission errors, no packet losses in the switches

v' Simulation’s specific setup:
- Nodes’ clock drifts: 200ppm (same results with 400ppm)
- Each experiment repeated 10 times (with random offsets and clock drifts)

- Long simulation means at least 2 days of functioning time (samples large enough
for Q5 for sub-100ms flows)

SAE INTERNATIONAL Presentation at the SAE 2015 World Congress 14



Simulation methodology

SAE INTERNATIONAL
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Ergodicity of the simulated system

v' Intuitively, “a dynamic system is said to be ergodic if, after a certain
time, every trajectory of the system leads the same distribution of the
state of the system, called the equilibrium state”

v' Consequences:
- Q1: a single simulation run enough, initial conditions do not matter

- Q2: results from simulation run in parallel can be aggregated — how long
IS the transient state that occurs at the start ?

v' Empirical approach: test if the distributions converge though the Q5
guantiles:
- Random offsets and random clock drifts
- Random offsets and fixed clock drifts
- Fixed offsets and random clock drifts
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Q5 quantile: visual verification for a number of frames

140000
120000 B Experiment#1
" Experiment#2
100000 - :
" Experiment#3

80000 -

£0000 - 3 experiments with
random clock-drifts

40000

20000 A

12 345 6 7 8 2101121341516 17 1819 20 2122 23 2425 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Case-study #1: flows sorted by increasing WCTT
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Q5 : Case-study #1 — convergence of the Q5 quantiles

Comparing Q5 values of different simulations

s Average difference
o between max and min 1 second period packet
value is 1.9% simulation too short

Delays

3 experiments with
random clock-drifts
and random offsets

ns
M33->ECU0 M13->ECU7 M4->ECLI0 M21->ECU0 M17->ECU7 M22->ECU1 M44->ECU4 M26->ECLIG M34->ECU2 M28->ECUG M36->ECUG M34->ECU4
Frame Flow Needs

Case-study #1: flows sorted by increasing WCTT
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. Case-study #2 — convergence of the Q5 quantiles

Comparing Q5 values of different simulations

Average difference "

between max and min 1 second period packet
value is 2.3% simulation too short

l:?m \ . , '|I|‘
wl,?ﬂ . 1l I ‘1
Ziim m )

‘ 3 experiments with
e random clock-drifts
' and random offsets

ams
FF123->E19 FF210->E30 FF95->E10 FF325->E3 FF395->E49 FF305->E32 FF11->E11 FF395->E11 FF402->E49 FF144->E22 FF391->E46 FF280->E36 FF133->E37
Frame Flow Needs

Case-study #2: flows sorted by increasing WCTT
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Q5 : Case-study #3 — convergence of the Q5 quantiles

Comparing Q5 values of different simulations

o Average difference
. between max and min
value is 2.2%

3 experiments with
random clock-drifts
and random offsets

ams
FFE53->E95 FF772-5>E92 FF252-5E43 FF145->E9 FF720-E97 FF185->E66 FF315->E28 FFE22->E63 FFE93->E81 FF130-5E7 FF222->E29 FF345->E32

Frame Flow Needs

Case-study #1: flows sorted by increasing WCTT

SAE INTERNATIONAL
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Determine the minimum simulation length

v’ time needed for convergence

v’ reasonable # of values: a few tens...

Min Average Q2 Q3 Q4 Q5 Qo Max Bound
477 ms 0,477 ms 0,550 ms

" 719 ms 0,719 ms 0,830 ms
TOOI Support Ca‘n help here 925 ms 0,925 ms 1,074 ms
167 ms 1,167 ms 1,354 ms

Right : numbers in gray should not be trusted [ ossam  soszms

135 ms 1,185 ms 1,372 ms

0
_I
QD
2
©
_ . : : . : )
P Left : derive simulation time wrt quantile = @
Periodm = Robust quantile Q5 = L 11 1 L o 01 1 L8 1111 TS BT b 1 1,339 ms 1,564 ms wn
= 0,143 ms 0,242 ms 0,979 ms 1,382 ms 1,643 ms 1,791 ms 1,822 ms 2,124 ms (D
Independent Runs 1 = 0,218ms  0,313ms  1,061ms 1481ms 1,750ms  1,875ms , 2,03 ms 2,386 ms
Required length d 22h 13m s ms us 0,522 ms 0,636 ms 1,490 ms 1,897 ms 2,116 ms 2,267 ms 2 2,509 ms 4,890 ms g
i 0,450 ms 0,615 ms 1,398 ms 1,811 ms 2,104 ms 2,293 ms 2 2,672 ms 4,818 ms
Rofustness of quantlles | period Q2 Q3 Q4 Q5 Q6 0,720ms  0,929ms  1,832ms  2,128ms  2,280ms  2,374ms 2, 2,515ms 2,996 ms C_IS
QGlms |+ |+ |+ |+ |+ 0,702ms 0,837 ms 1,897ms  2,280ms  2,544ms  2,573ms 2,7 2,75 ms 3,470 ms D
0l6ms |+ |+ |+ |+ |+ 0,236ms  0,367ms  1,423ms  2,032ms  2,347ms  2,618ms 2,7 2,863ms 3,750 ms S
05ms + o+ o+ &+ 0,962 ms 1,271 ms 2,374 ms 2,664 ms 2,904 ms 2,989 ms 3,166 3,254 ms 4,030 me n
Tms S e B 0,720 ms 0,957 ms 1,986 ms 2,374 ms 2,588 ms 2,773 ms 2,854 ms 2,941 ms 3,730 ms -5
5ms S A A e 0,112 ms 0,281 ms 1,643 ms 2,280 ms 2,618 ms 2,854 ms 2,989 ms 3,103 ms 4,186 ms O
ms + + + =+ 0 0,166ms  0,252ms 1,043 ms 1,431 ms 1,801 ms 2,092 ms 2,133 ms 2,233 ms 3,275 ms —
20ms + + + + 0 0,156 ms 0,338 ms 1,710 ms 2,307 ms 2,633 ms 2,854 ms 2,971ms 3,080 ms 4,396 ms —
0ms + + + + 0 1,168 ms 1,567 ms 2,635 ms 2,989 ms 3,202 ms 3,277 ms 3,373 ms 3,460 ms 4,540 ms
80ms + + + 0 0,236 ms 0,421 ms 1,963 ms 2,603 ms 2,921ms 3,076 ms 3, 221ms 3,239 ms 4,640 ms
100ms + + + 0,522 ms 0,801 ms 2,402 ms 3,023 ms 3,471 ms 3,698 ms 3,806 m 3,871 ms 8,946 ms
200ms + + + .
S R ble values for Q5 (f d
Soms o | easonapie values 10r or perioas
1000ms + + O

few hours of simulation
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What to expect from simulation and analysis ?

Analysis (Network-Calculus)
A
Lower-bound (unfavorable scenario)
VS
Timing-Accurate Simulation

S DU bR e A Presentation at the SAE 2015 World Congress
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Q4: Are Worst-Case Traversal Times (WCTT) computed with Network

Calculus accurate?
Schedulability analysis vs lower bounds
WCTT

o (upper bound)
e The actual true worst-case is between the two curves

|‘ ‘ NM Unfavorable scenario

ww (lower bound)

o i

WCTT are accurate in the non-prioritized case:

average difference is 4.7% (up to 35%)
[— WCTT — lower bounds (unfavorable os) |

23

Case-study #2 . flows Sorted by increasing WCTT
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Q5 : Case-study #1 — difference between analysis upper bounds and

simulation maxima

Simulation max vs schedulability analysis

WCTT
(upper bound)

average difference is
21% - up to 48%
- 5 frames above 35%

__________

Simulation max in the

o = synchronous case and
o ﬁ with random startup
offsets

0ms
M2E->ECU0 M47->ECU7 M17->ECU0 M4->ECLI2 M24->ECU7 M24->ECLUS M33->ECU7 M33->ECU3 M42-ECUG M11->ECUG M24->ECLI3 M40->ECUG
Frame Flow Needs

|— WCTT — zero offsets —random c-f‘fsets|

Case-study #1: flows sorted by increasing WCTT
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Q5 : Case-study #2 — difference between analysis upper bounds and

simulation maxima

Simulation max. vs schedulability analysis

average difference is
51% (up to 84%)

0,5 ms
0,25 ms |}

e ]u i || 'w,a“ Ll'l H'N' l,L "“M;\H(M

e wa'

WCTT
(upper bound)

Sim. max

synchronous startup

wnm

it

random offsets

Case- study #2 . flows sorted by Increasing WCTT

SAE INTERNATIONAL
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Q5 : Case-study #3 — difference between analysis upper bounds and

simulation maxima

Simulation max. vs schedulability analysis

WCTT
(upper bound)

o average difference is
- 56% (up to 88%)

Sim. max
synchronous startup

Delays

o

(i l\
|.|‘ || | ‘lllrl || l |||‘ “

W\M ‘| |‘| 'I' i |IH|‘ \‘ [“” \\ \

P

Im. max random offsets

0ms
FFE51-5E95

FF464->E42

FF&74-=E80 FF521->E56 FF737-5E75 FF330->E92

FF442->E95
Frame Flow Needs

FFS48-5E1 FF445->E22 FF297->E24 FF315->E96 FF293->E55

|7 WCTT —zero o

ffsets — random offsets ‘

Case-study #3 : flows sorted by increasing WCTT

SAE INTERNATIONAL
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Q5 : Memory usage in the switches: difference between analysis upper

bounds and simulation maxima

25000
® Simulation max
= Analysis max
20000 -
Case-study #1.
15000 - .
max. difference 31%
10000 -
5000 -
o ‘ s l_-_____-fl
Switch#1 Switch#2 ECU4 ECU3 ECU2 ECUO ECU1 ECUS ECU6 ECU7

500000

u Simulation max
450000

400000 m Analysis max
Ongoc;ng W?]rk 10 - Case-study #2:
re_ u_ce (e max. difference 74%
pessimism of the el

0

memory usage . .
analysis o

m Analysis max

350000 -

300000 -

250000 -

Case-study #3:

150000 -

max. difference 76%

50000 -

o -
R1 R2 R3 R4 RS R6 R7 R8
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Performance evaluation techniques - Key takeaways

v State-of-the-start Network-Calculus is an accurate and fast technique
for switched Ethernet - can be coupled with other types schedulability
analysis for CAN (FD), gateways, ECUs.

v Deriving lower-bounds with unfavorable scenarios approaches is key to
validate correctness and accuracy - more research still needed here

v" Simulation suited to assess — with high confidence - the performances
In a typical functioning mode - worst-case latencies/buffer usage are
out of reach - except in small systems

Worst-case latencies are extremely rare events (less than
once every 10° transmissions) - if network can be made

robust to these cases, then designing with simulation is
more effective in terms of resource usage
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Q6 : synchronous startup of the node leads
to very unfavorable trajectories

SAE INTERNATIONAL
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Synchronous startup of the system : many large latencies observed shortly in
after startup - statistics are biased wrt typical functioning mode

Two explanatlons |
v'no offsets between streams on nodes
v'symmetry of the network

+ S0us + 100us + 150us + 200us + 250us + 300us + 350us + 400us + 450us + 500us + 550us + 600us + hAl

Case -study #3 - maximum latencies observed in simulation in last switch
for flow FF3 (top) occurring immediately after a synchronous startup

SAE INTERNATIONAL
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31ms
3ms
2,9 ms
2,8 ms
2,7 ms
2,6 ms
2,5 ms
2,4 ms
2,3 ms
2,2ms
2,1ms
2ms
1,9 ms
1,3 ms
1,7 ms
Z 1,6 ms
=zl
8 1,5 ms
1,4 ms
1,3 ms
1,2 ms
1,1ms
1ms
0,9 ms
0,2 ms
0,7 ms
0,6 ms
0,5 ms
0,4 ms
0,32 ms
0,2 ms
0,1 ms

0ms

FF559->E66

Synchronous startup of the system — short simulation are enough for maxima

Long simulation vs short simulation after a synchronous start

o Black curve;:
Simulation max

after 2 days

The simulation maximum
latencies is usually seen
during the first few
seconds

Blue curve: Simulation
max after 1mn

FF729->E78

FF267->E20 FF893->E65 FF306->E47 FFB36->E87 FF175-=E57

Frame Flow Needs

FF630->E23 FF381->E40 FF80Z->E48 FFo14-=E2 FFS63->E20

|— Sirnulation mayx - long sirmulation — Simulation max - short simulat\-:-n|

Case-study #3 : flows sorted by increasing simulation maximum (2 days)
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Synchronous startup of the system — all other statistics eventually

converge, but transient state takes time to be amortized

Q5 : random vs synchronous offsets

Green curve:

o Simulation Q5 after 2

e days - synchronous

startup

P “ | MJ | 1‘
g [T
o il “‘H it I_3Iack curve:
o WL A Simulation Q5

A
| M.1 AI.|J
\I \ |
L4}

"Red curve: Simulation Q5
after 8 days — synchronous startup

after 2 days —

random
offsets

0,1ms
0ms
FF123->E19 FF94->E10 FF8->E18 FF266->E41 FF177->E23 FFE3->E14 FFE6->E1 FF418->E52 FF247->E30 FF338->E2 FF293->E31 FF224->E13 FF430->E2
Frame Flow Needs
|— Random — Synchronous (8 days) — Synchronous (2 da'.'s)‘

Case-study #3 : flows sorted by increasing simulati

on maximum

SAE INTERNATIONAL Presentation at the SAE 2015 World Congress
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Concluding remarks

v Timing verification techniques & tools should not be trusted blindly -
body of good practices should be developed

v AUTOSAR communication stacks support the numerous automotive
communication requirements at the expense of complexity -
schedulability analyses cannot capture everything

v' Simulation is well suited to automotive systems that can tolerate
deadline misses with a controlled risk

v Today: timing accurate simulation of complete heterogeneous
automotive communication architectures

v' Tomorrow: system-level simulation with models of the functional
behavior

v" Ergodicity, evidenced here empirically for Ethernet, must be studied
theoretically at a the scope of the system
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Interested in this talk? Please consult the technical report available
next week from www.realtimeatwork.com
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