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Abstract: Lithium titanate (Li,Ti:O,,, LTO) is a promising anode material for the next generation of lithium ion batteries. Its physical properties and morphology (which consequently affect its electrochemical
performance) highly depend on its synthesis method. Flame spray pyrolysis (FSP) is an attractive process for the controlled one-step synthesis of functional multicomponent oxides from low cost precursors.
The main aim of this study is to control the growth process of LTO by FSP in order to maintain the desired particle properties. LTO nanoparticles of different sizes are synthesized by variation of the FSP
processing conditions and characterized accordingly. Numerical simulations based on Population Balance Models are also implemented in order to investigate the evolution of primary and agglomerate particle

growth.

Population Balance Modeling of flame synthesis of LTO
General Dynamics Equation
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Oxide Nanoparticles’ Synthesis by Flame Spray Pyrolysis
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FSP reactor Assumptions
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Monodisperse Model Model accounting of polydispersity
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Nanoparticles' Structure and
Morphology

Nanoparticles’ formation from solution droplets by FSP.
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Control of arowth orocess < Characterization < Modelin Advantages of QMOM: QMOM permits calculation of the evolution of moments directly without a priori
g P 9 assumptions about the form of the evolving distribution. It is a robust and computational efficient method to

track the evolution of the first six moments.

Experimental Results Simulation Results

Monodisperse Model
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Fig. 1. Spray flames for different O, dispersion gas flow Fig. 2. BET particle diameter of the powder as a function
rates. of the O, dispersion gas flow rate.

LTO nanoparticles’ size decreases from 21 to

An increase In O, dispersion gas flow rate 14 ny with the increase of O, gas dispersion
intensifies mixing and accelerates combustion g4 rate due to decrease of droplet

and in this way, the height of the flame is reduced. concentration in the flame.

Decrease of particle number concentration by
the dominance of coagulation.
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Fig. 4. Evolution of LTO total particle number concentration.
Quadrature Method of Moments
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I = 8§38 & §& _ _ _ _ Fig. 5. Evolution of length based moments obtained Fig. 6. d3, (Sauter mean diameter) and d,; calculated by

_W. L, _Ti 0O, Fig. 3. XRD of LTO for different O, dispersion gas flow by QMOM. the moments obtained by QMOM.
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Values of weights, w;, calculated by QMOM, are shown.
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