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Abstract. Given the sensitive nature of health data, privacy of eHealth systems is
of prime importance. An eHealth system must enforce that users remain private,
even if they are bribed or coerced to reveal themselves or others. Consider e.g.
a pharmaceutical company that bribes a pharmacist to reveal information which
breaks a doctor’s privacy. In this paper, we first identify and formalise several
new but important privacy notions on enforcing doctor privacy. Then we analyse
privacy of a complicated and practical eHealth protocol (DLVV08). Our analysis
shows to what extent these new properties as well as properties such as anonymity
and untraceability are satisfied by the protocol. Finally, we address the found am-
biguities which result in privacy flaws, and propose suggestions for fixing them.

1 Introduction

Traditionally, data in health care (e.g., patient records) was stored on paper files. Given
the sensitive nature of health data, handling this data must meet strict security and
privacy requirements. This was relatively easily satisfied by controlling access to the
physical documents. Those who had access could be considered trusted not to violate
security nor privacy of the data. With the advent of eHealth systems – systems that dig-
itally store and exchange health data – security and particularly privacy requirements
were often achieved using access control (e.g., see [1, 2]).

However, the introduction of eHealth systems has changed the setting. The main
benefit of eHealth systems is that they facilitate the digital exchange of information
amongst various roles in health care. This has two major consequences: the health care
data is shared digitally with more parties, such as pharmacists and insurance companies;
and, this data can be easily shared by any party with an outsider. Clearly, the assump-
tion of a trusted network can no longer hold in such a setting. Given that it is trivial
for a malicious entity to intercept or even alter digital data in transit, access control
approaches to privacy and security are no longer sufficient. In this paper, we consider
security and privacy of the involved parties with respect to an outsider, the Dolev-Yao
adversary [3], who controls the communication network (i.e. the adversary can observe,
block, create and alter information). In this setting, communication security and privacy
are mainly achieved by employing cryptographic communication protocols. It is well
known that designing such protocols is error-prone: time and again, flaws have been
found in protocols that claimed to be secure (e.g., electronic voting systems [4, 5] have
been broken [6, 7]). Therefore, we believe that the claims of an eHealth protocol must
be verified before the protocol is used in practice. Without verifying that a protocol
satisfies its security claims, subtle flaws may go undiscovered.
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In order to verify whether a protocol satisfies security and privacy requirements,
each property must be formally defined. Various security and privacy properties have
already been defined in the literature, such as secrecy, authentication, anonymity and
untraceability. We refer to these properties as regular security and privacy properties.
While they are necessary to ensure security and privacy, by themselves these regular
properties are not sufficient. Benaloh and Tuinstra pointed out the risk of subverting a
voter [4] to sell her vote. This idea, of coercing or bribing a party into nullfying their
privacy, is hardly considered in the literature of eHealth systems (notable exceptions in-
clude [8, 9]). However, this notion is important for health care – e.g., a pharmaceutical
company may bribe doctors to prescribe only their medicine. Therefore, we consider
not only privacy with respect to a Dolev-Yao adversary, but also privacy in the pres-
ence of an active coercer – someone who is bribing or threatening parties to reveal their
privacy. We refer to these properties as enforced privacy properties. In particular, we
identify the following notions of privacy [10] to counter doctor bribery: prescribing-
privacy: a doctor cannot be linked to his prescriptions; enforced prescribing-privacy:
preventing doctor bribes; independency of prescribing-privacy: preventing others to re-
duce a doctor’s prescribing-privacy; and independency of enforced prescribing-privacy:
preventing anyone from affecting a doctor’s enforced prescribing-privacy.
Contributions. We identify three notions of enforced privacy in eHealth systems and
are the first to provide formal definitions for them. In addition, we develop an in-depth
applied pi model of the DLVV08 eHealth protocol [9] which is rather complicated and
aims for practical usage in Belgium. Furthermore, we formally analyse privacy and en-
forced privacy properties of the protocol, as well as regular security and privacy proper-
ties. We find ambiguities in the protocol which potentially lead to flaws on privacy, and
propose suggestions for fixing them. The modelling and full analysis of the DLVV08
protocol can be found in [11].

2 The applied pi calculus

The applied pi calculus is a language designed for modelling and analysing security
protocols [12]. It assumes an infinite set of names (modelling channels and data), an
infinite set of variables and a set of functions (to model cryptographic primitives). A
term is a name or variable, or a function applied to other terms. Terms are used to model
messages. An equational theory E defines equivalences between terms. A protocol is
modelled as a set of roles running in parallel. The behaviour of each role is modelled as
a process, defined as follows.

P,Q ::=0 P |Q !P νn.P in(u, x).P out(u,M).P if M=EN then P else Q

A,B ::=P A |B νn.A νx.A {M /x}

A plain process P,Q can be the empty process 0, two sub-processes running in parallel
P | Q, a replication !P , a name restriction on a process νn.P , an input or output ac-
tion followed by a process (in(u, x).P and out(u,M).P , respectively), or a conditional
choice based on the equational theory (if. . . then. . . else). To this, extended processes
add variable restrictions and active substitution.



The semantics of applied pi consists of three parts: structural equivalence, which
defines equivalence relations between two processes which only differ in structure; in-
ternal reduction (→), which defines sub-process communication rules and if-then-else
evaluation rules; and labelled reduction ( α−→), which defines reduction rules to model
the communication between the adversary and the protocol. For more details, see [12].

In this paper, we use “P{M /x}” (and, equivalently, “let x=M in P ”) to denote
syntactical replacement of x with M in process P . We use =E to denote term equiva-
lence relations introduced by equational theory E. Names and variables are free if they
are not delimited by restriction and by inputs. The sets of free names, free variables,
bound names and bound variables of a process A are denoted as fn(A), fv(A), bn(A)
and bv(A), respectively. A process is closed if it does not contain free variables. A con-
text C [ ] is defined as a process with a hole, which may be filled with any process. An
evaluation context is a context whose hole is not in the scope of a replication, a condi-
tional, an input, or an output. A term is ground when it does not contain variables. The
frame φ(A) of a process A is the static knowledge revealed to the adversary, defined
as an extended process where every plain sub-process is replaced with 0. The domain
dom(ψ) of a frame ψ is the set of variables in active substitutions. Finally,→∗ denotes
zero or more internal reductions.

Several equivalence relations on processes are defined in the applied pi calculus. In
this paper we mainly use labelled bisimilarity, which is claimed to coincide with obser-
vational equivalence [12], but easier to reason with both manually and automatically.
Labelled bisimilarity≈` is based on static equivalence≈s of processes. Labelled bisim-
ilarity compares the dynamic behaviour of processes, while static equivalence compares
the static states of processes (as represented by their frames).

Definition 1 (Static equivalence [12]). Closed frames ψ and φ are statically equiva-
lent, ψ ≈s φ, if (1) dom(ψ)=dom(φ);
(2) ∀ terms M and N , (M =E N) in ψ⇔ (M =E N) in φ.

Extended processesA,B are statically equivalent,A ≈s B, if their frames are statically
equivalent: φ(A) ≈s φ(B).

Definition 2 (Labelled bisimilarity [12]). Labelled bisimilarity (≈`) is defined as the
largest symmetric relation R on closed extended processes, such that A R B implies:
(1) A ≈s B; (2) if A → A′ then B →∗ B′ and A′ R B′ for some B′; (3) if A α−→ A′

and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅; then B →∗ α−→→∗ B′ and A′ R B′

for some B′.

Applied pi assumes the Dolev-Yao adversary [3], which controls the network and
can eavesdrop, block, create, and inject messages, as well as applying cryptographic
primitives (e.g., decrypting eavesdropped messages). Notice that normally, dishonest
users are considered as part of the adversary. However, coerced/bribed users are not
modelled as part of the adversary, as the adversary does not fully trust these users.

3 Formalising privacy properties

In order to formally verify privacy properties of a protocol, the first step is to give pre-
cise definitions of privacy properties. Properties such as anonymity and untraceability



have been formally studied in the literature (e.g., [13–18]), which can be lifted to the
eHealth domain. In eHealth it is important to protect doctor’s prescription behaviour
against bribery. Such kinds of privacy properties have not been studied formally so far.

In this section, we first define prescribing-privacy to model protecting a doctor’s
prescription behaviour without considering bribery. Next, we formally define three
new privacy properties to protect a doctor’s prescribing-privacy against bribery: en-
forced prescribing-privacy, independency of prescribing-privacy, and independency of
enforced prescribing-privacy. In the end, we briefly show the definitions of anonymity,
strong anonymity, untraceability and strong untraceability for eHealth protocols.

In the following discussions, we model an eHealth protocol EHP as a n-role well-
formed [17] protocol of the form: EHP = νm̃.init .(!R1 | . . . |!Rn). In particular,
we have a doctor role Rdr of the form: Rdr = νIddr .initdr .!Pdr , where Pdr =
νpresc.maindr . Essentiality, this formalisation allows us to model an unbounded num-
ber of users and represent each user as an instance of a role. We focus on the behaviour
of a doctor. Each doctor is associated with an identify and can execute an infinite num-
ber of sessions. Within each session, the doctor will create a prescription. Processes init
and initdr model the initialisation of the protocol and the doctor role. Process Pdr mod-
els a session of the doctor role. Furthermore, we use C to denote a context consisting
of honest users; Iddr and presc are free variables; A and B are free names, representing
doctor identities known to the adversary; and a and b are two free names, representing
two different prescriptions.

3.1 Prescribing-privacy

Prescribing-privacy aims to protect doctors’ prescription behaviour, which can be cap-
tured by the unlinkability of a doctor and his prescriptions. Unlinkability is normally
modelled as indistinguishability when two honest users swap their actions (or items),
e.g., see the formalisation of vote privacy [19]. Thus, prescribing-privacy is modelled
as the equivalence of two doctor processes: in the first process, an honest doctor A pre-
scribes a in one of his sessions and another honest doctor B prescribes b in one of his
sessions; in the second one, A prescribes b and B prescribes a.

Definition 3 (Prescribing-privacy). A well-formed eHealth protocol EHP satisfies
prescribing-privacy if

C[
(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
]

≈` C[
(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
].

3.2 Enforced prescribing-privacy

Enforced privacy properties have been proposed and formally studied in different do-
mains to prevent bribery and coercion, for instance, receipt-freeness and coercion-
resistance in E-voting [19, 20], receipt-freeness in online auction [21]. In eHealth, De



Decker et al. [9] identify the need to prevent a pharmaceutical company from bribing a
doctor to favour their medicine. Hence, doctor’s prescribing-privacy should be enforced
by eHealth protocols to prevent doctors bribery.

This means that intuitively, even if a doctor collaborates, the adversary cannot be
certain that the doctor has followed his instructions. Bribed users cannot be modelled
as part of the adversary, as they are not trusted by the adversary. In addition, we need to
model how bribed users share information obtained from channels hidden from the ad-
versary. Inspired by Delaune et al.’s formalisation of receipt-freeness in electronic vot-
ing [19], we define enforced prescribing-privacy to be satisfied if there exists a process
where the bribed doctor does not follow the adversary’s instruction (e.g., prescribing a
particular medicine), which is indistinguishable from a process where she does.

Modelling this property necessitates modelling a doctor who genuinely reveals all
her private information to the adversary. In [19], this is achieved by process transfor-
mation P chc, which transforms a plain process P into one which shares all private in-
formation over the channel chc with the adversary. In addition, we also use their other
transformation P \out(chc,·). This [19] models a process P which erases all outputs on
channel chc. Formally, P \out(chc,·) := νchc.(P |!in(chc, x)).

Definition 4 (Enforced prescribing-privacy). A well-formed eHealth protocol EHP
satisfies enforced prescribing-privacy, if there exist processes init ′dr and P ′dr , such that:

1) C[
(
init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′dr{A/Iddr})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
]

≈` C[
(
(initdr{A/Iddr})chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})chc)

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
];

2) init ′dr{A/Iddr}
\out(chc,·)

.(P ′dr{A/Iddr}
\out(chc,·)

)
≈` initdr{A/Iddr}.(maindr{A/Iddr , b/presc}),

where init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′dr{A/Iddr}) is a closed plain process, and
chc is a fresh channel name.

3.3 Independency of prescribing-privacy

Usually, eHealth systems have to deal with a complex constellation of roles: doctors,
patients, pharmacists, insurance companies, medical administration, etc. Each of these
roles has access to different private information and has different privacy concerns. An
untrusted role may be bribed to reveal private information to the adversary such that the
adversary can break another roles’ privacy. De Decker et al. [9] also note that preserving
doctor privacy is not sufficient to prevent bribery: pharmacists could act as go-betweens.
For instance, pharmacists may have sensitive data which can be revealed to the adver-
sary to break a doctor’s prescribing-privacy. To prevent a party (not a doctor) to do this,
eHealth protocols are required to satisfy independency of prescribing-privacy, meaning
that even if another party Ri reveals their information (i.e., Rchc

i ), the adversary should
not be able to break a doctor’s prescribing-privacy.



Definition 5 (Independency of prescribing-privacy). A well-formed eHealth proto-
col EHP satisfies prescribing-privacy independent of role Ri if

C[!Richc |
(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
]

≈` C[!Richc |
(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
].

where Ri is a non-doctor role.

Note that we assume a worst situation in which a pharmacist genuinely cooperates
with the adversary. For example, the pharmacist forwards all information obtained from
channels hidden from the adversary.

3.4 Independency of enforced prescribing-privacy

We have discussed two situations where a doctor prescription behaviour can be revealed
when either the doctor or another different party cooperates with the adversary. It is
natural to consider the conjunction of these two, i.e., a situation in which the adversary
coerces both a doctor and another party (not a doctor). Since the adversary obtains
more information, this constitutes a stronger attack on doctor’s prescribing-privacy. To
address this problem, we define independency of enforced prescribing-privacy, which
is satisfied when a doctor’s prescribing-privacyis preserved even if both the doctor and
another party reveal their private information to the adversary.

Definition 6 (Independency of enforced prescribing-privacy). A well-formed eHealth
protocol EHP satisfies enforced prescribing-privacy independent of role Ri, if there ex-
ist processes init ′dr and P ′dr , such that:

1) C[!Rchc
i |

(
init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′dr{A/Iddr})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
]

≈` C[!Rchc
i |

(
(initdr{A/Iddr})chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})chc)

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
];

2) init ′dr{A/Iddr}
\out(chc,·)

.(P ′dr{A/Iddr}
\out(chc,·)

)
≈` initdr{A/Iddr}.(maindr{A/Iddr , b/presc}),

where init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′dr{A/Iddr}) is a closed plain process, Ri is
a non-doctor role, and chc is a fresh channel name.

We conjecture that independency of enforced prescribing-privacy implies independency
of prescribing-privacy and enforced prescribing-privacy, each of which also implies
prescribing-privacy.

3.5 Anonymity and strong anonymity

Anonymity is a property that protect users’ identities. We model anonymity as indistin-
guishability of processes initiated by two different users.



Definition 7 (Doctor anonymity). A well-formed eHealth protocol EHP satisfies doc-
tor anonymity for a doctor A if there exists another doctor B, such that

C[initdr{A/Iddr}.!Pdr{A/Iddr}] ≈` C[initdr{B/Iddr}.!Pdr{B/Iddr}].

A stronger notion of anonymity is defined in [17], capturing the situation that the adver-
sary cannot even find out whether a user (with identity A) has participated in a session
of the protocol or not.

Definition 8 (Strong doctor anonymity [17]). A well-formed eHealth protocol EHP
satisfies strong doctor anonymity, if

EHP ≈` νm̃.init .
(
!R1 | . . . |!Rn | (initdr{A/Iddr}.!Pdr{A/Iddr})

)
.

Similarly, we can define anonymity and strong anonymity for patient and other roles in
an eHealth protocol, by simply replacing the doctor role with a different role.

3.6 Untraceability and strong untraceability

Untraceability is a property preventing the adversary from tracing a user. It is defined
as the adversary cannot tell whether two executions are initiated by the same user.

Definition 9 (Doctor untraceability). A well-formed eHealth protocol EHP satisfies
doctor untraceability if, for any two doctors A and B 6= A,

C[initdr{A/Iddr}.(Pdr{A/Iddr} | Pdr{A/Iddr})]
≈` C[(initdr{A/Iddr}.Pdr{A/Iddr}) | (initdr{B/Iddr}.Pdr{B/Iddr})].

A stronger notion of untraceability is proposed in [17] that captures the adversary’s
inability to distinguish the situation in which one user executes the protocol multiple
times from a situation in which no user executes the protocol more than once.

Definition 10 (Strong doctor untraceability [17]). A well-formed eHealth protocol
EHP satisfies strong doctor untraceability, if

EHP ≈` νm̃.init .
(
!R1 | . . . |!Ri−1 |!Ri+1 |!Rn |!(νIddr .initdr .Pdr )

)
.

Similarly, we can define untraceability and strong untraceability for patient and other
roles in an eHealth protocol, by simply replacing the doctor role with a different role.

4 Description and modelling of the DLVV08 protocol

De Decker. et al develop a complex healthcare protocol for the Belgium situation [9],
which captures most aspects of the current Belgian healthcare practice and aims to
provide a strong guarantee of privacy for patients and doctors.

To ensure security and privacy properties, the DLVV08 protocol employs crypto-
graphic primitives such as privacy-preserving credential systems and verifiable public
key cryptography. We briefly describe the used primitives and explain how to model
them in applied pi. Then we briefly discuss the DLVV08 protocol and focus on the
modelling of two sub-protocols in details.



4.1 Cryptographic primitives

Zero-knowledge proofs. A zero-knowledge proof (ZKP) is a cryptographic scheme in
which one party (the prover) proves to another party (the verifier) that a statement is
true, without leaking any information on the statement. A ZKP scheme can be either in-
teractive or non-interactive. We model non-interactive ZKPs as zk(secrets, pub info),
where secrets models private information and pub info models public information [22,
23]. Verification of a ZKP is modelled as Vfy-zk(zk(secrets, pub info), verif info),
with a proof zk(secrets, pub info) to be verified, and some verification information
verif info. Since the private information in a ZKP is known only by the prover, only he
can construct a correct ZKP. To verify a ZKP is to check whether a specific relation be-
tween the secret information and the verification formation is satisfied. Since pub info
and verif info happen to be the same in all ZK proof verifications in this paper, the
generic structure of a verification is Vfy-zk(zk(x, f(x, y)), f(x, y)) = true, where x
denotes private information and y denotes public information.

In DLVV08, both anonymous authentication and verifiable encryption are essen-
tially ZKPs. Anonymous authentication is modelled as a ZKP with a credential as pub-
lic information, while verifiable encryption is modelled as a ZKP with the encrypted
message as part of the public information. The specific function to check a ZKP of type
x is denoted as Vfy-zkx, e.g., verification of a patient’s anonymous authentication is
modelles by function Vfy-zkAuthpt .
Signed proofs of knowledge. Signed proofs of knowledge uses proofs of knowledge
as a digital signature scheme (for details see [24]). Intuitively, a prover signs a message
using some private information, which can be considered as a secret signing key. The
prover uses a proof of knowledge to convince the verifier that he possesses the private
signing “key”. We denote a signed proof of knowledge as spk(secrets, pub info,msg),
which models a message msg and public verification information pub info signed with
signing key secrets [25]. What knowledge is proven depends on the instance of the
proof and is captured by the verification functions for the specific proofs. These proofs
are verified by checking that the signature is correct given the signed message and the
verification information, generically: Vfy-spk (spk (x, f(x, y),m) , f(x, y),m) = true.
Note that specific verification functions depend on the proof to be verified.
Further cryptographic primitives used. A digital credential proves that the owner
possesses some specific properties. We model a doctor credential as a private function
drcred with the doctor’s private information as parameter. Similarly, a patient’s cre-
dential is modelled as a private function ptcred. Functions getpublic, getSpkVinfo and
getSpkMsg model retrieving public information from a ZKP, from a signed proof of
knowledge, and obtaining the message from a signed proof of knowledge, respectively.
Bit-commitments, hash functions, encryptions and signing messages are modelled by
functions commit, hash, enc, and sign, respectively. Correspondingly, opening a com-
mitment, decryption and retrieving the message from a signature are modelled as func-
tions open, dec and getsignmsg.

4.2 Description of the DLVV08 protocol

The protocol involves five roles: doctor, patient, pharmacist, medicine prescription ad-
ministrator (MPA) and health insurance institute (HII).



– A doctor has an identity (Iddr ), a pseudonym (Pnymdr ), and an anonymous doctor
credential (Creddr ) issued by trusted authorities.

– A patient has an identity (Idpt ), a pseudonym (Pnympt ), an HII (Hii), a social
security status (Sss), a health expense account (Acc) and an anonymous patient
credential (Credpt ) issued by trusted authorities.

– Pharmacists, MPA, and HII are public entities, each of which has an identity (Idph ,
Idmpa , Idhii ), a secret key (skph , skmpa , skhii ) and an authorised public key cer-
tificate (pkph , pkmpa , pkhii ) issued by trusted authorities.

The DLVV08 protocol works as follows: a doctor prescribes medicines to a patient;
next the patient obtains medicine from a pharmacist according to the prescription; fol-
lowing that, the pharmacist forwards the prescription to his MPA, the MPA checks the
prescription and refunds the pharmacist; finally, the MPA sends invoices to the patient’s
HII and is refunded.1 Each step is described as a sub-protocol in [9]. Due to space
limitations and the fact that the studied privacy properties mainly involve doctors, pa-
tients and pharmacists, we focus on the first two sub-protocols: the doctor-patient sub-
protocol and the patient-pharmacist sub-protocol.

4.3 Underspecification of the DLVV08 protocol

The DLVV08 protocol leaves the following issues unspecified:

a1 whether a zero-knowledge proof is transferable;
a2 whether an encryption is probabilistic;
a3 whether a patient/doctor uses a fresh identity and/or pseudonym for each session;
a4 whether credentials are freshly generated in each session;
a5 what a patient’s social security status is and how it can be modified;
a6 how many HIIs exist and whether a patient can change his HII;
a7 whether a patient/doctor can obtain a credential by requesting one;
a8 what type of communication channels are used (public or untappable).

To be able to discover potential flaws on privacy, we make the following (weakest)
assumptions in our modelling of the DLVV08 protocol:

s1 the zero-knowledge proofs used are non-interactive and transferable;
s2 encryptions are not probabilistic;
s3 a patient/doctor uses the same identity and pseudonym in every session;
s4 a patient/doctor has the same credential in every session;
s5 a patient’s social security status is the same in every session;
s6 there are many HIIs, different patients may have different HIIs, and a patient’s HII

is fixed and cannot be changed;
s7 a patient/doctor’s credential can be obtained by requesting one;
s8 the communication channels are public.

1 As we do not focus on properties such as revocability and reimbursement, we do not consider
the other two roles: public safety organisation (PSO) and social security organisation (SSO).



4.4 Modelling the doctor-patient sub-protocol

This sub-protocol is used for a doctor, whose steps are labelled di in Fig. 1, to prescribe
medicine for a patient, whose steps are labelled ti in Fig. 2.

First, the doctor anonymously authenticates to the patient using credential Creddr
(d1). The patient reads in the doctor authentication (t1), obtains the doctor credential
(t2), and verifies the authentication (t3). If the verification in step (t3) succeeds, the
patient anonymously authenticates himself to the doctor using his credential (t5, the
first zk function), generates a nonce rpt (t4), computes a commitment with the nonce as
opening information, and proves that the patient identity used in the patient credential
is the same as in the commitment, thus linking the patient commitment and the patient
credential (t5, the second zk).

The doctor reads in the patient authentication as rcv Authpt and the patient proof
as rcv PtProof (d2), obtains the patient credential from the patient authentication (d3),
obtains the patient commitment c Comtpt and the patient credential from the patient
proof, tests whether the credential matches the one embedded in the patient authen-
tication (d4), then verifies the authentication (d5) and the patient proof (d6). If the
verification in the previous item succeeds, the doctor generates a prescription2 presc

(d7), generates a nonce rdr (d8), computes a prescription identity PrescriptID (d9),
and computes a commitment Comtdr using the nonce as opening information (d10).
Next, the doctor signs the message (presc, PrescriptID , Comtdr , c Comtpt ) using a
signed proof of knowledge. This proves the pseudonym used in the credential Creddr is
the same as in the commitment Comtdr , thus linking the prescription to the credential.
The doctor sends the signed proof of knowledge together with the open information of
the doctor commitment rdr (d10).

The patient reads in the prescription as rcv PrescProof and the opening informa-
tion of the doctor commitment (t6), obtains the prescription c presc, prescription iden-
tity c PrescriptID , doctor commitment c Comtdr , and tests the patient commitment
signed in the receiving message (t7). Then the patient verifies the signed proof of pre-
scription (t8). If the verification succeeds, the patient obtains the doctor’s pseudonym
c Pnymdr by opening the doctor commitment (t9).

let Pdr =
d1. out(ch, zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )));
d2. in(ch, (rcv Authpt , rcv PtProof ));
d3. let c Credpt = getpublic(rcv Authpt ) in
d4. let (c Comtpt ,= c Credpt ) = getpublic(rcv PtProof ) in
d5. if Vfy-zkAuthpt (rcv Authpt , c Credpt ) = true then

d6. if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt )) = true then
d7. νpresc;
d8. νrdr ;
d9. let PrescriptID = hash(presc, c Comtpt , commit(Pnymdr , rdr )) in

d10. out(ch, (spk((Pnymdr , rdr , Iddr ),
(commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID, commit(Pnymdr , rdr ), c Comtpt )),

rdr )).

Fig. 1. The doctor process Pdr .

2 A medical examination of the patient is not part of the DLVV08 protocol.



let Ppt p1
=

t1. in(ch, rcv Authdr );
t2. let c Creddr = getpublic(rcv Authdr ) in
t3. if Vfy-zkAuthdr (rcv Authdr , c Creddr ) = true then

t4. νrpt ;
t5. out(ch, (zk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc)),
zk((Idpt , Pnympt , Hii, Sss, Acc),

(commit(Idpt , rpt ), ptcred(Idpt , Pnympt , Hii, Sss, Acc)))));
t6. in(ch, (rcv PrescProof , rcv rdr ));
t7. let (c presc, c PrescriptID, c Comtdr ,= commit(Idpt , rpt ))

= getSpkMsg(rcv PrescProof ) in
t8. if Vfy-spkPrescProof(rcv PrescProof , (c Creddr , c presc, c PrescriptID,

c Comtdr , commit(Idpt , rpt ))) = true then
t9. let c Pnymdr = open(c Comtdr , rcv rdr ) in 0.

Fig. 2. The patient process Ppt in doctor-patient sub-protocol.

4.5 Modelling the patient-pharmacist sub-protocol

This sub-protocol is used for a patient, whose steps are labelled ti in Fig. 3, to obtain
medicine from a pharmacist, whose steps are labelled hi in Fig. 4.

First, the pharmacist authenticates to the patient using a public key authentication
(h1). Note that the pharmacist does not authenticate anonymously, and that the phar-
macists’s MPA identity is embedded. The patient reads in the pharmacist authentication
rcv Authph (t10) and verifies the authentication (t11). If the verification succeeds, the
pharmacist obtains the pharmacist’s MPA identity from the authentication (t12), thus
obtains the public key of MPA (t13). Then the patient anonymously authenticates him-
self to the pharmacist, and proves his social security status using the proof PtAuthSss
(t14). The patient generates a nonce which will be used in a signed proof of knowledge
(t15), and computes verifiable encryptions vc1, vc2, vc3, vc′3, vc4 and vc5 (t16-t21).
These divulge the patient’s HII, the doctor’s pseudonym, and the patient’s pseudonym
to the MPA, the patient’s pseudonym to the HII, and the patient pseudonym and HII to
the social safety organisation, respectively. The patient encrypts vc5 with MPA’s pub-
lic key as c5 (t22). The patient computes a signed proof of knowledge PtSpk which
proves that the patient identity embedded in the prescription is the same as in his cre-
dential3. The patient sends the prescription rcv PrescProof , the signed proof PtSpk ,
and vc1, vc2, vc3, vc

′
3, vc4, c5 to the pharmacist (t23). The pharmacist reads in the au-

thentication rcv PtAuthSss (h2), obtains the patient credential and his social security
status (h3), verifies the authentication (h4). If the verification succeeds, the pharmacist
reads in the patient’s prescription rcvph PrescProof , the signed proof of knowledge
rcvph PtSpk , the verifiable encryptions rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4,
and cipher text rcv c5 (h5); and verifies rcvph PrescProof (h6-h8), rcvph PtSpk (h9-
h10), and rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4 (h11-h20). If all the verifica-
tions succeed, the pharmacist charges the patient, and delivers the medicine (neither are

3 In the prescription, this identity is contained in a commitment. For simplicity, we model the
proof using the commitment instead of the prescription. The link between commitment and
prescription is ensured when the proof is verified (h10).



let Ppt p2
=

t10. in(ch, rcv Authph);
t11. if Vfy-sign(rcv Authph , rcvpt pkph) = true then
t12. let (= cpt Idph , cpt Idmpa) = getsignmsg(rcv Authph , rcvpt pkph) in
t13. let cpt pkmpa = key(cpt Idmpa) in
t14. out(ch, zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss)));
t15. νnonce;
t16. let vc1 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Hii, cpt pkmpa))) in
t17. let vc2 = zk((c Pnymdr , rcv rdr ),

(rcv PrescProof , enc(c Pnymdr , cpt pkmpa))) in
t18. let vc3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , pksso))) in
t19. let vc′

3 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Hii, pksso))) in

t20. let vc4 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , cpt pkmpa))) in

t21. let vc5 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , cpt pkhii ))) in

t22. let c5 = enc(vc5, cpt pkmpa) in
t23. out(ch, (rcv PrescProof ,

spk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt )),
nonce),

vc1, vc2, vc3, vc
′
3, vc4, c5));

t24. in(ch, rcv invoice);
t25. let ReceiptAck = spk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
(c PrescriptID, cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5)) in

t26. out(ch,ReceiptAck).

Fig. 3. The patient process Ppt in patient-pharmacist sub-protocol.

modelled as they are out of DLVV08’s scope). Then the pharmacist generates an invoice
with the prescription identity embedded in it and sends the invoice to the patient (h21).

The patient reads in the invoice (t24), computes a receipt: a signed proof of knowl-
edge ReceiptAck which proves that he receives the medicine (t25); and sends the
signed proof of knowledge to the patient (t26). The pharmacist reads in the receipt
rcv ReceiptAck (h22) and verifies its correctness (h23).

4.6 Claimed privacy properties

The DLVV08 protocol claims to satisfy the following privacy properties:

– Prescribing-privacy: the protocol protects a doctor’s prescription behaviour.
– Enforced prescribing-privacy: the protocol prevents pharmaceutical companies

from rewarding doctors for prescribing their medicine.
– Independency of prescribing-privacy: pharmacists are not able to provide evidence

to pharmaceutical companies about doctors’ prescription.
– Patient anonymity: no party should be able to determine a patient’s identity.
– Patient untraceability: prescriptions issued to the same patient should not be link-

able to each other.



let Pph =
h1. out(ch, sign((Idph , cph Idmpa), skph));
h2. in(ch, rcv PtAuthSss);
h3. let (cph Credpt , cph Sss) = getpublic(rcv PtAuthSss) in
h4. if Vfy-zkPtAuthSss(rcv PtAuthSss, (cph Credpt , cph Sss)) = true then
h5. in(ch, (rcvph PrescProof , rcvph PtSpk ,

rcv vc1, rcv vc2, rcv vc3, rcv vc′
3, rcv vc4, rcv c5));

h6. let (cph Comtdr , cph Creddr ) = getSpkVinfo(rcvph PrescProof ) in
h7. let (cph presc, cph PrescriptID,= cph Comtdr , cph Comtpt )

= getSpkMsg(rcvph PrescProof ) in
h8. if Vfy-spkPrescProof(rcvph PrescProof , (cph Creddr , cph presc, cph PrescriptID,

cph Comtdr , cph Comtpt )) = true then
h9. let c msg = getSpkMsg(rcvph PtSpk) in
h10. if Vfy-spkPtSpk(rcvph PtSpk , (cph Credpt , cph Comtpt , c msg)) = true then
h11. let (= cph Credpt , c Enc1) = getpublic(rcv vc1) in
h12. if Vfy-zkVEncHii(rcv vc1, (cph Credpt , c Enc1, rcvph pkmpa)) = true then
h13. let (= rcvph PrescProof , c Enc2) = getpublic(rcv vc2) in
h14. if Vfy-zkVEncDrnymMpa(rcv vc2, (rcvph PrescProof ,

c Enc2, rcvph pkmpa)) = true then
h15. let (= cph Credpt , c Enc3) = getpublic(rcv vc3) in
h16. if Vfy-zkVEncPtnym(rcv vc3, (cph Credpt , c Enc3, pksso)) = true then
h17. let (= cph Credpt , c Enc′

3) = getpublic(rcv vc′
3) in

h18. if Vfy-zkVEncHii(rcv vc′
3, (cph Credpt , c Enc′

3, pksso)) = true then
h19. let (= cph Credpt , c Enc4) = getpublic(rcv vc4) in
h20. if Vfy-zkVEncPtnym(rcv vc4, (cph Credpt , c Enc4, rcvph pkmpa)) = true then
h21. out(ch, invoice(cph PrescriptID));
h22. in(ch, rcv ReceiptAck);
h23. if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt , cph PrescriptID,

Idph , rcv vc1, rcv vc2, rcv vc3, rcv vc′
3, rcv vc4, rcv c5)) = true then 0.

Fig. 4. The pharmacist process Pph in Patient-Pharmacist sub-protocol.

5 Analysis

In this section, we analyse (enforced) prescribing-privacy, independence of (enforced)
prescribing-privacy, (strong) patient and doctor anonymity, (strong) patient and doctor
untraceability of the DLVV08 protocol, under the assumptions stated in Sect. 4.3. Doc-
tor anonymity and untraceability are not required by the protocol but are still interesting
to analyse. The verification results are summarised in Tab. 1.

The above privacy properties are modelled using equivalences in the applied pi cal-
culus (see Sect. 3). To verify them is to check the satisfiability of the corresponding
equivalence between processes, which can be captured by a bi-process and automati-
cally checked in the tool ProVerif [26]. A bi-process models two processes sharing the
same structure and differing only in terms or destructors. The two processes are written
as one process with choice-constructors which tells ProVerif the spots where the two
processes differ. For example, choice[x, y] means that the first process uses x to replace
choice[x, y] while the second process uses y. The context C in the DLVV08 protocol
for the analysis of privacy properties is defined as C = νm̃.init .(!Rpt |!Rdr |!Rph | ).

5.1 Prescribing-privacy

The verification result shows that the DLVV08 protocol does not satisfy prescribing-
privacy, i.e., the adversary can distinguish whether a prescription is prescribed by doctor
A or doctor B. In the prescription proof, a prescription is linked to a doctor credential.
And a doctor credential is linked to a doctor identity. Thus, the adversary can link a



checked privacy property initial model cause(s) improvement revised model
prescribing-privacy × s4 s4’

√

enforced presc.-priv. × (with s4’ ) s8’
√

independency of presc.-priv.
√

(with s4’)
√

independency of enforced presc.-priv. ×(with s4’) s8’ ×
patient anonymity

√ √

strong patient anonymity
√ √

doctor anonymity × s4 s4’
√

strong doctor anonymity × s4 s4’
√

patient untraceability × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

strong patient untraceability × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

doctor untraceability × s3 s3’
√

strong doctor untraceability × s3 s3’
√

Table 1. Verification results of the DLVV08 protocol with original and revised assumptions.

doctor to his prescription. To break the link, one way is to make sure that the adversary
cannot link a doctor credential to a doctor identity. This can be achieved by adding
randomness to the credential (s4’).

5.2 Enforced prescribing-privacy

The definition of enforced prescribing-privacy is modelled as the existence of a process
P ′dr , such that the two equivalences in Def. 4 are satisfied. Due to the existence quantifi-
cation, we cannot verify the property directly using ProVerif – as we can use ProVerif
to verify equivalences, but not to show the existence of such processes.

By examining the DLVV08 protocol, we find an attack on enforced prescribing-
privacy, even after fixing prescribing privacy (with assumption s4’). A bribed doctor is
able to prove to the adversary of his prescription as follows:

1. A doctor communicates with the adversary (a pharmaceutical company) to agree
on a bit-commitment that he will use, which links the doctor to the commitment.

2. The doctor uses the agreed bit-commitment in the communication with his patient.
This links the bit-commitment to a prescription.

3. Later, when the patient uses this prescription to get medicine from a pharmacist,
the adversary can observe the prescription being used. This proves that the doctor
has really prescribed the medicine.

Formally, using ProVerif, we can show that if a doctor reveals all his information
to the adversary, the doctor’s prescribing-privacy is broken. To prove that there exist
no alternative precesses for a doctor to cheat the adversary, we assume that there exists
a process P ′dr which satisfies the definition of enforced prescribing-privacy, and then
derive some contradiction. A bribed doctor reveals the nonces used in the commitment
and the credential to the adversary. Thus, the adversary links a bribed doctor to his com-
mitment and credential. In the prescription proof, a prescription is linked to a doctor’s
commitment and credential. Suppose there exists a process P ′dr in which the doctor lies
to the adversary that he prescribed a, while the adversary observes that the commitment
or the credential is linked to b. The adversary can detect that the doctor has lied.



5.3 Doctor’s (enforced) prescribing-privacy independent of pharmacist

The doctor’s prescribing-privacy independent of the pharmacist is modelled by replac-
ing Ri with Rph in Def. 5. The verification result shows that the protocol (after fixing
the flaw on prescribing-privacy with assumption s4’) satisfies this property.

Similarly, the doctor’s enforced prescribing-privacy independent of pharmacist is
defined as replacing Ri with Rph in Def. 6. The flaw described in the previous section
is also applied here. Intuitively, when a doctor is able to prove his prescription without
the pharmacist sharing information with the adversary, the doctor can certainly prove it
when the pharmacist genuinely cooperates with the adversary.

5.4 (Strong) patient and doctor anonymity

Our verification results show that the protocol satisfies patient anonymity and strong
patient anonymity but not doctor anonymity, nor strong doctor anonymity (see Def. 7
and Def. 8).

For strong doctor anonymity, the adversary can distinguish a process initiated by
an unknown doctor and a known doctor. Given a doctor process, where the doctor’s
identity is A and his pseudonym is Pnymdr , his credential is drcred(Pnymdr , A). Pnymdr
and drcred(Pnymdr , A) are revealed. We assume that the adversary knows another doctor
identity B. The adversary can fake an anonymous authentication by faking the zero-
knowledge proof as zk((Pnymdr , B), drcred(Pnymdr , A)). If the zero-knowledge proof
passes the corresponding verification Vfy-zkAuthdr by the patient, then the adversary
knows that the doctor process is executed by the doctor B. Otherwise, not.

For the same reason, doctor anonymity fails the verification. Both flaws can be fixed
by requiring a doctor to generate a new credential in each session (s4’).

5.5 (Strong) patient and doctor untraceability

The DLVV08 protocol does not satisfy patient/doctor untraceability (see Def. 9), nor
strong untraceability (see Def. 10).

The adversary can distinguish sessions initiated by one doctor and by different doc-
tors. The doctor’s pseudonym is revealed and a doctor uses the same pseudonym in
all sessions. Sessions with the same doctor pseudonyms are initiated by the same doc-
tor. For the same reason, doctor untraceability also fails. Both of them can be fixed by
requiring a doctor to freshly generate his pseudonym in each session (s3’).

For strong patient untraceability, the adversary can distinguish sessions initiated
by one patient (with identical social security statuses) and initiated by different pa-
tients (with different social security statuses). Second, the adversary can distinguish
sessions initiated by one patient (with identical cipher texts enc(Pnympt , pksso) and
identical enc(Hii, pksso)) and initiated by different patients (with different cipher texts
enc(Pnympt , pksso) and different enc(Hii, pksso)). Third, since the patient credential
is the same in all sessions and is revealed, the adversary can also trace a patient by
the patient’s credential. Fourth, the adversary can distinguish sessions using the same
HII and sessions using different HIIs. For the same reasons, patient untraceability fails.
Both flaws can be fixed by revising the assumptions (s5’, s2’, s4” and s6’).



5.6 Addressing the flaws of the DLVV08 protocol

To summarise, we modify assumptions in Sect. 4.3 to fix the flaws found in our analysis.

s2’ The encryptions are probabilistic.
s3’ A doctor’s pseudonym is freshly generated in every session.
s4’ A doctor freshly generates an unpredictable credential in each session. We model

this with another parameter (a random number) of the credential. Following this,
anonymous authentication using these credentials proves knowledge of the used
randomness.

s4” A patient freshly generates a credential in each session.
s5’ A patient’s social security status is different in each session.
s6’ All patients share the same HII.

The modified protocol is verified again using ProVerif. The verification results show that
the protocol with revised assumptions satisfies prescribing-privacy, doctor anonymity
and strong anonymity, patient and doctor untraceability and strong untraceability.

To make the protocol satisfies enforced prescribing-privacy, we apply the following
assumption on communication channels.

s8’ The communication channels are untappable, except that communication channels
for authentications remain public.

Our model of the protocol is accordingly modified as follows: replacing channel ch
in lines d10, t6 with an untappable channel chdp , replacing channel ch in lines t23,
t26, h5, h22 with an untappable channel chptph , and replacing channel ch in lines t24,
h21 with an untappable channel chphpt . We prove that the protocol (with s4’ and s8’)
satisfies enforced prescribing-privacy by showing the existence of a process P ′dr such
that the equivalences in Def. 4 are satisfied.

However, with the above assumptions the DLVV08 protocol does not satisfy in-
dependency of enforced prescribing-privacy. We first show that P ′dr is not sufficient
for proving this with ProVerif. Then we prove (analogous to the proof in Sect. 5.2) that
there is no alternative process P ′dr which satisfies Def. 6. Intuitively, all information sent
over untappable channels are received by pharmacists and can be genuinely revealed to
the adversary by the pharmacists (do not lie by assumption). Hence, there still exist
links between a doctor, his nonces, his commitment, his credential and his prescription,
when the doctor is bribed/coerced to reveal the nonces used in the commitment and the
credential to the adversary.

6 Conclusion

In this paper, we have identified new privacy requirements for eHealth systems and for-
malised them in the applied pi calculus. Then we took the DLVV08 protocol as a case
study. We have found ambiguities in the protocol and privacy flaws as consequence, and
proposed possible solutions for fixing them. We hope that our findings can help to clar-
ify and improve the design of the DLVV08 protocol, satisfying a number of necessary
privacy requirements.
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