
Modelling implicit dynamic introduction of function

symbols in mathematical texts

Marcos Cramer

University of Luxembourg
marcos.cramer@uni.lu

Abstract

The specialized language of mathematics has a number of linguistically and
logically interesting features. One of them, which to our knowledge has not been
systematically studied before, is the implicit dynamic introduction of function sym-
bols, exemplified by constructs of the form “for every x there is an f(x) such that
. . . ”. We present an extension of Groenendijk and Stokhof’s Dynamic Predicate
Logic – Typed Higher-Order Dynamic Predicate Logic – which formally models this
feature of the language of mathematics. Furthermore, we illustrate how the im-
plicit dynamic introduction of function symbols is treated in the proof checking
algorithm of the Naproche system.

dynamic quantification, Dynamic Predicate Logic, function introduction, language of mathe-

matics, formal mathematics

1 Introduction

Like other sciences, mathematics has developed its own specialized language, which
we call the language of mathematics. This specialized language has a number of lin-
guistically and logically interesting features: For example, on the syntactic level, it
can incorporate complex symbolic material into natural language sentences. On the
semantic level, it refers to rigorously defined abstract objects, and is in general less
open to ambiguity than most other text types. On the pragmatic level, it reverses the
expectation on assertions, which have to be implied by the context rather than adding
new information to it.

The work presented in this paper has been conducted in the context of the Naproche
project, an interdisciplinary project at the universities of Bonn and Duisburg-Essen
which analyses the language of mathematics with methods from mathematical logic
and computational and formal linguistics (see section 1.4 of [5]). The main aim of the
Naproche project has been to develop a controlled natural language (CNL) – i.e. a sub-
set of a natural language defined through a formal grammar – for writing mathematical
texts, and a computer program, the Naproche system, that can check the correctness
of mathematical proofs written in this CNL. For the development of this CNL and this
system, we had to develop new linguistic and logical machinery, which is thoroughly
discussed in the author’s PhD thesis [5]. In this paper we focus on one particular phe-
nomenon of the language of mathematics, the implicit dynamic introduction of function

1

Modelling implicit dynamic function introduction easychair: Running author head is undefined.

symbols, and show how it can be modelled in a formal system. To our knowledge, this
phenomenon has not been previously described in the literature or formally modelled
in a formalism.1

Since this phenomenon is a special case of the phenomenon of dynamic quantifi-
cation, we first briefly discuss this well-known phenomenon and one of the standard
solutions to it, Groenendijk and Stokhof’s Dynamic Predicate Logic.

2 Dynamic quantification and Dynamic Predicate Logic

When translating natural language sentences to standard first-order formulae, there is
a problem in the treatment of natural language quantifiers. For example, the indefinite
article a is normally translated by an existential quantifier, but the natural translation
(

Because of this difference between the functioning of quantifiers in natural lan-
guage and in standard first-order logic, formal linguists say that natural language has
dynamic quantifiers, whereas standard first-order logic has static quantifiers. Jeroen
Groenendijk and Martin Stokhof have developed a variant of first-order logic called
Dynamic Predicate Logic (DPL) [7] which has dynamic instead of static quantifiers. In
DPL,

The natural language quantification used in mathematical texts also exhibits these
dynamic features, as can be seen in the following quotation from [8, p. 36]:

If a space X retracts onto a subspace A, then the homomorphism i∗ :
π1(A, x0)→ π1(X,x0) induced by the inclusion i : A ↪→ X is injective.

2.1 DPL semantics

We present DPL semantics in a way slightly different but logically equivalent to its
definition in [7]. Structures and assignments are defined as for standard first-order
logic: A structure S specifies a domain |S| and an interpretation aS for every constant,
function or relation symbol a in the language. An S-assignment is a function from
variables to |S|. GS is the set of S-assignments. Given two assignments g, h, we define
g[x]h to mean that g differs from h at most in what it assigns to the variable x. Given
a DPL term t, we recursively define

[t]gS :=


g(t) if t is a variable,

tS if t is a constant symbol,

fS([t1]
g
S , . . . , [tn]gS) if t is of the form f(t1, . . . , tn).

1The only exception being the author’s paper [4], which sketched part of the material presented in
this paper.

2

Modelling implicit dynamic function introduction easychair: Running author head is undefined.

In [7], DPL semantics is defined via an interpretation function J•KS from DPL formulae
to subsets of GS×GS . We instead recursively define for every g ∈ GS an interpretation
function J•KgS from DPL formulae to subsets of GS :2

1. J>KgS := {g}
2. Jt1 = t2K

g
S := {h|h = g and [t1]

g
S = [t2]

g
S}3

3. JR(t1, . . . , t2)K
g
S := {h|h = g and ([t1]

g
S , . . . , [t2]

g
S) ∈ RS}

4. J¬ϕKgS := {h|h = g and there is no k ∈ JϕKhS}
5. Jϕ ∧ ψKgS := {h|there is a k s.t. k ∈ JϕKgS and h ∈ JψKkS}
6. Jϕ→ ψKgS := {h|h = g and for all k s.t. k ∈ JϕKhS , there is a j s.t. j ∈ JψKkS}
7. J∃x ϕKgS := {h|there is a k s.t. k[x]g and h ∈ JϕKkS}

ϕ∨ψ and ∀x ϕ are defined to be a shorthand for ¬(¬ϕ∧¬ψ) and ∃x > → ϕ respectively.

3 Implicit dynamic function introduction

Functions are often dynamically introduced in an implicit way in mathematical texts.
For example, [10, p. 1] introduces the additive inverse function on the reals as follows:

(1) For each a there is a real number −a such that a+ (−a) = 0.

Here the natural language quantification “there is a real number −a” locally (i.e. inside
the scope of “For each a”) introduces a new real number to the discourse. But since
the choice of this real number depends on a and we are universally quantifying over
a, it globally (i.e. outside the scope of “For each a”) introduces a function “−” to the
discourse.

The most common form of implicitly introduced functions are functions whose ar-
gument is written as a subscript, as in the following example:

(2) Since f is continuous at t, there is an open interval It containing t such that
|f(x)− f(t)| < 1 if x ∈ It ∩ [a, b]. [10, p. 62]

If one wants to later explicitly call the implicitly introduced function a function (or a
map), the standard notation with a bracketed argument is preferred:

(3) Hence for each u ∈ Rn there is a number f(u) ∈ C with f(u) 6= 0 such that
(σ(α(u))3, σ(α(u)) Σ(α(u)), T (α(u))) = f(u)(x1(u), x2(u), x3(u)).
The function f is locally a quotient of continuous functions, so it is itself contin-
uous. [2, p. 489]

(4) Suppose that, for each vertex v of K, there is a vertex g(v) of L such that
f(stK(v)) ⊂ stL(g(v)). Then g is a simplicial map V (K) → V (L), and |g| w f .
[9, p. 19]

2This can be viewed as a different currying of the uncurried version of the interpretation function
in [7].

3The condition h = g in cases 2, 3, 4 and 6 implies that the defined set is either ∅ or {g}.

3

Modelling implicit dynamic function introduction easychair: Running author head is undefined.

(5) Since the multi-map Φ−1 is surjective, for every x ∈ X there is a point f(x) ∈ Y
with x ∈ Φ−1(f(x)), which is equivalent to f(x) ∈ Φ(x). It follows from the
bornologity of Φ that the map f : X → Y is bornologous. [1, p. 5]

When no uniqueness claims are made about the object locally introduced to the
discourse, implicit function introduction presupposes the existence of a choice function,
i.e. presupposes the Axiom of Choice. We hypothesize that the naturalness of such
implicit function introduction in mathematical texts contributes to the wide-spread
feeling that the Axiom of Choice must be true.

Implicitly introduced functions are generally partial functions, i.e. they have a re-
stricted domain and are not defined on the whole universe of the discourse. For example
in (

Implicit function introduction can also be used to introduce multi-argument func-
tions. For example, subtraction on the reals could be introduced by a sentence of the
following form:

(6) For all reals a, b, there is a real a− b such that (a− b) + b = a.

For the sake of simplicity and brevity, we restrict ourselves to unary functions for the
rest of this paper. See section 5.1 of [5] for an account of how to extend the presented
formalization of implicit dynamic function introduction to multi-argument and curried
functions.

4 Typed Higher-Order Dynamic Predicate Logic

Typed Higher-Order Dynamic Predicate Logic (THODPL) extends DPL to a higher-
order system that formalizes the implicit dynamic introduction of function symbols.

The type system used in THODPL is Church’s Simple Type Theory [3] with two
base types i (for objects) and o (for propositions), and a function type T1 → T2 for any
two types T1, T2. We assume a countably infinite supply of variables and constants of
each type. In the examples below we use x and y as variables of the basic type i, f as
a variable of the function type i→ i and R as a constant of type i→ (i→ o).

The distinctive feature of THODPL syntax is that it allows not only variables but
any well-formed terms to come after quantifiers. Writing tT for a well-formed term of
type T , we can define THODPL formulae as follows:

ϕ ::= to|tT = tT |def(tT)|>|∃tT ϕ|¬ϕ|ϕϕ|ϕ→ ϕ

The intended meaning of def(tT) is that tT is a defined term. This is needed because
THODPL allows for partial functions and hence for undefined terms.

Similarly as in DPL, ϕ ∨ ψ and ∀t ϕ are defined to be a shorthand for ¬(¬ϕ ∧ ¬ψ)
and ∃t > → ϕ respectively. Instead of R(t1)(t2), we also write R(t1, t2) in uncurried
notation.

Since terms can come after quantifiers, (

4

Modelling implicit dynamic function introduction easychair: Running author head is undefined.

4.1 THODPL semantics

Since implicitly introduced functions can be partial, THODPL does not assume function
variables to refer to total functions. Partial functions can give rise to undefined terms, so
we need to handle these in THODPL semantics. This is done by extending the domain
of discourse by an object u used as the value of undefined terms. This motivates the
following two definitions:

Let D be a non-empty set. Fix some u /∈ D. Then we define DT for every type T
inductively as follows:
Di := D
Do := {>,⊥}
DT1→T2 := (DT2 ∪ {u})DT1

A THODPL structure is a pair S = (D,F), where D is a non-empty set called the
domain of S and F is a map that assigns to every constant of type T an element of
DT .

In order to handle quantifiers followed by complex terms, assignments in THODPL
can not only assign values to variables, but also to complex terms:

Given a THODPL structure S = (D,F), an S-assignment is a partial function g
from THODPL terms to

⋃
T DT satisfying the following two properties:

• g is defined on all variables.

• For every type T and every term t of type T , if g(t) is defined, then g(t) ∈ DT .

We denote the set of S-assignments by GS .

Given two assignments g and h, we define g[t1, . . . , tn]h to mean that dom(g) =
dom(h) ∪ {t1, . . . , tn} and for all s ∈ dom(h) \ {t1, . . . , tn}, g(s) = h(s).

Now we are ready to present the semantics of THODPL in two definitions, one for
THODPL terms and one for THODPL formulae:

Given a THODPL structure S = (D,F) and an S-assignment g, we recursively
define [t]gS for THODPL terms t as follows:

[t]gS :=


g(t) if t is a variable,

F (t) if t is a constant symbol,

[t0]
g
S([t1]

g
S) if t is of the form t0(t1) and [ti]

g
S 6= u for i ∈ {1, 2},

u if t is of the form t0(t1) and [ti]
g
S = u for some i ∈ {1, 2}.

Given a THODPL structure S = (D,F) and an S-assignment g, we recursively
define for every g ∈ GS an interpretation function J•KgS from THODPL formulae to
subsets of GS :

1. JtKgS :=

{
{g} if [t]gS = >S

∅ otherwise

5

Modelling implicit dynamic function introduction easychair: Running author head is undefined.

2. Jt1 = t2K
g
S :=

{
{g} if [t1]

g
S = [t2]

g
S

∅ otherwise

3. Jdef(t)KgS :=

{
{g} if [t]gS 6= u

∅ otherwise

4. J>KgS := {g}
5. J∃t ϕKgS := {h | there is a k such that k[t]g and h ∈ JϕKkS}

6. J¬ϕKgS :=

{
{g} if there is no h such that h ∈ JϕKgS
∅ otherwise

7. JϕψKgS := {h | there is a k such that k ∈ JϕKgS and h ∈ JψKkS}
8. Jϕ → ψKgS := {h|h differs from g in at most some function variables f1, . . . , fn

(where this choice of function variables is maximal), and there is a variable x
such that for all k ∈ JϕKgS , there is an assignment j ∈ JψKkS such that j(fi(x)) =
h(fi)(k(x)) for 1 ≤ i ≤ n, and if n > 0 then k[x]g }

In order to make case

J∃x > → ∃f(x) R(x, f(x))KgS = {h|h[f]g and there is a variable x such that
for all k such that k[x]g, there is an as-
signment j satisfying R(x, f(x)) such that
j[f(x)]k and j(f(x)) = h(f)(k(x)), and
k[x]g}

= {h|h[f]g and for all k such that k[x]g, there
is an assignment j satisfying R(x, f(x)) such
that j[f(x)]k and j(f(x)) = h(f)(k(x))}

= {h|h[f]g and for all k such that k[x]h, k sat-
isfies R(x, f(x))}

= J∃f (∀x R(x, f(x)))KgS

The truth condition of a formula ϕ under (S, g) is determined by JϕKgS being empty
or non-empty (with emptiness corresponding to falsehood). So the claim made above
that (

J∃x > → ∃f(x) R(x, f(x))KgS 6= ∅

iff {h | h[f]g and for all k such that k ∈ J∃x >KgS , there is an assignment
j ∈ J∃f(x) R(x, f(x))KgS such that j(f(x)) = h(f)(k(x))} 6= ∅

iff {h | h[f]g and for all k such that k[x]g, there is an assignment j such that
j[f(x)]k, j ∈ JR(x, f(x))KgS and j(f(x)) = h(f)(k(x))} 6= ∅

6

Modelling implicit dynamic function introduction easychair: Running author head is undefined.

iff {h | h[f]g and for all k such that k[x]g, F (R)(k(x), h(f)(k(x))) = >} 6= ∅
(where we write S = (D,F) again)

iff there is a function f̄ such that for all k such that k[x]g, F (R)(k(x), f̄(k(x))) =
>

iff for all k such that k[x]g, there is a ȳ such that F (R)(k(x), ȳ) = > (the
right-to-left implication follows from the Axiom of Choice)

iff J∃x > → ∃y R(x, y)KgS 6= ∅.

5 Implicit dynamic function introduction and proof-checking

The Naproche system mentioned in the introduction can check mathematical texts
written in a controlled natural language. It is interesting to see how implicit dynamic
function introduction can be used to introduce functions to the discourse without having
to explicitly prove their existence. For this, we first briefly sketch the general working
of the proof-checking implemented in the Naproche system.

For checking single proof steps, the Naproche system makes use of state-of-the-
art automated theorem provers (ATPs) for standard first-order logic. Given a set of
premises4 Γ and a conjecture ϕ, an ATP tries to find either a proof that the Γ logically
implies ϕ, or build a model for Γ ∪ {¬ϕ}, which shows that they do not imply it. A
conjecture together with a set of premises handed to an ATP is called a proof obligation.
We denote the proof obligation consisting of premises Γ and conjecture ϕ by Γ `? ϕ.

The proof checking algorithm keeps track of a list of first-order premises considered
to be true. This list gets updated continuously during the checking process. Each
assertion is checked by an ATP based on the currently active premises.

We illustrate the functioning of the proof checking algorithm on an example. Sup-
pose that the Naproche system has to check the text in (

The Naproche system does not check the Naproche CNL input directly, but first
translates it into a semantic representation format which is an extension of THODPL.
The proof checking algorithm is then defined on input in this extension of THODPL
(see chapter 6 of [5]).

In order to show how the proof checking works in the context of implicitly introduced
function symbols, we reconsider the example sentence (

So when checking (

4In the ATP community, the term “axiom” is usually used for what we call “premise” here; the
reason for our deviation from the standard terminology is that in the context of our work the word
“axiom” means a completely different thing, namely an axiom stated inside a mathematical text that is
to be checked by the Naproche system. The premises that we are considering here can originate either
from axioms, from definitions, from assumptions or from previously proved results.

7

Modelling implicit dynamic function introduction easychair: Running author head is undefined.

6 Conclusion

The phenomenon of implicit dynamic introduction of function symbols discussed in this
paper is interesting both from a theoretical and from a practical perspective:

From a theoretical perspective, it is an interesting case of dynamic quantification
which needs to be taken into consideration if one wants to give a full account of the
nature of quantification in natural language (at least if one accepts specialized languages
like the language of mathematics as instances of natural language).

From a practical point of view, developers of a formal mathematics computer system
can make their system more easily usable by allowing for implicit dynamic introduction
of function symbols in the input language and treating it similarly as described in
section

To our knowledge, the phenomenon of implicit dynamic introduction of function
symbols has not been previously described in the linguistic or logical literature. In
this paper, we have presented a formalization of this phenomenon in a higher-order
extension of Dynamic Predicate Logic, and have illustrated its functioning in the proof
checking algorithm of the Naproche system.

References

[1] Banakh, T., Zarichnyy, I.: The coarse classification of homogeneous ultra-metric spaces.
Preprint (2008), arXiv:0801.2132

[2] Bonk, M.: On the second part of Hilbert’s fifth problem. Mathematische Zeitschrift 210(1)
(1992)

[3] Church, A.: A formulation of the simple theory of types. Journal of Symbolic Logic 5,
56–68 (1940)

[4] Cramer, M.: Implicit dynamic function introduction and its connections to the foundations
of mathematics. In: Prosorov, O. (ed.) Proceedings of the International interdisciplinary
conference on Philosophy, Mathematics, Linguistics: Aspects of Interaction (PhML 2012).
pp. 35–42 (2012)

[5] Cramer, M.: Proof-checking mathematical texts in controlled natural language. Ph.D.
thesis, University of Bonn (2013)

[6] Geach, P.T.: Reference and Generality. An Examination of Some Medieval and Modern
Theories. Cornell University Press, Ithaca, NY (1962)

[7] Groenendijk, J., Stokhof, M.: Dynamic Predicate Logic. Linguistics and Philosophy 14(1),
39–100 (1991)

[8] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

[9] Lackenby, M.: Topology and Groups (2008), http://people.maths.ox.ac.uk/lackenby/
tg050908.pdf

[10] Trench, W.: Introduction to Real Analysis. Prentice Hall, Upper Saddle River, NJ (2003)

8

http://people.maths.ox.ac.uk/lackenby/tg050908.pdf
http://people.maths.ox.ac.uk/lackenby/tg050908.pdf

