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Abstract — This paper introduces a monolithic approach that provides simultaneous modeling and
analysis of a coupled energy harvester, which involves surface-coupled fluid-structure interaction,
volume-coupled piezoelectric mechanics and a controlling energy harvesting circuit for applications in
energy harvesting. The weak form of the governing equations is discretized by the space-time finite
element method based on a mixed velocity-stress/rate form of the potential-dielectric displacement
framework. The results will be compared to test cases with closed-form solution available from
literature.
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1 Motivation

The growth of wireless sensors and wearable electronic devices has seen a steady increase over the
past few years. This has driven the need for electronic devices with extended life spans. The goal of
energy harvesting is to scavenge energy from the environment to power these devices by converting
ambient energy into useful electrical energy. Such devices provide significant incentives to replace
batteries as power source for providing electrical energy owing to limited battery lifespan and
persistent stagnation in the technological development of batteries. Also, replacing batteries becomes
less feasible in applications related to wireless sensor networks and low power miniature sensors,
which are often embedded in the structure placed in remote locations. There are many methods such as
electrostatic generation, electro magnetic induction, dielectric elastomers, and piezoelectric materials
to scavenge energy from ambient sources. This research focuses on energy harvesting by flow-driven
piezoelectric devices.

Thus the motivation of this research is two fold: Firstly, to make use of the structural vibrations in
such a way that the fluid-structure interaction can be effectively controlled to harvest useful energy to
power small-scale energy devices. The other goal is to develop a numerical model to solve the
discretized equations in a monolithic framework i.e., a holistic approach that solves the equations in a
single algebraic system, which facilitates realistic approximation of the strongly coupled nature of the
problem. The complex coupled system is investigated based on an available and validated
simultaneous space-time finite element method [1,2]. This system also enables to consider the
backward coupling involved between the harvester and the harvesting circuit.

2 Model Setup

2.1 System description

The coupled system consists of an elastic beam like structure embedded with thin piezoelectric
patches placed in fluid flow and a suitable energy harvesting circuit that stores and transforms energy
generated by the harvester. The behavior of the structure in the time interval I = (, t,) and occupying
the space-time domain Q, = QX[ is described in the reference configuration using a Lagrangian
description to account for large deformations and in the same time interval, the behavior of the fluid



occupying the space-time domain Q@ = QX[ is described in the current configuration in Eulerian
framework. The harvesting circuit is represented by a resistor element and inductor connected in series
or in parallel with the electrodes from the piezoelectric patches. The system is modeled in a 3-
dimensional framework to enable straightforward application of constitutive models without reducing
them based on assumptions for specific structures.

2.2 Strong form of Governing Equations

This section describes in brief the strong form of the governing equations of the multi-physics problem
and the associated boundary conditions along with the linear inverse piezoelectric constitutive law.

The electrostatic response of a piezoelectric structure coupled to an energy harvesting circuit and
placed in a fluid flow is governed by the following balance equations
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Where, eq. (1), (2) and (3) represent the elasto-dynamic behavior of the structure, electrostatic
equilibrium of the piezoelectric material represented by Gauss’ law and the momentum balance
equation for the fluid. Eq. (4) is the incompressibility equation and eq. (5) is the harvesting circuit
given by Kirchhoff Voltage Law (KVL) respectively. F represents material deformation gradient, § is
the second Piola-Kirchhoff tensor, v is the velocity, D is the dielectric displacement vector, b is the
body force vector and p is the mass density. R and L are the resistor and inductor components of the
harvesting circuit respectively. The subscript (¢), represents the quantities described in reference
configuration.

The Second Piola-Kirchhoff tensor § and the dielectric displacement vector D are related to the green
Lagrangian strain tensor € and the electric field vector E through linear inverse piezoelectric
constitutive relation, which is described in a rate formulation.
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Where ¢, d and € are the compliance matrix, piezoelectric matrix and dielectric constant matrix

respectively. The rate of strain tensor, £ and the rate of electric field vector, E, are related to the
velocity gradient and the rate of dielectric potential, Y respectively by the following relation
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Where 1) = ¢, the rate of electric potential. The Cauchy stress tensor, T of the incompressible fluid in
eq. (1) is given by

T =—pl+2uD
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Where p is the hydrostatic pressure, u is the kinematic viscosity and D is the strain rate tensor and
described by the following relation

1
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The piezoelectric body Qg, could be subject to either Dirichlet or Neumann mechanical and electrical
boundary conditions or a combination of both on its boundary Py, where Py = I3 X
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Where v, hy, 1 and g are specified mechanical velocity, traction, potential rate and surface charge
respectively. The boundary Py = Pog uUPl= Polp U Poq. The boundary conditions are considered along

with appropriate initial conditions. Essential boundary condition and the natural boundary conditions
on the fluid boundary are defined by

2.3 Weak form of the governing equations

The method of weighted residuals is applied to the strong form of the equations. The resulting weak
form is discretized both in space and time using space-time finite element method. The temporal axis
is included in the finite element discretization where in the domain Q,, is divided into N time slabs as
Qn = Qp X[ty the1], as can be seen from Fig 1, which are solved successively. This leads to
numerical efficiency. Additional jump terms are added in the weak form to account for the time-
discontinuous approximation of the unknowns since the energy of the discretized system at time slab
t, has to be equal to the energy at the beginning of the next time slab t;!.

FIG. 1 — Discretization of the continuous space-time domain using space-time finite elements [1]



24 Coupling strategy

Suitable interface conditions are provided to represent the strong coupling between the fluid and
piezoelectric domain, and also the coupling between the electrical circuit and the structure. The
velocity based structural formulation allows for native fluid-structure coupling as shown in the Figure
2.
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FIG. 2 — Weak coupling (left) and native coupling (right) strategy for FSI

The piezoelectric device is coupled to the electrical circuit by assuming a priori that the voltage
generated in the harvester as a result of structural vibrations is equal to the voltage across the circuit
element.

2.5 Outlook

The project contributes to the mathematical modeling and numerical discretization of complex
multi- physics system in an efficient way by simultaneously solving the various fields involved which
facilitates an ideal basis for precise and transient coupling. This may lead to improved convergence
and numerical efficiency in comparison with partitioned approaches. This methodology also provides
new insights and in-depth understanding on design requirements on such energy harvesting devices in
terms of their robustness and efficiency.
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