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Numerical simulation of biological flows
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Summary
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✓ PDEs numerical approximation

➡Finite Element Methods (overview)

➡Reduced Order Methods

• Reduced-Basis

• Proper Orthogonal Decomposition

✓ Numerical Results
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A numerical approximation
Overview on Finite Element Method (FEM)
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FEM versus ROM

FEM space ROM space

�N = ['1 . . .'N ] 2 RN⇥N

eu = �T
Nu

VN ⌘ span{v1, . . . , vN } ⇢ V
dim(VN ) = N

eu =
NX

i

ũi'i(x), ũi = hu,'iiu =
NX

i

uivi(x), ui = hu, vii

VN ⌘ span{'1, . . . ,'N} ⇢ VN

x1

x2

x3

dim(VN ) = N ⌧ N
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General ROM formulation
Diffusion problem

Linear case
Ku = f

eK = �TK�, eK 2 RN⇥N

eu = �Tu, eu 2 RN

ef = �T f , ef 2 RN

K 2 RN⇥N

u 2 RN

f 2 RN

eKeu = ef

� = ['1, . . . ,'N ] 2 RN⇥N

Weak formulation

FEM

ROM

Z

⌦
�rurv + B.C. =

Z

⌦
fv

8v 2 V

⇢
�r · (�ru) = f, ⌦ ⇢ Rd

B.C. @⌦
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Reduced-Basis Method
A “classical” approach to Reduced Order Models

‣Use information  given by FEM solution(s) to build a suitable basis
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Reduced-Basis Method
A “classical” approach to Reduced Order Models

‣Use information  given by FEM solution(s) to build a suitable basis

‣Can reproduce events described by the FEM solution(s)

1.Solve with FEM the (linear) problem(s)
@
t

u = F (u, @(n)
x

,⇡), in ⌦⇥ [0, T ] ⇢ Rd ⇥ R+

2.Collect snapshots of FEM solution(s) in a matrix

S = (u1, . . . ,up) 2 RN⇥p ui =

2

64
u(x1, ti)

...
u(xN , ti)

3

75 2 RN
, 8i = 1, . . . ,N

3.Orthonormalization of the matrix
� = orthonorm(S)
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RB application
Diffusion problem
1.Solve with FEM the (linear) problem(s) for different f
⇢

��u = f, ⌦ = (0, 1)2

u = 0, @⌦

2.Collect snapshots of FEM solution(s)

3.Orthonormalization of the matrix

� = [�1, . . . ,�4]

0.0 6. x 10-2
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RB application
Diffusion problem

RB basis functions

-0.05 0.15
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RB application
Diffusion problem

FEM RB (N=4) ERROR

NB the solution is “in” the basis

0.0 6. x 10-20.0 6. x 10-2 0.0 5. x 10-7
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RB application
Diffusion problem

NB the solution is NOT “in” the basis

0.0 2. x 10-2 0.0 1.0

FEM RB (N=4) ERROR

0.0 6. x 10-2
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RB application
Diffusion problem

FEM snapshots 
25 sources

0.0 6. x 10-2
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RB application
Diffusion problem

RB (N=25)

NB the solution is NOT “in” the basis

FEM ERROR

0.0 6. x 10-20.0 6. x 10-2 0.0 0.25
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Another “classical” approach to Reduced Order Models

‣Use information  given by FEM solution(s) to build a suitable basis
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Proper Orthogonal Decomposition (POD)
Another “classical” approach to Reduced Order Models

‣Use information  given by FEM solution(s) to build a suitable basis

‣Can reproduce events described by the FEM solution(s)

1.Solve with FEM the problem(s)
@
t

u = F (u, @(n)
x

,⇡), in ⌦⇥ [0, T ] ⇢ Rd ⇥ R+

2.Collect snapshots of FEM solution(s) in a matrix

S = (u1, . . . ,up) 2 RN⇥p ui =

2

64
u(x1, ti)

...
u(xN , ti)

3

75 2 RN
, 8i = 1, . . . ,N

3.Compute Singular Value Decomposition (SVD) of the matrix
S = �⌃ T , ⌃ = diag(�i)

4.Keep first eigenvectors as ROM basis functions
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RB application
Diffusion problem
1.Solve with FEM the (linear) problem(s) for different f
⇢

��u = f, ⌦ = (0, 1)2

u = 0, @⌦

2.Collect snapshots of FEM solution(s)

3.SVD of the matrix

� = [�1, . . . ,�4]

S = �⌃ T , ⌃ = diag(�i)

4.Keep first eigenvectors

0.0 6. x 10-2



Elisa SCHENONE April, 16th 2015RUES Seminar 17

POD application
Diffusion problem

POD basis functions

-0.1 0.1
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POD application
Diffusion problem

NB the solution is “in” the basis

FEM POD (N=4) ERROR

0.0 6. x 10-20.0 6. x 10-2 0.0 5. x 10-7
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POD application
Diffusion problem

NB the solution is NOT “in” the basis

0.0 2. x 10-2 0.0 1.0

FEM POD (N=4) ERROR

0.0 6. x 10-2
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POD application
Diffusion problem

FEM snapshots 
25 sources

0.0 6. x 10-2
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POD application
Diffusion problem

POD basis functions

0.0 0.05
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POD application
Diffusion problem

NB the solution is NOT “in” the basis

POD (N=10)FEM ERROR

0.0 6. x 10-20.0 6. x 10-2 0.0 0.3



Elisa SCHENONE April, 16th 2015RUES Seminar 23

POD application
Diffusion problem

NB the solution is NOT “in” the basis

POD (N=15)FEM ERROR

0.0 6. x 10-20.0 6. x 10-2 0.0 0.3
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POD application
Diffusion problem

NB the solution is NOT “in” the basis

POD (N=20)FEM ERROR

0.0 6. x 10-20.0 6. x 10-2 0.0 0.3
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POD application
Diffusion problem

NB the solution is NOT “in” the basis

POD (N=25)FEM ERROR

0.0 6. x 10-20.0 6. x 10-2 0.0 0.3
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POD application
Diffusion problem

ERROR
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‣ Infarcted tissue: damaged area which cannot be activated
➡to build the POD basis, we use a FEM solution with NO infarction

POD application in Cardiac Electrophysiology
Simulation of a myocardial infarction
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‣ Infarcted tissue: damaged area which cannot be activated
➡to build the POD basis, we use a FEM solution with 

POD application in Cardiac Electrophysiology
Simulation of a myocardial infarction

FEM (79,537 basis)                  POD (100 basis)
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POD application in Cardiac Electrophysiology
Simulation of a myocardial infarction

‣ An efficient POD to simulate an infarction in any point of the heart
➡to build the POD basis, we use many FEM solutions with infarction
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POD application in Cardiac Electrophysiology
Simulation of a myocardial infarction

‣ An efficient POD to simulate an infarction in any point of the heart
➡to build the POD basis, we use many FEM solutions with infarction

SI1 =
⇥
u1
I1 |u

2
I1 | . . . |u

NT
I1

⇤
2 RN⇥NT

SI2 =
⇥
u1
I2 |u

2
I2 | . . . |u

NT
I2

⇤
2 RN⇥NT

Sh =
⇥
u1
h|u2

h| . . . |u
NT
h

⇤
2 RN⇥NT

S =
h
Sh|SI1 |SI2 | . . . |SIm

i
2 RN⇥(m+1)NT

๏ healthy FEM solution

๏ infarct 1 FEM solution

๏ infarct 2 FEM solution

๏ infarct m FEM solution

. . . . . . . . .

SIm =
⇥
u1
Im |u2

Im | . . . |uNT
Im

⇤
2 RN⇥NT

➡compute the SVD on an enlarged matrix
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POD application in Cardiac Electrophysiology
Simulation of a myocardial infarction

FEM (79,537 basis)                  POD (100 basis)

‣ An efficient POD to simulate an infarction in any point of the heart
➡to build the POD basis, we use 
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Z

⌦
�(u)rurv + B.C. =

Z

⌦
fv, 8v 2 V

⇢
�r · (�(u)ru) = f, ⌦ ⇢ Rd

B.C. @⌦

Non-linear problems
Example

Weak formulation

K(u)u

n

Empirical Interpolation Methods
possible solution

Ingredients:
• a reduced- basis approximation space, e.g. RB or POD
• an interpolation procedure tho choose some points where 

the PDE is solved in its strong form
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