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Abstract

We give the cumulative distribution functions, the expected values, and the moments of lattice polynomials when

regarded as real functions. Since lattice polynomial functions include order statistics, our results encompass the

corresponding formulas for order statistics.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Order statistics have been deeply investigated from a probabilistic viewpoint. Their cumulative distribution
functions (c.d.f.’s) as well as their expected values and moments are now well known. For theoretical
developments, see e.g. the remarkable monograph by David and Nagaraja (2003).

Order statistics can be naturally extended to nonsymmetric real functions called lattice polynomial functions
(Birkhoff, 1967). Roughly speaking, an n-ary lattice polynomial function is defined from any well-formed
expression involving n real variables x1; . . . ; xn linked by the lattice operations ^ ¼ min and _ ¼ max in an
arbitrary combination of parentheses. For instance,

pðx1;x2;x3Þ ¼ ðx1 ^ x2Þ _ x3

is a 3-ary lattice polynomial function.
In this note we give closed-form formulas for the c.d.f. of any lattice polynomial function in terms of the

c.d.f.’s of its input variables. More precisely, considering a lattice polynomial function p : Rn ! R and n

independent random variables X 1; . . . ;X n, X i ði ¼ 1; . . . ; nÞ having c.d.f. F iðxÞ, we give formulas for the
c.d.f. of Y p :¼ pðX 1; . . . ;X nÞ. We also yield formulas for the expected value E½gðY pÞ�, where g is any
measurable function. The special cases gðxÞ ¼ x, xr, ½x� EðY pÞ�

r, and etx give, respectively, the expected value,
the raw moments, the central moments, and the moment-generating function of Y p.

As the order statistics are exactly the symmetric lattice polynomial functions (Marichal, 2002), we retrieve,
as a corollary, the well-known formulas of the c.d.f.’s and the moments of the order statistics.
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As we will see in Section 2, any n-ary lattice polynomial function is completely determined by its values at
the 2n elements of f0; 1gn. In turn, the formulas we provide are expressed in terms of those values.

This note is organized as follows. In Section 2 we recall the basic material related to lattice polynomial
functions and order statistics. In Section 3 we provide the announced results. In Section 4 we investigate the
particular case where the input random variables are identically distributed. Finally, in Section 5 we provide
an application of our results to the reliability analysis of coherent systems.

Lattice polynomial functions play an important role in conjoint measurement theory. Ovchinnikov (1998,
Theorem 5.3) proved that the n-ary lattice polynomial functions are exactly those functions f : Rn ! R which
are continuous and order-invariant in the sense that, for any increasing bijection f : R! R, we have

f ½fðx1Þ; . . . ;fðxnÞ� ¼ f½f ðx1; . . . ; xnÞ�.

Marichal (2002, Corollary 4.4) showed that, in this axiomatization, continuity can be replaced with
nondecreasing monotonicity in each variable.
2. Lattice polynomial functions

As we shall be concerned with lattice polynomials of random variables, we will not consider lattice
polynomials on a general lattice, but simply on the real line R, which is a particular lattice. The lattice
operations ^ and _ will then represent the minimum and maximum operations, respectively. To simplify the
notation, we will also set ½n� :¼ f1; . . . ; ng for any integer nX1.

Let us first recall the definition of a lattice polynomial (with real variables); see e.g. Birkhoff (1967,
Section II.5).

Definition 1. Given a finite collection of variables x1; . . . ;xn 2 R, a lattice polynomial in the variables x1; . . . ;xn

is defined as follows:
(1)
 the variables x1; . . . ;xn are lattice polynomials in x1; . . . ;xn;

(2)
 if p and q are lattice polynomials in x1; . . . ; xn, then p ^ q and p _ q are lattice polynomials in x1; . . . ; xn;

(3)
 every lattice polynomial is formed by finitely many applications of the rules (1) and (2).
When two different lattice polynomials p and q in the variables x1; . . . ;xn represent the same function from
Rn to R, we say that p and q are equivalent and we write p ¼ q. For instance, x1 _ ðx1 ^ x2Þ and x1 are
equivalent.

Because R is a distributive lattice, any lattice polynomial function can be written in disjunctive and
conjunctive forms as follows; see e.g. Birkhoff (1967, Section II.5).

Proposition 2. Let p : Rn ! R be any lattice polynomial function. Then there are nonconstant set functions

v : 2½n� ! f0; 1g and w : 2½n� ! f0; 1g, with vð;Þ ¼ 0 and wð;Þ ¼ 1, such that

pðxÞ ¼
_

S�½n�
vðSÞ¼1

^
i2S

xi ¼
^

S�½n�
wðSÞ¼0

_
i2S

xi.

The set functions v and w that disjunctively and conjunctively generate the polynomial function p in
Proposition 2 are not unique. For example, as we have already observed above, we have

x1 _ ðx1 ^ x2Þ ¼ x1 ¼ x1 ^ ðx1 _ x2Þ.

However, it can be shown (Marichal, 2002) that, from among all the possible set functions that disjunctively
generate a given lattice polynomial function, only one is nondecreasing. Similarly, from among all the possible
set functions that conjunctively generate a given lattice polynomial function, only one is nonincreasing. These
particular set functions are given by

vðSÞ ¼ pð1SÞ and wðSÞ ¼ pð1½n�nSÞ,
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where, for any S � ½n�, 1S denotes the characteristic vector of S in f0; 1gn. Thus, an n-ary lattice polynomial
function can always be written as

pðxÞ ¼
_

S�½n�
pð1SÞ¼1

^
i2S

xi ¼
^

S�½n�
pð1½n�nSÞ¼0

_
i2S

xi.

We now consider the important particular case of symmetric lattice polynomial functions. Denote by
xð1Þ; . . . ;xðnÞ the order statistics resulting from reordering the variables x1; . . . ;xn in the nondecreasing order,
i.e., xð1Þp � � �pxðnÞ. As Ovchinnikov (1996, Section 7) observed, any order statistic is a symmetric lattice
polynomial function. More precisely, for any k 2 ½n�, we have

xðkÞ ¼
_

S�½n�
jSj¼n�kþ1

^
i2S

xi ¼
^

S�½n�
jSj¼k

_
i2S

xi.

Conversely, Marichal (2002, Section 2) showed that any symmetric lattice polynomial function is an order
statistic.

Let us denote by osk : R
n ! R the kth order statistic function, that is, oskðxÞ :¼ xðkÞ. It is then easy to see

that, for any S � ½n�, we have oskð1SÞ ¼ 1 if and only if jSjXn� k þ 1 and, likewise, we have oskð1½n�nSÞ ¼ 0 if
and only if jSjXk.

3. Cumulative distribution functions and moments

Consider n independent random variables X 1; . . . ;X n, X i ði 2 ½n�Þ having c.d.f. F iðxÞ, and set
Y p :¼ pðX 1; . . . ;X nÞ, where p : Rn ! R is any lattice polynomial function. The c.d.f. of Y p is given in the
next theorem.

Theorem 3. Let p : Rn ! R be a lattice polynomial function. Then, the c.d.f. of Y p is given by each of the

following formulas:

FpðyÞ ¼ 1�
X
S�½n�

pð1SÞ¼1

Y
i2½n�nS

F iðyÞ
Y
i2S

½1� FiðyÞ�, (1)

FpðyÞ ¼
X
S�½n�

pð1½n�nSÞ¼0

Y
i2S

FiðyÞ
Y

i2½n�nS

½1� F iðyÞ�. (2)

Proof. Starting from the disjunctive form of p, we have

FpðyÞ ¼ 1� Pr
_

S�½n�
pð1SÞ¼1

^
i2S

X i4y

2
664

3
775

¼ 1� Pr 9S � ½n�; with pð1SÞ ¼ 1; such that yo
^
i2S

X i

" #
.

Consider the following events:

A :¼ 9S � ½n�; with pð1SÞ ¼ 1; such that yo
^
i2S

X i

" #
,

B :¼ 9S � ½n�; with pð1SÞ ¼ 1; such that
_

i2½n�nS

X ipyo
^
i2S

X i

" #
.

Event B implies event A trivially. Conversely, noting that p is nondecreasing in each variable and replacing S

with a superset S0 � S, if necessary, we readily see that event A implies event B.
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Since the events ½
W

i2½n�nS X ipyo
V

i2S X i� ðS � ½n�Þ are mutually exclusive, we have

FpðyÞ ¼ 1�
X
S�½n�

pð1SÞ¼1

Pr
_

i2½n�nS

X ipy

" #
Pr

^
i2S

X i4y

" #
,

which proves the first formula. The second one can be proved similarly by starting from the conjunctive form
of p. &

The expressions of FpðyÞ, given in Theorem 3, are closely related to the following concept of multilinear

extension of a set function, which was introduced by Owen (1972) in game theory.

Definition 4. The multilinear extension of a set function v : 2½n� ! R is the function Fv : ½0; 1�
n ! R defined by

FvðxÞ :¼
X
S�½n�

vðSÞ
Y
i2S

xi

Y
i2½n�nS

ð1� xiÞ.

Using this concept, we can immediately rewrite (1) and (2) as

FpðyÞ ¼ 1� Fvp
½1� F 1ðyÞ; . . . ; 1� FnðyÞ�,

FpðyÞ ¼ Fv�p
½F1ðyÞ; . . . ;FnðyÞ�,

where vp : 2
½n� ! f0; 1g and v�p : 2

½n� ! f0; 1g are nondecreasing set functions defined by

vpðSÞ :¼ pð1SÞ and v�pðSÞ :¼ 1� pð1½n�nSÞ.

Owen (1972) showed that the function Fv, being a multilinear polynomial, has the form

FvðxÞ ¼
X
S�½n�

mvðSÞ
Y
i2S

xi,

where the set function mv : 2
½n� ! R, called the Möbius transform of v, is defined as

mvðSÞ ¼
X
T�S

ð�1ÞjSj�jT jvðTÞ.

Using this polynomial form of Fv, we can immediately derive two further formulas for FpðyÞ, namely

FpðyÞ ¼ 1�
X
S�½n�

mvp
ðSÞ

Y
i2S

½1� F iðyÞ�, (3)

FpðyÞ ¼
X
S�½n�

mv�p
ðSÞ

Y
i2S

F iðyÞ. (4)

Formulas (1)–(4) thus provide four equivalent expressions for FpðyÞ. As particular cases, we retrieve the
c.d.f. of any order statistic. For example, using formulas (2) and (4) leads to the following corollary; see David
and Nagaraja (2003, Section 5.1).

Corollary 5. For any k 2 ½n�, the c.d.f. of Y osk
is given by each of the following formulas:

Fosk
ðyÞ ¼

X
S�½n�
jSjXk

Y
i2S

FiðyÞ
Y

i2½n�nS

½1� FiðyÞ�,

Fosk
ðyÞ ¼

X
S�½n�
jSjXk

jSj � 1

k � 1

� �
ð�1ÞjSj�k

Y
i2S

F iðyÞ.

Let us now consider the expected value E½gðY pÞ�, where g : R! R is any measurable function. From its
expression we can compute the expected value and the moments of Y p.
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By definition, we simply have

E½gðY pÞ� ¼

Z 1
�1

gðyÞdF pðyÞ ¼ �

Z 1
�1

gðyÞd½1� F pðyÞ�.

Using integration by parts, we can derive alternative expressions of E½gðY pÞ�. We then have the following
immediate result.

Theorem 6. Let p : Rn ! R be any lattice polynomial function and let g : R! R be any measurable function.
(1)
 If limy!1 gðyÞ½1� FiðyÞ� ¼ 0 ði 2 ½n�Þ, then

E½gðY pÞ� ¼ lim
y!�1

gðyÞ þ

Z 1
�1

½1� F pðyÞ�dgðyÞ.
(2)
 If limy!�1 gðyÞFiðyÞ ¼ 0 ði 2 ½n�Þ, then

E½gðY pÞ� ¼ lim
y!1

gðyÞ �

Z 1
�1

FpðyÞdgðyÞ.
Clearly, combining this result with formulas (1)–(4) immediately leads to various explicit expressions of
E½gðY pÞ�.
4. The case of identically distributed variables

Let us now assume that the random variables X 1; . . . ;X n are independent and identically distributed (the
i.i.d. case), each with c.d.f. F ðxÞ. Clearly, this assumption makes the expressions of E½gðY pÞ� much simpler.

Example 7. Suppose X 1; . . . ;X n are uniformly distributed on ½0; 1�. In this case, for any measurable function
g : ½0; 1� ! R, we get

E½gðY pÞ� ¼ gð0Þ þ
X
S�½n�

pð1SÞ¼1

Z 1

0

yn�jSjð1� yÞjSj dgðyÞ.

We now show that, in the i.i.d. case, it is possible to express FpðyÞ in terms of Fosk
ðyÞ ðk 2 ½n�Þ in a very

concise way.

For any lattice polynomial function p : Rn ! R and any s 2 f0; . . . ; ng, define the s-average of p as

ps :¼
1

n

s

� � X
S�½n�
jSj¼s

pð1SÞ.

Theorem 8. Let p : Rn ! R be a lattice polynomial function. Then, the c.d.f. of Y p is given by

FpðyÞ ¼
Xn�1
s¼0

F osn�s
ðyÞDsps,

where Ds is the difference operator, i.e., Dszs ¼ zsþ1 � zs.
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Proof. Using summation by parts, we simply have

Xn�1
s¼0

Fosn�s
ðyÞDsps ¼ ps Fosn�s

ðyÞjn0 �
Xn�1
s¼0

psþ1 DsFosn�s
ðyÞ

¼ 1�
Xn

s¼1

ps DsF osn�sþ1
ðyÞ.

However, by Corollary 5, we have

DsF osn�sþ1
ðyÞ ¼

n

s

� �
F ðyÞn�s

½1� F ðyÞ�s ðs ¼ 0; . . . ; nÞ.

Therefore,

Xn�1
s¼0

Fosn�s
ðyÞDsps ¼ 1�

X
S�½n�

pð1SÞ¼1

F ðyÞn�jSj½1� F ðyÞ�jSj ¼ F pðyÞ: &

Recall that, in the i.i.d. case, Fosk
ðyÞ can be written as (see David and Nagaraja, 2003, Section 2.1)

Fosk
ðyÞ ¼ IF ðyÞðk; n� k þ 1Þ,

where Izða; bÞ is the regularized beta function defined, for any a; b; z40, by

Izða; bÞ :¼

R z

0 ta�1ð1� tÞb�1 dtR 1
0 ta�1ð1� tÞb�1 dt

.

It follows immediately from Theorem 8 that

FpðyÞ ¼
Xn�1
s¼0

IF ðyÞðn� s; sþ 1ÞDsps.
5. Application to reliability theory

In this final section we show how the results derived here can be applied to the reliability analysis of certain
coherent systems. For a reference on reliability theory, see e.g. Barlow and Proschan (1981).

Consider a system made up of n independent components, each component Ci (i 2 ½n�) having a lifetime X i

and a reliability riðtÞ :¼ Pr½X i4t� at time t40.
We assume that, when components are connected in series, the lifetime of the subsystem they form is simply

given by the minimum of the component lifetimes. Likewise, for a parallel connection, the subsystem lifetime
is the maximum of the component lifetimes.

It follows immediately that, for a system mixing series and parallel connections, the system lifetime is given
by a lattice polynomial function

Y p ¼ pðX 1; . . . ;X nÞ

of the component lifetimes. We then have explicit formulas for the c.d.f., the expected value, and the moments
of the system lifetime.

For example, the system reliability at time t40 is given by

RpðtÞ :¼ Pr½Y p4t� ¼ Fvp
½r1ðtÞ; . . . ; rnðtÞ�.

Moreover, for any measurable function g : ½0;1½! R such that

lim
t!1

gðtÞriðtÞ ¼ 0 ði 2 ½n�Þ,
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we have, by Theorem 6,

E½gðY pÞ� ¼ gð0Þ þ

Z 1
0

RpðtÞdgðtÞ.

Example 9. If riðtÞ ¼ e�li t ði 2 ½n�Þ, we can easily show that

E½Y k
p � ¼

X
S�½n�
Sa;

mvp
ðSÞ

k!

lðSÞk
ðk 2 NÞ,

where lðSÞ :¼
P

i2S li. In particular, for a series system we retrieve the well-known formula
E½Y k

p � ¼ k!=lð½n�Þk. For a parallel system we have

E½Y k
p � ¼

X
S�½n�
Sa;

ð�1ÞjSj�1
k!

lðSÞk
.
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