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CHD2 variants are a risk factor for
photosensitivity in epilepsy
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Photosensitivity is a heritable abnormal cortical response to flickering light, manifesting as particular electroencephalographic
changes, with or without seizures. Photosensitivity is prominent in a very rare epileptic encephalopathy due to de novo CHD2
mutations, but is also seen in epileptic encephalopathies due to other gene mutations. We determined whether CHD2 variation
underlies photosensitivity in common epilepsies, specific photosensitive epilepsies and individuals with photosensitivity without
seizures. We studied 580 individuals with epilepsy and either photosensitive seizures or abnormal photoparoxysmal response on
electroencephalography, or both, and 55 individuals with photoparoxysmal response but no seizures. We compared CHD?2 se-
quence data to publicly available data from 34427 individuals, not enriched for epilepsy. We investigated the role of unique
variants seen only once in the entire data set. We sought CHD2 variants in 238 exomes from familial genetic generalized epilepsies,
and in other public exome data sets. We identified 11 unique variants in the 580 individuals with photosensitive epilepsies and 128
unique variants in the 34427 controls: unique CHD2 variation is over-represented in cases overall (P=2-17 x 10~°). Among
epilepsy syndromes, there was over-representation of unique CHD?2 variants (3/36 cases) in the archetypal photosensitive epilepsy
syndrome, eyelid myoclonia with absences (P=3-50 x 10~*). CHD2 variation was not over-represented in photoparoxysmal
response without seizures. Zebrafish larvae with chd2 knockdown were tested for photosensitivity. Chd2 knockdown markedly
enhanced mild innate zebrafish larval photosensitivity. CHD2 mutation is the first identified cause of the archetypal generalized
photosensitive epilepsy syndrome, eyelid myoclonia with absences. Unique CHD2 variants are also associated with photosensitivity
in common epilepsies. CHD2 does not encode an ion channel, opening new avenues for research into human cortical excitability.

Received November 17, 2014. Revised December 15, 2014. Accepted January 7, 2015.

© The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:/creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
distribution, and reproduction in any medium, provided the original work is properly cited.

STO0Z ‘8T UdJelN uo 1s8nb Aq woly papeojumoq


XPath error Undefined namespace prefix
http://creativecommons.org/licenses/by/4.0/

2

AN bW

8

9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27

28

29

30

| BRAIN 2015: Page 2 of 10 E. C. Galizia et al.

NIHR Biomedical Research Centre Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, National
Hospital for Neurology and Neurosurgery, Queen Square, London, UK

Epilepsy Society, Bucks, UK

Department of Paediatrics, University of Washington, USA

Department of Medical Genetics Research, University Medical Centre Utrecht, The Netherlands

Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg

North East Thames Regional Genetics Laboratories, Great Ormond Street Hospital for Children NHS Foundation Trust, London,
UK

Department of Neuropaediatrics, University Medical Centre Schleswig-Holstein and Christian-Albrechts-University of Kiel, Kiel,
Germany

Cologne Centre for Genomics, University of Cologne, Cologne, Germany

Danish Epilepsy Centre, Dianalund, Denmark

Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark

Deptartment of Neurology and Epileptology, Hertie Institut for Clinical Brain Research, Tiibingen, Germany

Folkhilsan Institute of Genetics and Neuroscience Centre, University of Helsinki Helsinki, Finland

Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland

Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK

Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland

Program in Medical and Population Genetics and Genetic Analysis Platform, The Broad Institute of MIT and Harvard,
Cambridge, USA

Epilepsy Centre, Neurology Department, Federico II University of Naples, Naples Italy

Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia

Department of Child Neurology, Paediatric Clinic, Clinical Centre Nis, Serbia

Department of Paediatric Neurology, Paediatric Clinic, Al Sabah Hospital, Kuwait

Neurology Department, The Children’s Hospital Agia Sophia, Athens, Greece

Epilepsy Centre ‘C. Poma Hospital’, Mantova, Italy

Department of Child Neurology and Psychiatry C. Mondino National Neurological Institute, Via Mondino, 2, 27100, Pavia, Italy
Brain and Behaviour Department, University of Pavia, Pavia, Italy

Neurophysiopathology Unit, San Filippo Neri Hospital, Rome, Italy

Child Neurology, NESMOS Department, Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
Neurorehabilitation Unit, Department of Neuroscience and Neurorehabilitation, IRCCS, Bambino Gesu’ Children’s Hospital,
Rome, Italy

Department of Paediatrics and Child Health, School of Medicine and Health Sciences, University of Otago, Wellington, New
Zealand

Florey Institute of Neurosciences and Mental Health, and Department of Paediatrics, University of Melbourne, Royal Children’s
Hospital, Melbourne, Australia

Chemical Neuroscience Group, Biotechnology Centre of Oslo, University of Oslo, Norway

Correspondence to: Sanjay M Sisodiya,
Department of Clinical and Experimental Epilepsy,
UCL Institute of Neurology,

Queen Square,

London,

WCIN 3BG,

UK

E-mail: s.sisodiya@ucl.ac.uk

Correspondence may also be addressed to:
Ingrid E. Scheffer,

Epilepsy Research Centre,

Austin Health, 245 Burgundy St, Heidelberg,
Victoria 3081, Australia

E-mail: scheffer@unimelb.edu.au

Heather C. Mefford,

Department of Pediatrics,
Division of Genetic Medicine,
1959 NE Pacific St., Box 356320,
Seattle, WA 98195, USA

E-mail: hmefford@uw.edu

STO0Z ‘8T YdJelN uo 1s8nb Aq woly papeojumoq



CHD2 in photosensitive epilepsy

Bobby P. C. Koeleman,

Medical Genetics,

University Medical Center Utrecht,
Universiteitsweg 100,

3584 CG, The Netherlands

E-mail: b.p.c.koeleman@umcutrecht.nl

Keywords: photosensitive; seizure; eyelid myoclonia with absences

BRAIN 2015: Page 3 of 10 | 3

Abbreviations: dpf = day post-fertilization; EMA = eyelid myoclonia with absences; ExXAC = Exome Aggregation Consortium;

GGE = genetic generalized epilepsy

Introduction

Photosensitivity is a heritable abnormal cortical response
to flickering light, often manifesting as EEG changes called
a photoparoxysmal response (Walter et al., 1946).
Photoparoxysmal response may occur with seizures, and in
normal subjects, or with neuropsychiatric disorders (So et al.,
1993). The photoparoxysmal response is age-dependent:
prevalence in healthy children is between 1.4 and 8.3%, drop-
ping to <1% in adults (Gregory et al., 1993; Quirk et al.,
1995; Kasteleijn-Nolst Trenite et al., 2003; Verrotti et al.,
2012). Photosensitive epilepsy is a reflex epilepsy, with seiz-
ures triggered by visual stimuli. A population-based study in
Great Britain determined that the annual incidence of epilepsy
with photoparoxysmal response was 1.1 per 100000 in the
overall population, and 5.7 per 100000 between 7 and 19
years of age (Quirk ez al., 1995). About 40% of people with
photosensitive epilepsy only have seizures on exposure to
visual stimuli. Photosensitive seizures also feature in specific
epilepsy syndromes, with other seizure types, and in non-
syndromic epilepsies. Examples include juvenile myoclonic
epilepsy (Tauer et al., 2005; Koeleman et al., 2013; Taylor
et al, 2013), other genetic generalized epilepsies (GGE)
(Taylor et al., 2013), idiopathic photosensitive occipital
epilepsy, and other focal (Taylor et al, 2004; Lu et al.,
2008), symptomatic occipital, and progressive myoclonic, epi-
lepsies. The archetypal photosensitive syndrome is eyelid myo-
clonia with absences (EMA), a GGE characterized by rapid
eyelid jerks and upward eyeball deviation on eye closure:
photosensitivity is an essential feature (Sadleir ez al., 2012).

The photoparoxysmal response is highly heritable (Waltz
and Stephani, 2000; Tauer et al., 2005; Taylor et al.,
2013). The genetics are complex: no single gene has been
implicated despite linkage to several loci and formal meta-
analysis (Tauer et al., 2005; De Kovel et al., 2010; Verrotti
et al., 2012). Photosensitive epilepsies also have complex
genetic architecture (Sadleir et al., 2012; Taylor et al.,
2013), with several linked loci (De Kovel et al., 2010).
Photosensitivity is a trait found in many syndromes, inher-
itable separately from epilepsy (Newmark and Penry,
1979). It is unclear whether isolated photoparoxysmal re-
sponse is a risk factor for epilepsy (De Kovel et al., 2010;
Verrotti et al., 2012).

Photosensitivity occurs in some epileptic encephalopa-
thies, such as Dravet syndrome due to mutation in
SCN1A and encephalopathy associated with mutation in
CHD2 (Carvill et al., 2013). Published data do not allow
determination of whether the photosensitivity in these con-
ditions is due to the underlying gene mutation or to the
epileptic encephalopathy per se. CHD2 encodes chromodo-
main helicase DNA-binding protein 2, involved in tran-
scriptional regulation. Additional attention was drawn to
CHD?2 as a candidate photosensitive epilepsy gene as the
only shared gene within several reported overlapping copy
number variants of the chromosome 15¢26.1 region asso-
ciated with complex phenotypes including epilepsy with
photosensitivity. Eight patients with de novo deletions of
15q26 encompassing part or all of CHD2 have been re-
ported (Veredice et al., 2009; Dhamija et al., 2011; Capelli
et al., 2012; Lund et al., 2013; Mullen et al., 2013; Chénier
et al., 2014). We and others subsequently showed 6/500
epileptic encephalopathy cases had de novo CHD2 muta-
tions (Carvill et al., 2013; Epi4K Consortium et al., 2013;
Suls et al., 2013; Lund et al., 2014), and recently showed
that clinical photosensitivity was prominent in the rare
CHD2-associated myoclonic encephalopathy (Thomas
et al., 2015).

These findings led us to hypothesize that CHD2 disrup-
tion would be associated with common forms of photo-
sensitive epilepsy or photosensitivity manifesting as a
photoparoxysmal response alone.

Materials and methods

Written informed consent was obtained from patients or
parents/guardians for minors or those with intellectual disabil-
ity. The study was approved by relevant institutional ethics
committees.

We defined photosensitive epilepsy as the presence of a
photoparoxysmal response (Kasteleijn-Nolst Trenité et al.,
2012) with a history of epilepsy, or seizures reproducibly
induced by flickering light. The photoparoxysmal response
per se was not an essential inclusion requirement in every
patient with epilepsy because age, state (e.g. sleep deprivation)
and antiepileptic medication affect its detectability. To test the
effect of CHD2 variation beyond the epileptic encephalopa-
thies alone, we included a broad range of epilepsy types.
Recruitment was from nine countries (see Supplementary
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material for details) (Tauer et al., 2005; Lu et al., 2008; Taylor
et al., 2013). The cohort included 36 patients with EMA: all
had photoparoxysmal response. We sequenced CHD2 in 580
people with photosensitive epilepsy and 55 people with photo-
paroxysmal response but no history of seizures. All patients
were of European ancestry. The phenotypic distribution is
given in Table 1.

We evaluated data from two additional exome-sequenced
cohorts of GGE patients, to determine the role of CHD2
variation in GGE per se, independent of photoparoxysmal
response. Not all patients in these cohorts had been formally
assessed for photoparoxysmal response. These two groups
were the Complex Genetics of Idiopathic Epilepsies
Consortium (CoGIE) cohort of 238 probands with familial
GGE (Supplementary material), and a published cohort of
118 patients with GGE (Heinzen et al., 2012).

Targeted sequencing of CHD2 was undertaken either using
Hlumina TruSeq Custom Amplicon™ (TSCA) or molecular
inversion probes (see Supplementary material for details).
Whole exome sequencing (Supplementary material) was per-
formed on five EMA samples. Coverage data for all experi-
ments are provided in the Supplementary material. Only
variants confirmed by a second method (Sanger sequencing
or a second independent molecular inversion probe capture,
see Supplementary material) were used in analyses.

The Exome Aggregation Consortium (ExAC) formed a large
control population of disease and population genetic studies
(ExAC, Cambridge, USA; URL: http://exac.broadinstitute.org
accessed October 2014; non-Finnish European samples only
used), giving the best available population frequency of
CHD?2 variants of interest. Detailed phenotypic data are not
available for these individuals; some might, if tested, have or
have had photoparoxysmal response or a history of photo-
sensitive seizures. These unselected cases are unlikely to har-
bour more than the best estimates of photoparoxysmal
response prevalence in the general population (1.4%)
(Kasteleijn-Nolst Trenite et al., 2003).

We focused on unique variants, in our cohort and in ExAC:
this is a well-established approach (Carvill et al., 2013;
Cnossen et al., 2014; Wain et al., 2014). We hypothesized

Table | Distribution of cases by continental origin and
broad syndromic classification

Syndrome
Cohort GGE Focal Other PPR without
epilepsy
European 249 24 32 55
Australian 230* 35% I 0
Total 479* 59* 43 55

European includes epilepsy cases from Germany (90), Italy (82), The Netherlands (75),
Greece (34), Serbia (17), UK (5) and Denmark (2).

GGE = genetic generalized epilepsies, including GGE for which other information was
not available, and, where classified, juvenile myoclonic epilepsy, juvenile absence epi-
lepsy, childhood absence epilepsy, early-onset absence epilepsy, epilepsy with myo-
clonic atonic seizures, epilepsy with generalized tonic-clonic seizures only, and EMA.
Focal includes all types of focal epilepsies, including idiopathic photosensitive occipital
lobe epilepsy (IPOE). *One Australian patient evolved from a GGE to a focal epilepsy.
Other includes Lennox-Gastaut syndrome, epilepsy due to tuberous sclerosis, epilepsy
with electrical status epilepticus in sleep and epilepsies otherwise unclassified: none of
these particular cases had unique CHD2 variants.

E. C. Galizia et al.

an over-representation of unique variants in our cohort com-
pared with the phenotypically-unselected ExAC cohort.
We defined unique variants as those that occurred in one
individual only, in cases and controls (from ExAC) considered
together, that were non-synonymous, splice-site or frameshift.
We used several methods for prediction of the functional con-
sequences of unique variants in cases (Supplementary mater-
ial). We defined ‘rare’ variants as those with a minor allele
frequency <1% in the non-Finnish European ExAC samples.

We undertook functional studies. To test functional conse-
quences of Chd2 loss in zebrafish, we used the chd2 E2I2
morpholino reported previously (Suls et al., 2013). Briefly,
morpholino (12ng) was microinjected into 1- to 2-cell-stage
embryos of the AB (wild-type) strain. Embryos were raised
in a dark incubator. At 1 day post-fertilization (dpf), embryos
were prepared using the least possible amount of light. In par-
allel, control non-injected embryos from the same clutch of
eggs were processed in the same manner. At 4 dpf, optic
tectal field recordings were performed (Suls et al., 2013)
(Supplementary material). The first 10s of recording were
performed in minimal light in order to place the needle.
Immediately following these first 10s, recordings were
performed in the dark for five minutes. At the end of this 5-
min period, a very bright light was switched on (‘light ON’
state; six times the standard brightness level used for needle
placement), and recording continued for 5 min. A paroxysm of
high-frequency activity (200-500 Hz) with amplitude >3
times background level, either spontaneous or evoked by
light, was defined as a polyspiking episode.

Statistics

We performed a two-tailed Fisher’s exact test to determine
whether the burden of unique variants in our case cohorts
was greater than expected compared to ExAC controls.
We examined the frequency of all rare variants in the entire
cohort, and the frequency of unique variants only separately in
patients with EMA, patients with GGE excluding EMA, and
patients with focal epilepsies. The threshold for significance
was set at P < 0-01, applying Bonferroni correction for these
five comparisons. For the single separate comparison of cases
with photoparoxysmal response without epilepsy and ExAC,
significance was set at P < 0-05. For zebrafish data, compari-
son of the parameters of spiking activity (dark versus light
condition) for each treatment group was performed using the
Mann-Whitney test.

Results

We identified 22 rare variants (Supplementary Table 1) in
the cohort of patients with photosensitive epilepsy: 11 were
unique (Table 2). There was a significant difference
(P=2.17 x 107°) in unique variant frequency between
cases (11/580 cases; 11/1160 alleles; 0.95%) and controls
(128/68 854 alleles; 0.19%). The unique variants in the
cases were all well covered in ExAC controls
(Supplementary material). The 11 unique variants in cases
were also absent from additional data sets: Exome Variant
Server (http://evs.gs.washington.edu/EVS/), 1000 Genomes
data set (http://www.1000genomes.org/), and dbSNP
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(http://www.ncbi.nlm.nih.gov/SNP). There was no differ-
ence in the overall burden of rare CHD2 variants in
cases compared to controls [22/1160 alleles (1.90%)
versus 1236/68854 alleles (1.80%) respectively; P = 0.74].
We provide data on the frequency of variants in CHD2 in
cases and controls according to various thresholds in the
Supplementary Table 2. Figure 1 shows all previously-
reported variants and all unique variants identified in our
cases.

We investigated the predicted deleteriousness of the 11
unique variants in the cases (Table 2). Eight of 11 unique
variants (73%) had scaled CADD scores > 10, placing them
in the top 10% most deleterious single nucleotide variants;
as a group, the 11 variants had a mean scaled CADD score
of 32.6, ranking higher than 99.95% of all possible human
single nucleotide variants (Kircher er al., 2014).

Next, we analysed variation by epilepsy type. The arche-
typal photosensitive GGE syndrome EMA had the highest
frequency of unique variants, found in 3/36 patients, more
than expected compared to ExAC controls (3/72 alleles
versus 128/68 854 alleles) (P=3.50 x 10™*). As a post
hoc comparison, the frequency of unique variants (4.2%)
in the small EMA group is considerably greater than in our
overall cohort excluding EMA (0.74%) (P =0.026).

BRAIN 2015: Page 50f 10 | 5

Notably, two of three EMA variants were frameshift, com-
pared to 9/128 unique variants in ExAC. One EMA variant
was shown to have arisen de novo, strengthening its role in
causation of the phenotype.

For all GGE excluding EMA, we found no significant
difference compared to ExAC (4/888 alleles versus 128/
68 854 alleles, P =0.089). We also did not find significant
over-representation in focal epilepsies compared with ExAC
(2/118 alleles versus 128/68 854 alleles; P = 0.021). One
case was included in both GGE and focal epilepsy cohorts,
as the phenotype evolved from early-onset absence epilepsy
to idiopathic photosensitive occipital epilepsy (Patient 11,
Table 2). One of 55 (1.82%) individuals with photoparox-
ysmal response but no seizures had a unique CHD2
variant (Table 2 and Fig. 1): this did not represent over-
representation compared to ExAC (1/110 alleles versus
128/68 854 alleles; P = 0.186). This case has not developed
epilepsy by the age of 18 years. We provide 99% confi-
dence intervals (CI) (accounting for multiple comparisons)
for all these comparisons in Table 3.

To investigate whether CHD2 may be associated with the
broader phenotype of GGE rather than photosensitive
epilepsies specifically, we tested whether rare variants in
CHD2 were enriched in patients with GGE, with or

Table 2 Patients found to have unique mutations in CHD2 and their clinical phenotypes

Case Position Consequence cDNA change Protein Computational CADD Syndromic Comments
ID (NCBI.37) Change Analysis scores diagnosis
Score (PolyPhen-2; (PHRED
SIFTindel; SIFT; scaled)
splice-site
inference)
| 15:93545502  Frameshift c4233_4236del p.E1412Gfs*64 Deleterious (0.858) 44 GGE
deletion
2 15:93487750  Splice site c.l153+5G>A NA No change in donor site 8.124 Unclassified
3 15:93541780  Missense c.C3937G p.RI313G Probably damaging (0.98) 16.9 Unclassified
4 15:93543742  Missense c.G4009T p-A1337S Benign (0.001) 8.728 IPOE
5 15:93496808  Splice site c.l719+5G>A NA Loss of donor site 15.74 Unclassified  Learning disability
6 15:93528855  Missense c.G3365C p.SI122T Benign (0.01) 4.373 GGE
7 15:93540316  Frameshift c.3725delA p.K1245Nfs*4  Deleterious (0.858) 43 EMA Autism;
deletion nephrolithiasis;
migraine; scoliosis
8 15:93545442  Frameshift c.4173dupA p.Q1392Tfs*|7 Deleterious (0.85) 38 EMA De novo mutation
insertion
9 15:93482909  Missense c.C653T p.P218L Probably damaging (0.99) 21.3 EMA Inherited from
unaffected
mother
10 15:93543767  Missense c.G4034A p.R1345Q Possibly damaging (0.8) 33 JME
I 15:93563244  Nonsense c.C4909T p-R1637X Probably damaging 49 Phenotype = De novo mutation
(nonsense) evolved
from
early-onset
absence
epilepsy
to IPOE
i 15:93552396  Missense c.G4435A p.V1479M Probably damaging (0.996) 27.9 PPR; febrile
seizures
only;
no epilepsy

IPOE = idiopathic photosensitive occipital epilepsy; JME = juvenile myoclonic epilepsy; PPR = photoparoxysmal response.
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without photoparoxysmal response. Of 238 CoGIE GGE
probands (Supplementary material), none had unique
CHD?2 variants (not seen in ExAC or our cases). There
were no unique mutations in CHD2 in a previously-
published cohort of 118 patients with GGE (Heinzen
et al., 2012).

To test functional consequences of Chd2 loss in zebrafish,
we used the chd2 E2I12 morpholino reported previously
(Suls et al., 2013). As described, chd2 morpholino-injected
larvae displayed body curvature, excessive body pigmenta-
tion, and developmental delay (Suls et al., 2013). This
phenotype was observed after 50% knockdown of chd2.
All non-treated larvae appeared normal. Recordings were
obtained from 15 morpholino-injected larvae and 10 sib-
ling controls. In comparison to 7 dpf larvae (Afrikanova
et al., 2013), spikes from 4 dpf larvae were shorter in dur-
ation and displayed a higher frequency of oscillations in
polyspike complexes. Due to these differences, spontaneous
spiking in controls was not excluded, but also quantified.
We analysed duration of discharges, number of discharges
under light conditions, cumulative duration of spiking
activity, and cumulative discharge frequency distribution.
Representative recordings are shown in Fig. 2.

In line with the previous findings (Suls ez al., 2013), the
morpholino-injected larvae showed spontaneous abnormal
burst discharges. There was a preferential occurrence
during the light ON state (17 discharges in the dark
versus 59 in the light). In the morpholino-injected group,
14/15 larvae had discharges during the light ON state; 7/15
larvae had spiking only during the 5-min light ON state,
and 10/15 showed spiking activity within the first 3-5s
after the light ON. The average duration of any event
(spike or polyspike discharge) in the morpholino-injected
group fell during the light ON state (Fig. 3A), attributable
to the fact that morpholino-injected larvae also displayed
spontaneous polyspike discharges in the dark: the events
under light conditions were more heterogeneous

Distribution of CHD2 variants

chr15: MWT@’A

Trpsasnrg

Glyd91Valfs*13 -: 1719+5G>A

Ser1122Thr

€. 1153+5G>A
€.1810-2A>C
Pro218Leu Gingog*
Arg121 Leud23Pro

Lys1245Asnfs*4

E. C. Galizia et al.

(i.e. spontaneous polyspikes plus light-induced spiking), ex-
plaining reduced average duration. The average number of
events/larva significantly increased in the morpholino-in-
jected group in the light opposed to the dark period; this
was not seen in the control group (Fig. 3B). A similar pat-
tern was observed for cumulative duration of spiking activ-
ity (Fig. 3C): morpholino-injected larvae showed a steep
increase in polyspike discharges in the light ON state, not
observed for controls. The larvae from the non-injected
control group also reacted to the light ON state by display-
ing an initial locomotor response, with 7/10 displaying
short spontaneous burst activity within 2-13s after the
light was switched on. However, the overall distribution
of event duration is different from that of morpholino-
injected larvae (Fig. 3D): the controls’ curve lies to
the left of the morpholino-injected curve, indicating that
the proportion of longer discharges is higher in the
morpholino-injected group.

Table 3 Odds ratio for association with unique variants
in CHD2 by phenotype, with 99% CI

P-value Odds Lower Upper
(Fisher’s ratio bound of bound of
exact; 99% ClI  99% CI
2-tailed)
Whole photosensitive 2.17 x 107> 5.18 229 11.74
epilepsy cohort
EMA alone 3.50 x 107% 2436 5.06 117.38
GGE excluding EMA  0.089 244  0.65 9.08
Focal epilepsies 0.021 940 145 61.01
Cases with PPR only 0.186 496 036 67.74

The associations with photosensitive epilepsy overall and with EMA alone are signifi-
cant, as documented in the text. PPR = photoparoxysmal response.

previously reported variant
novel variant this study
recurrent mutation
GIn1392Thrfs*17

Glu 14126l5ﬂs‘64

Ala133759r Gly1575Valfs*17
Arg1313th

Leu1591*fs
Ars ‘!345 In
VaI'MTBMet Arg1&l‘!.ynfs 22
'.|

[

1828

CHROMO domains ATP helicase domain
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Figure | Schematic of CHD2 illustrating its functional (chromo, DEXDc, DNA-binding and ATP helicase) domains, the lo-
cation of previously-reported variants and the unique variants in both cases and controls identified in this study.
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Discussion

We show an enrichment of unique variants in CHD2 with
photosensitivity in the common epilepsies overall, identify-
ing CHD2 as a photosensitive epilepsy gene. We also
examined the distribution of unique variants by syndrome.
CHD?2 is also the first gene to be discovered for EMA, the
archetypal photosensitive epilepsy syndrome. In CHD2
encephalopathy, though published phenotypes can be diffi-
cult to interpret, the seizure type of absence seizures with
eyelid myoclonia, rather than the epilepsy syndrome, is seen
in as many as 8/23 (35%) patients with de novo CHD2
mutation or deletion (Veredice et al., 2009; Dhamija et al.,
2011; Capelli er al., 2012; Carvill et al., 2013; Chénier
et al., 2014; Lund et al., 2014). Together, these results
suggest that CHD2 is an important contributor to both
the absence seizures with eyelid myoclonia seizure type
and EMA epilepsy syndrome. For other epilepsy syn-
dromes, CHD2 variation over-representation in the photo-
sensitive GGE or the mixed cohort of photosensitive focal
epilepsies failed to meet the corrected threshold for signifi-
cance. A single unique CHD2 variant was found in one
patient with photoparoxysmal response without seizures.
In view of the comparatively small sizes of these syndrome
cohorts, we can only confidently exclude effects with odds
ratios greater than the upper limit for the 99% confidence
intervals given in Table 3. Further studies in larger cohorts
of these phenotypes would seem warranted.

Previous studies of photoparoxysmal response support a
model of significant genetic heterogeneity and an overall
complex genetic architecture (Sadleir et al., 2012; Verrotti
et al., 2012; Taylor et al., 2013): indeed, none of the
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several linkage regions contain CHD2. Our findings con-
firm heterogeneity and complexity in the genetics of photo-
sensitivity, but also suggest a single gene may contribute to
photosensitivity in some cases. Two mutations we detected
are recurrent: p.Glu1412Glyfs*64, previously reported in
epileptic encephalopathy with marked photosensitivity
(Carvill et al., 2013); and p.GIn1392Thrfs*17, in Lennox-
Gastaut syndrome with photosensitivity (Lund ez al., 2014).
The unique variants detected are, as a group, predicted to
be amongst the most deleterious variants possible (Kircher
et al., 2014) and CHD?2 is amongst the genes least tolerant
of functional variation (Petrovski er al., 2013; Residual
Variation Intolerance Score 2.37).

CHD?2 does not encode an ion channel, opening up new
avenues for research into cortical excitability. CHD2 is one
of nine genes from a highly-conserved protein family with a
unique domain combination: two N-terminal chromatin-
organization modifier (chromo), SNF2-related helicase/
ATPase and DNA-binding domains (Woodage et al.,
1997; Schuster et al., 2002; Kulkarni et al., 2008). Chd2
knockdown zebrafish have multiple developmental abnorm-
alities, abnormal movements and epileptiform discharges
(Suls et al., 2013). Disruption of Chd2 in mice causes em-
bryonic death in some heterozygote pups and a complex
phenotype including growth retardation and lordokyphosis
(Marfella et al., 2006; Kulkarni et al., 2008): epilepsy has
not yet been described. Interestingly, the reported human
mutations do not cluster to accessory domains of the pro-
tein and no obvious pattern has emerged. Recent data
demonstrated that the N-terminal region of CHD2 plays
an inhibitory role, reducing DNA affinity and ATPase ac-
tivity which may confer specificity, while the C-terminus
enhances DNA binding and stimulates ATPase activity

A
0.5 mv
100 ms
B
C ' '

Figure 2 Representative tectal field recordings of 4-dpf zebrafish larvae. Background fragment of non-treated wild-type control in the
dark (A); reaction of a non-injected fish to light ON - movement artefacts (wavy background) and a very short spike were observed (B); response
to light ON of the morpholino-injected larvae: significantly more spiking activity is seen (C). The scale is the same for all three fragments.
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(Liu et al., 2015). Additional studies investigating protein
interacting partners and post-translational modifications of
CHD2 will be necessary to understand how abnormal
CHD?2 leads to photosensitive epilepsy.

Our zebrafish data show that partial (50%) loss of
chd2 function causes photosensitivity. Although Suls ef al.
(2013) showed chd2 knockdown could cause seizures,
photosensitivity was not studied. Although normal zebra-
fish show complex sensitivity to light (Moore and
Whitmore, 2014), and untreated larvae show minor sensi-
tivity to sudden exposure to light, morpholino-injected
larvae show significantly more spiking activity on sudden
light exposure. Photosensitivity on constant, rather than
only flickering, light exposure has been described in
humans (Oguni et al., 2001). The functional consequences
of each of the human mutations we detected is not known,
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but some at least very probably lead to loss of function, as
caused by partial chd2 knockdown that results in markedly
enhanced photosensitivity in zebrafish. Together, these data
strongly suggest that some human CHDZ2 mutations cause
photosensitivity.

There are potential limitations of our work. Different
sequencing platforms were used for the various studied
groups. However, we note that all unique variants in
cases were confirmed by a second method, whereas for
ExAC controls we used a liberal threshold to maximize
sensitivity to unique variants, such that a proportion of
variants selected from ExAC will be false positive: the net
result of this overall conservative approach is only to
reduce study power. The ExAC cohort is also the biggest
relevant control data set available, and the most likely of
any existing data set to provide an accurate estimate of the
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non-injected-light 4

D Cumulative frequency distribution of events

1004 —

relative frequency of events, %
3

[
— non-injected
MO-injected
o
T T 1
0.0 0.5 10 15

event duration, s

Figure 3 Electrographic activity of zebrafish larvae with chd2 knockdown and light ON stimulus. Zebrafish larvae (4 dpf) were kept
in the dark (or darkened environment, if not possible otherwise) for all groups in Danieau’s medium. Tectal field recordings were performed for
the first 5 min in the dark and subsequently in light ON state for the following 5 min in morpholino-injected larvae (n = 15) and non-injected larvae
(n = 10). A spiking episode, either spontaneous or evoked by light, was defined as a paroxysm of high-frequency (200-500 Hz) activity with the
amplitude exceeding three times the background. Average duration of spiking events &£ SEM detected per condition is shown in A. Average

number of events per fish == SEM is shown in B. Cumulative duration of spiking activity per fish as seconds = SEM is shown in C. Cumulative
frequency distribution of spiking episodes is shown in D: morpholino-injected larvae show more activity than any of the non-injected controls, and
a higher photosensitivity (curve shift to the right in the light compared to the dark recordings). *P < 0.05 and **P < 0.01 Mann-Whitney test.
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true frequency of unique variation in CHD2 in a popula-
tion not enriched for photosensitive epilepsy. Taking all
these factors into account, the use of different platforms
is very unlikely to have generated false positive results—
indeed, we are more likely to have underestimated unique
variant numbers in cases. It is also possible that our choice
of statistical test may have missed a true association
between rare variation in CHD2 and GGE (irrespective
of photoparoxysmal response or photosensitivity), and we
did not test whether CHD2 variation contributes to
epilepsy more broadly: we therefore cannot exclude the
possibility that rare CHD2 variation contributes to epilepsy
per se. Lack of parental samples meant we could only con-
firm variants were de novo in two patients. Family samples
were only available in one other case (Case 9): the variant
was inherited from a clinically-unaffected mother in whom
no EEG studies had been carried out.

Our results provide evidence for a specific gene in a par-
ticular trait in epilepsy. Understanding the genetic basis of
the photosensitivity trait is a first step to elucidating the
biology that underlies photoparoxysmal response and its
relation to epilepsy. Human photosensitive epilepsy para-
digms have facilitated epilepsy treatment discoveries
(French et al., 2014): understanding photoparoxysmal
response biology may increase the value of these para-
digms. Our findings may also provide new directions for
understanding human cortical excitability.
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