

IRES 2015 Poster Exhibition

9th International Renewable Energy Storage Conference

LEHRSTUHL FÜR REAKTORSICHERHEIT UND -TECHNIK UNIV.-PROF. DR. RER. NAT. HANS-JOSEF ALLELEIN

Fonds National de la Recherche Luxembourg

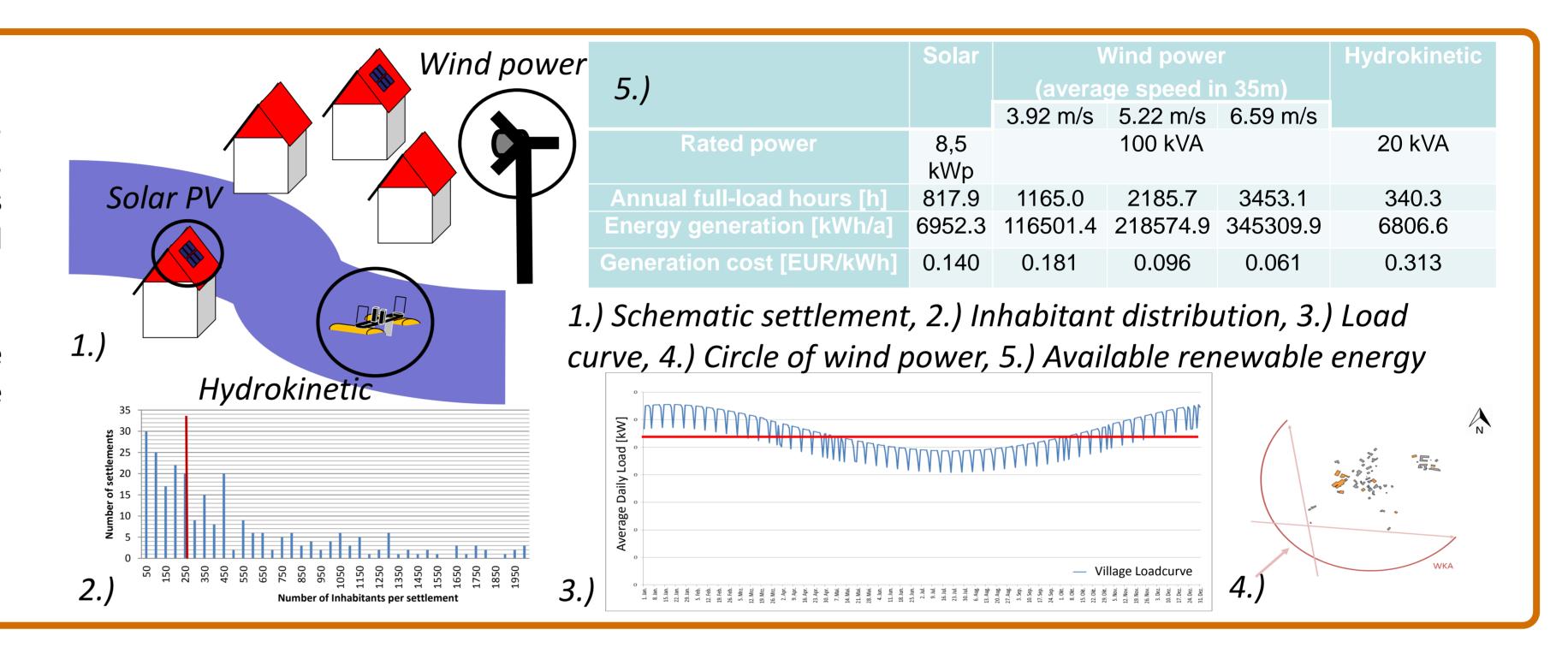
11,8-100% Rural Renewable Energy and Power Supply and its Influence on the Luxembourgish Power System

David NORTA, Christoph WINKLER, Jürgen SACHAU, H.-J. ALLELEIN

Motivation

How to design a rural renewable power supply and how much does it cost to meet the different "energy scenarios"? This question is answered in the following, supplying an average Luxembourgish village with power generated from renewables. A low price as well as a low energy import from the grid is the goal of the proposed energy system.

Component


Furbine and tower

Concept

A Luxembourgish average sample village is designed, consisting of the main consumer, namely, private households, farms and service consumer. The village has 255 inhabitants and 94 households, which represents the median of the rural population. The power demand is 481 MWh/a.

Using the standard load profiles (H0, G1, G2, G4, G5) for the different consumer a village profile was derived. The three following renewable energy scenarios are analysed:

- 1. 11.8 %: Luxembourgish Goal for 2020
- 2. 30 %: European goal for 2030
- 3. 100 %: Theoretical energy goal for a renewable supply

Optimized Renewable Generation

Using a number of three decentralized renewable concepts which can be directly feed into the 400V grid a 8.5kW solar PV, a 100 kVA wind power plant and a 20 kVA hydrokinetic turbine are considered in the optimization. The systems annuities are: Solar (8.5 kW): 972.30 EUR/a; wind (100kVA): 20976.79 EUR/a; hydrokinetic (20kVA): 2129 EUR/a, each calculated for 13 years.

The cost optimization aims on a minimum cost to supply the villages' electricity demand. A minimal cost solution for the considered time span of 9 years is derived using real generation profiles of the three renewable technologies.

The IBM Ceplex solver was used to find the optimum solution of the problem defined in Matlab.

The number of PV systems is restricted to the maximum number of by the line losses and therefore by the distance of the turbine to the village. The number of wind power plants is restricted by the length of a circle around the village and its diameter and the $c^Tx = \sum_i (c_i * x_i) = c_{solar} * x_{solar} + c_{wind} * x_{wind} + c_{hydr} * x_{hydr} \rightarrow min$ Energy Constraint: $p * E_{Load} \le E_{Solar} * x_{Solar} + E_{Wind} * x_{Wind} + E_{Hydro} * x_{Hydro}$

turbines minimum distance to each other.

Foundation 60 years 50 000 EUR Grid connection 15 000 EUR 30 years 8000 EUR Spare parts 30 years 1150 EUR nsurance and taxes 3500EUR **Maintenance**

Lifespan

30 years

Cost

255 000 EUR

Component	Lifespan	Cost		
Solar Panel 250 W	25 years	192.00 EUR/panel		
Inverter	13 years	2058.00 EUR/piece		
Grid connection	30 years	198.00 EUR fix		
Spare parts	-	34.00 EUR/panel		
Insurance and taxes	-	37.50 EUR/panel		
Maintenance	-	42.50 EUR/panel		
Maintenance and Insurance	-	240 EUR fix		

Component

Generators

Entire System

Lifespan

30 years

17 years

13 years

15 years

Cost

22730 EUR

3842 EUR

4882 EUR

800 EUR

450EUR/a

113.65 EUR/a

Optimization: $\min_{x \in \mathbb{N}_0} \{ c^T x | Ax \ge b \}$

 $Ax \geq b = \begin{bmatrix} P_{solar,1} & P_{wind,1} & P_{hydr,1} \\ \dots & \dots & \dots \\ P_{sol,m} & P_{wind,m} & P_{hydr,m} \end{bmatrix} * \begin{bmatrix} x_{solar} \\ x_{wind} \\ x_{hydr} \end{bmatrix} \geq \begin{bmatrix} P_{Demand,1} \\ \dots \\ P_{Demand,m} \end{bmatrix}$ Generators Inverter Roller bearings Maintenance

 $c^{T}x = \begin{bmatrix} x_{sol} \\ x_{wind} \\ x_{hydr} \end{bmatrix}^{T} x \qquad a_{t}x = \sum_{i=1}^{n} [a_{i,t} * x_{i}] = \sum_{i=1}^{3} [P_{i,t} * x_{i}]$

Limited number of wind turbines: $N_{Turbines}(N_{Inhabitants}) = \frac{1000 \frac{m}{km} * \pi}{6 * 25,4} * \left(\sqrt{\frac{N_{Inhabitants}}{150\pi}} + 0,282 \right)$ Length of sound transmission: $r = r_0 * 10^{\left(\frac{L_s - L_r - 11dB}{20dB}\right)}$

Results

The results of the optimization show, that for different energy scenarios the prices and the systems' performance vary.

It is interesting to see that up to 100% renewable energy supply Luxembourgish villages the solar PV generation is the most cost effective solution with 14 €ct/kWh.

Locations with a higher wind speed make hybrid solutions of wind and solar systems more efficient. So the price for the best wind speed location is just 8.4€ct/kWh.

The innovative hydrokinetic turbine in a 100% renewable hybrid energy scenario leads to higher generation prices of about 19.6 €ct/kWh.

Scenario	(Wind speed)	11.8% (mean)	30% (mean)	100% (min.)	100% (mean)	100% (max.)	100% with Hydro
PV-Systems [-]		9	21	70	4	20	47
Wind turbines [-	-]	0	0	0	2	1	0
Hydrokinetic [-]		0	0	0	0	0	23
Annual energy	production [MWh]	62.57	146.00	486.66	484.63	484.35	483.31
Energy balance	[MWh]	-419.65	-336.22	4.44	2.41	2.13	1.09
Direct energy co	onsumption [MWh]	62.52	130.12	207.43	259.91	313.45	235.44
Annual deficit fo	or only directly consumed electr	ricity [MWh] 419.7	352.10	274.79	222.31	168.77	246.77
Excess energy	for direct consumption [MWh]	0.05	15.88	279.23	224.72	170.89	247.86
Max. Residual lo	oad (Import) [kW]	105.9	105.9	105.9	105.8	105.8	105.6
Max. Excess po	wer (Export) [kW]	27.6	144.3	650.1	183.1	234.0	632.2
Power directly s	supplied (share of a year) [%]	0.1	8.6	28.1	34.8	44.1	30.3
Annual Energy	supply [%]	13.0	30.3	100.9	100.5	100.4	100.2
Generation cost	t [EUR/kWh]	0.140	0.140	0.140	0.095	0.084	0.196