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This paper presents a numerical model of lamb wave propagation in a homogenous steel plate using elastodynamic finite integration
technique (EFIT) as well as its validation with analytical results. Lamb wave method is a long range inspection technique which
is considered to have unique future in the field of structural health monitoring. One of the main problems facing the lamb wave
method is how to choose the most appropriate frequency to generate the waves for adequate transmission capable of properly
propagating in the material, interfering with defects/damages, and being received in good conditions. Modern simulation tools
based on numerical methods such as finite integration technique (FIT), finite element method (FEM), and boundary element
method (BEM) may be used for modeling. In this paper, two sets of simulation are performed. In the first set, group velocities of
lamb wave in a steel plate are obtained numerically. Results are then compared with analytical results to validate the simulation. In

the second set, EFIT is employed to study fundamental symmetric mode interaction with a surface braking defect.

1. Introduction

Lamb wave testing technique is increasingly used for assess-
ing defects in thin-wall structures like plate and pipes [1-
3]. Lamb waves are elastic waves whose wavelength is in
the same order as thickness of the structure [4]. One of the
main advantages of lamb wave technique is that it allows
long-range inspection in contrast to traditional ultrasonic
testing, where the coverage is limited to a small area in
vicinity of each transducer. Lamb waves were first described
theoretically by Horace Lamb in 1917 [5]. These waves
arise from coupling between shear and longitudinal waves
reflected at the top and bottom edges of a thin wall structure
[6]. Lamb wave theory can be found in a number of text
books [7]. Defects such as corrosion and fatigue cracks cause
changes in effective thickness and local material properties
and therefore measurement of variations in lamb wave
propagation can be used to assess the integrity of plate [1].
Successful usage of lamb waves in an inspection system needs
to understand its schemes of propagation in a waveguide and

its scattering at defects. Thus, there is an increasing demand
for powerful, flexible, and accurate simulation techniques.
First works on numerical simulation of ultrasonic waves were
done by Harumi (1986) and Yamawaki and Saito (1992) who
calculated and visualized bulk wave propagation [8]. Now,
numerical simulation of lamb waves is possible. Common
techniques which are used to simulate lamb wave propagation
are finite difference time domain (FDTD) [9], finite element
method (FEM) [5], boundary element method (BEM) [10],
elastodynamic finite integration technique (EFIT) [11, 12],
and specialized methods for guided wave calculations such
as hybrid methods [13] and semianalytical finite element
method (SAFEM) [8].

In this work, calculations are based on elastodynamic
finite integration technique; historically, finite integration
technique was introduced by Weiland in electrodynamics.
Fellinger and Langenberg used Weiland’s idea for governing
equations of ultrasonic waves in solid, calling it EFIT [14].
EFIT is a grid based numerical time-domain method, using
velocity-stress formalism, and easily treats with different
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boundary conditions which are essential to model ultrasonic
wave propagation [12]. Because of its relative simplicity and
flexibility, Schubert et al. used EFIT equations to cylindrical
coordinates (CEFIT) to simulate axisymmetric wave propa-
gation in pipes with a 2D grid [15]. Schubert also used finite
integration technique to simulate elastic wave propagation in
porous concrete and showed efficiency of EFIT to model a
diverse range of applications [16].

Two sets of simulation results are presented in this work
using a program developed in MATLAB environment. In
the first one, lamb wave propagation in a 2D steel plate is
discussed. Results are then compared with analytical results
to validate the accuracy of modeling and, in the second
example, interaction lamb wave with a surface breaking
defect is investigated.

2. The Elastodynamic Finite Integration
Technique for Linear Elastics

2.1. Governing Equations. The governing equations of elastic
waves in a general media are the Cauchy equation of motion
and equation of deformation rate. These equations are given
in integral form for a finite volume Vand surface S as follows:

9 J pv,dV = J T;in;dS + J fidv, ey
ot Jv s Y v

0 1
a JV SijlekldV = E J’3 (Vl-nj + ani) dS, (2)

where v is the particle velocity vector, T is stress tensor, p
is density, # is the outward normal vector on surface S, f is
the body force vector, and s is the compliance tensor. The
inverse of s is the stiffness tensor c. Thus, using stiffness
tensor, deformation rate equation can be expressed in another
form. Consider

0 1
a JV TkldV = E J:S Cklij (Vi”j + ani) ds = Js Cklijvinjds.

(©)
In the case of isotropic material ¢ can be written as [17]
Gjk = A0;j0p + p (6ik8jl + 6il6jk) > (4)
where A and p are lame constants.

2.2. Spatial Discretized Form of Two Dimensional EFIT.
Consider the Cartesian coordinate {x, y,z} and ultrasonic
wave which propagates in two dimensional xz-plane. To
apply FIT to (1) and (2), squares shown in Figure 1 are used
as integral volume V, assuming constant v and T for each
volume.
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FIGURE 1: Definition of integration cells for stress and velocity com-
ponents. The geometry consists of four true material cells and four
pseudomaterial cells [12].

The final results for discretized form are

v, (xp, 2)
ot
1 [ Ty (30 + (Ax/2), 2) = Ty, (30 — (Ax/2), 25)
- p Ax

(5)
+ sz (XO’ZO + (AZ/Z)) - sz (xO’ 2y — (AZ/Z))
Az

+L‘
AxAz

A same manner of integration equation (1) about a v,
integration cell centered at (x;, z;) results in

ov, (x1,21)

ot
1 [T (3 + (AX/2), 7)) = T, (3, = (Ax/2),2y)
- p Ax

+ Tzz (xl’zl + (AZ/Z)) B Tzz (xl’zl - (AZ/Z))
Az

.
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FIGURE 2: Steel sheet with length [ = 300 mm and thickness d = 2 mm. (a) Excitation pattern for symmetric mode. (b) Excitation pattern for

axisymmetric mode.
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FIGURE 3: Dispersion diagram for a plate steel (a) phase velocity curve and (b) group velocity curve.

Now, using the normal stress equations, integration of (3)
about T, and T, centered at (x,, z,) yields

aTxx ('XZ’ ZZ)
ot

I

Y [Vz (3,2, + (A2/2)) = v, (x5, 2, — (Az/2)) ] ,

X, +(8x/2),25) = v, (x, - (Ax/2) .z,)
Ax

Az

aTzz ('xZ’ Z2)
ot

-2 |-

) [vx (%, + (Ax/2),25) = v, (x, — (Ax/2) ,zz)] .

L (%5, 25 + (A2/2)) — v, (x5, 2, — (Az/2))
Az

Ax
(7)

Finally, integration of (3) over T,, integration cell cen-
tered at (x3, z3) the intersection for material cells results in

asz (x3’ ZS)
ot

_ | Y (x3,25 + (A2/2)) = v, (x5, 25 = (A2/2))
- Az (®)

R (x5 + (Ax/2),25) = v, (x5 — (Ax/2), z;)
Ax

As shown in Figure 1, to simplify indexing into stress and
velocity arrays of staggered grids when programming the

numerics and to keep the same array sizes for all quantities,
pseudomaterial cells are used. These cells have the same
material properties as the true material they are added to but
are not part of physical simulations.

2.3. Time Discretization. Central differences are used to
discretize the equations in time domain which results in the
velocity and stress components being staggered in time by
At/2 [15]. Consider

Y

)
Tn+(1/2) _ Tn—(l/z) + AtT”

where At is time interval, superscript » is integer number of
time step, and dot {-} denotes the time differentiation.

Equations (5)-(8) are solved at all points in simulation
space and, by use of (9), the simulation proceeds in time
in a “leap frogging” manner. A specific stability condition
and adequate spatial resolution must be satisfied to guarantee
EFIT convergence and accurate answers [15].

3. Propagation of Lamb Wave in a Steel Plate

In this part, the propagation of lamb wave in a steel plate is
simulated using 2D-EFIT. The steel plate has the length | =
300 mm and the thickness d = 2 mm. Table 1 shows material
properties used in this paper.

As excitation source, point sources at top and bottom
borders of plate are used. Figure 2 shows location of applied
loads.

Using excitation patterns shown in Figure 2 and disper-
sion diagram for steel plate (Figure 3), single mode lamb wave
is generated which makes signal interpretation easier.
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FIGURE 4: Lamb wave propagation in a steel plate at time T = 80 us. The snapshot represents normal component of particle velocity (v,): (a)

symmetric mode and (b) axisymmetric mode.

TABLE 1: Material properties used for simulation.

Property Value
Density 7700 (kg/m3 )
Elastic modulus 195 Gpa
Lame constant A 96.95 Gpa
Lame constant y 76.17 Gpa

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
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FIGURE 5: Analytical group velocities comparison with 2D-EFIT
results for fundamental axisymmetric mode.

Using 2D-EFIT code developed in MATLAB, propaga-
tion of lamb wave in the steel plate is simulated. To guarantee
stability and accuracy of results, Ax and Az are chosen
0.2 mm and At is 20 ns. The simulation results using EFIT-
tool for symmetric and axisymmetric modes are presented in
Figure 4, where the ultrasonic wave field in the plate at time
T = 80 us is shown (excitation pulse is a raised cosine with
five cycles with center frequency of 500 kHz).

As shown in Figure 4, for the fundamental symmetric
mode (S;), the lamb wave field is symmetric about half
planeline and, for the fundamental axisymmetric mode (A,),
normal component of particle velocity v, has the same value
for every particle with same longitudinal position. From
dispersion curve, we find that S, travels faster than A, which
is validated by simulation results (see Figure 4).
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FIGURE 6: Analytical group velocities comparison with 2D-EFIT
results for fundamental symmetric mode.
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FIGURE 7: Error comparison for symmetric and axisymmetric
modes.

In order to check EFIT accuracy, group velocities
obtained from simulation are compared with analytical
results at both symmetric and axisymmetric modes (Figures
5and 6).

Figures 5-7 show good agreement for simulation results
with analytical ones; also Figure 7 shows error dependence
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FIGURE 8: Schematic of model used for studying interaction lamb
wave with a defect in a steel plate.
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FIGURE 9: Ratio of reflection coefficients as function of crack depth.

on frequency for axisymmetric mode is less than symmetric
mode.

4. Reflection of the Fundamental Symmetric
Mode (S,) from a Defect

In this section, interaction of the S, mode with a defected
steel plate is analyzed. The results presented here were used
for a sizing study of rectangular surface braking defect with
different depths and opening length 2mm on a steel plate
(Figure 8).

The same method used in the proceeding section is
used to generate single mode with center frequency of
500 kHz. However, as the lamb wave interacts with a defect,
the axisymmetric mode will be generated. To study lamb
wave interaction with a defect, the ratio of the maximum
amplitudes for two modes Rg /R, is then calculated and
compared at different depths (Figure 9).

Figure 10 shows the ultrasonic wave field in the defected
plate at time T = 60 us; the defect depth is 0.4 mm. As
shown in Figure 10, because symmetric modes travel faster
than axisymmetric ones, mode separation happens after lamb
wave interaction with defect.

5. Conclusion

EFIT was used for studying lamb wave propagation in a steel
plate using a program developed in MATLAB environment.
Two sets of simulation results were presented in this paper.
In the first example, group velocities of lamb wave for
different frequencies were obtained using numerical signals
and then the results were compared with analytical results;
the comparison shows, for both fundamental symmetric and
axisymmetric modes, the group velocity values are in good
agreement with theoretical ones. In the second example,
reflection of S, mode from a defect is studied and ratio of

FIGURE 10: Lamb wave propagation in a steel plate with defect at time
T = 60 ps. The snapshot represents normal component of particle
velocity (v, (m/s)).

reflection coeflicients was obtained as a function of crack
depth which shows that as the crack depth increases the ratio
Rg, /Ry, increases. Each calculation presented in this paper
was done on ordinary PC (Core i5, 2.4 GHz, 4 GB RAM).
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