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Abstract—In the design of real-time systems, models are usual
artifacts to capture and represent the various features of the
system. They are later analyzed to check for their correctness.
A key issue is to handle models and analyses in a systematic,
consistent and efficient way. This paper presents an approach
for the systematic and correct execution of analyses on real-time
system models along with a proof-of-concept.

The contribution aims at 1) directing the analyses targeting
goals and 2) using contracts to reason about models, analyses
and goals. An example of goal is to enrich a model with missing
information or to obtain precise data to conclude about the
system quality. In our approach, contracts are used to formally
depict both the properties required and provided by the analyses ;
but also models and goals. Through the concept of contracts, we
identify all the feasible paths to execute the analyses in order to
reach a goal.

I. INTRODUCTION

Distributed Real-time Embedded (DRE) systems are now
used in safety-critical contexts such as for transportation,
space, defense or telecommunications applications. It is
mandatory to develop such systems with the required quality
(e.g., regarding timing, safety or security aspects).

Model-Based Engineering (MBE) emphasizes the rational
use of models to build systems. Analysis techniques – analyses
for short – can be applied to check conformity of the models
with respect to the quality requirements. Usually, numerous
analysis techniques are available for each quality concern ;
e.g., to check the respect of temporal constraints regarding
tasks scheduling, communications delays or worst-case exe-
cution times.

An emerging challenge is to deal with the diversity of
models and analyses to enable already existing modeling and
analysis tools to collaborate. A first issue is to apply the
“correct” analysis to the “right” model : each analysis makes
assumptions on the system that must be held true in the model.
Another issue is to manage the interactions between analyses.
In some cases, it can be necessary to combine the execution of
analyses in order to obtain targeted information. For instance,
when an analysis outcome can be used by another analysis,
these analyses can be executed successively.

We note a lack of theoretical and practical support to handle
models and analyses at large in a systematic, consistent and
efficient way. We observe that most of the present works focus
either on the transformation aspects (i.e., providing solutions to
switch from model-oriented to analysis-oriented frameworks)
such as in [1], or partially consider the management aspects
[2], [3]. In the latter cases, both the exploitation of analyses
outcomes and the sequencing of analyses remain unaddressed.
Finally few works [4] look for a high-level and independent
framework dedicated to the management and integration of
models and analyses.

In this paper, we present an approach to systematize the ap-
plication of analyses on real-time system models. We propose :
1) to target goals for directing the analyses ; 2) to use contracts
as a formalism to abstract models, analyses and goals, and
to enable reasoning about their interfaces. We build on the
concept of contract [5] that we extend to formally describe
the properties required and provided by the models, analyses
and goals. We provide an implementation to handle contracts
so as to : 1) state if there exists at least a path for the execution
of the analyses in order to attain a goal according to an input
model ; 2) find out all the feasible paths from an input model
towards a goal.

The implementation of our approach relies on Alloy [6]
which is a logic-oriented modeling language that we use
for contracts description. In addition, the Alloy analyzer is
used to solve the constraints related to the dependences
between contracts. As a proof-of-concept, we propose to
apply our strategy for assessing schedulability of real-time
systems modeled with the Architecture Analysis & Design
Language (AADL) [7]. The experimental results prove that
our approach is capable of organizing analyses for systems
models of different complexity in an affordable time.

The remainder of this paper is organized as follows. We first
discuss related works (Section II). We then introduce contracts
with simple examples (Section III). In Section IV, we detail
the use of contracts in our approach and the implementation
with Alloy. The approach is experimented in Section V on
several case studies. We finally conclude in Section VI.



II. BACKGROUND AND RELATED WORKS

Besides the numerous contributions made regarding mod-
eling languages and analysis techniques, many studies look
now to apply these analyses on design-oriented models –
using AADL for instance. This can have different aims :
verification of a system design, use of the analyses results in
advanced design workflows including virtual integration [8],
design space exploration or optimization [9], [10].

As most of the analyses are executed by independent tools
relying on their own models, it is necessary to transform
design-oriented models towards analysis-specific ones. As
examples of external tools concerned by schedulability and
timing analysis, applicable on AADL models : Cheddar [11]
and MAST [12] rely on real-time scheduling theory, TINA
[1] uses Petri Nets for model checking. The transformation
approaches take care of the “technical” couplings (i.e., regard-
ing the syntax and eventually the semantics) between design-
oriented models and analysis-oriented ones, thus enabling
to analyze design-oriented models. Nevertheless, there is no
support to decide when and in which manner to apply the
analyses ; and limited support to handle the results produced
by the analyses.

The two works in [2], [3] implement a similar approach to
help choosing the analyses that can be executed on design-
oriented models. The idea is to check the prerequisites of a
given analysis on the model before its execution. In [2], this is
achieved through the formalization and verification of contexts
defined for each analysis. In [3], the authors propose to check
AADL subsets before applying an analysis. We note that the
solutions are restricted to the MoSaRT language and AADL
and only target real-time scheduling analyses. Again, both the
analyses outcomes and the sequencing of the analyses remain
unaddressed.

Contracts have been investigated and used in very different
contexts. In general, contracts are abstract structures consisting
in a specification of assumptions and guarantees. A contract
describes the expectations on its environment (the assump-
tions) and the satisfactions provided (the guarantees) under
the environment assumptions. Assume-guarantee reasoning is
useful to manage complex state spaces. Contracts can be used
in very different settings ; e.g., in the design of Cyber-Physical
Systems that has to integrate modeling concerns from many
disciplines and stakeholders [5], [13].

Recent works propose to extend contracts to manage the
integration between analyses. Ruchkin et al. [4] aim to use
contracts in order to prevent the incorrect ordering and exe-
cution of a set of analyses. They propose a specific language
to specify contracts along with a verification algorithm to find
inter-dependencies between contracts. Thereby, they ensure the
results produced by the successively executed analysis tools do
not enter in conflict. In a second paper [14], they detail the
implementation of their approach in the OSATE tool platform
[15] to manage analyses to be applied on AADL models. The
main objective is to preserve the outcomes produced by the
execution of a set of analyses : the way to manipulate the

analyses to produce expected results is left to the analyst. As a
second limitation, the implementation which is detailed in [14]
is very close to and highly dependent on the AADL language.

In our works, we investigate a complementary approach :
we use contracts to identify the correct execution order of a set
of analyses to produce a target result (i.e., attain a goal). In a
way, we look for a “super-analysis” to get expected outcomes ;
the way to integrate the “super-analyses” outcomes in the
design space is not currently addressed. In addition, we aim
at separating contracts reasoning from lower-level consider-
ations ; e.g., suitable means to syntactically or semantically
interpret models can be highly dependent on the modeling
languages or domain-specific design patterns. Our approach
is applicable with any modeling language as soon as low-
level means to map the modeling framework to the contract
one exist. That is : 1) contracts are defined and handled in
a dedicated environment ; 2) lower-level artifacts should be
implemented separately with respect to the underlying models
and analyses.

III. CONTRACTS FOR MODELS, ANALYSES AND GOALS

In this section, we present basics for contracts through ex-
amples. First, we provide a definition for models, analyses and
goals, in the scope of our work. Then, we have to distinguish
“properties” and “meta-properties” that can be manipulated by
models, analyses and goals. At last, we introduce contracts and
discuss an important feature : precedence between contracts.

A. Models, analyses and goals

A model is a representation, i.e., a sound abstraction, of a
system. For our concern, we propose the following definitions.

Definition 1 : Model. A model is a couple M = (S, P ) :

• S is the model domain, i.e., a set of sorts,

Sorts in a model are closely related to the modeled system
and the aspects being considered. Sorts can be mathematics-
oriented (e.g., Booleans, Integers) or domain-specific (e.g.,
real-time scheduling entities such as tasks, processors and
scheduling algorithms).

• P is a set of properties. A property is an association of
sorts P : S → S.

Properties can be used to describe models invariants such
as threads periods, processor scheduling policies ; but also a
model status like being schedulable, safe, etc.

Informally, we can define1 an analysis as a “a careful study
of something to learn about its parts, what they do, and how
they are related to each other ; an explanation of the nature
and meaning of something”.

Definition 2 : Analysis. An analysis is a function that operates
over a model A : M →M .

1according to http://www.merriam-webster.com/

http://www.merriam-webster.com/


Fig. 1. An analysis A inputs a model M and outputs another model :
M ′ = A(M).

Models and analyses can be combined in order to produce
other models. The approach discussed in this paper propose
to manipulate models and analyses in order to produce “goal”
models – reach goals.

Definition 3 : Goal. Let M be a set of models and A be a
set of analyses. A goal is a particular model required over a
set of models and analyses G :M×A→M.

Example: Let us discuss the case of real-time systems
modeling and analysis. The tasks model by Liu and Layland
[16] enables to model processing aspects of real-time systems.
In its simplest version, the execution of the system is carried
out with respect to tasks characteristics (periods and execution
times) and processing resources properties (scheduling policy)
as specified on Table I.

property description association
Per period R→ task
Exec (worst-case) execution time R→ task
Sched scheduling policy {FP,RM,DM} → scheduler

TABLE I
M0 : PROPERTIES INVOLVED IN THE LIU AND LAYLAND’S TASKS MODEL.

Based on the latter tasks model (M0), several schedulability
analyses have been proposed – schedulability analyses aim to
conclude a given configuration of a task model is schedulable
(i.e., all the tasks deadlines will be met). We can cite pro-
cessor utilization bound feasibility tests [16] or response time
analyses [17] (respectively A1 and A2 in the following).

The two analyses outputs two different models as shown
in Table II. First one (M1 = A1(M0)) provides a property
(isSched) which assigns a binary value to each task – true
meaning the task is schedulable and false meaning it is not.
Second one (M2 = A2(M0)) provides the worst-case response
time for each task (respTime property). It is the time for a
task to complete in the worst-case scenario.

model property description association
M1 isSched tasks schedulability {true, false} → task
M2 respTime tasks response times R→ task

TABLE II
TWO MODELS PRODUCED BY SCHEDULABILITY ANALYSES. A processor

utilization bound feasibility test [16] OUTPUTS THE MODEL M1 . A response
time analysis [17] OUTPUTS THE MODEL M2 .

For an analyst, any of M1 or M2 can be a goal. In that
case, it is noted G1 (or G2).

B. Discussion about properties and “meta-”properties
We explained that an analysis outputs a model (i.e., sets of

sorts and properties) according to an input model. We must

distinguish simple-properties from what we will call in the
sequel meta-properties. We choose to use the prefix “meta” to
point out that properties and meta-properties are related to a
different level of abstraction :
• Simple-properties are properties that are intended to be

present or integrated in a model,
• Meta-properties – properties about properties – are prop-

erties about a model which are not intended to be present
or integrated in this model.

Practically speaking, simple-properties can be constituent
of a design-oriented model ; e.g., periods of tasks. On the
contrary, meta-properties are more related to providing infor-
mation about a design-oriented model ; e.g., the tasks are
schedulable. Meta-properties can be used to conclude about
a model while simple one cannot. As a matter of fact, meta-
properties mostly involve Booleans. An analysis can provide
properties, meta-properties or both.

Example: Considering the example on subsection III-A,
the first analysis (processor utilization bound feasibility tests)
outputs the isSched property. We assert this is a meta-property
as it can be directly used to conclude about the schedulability
of the tasks : if the boolean-valued property is true, the system
is schedulable.

The second analysis (response time analyses) provides the
response time for each task (respTime property). Without
further interpretation, that property does not allow to conclude
about the schedulability of the tasks. Nevertheless, it is possi-
ble to conclude about the system schedulability by comparing
the tasks response-times against the tasks deadlines : if all
the response-times are under the deadlines, the system is
schedulable. Such an analysis requires access to an additional
Dline property that explicitly specifies a deadline for each task.
This is depicted on Figure 2.

Fig. 2. Models, analyses and goals involve two kinds of properties : simple
and meta-properties. Meta-properties are denoted with a # as prefix in the
figure.

C. Contract

A contract is an abstract signature that can be indifferently
related to a model, an analysis or a goal. More precisely, a
contract describes in a formal way the properties required and
provided by its related element.

Definition 4 : Contract. A contract, related to an element (i.e.,
a model, an analysis or a goal), is a tuple : K=(I,O,A,G) :
• I are inputs : the set of properties required by the

element,



• O are outputs : the set of properties provided by the
element,

• A are assumptions : the set of meta-properties required
by the element,

• G are guarantees : the set of meta-properties provided
by the element.

For the sake of clarity, we note Ki.I , Ki.O, Ki.A or Ki.G
the elements of a contract, where i ≥ 0 (Ai and Gi being
reserved to express analyses and goals). Informally, K(M),
K(A), K(G) are contracts referring to : a model, an analysis,
a goal.

Fig. 3. A contract formally describes the properties required and provided
by an element E (i.e., a model, an analysis or a goal). Inputs-outputs use
properties, assumptions-guarantees use meta-properties.

Example: We consider the example of Subsection III-A.
Processor utilization bound feasibility tests requires several

properties from the input model (Table I). In addition, the tests
proposed by Liu and Layland [16] rely on a set of assumptions
expressed over those properties (Table III) : the tasks should
be periodic with an execution times fixed or upper bounded,
the scheduling policy should be fixed, etc.

property description association
perTasks tasks are periodic {true, false} → task
fixedExec tasks with fixed execution times {true, false} → task
fixedSched scheduling uses fixed priorities {true, false} → scheduler
... other assumptions

TABLE III
META-PROPERTIES REQUIRED TO APPLY LIU AND LAYLAND’S processor

utilization bound feasibility tests.

Under Liu and Layland’s assumptions, this analysis provides
two kind of properties :

• the processor utilization rate (U property),
• a conclusion on the schedulability of the system (isSched

meta-property).

The contract for this analysis is defined as follows :
K3(A1) = (I3, O3, A3, G3) with I3 = {Per,Exec,Sched},
O3 = {U}, A3 = “Liu and Layland’s assumptions” =
{perTasks,fixedExec,fixedSched, . . .} and G3 = {isSched}.

Contracts defined for the various models, analyses and goals
in Subsection III-B are listed in the table IV. We assume an
additional analysis (A0 in the following) to check Liu and
Layland’s assumptions on the input model.

contract I O A G

K1(M0) ∅
Per,

∅ ∅Exec,
Sched

K2(A0)
Per,

∅ ∅
perTasks,

Exec, fixedExec,
Sched . . .

K3(A1)
Per,

U
perTasks,

isSchedExec, fixedExec,
Sched . . .

K4(A2)
Per,

respTime
perTasks,

∅Exec, fixedExec,
Sched . . .

K5(M3) ∅ Dline ∅ ∅

K6(A3)
respTime,

∅
perTasks,

isSchedDline fixedExec,
. . .

K7(G1) ∅ ∅ isSched ∅

TABLE IV
THE SET OF CONTRACTS FOR THE EXAMPLE IN SUBSECTION III-B.

D. Contracts complementarities and elements precedences

We note that inputs and outputs (assumptions and guar-
antees) defined within two distinct contracts can be comple-
mentary. In that situation, the underlying elements (which can
models, analyses or goals) can be “connected” to each other.
“Connections” are possible for level-compatible properties
(between simple-properties, between meta-properties) and in
a unidirectional way (from outputs to inputs, from guarantees
to assumptions). Finally, we note that if two contracts are
complementary then there is a precedence between their
underlying elements. We give hereafter a more formal view
on elements precedences.

Vertical precedence: A vertical precedence denotes a
precedence between elements with respect to the production
of meta-properties (guarantees to assumptions).

Property 1 : Vertical precedence. Let :
• E be a set of elements, with Ecurrent and Enext be

distinct elements (i.e., models, analyses or goals) from
E ,

• Kcurrent and Knext be their contracts.
A vertical precedence between Ecurrent and Enext exists, that
is next vertical(Ecurrent, Enext) = true, iff Knext.A ∩
Kcurrent.G 6= ∅.

Horizontal precedence: An horizontal precedence de-
notes a precedence between elements with respect to the
production of simple-properties (outputs to inputs).

Property 2 : Horizontal precedence. Let :
• E be a set of elements, with Ebefore, Eprevious, Ecurrent

and Enext be distinct elements (i.e., models, analyses or
goals) from E ,

• Kcurrent and Knext be the contracts of Ecurrent and
Enext respectively,

• next vertical(Eprevious, Ecurrent) and
next vertical(Ebefore, Enext) be vertical precedences
over elements of E .

An horizontal precedence between the two
elements Ecurrent and Enext exists, that is



next horizontal(Ecurrent, Enext) = true,
iff Knext.I ∩ Kcurrent.O 6= ∅ and (Kcurrent.A = ∅

or next vertical(Ebefore, Ecurrent) = true) and
(Knext.A = ∅ or next vertical(Eprevious, Enext) = true).

Example: A graphical representation of the prece-
dences between the models, analyses and goals using the
contracts of the table IV is given on Figure 4. Fol-
lowing Property 1, there are 5 cases of vertical prece-
dence. For instance, between an analysis and another :
K3.A ∩ K2.G = {perTasks,fixedExec, . . .} 6= ∅ =⇒
next vertical(A0, A1) = true. Following Property 2, there
are 5 cases of horizontal precedence. For instance, between a
model and an analysis : K3.I∩K1.O = {Per,Exec,Sched} 6=
∅ ∧ K1.A = ∅ ∧ next vertical(A0, A1) = true =⇒
next horizontal(M0, A1) = true.

Fig. 4. Looking for the complementarities between the contracts in the table
IV enables to set up the precedences between the models, analyses and goals
of Subsection III-B.

From the use of models, analyses and goals precedences
(Figure 4), it is possible to identify paths to execute the
analyses in a suitable order to reach the goal.

IV. EXPLOITING CONTRACTS IN OUR APPROACH

In this section, we explain how contracts and contracts
precedences – as defined in the previous section – are used
in our approach to set up all feasible paths from an input
model to a goal by crossing necessary analyses. We propose
an implementation of the approach using Alloy.

A. Proposed approach
The previous examples illustrated how contracts can be

defined for models, analyses and goals (see Table IV).
Our approach relies on contracts complementarities detec-

tion to set up necessary and feasible analysis path to attain a
goal for an input model.

The approach consists in 4 steps (see Figure 5) :

1) Setting the configuration: which is made of :
• a set of models,
• a set of analyses intended to be applied on the models,
• a set of goals, i.e., the simple- and/or meta-properties to

compute with the analyses.
2) Declaration of the contracts: We derive contracts from

the input configuration. As a result, the contracts declaration
is made up of 3 different kinds of contracts :
• contracts for models abstract “initial elements” of the

configuration that only provide outputs,
• contracts for analyses always describe required inputs,

maybe a set of required assumptions and obligatorily the
provided outputs and/or guarantees,

• contracts for goals abstract “terminal elements” that only
require properties and/or meta-properties to be provided
as a result of the analyses execution.
3) Search of the analysis paths: During this step, we

use a) the contracts derived from the input configuration
(step 2) together with b) the rules describing under which
conditions two contracts are complementary (implementation
of Properties 1 and 2 in Subsection III-D). Then, we proceed
as follows :

i. given a) and b), we search the complementarities be-
tween the contracts,

ii. if a complementarity between two contracts exists, we
force the precedence between the elements.

As a result of i) and ii), we find out the necessary and
feasible paths to reach a goal from an input model by crossing
all the necessary analyses. The implementation with Alloy
discussed in the next subsection is optimal in the sense that
it enables to identify all the instances of necessary analysis
paths leading to a goal.

4) Execution of the analyses: Finally, analysis paths
(resulting of step 3) can be used to execute the analyses in
the correct order to obtain the required properties (goals). This
step is not addressed in this paper.

B. Implementation with Alloy
We use Alloy [6] to implement steps 2 and 3. Alloy is a

modeling language based on first order logic and relational
calculus. It provides powerful analysis features : the analysis
is performed by the Alloy analyzer, a tool capable of finding
satisfiable instances for given Alloy models in a finite domain
space using SAT-solving.

Firstly, the Alloy language is used to describe all the
contracts of step 2 which are related to the input configuration
in step 1. Basically, an Alloy model contains a collection of
signatures which are the set of atoms manipulated by the Alloy
analyzer. Signatures contain fields that define relations with
other signatures.

Listing 1 gives the abstract signatures involved in
the model : properties and contracts declaring different
kinds of relations with properties. The nextHoriz and
nextVertical relations (in the Contract abstract sig-
nature) make explicit the precedence order between elements
underlying to the contracts (i.e., models, analyses or goals).



Fig. 5. Proposed approach. For a configuration (a set of models, analyses and goals) (1), the contracts are defined (2). The contracts are processed to identify
the analysis paths to reach the goals (3). The analysis paths can be used to execute the analyses in a correct order to compute the required properties (4).

1 /∗ A b s t r a c t s i g n a t u r e s i n t h e A l l o y model ∗ /
2 a b s t r a c t s i g Prop{}
3

4 a b s t r a c t s i g C o n t r a c t{
5 a s s u m p t i o n : s e t Prop , / / r e q u i r e d p r o p e r t i e s
6 i n p u t : s e t Prop ,
7 g u a r a n t e e : s e t Prop , / / p r o v i d e d p r o p e r t i e s
8 o u t p u t : s e t Prop ,
9 n e x t H o r i z : s e t C o n t r a c t , / / Prec : in−>o u t

10 n e x t V e r t i c a l : s e t C o n t r a c t / / Prec : assum−>guar
11 }

Listing 1. Abstract signatures manipulated by the Alloy analyzer : contracts
and properties.

1 /∗ S i g n a t u r e s i s s u e d from t h e c o n f i g u r a t i o n ∗ /
2

3 / / A s e t o f p r o p e r t i e s
4 one s i g Per , Exec , Sched , respTime , Dl ine ,
5 l i u t e s t a s s u m p t i o n s ,
6 i s S c h e d ex tends Prop{}
7

8 / / An example o f c o n t r a c t
9 one s i g A1 ex tends C o n t r a c t{} {

10 a s s u m p t i o n = l i u t e s t a s s u m p t i o n s
11 i n p u t = Per +Exec+Sched
12 g u a r a n t e e = i s S c h e d
13 o u t p u t =none }

Listing 2. A simple example of properties and contracts issued from a
configuration involving a set of models, analyses and goals.

1 /∗ C o n s t r a i n t s t o be h e l d t r u e i n i n s t a n c e s ∗ /
2

3 / / H o r i z o n t a l p r e c e d e n c e be tween two e l e m e n t s
4 f a c t H o r i z o n t a l P r e c e d e n c e{
5 a l l c c u r r e n t : C o n t r a c t |
6 c c u r r e n t . n e x t H o r i z ={ c n e x t : C o n t r a c t |
7 ( c c u r r e n t . o u t p u t & c n e x t . i n p u t != none ) and
8 ( a l l a : c c u r r e n t . a s s u m p t i o n | a in C o n t r a c t . g u a r a n t e e

) and
9 ( a l l a : c n e x t . a s s u m p t i o n | a in C o n t r a c t . g u a r a n t e e )

10 }

Listing 3. Constraints to be held true in the instances found by the Alloy
analyzer : Horizontal and Vertical Precedences.

Listing 2 is an excerpt of the Alloy model for the example
in Subsection III-B : we use singleton to describe properties
and contracts derived from the configuration.

In addition, the Alloy model (Listing 3) contains facts
(VerticalPrecedence and HorizontalPrecedence
facts) to detail under which conditions the nextHoriz and
nextVertical relations between two contracts can be set.

The search for the analysis paths (steps 3i) and 3ii)) is
handled by the Alloy analyzer. Alloy provides a SAT-solver
that searches all the solutions that satisfy the specification
in the Alloy model. Concerning the example of Subsection
III-B, the Alloy analyzer finds only one instance. A graphical
representation of the solution displayed in the Alloy GUI is
given in Figure 4.

V. EXPERIMENTATIONS

In this section, we first present a toolchain mixing modeling
and analyses tools together with the Alloy tool. This toolchain
is used to experiment our approach to investigate analysis
paths on several case studies.

A. Settings

a) Toolchain: The toolchain used for system modeling
and analysis is represented on Figure 6 :
• The systems are modeled with the architecture design

language AADL [7] in the OSATE tool platform [15],
• Analysis tools :

– MAST [12] and Cheddar [18] tool sets provide
several analyses for evaluating tasks schedulability
and/or response times.

– RTaW-Pegase [19] and RTaW-Sim [20] are tools im-
plementing analyses to compute networks traversal
times. RTaW-Pegase focuses on network calculus
for computing tight upper bounds of communication
delays in AFDX networks. RTaW-Sim provides a set
of analyses for the performance evaluation of CAN
networks,

• REAL [21] theorems are directly applied on AADL mod-
els to check the assumptions of above-depicted analyses
are held true in the AADL models,

• Alloy [6] is used to describe the contracts of the models
and analyses implemented in the tools discussed above ;
as well as the goals. The contracts are used by the Alloy
analyzer to search the analysis paths (see Subsec. IV-B).



Fig. 6. The toolchain used to experiment our approach involves modeling
and analysis tools. Alloy is used to declare the contracts related to models,
analyses and goals and search the analysis paths.

Models transformations and contracts generations are partly
backed by the OCARINA tool [22] – currently implemented
transformations are represented with solid arrows in Figure 6.

b) Case studies models: We use AADL models for 5
case studies. The models are part of the AADLib project and
are accessible at : http://www.openaadl.org/. The case studies
are :
• M1 : a model using the ravenscar profile,
• M2 : a model for a simple distributed real-time system,
• M3 : a model for the mars pathinder system,
• M4 : a model for a simple satellite system,
• M5 : a model for a Flight Management System (FMS).
The AADL models of the case studies are of different

complexity. In the table V, we propose some metrics related to
the complexity of the AADL models : lines of code, number
of components, number of properties and average number of
properties by component. For the remainder of the paper, we
propose a complexity metric OAADL encompassing together
the number of components and the number of properties
present in the AADL model :

OAADL(Mn) =
NOC(Mn)×NOP (Mn)

NOC(M5)×NOP (M5)
(1)

According to OAADL, the model of the FMS is the most
complex (OAADL(M5) = 1). The AADL model using the
ravenscar profile is the least complex : OAADL(M5) ≈ 16×
OAADL(M1). We propose an additional model M6 = M1 ∪
M2 ∪M3 ∪M4 ∪M5 which is obviously more complex than
the model of the FMS : OAADL(M6) = 9×OAADL(M5).

c) Analyses: We consider the analyses provided by the
analysis tools of the toolchain (see Figure 6). We have 14
analyses in total. 7 analyses are provided by MAST, Cheddar,
RTaW-Pegase and RTaW-Sim tools to compute tasks schedu-
lability and/or response times and networks traversal times. In
addition, we propose 4 analyses that use REAL theorems to
check the analyses assumptions are held true in the AADL
models. Finally, we consider 3 analyses also using REAL
to compare tasks response times and network traversal times
against tasks and packets deadlines. We use the latter analyses
to conclude about tasks and messages schedulability.

d) Goal: We target a single goal which is to conclude
about the schedulability of the tasks and messages used by the
systems modeled with AADL.

case study LOC NOC NOP NOP
NOC

OAADL

M1 148 7 39 5,57 0,06
M2 337 20 57 2,85 0,25
M3 395 24 51 2,125 0,27
M4 464 27 85 3,148 0,5
M5 753 47 97 2,064 1
M6 2097 125 329 2,632 9,02

TABLE V
SEVERAL METRICS RELATED TO THE COMPLEXITY OF THE MODELS USED
DURING THE EXPERIMENTATION : LINES OF CODE (LOC), NUMBER OF

COMPONENTS (NOC), NUMBER OF PROPERTIES (NOP), AVERAGE
NUMBER OF PROPERTIES DEFINED PER COMPONENTS (NOP/NOC) AND

OAADL .

B. Results

Experimentation results discussed in this part have been
processed on a computer with : a processor Intel Core i7-
3770 (3,40 GHz), 8.00 GB of RAM ; the version 4.2 of Alloy
using MiniSat as solver.

a) Analysis paths: For each case study, the Alloy analyzer
successfully found an instance of analysis path : the instances
can be used to execute the analyses in a correct order and
conclude about the schedulability of the systems modeled with
AADL. We do not discuss the produced instances in more
details.

b) Contracts processing times: We are interested in the
time taken by the Alloy analyzer to find the analysis paths
enabling schedulability analysis of the various models : the
contracts processing times. The contracts processing time
(CPT ) is the time required by the Alloy analyzer to take
into account the contracts and constraints present in the Alloy
model and find all the solutions satisfying that model. It
encompasses two dimensions : 1) the generation time (GT ) of
the formulas to be handled by the solver and 2) the resolution
time (RT ) of the formulas to provide all the solutions. This
is simply summarized :

CPT = GT +RT (2)

Contracts processing times (CPT ) experienced with the
various AADL models are outlined on Figure 7. The genera-
tion times (GT ) increase exponentially with the complexity of
the AADL models (OAADL). The best case (GT = 639ms)
corresponds to the ravenscar profile model (M1). The worst
case is attained with the model of the flight management
system (M1) with a GT = 121159ms (≈ 2min) to generate
the formulas to solve. In the scenario where we consider
all the models at the same time (M6), the generation time
is multiplied by 20 (GT ≈ 40min) regarding the scenario
involving the FMS only.

We observe that, for all the case studies, almost entire part
of the contracts processing times (CPT ) is devoted to the
generation of formulas to solve (GT ). The resolution times of
the formulas themselves (RT ) never exceeds 1 second (RT =
856ms being the worst-case experienced).

c) Summary: We showed that our approach is applicable
on configurations (i.e., sets of models, analyses and goals)
of realistic complexity in an affordable time. Despite of the
important resolution space to handle, we are able to identify

http://www.openaadl.org/
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Fig. 7. Contracts processing time CPT = GT + RT dependence of the
input model complexity OAADL

all the necessary analysis paths to reach the analysis goal in an
reasonable time (the worst processing time is about 2 minutes).
In addition, we experienced scalability of our approach :
we applied our strategy on a configuration mixing all the
models (which represent 5 models, 125 components and 329
properties). Notwithstanding that the strategy is non-optimal,
our approach is capable of finding out all the solutions. A
better way to handle such a resolution space is to treat the
models independently and successively. The processing time
is then reduced from 40 to less than 3 minutes.

VI. CONCLUSIONS

We presented an approach to organize the execution of
analyses in MBE by targeting goals. We used contracts 1) to
capture the properties required and provided by any element
(which can be a model, an analysis or a goal) and 2) to identify
the precedences between these elements. Our implementation
with Alloy is optimal in the sense that if any analysis path
towards a goal exists, the Alloy analyzer will always find it. We
finally shown that our approach is capable to organize analyses
provided by existing tools with complex AADL models in a
reasonable time.

Future works can have manifold directions. Firstly, we
intend to extend our work to other modeling and analysis
concerns than architectural ones. Another upcoming issue will
be to semantically interpret the analysis paths before executing
the analyses. At last, we think to improve our approach to take
into account the quality related to the analysis paths (e.g.,
rapidity of the executions, precision of the results, etc).
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H. Lönn, C. Mraidha, D. Parker, D. Chen, and D. Servat, “Automatic
optimisation of system architectures using EAST-ADL,” Journal of
Systems and Software, vol. 86, no. 10, 2013.
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real time scheduling framework,” in ACM SIGAda Ada Letters, vol. 24,
pp. 1–8, ACM, 2004. http://beru.univ-brest.fr/∼singhoff/cheddar/.

[19] M. Boyer, J. Migge, and M. Fumey, “PEGASE - A Robust and Efficient
Tool for Worst-Case Network Traversal Time Evaluation on AFDX,” in
SAE AeroTech Congress & Exhibition, (Toulouse, France), October 18-
21 2011. http://www.realtimeatwork.com/software/rtaw-pegase/.

[20] RtaW-Sim : Controller Area Network simulation and configuration. http:
//www.realtimeatwork.com/software/rtaw-sim/.

[21] O. Gilles and J. Hugues, “Expressing and enforcing user-defined con-
straints of AADL models,” in Proceedings of the 5th UML& AADL
Workshop, (Oxford, United Kingdom), March 2010.

[22] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “Ocarina : An Envi-
ronment for AADL Models Analysis and Automatic Code Generation
for High Integrity Applications,” in Proceedings of the 14th Ada-
Europe International Conference, (Brest, France), June 8-12 2009.
http://www.openaadl.org/ocarina.html.

http://mast.unican.es/
https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
https://wiki.sei.cmu.edu/aadl/index.php/Osate_2
http://beru.univ-brest.fr/~singhoff/cheddar/
http://www.realtimeatwork.com/software/rtaw-pegase/
http://www.realtimeatwork.com/software/rtaw-sim/
http://www.realtimeatwork.com/software/rtaw-sim/
http://www.openaadl.org/ocarina.html

	Introduction
	Background and Related works
	Contracts for models, analyses and goals
	Models, analyses and goals
	Discussion about properties and ``meta-''properties
	Contract
	Contracts complementarities and elements precedences

	Exploiting contracts in our approach
	Proposed approach
	Implementation with Alloy

	Experimentations
	Settings
	Results

	Conclusions
	References

