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Abstract
We consider probability measures supported on a finite discrete interval [0,n]. We intro-
duce a new finite difference operator V,,, defined as a linear combination of left and right finite
differences. We show that this operator V,, plays a key role in a new Poincaré (spectral gap)
inequality with respect to binomial weights, with the orthogonal Krawtchouk polynomials
acting as eigenfunctions of the relevant operator. We briefly discuss the relationship of this
operator to the problem of optimal transport of probability measures.
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1 Introduction and main results

Many results in functional analysis are better understood in the context of continuous spaces than
discrete. One reason that the real-valued case is more tractable than integer-valued problems is
the existence of a spatial derivative a%v well-defined in the sense that the left and right derivatives
coincide for a large class of functions. However, the situation is more complicated for integer-valued
functions f. There exist two competing derivatives V! and V", defined as V! f(k) = f(k)— f(k—1)
and V" f(k) = f(k+1) — f(k), which are adjoint with respect to counting measure on Z. In this
paper, we define a new finite difference operator for functions on [0, n], which interpolates between
V! and V"

Definition 1.1. Fiz an integer n > 1, and denote by V,, the finite difference operator defined by
n—Fk, _.
(V") (k)

) = FO— 1)+ " (p k1) — f(R)). (1)

We will argue that this operator has certain desirable properties, and as such deserves further
attention. In particular, we will show that in two senses it is a natural choice of derivative
in relation to binomial measures b, (k) = (})t*(1 —¢)"~%. The question of the uniqueness of
whether this the unique choice of derivate operator with such properties remains open, expect for
the easy cases where n =1 or 2.

Firstly, in Section 2, we will show that this operator V,, acts like the translation operator on
the real line. That is, in Equation (10) below, we describe how a probability measure p on R can
be smoothly translated using a sequence of intermediate measures p;. Equation (10) describes
the effect of this translation action through its effect on arbitrary test functions f. We prove
the following theorem, which acts as a discrete counterpart of (10), with the relationship between
measure b, ; and operator V,, playing a key role:

(Vnf)(K) (V' f)(k) +
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Theorem 1.2. The operator V,, gives a smooth translation of point masses from point 0 to point
n using the binomial measures by ; in that

1. byt satisfies the initial condition by, o = d¢ and the final condition b, 1 = dy.

2. For every function f :7Z — R,

oS FR)bak) = n S (T f (Kb (). 2)

kEZ kezZ

Secondly, in Proposition 3.2 below we will show that the map V,, and its adjoint %n (with
respect to binomial weights) act as ladder operators for the Krawtchouk polynomials ¢, (see

Theorem 3.1). This allows us to describe the spectrum of the map (671 o Vn), with ¢, being

r(n—r+1)
n2t(1—t) *
leads to a Poincaré (spectral gap) inequality for the binomial law, using the natural derivative
operator V,,, and gives the case of equality.

eigenfunctions with eigenvalue In particular, taking the smallest non-zero eigenvalue

Theorem 1.3. Fizt € (0,1) and consider function f : {0,...n} — R satisfying > _o f(k)bn (k) =
0. Then

n

D b e(k)f(R)* < nt(1—1) Y bua(k) (Vaf (k). (3)
k=0

k=0

Equality holds if and only if f is a linear combination of ¢1(k) = 1 (k — nt) and ¢, (k) =

V[ =t n—k

The idea of studying Poincaré inequalities with respect to discrete distributions is not a new
one. For example, Bobkov and co-authors [1, 2, 3, 4] give results concerning probability measures
supported on the discrete cube (with the difference V" taken modulo 2). Cacoullos [5], Chen
and Lou [6] and Klaasen [9] give results concerning V" on Z and Z". In particular, Table 2.1 of
Klaassen [9] shows that for Poisson mass function IIy, if Y, f(k)IIx(k) = 0 then

ST k) f(R)? < AT (K) (V7 £(R)). (4)
k=0 k=0

This can be understood as a consequence of the fact that V" (and its adjoint with respect to
Poisson weights V") act as ladder operators with respect to Poisson-Charlier polynomials, meaning

that the Poisson-Charlier polynomials are eigenfunctions of V" oV") . These results also have

an analogy with the work of Chernoff [7], where the corresponding result was proved for normal
random variables, with the Hermite polynomials acting as eigenfunctions of the corresponding
map.

However, Klaassen does not deduce such a clean result for binomial weights, requiring a weight-
ing term on the right-hand side

S bR F ()2 <> bu(k)(n— k) (V" F(K))’ (5)
k=0 k=0

Note that (see Remark 3.3 below) that our Theorem 1.3 is a stronger result than Klaassen’s
Equation (5). Note that as n — oo with tn = A, Theorem 1.3 converges to Equation (4).

Note that although we do not directly discuss applications here, in other settings the rate of
convergence in variance of reversible Markov chains can be bounded in terms of the spectral gap
(see for example [10, Lemma 2.1.4]).



In general, Poincaré inequalities are often viewed as a consequence of log-Sobolev inequalities
(see for example [10, Lemma 2.2.2]). In particular, for Poisson measures IIy, Bobkov and Ledoux
[4, Corollary 4] prove that for any positive function f,

> V" f(k))?
Entn, (f) < A;)wk)(f(,i)”, (6)

and show that Klaasen’s Poincaré inequality (4) can be deduced from (6). Here, Ent,(f) =
Y Of(R)v(k) — © (>, f(k)v(k)), where ©(t) = tlogt. It is natural to conjecture that an
equivalent of Equation (6) should hold for Binomial random variables with our natural derivative
V., that is

~—

n 2
Enty, ,(f) < nt(1 —1t) an,t(k)m. (7
’ 2 7(k)
However, this result (7) is in general false. Consider for example n = 2, t = 1/2, f(0) = f(2) =
9/10, f(1) = 1/10. In this case, Enty, ,(f) = 0.18403 and the right-hand side of Equation (7) is
0.17777, and the inequality fails. The question of natural conditions on f under which Equation
(7) holds remains open.

The structure of the remainder of the paper is as follows. In Section 2, we discuss the translation
problem in Z and prove the existence of a fundamental solution for the problem under the choice
of V as the V,, from Definition 1.1. In Section 3 we prove Proposition 3.2, the key result leading
to the Poincaré inequality Theorem 1.3.

2 The translation problem in Z

It is clear that there exists an unambiguous definition of translations of real-valued probability
measures, defined as the push-forward of the translation map. That is, let ;1 be a probability
measure on R (with its Borel o-algebra) having a smooth density p w.r.t. the Lebesgue measure
dx. The n-translation of y, where n € R, is the family of measures (u; = pyd)c(o,1), where the
density p; is defined by

Ve € R, pi(x) = p(x — nt). (8)
In other words, the measure p; is the push-forward of u by the translation map Ti(x) = © 4+ nt =
(1 —t)z + t(xz +n). In particular,

& ) = —n (). (9)

This can be generalized for non absolutely continuous probability measures, writing Equation (9)
in the sense of distributions:

0 0 00
o / F(@)dps(x) = n / = f(@)dpa(z), o all f € CX(R). (10)

This equation means that the measure p; is the convolution of the initial measure py with the
fundamental solution of Equation (10):

e = po * 0(z — nt). (11)

Notice that this construction of y; allows a smooth interpolation of probability measures. In this
paper we generalize these heuristics to the case of probability measures on Z.

Definition 2.1. A probability measure py on Z is the n-translation of another probability measure
o if
wi(k+mn)=po(k)  forallkeZ.

In particular, we will consider measures that smoothly interpolate between point masses

o =00 and py = Op. (12)



The non-connectedness of Z makes it impossible to generalize Equation (8) directly. However,
we will adapt the “PDE point of view”, given in Equation (10), to construct the n-translation of
point masses (12), in a way that satisfies

%Zf(/cmt(k) =0 3" V) (k). (13)

kEZ kezZ

The main problem in this adaptation is to find the correct derivative operator V on Z. In general,
we make the following definition:

Definition 2.2. A spatial derivative V on Z is a linear operator in the space of functions on Z
that maps any function f to another function V f, where, for each k € Z, there exists a coefficient
ap € [0,1] such that

(VI)(k) = ar (V' )(k) + (1 = ar) (V" f)(R).

In other words, a derivative is defined by a family of coefficients (ay € [0, 1]), for k € Z. Each
of these coeflicients tells us how to mix, at a given point k, left and right derivatives. For example,
the left (resp. right) derivative corresponds to the case where all the coefficients are equal to 1
(resp. 0).

First we show that a spatial derivative on Z for which there exists a fundamental solution to the
n-translation problem must follow some necessary conditions. We next show that these necessary
conditions allow us to reduce the translation problem to a more understandable problem of linear
algebra in finite dimensions.

Proposition 2.3. Fix integer n > 1 and a derivative V on Z defined by a family of coefficients
(ag)kez- If there exists a solution p to the n-translation problem (12), (13) associated with V
then ag = 0 and a,, = 1. Moreover, the support of p: is contained in {0,...n}.

Proof. Let us first consider the function f : Z — R defined by f(k) =01if £ < 0, and f(k) =1 if
k > 0. It is easy to show that (Vf)(—1) =1—a_1, (Vf)(0) = ag, and (Vf)(k) = 0 elsewhere.
Let us now define the function g : [0,1] — R by

g(t) =" FR)k) =" (k).

kEZ k>0

The initial and final conditions satisfied by p; show that g(0) =1 = g(1). On the other hand, the
Equation (2) shows that

g'(t) = nZut(k)Vf(k’) =n[(1 —a—1)p(—1) + caope(0)].
keZ

In particular ¢'(t) > 0. The fact that g(0) = g(1) thus implies that ¢’'(t) = 0 for every ¢ € [0, 1],
and the condition ¢'(0) = 0 can be written g = 0. Moreover, the fact that g(t) = 1 for every

t € 10, 1] implies
Zﬂt(k) = 17
k>0
so ¢ is supported on Z .
If we apply the same arguments to the function f defined by f(k) =1if k <n, and f(k) =0
if £ > n, we find that «,, = 1, and that y, is supported on {k € Z | k < n}. O

An interesting consequence of Proposition 2.3 is that the translation problem of Equation (13)
can be restricted to p; supported on [0,n]. That is, we can replace (13) by

O R =0 S VARl (14)

k=0 k=0



Now, let us consider the canonical basis CB := (eg,...e,) of the linear space of functions
{0,...,n} — R. Let X(¢) be the column vector representing y; in CB (probability measures are
canonically identified with functions), ie for every k € {0,...n}, (X(¢))x := pe(k). The initial
(resp. final) condition pg = dg (resp. p1 = 6y,) is equivalent to X (0) = eg (resp. X (1) = eyp).
Moreover, Equation (14) is equivalent to the fact that for all vectors Y € M, 1(R)

(X'(1),Y) = %Of(t), Y) =n(X(#),V) =n{V'X(?),Y), (15)

where (.,.) is the usual (unweighted) scalar product on column vectors, and where V* represents
the adjoint with respect to this scalar product. This allows us to deduce that

X'(t) = nV*X(t), (16)

and basic theorems on first-order linear differential systems thus allow us to write the n-translation
problem:

Theorem 2.4. Letn > 1 be an integer, and V be a derivative on Z, with ag =0 and o, = 1. Let
Ay be the matriz of the linear operator V in the canonical basis CB. There exists a fundamental
solution to the n-translation problem associated with ¥V if and only if, for every t € [0,1], the
column matriz

X (t) = exp(ntAvy)eg

has all its coefficients non-negative, and satisfies the final condition
X(1) =e,. (17)
The fundamental solution u(k) is then given by ui(k) = (X(t))k.

We prove Theorem 1.2 using the properties of the spatial derivative V,, introduced in Definition

1.1. In this case we can be explicit about the form of V7, and introduce a further map ﬁn which

will be used to prove Theorem 1.2 and the Poincaré inequality Theorem 1.3.
Definition 2.5.

1. Let V7 be the adjoint operator of V., for the unweighted scalar product on 1*({0,...n}). We
have the formula

Vag(k) = % (n=k+1g(k—1) = (n—2k)g(k) — (k+ 1)g(k + 1)),

where g(—1) = g(n +1) = 0.

2. We now fix t € (0,1). Let V., be the adjoint operator of V, for the scalar product with
respect to the binomial law by, (taking ¢t ¢ {0,1} ensures that it is truly a scalar product on
the space of functions {0,...n} — R)). We have:

V) = G VR ()
- ’I’L—k—Flbmt(k‘—l) n — 2k k"’lbn,t(k+1)
= b ey P2y - 2O )
= Sy - - R ), (18)

The equivalence of the last two results follows since for all k,

bn,t(k) N n—=k +1 ¢

bn,t(k* 1) k 1—t¢



We can relate properties of V, and V7 using conjugation by the linear operator D that maps any
function f:{0,...,n} — R to the function Df defined by

Vk € {0,...,n}, Df(k) = bn(k)f (k).

Moreover, as t € (0,1), D is invertible and

Vk€{0,...,n}, D"1f(k) =

This operator is useful to give a very simple relation between V}, and %n:
Vo=D"10V:oD. (19)

Proof of Theorem 1.2. We simply verify that (16) holds taking X (¢) = b,, (k) and V* in the form
given by Definition 2.5. We observe that in this case both sides of (16) have kth component
equal to by, (k) (k/t — (n—k)/(1 —t)). The fact that %bnyt(k) takes this form is immediate,
and the corresponding result for the right hand side follows by Equations (18) and (19) since
nﬁv,*lbnyt(k) =nV,1 = k/t—(n—Fk)/(1—t), where 1 denotes the function which is identically

. O

3 Proof of the Poincaré inequality

From now on, we fix an integer n > 1, and we denote by V,, the finite difference operator of
Definition 1.1. We recall the definition of the Krawtchouk polynomials from [11].

Theorem 3.1. There exists a basis of polynomials in k, denoted ¢y, . .., dn, “laddered” (i.e. with
deg(ér) =), and such that

S 6, Roabe(k) = (Y 5, = O (20)
T s n, (’Il — 7")' 1_¢ TS n,rYrs
k=0
This family of polynomials is uniquely determined by the generating function in w
Plew) =S D by = (1 (1= w)(1 — tu)n*. (21)
= !

The discrete derivatives in k of P(k,w) can be obtained by using the formulas

1 —tw
—_ = B S — >
P(k—1,w) P(k,w) T forall k> 1 (22)
1 1-—
Pk+1,w) = P(k,w)H forall k <n —1 (23)

o)

: : A r—1
Finally, since g-w" = rw

, we obtain

(1 —t)" 0 _ (1—t)k tn — k)
> P rotbyn — e Plw) =wP() (s - T ) @)

Notice that ¢q is the function identically equal to 1, and so V¢ = 0, which gives a sense to
Proposition 3.2 when r = 0. To simplify the proof, we will define ¢_1 = ¢,,41 = 0.

Proposition 3.2. For every r € {0,...,n}, we have

rln—r+1)

TL(]. —t) d)r—l-

1. The operator V,, maps ¢, to a multiple of ¢p._1: Vo, =



=~ ~ 1
2. The operator V,, maps ¢, to a multiple of ¢ry1: Vo, = —t@“.
n

3. The Krawtchouk polynomials are eigenfunctions for the linear map (6,1 o Vn>:

~ _r(n—r+1)
(Veove)or="amr—g o

Remark that these eigenvalues are not distinct, which does not allows us to deduce directly
that the family (¢, ..., d,) is a basis of the space of functions {0,...,n} — R. This fact comes
from the orthogonality with respect to the binomial scalar product.

Proof of Proposition 3.2. Part 1: It suffices to check the polynomial identity

S g6, =3 LY ”Z(; i;l) bra ()
r=0 : r=0 :

We will use the formula (21) to express both side of the last equation in terms of the polynomial
P(k,w). First, we have by Equations (22) and (23) that

n

S e = VPl w)

— 7l
P(k,w) k n—k
- T a w<1+(1t)w+1tw).

For the right hand side, we have using (24) that

n

1=t r(n—r+1) _—
;O ! TL(]. — t) (br—l(k)w -

S LD g Ry

L Bt ((OZ0E o))

_ Phw) (k <11 il(li);“)w) Y (n—k) (1+ 1iwtw

n
_ P(k,w) k +n—k
- It 1-tw)’

which gives the desired result.
Part 2: It suffices to check the polynomial identity

n

> s =3 o Ly

r! r!
r=0 r=0

)



Let us begin by studying the right hand side. Using the convention ¢,; = 0, we have by (24)

—~(1-t)"1 _— 1 —~ (1—t)*! .
; ket = nt(1—t)w,,2::0 e U Do Ry
_ 1 — (1—t)" .
o nt(l —t)w 7;) rl rér(k)w
1 )

- 1 1—tk  tn—k)
- nt(l—t)P(k’w)<1+(l—t)w_ 1—tw>'

The left hand side can be written

Z bl Voor(k)w" = %nP(k,w),

r=0

and we calculate using (22) and (23) that

~ kl1—-tPk—-1w) n—-2k n—-k t Pk+1w)
nP 5 = P ; - - -
Vn Pk w) (k, w) <n t P(k,w) n n 1—-t P(kw)
P(k,w) s l—tw 21+ (1 —tw
o (k1) —(n—2k)t(1—t)— (n— k)P
nt(1 —t) (k( t) 1+ (1 —-tw (n = 2B)t(1 = #) = (n — k)t 1 —tw
_ P(k,w) (1—1)(1 — tw) t(1+ (1 —t)w)
 ont(l—t) ((1 Dk ( 1+ (1 —-tw ) —tn=h) 1 —tw (1)
_ 1 Pk, w) (1-1t)k _t(n—k) 7
nt(l —t) 1+(1-tHw 1—tw
and the proof is complete.
Part 3: follows directly by combining the two previous results. O

Similarly, there is another way to prove Part 2 of Proposition 3.2, using the properties of the
exponential of the operator V;:

Alternative proof of Proposition 3.2, Part 2.
vt € [0,1], exp(ntV})(eo) = (bnt(0), ..., bu (). (25)
The equation (21) allows us to show that the required result is equivalent to
exp(nt(1 — t)ywV,)(do) = (14 (1 — t)w)* (1 — tw)" " (26)

As ¢o = (1,...,1)T, the equation (25):

Déo = (bnt(0),...,bnt(n)T
= exp(ntV;)(eo).
exp(nt(1 — wV,)(do) = D™ exp(nt(l —t)wV:)Deo

)
= D lexp(nt(l — t)ywV:) exp(ntV:)(eo)
= D lexp(nt(l+ (1 —t)w)V:)(eo).



This means that, for every k € {0,...,n}:
1

B N
bt () U000 ) (k)

t1+ 1 =w)\" (1t + 1= tw)\" "
- () ()
= (1401 -tw)kd —tw)"*

exp(nt(1 — 1)wV,)(¢o) (k)

This proves the formula (26), and thus Part 2 of Proposition 3.2. O

We can complete the proof of Theorem 1.3, as follows:

Proof of Theorem 1.3. We can expand function f(k) = >°7_, a;¢,(k), since the assumption

that >°;'_, f(k)bn +(k) = 0 ensures that ag = 0. Using the normalization term C,, ,. from Equation
(20), and the adjoint V,, of Definition 2.5, we know that

. e " (i)
(V oV )f ;CLJ (V oV )¢J ;%( n2t(1 — 1) ?; (27)
by Part 3 of Proposition 3.2. This means that can write the RHS of Equation (3) as

l—tzn:bnt ( OV)f()
k=0

Y

> aiCn;

Jj=1

which is the LHS of Equation (3). The inequality follows since j(n — j + 1)/n > 1 with equality
if and only if j =1 or j = n. O

Remark 3.3. Theorem 1.3 is a stronger result than Klaassen’s Equation (5). This follows by
noting that for any k, we can express

(Vaf)(k)?
= = B (Fk+1) - 702 + %(f(k) — fk=1))° - W< F(E+1) — 2f (k) + f(k — 1))?
< PSR~ S L) - F0 - 1))

This means that, using the fact that %bmt(k) = ”%’MLbni(k — 1), we can express the RHS of

(3) as

nt(1—1) Y buy(k)(Vaf)(k)?

k=0

< =) Y boh) (P4 1) = FOP () - Sk - 1))
k=0

— 3 bk — Rk + 1) = F(R)? (L= 1) + 1),

k=0

which is the RHS of (5).



Remark 3.4. The explicit form taken by the operators V, and V. and their action on the
Krawtchouk polynomials suggest possible links with the Ehrenfest urn model, see for example [8].
It is possible to recover the Poincaré inequality Theorem 1.3 from results about this well-studied
model, as follows. Forn >1 and 0 <t < 1 we consider the Markov chain on {0,...n} generated
by the operator L defined by

Lf(k) == k(1 =0)[f(k=1) = f(R)] + (n = k)t[f(k + 1) = f(K)]. (28)

The invariant measure for this reversible Markov chain is the binomial measure by ;. Moreover,
the spectrum of the operator L has been completely described by Karlin and McGregor in [8] who
show that, for r = 0,...n we have Lo, = —r¢,. Further, V, oV is related to L by the simple

formula
~ 1 n+1

_ 2
L= 8)VnoVy= 5L~ —

L, (29)
which can be verified directly. Applying equation (29) to each eigenfunction ¢, gives

= —r2 4+ (n+1)r r(n—r+1
(1 - t)tvn oVy¢r = #(br = (72)¢T7 (30)
n n
which allows us to recover (27), which implies the Poincaré inequality Theorem 1.3. This proof
seems simpler and more direct; however, it does not give us information about the action of the
operators V,, and V,, on the family of Krawtchouk polynomials.
We can understand the decomposition discussed in Remark 3.3 in this context, by noting that
(29) means we can write
n n 1 n
(L= 1) D bn1(k) (Vaf) (k)° = = > bn o (R)LF (@) (k) = ~ > bn o (k) (L (k) + (k) Lf (k),
k= k=0 k=0

0

where further calculations show that the first term is equal to Klaasen’s bound, given as the RHS

of (5).
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