
Encoding Definitional Fragments of Temporal Action
Logic into Logic Programming

Marc van Zee1, Patrick Doherty2, and John-Jules Meyer3

1 Department of Individual and Collective Reasoning,
University of Luxembourg

2 Department of Computer and Information Science,
Linköping University

3 Department of Information and Computing Science,
Utrecht University

Abstract. Temporal Action Logics (TAL) is an expressive class of nonmono-
tonic temporal logics for reasoning about action and change. In previous work, it
has been shown that a very general fragment of the logic can be reduced to first-
order logic with equality. Consequently, standard theorem proving techniques can
be used to reason in TAL. TAL is intended to be used for robotics. In this case,
standard theorem proving techniques are too general and do not provide efficient
decision procedures. The goal of this article is to identify a limited subset of TAL
that can be directly mapped to a normal logic program. Although quite restric-
tive, this sets the lower bound on what can be done with direct mappings to logic
programs. Discussions concerning extensions to the restricted fragment are also
provided.

1 Introduction

Temporal Action Logics (TAL) [2, 4] is a general class of nonmonotonic temporal log-
ics for reasoning about action and change that are based on the Features and Fluents
framework of Sandewall [14]. TAL is highly expressive and includes the use of context-
dependent durative actions, durational fluents (fluents with default values), ramification
constraints, qualification constraints, concurrent and non-deterministic actions. Like
several other action formalisms, TAL uses circumscription [11, 12] to solve the frame
and the ramification problems, which require nonmonotonicity. In [2], it was shown
how the 2nd-order circumscription component could be reduced to a logically equiva-
lent 1st-order component using quantifier elimination. Consequently, standard theorem
proving techniques can be used to reason with TAL. This is problematic from an effi-
ciency perspective since in the case of many domains such as robotics, one requires an
efficient decision procedure to answer queries. VITAL4 was an early implementation of
a fragment of TAL that uses model generation techniques. This does not scale for large
TAL narratives though.

4 http://www.ida.liu.se/∼jonkv/vital

2 Marc van Zee, Patrick Doherty, and John-Jules Meyer

The generality of TAL is useful in other domains as a natural semantic specifica-
tion language. For instance, it provides a formal specification of TALplanner. TALplan-
ner5 [3, 7] is an award-winning forward-chaining planner based on TAL. Both TAL
planner and an execution monitoring framework based on TAL have been used in Un-
manned Aerial Vehicles [5], developed at Linköping University.6

In this paper, the focus is on isolating a restricted fragment of TAL and showing
that it can be encoded in a sound manner into normal logic programs. Unfortunately,
the fragment for which this works is highly restrictive. The subset of TAL narratives
with deterministic single step actions and complete information about initial state can
be encoded soundly into logic programs. This in fact makes sense, since any non-
determinism in TAL narratives must be excluded from such a direct mapping. Relaxing
the single step constraint and complete information at initial state both result in intro-
ducing non-determinism and thus multiple minimal models. This, in fact, would apply
to any alternative action formalism.

The systematic use of logic programming as a basis for soundly implementing frag-
ments of action formalisms was introduced in the case of the Situation Calculus by
Reiter (see [13], Chapter 5). The initial fragment identified by Reiter had similar restric-
tions for progression to work. This article applies the techniques introduced by Reiter
to encode a fragment of TAL soundly into logic programs and analyzes the feasibility
of extending the technique to more general fragments of TAL.

An algorithm is developed for the systematic translation of definitional theories of
TAL into logic programs. The definitional fragment of TAL identified is called TALM.
It is then shown that extending this fragment via the use of direct encodings into normal
logic programs is not feasible. Any attempt to generalize the TALM fragment results
in the introduction of non-determinism into the fragment. The main limitation here is
the inability to encode a unique values axiom for features in TAL narratives. This im-
mediately rules out non-deterministic actions, actions with duration and an incomplete
initial state.

The rest of this paper is organised as follows: In Section 2 we introduce the basic
concepts of TAL, in Section 3 we develop an algorithm to translate definitional theories
into logic programs, in Section 4 we reformulate a constrained TAL theory, TALM, as a
definitional theory, and finally in Section 5 we discuss the limitations of the translation.

2 Temporal Action Logics

Due to lack of space, we refer the reader to [4] for details about the full syntax and
semantics of TAL. In this section, we summarize the main components necessary for
understanding the techniques introduced.

In TAL, a scenario (or narrative) can be described in a compact surface language
L(ND), which is a high-level macro expandable language consisting of action type
specifications (acs), dependency constraints (dep), domain constraints (dom), persis-
tence statements (per), observation statements (obs), and action occurrence statements

5 http://www.ida.liu.se/divisions/aiics/aiicssite/projects/talplanner.en.shtml
6 http://www.ida.liu.se/divisions/aiics/aiicssite/index.en.shtml

Encoding Definitional Fragments of Temporal Action Logic into Logic Programming 3

(occ). To make sure that fluents will not be persistent when they are changed by an
action, the reassignment macro R can be used. R([t2]α) ensures that α will hold at the
time point t2. Consider the following scenario due to Reiter [13] that will be used as a
running example.

Example 1 (Simple robot specification). There is one robot called rob and there are two
objects, namely a ball and a vase. A robot can only pick up an object if he is not holding
anything and if he is next to the object, and he can only drop an object if he is holding
it. When a robot drops an object it will fall on the floor. Initially, rob is next to vase and
not next to ball. Rob is not holding anything. First, rob picks up vase, after which he
walks to ball and drops vase. The narrative specification of this example in the macro
language L(ND) is:

acs1 [t1, t2] pickup(r, o) ;

[t1] ∀o1 [¬holding(r, o1)] ∧ nextto(r, o)→
R([t2] holding(r, o) ∧ ¬onfloor(o))

acs2 [t1, t2] walk(r, o) ;

R([t2] nextto(r, o)) ∧ ∀o1 [o 6= o1 → R([t2] ¬nextto(r, o1))]

acs3 [t1, t2] drop(r, o) ;

[t1] holding(r, o)→ R([t2] ¬holding(r, o) ∧ onfloor(o))

obs1 [0] nextto(rob, vase) ∧ ¬nextto(rob, ball)
obs2 [0] ∀z¬holding(rob, z)
obs3 [0] onfloor(vase) ∧ onfloor(ball)
occ1 [0, 1] pickup(rob, vase)
occ2 [1, 2] walk(rob, ball)
occ3 [3, 4] drop(rob, vase)

Reasoning about a narrative in L(ND) is done by translating it into the base lan-
guage L(FL)), which is an order-sorted classical first-order language using a linear,
discrete time structure. The language uses the ternary predicates Holds and Occurs,
and the binary predicateOcclude. The translation from L(ND) to L(FL) is given by the
function Trans [4]. For instance, Trans([t]f=̂ω) is defined as Holds(t, f, ω). Sim-
ilarly, Trans(R((t, t′]f=̂ω)) is defined as ∀t′′(t < t′′ < t′ → Occlude(t′′, f)) ∧
Holds(t′, f, ω). Occlude(t, f) represents that a persistent or durational fluent f is ex-
empt from inertia or default value assumption, respectively, at time t. Trans([t, t′]Ψ),
where Ψ is an action term, is defined as Occurs(t, t′, Ψ), which represents that action
Ψ occurs in the interval [t, t′].

Consider any narrativeN and letNper,Nobs,Nocc,Nacs,Ndomc, andNdepc denote
the sets of persistence statements, observation statements, action occurrence statements,
action type specifications, domain constraints, and dependency constraints inN respec-
tively. The TAL domain description (referred to as preferred narrative) ∆N is given by

CIRC[Γocc;Occurs] ∧ CIRC[Γdepc ∧ Γacs;Occlude] ∧ Γfnd ∧ Γtime ∧ Γper ∧ Γobs ∧ Γdomc,

where Γper, Γobs, Γocc, Γacs, Γdomc, and Γdepc are the formulas in L(FL) (first-order
logic formulas) obtained by applying Trans onN ,Nobs,Nocc,Nacs,Ndomc, andNdepc

4 Marc van Zee, Patrick Doherty, and John-Jules Meyer

respectively; Γfnd is the set of foundational axioms in L(FL), containing unique name
axioms, unique value axioms, etc., and Γtime is the axiomatization of the particular
temporal structure used in TAL.

By proposition 18.2 in [4], the circumscription of Occurs and Occludes, respec-
tively CIRC[Γocc;Occurs] and CIRC[Γdepc ∧ Γacs;Occlude], can be transformed
into first-order definitional forms either through quantifier elimination of predicate com-
pletion techniques.

Example 2 (Robot Specification, Ctd.). The following is a representation of acs1 in the
language L(FL):

acs1’ Occurs(t1, t2, pickup(r, o))→
∀o1 [¬Holds(t1, holding(r, o1), true)] ∧Holds(t1, nextto(r, o), true)→

Occlude(t2, holding(r, o)) ∧Occlude(t2, onfloor(o))∧
Holds(t2, holding(r, o), true) ∧ ¬Holds(t2, onfloor(o), true).

The circumscription of the Occurs predicate in the action occurrences (occ1, occ2,
and occ2) above is equivalent to the following first-order formula:

Occurs(t1, t2, a)↔(t1 = 0 ∧ t2 = 1 ∧ a = pickup(rob, vase))∨
(t1 = 1 ∧ t2 = 2 ∧ a = walk(rob, ball))∨
(t1 = 2 ∧ t2 = 3 ∧ a = drop(rob, vase))

The circumscription of the Occlude predicate in the action specifications (acs1,
acs2, and acs3) above is equivalent to the following set of first-order formulas:

Occlude(t, holding(rob, o))↔
o = vase ∧ ∀o1 [¬Holds(0, holding(r, o1), true)]∧
Holds(0, nextto(r, o), true) ∧ 1 ≤ t ≤ 2

Occlude(t, nextto(rob, o))↔ o = ball ∧ t = 2

Occlude(t, onfloor(o))↔
o = vase ∧ (t = 1 ∧ ∀o1 [¬Holds(0, holding(rob, o1), true)]∧
Holds(0, nextto(rob, o), true) ∨ t = 3 ∧Holds(2, holding(rob, o), true)

3 def2P Algorithm: From Definitional Theories to Logic Programs

We begin by providing some background definitions and techniques for the sake of
completeness.

3.1 Negation As Failure Semantics: Clark’s Completion

The most basic logic programming syntax uses Horn clauses, a fragment of first-order
logc. A Horn clause theory is a set of sentences of the formA∨¬B1∨...∨¬Bn, which is
usually written as A← B1, ..., Bn, and also called Horn rules. In this, A is the head of
the Horn clause, and B1, ..., Bn is the body. If the head is of the form R(t1, ..., tn), the

Encoding Definitional Fragments of Temporal Action Logic into Logic Programming 5

Horn clause is said to be about the relation symbol R. The Horn clause← B1, ..., Bn

is identified with false← B1, ..., Bn and A← is identified with A← true, also called
a Horn fact [6].

Horn clause logic programming generally does not use classical negation, but nega-
tion as failure. This means exactly what it says: if some fact cannot be derived from the
theory (i.e. it fails), then we assume that the negation of this fact can be derived from
the theory (i.e. it succeeds). One of the most widely applicable and often used seman-
tics for negation as failure was given by Clark [1]. This is usually called the (Clark)
completion, comp(P), of the original program P . The idea of this result is that we use
the ’implied iff’: we simply replace all the implications of the Horn clauses with equiv-
alences. The basic result of Clark is that negation as failure is sound for comp(P) for
both success and failure. Because of the syntactical form of Horn clauses, comp(P)
will be a definitional theory.

Definition 1 (Definitions and Definitional Theories). A first-order theory is a defini-
tion iff it has the syntactic form (∀x1, ..., xn)(P (x1, ..., xn) ≡ φ), where P is an n-ary
predicate symbol other than equality, and φ is a first-order formula with free variables
among x1, ..., xn. A set of axioms is definitional iff its axioms consist of one definition
for each predicate symbol, except for equality. The if-half of the above definition of P
is the sentence ∀x1, ..., xn(P (x1, ..., xn) ⊃ φ).

Theorem 1 (Clark’s Theorem [13]). Suppose T is a set of definitions for all predicate
symbols except for equality in some first-order language with finitely many predicate
symbols, together with the following equality axioms:

1. For every pair of distinct function symbols f and g of the language (including
constant symbols): f(x) 6= g(y).

2. For every n-ary function symbol of the language: f(x1, ..., xn) = f(y1, ..., yn) ⊃
x1 = y1 ∧ ... ∧ xn = yn.

3. For every term t[x] (other than x itself) that mentions the variable x : t[x] 6= x.

Suppose that P is a Prolog program obtained from the definitions of T by writing the
if-halves of all the definitions of T as Prolog clauses. Suppose further that G is a query
goal then,

1. Whenever a proper Prolog interpreter succeeds on the goalG with answer substitu-
tion θ, then T |= (∀)Gθ. Here, (∀)Gθ denotes the result of universally quantifying
all the free variables (if any) of Gθ.

2. Whenever a proper Prolog interpreter returns failure on the goal G, then T |=
(∀)¬G where the quantification is over all free variables mentioned in G.

The three conditions of this theorem all have to do with the fact that when complet-
ing the theory, equality is introduced. This means that it is necessary to provide axioms
for these. The first two conditions are simply the unique names axioms for the function
symbols: they define that two function terms are equal if and only if both their function
names and arguments are equal. The last condition is a more technical details that has
to do with the ”occurs” check of Prolog’s unification algorithm, which we will not go
into here7. We will exlain the concept of a “proper Prolog interpreter” in Section 3.3.

7 See [13], Chapter 5 for more details.

6 Marc van Zee, Patrick Doherty, and John-Jules Meyer

3.2 Lloyd-Topor Transformations

Although Clark’s theorem assumes that a Prolog program P can be obtained from the
theory T by writing the if-halves, it does not give any details on how this is done. Be-
cause Prolog only uses disjunctions and conjunctions as connectives, we will translate
the other connectives (implication, bi-implication and quantifiers) into a form such that
it can be parsed by a Prolog interpreter. The same can be said for the query goals.

The Lloyd-Topor transformations [10, 9] is a set of derivation rules for systemati-
cally transforming if-halves of definitions of the syntactic form W → A into a syn-
tactic form suitable for implementation as Prolog clauses. Here, A must be an atomic
formula, but W may be an arbitrary first-order formula, possibly involving quantifiers,
in which case we require that the quantified variables of W be different from one an-
other, and from any of the free variables mentioned in W . Originally, the Lloyd-Topor
transformations introduce auxiliary predicates when transforming negated existential
quantifiers and disjunctions, but Reiter [13] shows that these predicates are only intro-
duced for exposition of the results of Lloyd-Topor and that they can be omitted using
a process called unfolding. The output of these revised transformations is a single Pro-
log executable formula lt(W) → A, without introducing new predicates and clauses.
Here, lt(W) is a formula Reiter defines inductively on the syntactic structure of W . It
is defined as follows:

1. If W is a literal: lt(W) =W .
2. lt(W1 ∧W2) = lt(W1) ∧ lt(W2).
3. lt(W1 ∨W2) = lt(W1) ∨ lt(W2).
4. lt(W1 →W2) = lt(¬W1 ∨W2).
5. lt(W1 ≡ W2) = lt((W1 → W2) ∧

(W2 →W1)).
6. lt((∀x)W) = lt(¬(∃x)¬W).
7. lt((∃x)W) = lt(W).

8. lt(¬¬W) = lt(W).
9. lt(¬(W1 ∧W2)) = lt(¬W1)∧ lt(¬W2).

10. lt(¬(W1 ∨W2)) = lt(¬W1)∨ lt(¬W2).
11. lt(¬(W1 →W2)) = lt(¬(¬W1 ∨W2)).
12. lt(¬(W1 ≡ W2)) = lt(¬(W1 → W2) ∧
¬(W2 →W1))).

13. lt(¬(∀x)W) = lt((∃x)¬W).
14. lt(¬(∃x)W) = ¬lt(W).

3.3 Allowed Programs

Clark’s theorem is not applicable to any Prolog interpreter, but only to proper Prolog
interpreters. Such an interpreter is one that evaluates a negative literal not A, using
negation as failure, and moreover, does so only when (at the time of evaluation) the
atom A is ground. When A is not ground, the interpreter may suspend its evaluation,
working on other literals until A does become ground, or it may abort its computation.
Either way, it never tries to fail on non-ground atoms, because this can result in unsound
behaviour [13]. Due to space limitations, we leave out the details8, but we instead intro-
duce a well-known class of programs that is known to be complete, meaning that it will
not cause problems with floundering [15], namely the allowed programs. In Section 4
we show that every TALM theory results in an allowed Prolog program.

Definition 2 (Allowed Program, Allowed Query). A query is said to be allowed if
every variable which occurs in it occurs in a positive literal of it; a program clause
A ← L1, ..., Ln is allowed if every variable which occurs in it occurs in a positive
literal of its body L1, ..., Ln and a program is allowed if all of its clauses are allowed.

8 For a more detailed discussion see [16], Section 3.2.2.

Encoding Definitional Fragments of Temporal Action Logic into Logic Programming 7

3.4 the def2P algorithm

The contents of the previous section can be summarized into a single algorithm that
translates a definitional theory to a Prolog program such that the program is sound for
the theory.

Definition 3 (def2P algorithm). Suppose T is a definitional theory . The def2P algo-
rithm translates T to a Prolog program P such that the Prolog resolution algorithm for
P is complete for the theory T , and consists of the following steps:

1. T is augmented with Clark’s Equality Axioms (see Def. 1), obtaining T ′,
2. T ′ is translated into Lloyd-Topor Normal Form, obtaining T ′

norm,
3. The if-halves of the definitions of T ′

norm form the Prolog program P ,
4. If P falls in the class of allowed programs, return P . Else, return false.

4 A Definitional Theory for TAL

We constrain TAL to integer and positive time, relational and inertial fluents, complete
initial state and deterministic, single-step and non-overlapping actions. Moreover, we
omit symbolic constants, dependency constraints and domain constraints. Finally we
assume a consistent narrative specification. Call this constrained formalism TALM.

Definition 4 (TALM theory). A TALM theory is a constrained TAL theory Γ = Γobs∧
Γocc ∧ Γacs ∧ Γper ∧ Γfnd of the form:

Γobs Holds(t, f, v) for t ∈ N, fluent f and value v ∈ {true, false}
Γocc Occurs(t, t+ 1, a) for t ∈ N and action a
Γacs Occurs(t, t+ 1, a)→ Φ(t, t+ 1)
Γper ¬Occlude(t+ 1, f)→ Holds(t+ 1, f, v) ≡ Holds(t, f, v)
Γfnd UNA, CWA, Unique values axioms

We obtain a definitional theory for this restricted narrative by providing a definition for
the three predicates in the base language L(FL): Occurs, Occlude and Holds.

Occurs: By definition, only positive occurrences of Occurs predicates are allowed in
Γocc. Each such atomic formula can be put in the logically equivalent form ∀t1,t2,a(t1 =
ut∧t2 = u′t∧a′ = a(u))→ Occurs(t1, t2, a

′). Denote such a formula by ∀t1,t2,a′Ψi →
Occurs(t1, t2, a

′) where Ψi = (t1 = u∧t2 = u′t∧a′ = a(u)). Then the conjunction of
ground atomic formulas can be put in the following form: ∀t1,t2,a′(Ψ1∨Ψ2∨...∨Ψn)→
Occurs(t1, t2, a

′). Denote this formula by ∀t1,t2,aΥ → Occurs(t1, t2, a). By proposi-
tion 18.2 in [4], in this case circumscription is equivalent to predicate completion, i.e.
CIRC(Γocc;Occurs) is equivalent to:

∀t1,t2,aΥ ≡ Occurs(t1, t2, a). (1)

Occlude: Circumscribing Occlude works in a similar way. The predicate Occlude oc-
curs only in the postcondition of dependency constraints and actions specification for-
mulas. Each member of Γacs and Γdep can be transformed syntactically into the logi-
cally equivalent form ∀t,fΓi(t, f)→ Occlude(t, f). Again, by proposition 18.2 in [4],

8 Marc van Zee, Patrick Doherty, and John-Jules Meyer

CIRC(Γacs ∧ Γacs;Occlude) is equivalent to:

∀t,f [
k∨

i=1

Γi(t, f)] ≡ Occludes(t, f) (2)

Holds: We obtain the definition of the Holds predicate using case distinctions. The
following proposition simplifies the TALM narrative.

Proposition 1 (Redundant observations at t > 0). Observations that occur at t > 0
in TALM can be inferred from actions and can thus be removed from the narrative.

Proof. Let Γ be some narrative specification in TALM. Let Γ ′ be the narrative Γ with all
observations at t > 0 removed. We have to show that Γ and Γ ′ have the same models,
i.e. Γ ⇔ Γ ′. The truth value of Occurs and Occlude is equivalent for both narratives,
because these predicates do not occur in the observations. This means that it suffices to
show that Γ |= Holds(t, f, v) ⇔ Γ ′ |= Holds(t, f, v) for any time point t, fluent f
and valuation v.

”⇒”: Suppose for some time point t, fluent f and valuation v ∈ {true, false} we
have that Γ |= Holds(t, f, v). We have to show that Γ ′ |= Holds(t, f, v). Suppose that
Holds(t, f, v) is not an observation, it follows now directly that Γ ′ |= Holds(t, f, v),
because the only difference between Γ and Γ ′ are observations. Suppose to the contrary
thatHolds(t, f, v) is an observation. Now, if there is no action specification that implies
Holds(t, f, v), then this observation follows from the persistence statement as well,
otherwise it will be contradicting with it and the narrative is inconsistent. Therefore, the
observation is redundant. On the other hand, if there is an action specification formula
that implies Holds(t, f, v), then since the action specification formulas are unchanged
in Γ ′, it follows that Γ ′ |= Holds(t, f, v).

”⇐”: Follows directly from the fact that Γ ′ is a subset of Γ , meaning that everything
that is valid in Γ ′ will be valid in Γ .

Now, to obtain a definition for the Holds predicate, suppose some time point t, fluent
f and value v.

– Suppose t = 0. The only formulas that can assign a value to the Holds predicate at
t = 0 are observations, because at time point 0 no actions can occur since an action
has a minimal duration of 1 and a minimal starting time of 0. Moreover, all fluents
are assigned a value through the observations because TALM has a complete initial
state. So, given that t = 0,

∀f,v

[
n∨

i=1

f = Pi(ui) ∧ v = vi

]
≡ Holds(t, f, v). (3)

– Suppose t > 0. We introduce a second case distinction on Occlude:
• Suppose ¬Occlude(t, f). Using the persistence statement (see Definition (4))

we obtain ∀vHolds(t, f, v) ≡ Holds(t − 1, f, v). So, given that t > 0 and
¬Occlude(t, f),

Holds(t− 1, f, v) ≡ Holds(t, f, v) (4)

Encoding Definitional Fragments of Temporal Action Logic into Logic Programming 9

• Suppose Occlude(t, f). By Eq. (2) we obtain Γi(t, f). Because actions are
deterministic and non-overlapping, and because there will be no observations
(Proposition 1) there will be a unique action specification formula that is now
true and implies a singleHolds statement for the fluent f . Using this we obtain
Holds(t, f, v). This means that, given that t > 0 and Occlude(t, f),

(Γi(t, f) ∧ v = vi) ≡ Holds(t, f, v) (5)

We now state the completion theorem of the Holds predicate:

Theorem 2 (Completion of Holds). Formulas (3), (4) and (5) provide necessary and
sufficient conditions for the predicate Holds:

t = 0 ∧

[
k∨

i=1

f = Pj(ui) ∧ v = vi

]
∨

t > 0 ∧ (¬Occlude(t, f) ∧Holds(t− 1, f, v)∨
Occlude(t, f) ∧ Γi(t, f) ∧ v = vi)

≡ Holds(t, f, v) (6)

Proof. Formulas (3), (4) and (5) are the only formulas that make the Holds predicate
true in a TALM narrative. We obtain the definition directly by putting these formulas in
a disjunction and adding the conditions for each case.

Fortunately, it turns out that every definitional theory of a TALM narrative fall into the
class of allowed programs of Definition 2. We show this in the following theorem.

Theorem 3 (Allowed program). Suppose Γ is a TALM narrative , which is translated
into a definitional theory by using the equivalences above. Let P be the program that is
obtained from this theory by applying Clark’s Theorem. P falls into the class of allowed
programs. That is, every variable that occurs in a rule in P occurs in a positive literal
of the body of the rule.

Proof. We have to show that each program clause in P is an allowed program clause.
Each clause corresponds to a predicate of the theory, which means that we will have
to consider Occurs, Occlude, and Holds. By definition, all literals occurring in the
definition of Occurs are positive [4]. This is the same for the definition of Occlude
predicate, because the only literals that occur in this definition are Holds literals, and
each negated Holds predicate can be translated into an equivalent positive one, us-
ing the equivalence Holds(t, f, true) ≡ ¬Holds(t, f, false). Finally, there occurs one
negation in the definition of the Holds predicate, which is in the scope of the Occlude
predicate (see Theorem 2):

. . . t > 0 ∧ (¬Occlude(t, f) ∧Holds(t− 1, f, v) ∨ . . .) ≡ Holds(t, f, v)

The variables occurring in the negative literal are t and f , which both occur posi-
tively in the Holds predicate that directly follows it. Therefore, Holds is an allowed
clause too, because all variables occurring in a negative literal occur in a positive literal
in the body.

10 Marc van Zee, Patrick Doherty, and John-Jules Meyer

We will now demonstrate the translation of our running example. We invite the reader
to download the application that was developed along with this paper called TALTrans-
lator. This application can perform the transformation automatically and comes with a
user-friendly GUI and several examples9.
Example 3 (Robot specification, continued). The definition of the Holds predicate for
the fluent onfloor is (slightly simplified for readability):

Holds(t, onfloor(o), v)↔
t = 0 ∧ v = true∨
t > 0∧

(o = vase ∧ (t = 1 ∧ ∀o1 [Holds(0, holding(rob, o1), false)]∧
Holds(0, nextto(rob, o), true) ∧ v = false∨
t = 3 ∧Holds(2, holding(rob, o), true) ∧ v = true)∨
¬Occlude(t, onfloor(o)) ∧Holds(t− 1, onfloor(o), v))

Next, we input this definitional theory into the def2P algorithm (Def. 3). Since Prolog
provides the equality axioms (step 1), we can directly apply the Lloyd-Topor transfor-
mations. What follows is the Prolog code for the fluent onfloor(o) (note that Prolog uses
”;” for disjunction):
holds(T,onfloor(O),V) :-
T=0, V=true ;
T>0, (O=vase, T=1, holds(0, holding(rob,O1),false),
holds(0,nextto(rob,O),true), v=false;
t=3, holds(2, holding(rob,O), true), v=true);
not occlude(T, onfloor(O)), T2 = T-1, holds(T2, onfloor(O),V)).

5 Relaxing the Constraints

In the previous sections we have introduced a restricted fragment of TAL, which we
referred to as TALM. We then showed how it can be translated into a logic program
sound for the narrative in question.

In this section we will consider if, and to what extent the constraints on TALM
can be relaxed while still being able to use direct mappings of TAL narratives into
logic programs. We discuss non-deterministic actions, concurrent actions, actions with
duration and an incomplete initial state. Almost all the restrictions that we will discuss
(except for concurrent actions) have one property in common: relaxing each of them
will result in a non-deterministic narrative. This means essentially that a narrative can
have multiple interpretations.

The unique values axioms associated with the foundational axioms in TAL for any
narrative are crucial when discussing non-deterministic narratives, because it rules out
narratives in which a fluent has two values at the same time point. This implies that
rather than modelling several alternative values for a fluent in one mode, several mini-
mal models are required instead. The unique values axioms follow:

∀t,f∃vHolds(t, f, v) (7)
∀t,f,v1,v2 [v1 6= v2 ⊃ ¬(Holds(t, f, v1) ∧Holds(t, f, v2))] (8)

9 Download from http://icr.uni.lu/marc/TALTranslator.rar

Encoding Definitional Fragments of Temporal Action Logic into Logic Programming 11

In the previous section we did not explicitly encode these axioms into the definitional
theory, because each narrative in TALM is fully deterministic: it will have a unique
model in which each fluent has exactly one value. Satisfaction of the axioms is implicit
in the encoding of TALM narratives into a logic program.

Theorem 4 (Unique Model). Each TALM narrative Γ has a unique model m in which
each fluent has exactly one value per time point.

Proof. We show that for each narrative Γ in TALM, the interpretations of the predicates
Holds, Occlude and Occurs are unique. Because these are the only predicates occur-
ring in the narrative, it follows directly that the narrative has a unique model. Suppose
some narrative Γ ,

– For Occurs: The interpretation of Occurs is determined only by the action occur-
rences. This interpretation is unique because the assignments of the action occur-
rences are non-deterministic and non-overlapping.

– For Occlude: Similar to Occurs.
– For Holds: This follows directly from the case distinction used when constructing

the definition of the Holds predicate (see Section 2).

5.1 Extending TALM with Non-determinism

Any relaxation of the restrictions on TAL narratives associated with TALM introduce
one form or another of non-deterministic choices of fluent values at time points. This
implies that in the general case, Theorem 4 no longer holds. For any relaxation of TALM
to be sound relative to encoding into a logic program, the unique values axioms would
have to become an explicit part of the the definitional theory. Unfortunately, this is not
possible.

Observe that Equation 8 is equivalent to,

v1 6= v2 → ¬Holds(t, f, v1) ∨ ¬Holds(t, f, v2),

It is in general not possible to bring such a formula into a definitional form. To obtain a
definition of a predicate P , we require a set of formulas of the form,

(Φ1 → P) ∧ ... ∧ (Φi → P),

which can then be combined to (Φ1 ∨ ... ∨ Φi)→ P .
Unfortunately the unique values axiom does not provide us with such a construc-

tion, and we can also not transform it in a direct manner into one. This means that
we cannot hope to express the unique values axiom and at the same time maintain
a transformation to an equivalent definitional theory. Therefore, we generally cannot
allow non-deterministic actions in TALM, because it will possibly lead to an inconsis-
tent model in which a fluent has two values at one time point. This immediately rules
out the possibility to extend TALM with any form of non-determinism, including non-
deterministic actions, multi-step actions, and an incomplete initial state, because each
of these extensions introduce a form of non-determinism into the theory. This is not
surprising as it applies to most any approach to modelling action and change.

12 Marc van Zee, Patrick Doherty, and John-Jules Meyer

5.2 Concurrent actions

Much work in reasoning about action and change has been done under the assumption
that there is a single agent performing sequences of non-overlapping actions. The use
of explicit time points in TAL enables the direct specification of narratives where action
execution intervals are partly or completely overlapping, whether those actions are per-
formed by a single agent or by multiple agents. No special concurrency operators are
required to do this.

Independent Concurrent Actions: Extending TALM with independent concurrent ac-
tions involving disjoint sets of features is unproblematic. Since the effects of the actions
do not interfere with each other (i.e. two actions change the same fluent at the same
time), the expected effects will take place. Such concurrent actions will not introduce
multiple models. We omit the proof of this proposition because it is trivial. The conse-
quence of this is that the unique value axioms can be omitted, which means that it is
possible to extend TALM with independent concurrent actions.

Dependent Concurrent Actions: In the case where actions affecting the same fluents
occur concurrently, concurrent actions that affect the value of the same fluent can never
assign different values to this fluent, because this would lead to an inconsistent narrative.
Otherwise, both actions assign the same value to the fluent. In either case, it is not
necessary to add the unique values axioms to the theory because there are no multiple
models introduced. Again, the proof of this is trivial and is omitted. Thus, concurrent
actions are allowed as long they do not assign different values to the same fluent at the
same time. Or in other words: concurrent actions that assign different values to the same
fluent are not allowed.

6 Conclusion

The aim of this paper was to isolate a definitional fragment of the highly expressive
TAL formalism and show how it can be soundly encoded into a normal logic program.
This was done by defining the fragment TALM and providing an algorithm, def2P, that
encodes TAL narratives in this fragment into logic programs that can be shown to be
sound and complete relative to this particular fragment. One would of course like to
find more general reasoning techniques that relax some of the restrictions associated
with TALM narratives. At the very least, one would require a mapping to disjunctive
logic programs such as Answer Set Programs. Lee and Palla [8] have recently demon-
strated that it is possible to reformulate more general fragments of TAL into an answer
set program. Consequently the SAT-based implementation techniques used there can be
applied to TAL. One of the authors is currently looking into the translation of TAL the-
ories to Satisfiability Module Theory (SMT) programs. Another appropriate extension
would include the use of constraints to more efficiently model the temporal constraints
associated with more general TAL narratives.

Encoding Definitional Fragments of Temporal Action Logic into Logic Programming 13

7 Acknowledgments

Marc van Zee is funded by the National Research Fund, Luxembourg.

References

1. Clark, K.L.: Negation as failure. In: Logic and Databases. pp. 293–322 (1977)
2. Doherty, P.: Reasoning about action and change using occlusion. In: 11th European Confer-

ence on Artificial Intelligence,1994. John Wiley and Sons (1994)
3. Doherty, P., Kvarnström, J.: Talplanner : A temporal logic based forward chaining planner.

Annals of Mathematics and Artificial Intelligence 30(1-4), 119–169 (2000)
4. Doherty, P., Kvarnström, J.: Temporal action logics. In: Handbook of Knowledge Represen-

tation, pp. 709–757. No. 3 in Foundations of Artificial Intelligence, Elsevier (2009)
5. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution moni-

toring framework for unmanned aircraft systems. Autonomous Agents and Multi-Agent Sys-
tems 19(3), 332–377 (Dec 2009)

6. Hodges, W.: Logical features of horn clauses. In: Gabbay, D.M., Hogger, C.J., Robinson,
J.A. (eds.) Handbook of logic in artificial intelligence and logic programming (vol. 1), pp.
449–503. Oxford University Press, Inc., New York, NY, USA (1993)

7. Kvarnström, J.: TALplanner and other extensions to Temporal Action Logic. Ph.D. thesis,
Linkping UniversityLinkping University, Department of Computer and Information Science,
The Institute of Technology (2005)

8. Lee, J., Palla, R.: Reformulating temporal action logics in answer set programming. In:
AAAI 2012 (2012)

9. Lloyd, J.W.: Foundations of logic programming. Springer-Verlag New York, Inc. (1987)
10. Lloyd, J., Topor, R.: Making prolog more expressive. Journal of Logic Programming 1, 225–

240 (1984)
11. Mccarthy, J.: Circumscription—a form of non-monotonic reasoning. Readings in nonmono-

tonic reasoning pp. 145–152 (1987)
12. McCarthy, J.: Applications of circumscription to formalizing common sense knowledge. Ar-

tificial Intelligence 59, 23–26 (1986)
13. Reiter, R.: Knowledge in action: logical foundations for specifying and implementing dy-

namical systems. MIT Press, Cambridge, Mass. (2001)
14. Sandewall, E.: Features and fluents (vol. 1): The representation of knowledge about dynam-

ical systems. Oxford University Press, Inc., New York, NY, USA (1994)
15. Shepherdson, J.: Negation as failure, completion and stratification. In: in Handbook of Logic

in Artificial Intelligence and Logic Programming. Volume 5. Oxford Science Publications
(1998)

16. van Zee, M.: Implementing Temporal Action Logics. Master’s thesis, Utrecht University
(2013)

