
1

PhishStorm: Detecting Phishing with Streaming
Analytics

Samuel Marchal, Jérôme François, Radu State and Thomas Engel

Abstract—Despite the growth of prevention techniques, phish-
ing remains an important threat since the principal counter-
measures in use are still based on reactive URL blacklisting.
This technique is inefficient due to the short lifetime of phishing
Web sites, making recent approaches relying on real-time or
proactive phishing URLs detection techniques more appropriate.
In this paper we introduce PhishStorm, an automated phishing
detection system that can analyse in real-time any URL in order
to identify potential phishing sites. PhishStorm can interface with
any email server or HTTP proxy. We argue that phishing URLs
usually have few relationships between the part of the URL that
must be registered (low level domain) and the remaining part
of the URL (upper level domain, path, query). We show in this
paper that experimental evidence supports this observation and
can be used to detect phishing sites. For this purpose, we define
the new concept of intra-URL relatedness and evaluate it using
features extracted from words that compose a URL based on
query data from Google and Yahoo search engines. These features
are then used in machine learning based classification to detect
phishing URLs from a real dataset. Our technique is assessed
on 96,018 phishing and legitimate URLs that results in a correct
classification rate of 94.91% with only 1.44% false positives. An
extension for a URL phishingness rating system exhibiting high
confidence rate (> 99%) is proposed. We discuss in the paper
efficient implementation patterns that allow real time analytics
using Big Data architectures like STORM and advanced data
structures based on Bloom filter.

Index Terms—Security Management, Machine Learning, Min-
ing and Statistical Methods, Phishing Detection, URL Rat-
ing, Word Relatedness, Search Engine Query Data, Big Data,
STORM.

I. INTRODUCTION

Phishing is currently one of the most lucrative cybercrime
activities. Although accurately evaluating the financial loss
caused by phishing is difficult, some surveys have been
conducted, suggesting losses of several billion dollars every
year. In 2007, Gartner Research estimated a $3.2 billion loss
due to phishing scams [1]. Javelin Strategy & Fraud published
a report [2] that identity theft led to a loss of $54 billion in
2009, mostly due to cybercrime. More recently, RSA estimated
worldwide losses of $687 million due to phishing in the first
half of 20121.

Various techniques are used to perform phising attacks,
ranging from technical subterfuges (DNS cache poisoning, e-
mail spoofing, Web server takeover, etc.) to social engineering.

Samuel Marchal, Radu State and Thomas Engel are with the Interdisci-
plinary Centre for Security, Reliability and Trust (SnT) of the University of
Luxembourg, Luxembourg.
e-mail: {samuel.marchal,radu.state,thomas.engel}@uni.lu

Jérôme François is with INRIA Nancy Grand Est, Nancy, France.
e-mail: jerome.francois@inria.fr

1http://blogs.rsa.com/phishing-in-season-a-look-at-online-fraud-in-2012/

In addition various goals are sought: data, money or credential
stealing through fake Web sites, drive-by download of mal-
ware, etc. Despite this diversity, one common feature is the
use of obfuscated URLs to misdirect users to fake Web sites
or drive-by downloads.

Luring Internet users by making them click on rogue links
that seem trustworthy is an easy task because of widespread
credulity and unawareness. To cope with this threat, the best
strategy is to prevent connection to phishing Web sites by
the identification of phishing URLs. Other techniques like
taking down phishing Web sites have been proved difficult and
inefficient [3] mainly due to short Web site lifetime (around
12 hours [4]) and the use of DNS fluxing [5]. Phishing Web
site short lifetime makes the protracted process of reactive
blacklisting based on user reports inefficient. In addition the
use of different variations in URLs for the same phishing
campaign [6] complicates the task of blacklisting, as blacklists
must provide a perfect match for a URL. Hence real-time
malicious URL detection is a better technique for defeating
phishing.

In this paper, we propose an automated real-time URL
phishingness rating system to protect users against phishing
content: PhishStorm. The underlying method targets identi-
fication of phishing URLs that are based on registered do-
mains (malicious or not) that are not related to their targeted
brand. To delude their victims, phishers blend many phishing
keywords (famous brand, attractive words) into the remaining
parts of the URL. Most Internet users are not aware of the
DNS hierarchy. Seeing words like paypal, ebay or visa at any
level of a URL will make them feel confident that the rogue
link actually leads to the official Web site of these brands.

From observation of phishing URLs, we claim that there are
few relationships between the registered domain and the rest
of the URL. However, the words that compose the rest of the
URL (low level domain, path, query) often have many interre-
lationships. Therefore, our approach evaluates the relatedness
of words that compose a URL and highlights the differences
between legitimate and phishing URLs. Previously existing
solutions [7], [8], [9], [10], are not well suited to evaluating
word similarity or relatedness for the Internet vocabulary.
These tools, coming from the natural language processing
field, usually have no entries for domain names and most of the
words that compose a URL. We leverage search engine query
data from Google and Yahoo to compute this relatedness.

Based on this, we define the term of intra-URL relatedness.
Efficient feature computation methods leveraging distributed
streaming analytics techniques and space-efficient data struc-
ture are used. These reduce the delay of detecting phishing

2

Obf. Type Example

Type I http://school497.ru/222/www.paypal.com/29370274276105805/
http://paypal.com.eu.compte.client.update.condst.com.br/

Type II http://www.quadrodeofertas.com.br/www1.paypal-com/encripted/ssl218
http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd= login-run

Type III http://cgi-3.paypal-secure.de/info2/verikredit.html
http://paypal-shopping.co.il/

Type IV http://69.72.130.98/janaseva/https.paypal.com/uk/onepagepaypal.htm
ftp://212.13.144.72/SERVICE/PayPal.com/security/alert/paypal.com

Type V http://tiny.cc/clientID00858JD8
http://goo.gl/HQx5g

TABLE I
EXAMPLE OF OBFUSCATED URLS FOR THE DOMAIN paypal.com

URLs that has been observed in our previous work [11] and
permit wider applications such as phishing email or HTTP
traffic filtering. We extract 12 features from a single URL
which are input to machine learning algorithms to identify
phishing URLs. Our technique is assessed on ground truth
data of 96,018 URLs leading to a correct classification rate of
94,91%. Finally, a phishingness score is computed for every
single URL based on Random Forest classifier.

To summarize the major contributions of this paper:

– We introduce the concept of intra-URL relatedness de-
picting the relation between a registered domain and the
words that compose the rest of a URL.

– We leverage search engine query data to establish relat-
edness between words and show that this is more suited
to Internet vocabulary than existing methods.

– We propose new features based on intra-URL relatedness
and build a machine learning based approach relying
on these for distinguishing between phishing and non-
phishing URLs.

This paper is an extension of [11] with the following
additional contributions:

– We use distributed real-time computation technique
(STORM) to infer intra-URL relatedness.

– We use space-efficient data structures (Bloom filter)
to reduce the delay in intra-URL relatedness features
calculation.

– A detailed feature engineering process is performed.

The rest of the paper is structured as follows: we start
by presenting URL obfuscation techniques in Section II. We
introduce the search engine query data and the metrics used
to calculate intra-URL relatedness in Section III. Section
IV present applications of PhishStorm and the underlying
techniques used for fast features computation. We describe the
datasets used for experiments and study differences between
legitimate and phishing URLs in Section V. PhishStorm is
assessed in Section VI, both for classification and scoring.
Limitations of this technique are identified in Section VII,
related works are discussed in Section VIII and we conclude
in Section IX.

II. PHISHING URL OBFUSCATION

This paper assumes some knowledge about DNS organisa-
tion and operation; the reader is referred to [12], [13], [14] for
the necessary background.

Phishers usually try to lure their victims into clicking on
rogue URLs pointing to phishing sites or drive-by downloads.
Different URL obfuscation techniques are used with the aim of
hiding the real host, and particularly the registered domain, the
only part of the URL that cannot be freely defined. If some-
body wants to use a domain mydomain.tld and derive several
URLs from it: url1.mydomain.tld, url2.mydomain.tld/file, he
has first to register the domain mydomain.tld at a domain
registrar, ensuring that it cannot be registered by anybody
else. Assuming a phisher wants to trap PayPal users, he must
use a domain.tld other than paypal.com, as this domain is
already registered by PayPal Inc. The phisher must register
a domain name mydomain.tld and try to deceive people by
blending labels such as paypal into the rest of the URL:
login.mydomain.tld/paypal.

A registered domain consists of two parts: a main level
domain and a public suffix. A public suffix (or ps) is a domain
name suffix under which an Internet user can register a name.
It can be just a Top Level Domain like .com, .org or a
combination of level domains like .co.uk or .blogspot.com. A
main level domain (or mld) is the level domain preceding a
public suffix. A registered domain is then: mld.ps. For instance
in www.paypal.com/login, com is the ps and paypal is the mld.

The different obfuscation techniques consist of blending
either the original domain name or phishing keywords into
the remaining part of the URL. These keywords are usually
the targeted brand, related services of the brand and other
attractive words such as secure, login, protect, etc.

Assume a URL formed of a hostname with different
level domain (ld), a path (path) and a query (key=value):
http://5ld.4ld.3ld.mld.ps/path1/path2/path3?key1=value1
&key2=value2. The obfuscation often consists in blending
keywords into the path, the query and the low level domain
of the hostname (5ld.4ld.3ld). In the following we present the
most used URL obfuscation techniques [15], with examples
given in Table I for the domain paypal.com:

• Type I: URL obfuscation with other domain: The

3

mld.ps is a real domain name, usually registered by the
phisher, while the original domain being phished is part
of the path, the query or the upper level domain.

• Type II: URL obfuscation with keywords: Again the
mld.ps is a real domain name, and the brand being
phished and related words are part of the path, the query
or upper level domain.

• Type III: Typosquatting domains or long domains:
the mld.ps of the URL is the domain being phished but
misspelled, with letters or words missing or added, or
the domain is pronounced the same way as the original
but written differently. The targeted brand can also be
combined with other words to create an unregistered
domain.

• Type IV: URL obfuscation with IP address: the URL’s
hostname is replaced by an IP address and the brand
being phished is part of the path or the query.

• Type V: Obfuscation with URL shortener: A URL
shortening service is used to hide the name of the real
host. Such URLs are not meaningful and are mainly used
in phishing attacks targeting services that use this kind
of short URL, like Twitter.

We focus on the identification of the four first types of URL
obfuscation techniques since our technique relies on natural
language processing, which is clearly not suited to shortened
URLs. The common feature of these obfuscated URLs is that
the brand and some related terms are included in the path,
the query and low level domain. These terms are related as
these have relationships with the targeted brand and have no
obvious relation with the mld.ps that is used for phishing. This
is the opposite of what happens for a legitimate URL, where
all the parts of the URL are normally related. To reveal this
difference a relatedness analysis of the different part of a URL
is performed.

III. INTRA-URL RELATEDNESS ANALYSIS

The intra-URL relatedness is the quantification of the re-
latedness among the words composing the different parts of
a URL and more precisely between the registered domain
and the rest of the URL. Due to the limitations of existing
relatedness calculation techniques, we leverage search engine
query data to compute it.

A. URL Word Extraction

The examples of obfuscated phishing URL from Type I
to IV highlight a global characteristic in URL obfuscation,
namely that there is no relation between the mld.ps and the rest
of the URL. To reveal this, we split the URL in the two parts
that are presumed to have no relationship: extract the mld.ps
and separate it from the rest. As the ps may be composed of
multiple level domain, we use Public Suffix List2 to identify
it and then retrieve the immediately preceding level domain
as the mld. For the rest of the URL, a split according to non-
alpha-numeric characters is first performed. From extracted
parts composed of several words such as paypalitlogin in

2http://publicsuffix.org/list/

http://sezopoztos.com/paypalitlogin/us/... we use a dictionary-
based word splitter [16]. For instance, the three words paypal,
it and login are extracted from paypalitlogin through this
process.

Based on this splitting two sets are composed: one,
called RDurl (for Registered Domain), consists just
of two elements: RDurl = {mld,mld.ps}. The other,
REMurl (for REMaining part), is composed of all
extracted words from the URL except mld.ps. Given
http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd= login-
run, the following sets are extracted:
• RDurl = {sezopoztos, sezopoztos.com}
• REMurl = {paypal, it, login, us, web, src, html, cmd,

login, run}
The mld.ps is not split like the other part to keep the mld

unmodified, which can be composed of several words.
Assume a type III obfuscated URL such as http://cgi-

3.paypal-secure.de/info2/verikredit.html . The word paypal
would be an element of RDphish = {paypal, secure, de}.
If http://cgi-3.paypal.de/info2/verikredit.html is a real Pay-
Pal URL, we have RDlegit = {paypal, de} and RDlegit ∩
RDphish = {paypal, de}. However with the proposed decom-
position of mld.ps we have the two lists RDphish = {paypal-
secure,paypal-secure.de} and RDlegit = {paypal, paypal.de}
giving RDlegit ∩ RDphish = ∅. Hence our proposed decom-
position emphasizes the difference between the two domains.

Once the two sets are built, the next step is to evaluate
the relatedness of their components. It is tempting to compute
word similarity or word relatedness with existing tools such
as Disco [9]. However this tool, even if efficient in most cases
and especially for phishing domain names analysis as shown in
our previous work [17], is not necessarily suited to intra-URL
relatedness computation.

B. Word Relatedness Evaluation Tools Shortcomings

WordNet [10] is a lexical database containing a collection
of english language words. Given a word, WordNet can give
a collection of related words. The limitation of this tool is
that it is only based on vocabulary that is likely to appear in
an English dictionary, whereas Internet vocabulary includes
several different languages and many words that are not
contained in dictionaries.

Automated techniques and measures have also been devel-
oped to evaluate word relatedness. Latent Semantic Analysis
(LSA) proposed by Landauer and Dumais [18] or Pointwise
Mutual Information (PMI), introduced by Church and Hanks
[7], then used by Turney [19] based on statistical data from
search engine results for the queried words, are examples
of these techniques. The Normalized Google Distance (NGD
[8]) computes the semantic similarity between two words by
querying the Google search engine for these words and counts
the number of Web pages where they appear together and
individually. Disco [9] relies on mutual information evaluation
between two words based on corpora.

To prove the limitations of these existing tools, we tested
whether two of them are able to find related words for a set of
labels. WordNet and Disco are chosen since these are the only

4

Brand mld mld.ps
JPMorgan Chase jpmorganchase jpmorganchase.com
TAM Airline tam tam.com.br
Visa visa visa.com
Windows Live live live.com
Poste Italiane poste poste.it
Wells Fargo wellsfargo wellsfargo.com
Blizzard blizzard blizzard.com

TABLE II
SUBSET OF MOST PHISHING TARGETED BRANDS WITH mld & mld.ps

Tool #mld %mld #mld.ps %mld.ps
WordNet 20 21.3% 0 0%
Disco 23 24.5% 0 0%
Yahoo Clues 87 92.6% 68 72.3%
Google Trends 92 97.9% 76 80.9%
Total 94 - 94 -

TABLE III
NUMBER OF LABELS MATCHING AT LEAST ONE RELATED WORD FOR 4

TOOLS

ones that are really usable through an interface. The testing set
consisted of the RDurl extracted from a set of 94 URLs. These
URLs come from PhishTank (described in Section V-A) i.e.
phishing URLs present in PhishTank blacklist are categorised
according to the brand they target. As of March 2014, when
we made our evaluation, 94 brands and associated URLs were
present in this list. A subset of this test set is given in Table II
and the result of the test for each tool is given in the two first
rows of Table III. The numbers of mld and mld.ps for which
the tested tools can give at least one related word are given in
absolute value and percentage terms.

Neither WordNet nor Disco performs well on this test set.
These only provide related words for less than 25% of mld
and never match any mld.ps, although the brands and domain
names tested are well known. In addition for the mlds that
match a result, it is usually for brand that is also a meaningful
word such as live or visa. The test proves that current word
relatedness tools are not suited to the measure of intra-URL
relatedness.

While creating a dedicated corpus to be used with existing
methods would be helpful but challenging, word relatedness
can be dynamically inferred from search engine query data,
as shown in next section.

C. Search Engine Query Data

To perform the evaluation of intra-URL relatedness, we use
search engine query data. The reason is that URL obfuscation
is a social engineering lure. Phishing URLs target a brand, so
clever phishers blend within them the brand and words that
Internet users associate with the brand, such as a provided
service: payment for PayPal. People generally use search
engines to access these services. When they make a search,

they type some keywords that are typically the brand or the
domain name and the service needed like paypal payment
or hsbc.com on-line banking. These word associations reflect
the cognitive process of users searching for PayPal or HSBC.
Consequently, such words are the ones phishers tend to blend
into URLs to trap PayPal and HSBC customers [4].

Hence, mining search engine query data for word related-
ness measurement is relevant in a phishing context. To achieve
this goal, we use search engine query data from two top-
ranked search engines: Google and Yahoo. Both offer services,
that, given a term, provide some insights on requesting trends
concerning it. These services are respectively Google Trends3

and Yahoo Clues4. In the context of the paper we define a term
t as a set of words w. {paypal} and {paypal, login, secure}
are two examples of terms.

Google Trends shows the relative interest of Google users
over time in a term. It depicts the geographic interest for this
term and provide related terms according to users’ related
searches. Google Trends provides the top ten related searches
over time as well as the ten rising related searches namely
those on which interest has increased recently. This allows us
to gather up to twenty related terms for one given term.

Yahoo Clues provides the same kind of services as Google
Trends. It offers an insight into the search flows, the terms
requested just before (5 terms) and after (5 terms) a term.
Like Google Trends it also provides a set of related searches.

Combining both sources can give up to forty related terms
for one given term. A result for the queried term {paypal} for
both tools Google Trends and Yahoo Clues is given in Table
IV. The ability of these tools to find related words for phishing
targeted mld and mld.ps is highlighted in Table III. Both tools
were tested on the same set of terms used for WordNet and
Disco, giving the results in rows 3 and 4. They perform better,
with Google Trends being the best at finding related words.
However both provide match results for more than 90% mld
and 70% mld.ps, much more than usual similarity evaluation
tools tested earlier.

Having a URL url and the extracted sets RDurl and
REMurl, Google Trends and Yahoo Clues are automati-
cally requested for each element of the two sets. We de-
fine Termw, as the set of terms resulting from the re-
quests of the word w in both Google Trends (related &
rising) and Yahoo Clues (related & requests). A subset
of Termpaypal is given in Table IV with Termpaypal =
{{paypal, account}, {paypal, login}, ...}.

We define four sets of words built from a URL url:
RELrd(url), RELrem(url), ASrd(url) and ASrem(url).
RELset(url) consists of all the words related to the words

of set i.e. words included in terms that are results of requests
for elements of set. Here set is either RDurl or REMurl. The
formulas for these sets are given in Equations (1) and (2).

RELrd(url) = {w ∈ t | t ∈ Termw′ , w′ ∈ RDurl} (1)

RELrem(url) = {w ∈ t | t ∈ Termw′ , w′ ∈ REMurl} (2)

3http://www.google.com/trends/
4http://clues.yahoo.com/analysis

5

Google related Google rising Yahoo related Yahoo requests
{paypal, account} {amazon, paypal} {bill,me, later} {paypal, login}
{paypal, login} {paypal, fees} {netspend} {paypal.com}

{paypal, credit, card} {ebay, uk} {suntrust} {paypal, buyer, credit}
{paypal, email} {paypal, login} {regions} {paypal, customer, service}

TABLE IV
EXAMPLE OF TERM RESULTS FROM GOOGLE TRENDS AND YAHOO CLUES FOR {paypal}

Fig. 1. Word extraction and word set composition for
http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd= login-run

ASset(url) is the set of words that are associated with
the words of set i.e. the words that appear in a common
single term. Assuming a term t composed of three words
{w1, w2, w3}, there is a symmetric association relationship
between w1 and w2, w1 and w3, w2 and w3. The two sets
ASrd(url) for RDurl and ASrem(url) for REMurl are defined
in Equations (3) and (4) respectively.

ASrd(url) = {w ∈ t | ∃w′ ∈ RDurl, w
′ ∈ t, w′ 6= w} (3)

ASrem(url) = {w ∈ t | ∃w′ ∈ REMurl, w
′ ∈ t, w′ 6= w}

(4)
These four sets are extracted to quantify

the relationship between and inside each
set RDurl and REMurl. Assume the URL
http://sezopoztos.com/paypalitlogin/us/webscr.html?cmd= login-
run, Figure 1 presents the full process from word extraction
to ASrem(url) and RELrem(url) composition based on a
subset of Termpaypal. We have:
RELrem(url) = {amazon, paypal, fees, ebay, uk, login}
ASrem(url) = {amazon, fees, login}

D. Feature Computation

Based on the sets defined in the previous subsection, we
introduce 12 features characterising intra-URL relatedness and
URL popularity. The popularity criteria is based on the search
count for components of a URL (registered domain, mld, etc.).
These features are described in Table V.

The features 1-6 define intra-URL relatedness by calculating
the Jaccard index pairwise between the four sets defined
in Section III-C (RELrd(url), RELrem(url), ASrd(url) and
ASrem(url)). The Jaccard index is a long-established metric

Fig. 2. PhishStorm implementation

used to calculate similarity and diversity between two sets A
and B. The closer J(A,B) is to 1 the more similar are A and
B. These six features quantify the relatedness between the
two parts of the URL (mld.ps and the rest) through JRR, JRA,
JAA and JAR, as these compute Jaccard indexes between sets
extracted from different parts (RDurl and REMurl). These also
measure the relatedness inside each part through JARrd and
JARrem, as these features are calculated from sets extracted
from the same part of a URL.

Features 7-12 reflect the popularity of a URL and its com-
ponents with the number of words that compose it (cardrem)
and the number of related and associated words found in
search engine query data based on these words with ratioArem

and ratioRrem. These two features are weighted by cardrem.
Features mld.psres and mldres represent the popularity of the
registered domain by giving boolean values describing whether
the mld.ps and mld match results while queried in Google
Trends and Yahoo Clues. The final feature (ranking) is the
ranking of the mld.ps according to the Alexa5 Web site ranking
list. Alexa gives a ranking for the top 1,000,000 most visited
Web sites; if a particular mld.ps is not in the list, the value
10,000,000 is considered.

Features 10, 11 and 12 can be considered as relying on the
reputation of a domain and not on the intra-URL relatedness.
Even if features 10 and 11 are new — ranking has been used
already in state of the art work — we compare in Section VI
classification results with and without these three features to
assess the relevancy of intra-URL relatedness features.

5http://www.alexa.com/

6

Features Description
1 JRR = |RELrd(url)∩RELrem(url)|

|RELrd(url)∪RELrem(url)| Jaccard index b/w RELrd(url) and RELrem(url)

2 JRA = |RELrd(url)∩ASrem(url)|
|RELrd(url)∪ASrem(url)| Jaccard index b/w RELrd(url) and ASrem(url)

3 JAA = |ASrd(url)∩ASrem(url)|
|ASrd(url)∪ASrem(url)| Jaccard index b/w ASrd(url) and ASrem(url)

4 JAR = |ASrd(url)∩RELrem(url)|
|ASrd(url)∪RELrem(url)| Jaccard index b/w ASrd(url) and RELrem(url)

5 JARrd = |ASrd(url)∩RELrd(url)|
|ASrd(url)∪RELrd(url)| Jaccard index b/w ASrd(url) and RELrd(url)

6 JARrem = |ASrem(url)∩RELrem(url)|
|ASrem(url)∪RELrem(url)| Jaccard index b/w ASrem(url) and RELrem(url)

7 cardrem = |REMurl| number of words in REMurl

8 ratioArem = |ASrem(url)|
|REMurl| ratio of associated words for words in REMurl

9 ratioRrem = |RELrem(url)|
|REMurl| ratio of related words for words in REMurl

10 mldres =

{
0 if |Termmld| = 0
1 else

whether there is search engine results
or not for the mld of the URL

11 mld.psres

{
0 if |Termmld.ps| = 0
1 else

whether there is search engine results
or not for the mld.ps of the URL

12 ranking Alexa ranking for mld.ps

TABLE V
URL FEATURE DESCRIPTIONS

IV. PHIHSTORM IMPLEMENTATION

PhishStorm gives a generic solution for phishing URL
detection relying on intra-URL relatedness computation. This
technique only needs access to search engine query data to
operate. Hence the application range of PhishStorm is wide.
It can operate at different network level to prevent phishing. It
can provide a personal protection for users while surfing on the
Web if implemented locally as a browser add-on. PhishStorm
provides phishingness score for URL and can act as a Web
site reputation rating systems, displaying a Web site rating
while using a search engine or typing a URL into a Web
browser. Centralized phishing protection is an other option
as for instance at the Web proxy level of a local company
network, filtering HTTP packets sent from URLs identified as
phishing.

However, as the main vector of phishing attacks is spoofed
emails embedding phishing URLs, we implement PhishStorm
as a centralized phishing email detection tool positioned in
front of the email server. Nowadays, spam filtering is per-
formed centrally in many organisation and PhishStorm can
be added to such process to increase detection performance.
Figure 2 depicts the implementation of PhishStorm and the
four steps of the phishing email detection process. While
incoming emails from the Internet reach PhishStorm (1),
potential embedded URLs are extracted therefrom. The system
then proceeds to features computation thanks to search engine
query data and predicts a phishingness score using machine
learning techniques (2). A detection threshold is applied to
every predicted score, determining if the email must be for-
warded to the email server (3) and then to users (4) with its
phishingness score or dropped.

We give in this section a detailed description of the im-
plementation of the features computation process described in
previous section.

A. Distributed Word Relatedness Inference

The bottleneck for feature computation is the sequential
network communication overhead with the Google and Ya-
hoo servers. However, this bottleneck can be easily removed
by leveraging existing Big Data architectures for streaming
analytics. For our case, the most relevant architecture is the
STORM project6, which inherently allows to distribute parallel
computations over STORM topologies. Because of the transac-
tional support, we have chosen to use the Trident topologies.
Within such a topology, nodes perform a processing logic.
Nodes are connected with links that indicate how the data
is processed. Data is sent within a Stream and STORM can
distribute the computation along a sequence of nodes. There
are two types of nodes: Spouts and Bolts. Spouts represent
the source of data. For our architecture, the spout (URL-
Spout), depicted in Figure 3, is a URL extraction component
that extracts individual URLs. Each individual URL is sent
to four different bolts. This is done using one of the stream
grouping method. Several such methods exist and their work-
ing depend on how a spout decides to split the output to the
connected bolts. The All-grouping method is the replication to
all attached bolts. Sem-Bolts in our architecture have a simple
function. They connect to the Google and Yahoo servers and
retrieve the list of semantically equivalent words as depicted
in Figure 3 through a basic STORM implementation. Finally,
the intersection among these need to be performed. This is
done by the Intersection-Bolt using the method described in
Section IV-B.

Using such a simple STORM topology, we can reduce the
communication time by a factor of four. Further improve-
ments can be obtained by increasing the degree of parallelism
through an increased number of bolts as depicted in Figure
4. In this case, the spout tokenize the URLs into different

6https://storm.apache.org/

7

Fig. 3. Simple STORM topology

Fig. 4. Field-grouping STORM topology

words. Each individual word is sent to a URL-Bolt. In this
case, the Field-grouping method is used. This ensures that a
word occurring in several URLs will be always sent to the
same URL-Bolt and therefore a caching strategy can avoid
repeating the same requests. Each URL-Bolt will furthermore
replicate the input to four Sem-Bolts, where each Sem-Bolt
is responsible to communicate with a Google, respectively
Yahoo server. In this case, we can reduce the communication
overhead to the single round trip time between our platform
and the Google/Yahoo servers.

Since the topology is defined at compile time, good es-
timates for the number of URL-Bolts are needed. For this
purpose, Figure 5 showing the histogram of individual words
per URL is used. This histogram depicts the proportion of
URLs being composed of n words. This statistics is obtained
by applying the word extraction process introduced in Section
III-A on the URL dataset presented later in Section V. We can
see that most of URLs is composed of between two and five
words. This means that on average the system needs to request
the search engine query data for two to five words plus the
mld and mld.ps. Hence to optimize our architecture we set the
number of URL-Bolts to seven (5+2), in order that an average
URL can be processed in one round.

This method to gather search engine query data leverages
a feature computation technique based on set operations that
are space-efficient and computationally-efficient.

B. Bloom Filter for Features Computation

Features presented in Section III-D rely mostly on set
operations, as for Jaccard Index computation, which requires

Fig. 5. Repartition of the number of embedded words per URL

union, intersection and counting element operations. More-
over, RELrd(url), RELrem(url), ASrd(url) and ASrem(url),
which are the based set of the features, require intersection op-
eration between the several Termw sets result from querying
Google and Yahoo. As a result we implement all the word set
previously defined with an efficient data structure: the Bloom
filter [20].

Bloom filters are statistical data structures relying on several
hash functions to represent set of elements. This data structure
is represented as a bit array and is subjected to false positives
for element lookup i.e. an element identified as being in the
set is not necessarily in the set, but an element identified as
not being in the set is surely not in the set. Nevertheless,
Bloom filters have the strength to be space-efficient and to
have constant complexity for lookup and adding elements.
This complexity does not depend on the number of elements
the Bloom filter contains and is O(k) with k being the number
of hash functions. A Bloom filter can be described with two
parameters being its size m in bit, which shall be set in
advance, and its number of different hash functions k. Assume
a Bloom filter containing n elements, the probability of false
positive for testing the fact that an element is in the set is
expressed in Equation (5) with Perror.

Perror =

(
1−

[
1− 1

m

]kn)k

(5)

Computing the three needed operations i.e. union, inter-
section and element count are also subject to error and to
some requirements. To perform set intersection and union
with Bloom filter the requirement is that both Bloom fil-
ters have same size (m) and share the same hash func-
tions [21]. The union of two sets consists in a bitwise
OR between the two Bloom filters and the intersection of
a bitwise AND. For two Bloom filters BF1 and BF2, we
have Perror(BF1 ∪ BF2) < Perror(BF1) + Perror(BF2)
and Perror(BF1 ∩ BF2) < min (Perror(BF1), Perror(BF2)).
The element count operation of a Bloom filter containing n
elements can be approximated by n∗ based on the count of
bit X set to 1 as shown in Equation (6).

8

Features Legitimate dataset Phishing dataset
min 1st Q median 3rd Q max min 1st Q median 3rd Q max

cardrem 0 1 2 4 20 0 3 5 9 58
ratioArem 0 29.462 93 181.5 6097 0 55.412 114.1 172.22 3122
ratioRrem 0 33.833 92 179 5507 0 59.789 113.5 169.75 2826.5
mldres 0 0 1 1 1 0 0 0 0 1
mld.psres 0 0 0 1 1 0 0 0 0 1
ranking 1 6655 82260 10e7 10e7 1 10e7 10e7 10e7 10e7

TABLE VI
STATISTICAL VALUES OF FEATURES EXTRACTED FROM LEGITIMATE AND PHISHING DATASET

n∗ = −
m ∗ ln

(
1− X

m

)
k

(6)

Hence Bloom filters offer the required operations to com-
pute the features of intra-URL relatedness in a space-efficient
and computationally-efficient way, while introducing approxi-
mation.

As described before the parameters of Bloom filters (size
m in bit and number of hash functions k) must be defined
in advance. To keep accurate features we propose to set the
false positive rate Perror to 0.0001 (0.01 %) for RELrd(url),
RELrem(url), ASrd(url) and ASrem(url). Hence we can
deduce m and k by determining the maximum number of
elements that will count these sets. To determine this count
we refer to Figure 5 showing the word count per URL. We
can see that URLs embed from 0 to around 20 words. To have
a safety margin we set the maximum word count per URL to
25. Hence every word embedded in a URL is requested to
search engine query data tools to gather up to 40 terms per
single word, these are composed on average of three words.
This gives the maximum number of elements in each set
n = 25 ∗ 40 ∗ 3 = 3000. The optimal number of bits per
element for a Bloom filter is given in Equation (7) and for
Perror = 0.0001 we got bit/element ≈ 19.

bit/element =
1

ln(2)
∗ log

(
1

Perror

)
(7)

k =
m

n
∗ ln(2) (8)

Thus, we have m = 19 ∗ 3000 = 57000 bits and we can
can deduce the number of hash function to use according
to Equation (8). We get k = 13 and each set RELrd(url),
RELrem(url), ASrd(url) and ASrem(url) is set up as a
Bloom filter of size 57,000 bits and 13 hash functions. As
these have all same size and same hash functions, these can be
compared using union and intersection operations to compute
features of intra-URL relatedness.

Having described the technique and the implementation of
intra-URL relatedness features computation, we build a ground
truth dataset of URLs to test their efficacy.

V. DATASETS

To assess the ability of the proposed feature set to be used
in supervised classification, we use two datasets. One of these
is a malicious dataset, the phishing dataset; the other is the
legitimate dataset. These sets are composed from different
sources — as in several phishing detection work [15], [22],
[23] — already used in [24], [25].

A. Phishing Dataset

We used PhishTank to build a phishing dataset. PhishTank7

is a collaborative project to which people can submit phishing
emails and Web sites. Suspected phishing URLs are further
checked by several people before being confirmed as malicious
and added to a blacklist. PhishTank provides lists of valid and
active phishing URLs.

We downloaded this list on a daily basis between October
11th and November 10th, 2012 and built a phishing ground
truth dataset of 53,089 unique URLs. URLs consisting only of
mld.ps, www.mld.ps or IP addresses without path or query were
discarded because it is impossible to calculate the intra-URL
relatedness for such URLs, as REMurl = ∅. In addition we
already addressed the identification of such phishing domains
in [17]. After this selection we had 48,009 extended phishing
URLs in the phishing dataset meaning less than 10% phishing
URLs discarded.

B. Legitimate Dataset

To provide additional learning instances for legitimate
URLs, we selected URLs from the Open Directory Project
(DMOZ8). DMOZ is a directory of the Web containing more
than We first discarded URLs consisting only of mld.ps or
www.mld.ps, as for the phishing dataset. Then a uniform ran-
dom selection was made on the rest to keep 48,009 legitimate
URLs.

We constructed a balanced dataset (half malicious/half le-
gitimate) of ground truth data composed of 96,018 URLs.
We acknowledge that a half/half ratio for phishing and legiti-
mate URLs does not reflect real world repartition. However
this dataset is used to assess the efficiency of the search
engine query data and the features extracted therefrom, in

7http://www.phishtank.com/
8http://www.dmoz.org/

9

Feature IG Feature IG
ranking 0.388 mldres 0.178
JARrd 0.286 JRA 0.133
cardrem 0.273 JRR 0.125
ratioArem 0.217 JAA 0.123
JARrem 0.208 JAR 0.12
ratioRrem 0.208 mld.psres 0.07

TABLE VII
INFORMATION GAIN VALUES OF THE 12 FEATURES

distinguishing phishing from legitimate URLs through ten-fold
cross-validation. And as presented in [26], imbalanced dataset
in cross-validation provides misleading results. This URL
set with extracted features is publicly available for research
purpose9.

C. Features Analysis

The 12 features described in Section III-D were extracted
from each dataset. The box-and-whisker diagram of Figure 6
compares the median, 1st quartile, 3rd quartile, minimum and
maximum values for each Jaccard-based feature according to
the set it is extracted from. The same statistical values are
given in Table VI for the six remaining features as these
features are either not defined on [0, 1] or are binary values.

There is no significant difference between the legitimate
and phishing datasets for features JRR, JRA, JAA and JAR
with equal minimum, 1st quartile and median. The values of
these features are slightly more scattered for the legitimate
dataset, reaching higher values. The 3rd quartile is around 0.02
for legitimate URLs whereas it is 0 for the phishing dataset,
while maximum reaches 1 for legitimate, but it does not exceed
0.7 for the phishing dataset. This validates our assumption
that the similarity between mld.ps and the rest of the URL
is more important in legitimate URLs than in phishing ones.
In addition we can identify JARrd as a good discriminative
feature. Despite having the same range of value for both kinds
of URLs [0, 1] the median and 3rd quartile are an order of
magnitude higher for legitimate URLs (0.55/0.78) compared
to phishing ones (0/0).

Analysing cardrem in Table VI, we conclude that phish-
ing URLs blend more words within them than legitimate
ones. Legitimate mld.ps and mld logically match more results
than phishing ones (mldres, mld.psres) when searched for
in Google Trends and Yahoo Clues. Finally the ranking of
legitimate domains is higher than phishing ones since 31,767
legitimate domains are ranked in the Alexa top one million
domains against only 8,081 phishing domains.

Nevertheless it is worth noting that some phishing mld.ps
have a high ranking, namely 1. This top-ranked domain is
google.com. The reason why such top ranked mld.ps are
present in the phishing set is that the Google Docs10 facility is
used as a support for phishing. Phishers steal personal data by
creating in it on-line forms that victims are asked to fill out.

9http://secan-lab.uni.lu/images/stories/samuel marchal/urlset.csv
10http://docs.google.com

Fig. 6. Box-and-whisker diagram for Jaccard based features (min/max)

The use of well-ranked domains as a basis for phishing URLs
proves that reputation based features can not be sufficient to
identify phishing URLs.

To evaluate the impact of each feature on the classification
of phishing URLs, the Information Gain is computed. Assum-
ing S, a set of instances having n features (x1, x2, ..., xn)
and a label l, the Information Gain IG(S|i) evaluates the
likelihood of deducing l for elements of S given the feature
i ∈ {1, n}. It is defined in Equation (9), based on the entropy
of the dataset S: H(S) and the average conditional entropy of
S given the feature i: H(S|i).

IG(S|i) = H(S)−H(S|i) (9)

Information gain for the 12 features is given in Table VII,
ordered by descending value. The higher the information gain
value, the more discriminative the feature. All the features
bring information for classification, ranking being the most
significant feature mainly due to the fact that most phishing
domains have a very poor rank. It is followed by JARrd which
contains a large amount of information as shown in Figure
6. JARrem is a significant feature despite no clear difference
being brought out in Figure 6.

Having established that the feature set is relevant in distin-
guishing phishing from legitimate URLs, we further assess its
efficiency within a machine learning framework.

VI. PHISHING URL DETECTION

To automatically detect phishing URLs, we use supervised
classification techniques. We build a feature vector matrix from
the dataset presented in Section V. Each feature vector is
composed of 12 elements, namely the 12 features described
in Section III-D. The predicted variable is 0 for a legitimate
URL and 1 for a phishing URL. This gives a matrix of 96,018
feature vectors representing the 96,018 URLs of the testing
dataset.

10

Fig. 7. Classification results for 7 classifiers

Classifier 5th perc. median 95th perc. SD
RanForest 94.68 95.22 95.41 0.23
RanTree 93.35 93.81 94.1 0.23
LMT 93.10 93.55 94.01 0.27
C4.5 93.01 93.45 93.87 0.26
PART 89.84 90.62 91.49 0.47
JRip 88.32 89.66 90.48 0.66
SVM 85.23 86.31 87.53 0.62

TABLE VIII
CONFIDENCE INTERVAL FOR CLASSIFICATION RESULTS

A. URL Classification

Since there is a wide range of supervised classification algo-
rithms, we assessed our dataset according to several classifiers
using Weka [27]. Seven classifiers were tested covering tree-
based (Random Tree, Random Forest, C4.5, LMT) rule-based
(PART, JRip) and function-based (SVM). The classification
was made without parameters tuning through a ten-fold cross-
validation as a first step to select the most promising approach.
Results for accuracy, true positives and true negatives are
given in Figure 7 for each classifier. To give additional infor-
mation about confidence interval of classification results for
these classifiers, Table VIII shows the median, 5th percentile,
95th percentile and standard deviation (SD) values for the
Accuracy of each classifier out of 100 runs. For sake of clarity
we define for URLs:

• Phishing classified as phishing: true positives (TP) and
TPrate =

TP
TP+FN

• Legitimate classified as phishing: false positives (FP)
and FPrate =

FP
TN+FP

• Legitimate classified as legitimate: true negatives (TN)
and TNrate =

TN
TN+FP

• Phishing classified as legitimate: false negatives (FN)
and FNrate =

FN
TP+FN

and the accuracy: Accuracy = TP+TN
TP+TN+FP+FN

Among the tested classifiers, SVM yields the worst accuracy
(86.31%) while being efficient in identifying legitimate URLs
(93.1%). Rule-based classifiers have approximately the same
performance (around 90%) with disproportionate true posi-
tives and true negatives. The best performers are tree-based

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.05 0.1 0.15 0.2 0.25

T
ru

e
p

o
st

iv
e

ra
te

False positive rate

Fig. 8. ROC curve for Random Forest classification

classifiers, with Random Forest, correctly classifying 95.22%
of URLs, being the best. In addition Table VIII shows that
these top performer classifiers give accurate results having a
standard deviation around 0.25% over 100 runs.

Hence, Random Forest is selected for classification. Ran-
dom Forest [28] is a classification method that creates a
multitude of decision trees during training. During prediction,
it outputs a hard decision for the class of an instance as the
class that has been predicted by the most individual trees.
However a soft prediction can also be deduced from the
combination of results given by individual trees. This soft
prediction is bounded on [0, 1] and gives a confidence score
for the prediction. It is then compared to a discrimination
threshold to give the hard decision.

We tuned the parameters of Random Forest training in order
to achieve better classification. The number of trees to be
generated during training was set to 100. The ROC (Receiver
Operating Characteristic) curve describing the classification
results for the tuned classifier in true positive rate and false
positive rate is illustrated in Figure 8. The ROC curve cor-
responds to the variation of true positives and false positives
while varying the discrimination threshold from 0 to 1. To
minimize the number of legitimate URLs classified as phishing
(false positives) we adjust the discrimination threshold from
0.49 (the value giving the best accuracy) to 0.76. This reduces
the accuracy from 95.66% to 94.91% but also decreases the
FPrate from 4.13% to 1.44%.

The detailed classification metrics for the Random Forest
algorithm with a 0.76 discrimination threshold are given in
Table IX. The two first columns represent the rate of well-
classified and misclassified instances for each class: TPrate,
FPrate, FNrate and TNrate. The Precision corresponds to the
ratio of phishing URLs classified as phishing with respect
to the total URLs classified as phishing such as Precision
= TP

TP+FP . The F-measure is defined in Equation (10) with
Recall = TPrate.

F−measure = 2 · Precision ·Recall
Precision+Recall

(10)

To show the relevancy of intra relatedness features, we
classified with different features the set of URLs. Using only

11

Class Class. as phish. Class. as leg. Precision F-measure Accuracy
Phishing 91.27% (TP) 8.73% (FN) 98.44% 94.72% 94.91%Legitimate 1.44% (FP) 98.56% (TN)

TABLE IX
DETAILED CLASSIFICATION RESULTS FOR RANDOM FOREST (THRESHOLD = 0.76)

Fig. 9. Phishing and legitimate URL partition according to rating ranges

features 1-9 for classification yields an accuracy of 93.48%
whereas using reputation based features 10-12 yields 83.97%.
While having the best Information Gain as shown in Table VII,
feature 12 (ranking) and other state of the art features are not
sufficient to distinguish between phishing and non-phishing
URLs alone. However we show that the proposed feature set
yields good results in doing this task. In addition, combining
the new proposed features with reputation based features can
lead to an improvement in the classification accuracy making
this work complementary to the state of the art.

Even though this technique, which gives a hard decision for
URL class, is proved efficient, correctly classifying 94.91%
of URLs with only 1.44% of legitimate URLs classified as
malicious, we further leverage machine learning to build a
reputation system.

B. URL Rating

The soft prediction value provided by Random Forest is
defined on the range [0; 1]. In the previous section a dis-
crimination threshold was fixed to give a hard decision on
the phishingness degree of a URL. However soft prediction
values are not uniformly distributed over the range [0; 1] and
some sub-ranges of values may be more suitable to providing a
highly reliable decision on the phishingness of a URL. Hence,
we analysed the soft prediction distribution regarding phishing
or legitimate URLs.

The soft prediction range of value [0; 1] is divided in 12 sub-
ranges, two being the exact value 0 and 1 and the ten remaining
being ranges of length 0.1:]0; 0.1[, [0.1; 0.2[, ... , [0.9; 1[.
The soft prediction provided by the tuned Random Forest
was computed for all 96,018 URLs of the dataset through
a ten-fold cross-validation. We counted the URLs having a
score belonging in each sub-range. Figure 9 depicts this count

according to the set (phishing at the top / legitimate at the
bottom) the URLs come from. The 12 different sub-ranges
are on the x-axis and the URL count is on the y-axis in a log
scale centered on 10 and increasing in both directions for each
class (phishing up/legitimate down).

We can observe that most of the URLs are grouped in
each extremity of the range and mostly in the sub-ranges
0,]0; 0.1[, [0.9; 1[and 1, which contain a total of 80,630
URLs out of 96,018. In addition the middle values of soft
prediction have few of either kind of URLs, usually less than
1,000. This confirms that the soft prediction is not uniformly
distributed over its range of definition. Considering the two
extreme values, very few phishing URLs (40) have the score
0, whereas 22,863 legitimate URLs do. The same happens for
a soft prediction of 1 where 34,790 phishing URLs have this
score against only 26 legitimate. Given that 0 corresponds to
legitimate and 1 to phishing, we are able to classify 60.11%
of the dataset (57,719 URLs) with an accuracy of 99.89%.
URLs getting a soft prediction of 0 or 1 are very likely to be
either legitimate or phishing URLs respectively. This proves
that some ranges of soft prediction values are more suited to
making a reliable prediction. If we extend the analysis to the
range [0; 0.1], it contains 38,741 legitimate URLs and only
288 phishing ones. The range [0.9; 1] is composed of 41,260
phishing URLs and 341 legitimate URLs. Considering these
two sub-ranges, these contain 83.97% of the testing dataset
and their components are correctly identified as legitimate or
phishing with an accuracy of 99.22%.

The soft prediction can be used as a risk score for a URL.
The closer it is to 1, the higher the risk; the closer to 0 the
safer the URL. This score is used in PhishStorm to give a
confidence rate to every incomming email going through it as
depicted in Figure 2. We have demonstrated that such a rating
system is reliable in 99.22% of the cases for most of the URLs
(83.96%).

While performing our experiments, we timed the process
from labels extraction, requesting search engines, features
computation to classification decision. With a basic centralized
implementation, it took around 112 hours for the set of 96,018
URLs on a single machine (Intel Core i7 processor and 4Gb
memory). This gives an average time of 4.2 seconds/URL,
most of the time being taken by the requests to search engines.
However with the implementation presented in Section IV
leveraging STORM for HTTP requests and Bloom filters for
set operations the processing time dropped to 20.6 hours. This
gives an average processing time of 0.77 seconds per URL
which is acceptable for the several applications of PhishStorm.

12

VII. DISCUSSION

This paper introduces PhishStorm a system relying on
search engine query data for phishing URL identification. This
technique has some limitations that we identify in this section.

Our technique is not applicable to all types of obfuscated
URLs as described in Section II. URLs composed of only
a malicious domain, URLs based on shortening services or
URLs algorithmically generated are kind of malicious URLs
that can bypass our detection technique. This kind of URLs
and malicious domains are however widely used in botnet
communication (C&C) or spamming activities [29], such activ-
ities does not rely on a social engineering process as phishing
does. The main part of URLs used for phishing are meaningful
and composed of many terms [4], this is why our technique
is relevant in a phishing context.

A limitation of the implementation is that data publicly
available through Google Trends and Yahoo Clues is limited.
For each requested term only the ten related most popular
terms are returned by these tools. Related terms less requested
by search engine users do not appear in results while being
relevant for intra-URL relatedness computing. For the same
reason, some unpopular terms blended in URLs do not match
any results. The reason is that Google and Yahoo do not
provide data that is not representative enough i.e. for terms
that are not requested enough by their users. These facts limit
the accuracy of intra-URL relatedness computing and is one of
the reason why extra features such as ranking are included in
the feature set. However, the data provided by these statistical
tools from the search engines rely on searches that have been
made by users. To the best of our knowledge this data is not
biased by commercial interest but a full access to Web search
logs would highly improve the relevancy of intra relatedness
metrics and, as a result, the classification performance as well.
Despite this limited access to data, the results presented in this
paper provide strong hints regarding the relevancy of using
search engine query data for phishing detection.

A last issue of using on-line tools for inferring intra-URL
relatedness is the delay implied by multiple HTTP requests for
every term that compose a URL. Even though using streaming
analytics techniques such as STORM can lead to a five-fold
reduction of the amount of time (0.77 seconds) as presented in
Section VI. A solution to speed up the process would be direct
access to search engine query data. An alternative solution
is to cache a full or partial copy of related searches in a
local database and make only HTTP requests when needed.
Such a solution can be implemented in the machine hosting
PhishStorm. Then PhishStorm can quickly request the local
database to compute intra-URL relatedness for every URLs it
is subjected to.

VIII. RELATED WORK

For most related work the datasets used for assessment
and the implemented techniques of phishing URL detection
are not publicly available, making quantitative comparisons
impossible.

In recent years, many techniques have been developed
to cope with phishing and have focused on the real-time

identification of this threat. One approach is to compare the
content of presumed phishing Web pages with the original
Web page being phished as in [30], [31], [32], [33], [34].
The main shortcoming of such a method is that the site being
phished must be first identified. Another is that this approach is
limited to rogue Web sites which is just one of several types of
phishing (i.e. drive-by download attacks). PhishStorm relying
only on URL analysis covers a larger scope than the latter.

Passively captured DNS traffic is used to recognise mali-
cious domains in [35], [36]. The technique relies on machine
learning algorithms applied to DNS-based features. The lim-
itation of this approach when applied to phishing is that it
identifies malicious domains instead of malicious URLs. For
obfuscated phishing using URLs based on popular domain
names e.g. Google Docs as seen in Section V-C, it is inefficient
because these domain names are legitimate.

Consequently automated techniques to identify phishing
URLs have been developed. Most rely on the extraction
of phishing heuristics based only on the URL components.
Features such as the length of the level domain, the path, the
tokens, and the number of tokens at each level are considered
in [24]. Some domain name-related information like ranking,
WHOIS information, AS number, blacklisted status, etc. are
used in [15], [23], [37]. A lexical analysis is performed to
create binary features from each label observed in the URL
in [15], [23], [24], [37]. In these techniques, label extraction
is performed by splitting according to basic separators (/, .,
=, -, etc.) whereas our method is more sophisticated [16].
In addition these approaches need previous knowledge about
the exact labels being used in URLs. PhishStorm although
relying on labels that compose URLs, only computes from
these labels and analyses numerical relatedness metrics. This
relatedness can be calculated from previously unseen labels as
long as these appear in search engine query data. Moreover
none of these methods consider the semantic dimension of
labels composing URLs as we do.

More predictive approaches have been developed to cope
with phishing. In [38], a tailor made blacklist suited to single
machine is proposed, this blacklist is built based on the
machine’s logs and historical attacks from other machines
that are considered as similar. In [25], several phishing URLs
are grouped according to common pattern in order to extract
a common regular expression. Then new potential phishing
URLs are generated according to the variable part of regular
expressions. In [39], the authors show how parameters can be
tuned in the presence of several hundreds of features.

Recently some solutions considering the semantic dimen-
sion of phishing attacks have been proposed. In [40], the
content of phishing Web pages is mined. A semantic concept
is extracted from every sentence composing the Web page.
These concepts are then compared with templates learned from
known phishing pages through a machine learning algorithm
to determine if the Web page is a phishing one. Approximately
the same technique is used in [41] to block phishing emails
based on semantic content analysis. The common aspect
with our approach is the leveraging of semantic information
for phishing detection, a concept close to word relatedness.
However previous research targets phishing emails and Web

13

pages content. Semantic relatedness analysis is performed on
such content with existing similarity metrics, whereas in our
work it is applied to URLs with new similarity metrics based
on search engine query data. Our work is complementary to
[17], where phishing domain names likely to be registered
by phishers are generated in a predictive process based on
a natural language model to build predictive blacklists. It
is also different from [42], where we determine URL set
maliciousness based on semantic analysis for forensic purpose.
Here we focus on real-time identification of full phishing
URLs based on machine learning and new features, regardless
they are based on malicious or legitimate domains.

Unlike detection oriented phishing approaches, PhishLive
[43] searches for malicious URL presence and frequency
within the traffic of an edge network in order to be able to scale
detection tools such as middleboxes. Therefore, the authors
particularly focused on timing characteristics and location of
malicious URL access. In addition, they are able to track the
HTTP redirection chain to such URLs.

To prevent phishing, a two-factor authentication is promoted
in [44] but with a second factor which is completely transpar-
ent to the user (stored in his own browser) through the use of
javascript API. Alternatively, fighting against phishing attacks
can be achieved by targeting the main vectors i.e. spamming
emails. A comprehensive overview on different data mining
approaches for spammin email detection is given in [45].

Search engine query data has already been used for the
analysis of search interests over time [46]. By monitoring the
variation of interest for terms related to influenza, Ginsberg et
al. [47] estimate the magnitude of flu infection for a given
geographic region. In [48], Web search logs are used to
improve search engine results. However, to the best of our
knowledge we are the first to use this data for the purpose of
word-relatedness evaluation.

IX. CONCLUSION AND FUTURE WORK

This paper introduces PhishStorm, an efficient phishing
URL detection system relying on URL lexical analysis. The
approach is based on the intra-URL relatedness. This related-
ness reflects the relationship among the words blended into
a URL and particularly into the part of the URL that can
be freely defined and the registered domain. We leverage
search engine query data in order to extract 12 features from a
URL characterizing its intra relatedness and its popularity. The
proposed features were used in supervised classification on a
ground truth dataset of 96,018 phishing and legitimate URLs.
This experiment yielded a classification accuracy of 94.91%
with a low false positive rate of 1.44%. This experiment was
extended to introduce a URL rating system, PhishStorm, to
dynamically compute a risk score for URLs. The risk score
on the testing dataset is able to correctly identify 99.22% of
the legitimate and phishing URLs for 83.97% of the dataset.
We have extended an initial approach [11] towards real-time
analytics by leveraging recent Big Data streaming architectures
and patterns based on STORM and Bloom filters.

Future work will consist in releasing components of the
tools as an add-on for a Web browser such as Mozilla

Firefox. In addition, the technique proposed in [17], which is
complementary to that introduced in this paper, will be merged
to create a phishing detection system with a larger scope of
action. We also plan to release the analytics related part in a
larger Big Data security analytics stack, which is under current
development in our lab.

ACKNOWLEDGEMENTS

This work is supported by the Fonds National de la
Recherche, Luxembourg (Project ID: 3967419).

REFERENCES

[1] “Gartner survey shows phishing attacks escalated in 2007,” Gartner
Research, Tech. Rep., 2007.

[2] “2010 Identity Fraud Survey Report,” Javelin Strategy & Research, Tech.
Rep., 2010.

[3] P. J. Nero, B. Wardman, H. Copes, and G. Warner, “Phishing: Crime
that pays,” in eCrime Researchers Summit (eCrime), 2011. IEEE, 2011,
pp. 1–10.

[4] “Global Phishing Survey: Trends and Domain Name Use,” APWG, Tech.
Rep. 1H2014, 2014.

[5] “SSAC Advisory on Fast Flux Hosting and DNS,” ICANN Security and
Stability Advisory Committee, Tech. Rep. SAC 025, 2008.

[6] “Phishing Activity Trends Report,” APWG, Tech. Rep. 2nd Quarter
2014, 2014.

[7] K. W. Church and P. Hanks, “Word association norms, mutual informa-
tion, and lexicography,” Computational linguistics, vol. 16, no. 1, pp.
22–29, 1990.

[8] R. L. Cilibrasi and P. M. Vitanyi, “The Google similarity distance,”
Transactions onKnowledge and Data Engineering, vol. 19, no. 3, pp.
370–383, 2007.

[9] P. Kolb, “Disco: A multilingual database of distributionally similar
words,” in Proceedings of KONVENS-2008, 2008.

[10] G. A. Miller et al., “Wordnet: a lexical database for english,” Commu-
nications of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[11] S. Marchal, J. François, R. State, and T. Engel, “PhishScore: hacking
phishers’ minds,” in Proceedings of the 10th International Conference
on Network and Service Management 2014 (CNSM 2014), 2014.

[12] P. Mockapetris, “RFC 1034: Domain Names - Concepts and Facilities,”
1987.

[13] ——, “RFC 1035: Domain Names - Implementation and Specification,”
1987.

[14] P. Mockapetris and K. Dunlap, “Development of the domain name
system,” in Proceedings of the 1988 ACM SIGCOMM. ACM, 1988.

[15] S. Garera, N. Provos, M. Chew, and A. D. Rubin, “A framework for
detection and measurement of phishing attacks,” in Proceedings of the
2007 ACM workshop on recurring malcode. ACM, 2007, pp. 1–8.

[16] T. Segaran and J. Hammerbacher, Beautiful data: the stories behind
elegant data solutions. O’Reilly Media, Incorporated, 2009.

[17] S. Marchal, J. François, R. State, and T. Engel, “Proactive discovery of
phishing related domain names,” in Research in Attacks, Intrusions, and
Defenses. Springer, 2012, pp. 190–209.

[18] T. K. Landauer and S. T. Dumais, “A solution to Plato’s problem: The
latent semantic analysis theory of acquisition, induction, and represen-
tation of knowledge,” Psychological Review; Psychological Review, vol.
104, no. 2, pp. 211–240, 1997.

[19] P. Turney, “Mining the Web for Synonyms: PMI-IR versus LSA on
TOEFL,” in Proceedings of the 12th European Conference on Machine
Learning. Springer, 2001.

[20] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[21] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski, “Improving
distributed join efficiency with extended bloom filter operations.” in Pro-
ceedings of the 21st International Conference on Advanced Information
Networking and Applications, 2007, pp. 187–194.

[22] M. Khonji, Y. Iraqi, and A. Jones, “Lexical url analysis for discrimi-
nating phishing and legitimate e-mail messages,” in 2011 International
Conference for Internet Technology and Secured Transactions (ICITST),
2011, pp. 422–427.

[23] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Identifying suspicious
URLs: an application of large-scale online learning,” in Proceedings of
the 26th Annual International Conference on Machine Learning. ACM,
2009, pp. 681–688.

14

[24] A. Le, A. Markopoulou, and M. Faloutsos, “Phishdef: URL names say
it all,” in Proceedings of INFOCOM. IEEE, 2011, pp. 191–195.

[25] P. Prakash, M. Kumar, R. Kompella, and M. Gupta, “Phishnet: predictive
blacklisting to detect phishing attacks,” in Proceedings of INFOCOM.
IEEE, 2010, pp. 1–5.

[26] G. Forman and M. Scholz, “Apples-to-apples in cross-validation studies:
Pitfalls in classifier performance measurement,” SIGKDD Exploration
Newsletter, vol. 12, no. 1, pp. 49–57, 2010.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[28] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[29] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting
algorithmically generated domain-flux attacks with dns traffic analysis,”
IEEE/ACM Transactions on Networking, vol. 20, no. 5, pp. 1663–1677,
2012.

[30] T.-C. Chen, S. Dick, and J. Miller, “Detecting visually similar web
pages: Application to phishing detection,” ACM Transactions on Internet
Technology, vol. 10, no. 2, pp. 1–38, 2010.

[31] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based phishing
detection,” in Proceedings of the 4th international conference on security
and privacy in communication netowrks. ACM, 2008, pp. 1–6.

[32] G. Xiang and J. I. Hong, “A hybrid phish detection approach by
identity discovery and keywords retrieval,” in Proceedings of the 18th
international conference on World Wide Web. ACM, 2009, pp. 571–580.

[33] Y. Zhang, J. I. Hong, and L. F. Cranor, “Cantina: a content-based
approach to detecting phishing web sites,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 639–648.

[34] T.-C. Chen, T. Stepan, S. Dick, and J. Miller, “An anti-phishing system
employing diffused information,” ACM Transactions on Information and
System Security, vol. 16, no. 4, pp. 1–31, 2014.

[35] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for DNS,” in 19th Usenix
Security Symposium, 2010.

[36] L. Bilge, S. Sen, D. Balzarotti, E. Kirda, and C. Kruegel, “Exposure:
A passive dns analysis service to detect and report malicious domains,”
vol. 16, no. 4, 2014, pp. 1–28.

[37] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious urls,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2009, pp. 1245–1254.

[38] J. Zhang, P. Porras, and J. Ullrich, “Highly predictive blacklisting,” in
Proceedings of the 17th conference on Security symposium. USENIX
Association, 2008.

[39] P. Barraclough, G. Sexton, M. Hossain, and N. Aslam, “Intelligent
phishing detection parameter framework for e-banking transactions
based on neuro-fuzzy,” in Science and Information Conference (SAI),
2014, 2014, pp. 545–555.

[40] J. Zhang, Q. Li, Q. Wang, T. Geng, X. Ouyang, and Y. Xin, “Parsing
and detecting phishing pages based on semantic understanding of text,”
Journal of Information & Computational Science, no. 9, pp. 1521–1534,
2012.

[41] V. Ramanathan and H. Wechsler, “phishGILLNET phishing detection
methodology using probabilistic latent semantic analysis, AdaBoost, and
co-training,” EURASIP Journal on Multimedia and Information Security,
vol. 2012, no. 1, pp. 1–22, 2012.

[42] S. Marchal, J. François, R. State, and T. Engel, “Semantic based DNS
forensics,” in Proceedings of the 2012 IEEE International Workshop on
Information Forensics and Security (WIFS). IEEE, 2012, pp. 91–96.

[43] L. Cao, T. Probst, and R. Kompella, “Phishlive: A view of phishing
and malware attacks from an edge router,” in Proceedings of the 14th
International Conference on Passive and Active Measurement - PAM.
Springer-Verlag, 2013, pp. 239–249.

[44] B. Braun, M. Johns, J. Koestler, and J. Posegga, “Phishsafe: Leveraging
modern javascript api’s for transparent and robust protection,” in 4th
ACM Conference on Data and Application Security and Privacy -
CODASPY. ACM, 2014, pp. 61–72.

[45] N. Spirin and J. Han, “Survey on web spam detection: Principles and
algorithms,” SIGKDD Exploration Newsletters, vol. 13, no. 2, pp. 50–64,
2012.

[46] J. Rech, “Discovering trends in software engineering with Google
Trend,” ACM SIGSOFT Software Engineering Notes, vol. 32, no. 2,
pp. 1–2, 2007.

[47] J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski,
and L. Brilliant, “Detecting influenza epidemics using search engine
query data,” Nature, vol. 457, no. 7232, pp. 1012–1014, 2008.

[48] H. Liu, J. He, Y. Gu, H. Xiong, and X. Du, “Detecting and tracking top-
ics and events from web search logs,” ACM Transactions on Information
System, vol. 30, no. 4, pp. 21:1–21:29, Nov. 2012.

Samuel Marchal received his engineering degree
and M.Sc. degree in computer science from TELE-
COM Nancy, a French leading school in computer
science, in 2011. He is currently pursuing a joint
Ph.D. degree at the Interdisciplinary Centre for Se-
curity, Reliability and Trust (University of Luxem-
bourg) and the University of Lorraine.

His interests lie in web security, network security
and intrusion detection techniques.

Jérôme François is researcher at INRIA (Institut
National de Recherche en Informatique et en Au-
tomatique) in France in the Madynes team. He’s also
fellow at SnT, University of Luxembourg.

He was previously a Ph.D. research engineer at
INRIA Nancy - Grand Est. He received his Ph.D.
on robustness and identification of communicating
applications from the University Henri Poincaré in
Nancy, France, in December 2009.

His main research activities are focused on net-
work management, particularly network security and

configuration. He therefore contributes to anomaly detection, DNS security,
network-based fingerprinting and botnet tracking.

Radu State is a senior researcher with the Interdisci-
plinary Center on Security and Trust in Luxembourg.
He was a former professor at the University of
Lorraine and a senior researcher at INRIA Nancy,
Grand Est. Having authored more then 100 papers,
his research interests cover network and system
security and management. He holds a Ph.D and a
HDR from University of Lorraine and a M.Sc from
the Johns Hopkins University.

Thomas Engel is Professor for Computer Networks
and Telecommunications and Vice-Director of the
Interdisciplinary Center for Security, Reliability and
Trust (SnT) at the University of Luxembourg. From
1987 to 1995 he studied Physics and Computer
Science at the University of Saarbruecken, Germany,
where he graduated in 1992 and received the title Dr.
rer. nat. in 1996. Prof. Dr. Thomas Engel is member
of the Information and Communication Security
Panel ICS of NATO and Civil High-Level Expert for
Electronic Communications (representing Europe) of

NATO CEP/CCPC. He is speaker of the regional group Trier/Luxemburg of
the German Society for Computer Science (GI).

