Conference of the German Society for Genetics

Integrated bioinformatics analysis of functional omics
and GWAS data for neurodegenerative disorders

Speaker: Enrico Glaab, Luxembourg Centre for Systems Biomedicine
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Outline:

* Motivation: Complex diseases as pathway or network perturbations

* Finding disease-associated pathways using omics network analysis
(software EnrichNet, joint work with Alfonso Valencia CNIO group)

 Using pathway information to improve omics sample classification

» Application to public omics & GWAS data from Parkinson‘s disease studies
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Motivation: Complex diseases as network perturbations

Alterations in different biomolecules of a cellular pathway or
network can cause similar disruptions downstream

Example: Colorectal carcinoma

» Mutation deactivating APC has the same
overall effect as mutations preventing degra-
dation of B-catenin (Segditsas et al., 2006)

- GOAL: Analyze alterations at the
level of molecular networks and
pathways to complement single
gene/protein level analyses
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Network-based approach to Parkinson’s disease

Parkinson‘s disease (PD) as a network perturbation

» Familial PD: Multiple disease-causing mutations across different genes
* Idiopathic PD: Complex interplay between genetic and environmental risk factors

- interrelate affected genes in molecular networks
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EnrichNet: Network scoring of disease-related pathways

EnrichNet pathway association scoring idea:

- Quantify distances in a molecular network and multiplicity and density of interactions between
the genes/proteins of interest (considering all possible interconnecting random walks)

lllustration:
Case 1: e target set nodes
many, denlse (e.g. differentially
and short inter- expressed genes in
connecting PD vs. controls)
routes e pathway nodes
e other nodes

Case 2:

few, sparse

and long inter-

connecting

routes
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EnrichNet: Network node relevance scoring

Google “Personalized Page Rank*:

Compute steady-state node visiting
probabilities for random walks:

pt+1 — (1_r) A pt + pO

- A:= network adjacency matrix
* r:= restart probability (here: r = 0.9)
* p:= probability walker is at node i at time t
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Transfer approach to

molecular networks

® target set (o] target/pathway overlap

O pathway 1 @ pathway 2

- Output: Relevance scores for
each pathway

- Use distance-weighted aggrega-
tion (Xd-score, Olmea et al. 2009)




EnrichNet: Comparative analysis

Comparative analysis on benchmark microarray data:

» compare EnrichNet against classical over-representation analysis using benchmark datasets from
the Broad Institute of MIT and Harvard (5 gene expression datasets and 2 pathway databases)

- EnrichNet provides a consistently higher agreement with benchmark rankings
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Fisher exact test  EnrichNet
Gene set  Similarity score Similarity score
Dataset collection (p-value) (p-value)
p53 Cl 13.5 (p=10.225) 36.9 (p < 0.001)
C2 456 (p < 0.001)  65.2(p < 0.001)
Lung (Boston) Cl 2.6 (p=0.936) 40.0 (p < 0.001)
C2 15.0 (p=0.302) 43.7 (p < 0.001)
Lung (Michigan) Cl 21.2 (p=0.028) 40.8 (p < 0.001)
C2 9.1 (p=0.634) 40.5 (p=0.001)
Colon Cl 6.85 (p=0.673) 70.1 (p < 0.001)
Cc2 22.8 (p=0.073) 94.9 (p < 0.001)
Lymphoma Cl 8.0 (p=10.569) 65.2 (p < 0.001)
C2 0.94 (p =0.983) 69.8 (p < 0.001)
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EnrichNet: Parkinson’s disease datasets and workflow

Datasets:

» 8 public post mortem brain (substantia nigra) gene expression datasets from PD case-
control studies

« GWAS data from 5 public PD case-control studies

« a genome-scale human protein interaction network (STRING high-confidence network)

« cellular pathway definitions from 5 annotation databases

Omics/GWAS Interactome Pathways
significance Min. size:
filter: 10 genes
(FDR < 0.01) ”# 2o

‘ EnrichNet software

Pathway rankings & network visualizations
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EnrichNet: Results on Parkinson’s disease data

Top-ranked cellular processes for transcriptomics data (Gene Ontology):

dopamine metabolic process (GO:0042417) 1.851 0.034 14 3
neuron maturation (GO:0042551) 1.722 0.353 10 2
response to herbicide (GO:0009635) 1.722 0.353 10 2
response to amphetamine (GO:0001975) 1.163 0.024 29 4
neurotransmitter transport (GO:0006836) 0.951 0.034 35 4
nervous system development (GO:0007399) 0.203 0.024 320 10

Top-ranked cellular processes for GWAS data (Gene Ontology):

synaptic vesicle endocytosis (GO:0048488) 1.457 0.537 12 2
regulation of autophagy (GO:0010506) 1.157 0.537 15 2
lipid biosynthetic process (GO:0008610) 1.082 0.537 16 2
receptor clustering (GO:0043113) 1.082 0.537 16 2
long-term synaptic potentiation (GO:0060291) 1.082 0.537 16 2
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EnrichNet: Integrate transcriptomics and GWAS data

Combine rankings for transcriptomics and GWAS data (using the sum of standardized scores)
- Joint top-ranked cellular processes (Gene Ontology):

synaptic vesicle endocytosis (GO:0048488) 0.672 1 1.457 2 12
response to herbicide (GO:0009635) 1.722 2 0.857 1 10
dopamine metabolic process (GO:0042417) 1.851 3 0.599 1 14
long-term synaptic potentiation (GO:0060291) 0.484 1 1.082 2 16
axon extension (GO:0048675) 0.822 1 0.857 1 10
synaptic transmission, dopaminergic (GO:0001963) 1.307 2 0.649 1 13
regulation of exocytosis (GO:0017157) 1.047 2 0.519 1 16
cellular response to stress (GO:0033554) 0.614 1 0.649 1 13
positive regulation of endocytosis (GO:0045807) 0.565 1 0.599 1 14
positive regulation of release of sequestered calcium ion

into cytosol (GO:0051281) 0.565 1 0.599 1 14
positive regulation of protein serine/threonine kinase activity (GO:0071902) 0.565 1 0.599 1 14
regulation of neurotransmitter secretion (GO:0046928) 0.484 1 0.519 1 16
positive regulation of synaptic transmission (GO:0050806) 0.484 1 0.519 1 16
branched chain family amino acid catabolic process (GO:0009083) 0.422 1 0.457 1 18
cellular response to oxidative stress (GO:0034599) 0.422 1 0.457 1 18
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EnrichNet: Network visualization for top-ranked GO term

Largest connected network component for “Synaptic vesicle endocytosis” GO process

. Transcriptome-derived
@ Gwas-derived
O GO process member

previous qPCR
validation reported

Mutation associated with
early-onset parkinsonism
(Quadri et al., 2013; Krebs et al., 2013)
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EnrichNet: Network visualization example

Largest connected network component for “EPHA2 forward signaling” pathway (PID)

\ . Transcriptome-derived
@ Gwas-derived
O GO process member

previous qPCR
validation reported

Injection of
clustered ephrins
into rat brains with
6-OHDA lesions
reported to have

. _ _ protective effects
involved in neurite outgrowth, (Jing et al., 2012)

strongly under-expressedinPD = ——7————
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Using pathway information for sample classification

Question: Disease-associated expression alterations are often localized in
pathways / network clusters — can we use this information to build
more robust classification models for biomarker development?

Idea: Collect a dictionary of pathway-level predictive features (“fingerprints®) to build
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machine learning classifiers for omics data (e.g. using mean or variance of
expression in pathway, PCA / MDS components of pathway expression)
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Example of localized
transcriptome changes in PD
(data by Zhang et al., 2005):

@ Over-expressed in PD

@ Under-expressed in PD




Pathway-level sample classification: Cross-validation

Sample classification results on PD brain transcriptomic data

- map dataset by Moran et al. (2006) onto Gene Ontology (GO) processes
- use empirical Bayes moderated T-test to select attributes (“pathway fingerprints®)
and a linear Support Vector Machine for classification (10-fold cross-validation)

Model limitations
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Gene-level model 89.2+ 142 89.2+ 142 92.5*12.1 92,5+ 121
GO - Mean 84.2*13.9 90+ 12.9 925121 89.2+14.2
GO - Median 84.2+13.9 91.7+13.6 95+10.5 91.7%+13.6
GO - Stddev. 76.7 £ 18.8 81.7%17.5 79.2 £ 20.1 86.7 £ 14.3
GO - Min. 717219 68.3 £ 25.1 79.2 *23.3 71.7%249
GO - Max. 81.7+17.5 84.2*13.9 90+ 12.9 84.2+18.2
GO - PCA 89.2+14.2 95 +10.5 925121 95 +10.5

GO - MDS 91.7 £ 13.6 86.7 £ 18.5 84.2+18.2 87.5%17.7
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: 1) post-mortem samples; 2) tissue-specific (brain, substantia nigra)
3) no disease controls (PD vs. unaffected)



Visualizing the pathways with most predictive changes

Example: Notch signaling pathway (Wikipathways)

- identify pathways which are both enriched in gene activity alterations and contain
predictive information for sample classification
—> select representative genes for gPCR validation (iterative refinement of prediction

models)
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Summary
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We present a software, EnrichNet, for the integrated pathway and network

analysis of disease-related omics data

On public transcriptomics and GWAS datasets for Parkinson’‘s disease, the
approach identifies new statistically significant pathway associations (not

detected with classical overlap-based approach)

The pathway information can be used to improve machine learning models for

omics sample classification

Software available at: www.enrichnet.org
pathvar.embl.de
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