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Problem statement Governing equations

3D body geomery
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Problem statement

Governing equations

Equilibrium equations and boundary conditions:
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Kinematic equations:

Constitutive equations:
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Problem statement Weak Form

Weak form of equilibrium equations

Find u € U such that Yv € V°

/a(u):e(v) dQ:/b‘de%—/ t-vdl+ | t.-vdlt
Q Q re re

where :

U= {u|u € (H1 (Q))3,u = uon Fu}

and

V= {v]ve (Hl (Q))s,v:O on Fu}
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Global enrichment XFEM Motivation

Motivation

» XFEM for industrially relevant (3D) crack problems

» Requires robust methods for stress intensity evaluation.

» Requires low solution times and ease of use.

» but standard XFEM leads to
> lll-conditioning of the stiffness matrix for “large” enrichment domains.
» Lack of smoothness and accuracy of the stress intensity factor field
along the crack front.
» Blending issues close at the boundary of the enriched region.
> Problem size for propagating cracks (“old” front-dofs must be kept for
stability of time integration schemes).
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Global enrichment XFEM Motivation

Global enrichment XFEM

There exists different approaches to alleviate the above difficulties:

» Preconditioning (e.g. Moés; Menk and Bordas)
» Ghost penalty (Burman)

» Stable XFEM/GFEM (Banerjee, Duarte, Babuska, Paladim, Bordas) -
behaviour for realistic 3D crack not clear.

» Corrected XFEM/GFEM (Fries, Loehnert)

» SlIF-oriented (goal-oriented) error estimation methods for SIFs
(Rédenas, Estrada, Ladevéze, Chamoin, Bordas)

» Restrict the variability of the enrichment within the enriched domain:
doc-gathering, cut-off XFEM (Laborde, Renard, Chahine, Saliin and
the French team ;-)
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Global enrichment XFEM Motivation

Global enrichment XFEM

An XFEM variant is introduced which:

» Extends dof gathering to 3D through global enrichment.

» Employs point-wise matching of displacements.

» Employs integral matching of displacements.

» Enables the application of geometrical enrichment to 3D.
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Global enrichment XFEM Related works

Related works

Similar concepts to the ones introduced herein can be found:

» In the work of Laborde et al.

— dof gathering
— point-wise matching

(Laborde, Pommier, Renard, & Salaiin, 2005)

» In the work of Chahine et al.
— integral matching

(Chahine, Laborde, & Renard, 2011)
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Global enrichment XFEM Related works

Related works

» In the work of Langlois et al.
— discretization along the crack front

(Langlois, Gravouil, Baieto, & Réthoré, 2014)

» In the s-finite element method
— superimposed mesh

(Fish, 1992)
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Global enrichment XFEM Crack representation

Crack representation

Level set functions:

> ¢ (x) is the signed distance from the crack surface.

» 1) (x) is a signed distance function such that:

— V¢ -Vy=0
— ¢ (x) =0 and ¢ (x) = 0 defines the crack front

Polar coordinates:

r=1/¢?+ 12, f = arctan <Z)
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Global enrichment XFEM
Crack representation

Crack representation

v =0
00 =0

crack surface

crack extension
K. Agathos et al.
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Global enrichment XFEM Tip enrichment

Tip enrichment

Enriched part of the approximation for tip elements:

uee (x) = > NE (x) > Fj(x) ek
K

J

NZ are the global shape functions to be defined.

Tip enrichment functions:

0 0 0 0
F;i (x) = Fj (r,0) = |V/rsin E,\ﬁcos §,ﬁsin Esinﬁ,ﬁcos§sin9
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Global enrichment XFEM Tip enrichment

Geometrical enrichment

v

Enrichment radius r. is defined.

v

Nodal values r; of variable r are computed.

v

The condition r; < re is tested.

v

If true for all nodes of an element, the element is tip enriched.
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Global enrichment XFEM Jump enrichment

Jump enrichment
Jump enrichment function definition:

_ 1 for¢p>0
Hi®) =1 _ 1 forp<0

Shifted jump enrichment functions are used throughout this work.
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Global enrichment XFEM Jump enrichment

Enrichment strategy

Motivation for an alternative enrichment strategy:

» Tip enrichment functions are derived from the first term of the
Williams expansion.

» Displacements consist of higher order terms as well.

» Those terms are represented by:

— the FE part

— spatial variation of the tip enrichment functions

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Jump enrichment

Enrichment strategy

> In the proposed method:

— no spatial variation is allowed

— higher order terms can only be approximated by the FE part

» Higher order displacement jumps can not be represented in tip
elements.
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Global enrichment XFEM Jump enrichment

Enrichment strategy

Proposed enrichment strategy:

crack surface

crack front

s

\ @ Tip enriched node

¢ Tip and jump enriched node

Te B Jump enriched node

[] Tip enriched elements

[ ] Jump enriched element

Both tip and jump enrichment is used for tip elements that contain the
crack.
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

| Xk Ni 32, Fy(x2) ek

Displacement approximations of regular and tip elements:

u (x) = ZNI(X)U[+ZNJ(X)aJ
/ J

ue(x) = D> N(x)u+ > NE (X)) F(x) ek
1 K

J
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

Displacements are matched by imposing the condition:

u, (x7) = ue (x/)
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

| Xk Ni 32, Fy (x2) ek

Parameters a; are obtained:

ar =Y NE(X)D F(X)eks
K

Jj
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

| Xk Ni 32, Fy (x2) ek

Parameters a; can be expressed as:

ar=) > Ti'ck
K
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Global enrichment XFEM Point-wise matching

Tip and Jump Elements

Displacement approximations of tip and jump elements:

uj(x) = ZNI(X)UI+ZNJ( aJ+ZNL ) (H (x) —

- ZNM )(H x) Hu)bl,

ut(x) = ZN’ U/+ZNJ HJ)bJ+
+ Z Ng Z ) CKj
J
K. Agathos et al. GE-XFEM
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Global enrichment XFEM Point-wise matching
Tip and Jump Elements

Tip enriched element Jump enriched element

K N§ 3, Fy(x1) ek

Point-wise matching condition:

uj (xn) = ue (xp)
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Global enrichment XFEM Point-wise matching

Tip and Jump Elements

The condition is imposed:

» at nodes — parameters a; are obtained

» at additional points — parameters b{ are obtained:

(H(X;) = H)bj =Y NE(X) Y Fi(Xn)eks — Y Ni(X))a
K 7 i

Parameters bf can be reformulated as:

b = X" Tilen
K Jj
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Global enrichment XFEM Point-wise matching

Selection of additional points

jump node point-wise matching tip node

points
4 5 / 6
Im o Fa
[ N4 3
| _crack tip
f & ©
1 2 3
jump element tip element

The condition is imposed at the points where the crack intersects element
edges or faces.
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Global enrichment XFEM Point-wise matching

Selection of additional points

3D case:
a) Point-wise matching at an edge b) Point-wise matching at a face
- '
) Point-wise matching at several faces d) Point-wise matching at several faces
K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM

Selection of additional points

Special case:

jump node  point-wise matching

points tip node

+/6 &7 4

1==) P F

| crack tip

A

H B
y ! °
tip element

] jul
o o

1 2

m
)

jump element

Point-wise matching

> Edge 3-4 does not belong to a

tip element.

» Evaluating the tip enrichment
functions at 3-4 leads to errors.

» The values obtained from edge
4-7 will be used for 3-4.

K. Agathos et al. GE-XFEM
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Global enrichment XFEM Point-wise matching

Selection of additional points

In order to implement the above procedure:

» Point-wise matching elements are looped upon prior to the assembly.

» Parameters b! are computed and stored.

Parameters b} can be computed for all nodes.

The whole procedure is computationally inexpensive.
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Global enrichment XFEM Integral matching

Integral matching

Motivation:
» For P1 elements and topological enrichment a loss of accuracy occurs.
» The effect is more pronounced for mode | loading.

» This is attributed to the displacement jump between regular and tip
elements.

» A possible solution is the addition of one layer of tip elements.
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Global enrichment XFEM Integral matching

Hierarchical functions

The addition of hierarchical blending functions is proposed.

Those functions:

» Eliminate the displacement jump in a weak sense.

» For linear quadrilateral elements assume the form:

Nh (61’52) — (1 - |£1|;(1 +£2)

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Integral matching

Integral matching

Displacements along the edges of regular and jump elements:

u (61,8) = D N (& &)u+ > Ny(é,&)ay+ N (&, &)a"
I J

ue (61,8) = D N (&,&)u+ > NE (x ZF X) Ckj
I K

Integral matching condition:

/S(u,—ut)dS:O

Coefficients a" are obtained as:
=2 Tk
K J
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Global enrichment XFEM Integral matching

Integral matching-Mode |

Mode I, hierarchical functions are used to eliminate displacement jumps in
a weak sense:

displacement jump

4 /
3 >k ng( (%) Z7FI (x) cxj N

+—tip element

2

/Fular element
1
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Global enrichment XFEM Integral matching

Integral matching-Mode I

Mode Il, displacement jumps almost vanish in a weak sense:

displacement jump

Yk Nk (x) 2, Fj (%) ek

tip element

regular element
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Global enrichment XFEM Integral matching

Integral matching

Imposition of integral matching condition:

tip element tip node

integral 2 r——-
matching 10+ *6
| & %
11+ *5

$t

o =
2 3

crack surface
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Global enrichment XFEM Displacement approximation

Displacement approximation

Displacement approximation for the whole domain:

u(x) ZN}( UI+ZNJ HJ)bJ+

IeN JeNT
S MRS (e 0+ ()
KeNs
uP™ (X) Z N/ ZZ TIKJ CKJ
leNt
+ YN x)(H(x)—HJ ZZ T Sk
JeN® j
u'™(x) SN (X)ZZ Thick
IeNh
Nodal sets:

N set of all nodes in the FE mesh.

N7 set of jump enriched nodes.
N set of superimposed nodes which will be described next.
Nt set of transition nodes between tip and regular elements.
N2 set of transition nodes between tip and jump elements.

N set of edges where the blending functions are added.

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Front elements

A superimposed mesh is used to provide a basis for weighting tip
enrichment functions.

Desired properties:

» Satisfaction of the partition of unity property.

» Spatial variation only along the direction of the crack front.

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Front elements

Special elements are employed which are both:

» 1D — shape functions vary only along one dimension

» 3D — they are defined in a three-dimensional domain

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Front elements

tip enriched elements  crack front

N T | -FE mesh

, > A set of nodes along the crack
Iy front is defined.

» Such points are also required for
SIF evaluation.

» A good starting point for front
element thickness is h.

"

front element boundaries front element node

K. Agathos et al. GE-XFEM 2015 39 /82



Global enrichment XFEM Definition of the Front Elements
Front elements
Volume corresponding to two consecutive front elements.

front element
boundary

crack front

Different element colors correspond to different front elements.
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Global enrichment XFEM Definition of the Front Elements

Open crack fronts

Front element definition:

v

Unit vectors e; are defined parallel to the element directions:
e — Xit+1 —Xi
' Ixip—xil”

eitei_1
lei+ei—1]

v

For every nodal point i a unit vector n; is defined: n; =

v

A plane is defined that passes through the node: n; - (xg — x;) = 0.

v

The element volume is defined by the planes corresponding to its
nodes.
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Global enrichment XFEM Definition of the Front Elements

Open crack fronts

Vectors associated with front elements.

front element

K. Agathos et al. GE-XFEM
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

a) Application of the method used for open crack fronts to closed crack
fronts — front elements overlap.

b) Method used for closed crack fronts — overlaps are avoided.
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

Element definition using an additional point (x¢):

» Vectors e; are defined for every element.

n
DX

i=1

» Point x. is defined as: xc =

» Vectors ng joining points i to the internal point x. are defined:
Ngi = X — Xj.

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

v

Vectors n,; normal to vectors €; and ng are defined: n,; = €; X ng;.

Vectors n; are defined: n; = |::'§72°'|
] Cl

v

v

Planes normal to the vectors n; are defined: n; - (xg — x;) = 0.

v

Element volumes are defined as in the open crack front case.
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

Vectors used in the definition of front elements.
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Global enrichment XFEM Definition of the Front Elements
Closed crack fronts

Discretization of a non-planar closed crack front using an additional point
Xc.
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Global enrichment XFEM Definition of the Front Elements

Front element parameter

A function similar to the level sets is defined which varies along the crack
front.
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Global enrichment XFEM Definition of the Front Elements

Front element parameter

Evaluation of the parameter for a point xq:

Plane equations corresponding to the nodes of each element are evaluated:

filxo) = ni-(xo —xi)
fir1(x0) = Miy1- (X0 — Xit1)

K. Agathos et al. GE-XFEM 2015 49 / 82



Global enrichment XFEM Definition of the Front Elements

Front element parameter

Once f; and f;;1 are obtained:

» If f; <0 or fiy1 > 0 the point lies outside the element

» If f; =0 or fi11 = 0 the point lies on the plane corresponding to node
jori+l:n=jiorn=i+1

» If f; > 0 and fi;1 < 0 the point lies inside the element

K. Agathos et al. GE-XFEM 2015 50 / 82



Global enrichment XFEM Definition of the Front Elements

Front element parameter
For points lying inside front elements:

> Integer Part: n; =i

» Fractional part:

X = Xq + te; teR

i — S i (x0 = xi)
1 T\\&_\ﬁ\\!’ YT e
| X0 e S oy
| ;X2 _ Niy1 - (X0 — Xig1)
| / th =
! Ni;1 - €
= X + t1€;
= Xg + £2€;

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Front element parameter

» Fractional part:

X1 = Xg + t1€j
X2 = X + t2€;

X10 = X0 — X1
X12 = X2 — X1

_ |x10]
;= 0l
|X12]

Finally:

n=mni+nf

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Front element shape functions

Linear 1D shape functions are used:

Ne() = |20 0

2 2

» £ is the local coordinate of the superimposed element.

» Those functions are used to weight tip enrichment functions.

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Front element shape functions

Definition of the front element parameter used for shape function
evaluation.

front element
boundary

front element
node

K. Agathos et al. GE-XFEM 2015
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Global enrichment XFEM Definition of the Front Elements

Front element shape functions

The evaluation of & is almost identical to the evaluation of 7y:

2 X12 * Xm0
é'_

2
|x12]
where

X12 = X2—X1

Xm0 = X0 — Xm

X1 + X2

Xm = 72

K. Agathos et al. GE-XFEM 2015
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Numerical examples 2D convergence study

2D convergence study

v

An L x L square domain with an edge crack of length a is considered.

v

Boundary conditions are provided by the Griffith problem.

v

Both topological and geometrical enrichment are used.

v

The alternative jump enrichment strategy is not used.
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Numerical examples

2D convergence study

2D convergence study
F’U

L

B node where boundary conditions are applied

n=11,21,41,61,81,101 .
K. Agathos et al.

» Dimensions of the problem: L =1 unit, a = 0.5 units.
» Mesh consists of n x n linear quadrilateral elements,

» Material parameters: E = 100 units and v = 0.0.

GE-XFEM

m]

=

)
2015
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Numerical examples 2D convergence study

2D convergence study

Acronyms used for the 2D convergence study

Acronym Description
FEM The FE part of the approximation
XFEM Standard XFEM (with shifted enrichment functions)
XFEMpm1 XFEM using dof gathering and point-wise matching
XFEMpm2| XFEMpm1 with the additional p.m. condition of subsection
GE-XFEM | XFEMpm2 with integral matching (Global Enrichment XFEM)
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Numerical examples 2D convergence study

L, and energy norms

Mode I, r =0.00 Mode 11, r =0.00

-+ XFEM, E

| |+ XFEM, L,

- XFEMpml, E

— XFEMpml, L

<« XFEMpm2, E
» XFEMpm2, L,

y

-+-GE-XFEM, E

-+-GE-XFEM, L

2

— = 4 "q pl
]Oll 21 41 61 81101 l011 21 41 61 81101
n n
Mode I, r =0.12 Mode I, r,=0.12

-+ XFEM, E
~+XFEM, L,
-» XFEMpml, E
-+ XFEMpml, L,
< XFEMpm2, E

« XFEMpm2, L,
,|-+-GE-XFEM, E
) W |+-GE-XFEM, L,
107 21 41 61 81101 11 21 41 61 81101
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Numerical examples

L, and energy norms

Convergence rates

2D convergence study

re = 0.00 re = 0.12

Mode | Mode Il Mode | Mode Il

XFEM E 0.491 0.493 1.030 0.982
XFEM L, 0.908 0.928 1.980 1.955
XFEMpm1 E 0.483 0.489 1.243 1.211
XFEMpm1 L, 1.044 0.984 2.355 1.773
XFEMpm?2 E 0.483 0.479 1.245 1.179
XFEMpm2 L, 1.022 1.414 2.311 2.151
GE-XFEM E 0.477 0.476 1.156 1.140
GE-XFEM L» 1.326 1.446 2.086 2.100

K. Agathos et al.

GE-XFEM
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Stress intensity factors
Mode I

Numerical examples

KI error (%)

Mode IT

2D convergence study

|| =-XFEM, r=0.00
~XFEM, r =0.12

7|-+-GE-XFEM, r=0.00
t|-+-GE-XFEM, r =0.12

121 41 6l 81101 121 41 61 81101
n n
Convergence rates for the SIFs
r =0.00 r=0.12
Mode | Mode Il Mode | Mode Il
XFEM 1.071 1.005 2.195 2.021
GE-XFEM 0.759 1.246 2.545 2.029
K. Agathos et al. GE-XFEM 2015
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Conditioning

Numerical examples 2D conve

rgence study

Condition numbers of the system matrices produced by XFEM and

GE-XFEM.

condition number

-+ FEM (slope=0.889)

= XFEM, rCZO.OO (slope=1.019)
- XFEM, r€=0.12 (slope=8.952)

|- GE-XFEM, r_=0.00 (slope=1.000)
~4-GE-XFEM, r =0.12 (slope=2.004)

41 61 81 101

Condition numbers of the FE part are also plotted.

K. Agathos et al.

GE-XFEM
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Numerical examples 3D convergence study

3D convergence study

A benchmark problem is proposed which:

» Includes the full solution for the whole crack.
> Involves variation of the SIFs along the crack front.

» Involves a curved crack front.

K. Agathos et al. GE-XFEM 2015
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Numerical examples 3D convergence study

3D convergence study

v

A penny crack in an infinite solid is considered.

v

Evaluation of L, and energy norms is possible.

» An L, x L, x L, parallelepiped domain with a penny crack of radius a
is used.

v

Analytical displacements are imposed as boundary conditions.

v

A uniform normal and shear load is applied at the crack faces.
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Numerical examples 3D convergence study

3D convergence study

_ ——

m node where boundary conditions are applied

Uniform normal and shear loads of magnitude 1 are applied at I'L.
Problem dimensions: L, = L, = 2L, = 0.4 units and a = 0.1 unit.
Material parameters: £ = 100 units and v = 0.3.

vV v vV

Mesh consists of n, x n, x n, hexahedral elements,
nge=n, =2n, =nand ne {21,41,61,81,101}.

K. Agathos et al. GE-XFEM 2015
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Numerical examples 3D convergence study

3D convergence study

Acronyms used for the 3D convergence study

Acronym Description
XFEM Standard XFEM (with shifted enrichment functions)
GE-XFEM The proposed method (Global Enrichment XFEM)
GE-XFEM1|The proposed method without the new enrichment strategy

K. Agathos et al. GE-XFEM 2015 66 / 82



Numerical examples 3D convergence study

L, and energy norms

Influence of the crack front mesh density in the energy (E) and Ly norms.

1071} T VY
. ' -+-GE-XFEM, E, r =0.00
S
= — =
5 10X -+-GE-XFEM, L, r 0.00
-»-GE—XFEM, E, r =0.02
= e —— ok ——— e — — c
" o+ GE-XFEM, L _, r =0.02
10—3 2 e
4 8 16 32 64 128
N

ng is the number of elements along the front.
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Numerical examples 3D convergence study

L, and energy norms

Influence of the enrichment radius (re) in the energy (E) and L, norms for
the 31 x 61 x 61 mesh.

1 07 e —_
\H—'z':;: > _—::

2 ~e-GE-XFEM, E
% 107 =T+ GEXFEM.L,
- e __4 V' GE-XFEML,E
L T L GEXFEMLLL,
10— 3 4
r/h

The proposed enrichment strategy improves the behavior of the solution.
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Numerical examples

L, and energy norms

1,=0.00

10" B
5} A
B+
1072 p_
*—_ 4
\\*\\
= <
10
21 41 61 81 101
n
r,=0.02

Sea

~

.
SR
&2

K. Agathos et al.

41 61 81 101
n

error

3D convergence study

error

~XFEM, L,

-»-GE-XFEM, E
-+-GE-XFEM, L2

y

= XFEM, E

41
n

61

81 101

-=XFEM, E
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Numerical examples 3D convergence study

L, and energy norms

Convergence rates

re = 0.00 re =2.2h re = 0.02 re = 0.04
XFEM E 0.492 0.686 0.911 1.015
XFEM L, 1.009 1.405 1.824 1.976
GE-XFEM1 E - - 1.016 0.706
GE-XFEM1 L, - - 1.481 0.289
GE-XFEM E 0.558 0.850 1.057 0.988
GE-XFEM L, 1.535 1.594 1.753 1.448
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Numerical examples

Stress intensity factors
Mode I, Il and Il stress intensity factors for the 21 x 41 x 41 mesh.

3D convergence study
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Numerical examples

Stress intensity factors
Mode I, Il and Il stress intensity factors for the 41 x 81 x 81 mesh.

r.=0.00

3D convergence

study
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Numerical examples 3D convergence study

Conditioning

» Conditioning of the proposed method is compared to XFEM.
» The number of iterations required by the solver is used as an estimate.

» A comparison of the time needed to solve the resulting systems of
equations is also provided.

v

A CG solver with a diagonal preconditioner is used.
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Numerical examples 3D convergence study

Conditioning

Influence of the crack front mesh density in the number of iterations for
the 31 x 61 x 61 mesh.

450

400p

3507

3007

iterations

[
250r

-e-GE-XFEM, re:0.00 (slope=0.021)
-o- GE-XFEM, re=0.02 (slope=0.119)

20

ng is the number of elements along the front.
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Numerical examples 3D convergence study

Conditioning

Number of iterations required for three different enrichment radii.

10% f = XFEM, 1 =0.00 (slope=0.045)
é’ - XFEM, re:0.02 (slope=2.206)
‘g 4 o -« XFEM, re:0.04 (slope=2.552)
2107} //4—/" | |-#- GE-XFEM, 1 =0.00 (slope=0.547)
,,,,,,, < //;——:::::,.. -y-GE-XFEM, 1 =0.02 (slope=0.894)
10;';:;===:::::’."::——""/ | ~«-GE-XFEM, 1 =0.04, (slope=1.248)
21 41 61 81 101
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Numerical examples

Conditioning

Performance of the PCG solver.

21x41x41 mesh

3D convergence study

41x81x81 mesh
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Numerical examples

Number of additional dofs

Total number of enriched dofs

3D convergence study

Mesh FE dofs |XFEM dofs| XFEM dofs|XFEM dofs|GE-XFEM
(re =0.00)[(re = 0.02)|(re = 0.04)| dofs
11 x 21 x 21 | 17,424 2,232 2,232 5,856 696
21 x 41 x 41 | 116,424 5,376 11,904 42,288 1,920
31 x 61 x 61 | 369,024 9,456 37,752 137,280 4,464
41 x 81 x 81 | 847,224 14,424 84,696 320,664 7,512
51 x 101 x 101|1,623,024| 20,376 162,528 620,184 11,544
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Conclusions

Conclusions

A method was introduced which:

\4

Employs point-wise and integral matching.

» Uses a novel enrichment strategy.

> Generalizes and extends the dof gathering approach to 3D.

v

Is applicable to general 3D problems.

K. Agathos et al. GE-XFEM 2015 78 / 82



Conclusions

Conclusions

A benchmark problem was proposed which:

» Involves a curved crack front.

» Enables the computation of Ly and energy norms for the 3D case.
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Conclusions

Conclusions

Advantages of the method:

\4

It improves accuracy almost in every case.

v

Enables the application of geometrical enrichment in 3d applications.

Reduces the number of additional dofs.

v

v

Reduces computational cost in every case.
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Conclusions

Conclusions

Possible disadvantages:

» When the enrichment radius exceeds a certain value, the L2 norm
increases.

» The method is not straightforward to implement in existing XFEM
codes.

» The additional point wise-matching constraints are complex to
implement for higher order elements.

K. Agathos et al. GE-XFEM 2015 81 /82



Bibliography

Chahine, E., Laborde, P., & Renard, Y. (2011). A non-conformal
eXtended Finite Element approach: Integral matching Xfem.
Applied Numerical Mathematics.

Fish, J. (1992). The s-version of the finite element method. Computers &
Structures.

Laborde, P., Pommier, J., Renard, Y., & Salaiin, M. (2005). High-order
extended finite element method for cracked domains. International
Journal for Numerical Methods in Engineering.

Langlois, C., Gravouil, A., Baieto, M., & Réthoré, J. (2014).
Three-dimensional simulation of crack with curved front with direct

estimation of stress intensity factors. International Journal for
Numerical Methods in Engineering.

K. Agathos et al. GE-XFEM 2015 82 /82



	Problem statement
	Governing equations
	Weak Form

	Global enrichment XFEM
	Motivation
	Related works
	Crack representation
	Tip enrichment
	Jump enrichment
	Point-wise matching
	Integral matching
	Displacement approximation
	Definition of the Front Elements

	Numerical examples
	2D convergence study
	3D convergence study

	Conclusions
	References

