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Problem statement Governing equations

3D body geomery
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Problem statement Governing equations

Governing equations
Equilibrium equations and boundary conditions:

∇ · σ + b = 0 in Ω

u = ū on Γu

σ · n = t̄ on Γt

σ · n = 0 on Γ0
c

σ · n = t̄c on Γt
c

Kinematic equations:

ε = ∇su

Constitutive equations:

σ = D : ε

K. Agathos et al. GE-XFEM 2015 4 / 82



Problem statement Weak Form

Weak form of equilibrium equations

Find u ∈ U such that ∀v ∈ V0∫
Ω

σ(u) : ε(v) dΩ =

∫
Ω

b · v dΩ +

∫
Γt

t̄ · v dΓ +

∫
Γt

c

t̄c · v dΓt
c

where :

U =

{
u|u ∈

(
H1 (Ω)

)3
,u = ū on Γu

}
and

V =

{
v |v ∈

(
H1 (Ω)

)3
, v = 0 on Γu

}
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Global enrichment XFEM Motivation

Motivation

I XFEM for industrially relevant (3D) crack problems

I Requires robust methods for stress intensity evaluation.

I Requires low solution times and ease of use.
I but standard XFEM leads to

I Ill-conditioning of the stiffness matrix for “large” enrichment domains.
I Lack of smoothness and accuracy of the stress intensity factor field

along the crack front.
I Blending issues close at the boundary of the enriched region.
I Problem size for propagating cracks (“old” front-dofs must be kept for

stability of time integration schemes).
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Global enrichment XFEM Motivation

Global enrichment XFEM
There exists different approaches to alleviate the above difficulties:

I Preconditioning (e.g. Moës; Menk and Bordas)

I Ghost penalty (Burman)

I Stable XFEM/GFEM (Banerjee, Duarte, Babuška, Paladim, Bordas) -
behaviour for realistic 3D crack not clear.

I Corrected XFEM/GFEM (Fries, Loehnert)

I SIF-oriented (goal-oriented) error estimation methods for SIFs
(Ródenas, Estrada, Ladevèze, Chamoin, Bordas)

I Restrict the variability of the enrichment within the enriched domain:
doc-gathering, cut-off XFEM (Laborde, Renard, Chahine, Salün and
the French team ;-)
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Global enrichment XFEM Motivation

Global enrichment XFEM

An XFEM variant is introduced which:

I Extends dof gathering to 3D through global enrichment.

I Employs point-wise matching of displacements.

I Employs integral matching of displacements.

I Enables the application of geometrical enrichment to 3D.
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Global enrichment XFEM Related works

Related works

Similar concepts to the ones introduced herein can be found:

I In the work of Laborde et al.
→ dof gathering
→ point-wise matching

(Laborde, Pommier, Renard, & Salaün, 2005)

I In the work of Chahine et al.
→ integral matching

(Chahine, Laborde, & Renard, 2011)
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Global enrichment XFEM Related works

Related works

I In the work of Langlois et al.
→ discretization along the crack front

(Langlois, Gravouil, Baieto, & Réthoré, 2014)

I In the s-finite element method
→ superimposed mesh

(Fish, 1992)
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Global enrichment XFEM Crack representation

Crack representation
Level set functions:

I φ (x) is the signed distance from the crack surface.

I ψ (x) is a signed distance function such that:

→ ∇φ · ∇ψ = 0

→ φ (x) = 0 and ψ (x) = 0 defines the crack front

Polar coordinates:

r =
√
φ2 + ψ2, θ = arctan

(
φ

ψ

)
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Global enrichment XFEM Crack representation

Crack representation

crack surface crack extension
crack front

) = 0x(ψ

)x(ψ

)x(φ

x) = 0x(φ

r

θ
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Global enrichment XFEM Tip enrichment

Tip enrichment

Enriched part of the approximation for tip elements:

ute (x) =
∑
K

Ng
K (x)

∑
j

Fj (x) cKj

Ng
K are the global shape functions to be defined.

Tip enrichment functions:

Fj (x) ≡ Fj (r , θ) =

[√
r sin θ2 ,

√
r cos θ2 ,

√
r sin θ2 sin θ,

√
r cos θ2 sin θ

]
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Global enrichment XFEM Tip enrichment

Geometrical enrichment

I Enrichment radius re is defined.

I Nodal values ri of variable r are computed.

I The condition ri < re is tested.

I If true for all nodes of an element, the element is tip enriched.
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Global enrichment XFEM Jump enrichment

Jump enrichment
Jump enrichment function definition:

H(φ) =

{
1 for φ > 0

− 1 for φ < 0

Shifted jump enrichment functions are used throughout this work.
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Global enrichment XFEM Jump enrichment

Enrichment strategy

Motivation for an alternative enrichment strategy:

I Tip enrichment functions are derived from the first term of the
Williams expansion.

I Displacements consist of higher order terms as well.

I Those terms are represented by:

→ the FE part

→ spatial variation of the tip enrichment functions
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Global enrichment XFEM Jump enrichment

Enrichment strategy

I In the proposed method:

→ no spatial variation is allowed

→ higher order terms can only be approximated by the FE part

I Higher order displacement jumps can not be represented in tip
elements.
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Global enrichment XFEM Jump enrichment

Enrichment strategy
Proposed enrichment strategy:

er

Tip enriched node

Tip and jump enriched node

Jump enriched node

Tip enriched elements

Jump enriched element

crack front

crack surface

Both tip and jump enrichment is used for tip elements that contain the
crack.
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements
Tip enriched element Regular element

1u
2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑
K
gNK

∑

Kjc)1x(jFj

∑
K
gNK

∑

Displacement approximations of regular and tip elements:

ur (x) =
∑

I
NI (x) uI +

∑
J

NJ (x) aJ

ut (x) =
∑

I
NI (x) uI +

∑
K

Ng
K (x)

∑
j

Fj (x) cKj
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

1u
2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑
K
gNK

∑

Kjc)1x(jFj

∑
K
gNK

∑

Displacements are matched by imposing the condition:

ur (xI) = ut (xI)
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

1u
2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑
K
gNK

∑

Kjc)1x(jFj

∑
K
gNK

∑

Parameters aI are obtained:

aI =
∑
K

Ng
K (XI)

∑
j

Fj(XI)cKj
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Global enrichment XFEM Point-wise matching

Tip and Regular Elements

Tip enriched element Regular element

1u
2u

1a

2a

1 2

1u

1 2

2u

Kjc)2x(jFj

∑
K
gNK

∑

Kjc)1x(jFj

∑
K
gNK

∑

Parameters aI can be expressed as:

aI =
∑
K

∑
j

T t−r
IKj cKj
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Global enrichment XFEM Point-wise matching

Tip and Jump Elements

Displacement approximations of tip and jump elements:

uj (x) =
∑

I
NI (x) uI +

∑
J

NJ (x) aJ +
∑

L
NL (x) (H (x)− HL)bL +

+
∑
M

NM (x) (H (x)− HM)bt
M ,

ut (x) =
∑

I
NI (x) uI +

∑
J

NJ (x) (H (x)− HJ)bJ +

+
∑
K

Ng
K (x)

∑
j

Fj (x) cKj
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Global enrichment XFEM Point-wise matching

Tip and Jump Elements
Jump enriched element

1
tb)1H−)cx(H(

2
tb)2H−)cx(H(

Tip enriched element

1

2

1

21u

2u

1u

2u

1a

2a
1b)1H−)cx(H(

2b)2H−)cx(H(

1b)1H−)cx(H(

2b)2H−)cx(H(

Kjc)1x(jFj

∑
K
gNK

∑

Kjc)2x(jFj

∑
K
gNK

∑

Kjc)cx(jFj

∑
K
gNK

∑

Kjc)cx(jFj

∑
K
gNK

∑

Point-wise matching condition:

uj (xn) = ut (xn)
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Global enrichment XFEM Point-wise matching

Tip and Jump Elements

The condition is imposed:
I at nodes → parameters aI are obtained
I at additional points → parameters bt

I are obtained:

(H(Xl )− HI) bt
I =

∑
K

Ng
K (Xl )

∑
j

Fj(Xl )cKj −
∑

I
NI(Xl )aI

Parameters bt
I can be reformulated as:

bt
I =

∑
K

∑
j

T t−j
IKj cKj
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Global enrichment XFEM Point-wise matching

Selection of additional points

jump node

jump element tip element

tip node

crack tip

1 2 3

4 5 6

a

b

points
point-wise matching

The condition is imposed at the points where the crack intersects element
edges or faces.
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Global enrichment XFEM Point-wise matching

Selection of additional points
3D case:

1

2
3

4

5
6

1
2

1
2

3

4
5

6

1
2

3

4

tip node

a

b

c

d

e
f

a

b

c

d

a

b

c

d

a

b

e

f

cra
ck sur

face

a) Point-wise matching at an edge b) Point-wise matching at a face

c) Point-wise matching at several faces d) Point-wise matching at several faces

points
matching
point-wise
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Global enrichment XFEM Point-wise matching

Selection of additional points

Special case:

jump node

jump element

tip element

tip node

crack tip

1 2

3 4 5

6 7 8

a

b

points
point-wise matching

I Edge 3-4 does not belong to a
tip element.

I Evaluating the tip enrichment
functions at 3-4 leads to errors.

I The values obtained from edge
4-7 will be used for 3-4.
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Global enrichment XFEM Point-wise matching

Selection of additional points

In order to implement the above procedure:

I Point-wise matching elements are looped upon prior to the assembly.

I Parameters bt
i are computed and stored.

Parameters bt
i can be computed for all nodes.

The whole procedure is computationally inexpensive.
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Global enrichment XFEM Integral matching

Integral matching

Motivation:

I For P1 elements and topological enrichment a loss of accuracy occurs.

I The effect is more pronounced for mode I loading.

I This is attributed to the displacement jump between regular and tip
elements.

I A possible solution is the addition of one layer of tip elements.
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Global enrichment XFEM Integral matching

Hierarchical functions

The addition of hierarchical blending functions is proposed.

Those functions:

I Eliminate the displacement jump in a weak sense.

I For linear quadrilateral elements assume the form:

Nh (ξ1, ξ2) =
(1− |ξ1|) (1 + ξ2)

2
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Global enrichment XFEM Integral matching

Integral matching
Displacements along the edges of regular and jump elements:

ur (ξ1, ξ2) =
∑

I
NI (ξ1, ξ2) uI +

∑
J

NJ (ξ1, ξ2) aJ + Nh (ξ1, ξ2) ah

ut (ξ1, ξ2) =
∑

I
NI (ξ1, ξ2) uI +

∑
K

Ng
K (x)

∑
j

Fj (x) cKj

Integral matching condition:∫
S

(ur − ut) dS = 0

Coefficients ah are obtained as:

ah
i =

∑
K

∑
j

T h
iKjcKj
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Global enrichment XFEM Integral matching

Integral matching-Mode I

Mode I, hierarchical functions are used to eliminate displacement jumps in
a weak sense:

displacement jump

tip element

regular element

hN
Kjc)x(jFj

∑
)x(K

gNK

∑

1

2

3

4

1 2
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Global enrichment XFEM Integral matching

Integral matching-Mode II

Mode II, displacement jumps almost vanish in a weak sense:

regular element

tip element

displacement jump

Kjc)x(jFj

∑
)x(K

gNK

∑

1 2

3

4

1 2
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Global enrichment XFEM Integral matching

Integral matching
Imposition of integral matching condition:

tip node

1 2 3

4

5

6

789

10

11

matching
integral

tip element

crack surface
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Global enrichment XFEM Displacement approximation

Displacement approximation
Displacement approximation for the whole domain:

u (x) =
∑
I∈N

NI (x) uI +
∑

J∈N j

NJ (x) (H (x)− HJ)bJ +

+
∑

K∈N s
Ng

K (x)
∑

j
Fj (x) cKj + upm (x) + uim (x)

upm (x) =
∑

I∈N t1

NI (x)
∑
K

∑
j

T t−r
IKj cKj +

+
∑

J∈N t2

NJ (x) (H (x)− HJ)
∑
K

∑
j

T t−j
IKj cKj

uim (x) =
∑

I∈N h

Nh
I (x)

∑
K

∑
j

T h
IKjcKj

Nodal sets:

N set of all nodes in the FE mesh.

N j set of jump enriched nodes.

N s set of superimposed nodes which will be described next.

N t1 set of transition nodes between tip and regular elements.

N t2 set of transition nodes between tip and jump elements.

N h set of edges where the blending functions are added.
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Global enrichment XFEM Definition of the Front Elements

Front elements

A superimposed mesh is used to provide a basis for weighting tip
enrichment functions.

Desired properties:

I Satisfaction of the partition of unity property.

I Spatial variation only along the direction of the crack front.
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Global enrichment XFEM Definition of the Front Elements

Front elements

Special elements are employed which are both:

I 1D → shape functions vary only along one dimension

I 3D → they are defined in a three-dimensional domain
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Global enrichment XFEM Definition of the Front Elements

Front elements

tip enriched elements crack front

FE mesh

front element boundaries front element node

front element

I A set of nodes along the crack
front is defined.

I Such points are also required for
SIF evaluation.

I A good starting point for front
element thickness is h.
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Global enrichment XFEM Definition of the Front Elements

Front elements
Volume corresponding to two consecutive front elements.

crack front

crack surface

boundary
front element

Different element colors correspond to different front elements.
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Global enrichment XFEM Definition of the Front Elements

Open crack fronts

Front element definition:

I Unit vectors ei are defined parallel to the element directions:
ei = xi+1−xi

|xi+1−xi| .

I For every nodal point i a unit vector ni is defined: ni =
ei+ei−1
|ei+ei−1| .

I A plane is defined that passes through the node: ni · (x0 − xi) = 0.

I The element volume is defined by the planes corresponding to its
nodes.
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Global enrichment XFEM Definition of the Front Elements

Open crack fronts

Vectors associated with front elements.

1−in

1−i
1−ie in

ie
+1ini

+ 1i

front element
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

a) Application of the method used for open crack fronts to closed crack
fronts → front elements overlap.

b) Method used for closed crack fronts → overlaps are avoided.

a) b)

cx
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

Element definition using an additional point (xc):

I Vectors ei are defined for every element.

I Point xc is defined as: xc =

n∑
i=1

xc

n .

I Vectors nci joining points i to the internal point xc are defined:
nci = xc − xi.
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

I Vectors nni normal to vectors ei and nci are defined: nni = ei × nci.

I Vectors ni are defined: ni = nti×nci
|nti×nci| .

I Planes normal to the vectors ni are defined: ni · (x0 − xi) = 0.

I Element volumes are defined as in the open crack front case.
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts

Vectors used in the definition of front elements.

1−i
i

in

+1in

+1cin

cin

ie

cx
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Global enrichment XFEM Definition of the Front Elements

Closed crack fronts
Discretization of a non-planar closed crack front using an additional point
xc.

cx

front element

plane projection
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Global enrichment XFEM Definition of the Front Elements

Front element parameter

A function similar to the level sets is defined which varies along the crack
front.

= 1η
= 2η

= 3η

= 4η

= 5η = 6η
= 7η

front node

front element
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Global enrichment XFEM Definition of the Front Elements

Front element parameter

Evaluation of the parameter for a point x0:

Plane equations corresponding to the nodes of each element are evaluated:

fi (x0) = ni · (x0 − xi)

fi+1(x0) = ni+1 · (x0 − xi+1)
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Global enrichment XFEM Definition of the Front Elements

Front element parameter

Once fi and fi+1 are obtained:

I If fi < 0 or fi+1 > 0 the point lies outside the element

I If fi = 0 or fi+1 = 0 the point lies on the plane corresponding to node
i or i + 1: η = i or η = i + 1

I If fi > 0 and fi+1 < 0 the point lies inside the element
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Global enrichment XFEM Definition of the Front Elements

Front element parameter
For points lying inside front elements:

I Integer Part: ηi = i
I Fractional part:

1x

2x
0x ie

in

+1in

1t
2t

ie

x = x0 + tei t ∈ R

t1 =
ni · (x0 − xi)

ni · ei

t2 =
ni+1 · (x0 − xi+1)

ni+1 · ei

x1 = x0 + t1ei

x2 = x0 + t2ei
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Global enrichment XFEM Definition of the Front Elements

Front element parameter
I Fractional part:

1x

2x
0x ie

in

+1in

1t
2t

ie

x1 = x0 + t1ei

x2 = x0 + t2ei

x10 = x0 − x1

x12 = x2 − x1

ηf =
|x10|
|x12|

Finally:

η = ηi + ηf
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Global enrichment XFEM Definition of the Front Elements

Front element shape functions

Linear 1D shape functions are used:

Ng (ξ) =

[1− ξ
2

1 + ξ

2

]

I ξ is the local coordinate of the superimposed element.

I Those functions are used to weight tip enrichment functions.
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Global enrichment XFEM Definition of the Front Elements

Front element shape functions

Definition of the front element parameter used for shape function
evaluation.

ξ
1x

2x

in

+1in
ie

mx 0x 1−=ξ
5.0−=ξ

= 0ξ
5.= 0ξ

= 1ξ
boundary
front element

node
front element
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Global enrichment XFEM Definition of the Front Elements

Front element shape functions

The evaluation of ξ is almost identical to the evaluation of ηf :

ξ =
2 x12 · xm0

|x12|2

where

x12 = x2 − x1

xm0 = x0 − xm

xm =
x1 + x2

2
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Numerical examples 2D convergence study

2D convergence study

I An L× L square domain with an edge crack of length a is considered.

I Boundary conditions are provided by the Griffith problem.

I Both topological and geometrical enrichment are used.

I The alternative jump enrichment strategy is not used.
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Numerical examples 2D convergence study

2D convergence study
uΓ

L

L

a

node where boundary conditions are applied

I Dimensions of the problem: L = 1 unit, a = 0.5 units.
I Material parameters: E = 100 units and ν = 0.0.
I Mesh consists of n × n linear quadrilateral elements,

n = 11, 21, 41, 61, 81, 101 .
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Numerical examples 2D convergence study

2D convergence study

Acronyms used for the 2D convergence study

Acronym Description
FEM The FE part of the approximation

XFEM Standard XFEM (with shifted enrichment functions)
XFEMpm1 XFEM using dof gathering and point-wise matching
XFEMpm2 XFEMpm1 with the additional p.m. condition of subsection
GE-XFEM XFEMpm2 with integral matching (Global Enrichment XFEM)
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Numerical examples 2D convergence study

L2 and energy norms
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Numerical examples 2D convergence study

L2 and energy norms

Convergence rates

re = 0.00 re = 0.12
Mode I Mode II Mode I Mode II

XFEM E 0.491 0.493 1.030 0.982
XFEM L2 0.908 0.928 1.980 1.955

XFEMpm1 E 0.483 0.489 1.243 1.211
XFEMpm1 L2 1.044 0.984 2.355 1.773
XFEMpm2 E 0.483 0.479 1.245 1.179
XFEMpm2 L2 1.022 1.414 2.311 2.151
GE-XFEM E 0.477 0.476 1.156 1.140
GE-XFEM L2 1.326 1.446 2.086 2.100
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Numerical examples 2D convergence study

Stress intensity factors
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Convergence rates for the SIFs

r = 0.00 r = 0.12
Mode I Mode II Mode I Mode II

XFEM 1.071 1.005 2.195 2.021
GE-XFEM 0.759 1.246 2.545 2.029
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Numerical examples 2D convergence study

Conditioning

Condition numbers of the system matrices produced by XFEM and
GE-XFEM.
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Condition numbers of the FE part are also plotted.
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Numerical examples 3D convergence study

3D convergence study

A benchmark problem is proposed which:

I Includes the full solution for the whole crack.

I Involves variation of the SIFs along the crack front.

I Involves a curved crack front.
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Numerical examples 3D convergence study

3D convergence study

I A penny crack in an infinite solid is considered.

I Evaluation of L2 and energy norms is possible.

I An Lx × Ly × Lz parallelepiped domain with a penny crack of radius a
is used.

I Analytical displacements are imposed as boundary conditions.

I A uniform normal and shear load is applied at the crack faces.
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Numerical examples 3D convergence study

3D convergence study

xL

yL

zL
a

c
tΓ

x
y

z

uΓ

node where boundary conditions are applied

I Uniform normal and shear loads of magnitude 1 are applied at Γt
c .

I Problem dimensions: Lx = Ly = 2Lz = 0.4 units and a = 0.1 unit.
I Material parameters: E = 100 units and ν = 0.3.
I Mesh consists of nx × ny × nz hexahedral elements,

nx = ny = 2nz = n and n ∈ {21, 41, 61, 81, 101}.
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Numerical examples 3D convergence study

3D convergence study

Acronyms used for the 3D convergence study

Acronym Description
XFEM Standard XFEM (with shifted enrichment functions)

GE-XFEM The proposed method (Global Enrichment XFEM)
GE-XFEM1 The proposed method without the new enrichment strategy
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Numerical examples 3D convergence study

L2 and energy norms
Influence of the crack front mesh density in the energy (E ) and L2 norms.
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nf is the number of elements along the front.
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Numerical examples 3D convergence study

L2 and energy norms

Influence of the enrichment radius (re) in the energy (E ) and L2 norms for
the 31× 61× 61 mesh.

0 1 2 3 4
10

−3

10
−2

10
−1

r
e
/h

e
rr

o
r

 

 

GE−XFEM, E

GE−XFEM, L
2

GE−XFEM1, E

GE−XFEM1, L
2

The proposed enrichment strategy improves the behavior of the solution.
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Numerical examples 3D convergence study

L2 and energy norms
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Numerical examples 3D convergence study

L2 and energy norms

Convergence rates

re = 0.00 re = 2.2h re = 0.02 re = 0.04
XFEM E 0.492 0.686 0.911 1.015
XFEM L2 1.009 1.405 1.824 1.976

GE-XFEM1 E - - 1.016 0.706
GE-XFEM1 L2 - - 1.481 0.289
GE-XFEM E 0.558 0.850 1.057 0.988
GE-XFEM L2 1.535 1.594 1.753 1.448
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Numerical examples 3D convergence study

Stress intensity factors
Mode I, II and III stress intensity factors for the 21× 41× 41 mesh.
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Numerical examples 3D convergence study

Stress intensity factors
Mode I, II and III stress intensity factors for the 41× 81× 81 mesh.
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Numerical examples 3D convergence study

Conditioning

I Conditioning of the proposed method is compared to XFEM.

I The number of iterations required by the solver is used as an estimate.

I A comparison of the time needed to solve the resulting systems of
equations is also provided.

I A CG solver with a diagonal preconditioner is used.

K. Agathos et al. GE-XFEM 2015 73 / 82



Numerical examples 3D convergence study

Conditioning

Influence of the crack front mesh density in the number of iterations for
the 31× 61× 61 mesh.
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nf is the number of elements along the front.
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Numerical examples 3D convergence study

Conditioning

Number of iterations required for three different enrichment radii.
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Numerical examples 3D convergence study

Conditioning

Performance of the PCG solver.
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Numerical examples 3D convergence study

Number of additional dofs

Total number of enriched dofs

Mesh FE dofs XFEM dofs XFEM dofs XFEM dofs GE-XFEM
(re = 0.00) (re = 0.02) (re = 0.04) dofs

11× 21× 21 17,424 2,232 2,232 5,856 696
21× 41× 41 116,424 5,376 11,904 42,288 1,920
31× 61× 61 369,024 9,456 37,752 137,280 4,464
41× 81× 81 847,224 14,424 84,696 320,664 7,512

51× 101× 101 1,623,024 20,376 162,528 620,184 11,544
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Conclusions

Conclusions

A method was introduced which:

I Employs point-wise and integral matching.

I Uses a novel enrichment strategy.

I Generalizes and extends the dof gathering approach to 3D.

I Is applicable to general 3D problems.
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Conclusions

Conclusions

A benchmark problem was proposed which:

I Involves a curved crack front.

I Enables the computation of L2 and energy norms for the 3D case.
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Conclusions

Conclusions

Advantages of the method:

I It improves accuracy almost in every case.

I Enables the application of geometrical enrichment in 3d applications.

I Reduces the number of additional dofs.

I Reduces computational cost in every case.
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Conclusions

Conclusions

Possible disadvantages:

I When the enrichment radius exceeds a certain value, the L2 norm
increases.

I The method is not straightforward to implement in existing XFEM
codes.

I The additional point wise-matching constraints are complex to
implement for higher order elements.
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