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The problem of protein structure prediction is formulated here as that of evaluating how
well an amino acid sequence fits a hypothetical structure. The simplest and most
complicated approaches, secondary structure prediction and all-atom free energy
calculations, can be viewed as sequence-structure fitness problems. Here, an approach of
intermediate complexity is described, which involves; (1) description of a protein structure
in terms of contact interface vectors, with both intra-protein and protein-solvent contacts
counted, (2) derivation of sequence preferences for 2 up to 29 contact interface types,
(3) generation of numerous hypothetical model structures by placing the input sequence
into a large set of known three-dimensional structures in all possible alignments,
(4) evaluation of these models by summing the sequence preferences over all structural
positions and (5) choice of predicted three-dimensional structure as that with the best
sequence-structure fitness. Evolutionary information is incorporated by using position-
dependent core weights derived from multiple sequence alignments. A number of tests of the
method are performed: (1) evaluation of cyclic shifts of a sequence in its native structure;
(2) alignment of a sequence in its native structure, allowing gaps; (3) alignment search with
a sequence or sequence fragment in a database of structures; and (4) alignment search with a
structure in a database of sequences. The main results are: (1) a native sequence can very
well find its native structure among a large number of alternatives, in correct alignment;
(2) substructures, such as (fa), units, can be detected in spite of very low sequence
similarity; (3) remote homologues can be detected, with some dependence on the set of
parameters used; (4) contact interface parameters are clearly superior to classical secondary
structure parameters; (5) a simple interface description in terms of just two states, protein-
protein and protein-water contacts, performs surprisingly well; (6) the use of core weights
considerably improves accuracy in detection of remote homologues; (7) based on a sequence
database search with a myoglobin contact profile, the C-terminal domain of a viral origin of
replication binding protein is predicted to have an all-helical fold. The sequence-structure
fitness concept is sufficiently general to accommodate a large variety of protein structure
prediction methods, including new models of intermediate complexity currently being
developed.

Keywords: protein structure prediction; sequence-structure alignment; computer algorithm;
database; evolutionary information.

1. Introduction dimensional structures and then choose the struc-
ture (or structures) that best fits the sequence. We
call this the sequence-structure fitness approach to
protein structure prediction.

(a) A unified view of protein structure prediction:
evaluation of sequence-structure fitness

The prediction of the three-dimensional structure
of a protein from its one-dimensional amino acid
sequence is an unsolved problem, in spite of much
effort, using a variety of approaches. The problem
can be cast in the following form: given a protein In generating hypothetical structures, one must
sequence, generate and evaluate all possible three- explore all reasonable alternatives, e.g. by
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(b) The problem: generation and evaluation of
hypothetical structures
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constructing explicit three-dimensional models or
enumerating secondary structure states. In
evaluating a hypothetical structure, i.e. the fitness
of the structure for the sequence or the fitness of the
sequence for the structure, one must be able to
distinguish between correct and incorrect struc-
tures, i.e. identify those structural states that have
a high probability of being observed (in given
environmental conditions). Success or failure
depends crucially on the underlying description of
structural states and on the evaluation scheme of
sequence-structure fitness.

(c) Most complicated: three-dimensional structures
and free energy estimates

At one extreme, in the most complicated descrip-
tion, one can generate all-atom co-ordinates for
every conceivable structure and evaluate its fitness
by calculation of the free energy of unfolding. This
fully three-dimensional approach is impractical. Tt
takes too much computer time, so only a small
fraction of the available conformational space can
be explored this way. Furthermore, even for a single
structure, current estimates of free energy differ-
ences between significantly different conformational

states are not sufficiently accurate (Novotny ef al.,
1984, 1988).

(d) Simplest: one-dimensional secondary structure
strings and preferences

At the other extreme, one of the simplest deserip-
tions of protein structure is in terms of secondary
structure, e.g. helix, fi-strand and loop. All possible
structures for a given sequence can be simply
enumerated as combinations of secondary structure
states for single residues and the fitness of structure
for sequence can be evaluated by statistical prefer-
ence parameters of single residues in secondary
structure states (Garnier et al., 1978). This inher-
ently one-dimensional approach can be executed
rapidly, but fails to solve the prediction problem.
The description in terms of secondary structure
alone is much too simple and ignores important
physical effects. Furthermore, even with a 1009,
successful prediction of secondary structure one
would still lack the three-dimensional view that is
essential for a full understanding of function.

(e) Intermediate: description of protein structure in
terms of residue-residue contacts

For these reasons we believe that an intermediate
description of protein structure is a key requirement
for further progress with structure prediction, a
description between all-atom three-dimensional
models and one-dimensional strings of secondary
structure symbols. To be of practical value, the
description should not be so complicated as to be
intractable and not so simple as to neglect impor-
tant effects. Accordingly, we have developed a
description of protein structure in terms of contacts

between atoms, including contacts with solvent
atoms. In this, we follow an idea developed in the
context of analyzing contacts in parallel and anti-
parallel B-sheets: “As more protein structures
become available, further distinctions of secondary
structure elements according to the type of tertiary
contacts should be made. For example, one can
distinguish between different hydrogen bonding
positions in f-sheets, solvent-exposed and interior
faces of sheets and helices, segments in tertiary
contacts with sheets compared to those in contact
with helices. Such distinctions are likely to lead to
more clear-cut statistical preferences, and also serve
as a starting point for predicting tertiary structure”
(Lifson & Sander, 1979). The first results from our
approach are reported in a diploma thesis (Scharf,
1989).

The contact description of protein structure is a
two-dimensional reduction of the full complexity of
three-dimensional structure, with the aim of
capturing the physically relevant effects. The basic
element in this description is the enumeration of
atomic contacts made by a residue. Contacts are
best represented by a ‘‘contact map”’ (Fig. la,b),
similar to a ‘‘distance plot” used in distance
geometry calculations and in protein structure
determination by nuclear magnetic resonance
spectroscopy. The description is of size N(N+1),
where N is the number of residues in the proteins
and the slot number (N +1) is allocated to residue-
solvent contacts.

(f) Generation of hypothetical structures: use of the
Protein Data Bank

With a contact description of protein structure,
how do we, in a sequence-structure fitness approach,
solve the two problems of generating all reasonable
structures and evaluating each of them? The
universe of all possible protein structures, even in
the contact description, is very large. One very
powerful and practical way of circumventing this
enormous complexity is by working within the
much smaller universe of all known protein struc-
ture types, as deposited, for the most part, in the
Protein Data Bank (Bernstein et al., 1977). For a
given sequence, a set of alternative structures is
then generated by implicitly trying out all possible
alignments of the sequence in each of the known
structures, with gaps permitted.

(g) Evaluation in two-dimensions:
restdue-residue contacts

If one represents the known protein structure
“templates” by two-dimensional contact maps, the
evaluation of alternate sequence alignments in each
structure becomes a two-dimensional alignment
problem. Algorithmically, the problem of finding
the alignment with the highest score, assuming
additivity of fitness values, can be solved in a
number of ways, e.g. by a two-level dynamie
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Figure 1. Scheme of the basic procedure of structure-sequence alignment. a. From 3-dimensional structure to a
2-dimensional residue-residue contact map. Starting from the 3-dimensional structure, the strength of residue-residue
and residue-solvent contacts in the known 3-dimensional structure (Contacts) is calculated. Contact strength is indicated
by grey levels; contacts with the solvent are in right-most column (W). b. From contact map to contact interface profile.
For each residue, i.e. for each row in the contact map, contacts are summed over all contacting residues in each interface
type (5 types in this Fig.). The resulting set of 5 interface strengths is called the contact interface vector and describes
the structural environment of a residue. The array of interface vectors, 1 for each residue, is a simplified representation of
protein structure, called the interface contact profile (Interfaces). This description is 1-dimensional in the sense that each
interface vector describes the local structural environment, independently of the type of the contacting residues.
Preferences for a residue type in each of the interface states (Preferences) are derived from the interface profiles of all
known structures in the database, removing from the database the protein to be aligned. c¢. From contact interface
profile to fitness profile. In preparation of alignment, the fitness of each of the 20 amino acids at each structural position
is evaluated by simply summing over the preference of that residue type for each interface, weighted with the strength of
the interface at the structural position. The resulting table (Fitness profile) represents the fitness of each of the 20 amino
acid residue types for this structural position. Mathematically, the fitness profile f(R,j) is simply the matrix product of
the interface profile ¢(j,1) with the preference table p(R.I). Such fitness profiles can also be derived from other types of
structural preferences, e.g. those for secondary structure, as well as from multiple sequence alignments (Gribskov ef al.,
1987, 1990). d. From fitness profile to structure-sequence alignment. The fitness profile is just the right form of input to
an alignment problem, here that of aligning some amino acid sequence to the given structure. The local similarity value
for the alignment problem, at a given sequence position, is simply the appropriate column copied from the fitness table,
representing the fitness of that residue type for each position in the structure. A dynamic programming algorithm then
finds the optimal trace, such that the sum of fitness values along the trace is optimal. The result is an alignment of the
sequence with the given structure. The alignment is the basis of an explicit 3-dimensional model, and the total fitness
value quantifies how well the sequence fits into this structure.

programming approach (Taylor & Orengo, 1989).
Statistical preference parameters that can be used
in this type of alignment problem are residue-
residue contact preferences, pseudo-energies, or
potentials of mean force: typically a set of one or
more tables of dimension 20 by 20 (Crippen, 1977;
Tanaka & Scheraga, 1975; Warme & Morgan 1978;
Lifson & Sander, 1980; Galaktionov & Rodionov,

1981; Miyazawa & Jernigan, 1985; Scharf, 1989,
Sippl, 1990; Sander & Vriend, 1991; Sander et al.,
1992), representing average interactions between
the 20 different amino acid types. Only one of these
(Sippl, 1990) has been used in full two-dimensional
sequence-structure alignment (Jones et al., 1992), as
far as we know. Here, we use an approximate one-
dimensional reduction of the problem (Fig. 1).
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Figure 2. Description of 3-dimensional protein structure by a l-dimensional array of contact interface vectors. (a)
Cartoon of a residue contact environment. In this example, a valine residue (Y-shaped side-chain) in a helix makes
contacts (arrows) with residues (circles) adjacent in the same helix (interface HHp), on the same helix 1 turn away
(interface HHi), on a beta-strand (interface HEe) and with solvent (interface HW). Not all contacts are shown, for
clarity of the Figure, nor are side-chains. The extent to which a residue participates in various interfaces is calculated in
terms of interatomic contacts. Only contacts with nearest neighbours are counted and summed for all atoms in the
residue. A given atom makes contacts either with other protein atoms or with solvent atoms (substrate or co-factor
atoms are treated here as solvent, for simplicity). When solvent contacts are expressed in the appropriate units
(Colonna-Cesari & Sander, 1990), the total number of contacts an atom makes is approximately constant and
proportional to the volume of a spherical shell. This allows an estimate of water contacts from the calculation of protein-
protein contacts alone. The total number of contacts of a residue can then be partitioned according to the type and state
of the contacting atoms. The result is a normalized contact interface vector for each residue (bottom). (b) Contacts are
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(h) Evaluation in one dimension:
restdue-interface contacts

The two-dimensional contact view can be simpli-
fied by describing the contacts made by a single
residue with its environment, i.e. by averaging over
the amino acid type of the second contact partner.
For example, a two-dimensional contact map
enumerated in terms of pair contacts, e.g. Ala-Val,
Ala-Ile, Ala-Thr, Ala-Water, etc. would be
collapsed, e.g. to Ala—Protein, Ala—Water (with
relative strengths summed up). In this way, a struc-
ture can be represented as a string of structural
contact vectors attached to residue positions (Fig. 1;
Fig. 2(d)). The description is of size NK, where K is
the number of distinct contact interface types
(K—1 intra-protein interfaces and one protein-
water interface).

The representation of protein structures as one-
dimensional strings of contact descriptors has the
practical advantage that sequence-structure align-
ment can now be performed by “‘standard’ dynamic
programming algorithms developed for string com-
parisons (Levenshtein 1966, Smith & Waterman,
1981). The corresponding fitness parameters express
the preference (information value, potential of mean
force) of single residues for a particular type of
contact interface.

Here, we describe and parametrize the sequence-
structure fitness approach in the one-dimensional
approximation. The full two-dimensional view in
terms of explicit residue-residue contacts will be
dealt with in a subsequent manuscript. Our initial
approach (Scharf, 1989} is conceptually similar to
methods developed independently by other groups
(Bashford et al., 1987, Bowie et al., 1990, 1991;
Hendlich et al., 1990; Sali et al., 1990; Sal &
Blundell, 1990; Sippl & Weitckus, 1992; Jones ef al.,

1992: Godzik & Skolnick, 1992; Godzik et al., 1992;
Luethy et al., 1992; Goldstein et al., 1992b).

2. Methods

Central to our approach is the method of optimally
aligning a single protein sequence (“input sequence’: a
string of amino acid types), and a single protein structure
(“template structure”: a string of contact descriptors).
When the single sequence is aligned against a representa-
tive database of protein folds, the highest score corre-
sponds to a predicted 3-dimensional structure for the
input sequence (Fig. 1).

(a) Residue-interface contact vector

Starting from the co-ordinates of the template struc-
ture, intramolecular contacts and solvent contacts are
calculated for each residue, as a sum over the contacts
made by its constituent atoms (Fig. 2(a) and (b)). Solvent
contacts are always included in the description. The
nature of the contacting partners is noted. e.g. the
secondary structure of the residues, the polar/non-polar or
protein/solvent nature of the contacting atoms. The
residue contact vector c¢(j) describes the contact environ-
ment of a particular residue.

We define the contact strength between 2 atoms such
that 2 atoms are counted as being in contact if they are so
close that a water molecule cannot fit between them: the
linear-square box potential function V(r) (Fig. 2(b)) is
equal to 1'0 until the interatomic distance r equals the
sum of the van der Waals radii (here 3-6 A) and decreases
linearly until it reaches 0-0, when a water molecule just
fits between the 2 atoms, i.e. at r = 3:6+2:8 A.

The contact strength ¢(j,7) of a residue of type R at
position j in the structure is the sum over all interatomic
contacts the residue makes in interface I. In this paper,
only contacts made by the side-chain or (* of residue j
with side-chain or backbone of other residues are counted,
i.e. contacts made by backbone N-H or C-O of residue j

calculated using a simple atom-atom potential V(r) that is fairly insensitive to errors in atomic co-ordinates: a linear-
square box. A single contact event is counted with a strength of 10 when 2 atoms are “touching” (interatomic distance r
less or equal to the sum of the van der Waals radii). With increasing interatomic distance the strength decreases linearly
and reaches 0-0 when a water molecule (W) just fits between 2 atoms. No contacts are counted when the interatomic
distance is larger than the sum of the van der Waals radii plus the diameter of a water molecule. The contact strength of
a residue is the sum of the contact strengths over all its atoms. Here. to emphasize specificity, a contact of a residue with
its environment excludes contacts made by its backbone (i.e. only contacts of side-chain plus C* with all other atoms are
counted). ¢. Definition of 29 different contact interface types. A residue on a helix (H), f-strand (E), turn (T) or loop (X)
(rows) can be in contact with other residues on a helix, S-strand, turn or loop or with water (columns). In the simplest
description, with 2 interface types (used for parameter set AM2, 4¢.e), the contacts in the rightmost column are grouped
together as protein-water contacts (PW), the rest as protein-protein contacts (PP). Notation: interface type is 8,S,p;,
(HHa, HHi, HHe, HEe, etc.), where 8; = H,E,T, or X is the secondary structure of a residue: 8, = H.E,T, or X is the
secondary structure of the contacting residue(s) or 8, = W for contacts with water; and p,, = a,i,s.e is the chain distance
(proximity) of any 2 contacting residues, defined as: a (adjacent: the 2 residues are adjacent in sequence), i (internal: the
2 residues are on the same element of secondary structure, i.e. on the same helix or strand), s (strand-strand: the 2
residues are on adjacent strands in the same beta sheet), e {external: the 2 residues are on 2 different elements of
secondary structure; for strands, in different sheets). (d) Description of the 3-dimensional structure of crambin (PDB
(Protein Data Bank) data set lern, Hendrickson & Teeter, 1981) in terms of contact interface vectors c(j). For each
residue we have, left to right, the amino acid residue (1-letter code), the secondary structure state, according to the
DSSP summary column, except that H,G,I>H and 8,B,blank— X (Kabsch & Sander, 1983), and the contact strength in
each of the 5 interface types (AS5), H,E,T,X,W, on a scale of 0-0 (white square) to 100-0 (black square), with grey squares
for intermediate values (see bottom legend). For aligning a given sequence with this structural template, one needs
contact interface preference parameters for residue types in these states. Their derivation is explained in Methods and
numerical values are given in Fig. 4.
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are not counted. In general, a residue participates in K
different interfaces (Fig. 2(a) and (c)). For the purposes of
this paper, the vectors c¢(j) with the components ¢(j,I),
I = 1..K are normalized to unit length for each residue j.
This is done to prevent sequence ‘‘read-through”, i.e. to
eliminate information about residue size. In the current
implementation, the structure at position j is represented
by the contact vector derived from a single native struc-
ture. In future implementations, ¢(j) can be an average
over all equivalent positions in structurally similar
proteins.

The simplest contact interface classification is in terms
of 2 types, i.e. contacts made with other protein parts
(“inside” or I = PP for protein-protein) and contacts
made with solvent (“outside” or I = PW for protein-
water). Note that the water contact strength ¢(j,PW) of a
residue can have any value between 0 and 1, a distinetive
advantage relative to methods that have to classify a
residue as either being exposed or ‘“‘buried” in binary
fashion. If the secondary structure of the contacting
partner is noted, one has 5 contact types, i.e. contact with
a helix (I = PH for protein-helix), with a strand (I = PE),
with a turn (/ = PT), with a loop (/ = PX) or with water
(I = PW). The most complicated classification (in this
paper) is in terms of the secondary structure state of both
contacting partners and of chain proximity, for a total of
29 contact interface types (Fig. 2(c)).

The string c(j), j = 1..N of contact vectors (Fig. 2(d)),
also called the contact profile, is an approximate descrip-
tion of the 3-dimensional structure of the desired inter-
mediate complexity. The profile has length N, where N is
the number of residues in the protein structure, and width
K, where K is the number of different types of contact
interfaces. An example of a 5-state contact profile for the
small protein crambin is in Fig. 2(c). With this description
of protein structures we now derive preference parameters
for residue participation in different interface types.

(b) Restdue-interface contact preferences

To quantify how well particular residues are adapted to
particular interfaces, we choose a statistical approach.
Preference parameters are defined as the logarithm of the
ratio of observed over expected contact counts. These are
derived from a database of 64 mutually non-homologous
proteins (Fig. 3).

Scanning over the database, total contact counts
C(R,I) for each residue type R in each interface type I are
calculated by summing single residue contacts ¢(R(j),1)
over all residues j of type R in all protein chains:

C(R.I)=Yc(j,1), residue at j is of type R. (1)
J

For example, C(Ala, HEe) = 1121-0 is the total contact
strength of all alanine residues in helix-sheet interfaces.
From the raw contact counts C(R,I), preferences are
derived as:
C(R,IC
RI=ld| —~— 2
P(R.I) <O(R)C(1)>, @)

where C(R), C(I) and C are the partial sums:
C(R)=YCR.I), C(I)=YC(RI), C=Y C(RI), (3)
T R RI

and Id is the logarithm base 2. The set of preferences
p(R,I), 1 =1.K can also be interpreted as a vector,
written p(R).

These formulas are identical to those used in, e.g.
secondary structure prediction, except that the counts C
used here are contact strengths (sums over atomic
contacts) rather than residue occurrences. The preferences
can be interpreted as the logarithm of the ratio of
observed counts, C(R,I), over expected -counts,
E(R.I)=CR)C()[C , or as the information in units of
bits that a residue of type R has about the structural state
I (e.g. R=Ala, [ =HEe). Low counts can introduce
serious fluctuations. This problem is dealt with here by
scaling the preference values p(R,I) with a damping
factor, min(1-0,E(R,1)/100). The factor is 1-0 if E(R,]) is
100 or more and linearly decreases for lower expected
counts until it reaches 00 for E(R,I) =0. Thus, states
with very low expected counts have “neutral” preference
values near 0. This is an important technical detail. Other
forms of damping noise from low counts have been used
(Sippl, 1990). The set of preferences p(R.1), I = 1..K of 1
residue type for the various contact interface types is
called here the preference vector for that residue type
(Figs 1 and 4). Numerical values are tabulated in Sander
& Vriend (1991) and Sander et al. (1992).

(c) Evaluation of sequence-structure fitness

Given a position j in the template structure and a
residue of a certain type R in the input sequence, one can
now quantify how well the residue is adapted to this
position, i.e. one can calculate the sequence-structure
fitness at this position. We simply need to accumulate the
preferences of residue type R for the various interface
types, weighted with the extent to which interface I is
present in the contact environment at position j.
Mathematically, this weighted sum is equivalent to the
scalar (inner) product of the contact interface vector
¢(j,1) and the contact preference vector p(R,I). For each
protein structure template we precalculate and store the
fitness of all 20 amino acid types at each structural
position j as sequence-structure fitness profiles:

fR.)=YpRI) (D), (4)
I

where R covers all 20 amino acid types, I all interface
types (Fig. 5(a)). The underlying assumption is that of
statistical independence of the individual residue terms.
An example of a fitness profile for crambin is given in
Fig. 5(b). It has 20 real numbers, one for each residue
type (R = VL.ND), at each sequence position. The
profiles f(R,j) are analogous to profiles used in sequence
database searches (Gribskov et al., 1987, 1990), and can be
used as input to profile alignment software, e.g. MaxHom
(Sander & Schneider, 1991; and unpublished). However,
here they are derived from quantification of residue
contacts in the 3-dimensional structure, rather than from
the amino acid sequence. The profiles can be used to
evaluate different arrangements of an input sequence in a
template structure.

(d) Sequence-structure alignment algorithm

A dynamic programming algorithm provides an effi-
cient way of determining the best arrangement of a parti-
cular sequence in a particular structure. We use a
straightforward adaptation of the alignment algorithm
for pairs of sequences described by Smith & Waterman
(1981). Sequence similarity between residues at position ¢
in one protein and j in the other protein is simply replaced
by the local sequence-structure fitness f(R,j), where R is
the residue type at ¢. The global similarity, or fitness, is
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#PID C SIZ RES %H %B %BP %BA SID ORIGIN PROTEIN_NAME

351c 82 1.6 50 4 0 100 CS551$PSEAE PSEUDOMONAS AERUGINOSA CYTOCHROME C 551

256B A 106 1.4 79 0 Q 0 C562$ECOLI ESCHERICHIA COLI CYTOCHROME B 562

BADH _ 374 2.4 28 24 45 S5 ADHESHORSE EQUUS CABALLUS ALCOHOL DEHYDROGENASE

8ATC A 310 2.5 40 15 100 0 PYRBSECOLI ESCHERICHIA COLI ASPARTATE CARBAMOYLTRANSFERASE (ASPARTATE TRANSCARBAMYLASE)
8ATC B 146 2.5 15 34 1 98 PYRISECOLI ESCHERICHIA COLI ASPARTATE CARBAMOYLTRANSFERASE (ASPARTATE TRANSCARBAMYLASE)
2AZA A 129 1.8 16 35 36 63 AZURSALCDE ALCALIGENES DENITRIFICANS AZURIN

3B5C _ 85 1.5 31 23 25 75 CYBS$BOVIN BOS TAURUS CYTOCHROME B 5

3BLM _ 257 2.0 42 17 0 100 BLAC$STAAU STAPHYLOCOCCUS AUREUS BETA-LACTAMASE

2CA2 - 256 1.9 16 30 23 76 CAH2SHUMAN HOMO SAPIENS CARBONIC ANHYDRASE II (CARBONATE DEHYDRATASE)
1ccr _ 111 1.5 42 1 0 100 CYC$SORYSA ORYZA SATIVA CYTOCHROME C

2CCY A 127 1.7 74 1 0 100 CYCPSRHOMO RHODOSPIRILLUM MOLISCHIANUM CYTOCHROME C’

1cp4d _ 173 2,3 5 41 11 8B CD4$HUMAN HOMO SAPIENS, recombinant T-CELL SURFACE GLYCOPROTEIN CD4 (N-~TERMINAL FRAGMENT)
3CLA _ 213 1.8 29 28 23 76 CAT3$ECOLI ESCHERICHIA COLI, engineered CHLORAMPHENICOL ACETYLTRANSFERASE TYPE III
5CPA _ 307 1.5 38 16 63 36 CBPASBOVIN BOS TAURUS CARBOXYPEPTIDASE A

2CcpP 405 1.6 51 10 11 88 CPXASPSEPU PSEUDOMONAS PUTIDA CYTOCHROME P450CAM (CAMPHOR MONOQOXYGENASE)
4cpv : 108 1.5 56 1 0 100 PRVBSCYPCA CYPRINUS CARPIO CALCIUM-BINDING PARVALBUMIN

1CSE E 274 1.2 30 20 73 26 SUBTSBACLI BACILLUS SUBTILIS SUBTILISIN

1cse I 63 1.2 22 33 44 55 ICICSHIRME HIRUDO MEDICINALIS EGLIN-C

1cTF _ 68 1.7 55 26 0 100 RL7$ECOLI ESCHERICHIA COLI 50S RIBOSOMAL PROTEIN L7/L12 {(C-TERMINAL DOMAIN)
2CcYp _ 293 1.7 50 7 8 91 CCPRSYEAST SACCHAROMYCES CEREVISIAE CYTOCHROME C PEROXIDASE

8DFR _ 186 1.7 23 33 57 42 DYRSCHICK GALLUS GALLUS DIHYDROFOLATE REDUCTASE

1ECN _ 136 1.4 15 0 [} 0 GLB3SCHITH CHIRONOMOUS THUMMI) HEMOGLOBIN (ERYTHROCRUORIN) (FRACTION III)
2ER7 E 330 1.6 11 45 13 86 CARPSCRYPA ENDOTHIA PARASITICA ASPARTIC PROTEINASE (ENDOTHIAPEPSIN)

4FD1l _ 106 1.9 33 14 0 100 FER1SAZOVI AZOTOBACTER VINELANDII FERREDOXIN

4FXN _ 138 1.8 36 22 95 4 FLAVSCLOSP CLOSTRIDIUM MP FLAVODOXIN

3GAP A 208 2.5 30 14 0 100 CRP$ECOLI ESCHERICHRIA COLI CATABOLITE GENE ACTIVATOR PROTEIN

2GBP _ 309 1.9 43 19 90 10 DGAL$ECOLI ESCHERICHIA COLI D~GALACTOSE /D~GLUCOSE BINDING PROTEIN
1GCR _ 174 1.6 7 46 0 100 CRGBSBOVIN BOS TAURUS CRYSTALLIN GAMMA-II

1601 © 334 1.8 29 29 52 47 G3P$BACST BACILLUS STEAROTHERMOPHILUS D-GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE
1GOX — 350 2.0 44 13 78 21 2HAOS$SPIOL SPINACIA OLERACEA GLYCOLATE OXIDASE

1GP1 A 183 2.0 32 18 47 52 GSHP$BOVIN BOS TAURUS GLUTATHIONE PEROXIDASE

2HLA B 99 2.6 0 49 0 100 HA1HSHUMAN HOMO SAPIENS HISTOCOMPATIBILITY CLASS I ANTIGEN

1HOE — 74 2.0 0 48 0 100 IAA$STRTE STREPTOMYCES TENDAE ALPHA-AMYLASE INHIBITOR

111B _ 151 2.0 5 47 0 100 IL1BSHUMAN HOMO SAPIENS, recombinant INTERLEUKIN~-1 BETA

41CD — 414 2.5 39 18 52 47 IDHSECOLI ESCHERICHIA COLI ISOCITRATE DEHYDROGENASE

1IL8 A 71 NMR 26 25 0 100 IL8$SHUMAN HOMO SAPIENS, recombinant INTERLEUKIN &

iL13 _ 164 1.7 64 9 ¢ 100 LYCVSBPT4 BACTERIOPHAGE T4, mutant LYSOZYME

6LDH _ 329 2.0 43 17 51 48 LDHM$SQUAC SQUALUS ACANTHIAS LACTATE DEHYDROGENASE

2LIV _ 344 2.4 44 19 73 26 LIVJSECOLI ESCHERICHIA COLI LEU/ILE/VAL-BINDING PROTEIN

2LTN A 181 1.7 1 43 0 100 LECSPEA PISUM SATIVUM, recombinant LECTIN

2LTN B 47 1.7 8 63 0 100 LECSPEA PISUM SATIVUM, recombinant LECTIN

1rzl _ 130 1.5 39 12 11 88 LYCSHUMAN HOMO SAPIENS LYSOZYME

1MBD _ 153 1.4 77 0 0 0 MYGSPHYCA PHYSETER CATODON MYOGLOBIN

2MHR _ 118 1.7 70 0 ] 0 HEMMS$STHEZO THEMISTE ZOSTERICOLA MYCHEMERYTHRIN

2pAB A 114 1.8 7 51 16 83 TTHYSHUMAN HOMO SAPIENS PREALBUMIN

1PAZ _ 120 1.6 16 37 35 64 AZUPSALCFA ALCALIGENES FAECALIS PSEUDOAZURIN

4PTP _ 223 1.3 10 34 2 97 TRYPSBOVIN BOS TAURUS BETA TRYPSIN

1R63 _ 63 2.0 63 0 0 0 RPC1$BP434 PHAGE 434 434 REPRESSOR (N-TERMINAL DOMAIN)

1RHD 293 2.5 29 13 87 12 THTR$SBOVIN BOS TAURUS RHODANESE

TRSA : 124 1.3 20 35 3 96 RNPSBOVIN BOS TAURUS RIBONUCLEASE A

2RSP A 115 2.0 5 41 17 82 GAGSRSVP ROUS SARCOMA VIRUS RSV PROTEASE

SRXN 54 1.2 16 22 0 100 RUBR$CLOPA CLOSTRIDIUM PASTEURIANUM RUBREDOXIN

2SGA : 181 1.5 9 55 6 93 PRTASSTRGR STREPTOMYCES GRISEUS PROTEINASE A

4GB I 51 2.1 0 29 11 88 IPR2$SOLTU SOLANUM TUBEROSUM SERINE PROTEINASE B INHIBITOR PCI-I

2SNS 141 1.5 20 22 15 85 NUC$STAAU STAPHYLOCOCCUS AUREUS STAPHYLOCOCCAL NUCLEASE

2s0D © 151 2.0 1 42 2 97 SODC$BOVIN BOS TAURUS CU,ZN SUPEROXIDE DISMUTASE

25SI 107 2.6 15 28 5 95 ISUB$STRAO STREPTOMYCES ALBOGRISEOLUS SUBTILISIN INHIBITOR

25TV _ 184 2.5 11 47 1 98 COAT$STNV SATELLITE TOBACCO NECROSIS VIRUS COAT PROTEIN

2TMN E 316 1.6 40 17 26 73 THERSBACTH BACILLUS THERMOPROTEOLYTICUS THERMOLYSIN

1TNF A 152 2.6 1 44 0 100 TNFASHUMAN HOMO SAPIENS, recombinant TUMOR NECROSIS FACTOR-ALPHA

2751 317 2.3 54 10 85 14 SYY$BACST BACILLUS STEAROTHERMOPHILUS TYROSYL-tRNA SYNTHETASE

1UBQ : 76 1.8 23 34 25 75 UBIQSHUMAN HOMO SAPIENS UBIQUITIN

iure _ 70 1.3 75 © 4] 0 UTERSRABIT ORYCTOLAGUS CUNICULUS UTEROGLOBIN

2WRP R 104 1.6 78 0 0 0 TRPRSECOLI ESCHERICHIA COLI TRP REPRESSOR

1WsSY A 248 2.5 50 13 100 0 TRPBS$SALTY SALMONELLA TYPHIMURIUM TRYPTOPHAN SYNTHASE

4XIA A 393 2.3 47 10 85 14 XYLASARTS7 ARTHROBACTER SP D-XYLOSE ISOMERASE

1YPI A 247 1.9 43 17 96 3 TPIS$SYEAST SACCHAROMYCES CEREVISIAE TRIOSE PHOSPHATE ISOMERASE

Figure 3. Representative subset of proteins of known 3-dimensional structure used as the database for the derivation
of contact preference parameters. A total of 67 chains in 64 proteins with 12,460 amino acid residues were selected from
the Protein Data Bank (PDB) (Bernstein ef al., 1977). No 2 protein chains in the selection are homologous to each other,
using as a criterion the threshold for structural homology (Sander & Schneider, 1991). For protein chains longer than 80
residues this translates to a sequence identity of maximally 24-89, for any 2 proteins in the list. The threshold is higher
for shorter chains, e.g. 32-39, for length 50. The shortest chain has 47 residues, the longest 414. Steps in the selection of
the non-homologous set were as follows (Hobohm et al., 1992): Of the more than 400 data sets of experimental protein
structures in PDB, 111 mutually non-homologous chains were selected by performing all pair comparisons using a
dynamic programming alignment algorithm, and then selecting unique data sets one by one, going down a list sorted
according to resolution and not using chains homologous to a previously selected one. A subsequent exclusion filter
imposed the following requirements: crystallographic resolution as listed in PDB 2'6 A or better (RES); chain length 40
or more residues (SIZ); number of Cys residues involved in disulfide bonds less than 8%, of the chain length (CSS); well-
formed secondary structure, i.e. 35 or more hydrogen bonds involved in helix (9%H) or B-strand (9B) secondary
structure per 100 residues (SEC) (sum of hydrogen bonds in parallel (%BP) and antiparallel (% BA) bridges, and in
(i,i+4) and (5,5+3) type H-bonds (%H), as defined in Kabsch & Sander, 1983); number of heteroatoms (non-protein
atoms) less than 89, of protein atoms (HET); not membrane protein (MEM). Protein chains are identified by the PDB 4

letter code (PID), the chain identifier (C), the name of the
protein sequence entry (SID) (identified by: Swiss-Prot line

corresponding Swiss-Prot (Bairoch & Boeckmann, 1991)
DR; or, sequence identity between Swiss-Prot and PDB

entry more than 989, and total sequence length within 3 residues), the species (ORIGIN) and the protein name.

calculated by summing over all pairs (¢,j) in the
alignment.

The dynamic programming algorithm requires additi-
vity and independence. Both are fulfilled: the fitness
values are additive because the fitness values are loga-
rithms of probabilities, assumed to be independent of one
another, which are multiplied along the alignment trace;
and, the best path ending at positions ¢ and j is indepen-
dent of subsequent choices, as the contact profile is a 1-
dimensional string of contact interface vectors derived

solely from the template structure, with no dependence on
the amino acid type of the 2nd contact partner that
results from fitting the input sequence into the template
structure.

(e) Alignment parameters

In the dynamic programming algorithm, 3 parameters
have to be set at the appropriate values in order to obtain
realistic alignments. The 1lst parameter determines the
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Protein -0.03 -0.00 0.16 0.05 -0.10 -0.29 -0.13 -0.18 -0.07 -0.10

(e)

Figure 4. Contact preference parameters extracted
from the non-redundant dataset of 67 protein chains. The
parameters can be used to evaluate how well a particular
sequence fits into a particular 3-dimensional structure,
e.g. in sequence-structure alignment. For example, line
HHe contains the single residue preference for helix-helix

interfaces, line HEe those for helix-sheet interfaces. The
20 standard amino acids are given in l-letter code.
Secondary structure notation is: H (helix), E (extended or
beta sheet), T (hydrogen bonded turn), X (everything
else, called loop). Contacts with water are labelled W.
Chain distance (proximity) of 2 contacting residues is:
a = adjacent, i=internal to strand or helix,
s = strand-strand, e = different segments, different
sheets. Numerical values for the parameter sets are given
by Sander & Vriend (1991) and Sander et al. (1992).
(a) AInt29: Preferences of amino acid side-chains for
contacts in 29 contact interface types, as defined in Fig.
2(c). For example, Pro has a strong preference for TTP
(Pro located in a turn makes contacts with other
residue(s) in the same turn); Lys has clear preference for
HW, EW, TW, and XW (Lys located on any element of
secondary structure make contacts with water); the
strongest preferences for EHe are expressed by Ile and
Phe (Ile or Phe in a beta-strand make helix-strand
contacts). (b) AS5: Preferences of amino acid side-chains
for contacts in 5 contact interface types, e.g. contact with
a helix, contact with a sheet, or contact with water. The
counts in these simpler “anything-structure” interface
types are derived from those in the 29 interface types
(Fig. 2(c)) used in (a), by summing over the secondary
structure state S; of the central residue. So the 5
“contact-with” interface types are: H = residue contact
of the 1st residue (in any secondary structure state) with a
helix residue, E = contact with a f-sheet residue,
T = contact with a turn residue, X = contact with a loop
residue, W = contact with solvent. Examples of the
resulting preferences (see the text for definition): Val and
Tle have a clear preference to be in contact with B-sheet
residues; Ala, for making contacts with helix residues;
Lys, for making contact with water; and so on. It appears
that these preferences are dominated by the secondary
structure state of the central residue, simply because
residues in a helix are likely to make contacts with other
helix residues. The AS5 parameters are primarily used for
comparison with other sets, not for production runs.
(c) AM2: Preferences of amino acid side-chains for
contacts in 2 contact interface types, i.e. contact with
protein atoms (Prot) or contact with water molecules
(Wat). These very simple protein-water interface types
are derived from the AInt29 (Fig. 2(c)) parameters used in
(a), by summing protein-protein contacts over the
secondary structure states of both participating residues
or from the AS5 parameters used in (b), by summing over
the secondary structure state S, of the 2nd residue. The
only remaining distinction is that between contacts of a
protein atom with other protein atoms or with solvent
atoms. These parameters resemble a hydrophobicity scale,
e.g. Lys has the strongest preference for water contacts
while Tle, Phe, Trp and Cys have the strongest preference
for contacts with protein atoms. The apparently weaker
contrast in line Protein is a numerical effect, due to the
fact that, in the database used, the total number of
contacts with protein atoms exceeds by far that with
water atoms. (d). S4: Preferences of amino acid side-
chains for residue occurrence in 4 secondary structure
states, given for comparison. These are the classical occur-
rence residue preferences used in secondary structure
prediction methods (Chou & Fasman, 1978; Garnier ef al.,
1978; Maxfield & Scheraga, 1979). There is significant
correlation of these parameters with those in (b). The AS5
parameters in (b), however, include water contacts in a
natural and consistent fashion. e. AM2 preference para-
meters, numerical values. The parameters are calculated
as logarithms of ratios of probabilities and are thus addi-
tive along a-chain (see Methods).
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Figure 5. Sequence-structure fitness. (a) Calculation of
sequence-structure fitness of residue R(7) for the contact
environment ¢(j) in terms of the 5 contact interface types
PX, PT, PE, PH and PW. The fitness quantifies the

match between the interface vector at position j of the

distribution of similarity values relative to zero and, as a
result, the average length of alignments. Here, to estab-
lish a link with experience accumulated in the practice of
sequence alignments, we scale the local similarity values
f(R,5) to new values s(¢,j) using a linear transformation.
The transformation is such that the mean value of f(R,j)
minus 1 standard deviation (s.p.f) maps to a similarity
Smin = — 05, while the mean value plus 1 standard devia-
tion maps to a similarity s,,, = 1'0. The averages are
taken over all positions j in the database of 64 proteins
and over all residue types R. Their values are for AInt29:
mean = —0-125, s.n. = 0-490; for AM2: mean = —0-032,
s.p. = 0-138; for AS5: mean = —0071, S.D. = 0-262; for
S4: mean = —0-076, 8.D. = 0-486. As a result, most of the
transformed similarity values s(,j) lie between —0-5 and
1:0, for all parameter sets. By adjusting the constant s,
with fixed s,,,, the average length of alignments can be
adjusted. The other 2 parameters are penalties for gap
opening and gap elongation. For the results reported here
we chose a gap open penalty of 40 or 3:0 and gap
elongation penalty of 0-1 per residue, so that typically a
gap can be compensated for by 3 or 4 (or more) optimal
residue fits.

() Core weights

In order to explore the importance of the protein core
in fitting sequence to structure, we have introduced *‘core
weights” in the alignment procedure. For this purpose we
define the protein core as consisting of residues that are
conserved in sequence and not exposed to solvent. Core
weights are calculated as follows: from the multiple
sequence alignment, sequence variability v is calculated as
described by Sander & Schneider (1991) and linearly
scaled to weights w, which for a protein family, as defined
by a multiple sequence alignment, average to 1-0. So
conserved residues have w> 10, variable residues have
0-l1<w<1-0 (Sander & Schneider, unpublished results).
These weights are only used for residues that have a
relative solvent accessibility of less than 309, relative to
a fully extended chain, and a variability of v<25; all
other residues are given a weight of w=05. When
evaluating the sequence-structure fit at positions ¢ and j
in the alignment, weighted similarities w x s(i,j) are used

T Abbreviations used: 8.p., standard deviation; r.m.s.,
root-mean-square.

template structure and the preference vector for residue
type R at position ¢ of the input sequence. The numbers
Sf(R.j) constitute the structure-derived profile in (b). (b)
Structure-derived profile for crambin, using 5-state (AS5)
preference parameters. The amino acid type and
secondary structure is given in the left margin, as in
Fig. 2(d). At each position in the structure (rows j = 1-46),
the fitness f(R,j) of each amino acid type R (columns V to
D) is represented by the grey level of the squares, on a
scale of —1-0 (white) to +1-0 (black). The fitness of any
amino acid sequence for this structural template is
obtained by looking up the fitness of the particular amino
acid (column) for a particular structural position (row)
and summing these values over all positions in the
sequence-structure alignment. For a given set of contact
preference parameters, the sequence-structure profiles can
be precalculated for all database proteins and reused in all
subsequent sequence-structure alignments. Other prefer-
ence parameters, such as secondary structure preferences,
can also be represented in this way.
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in place of s(4,j), with an appropriate position-dependent
rescaling of gap weights. In this way, more importance is
given to core residues. Here, to introduce the concept, we
explored the use of core weights in the most demanding
test, i.e. when searching with one structure against a large
database of sequences (see below). The precise form of the
core weights has not been extensively optimized.

(g) Pitfalls: unrealistic gap penalties and missing jack-
knife tests

There are 2 classical pitfalls in this type of approach.
First, in aligning a sequence against its own structure as a
template it is important to set realistic values of gap
parameters. If gap placement is prohibitively expensive,
the native full-length alignment, which has no gaps, is
heavily favored (Hendlich et al., 1990). To avoid this
pitfall we use realistic gap penalties, chosen such that for
homologous proteins of known structure an approxi-
mately correct number of gaps is introduced. Second, it is
important to remove from the database the input protein
and its homologues before parameters are derived that are
applied to the input protein. Otherwise, scores may be
unrealistically high for some test proteins and then disap-
pointingly low for completely new test proteins. The
larger the number of parameters derived from the data-
base, the larger the danger of reproducing protein-specific
structural information in the parameters while losing
predictive power. On occasion, it is difficult to tell from
published work whether this effect played a role. Bowie et
al. (1991), for example, used parameters derived from 16
proteins including myoglobin (1mbo) and haemoglobin
alpha-chain (3hhb) and then tested the ability of a profile
derived from the structure of sperm whale myoglobin to
detect globins in the sequence database. Jack-knife
testing is less important when the number of parameters
used in the scoring tables or potentials of mean force is
smaller.

(h) Removing sequence information from contact profiles

To determine the information content in structure-
derived profiles, we remove direct sequence information
from the search profiles in all tests. The reason for this is
methodological. If the size of residues or their chemical
character is used in defining the structural states in the
template protein, then any sequence-structure alignment
contains elements of sequence-sequence alignment and it
becomes very difficult to assess genuine improvement
relative to pure sequence alignment methods. Here, we
have removed any direct information about the size of a
residue by normalizing the contact interface vectors ¢(j)
attached to structural position j. So all tests reported here
can be used to evaluate the contribution of structural
information to the success of sequence-structure align-
ment. This is in contrast to Bowie ef al. (1991), who use
the total accessible surface area of a residue as 1 of 2
criteria for representing the structural state of a residue
(larger residues, on average, have larger accessible surface
areas). After assessing the contribution from structural
information alone, one can then determine the proportion
of sequence information to be combined directly or in-
directly with structure-derived information in order to
optimize the performance of sequence-structure searches.
This is left to future work.

3. Results

To test the power of the method, proteins of
known structure are represented by their contact

profiles and the fitness of different sequences for
these structures is evaluated. Different types of
tests are performed, in order of increasing difficulty:
shift self test, align self test, search for structures,
search for folding units and search for sequences. In
each case and in all tests the input protein is
explicitly removed from the database of 64 non-
homologous proteins (Fig. 3) and all preference
parameters are recalculated (jack-knife test, see

Methods).

(a) Shaft self test: can the correct start position of a
sequence in its own structure be identified?

In this test, the sequence of a protein, without
insertions or deletions, is started at all possible
different offsets relative to its own native structure,
with residues that would extend beyond the end of
the structure wrapped to the beginning in cyeclic
fashion. For each such arrangement, the sequence-
structure fitness is evaluated (see Methods). Which
set of parameter produces a clear maximum at the
origin, i.e. for the native sequence-structure
arrangement?

The result is astonishingly clear cut. The fitness of
the native arrangement is clearly superior to any
other shifted arrangement, with by far the highest
peak at the origin (zero shift, Fig. 6(a) to (d)). This
result holds for all 64 proteins tested here and for all
sets of contact preference parameters, with only a
single exception: a-amylase inhibitor lhoe, using
AM2 and AS5 contact parameters. Typically, the
peak at the origin is 4 to 7 standard deviations
above background, defined as all shifted arrange-
ments in the same protein. The second highest peak
is typically 2 to 3 standard deviations above back-
ground. When the same test is performed with
classical secondary structure preference parameters
(S4), (Fig. 6a), analogous to those of Chou &
Fasman (1978), Garnier et al. (1978), or Maxfield &
Scheraga (1979), the number of proteins with a
highest peak at the origin drops to 46 out of 64
proteins (although 60 out of 64 have the maximum
within 1 residue of the origin) and the resolution is
inferior, i.e. the signal (standard deviation above
background) of the strongest peak relative to the
second best peak is not as strong. We conclude that
contact preferences, even in the simplest two-state
description (AM2), outperform classical (S4)
secondary structure preferences, primarily because
they include the effect of solvent. Apparently,
hydrophobic inside/outside preferences (protein-
protein contacts wversus protein-water contacts)
carry more information than secondary structure
preferences («, f, turn or loop).

Co-operativity appears to be the reason why the
shift self test is so selective and the native optimum
so sharp. In typical globular proteins, with
secondary structure segments and loops of varying
lengths, only the native arrangement has correct
phasing in which all single residue preferences on
average add up to a positive number. Shifts of only
one residue can switch many side-chains from
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mixed a/f structure, evaluated with 4-state (S4)

secondary structure occurrence parameters, i.e. not using

- the interface approach and not including the effect of

water contacts. Note the ambiguity of +1 residue near

the native arrangement (shift =0); 194 residues, PDB

mee _ssoh; f+ (,.Oesiduess)o oo code 3adk (Schulz et al., 1974). (b) Adenylate kinase

(b) evaluated with 2-state (AM2) protein-water contact

SADK A lMt29 preference parameters. Note the improved performance

- relative to (a), in spite of the smaller number of interface

states. (c) Adenylate kinase evaluated with 29-state

. (AInt29) contact preference parameters. (d)

Immunoglobulin-like RET protein, a homodimeric anti-

parallel beta sandwich structure with 4 sheets, evaluated

with AInt29 preference parameters; 107 residues per

‘ chain, PDB code lrei. Weak periodicity (4-on-4 beta

_ i strands?) appears to be reflected in the sequence-structure
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The results of the shift test indicate that evalua-
tion of sequence-structure alignments can be a
powerful filter for rejecting incorrect sequence
placements in a structural framework and that
surface/interior preferences of amino acids are the
most important single factor. A similar conclusion
was drawn from testing protein models using solva-
tion preference parameters (Holm & Sander, 1992).
Whether this can be exploited for structure predic-
tion depends on the influence of alignment gaps.
The effect of gaps is tested below.

(b) Align self test: can the sequence be aligned
correctly to its own structure?

In a more demanding align self test, a sequence is
aligned with its own structure, allowing gaps (but
not cyclic wrapping), i.e. all sequentially ordered
arrangements of a sequence in its own structure are
evaluated. The alignhment is performed using a
dynamic programming algorithm. In the matrix of
local similarities, the algorithm finds the globally
best trace among a very large number of possible
traces (Fig. 7). The local similarity is evaluated
using the sequence-structure fitness profile
(Fig. 5(b)). The best trace is the one with the highest
cumulative similarity score.

The result is positive for almost all proteins in the
database. The native alignment is identified as best,
although there are many different reasonable ways
of fitting sequence pieces into structure segments
(off-diagonal traces in Fig. 7). The test is more
severe for shorter sequences, as they can be fit into
many of the larger proteins over their entire length,
while longer sequences have few sufficiently long
realistic templates in the database. The quality of
the resulting alignment can be measured by the
resulting effective sequence similarity, as measured,
e.g. by the percentage of identical residues (see
columns in Fig. 8). For example, the sequence iden-
tity of 769, for trypsin (4ptp) means at least one
insertion or deletion causes a shift of 249, of the
residues away from their correct position. The three
different sets of contact parameters tested perform
as follows. With 29-state parameters (AInt29) 63/64
proteins are 1009, correctly aligned (except for
trypsin with 249, mismatch); with five-state para-
meters (AS5), 63/64 are correct (except virus coat
protein 2stv with 149, mismatch); with two-state
parameters (AM2), 60/64 are correct (except lgdl,
139, 6ldh, 159, 2tmn, 4%,; 4xia, 209,). For classi-
cal four-state secondary structure parameters,
which lack solvent contact information, about one
third of the alignments contains errors of up to 429,
mismatch.

Aligning a sequence with its own structure is a
non-trivial exercise when all direct sequence
information has been removed and a residue posi-
tion is only characterized by its (normalized)
contact environment. However, the correct align-
ment of a sequence in its own structure does have a
non-specific competitive advantage compared to
shorter, off-diagonal, alignments. This occurs in any

alignment procedure that aims to maximize the
total alignment score, i.e. the sum of local similarity
along the entire alignment trace (Smith &
Waterman, 1981). Theoretically speaking, the main
diagonal would be the one with the highest score,
because of its length, even if the entire matrix of
local similarities were uniform (but not if the matrix
were noisy). So success in the align self test is a
necessary, but not sufficient, condition for the
overall success of any sequence-structure alignment
method.

(c) Sequence in search of structures: can native
and homologous structures be identified in a
database search?

In this test, a given protein sequence is aligned to
a dataset of 64 different structures, one at a time,
presented as contact profiles. Can the native struc-
ture be identified, i.e. does it have the highest score?
If not, what is the highest scoring structure and
does it reflect an essentially correct structure for
this sequence? For each sequence-structure pair, the
five best alternative alignments (not sharing any
subtrace) are evaluated. Thus, the native structure
has to compete with more than 300 alternatives.

The result of this test is very encouraging (Fig. 8).
For 58 out of 64 proteins the native structure scores
highest, i.e. at position 1 out of 320, using the 29-
state contact interface description (AInt29). The
exceptions are: letf (rank 2/320), lhoe (rank 11),
5rxn (rank 2), 2sga (rank 2), 4sgb (rank 2) and lutg
(rank 12). The quality of the sequence-native struc-
ture alignments is excellent (1009, sequence iden-
tity with the native alighment in most cases), in
spite of the fact that insertions or deletions are
allowed. Using AInt29 parameters, only 4ptp has a
269, alignment error.

This result is almost independent of the type of
contact parameters used, i.e. parameters based on

...... LVIG RPMDHAFITE......
i

j £R,j)

Sequence-Structure Alignment

(a)

Figure 7. (a) Self-alignment. The matrix of similarity
values reflects the alignment of residue R at position ¢ in
the input sequence (horizontal axis) with position j in the
template structure (vertical axis). The alignment algo-
rithm finds the best path through the matrix such that
the sum over the fitness values f is maximized.
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Figure 7. (b) Self-alignment. Alignment similarity matrix for flavodoxin, a mixed B-a structure of 138 residues (PDB
data set 3fxn). Residue numbers and secondary structure are shown in margins. The fitness values are averaged over
windows of length 12 (value centered at the beginning of the window), representing the fit of any sequence fragment of
length 12 into any structure fragment of this length. The grey level indicates the sequence-structure fitness. Note on the
one hand that the preferences are clear for certain segment matches (diagonal and off-diagonal traces), capable of
distinguishing between segments that prefer an a-helix or f-strand, but that preferences are not sufficiently strong to
locally indicate the correct alignment. Only the co-operative effect of summing along the long trace can lead to a high
fitness score, as along the main diagonal. Note also that clear off-diagonal traces in some cases correctly indicate the
preference of a sequence segment for several of the structurally similar f-o-f units in the structure, e.g. the N-terminal 20

to 25 residues.

29 (AInt29) and five (ASH) contact states perform
equally well and those based on two states (AM2)
almost as well. Remarkably, however, four-state
secondary structure prediction parameters perform
less well, as already seen in the cyclic shift tests:
about one half of the native structures do not rank
as number one (Fig. 8, column S4).

The practical aim of the one-sequence against
many-structures search mode is the prediction of
three-dimensional structure, given a sequence. It

answers the following question: if the protein has
one of the known folds, which is the correct one?
The predicted fold is that of the top-scoring struc-
ture. If the top-scoring fold has a relatively low
score, in absolute terms, one rejects the hypothesis
that this sequence has a known fold. Work to deter-
mine an appropriate absolute criterion is in
progress. This predictive procedure works very well
when the interface contact profile is derived from
the native structure: the native structure has a high
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351c 1 100 9 100 1 100 3 100

256b 1 100 1 100 1 100 9 100

8adh 1 100 1 100 1 100 -

8atc 1 100 1100 1 100 1 100

2aza 1 100 1100 1 100 51 93

3b5¢c 1 100 1100 1 100 -

3blm 1 100 1 160 1 100 -

2caz 1 100 1 100 1 100 1 100

lcer 1 100 1 100 1 100 4 100

2ccy 1 100 1100 1 100 2 100

lcd4 1 100 1 100 1 100 1 100

3cla 1 100 1 100 1 100 4 100

S5cpa 1 100 1 100 1 100 1 61

2cpp 1 100 1 100 1 100 1 80

4cpv 1 100 1 1060 1 100 -

lcse 1 100 1100 1 100 1 76

lctf 2 100 i1 100 2 100 134 100

2cyp 1 100 1 100 1 100 -

gdfr 1 100 1 100 1 100 1 100

lecn 1 100 1100 1 100 141 100

2er7 1 100 1 100 1 100 197

4fdl 1 100 1 100 1 100 1 100

4fxn 1 100 1 100 1 100 1 76

3gap 1 100 1 100 1 100 -

2gbp 1 100 1 100 1 100 1 100

ilgcr 1 100 1 100 1 100 3 88

1gdl 1 100 1 87 1 100 1 85

lgox 1 100 1 100 1 100 2 100

lgpl 1 100 2 100 1 100 2 100

2hla 1 100 1 100 1 100 1 100

lhoe 11 100 269 100 - 32 87

1ilb 1 100 1100 1 100 10 100

4icd 1 100 1100 1 100 1 58

1il18 1 100 1 100 1 100 9 100

1113 1 100 1100 1 100 1 84

61ldh 1 100 1 85 1 100 1 90

2liv 1 100 1100 1 100 1 78

2ltn 1 100 1 100 1 100 -

11z1 1 100 1 100 1 100 -

lmbd 1 100 1 100 1 100 4 100

2mhr 1 100 1 100 1 100 131 100

2pab 1 100 1100 1 100 36 100

lpaz 1 100 1100 1 100 1 64

4ptp 1 76 1 100 1 100 -

1re9 1 100 1 100 1 100 2 100

irhd 1 100 1 100 1 100 1 100

7rsa 1 100 1 100 1 100 1 100

2rsp 1 100 1 100 1 100 2 100

5rxn 2 100 1 100 1 100 80 85

2sga 2 100 1 100 1 100 -

4sgb 2 100 39 100 2 100 28 100

2ens 1 100 1 100 1 100 -

2sod 1 100 1 100 1 100 -

2ssi 1 100 2 100 1 100 4 100

2stv 1 100 29 100 3 86 12 100

2tmn 1 100 1 96 1 100 -

1enf 1 100 1 100 1 100 3 100

2tsl 1 100 1 100 1 100 4 63

lubg 1 100 1 100 1 100 -

lutg 12 100 - 18 100 -

2wrp 1 100 13 100 1 100 2 100

lwsy 1 100 1 100 1 100 1 100

4xia 1 100 1 80 1 100 -

lypi 1 100 1 100 1 100 1 100

Figure 8. Sequence in search of a structure: rank of the
native structure. Results of an alignment search with an
input sequence against all structures in the selected data-
base of 64 proteins, using contact interface parameters
and, for comparison, secondary structure parameters. For
each pair comparison, the 5 best alignments are noted and
the 5 x 64 = 320 scores are sorted. The native structure is
then ranked in the sorted list (self rank) and the quality of
the corresponding alignment is reported in terms of
percentage identical residues. Rank 1 and sequence iden-
tity 1009, implies that the sequence-structure search was
highly successful, both in finding the native structure and
in aligning the sequence to it. Contact parameter sets
(AInt29, AS5, AM2) outperform pure secondary structure
preferences (S4). A dash indicates that the sequence
identity was below 509, interpreted as a negative result.
Alignment  parameters: gap open =40, gap
elongation = 0-1 (units of sigma relative to 0= 1-0),
Spmin = —0'5, 8. = 1°0, nbest = 5, maxdel = 10.

score and the alignment is correct (see previous
section). For useful practical applications detection
of the correct fold also needs to work for structures
remotely homologous to the native fold, e.g. the pair
immunoglobulin/CD4 receptor, globin/phycocyanin;
this is not consistently achieved in the current
implementation.

(d) Sequence in search of structural folding units:
can correct structural domains or folding units be
identified in a database search?

A more demanding test is the search for substruc-
tures, rather than entire structures. Can correct
structural domains or folding units be identified
even when a native-like structure is not among the
structures searched? Down to what level of struc-
tural unit does the search procedure work? An
example is given in Figure 9, where the sequence of
D-galactose binding protein (2gbp) is scanned
against a set of structures, including that of 2gbp.
The sequence fits best into the structures of 2gbp
and two known homologues (labp and 2liv, with
sequence relation to 2gbp below the twilight zone),
as well as into the structures of 3icd and 3pgk. What
is detected in the latter two structures is not the
same overall structure, but the presence of (fa),
units (supersecondary structure), embedded in
different folds. In all cases the secondary structure
agreement is remarkable. This type of local struc-
ture agreement is also apparent in many other test
runs (data not shown), including runs with
sequences of all-f and all-a proteins. The substruc-
ture units detected by the procedure may be folding
units. In the future, one may be able to use these
correctly detected units to build a predicted three-
dimensional structure, even in cases when a native-
like structure is not in the database.

(e) Structure in search of sequences: problems in
scanning large sequence databases

The search method can be inverted by scanning
with a single structure against a database of
sequences. In this inverted search one attempts to
ask the ambitious question of identifying all protein
sequences that contain a structural domain like that
of the search protein. Does the native sequence or
that of a homologue appear at rank 1? We aligned
the structural template of each of the 64 structures
against 640 sequences: the sequences of the 64
search structures plus 576 sequences chosen
randomly from Swiss-Prot (Bairoch & Boeckmann,
1991). Parameters used were the 29-state interface
preferences (AInt29, normalized, gap open = 10-0,
gap elongation = 0-3, s,;, = —0-7, gaps in secondary
structure not allowed).

The native sequence is detected at rank 1 in 38/64
cases out of 640 (599), at rank 1 or 2 in 47/64 cases
(739%), and among the top 10 in 55/64 cases (869).
Alignments of a structure with its native sequence,
irrespective of the rank, are perfect in almost all
cases, in spite of gap parameters that for bad
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Figure 9. Sequence in search of substructures (folding units). Results of an optimal alignment search with the sequence
of p-galactose binding protein (2gbp) against a database of 64 protein 3-dimensional interface profiles. Only residues 1 to
85 of 2gbp are shown (residue numbers, sequence, secondary structure, sequence identities as asterisks, gaps as dots,
inserts bracketed by lower case letters). The 4 top-scoring proteins (over their entire length of more than 300 residues)
were arabinose binding protein (labp), isocitrate dehydrogenase (3icd), leucine-isoleucine-valine binding protein (2liv)
and phosphoglycerate kinase (3pgk). Two of these have a similar overall topology (1abp, 2liv) and are correctly detected,

with good (but not perfect) alignments. The fold of the other 2 (3icd, 3pgk) is of the same general type,

(2f),, but the

topology of chain connections is different. Yet, over most of the aligned length, the secondary structure of these 2 also
agrees well with that of the search sequence (of which the structure, of course, was not used). This indicates that
prediction of substructures or folding units using sequence-structure fitness searches may be a practical proposition.

sequence-structure fits are, realistically, accom-
panied by several gaps of varying length per 100
residues. For the two-state preferences (AM2) the
results are comparable (rank 1: 739, rank 1 or 2:
839, , rank top 10: 849). The overall results of this
test appear inferior to those of the sequence in
search of structure tests. However, most of the low-
ranking cases actually have close homologues at top
ranks, e.g. the all-helical folds of globin lecn, globin
Imbd, uteroglobin 2utg, myohemerythrin 4mbhr,
calcium-binding protein 4cpv all pick up all-helical
myosin or tropomyosin at top ranks, i.e. correct
identification at the segment level. Note that in the
independent but conceptually similar structure in
search of sequence test by Bowie et al. (1991), the
results for only a handful of proteins are given
without any indication of the quality of alignments,
while here we test 64 different structural templates
and evaluate alignment errors.

(f) Improvement by use of core weights

Evolutionary information can be used to improve
the performance of sequence-structure alignment.
This is done (see Methods) by placing higher weights
on residues in the conserved core of a structure, as
derived from multiple sequence alighments and
from the solvent accessibility profile. The idea is to
place less emphasis on residues that are very
exposed to solvent or highly variable in sequence.

Core weights are particulary valuable in the
detection of remote homologues. For example, a
search with the sequence of malate dehydrogenase
(4mdh) against a set of structure-derived contact
profiles with core weights detects the structurally
related lactate dehydrogenase (6ldh) at rank 1, in
spite of the very low sequence similarity. The
quality of the implied three-dimensional model is
quite good as judged by direct comparison of the

two known structures (Fig. 10). However, because
of the above-average size of the dehydrogenases
{more than 300 residues), the detection at rank 1 in
this and similar cases is only moderately difficult
when ranking is according to absolute score: shorter
contact profiles are unlikely to lead to a comparably
large score. Fortuitous length match of sequence
and structure may also in part be responsible for the
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Figure 10. Application of core weights: search of
remote homologues. The sequence of malate dehydro-
genase (4mdh) detects the structural profile of the remote
homologue lactate dehydrogenase (6ldh) at rank 2, right
after the native structure, in competition with 68 alterna-
tive folds. The alignment is quite good: the sequence-
structure alignment corresponds to a C* positional r.m.s.
deviation is 4-7 A over 309 residues and a sequence iden-
tity of 159, compared to the optimal 27 A rm.s. and
189, sequence identity derived from direct structure com-
parison (Holm et al., 1992). Rank 3,4 and 5 are filled by
other mixed a-f proteins. Contact interface parameters
were AInt29; alignment parameters gap open = 10-0, gap
elongation = 0-3, sy, = —07.
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successful detection of remote homologues in similar
searches by Bowie et al. (1991) and Jones et al.
(1992).

Another example is the more demanding search
with the myoglobin structure (Imbd) against the
entire Swiss-Prot database of 25,000 proteins
(Fig. 11). The overlap between the scores of globins
and non-globins is significantly reduced when using
core weights (Fig. 11 a,b). Moreover, the search
picks up some remote homologues not detectable by
sequence-sequence alignment. The discrimination
between true positives, i.e. globins and the back-
ground, is fairly sharp as seen in a two-dimensional
scatter plot in terms of sequence-structure fitness

250

(length-normalized as described by Sander &
Schneider, 1991) and the resulting sequence identity
(Fig. 11(c)).

Sequences at the border of signal and background
in this type of search have an implied predicted
structure. In the myoglobin search, five sequences
are tentatively identified to contain an all-helical
domain (Fig. 11(c)). The src-related kinase is a false
positive as judged by the known structure of a
homologue, cAMP-dependent protein kinase
(Knighton et al., 1991). The origin of replication
binding protein of herpes simplex virus (McGeoch et
al., 1988) is a likely true positive: the C-terminal end
(residues 701 to 851) is predicted to be an all-helical
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Figure 11. Application of core weights: structure in search of a sequence. Result of an alignment search with the
contact interface profile of 1mbd against 25,000 Swiss-Prot sequences, (a) without and (b) and (¢) with core weights.
Sequence-stracture fitness scores for the best 2000 hits are reported as a histogram. Separation of scores between globins
(filled bars, myoglobins on the right, haemoglobins on the left) and non-globins (open bars) is superior using core weights.
(a) All sequence positions carry equal weight; (b) conserved core positions have a higher weight in the alignment
optimization (see methods); (¢} same as (b), but with sequence identity resulting from sequence-structure alignment (as a
fraction of 1-0) and length-normalized fitness values as dimensions, allowing a sharper distinction between background
and noise than in (b). Non-globins with scores similar to globins either are false positives or are predicted to have the
globin fold: syfb_ecoli (Phe-tRNA synthase beta-chain, 3), cyl4 neucr (sulfate permease, 4), kstk_hydat (src-related Tyr
kinase, 5), ul09_hsv1l (origin of replication binding protein, 6), and bioa_bacsh (dapa aminotransferase, 7). Globins were
labelled as such based on database protein names. Two remote homologues of myoglobin (169, identical residues in
sequence-structure alignment) are cobra haemoglobin hbb2_najna (1) and plant globin hbpl_parad (2).Very simple
fitness parameters were used (AM2), with gaps allowed in alignments (gap open = 6-0, gap elongation = 0-2). In (a) and
(b) fitness is scaled to be 100 for the best reported alignment, 0 for the 2000th. Note that only the structure-derived

profile and residue conservation weights, but not the sequence of 1mbd, were used in the search.

structure that possibly adopts the globin fold. The
prediction is supported by additional independent
evidence: a stretch of 85 residues has 2949
sequence identity to a hemoglobin alpha-chain; and,
a secondary structure prediction method, rated at
70-89, sustained three-state accuracy (Rost &
Sander, 1993) predicts six helices. This prediction is
open to falsification.

4, Discussion

(a) Background: structure prediction by sequence-
sequence alignment

Prediction of protein structure by homology has
been a practical proposition for some time, based on
the detection of significant similarities at the
sequence level. A number of methods have been
developed to search for profile-sequence or
template-sequence matches in a database of many
sequences, using alignment algorithms (dynamic
programming or block matching) with gaps allowed
(Taylor, 1986; Bashford et al., 1987; Gribskov et al.,
1987; Staden, 1988; Smith & Smith, 1990; Hennikof
& Hennikof, 1991). When a significant (Sander &
Schneider, 1991} match with a sequence of known
structure is found in the database, then by implica-

tion the three-dimensional structure of the search
protein can be modelled with reasonable accuracy.
The new and simple idea here and in related
approaches is to evaluate sequence-structure fitness
directly, rather than indirectly viz the comparison
of sequences.

(b) Background: measures of
sequence-structure fitness

Measures of sequence-structure fitness for entire
proteins or protein domains, as opposed to single
residues or secondary structure segments, have been
developed over the last ten years by a number of
groups, originally to distinguish between properly
and improperly folded protein models. They are
based on intramolecular potential energy (Novotny
et al., 1984, 1988), volume considerations (Gregoret
& Cohen, 1990), contact counts (Bryant & Amzel,
1987), empirical solvation terms (Eisenberg &
McLachlan, 1986; Baumann et al., 1989; Chiche et
al., 1990, Holm & Sander, 1992), potentials of mean
force derived from contact counts (Sippl, 1990;
Hendlich et al., 1990; Sippl & Weitckus, 1992),
interresidue contact potential optimized to yield a
global minimum for native structures (Crippen,
1991; Maiorov & Crippen, 1992), a self-consistent
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hydrophobic molecular field (Finkelstein & Reva,
1991), environment-specific residue preferences
(Luethy et al., 1992) or alignment-based associative
memory Hamiltonians (Goldstein et al., 1992a.b).
Effective contact energies or preferences for use in
structure prediction were earlier derived by, e.g.
Tanaka & Scheraga (1975), Crippen (1977), Lifson &
Sander (1980), Galaktionov & Rodionov (1981),
Miyazawa & Jernigan (1985), Scharf (1989). In
related work, environment-specific substitution
tables were derived from multiple alignment of
sequences or structures (Overington et al., 1990;
Luethy et al., 1991; Sander & Schneider, unpub-
lished results). When summed over an entire pro-
tein, such substitution probabilities also provide a
measure of sequence-structure fitness.

(¢) Different approaches to
sequence-structure alignment

Several groups have realized that sequence-struc-
ture fitness can be successfully used for structure
prediction if the protein fold belongs to one of the
known structural classes. The fold is identified
among the many alternatives by techniques similar
to those used in searching sequence databases with
profiles derived from multiple sequence alignments
alone (see above), or in combination with inspection
of three-dimensional structures, as done for the
globin fold by Bashford et al. (1987), and for the
immunoglobulin fold by Taylor (1986). Simple
profiles derived from structures alone were used by
Bowie et al. (1990), who aligned solvent accessibility
patterns (structure information) to hydrophobicity
patterns (sequence information). Hendlich et al.
(1990) used pair potentials to test various sequence
arrangements of one sequence in a known structure.
Luethy et al. (1991) combined secondary structure
and solvent exposure to derive search profiles.
Refinements were then made in the definition of
structural states and in the definition of potentials
(Bowie et al., 1991; Casari & Sippl, 1992; Godzik &
Skolnick, 1992; Godzik ef al., 1992; Goldstein et al.,
19926). Geometrically generated hypothetical folds,
rather than just known folds, were tested by
Finkelstein & Reva (1991, 1992) using an iterative
molecular field approach and by Taylor (1991). The
optimization of fitness among various sequence-
structure arrangements is usually treated as a one-
dimensional alignment problem. The problem
becomes two-dimensional when contact statistics
for residue pairs are used without averaging over
one of the contact partners. This more difficult
problem has been solved by an algorithm analogous
to one used in structure-structure alignment (Taylor
& Orengo, 1989; Jones et al., 1992).

(d) Quality of alignments in the twilight zone of
structural homology

How do the results of these methods compare to
straightforward detection of homology by sequence
alignment? Sequence alignment works well down to

a level of sequence similarity that corresponds to
about 25 to 309, identical residues, for a length of
80 or more residues (Sander & Schneider, 1991). So
the goal of new methods must be the detection of
structural homologies below this level, in the
twilight zone, e.g. the structural similarity between
the two domains of rhodanese (sequence identity
below 159%). None of the sequence-structure align-
ment methods has been proven to consistently and
generally detect remote structural homologies with
a high score and with the correct alignment.
However, several interesting examples in addition
to the ones given here have been reported, e.g. the
relation between actin and heat shock protein hsp70
(Bowie et al., 1991) or between phycocyanin and
myoglobin (Jones et al., 1992).

It would be interesting to perform a compre-
hensive test of these different methods using a large
number of control examples, jack-knifing (removal
of homologues of test proteins from the parameter
database), predetermined gap penalties (rather than
adjusting gap penalties to fit the known examples),
and reporting not only the score of the best hits, but
also the quality of the resulting alignments. Work
along these lines is continuing in several groups.
Exhaustive examples of sequence-remote homolo-
gues to known structures can be taken from the
database of structurally aligned protein families
(Holm ef al., 1992) available »ia anonymous file
transfer protocol from ftp.embl-heidelberg.de in the
directory /pub/databases/protein-extras/fssp.

(e) Database searches: sequence seeks structure or
structure seeks sequence?

There is a not-so-subtle asymmetry in the direc-
tion of the search. Taking one sequence and scan-
ning again, say, against 200 different protein
structures, corresponds to testing 200 different
three-dimensional structures for the input sequence,
a small but reasonable exploration of the set of all
possible structures for this sequence. Most groups
working in this field have concentrated on this mode
(sequence seeks structure), as a way of predicting
three-dimensional structure for a given sequence,
with the apparently best results reported by Jones
et al. (1992). In the reverse direction (structure seeks
sequence), one takes one input structure, e.g. a (Ba)g
barrel, and scans a large database of 25,000 protein
sequences, with the intent of identifying all known
sequences compatible with the input structure
(Bowie et al., 1991). The sequence-structure fitness
function needs to be well calibrated on an absolute
scale for this to work, as the only physical competi-
tion in folding is between different structures for one
sequence (only protein design or natural evolution
explore different sequences for one structure!). Tt
would be interesting to see reports of both search
directions in future publication in this field.

(f) Quest for the best parameter set

The main conceptual difference of our approach
to that of others is in the contact vector formulation
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(Scharf, 1989). Rather than classifying a residue
into one of several discrete environmental states
(Bowie et al., 1991), we retain for each residue
information about its environment on a sliding
scale, in terms of a set of real numbers that describe
all interatomic contacts made by the residue.
Evaluation of the preferences is done not by a
simple table lookup, but by a vector product that
effectively weights each participating interresidue
contact by the corresponding contact strength.

This conceptual framework allows a large variety
of different definitions of environmental preference
parameters, or potentials of mean force, in a unified
language, that of interatomic contacts. Solvent
contacts are described in this language in a natural
way. So far, the comparison of five different para-
meter sets has led to the conclusion that; (1) classi-
cal secondary structure preferences are inferior to
contact interface preferences, (2) the best interface
definition is the most complicated one, with 29
states, but only marginally so and (3) the simplest
two-state preferences (protein-protein, protein-
water) work almost as well as the most sophisti-
cated 29-state description used here. Recent analy-
sis of many-parameter mean field contact potentials
confirms this view (Casari & Sippl, 1992). Future
work will show which of the parameter sets
currently being developed by several groups have
the best performance in terms of identifying three-
dimensional folds within and below the twilight
zone of sequence similarity.

(g) Anticipated improvements

Improvement of sequence-structure alignments
for protein structure prediction in the twilight zone
may come from a more adequate definition of struc-
tural states (not necessarily more states), from use
of homologous sequence information, e.g. in the
form of conservation weights or multiple sequence
alignments, from mixing sequence and structure
information in correct proportions, from improved
optimization methods in combining different inter-
action terms, from genuine two-dimensional align-
ment optimization that takes into account the
change of contact partner with alignment, and from
variation in backbone geometry and general plasti-
city of homologous structures. The problem is an
urgent one, as genome projects will soon flood us
with many protein sequences lacking functional or
structural information. When developed and used
properly, computational sequence analysis and
structure prediction algorithms can save countless
hours in the laboratory, by deriving probable three-
dimensional structures.
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